Loading...
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20/*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24#include <linux/sched.h>
25#include <linux/mm.h>
26#include <linux/mmzone.h>
27#include <linux/screen_info.h>
28#include <linux/ioport.h>
29#include <linux/acpi.h>
30#include <linux/sfi.h>
31#include <linux/apm_bios.h>
32#include <linux/initrd.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/module.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53
54#include <linux/errno.h>
55#include <linux/kernel.h>
56#include <linux/stddef.h>
57#include <linux/unistd.h>
58#include <linux/ptrace.h>
59#include <linux/user.h>
60#include <linux/delay.h>
61
62#include <linux/kallsyms.h>
63#include <linux/cpufreq.h>
64#include <linux/dma-mapping.h>
65#include <linux/ctype.h>
66#include <linux/uaccess.h>
67
68#include <linux/percpu.h>
69#include <linux/crash_dump.h>
70#include <linux/tboot.h>
71#include <linux/jiffies.h>
72
73#include <video/edid.h>
74
75#include <asm/mtrr.h>
76#include <asm/apic.h>
77#include <asm/realmode.h>
78#include <asm/e820.h>
79#include <asm/mpspec.h>
80#include <asm/setup.h>
81#include <asm/efi.h>
82#include <asm/timer.h>
83#include <asm/i8259.h>
84#include <asm/sections.h>
85#include <asm/io_apic.h>
86#include <asm/ist.h>
87#include <asm/setup_arch.h>
88#include <asm/bios_ebda.h>
89#include <asm/cacheflush.h>
90#include <asm/processor.h>
91#include <asm/bugs.h>
92#include <asm/kasan.h>
93
94#include <asm/vsyscall.h>
95#include <asm/cpu.h>
96#include <asm/desc.h>
97#include <asm/dma.h>
98#include <asm/iommu.h>
99#include <asm/gart.h>
100#include <asm/mmu_context.h>
101#include <asm/proto.h>
102
103#include <asm/paravirt.h>
104#include <asm/hypervisor.h>
105#include <asm/olpc_ofw.h>
106
107#include <asm/percpu.h>
108#include <asm/topology.h>
109#include <asm/apicdef.h>
110#include <asm/amd_nb.h>
111#include <asm/mce.h>
112#include <asm/alternative.h>
113#include <asm/prom.h>
114#include <asm/microcode.h>
115#include <asm/mmu_context.h>
116
117/*
118 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
119 * max_pfn_mapped: highest direct mapped pfn over 4GB
120 *
121 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
122 * represented by pfn_mapped
123 */
124unsigned long max_low_pfn_mapped;
125unsigned long max_pfn_mapped;
126
127#ifdef CONFIG_DMI
128RESERVE_BRK(dmi_alloc, 65536);
129#endif
130
131
132static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
133unsigned long _brk_end = (unsigned long)__brk_base;
134
135#ifdef CONFIG_X86_64
136int default_cpu_present_to_apicid(int mps_cpu)
137{
138 return __default_cpu_present_to_apicid(mps_cpu);
139}
140
141int default_check_phys_apicid_present(int phys_apicid)
142{
143 return __default_check_phys_apicid_present(phys_apicid);
144}
145#endif
146
147struct boot_params boot_params;
148
149/*
150 * Machine setup..
151 */
152static struct resource data_resource = {
153 .name = "Kernel data",
154 .start = 0,
155 .end = 0,
156 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
157};
158
159static struct resource code_resource = {
160 .name = "Kernel code",
161 .start = 0,
162 .end = 0,
163 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
164};
165
166static struct resource bss_resource = {
167 .name = "Kernel bss",
168 .start = 0,
169 .end = 0,
170 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
171};
172
173
174#ifdef CONFIG_X86_32
175/* cpu data as detected by the assembly code in head.S */
176struct cpuinfo_x86 new_cpu_data = {
177 .wp_works_ok = -1,
178};
179/* common cpu data for all cpus */
180struct cpuinfo_x86 boot_cpu_data __read_mostly = {
181 .wp_works_ok = -1,
182};
183EXPORT_SYMBOL(boot_cpu_data);
184
185unsigned int def_to_bigsmp;
186
187/* for MCA, but anyone else can use it if they want */
188unsigned int machine_id;
189unsigned int machine_submodel_id;
190unsigned int BIOS_revision;
191
192struct apm_info apm_info;
193EXPORT_SYMBOL(apm_info);
194
195#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
196 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
197struct ist_info ist_info;
198EXPORT_SYMBOL(ist_info);
199#else
200struct ist_info ist_info;
201#endif
202
203#else
204struct cpuinfo_x86 boot_cpu_data __read_mostly = {
205 .x86_phys_bits = MAX_PHYSMEM_BITS,
206};
207EXPORT_SYMBOL(boot_cpu_data);
208#endif
209
210
211#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
212__visible unsigned long mmu_cr4_features;
213#else
214__visible unsigned long mmu_cr4_features = X86_CR4_PAE;
215#endif
216
217/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
218int bootloader_type, bootloader_version;
219
220/*
221 * Setup options
222 */
223struct screen_info screen_info;
224EXPORT_SYMBOL(screen_info);
225struct edid_info edid_info;
226EXPORT_SYMBOL_GPL(edid_info);
227
228extern int root_mountflags;
229
230unsigned long saved_video_mode;
231
232#define RAMDISK_IMAGE_START_MASK 0x07FF
233#define RAMDISK_PROMPT_FLAG 0x8000
234#define RAMDISK_LOAD_FLAG 0x4000
235
236static char __initdata command_line[COMMAND_LINE_SIZE];
237#ifdef CONFIG_CMDLINE_BOOL
238static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
239#endif
240
241#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
242struct edd edd;
243#ifdef CONFIG_EDD_MODULE
244EXPORT_SYMBOL(edd);
245#endif
246/**
247 * copy_edd() - Copy the BIOS EDD information
248 * from boot_params into a safe place.
249 *
250 */
251static inline void __init copy_edd(void)
252{
253 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
254 sizeof(edd.mbr_signature));
255 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
256 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
257 edd.edd_info_nr = boot_params.eddbuf_entries;
258}
259#else
260static inline void __init copy_edd(void)
261{
262}
263#endif
264
265void * __init extend_brk(size_t size, size_t align)
266{
267 size_t mask = align - 1;
268 void *ret;
269
270 BUG_ON(_brk_start == 0);
271 BUG_ON(align & mask);
272
273 _brk_end = (_brk_end + mask) & ~mask;
274 BUG_ON((char *)(_brk_end + size) > __brk_limit);
275
276 ret = (void *)_brk_end;
277 _brk_end += size;
278
279 memset(ret, 0, size);
280
281 return ret;
282}
283
284#ifdef CONFIG_X86_32
285static void __init cleanup_highmap(void)
286{
287}
288#endif
289
290static void __init reserve_brk(void)
291{
292 if (_brk_end > _brk_start)
293 memblock_reserve(__pa_symbol(_brk_start),
294 _brk_end - _brk_start);
295
296 /* Mark brk area as locked down and no longer taking any
297 new allocations */
298 _brk_start = 0;
299}
300
301u64 relocated_ramdisk;
302
303#ifdef CONFIG_BLK_DEV_INITRD
304
305static u64 __init get_ramdisk_image(void)
306{
307 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
308
309 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
310
311 return ramdisk_image;
312}
313static u64 __init get_ramdisk_size(void)
314{
315 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
316
317 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
318
319 return ramdisk_size;
320}
321
322static void __init relocate_initrd(void)
323{
324 /* Assume only end is not page aligned */
325 u64 ramdisk_image = get_ramdisk_image();
326 u64 ramdisk_size = get_ramdisk_size();
327 u64 area_size = PAGE_ALIGN(ramdisk_size);
328
329 /* We need to move the initrd down into directly mapped mem */
330 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
331 area_size, PAGE_SIZE);
332
333 if (!relocated_ramdisk)
334 panic("Cannot find place for new RAMDISK of size %lld\n",
335 ramdisk_size);
336
337 /* Note: this includes all the mem currently occupied by
338 the initrd, we rely on that fact to keep the data intact. */
339 memblock_reserve(relocated_ramdisk, area_size);
340 initrd_start = relocated_ramdisk + PAGE_OFFSET;
341 initrd_end = initrd_start + ramdisk_size;
342 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
343 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
344
345 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
346
347 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
348 " [mem %#010llx-%#010llx]\n",
349 ramdisk_image, ramdisk_image + ramdisk_size - 1,
350 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
351}
352
353static void __init early_reserve_initrd(void)
354{
355 /* Assume only end is not page aligned */
356 u64 ramdisk_image = get_ramdisk_image();
357 u64 ramdisk_size = get_ramdisk_size();
358 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
359
360 if (!boot_params.hdr.type_of_loader ||
361 !ramdisk_image || !ramdisk_size)
362 return; /* No initrd provided by bootloader */
363
364 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
365}
366static void __init reserve_initrd(void)
367{
368 /* Assume only end is not page aligned */
369 u64 ramdisk_image = get_ramdisk_image();
370 u64 ramdisk_size = get_ramdisk_size();
371 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
372 u64 mapped_size;
373
374 if (!boot_params.hdr.type_of_loader ||
375 !ramdisk_image || !ramdisk_size)
376 return; /* No initrd provided by bootloader */
377
378 initrd_start = 0;
379
380 mapped_size = memblock_mem_size(max_pfn_mapped);
381 if (ramdisk_size >= (mapped_size>>1))
382 panic("initrd too large to handle, "
383 "disabling initrd (%lld needed, %lld available)\n",
384 ramdisk_size, mapped_size>>1);
385
386 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
387 ramdisk_end - 1);
388
389 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
390 PFN_DOWN(ramdisk_end))) {
391 /* All are mapped, easy case */
392 initrd_start = ramdisk_image + PAGE_OFFSET;
393 initrd_end = initrd_start + ramdisk_size;
394 return;
395 }
396
397 relocate_initrd();
398
399 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
400}
401#else
402static void __init early_reserve_initrd(void)
403{
404}
405static void __init reserve_initrd(void)
406{
407}
408#endif /* CONFIG_BLK_DEV_INITRD */
409
410static void __init parse_setup_data(void)
411{
412 struct setup_data *data;
413 u64 pa_data, pa_next;
414
415 pa_data = boot_params.hdr.setup_data;
416 while (pa_data) {
417 u32 data_len, data_type;
418
419 data = early_memremap(pa_data, sizeof(*data));
420 data_len = data->len + sizeof(struct setup_data);
421 data_type = data->type;
422 pa_next = data->next;
423 early_memunmap(data, sizeof(*data));
424
425 switch (data_type) {
426 case SETUP_E820_EXT:
427 parse_e820_ext(pa_data, data_len);
428 break;
429 case SETUP_DTB:
430 add_dtb(pa_data);
431 break;
432 case SETUP_EFI:
433 parse_efi_setup(pa_data, data_len);
434 break;
435 default:
436 break;
437 }
438 pa_data = pa_next;
439 }
440}
441
442static void __init e820_reserve_setup_data(void)
443{
444 struct setup_data *data;
445 u64 pa_data;
446
447 pa_data = boot_params.hdr.setup_data;
448 if (!pa_data)
449 return;
450
451 while (pa_data) {
452 data = early_memremap(pa_data, sizeof(*data));
453 e820_update_range(pa_data, sizeof(*data)+data->len,
454 E820_RAM, E820_RESERVED_KERN);
455 pa_data = data->next;
456 early_memunmap(data, sizeof(*data));
457 }
458
459 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
460 memcpy(&e820_saved, &e820, sizeof(struct e820map));
461 printk(KERN_INFO "extended physical RAM map:\n");
462 e820_print_map("reserve setup_data");
463}
464
465static void __init memblock_x86_reserve_range_setup_data(void)
466{
467 struct setup_data *data;
468 u64 pa_data;
469
470 pa_data = boot_params.hdr.setup_data;
471 while (pa_data) {
472 data = early_memremap(pa_data, sizeof(*data));
473 memblock_reserve(pa_data, sizeof(*data) + data->len);
474 pa_data = data->next;
475 early_memunmap(data, sizeof(*data));
476 }
477}
478
479/*
480 * --------- Crashkernel reservation ------------------------------
481 */
482
483#ifdef CONFIG_KEXEC_CORE
484
485/* 16M alignment for crash kernel regions */
486#define CRASH_ALIGN (16 << 20)
487
488/*
489 * Keep the crash kernel below this limit. On 32 bits earlier kernels
490 * would limit the kernel to the low 512 MiB due to mapping restrictions.
491 * On 64bit, old kexec-tools need to under 896MiB.
492 */
493#ifdef CONFIG_X86_32
494# define CRASH_ADDR_LOW_MAX (512 << 20)
495# define CRASH_ADDR_HIGH_MAX (512 << 20)
496#else
497# define CRASH_ADDR_LOW_MAX (896UL << 20)
498# define CRASH_ADDR_HIGH_MAX MAXMEM
499#endif
500
501static int __init reserve_crashkernel_low(void)
502{
503#ifdef CONFIG_X86_64
504 unsigned long long base, low_base = 0, low_size = 0;
505 unsigned long total_low_mem;
506 int ret;
507
508 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
509
510 /* crashkernel=Y,low */
511 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
512 if (ret) {
513 /*
514 * two parts from lib/swiotlb.c:
515 * -swiotlb size: user-specified with swiotlb= or default.
516 *
517 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
518 * to 8M for other buffers that may need to stay low too. Also
519 * make sure we allocate enough extra low memory so that we
520 * don't run out of DMA buffers for 32-bit devices.
521 */
522 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
523 } else {
524 /* passed with crashkernel=0,low ? */
525 if (!low_size)
526 return 0;
527 }
528
529 low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
530 if (!low_base) {
531 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
532 (unsigned long)(low_size >> 20));
533 return -ENOMEM;
534 }
535
536 ret = memblock_reserve(low_base, low_size);
537 if (ret) {
538 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
539 return ret;
540 }
541
542 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
543 (unsigned long)(low_size >> 20),
544 (unsigned long)(low_base >> 20),
545 (unsigned long)(total_low_mem >> 20));
546
547 crashk_low_res.start = low_base;
548 crashk_low_res.end = low_base + low_size - 1;
549 insert_resource(&iomem_resource, &crashk_low_res);
550#endif
551 return 0;
552}
553
554static void __init reserve_crashkernel(void)
555{
556 unsigned long long crash_size, crash_base, total_mem;
557 bool high = false;
558 int ret;
559
560 total_mem = memblock_phys_mem_size();
561
562 /* crashkernel=XM */
563 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
564 if (ret != 0 || crash_size <= 0) {
565 /* crashkernel=X,high */
566 ret = parse_crashkernel_high(boot_command_line, total_mem,
567 &crash_size, &crash_base);
568 if (ret != 0 || crash_size <= 0)
569 return;
570 high = true;
571 }
572
573 /* 0 means: find the address automatically */
574 if (crash_base <= 0) {
575 /*
576 * kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
577 */
578 crash_base = memblock_find_in_range(CRASH_ALIGN,
579 high ? CRASH_ADDR_HIGH_MAX
580 : CRASH_ADDR_LOW_MAX,
581 crash_size, CRASH_ALIGN);
582 if (!crash_base) {
583 pr_info("crashkernel reservation failed - No suitable area found.\n");
584 return;
585 }
586
587 } else {
588 unsigned long long start;
589
590 start = memblock_find_in_range(crash_base,
591 crash_base + crash_size,
592 crash_size, 1 << 20);
593 if (start != crash_base) {
594 pr_info("crashkernel reservation failed - memory is in use.\n");
595 return;
596 }
597 }
598 ret = memblock_reserve(crash_base, crash_size);
599 if (ret) {
600 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
601 return;
602 }
603
604 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
605 memblock_free(crash_base, crash_size);
606 return;
607 }
608
609 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
610 (unsigned long)(crash_size >> 20),
611 (unsigned long)(crash_base >> 20),
612 (unsigned long)(total_mem >> 20));
613
614 crashk_res.start = crash_base;
615 crashk_res.end = crash_base + crash_size - 1;
616 insert_resource(&iomem_resource, &crashk_res);
617}
618#else
619static void __init reserve_crashkernel(void)
620{
621}
622#endif
623
624static struct resource standard_io_resources[] = {
625 { .name = "dma1", .start = 0x00, .end = 0x1f,
626 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
627 { .name = "pic1", .start = 0x20, .end = 0x21,
628 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 { .name = "timer0", .start = 0x40, .end = 0x43,
630 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 { .name = "timer1", .start = 0x50, .end = 0x53,
632 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 { .name = "keyboard", .start = 0x60, .end = 0x60,
634 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 { .name = "keyboard", .start = 0x64, .end = 0x64,
636 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
638 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 { .name = "pic2", .start = 0xa0, .end = 0xa1,
640 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 { .name = "dma2", .start = 0xc0, .end = 0xdf,
642 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 { .name = "fpu", .start = 0xf0, .end = 0xff,
644 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
645};
646
647void __init reserve_standard_io_resources(void)
648{
649 int i;
650
651 /* request I/O space for devices used on all i[345]86 PCs */
652 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
653 request_resource(&ioport_resource, &standard_io_resources[i]);
654
655}
656
657static __init void reserve_ibft_region(void)
658{
659 unsigned long addr, size = 0;
660
661 addr = find_ibft_region(&size);
662
663 if (size)
664 memblock_reserve(addr, size);
665}
666
667static bool __init snb_gfx_workaround_needed(void)
668{
669#ifdef CONFIG_PCI
670 int i;
671 u16 vendor, devid;
672 static const __initconst u16 snb_ids[] = {
673 0x0102,
674 0x0112,
675 0x0122,
676 0x0106,
677 0x0116,
678 0x0126,
679 0x010a,
680 };
681
682 /* Assume no if something weird is going on with PCI */
683 if (!early_pci_allowed())
684 return false;
685
686 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
687 if (vendor != 0x8086)
688 return false;
689
690 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
691 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
692 if (devid == snb_ids[i])
693 return true;
694#endif
695
696 return false;
697}
698
699/*
700 * Sandy Bridge graphics has trouble with certain ranges, exclude
701 * them from allocation.
702 */
703static void __init trim_snb_memory(void)
704{
705 static const __initconst unsigned long bad_pages[] = {
706 0x20050000,
707 0x20110000,
708 0x20130000,
709 0x20138000,
710 0x40004000,
711 };
712 int i;
713
714 if (!snb_gfx_workaround_needed())
715 return;
716
717 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
718
719 /*
720 * Reserve all memory below the 1 MB mark that has not
721 * already been reserved.
722 */
723 memblock_reserve(0, 1<<20);
724
725 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
726 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
727 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
728 bad_pages[i]);
729 }
730}
731
732/*
733 * Here we put platform-specific memory range workarounds, i.e.
734 * memory known to be corrupt or otherwise in need to be reserved on
735 * specific platforms.
736 *
737 * If this gets used more widely it could use a real dispatch mechanism.
738 */
739static void __init trim_platform_memory_ranges(void)
740{
741 trim_snb_memory();
742}
743
744static void __init trim_bios_range(void)
745{
746 /*
747 * A special case is the first 4Kb of memory;
748 * This is a BIOS owned area, not kernel ram, but generally
749 * not listed as such in the E820 table.
750 *
751 * This typically reserves additional memory (64KiB by default)
752 * since some BIOSes are known to corrupt low memory. See the
753 * Kconfig help text for X86_RESERVE_LOW.
754 */
755 e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
756
757 /*
758 * special case: Some BIOSen report the PC BIOS
759 * area (640->1Mb) as ram even though it is not.
760 * take them out.
761 */
762 e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
763
764 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
765}
766
767/* called before trim_bios_range() to spare extra sanitize */
768static void __init e820_add_kernel_range(void)
769{
770 u64 start = __pa_symbol(_text);
771 u64 size = __pa_symbol(_end) - start;
772
773 /*
774 * Complain if .text .data and .bss are not marked as E820_RAM and
775 * attempt to fix it by adding the range. We may have a confused BIOS,
776 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
777 * exclude kernel range. If we really are running on top non-RAM,
778 * we will crash later anyways.
779 */
780 if (e820_all_mapped(start, start + size, E820_RAM))
781 return;
782
783 pr_warn(".text .data .bss are not marked as E820_RAM!\n");
784 e820_remove_range(start, size, E820_RAM, 0);
785 e820_add_region(start, size, E820_RAM);
786}
787
788static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
789
790static int __init parse_reservelow(char *p)
791{
792 unsigned long long size;
793
794 if (!p)
795 return -EINVAL;
796
797 size = memparse(p, &p);
798
799 if (size < 4096)
800 size = 4096;
801
802 if (size > 640*1024)
803 size = 640*1024;
804
805 reserve_low = size;
806
807 return 0;
808}
809
810early_param("reservelow", parse_reservelow);
811
812static void __init trim_low_memory_range(void)
813{
814 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
815}
816
817/*
818 * Dump out kernel offset information on panic.
819 */
820static int
821dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
822{
823 if (kaslr_enabled()) {
824 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
825 kaslr_offset(),
826 __START_KERNEL,
827 __START_KERNEL_map,
828 MODULES_VADDR-1);
829 } else {
830 pr_emerg("Kernel Offset: disabled\n");
831 }
832
833 return 0;
834}
835
836/*
837 * Determine if we were loaded by an EFI loader. If so, then we have also been
838 * passed the efi memmap, systab, etc., so we should use these data structures
839 * for initialization. Note, the efi init code path is determined by the
840 * global efi_enabled. This allows the same kernel image to be used on existing
841 * systems (with a traditional BIOS) as well as on EFI systems.
842 */
843/*
844 * setup_arch - architecture-specific boot-time initializations
845 *
846 * Note: On x86_64, fixmaps are ready for use even before this is called.
847 */
848
849void __init setup_arch(char **cmdline_p)
850{
851 memblock_reserve(__pa_symbol(_text),
852 (unsigned long)__bss_stop - (unsigned long)_text);
853
854 early_reserve_initrd();
855
856 /*
857 * At this point everything still needed from the boot loader
858 * or BIOS or kernel text should be early reserved or marked not
859 * RAM in e820. All other memory is free game.
860 */
861
862#ifdef CONFIG_X86_32
863 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
864
865 /*
866 * copy kernel address range established so far and switch
867 * to the proper swapper page table
868 */
869 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
870 initial_page_table + KERNEL_PGD_BOUNDARY,
871 KERNEL_PGD_PTRS);
872
873 load_cr3(swapper_pg_dir);
874 /*
875 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
876 * a cr3 based tlb flush, so the following __flush_tlb_all()
877 * will not flush anything because the cpu quirk which clears
878 * X86_FEATURE_PGE has not been invoked yet. Though due to the
879 * load_cr3() above the TLB has been flushed already. The
880 * quirk is invoked before subsequent calls to __flush_tlb_all()
881 * so proper operation is guaranteed.
882 */
883 __flush_tlb_all();
884#else
885 printk(KERN_INFO "Command line: %s\n", boot_command_line);
886#endif
887
888 /*
889 * If we have OLPC OFW, we might end up relocating the fixmap due to
890 * reserve_top(), so do this before touching the ioremap area.
891 */
892 olpc_ofw_detect();
893
894 early_trap_init();
895 early_cpu_init();
896 early_ioremap_init();
897
898 setup_olpc_ofw_pgd();
899
900 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
901 screen_info = boot_params.screen_info;
902 edid_info = boot_params.edid_info;
903#ifdef CONFIG_X86_32
904 apm_info.bios = boot_params.apm_bios_info;
905 ist_info = boot_params.ist_info;
906#endif
907 saved_video_mode = boot_params.hdr.vid_mode;
908 bootloader_type = boot_params.hdr.type_of_loader;
909 if ((bootloader_type >> 4) == 0xe) {
910 bootloader_type &= 0xf;
911 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
912 }
913 bootloader_version = bootloader_type & 0xf;
914 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
915
916#ifdef CONFIG_BLK_DEV_RAM
917 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
918 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
919 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
920#endif
921#ifdef CONFIG_EFI
922 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
923 EFI32_LOADER_SIGNATURE, 4)) {
924 set_bit(EFI_BOOT, &efi.flags);
925 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
926 EFI64_LOADER_SIGNATURE, 4)) {
927 set_bit(EFI_BOOT, &efi.flags);
928 set_bit(EFI_64BIT, &efi.flags);
929 }
930
931 if (efi_enabled(EFI_BOOT))
932 efi_memblock_x86_reserve_range();
933#endif
934
935 x86_init.oem.arch_setup();
936
937 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
938 setup_memory_map();
939 parse_setup_data();
940
941 copy_edd();
942
943 if (!boot_params.hdr.root_flags)
944 root_mountflags &= ~MS_RDONLY;
945 init_mm.start_code = (unsigned long) _text;
946 init_mm.end_code = (unsigned long) _etext;
947 init_mm.end_data = (unsigned long) _edata;
948 init_mm.brk = _brk_end;
949
950 mpx_mm_init(&init_mm);
951
952 code_resource.start = __pa_symbol(_text);
953 code_resource.end = __pa_symbol(_etext)-1;
954 data_resource.start = __pa_symbol(_etext);
955 data_resource.end = __pa_symbol(_edata)-1;
956 bss_resource.start = __pa_symbol(__bss_start);
957 bss_resource.end = __pa_symbol(__bss_stop)-1;
958
959#ifdef CONFIG_CMDLINE_BOOL
960#ifdef CONFIG_CMDLINE_OVERRIDE
961 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
962#else
963 if (builtin_cmdline[0]) {
964 /* append boot loader cmdline to builtin */
965 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
966 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
967 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
968 }
969#endif
970#endif
971
972 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
973 *cmdline_p = command_line;
974
975 /*
976 * x86_configure_nx() is called before parse_early_param() to detect
977 * whether hardware doesn't support NX (so that the early EHCI debug
978 * console setup can safely call set_fixmap()). It may then be called
979 * again from within noexec_setup() during parsing early parameters
980 * to honor the respective command line option.
981 */
982 x86_configure_nx();
983
984 parse_early_param();
985
986 x86_report_nx();
987
988 /* after early param, so could get panic from serial */
989 memblock_x86_reserve_range_setup_data();
990
991 if (acpi_mps_check()) {
992#ifdef CONFIG_X86_LOCAL_APIC
993 disable_apic = 1;
994#endif
995 setup_clear_cpu_cap(X86_FEATURE_APIC);
996 }
997
998#ifdef CONFIG_PCI
999 if (pci_early_dump_regs)
1000 early_dump_pci_devices();
1001#endif
1002
1003 /* update the e820_saved too */
1004 e820_reserve_setup_data();
1005 finish_e820_parsing();
1006
1007 if (efi_enabled(EFI_BOOT))
1008 efi_init();
1009
1010 dmi_scan_machine();
1011 dmi_memdev_walk();
1012 dmi_set_dump_stack_arch_desc();
1013
1014 /*
1015 * VMware detection requires dmi to be available, so this
1016 * needs to be done after dmi_scan_machine, for the BP.
1017 */
1018 init_hypervisor_platform();
1019
1020 x86_init.resources.probe_roms();
1021
1022 /* after parse_early_param, so could debug it */
1023 insert_resource(&iomem_resource, &code_resource);
1024 insert_resource(&iomem_resource, &data_resource);
1025 insert_resource(&iomem_resource, &bss_resource);
1026
1027 e820_add_kernel_range();
1028 trim_bios_range();
1029#ifdef CONFIG_X86_32
1030 if (ppro_with_ram_bug()) {
1031 e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1032 E820_RESERVED);
1033 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
1034 printk(KERN_INFO "fixed physical RAM map:\n");
1035 e820_print_map("bad_ppro");
1036 }
1037#else
1038 early_gart_iommu_check();
1039#endif
1040
1041 /*
1042 * partially used pages are not usable - thus
1043 * we are rounding upwards:
1044 */
1045 max_pfn = e820_end_of_ram_pfn();
1046
1047 /* update e820 for memory not covered by WB MTRRs */
1048 mtrr_bp_init();
1049 if (mtrr_trim_uncached_memory(max_pfn))
1050 max_pfn = e820_end_of_ram_pfn();
1051
1052 max_possible_pfn = max_pfn;
1053
1054#ifdef CONFIG_X86_32
1055 /* max_low_pfn get updated here */
1056 find_low_pfn_range();
1057#else
1058 check_x2apic();
1059
1060 /* How many end-of-memory variables you have, grandma! */
1061 /* need this before calling reserve_initrd */
1062 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1063 max_low_pfn = e820_end_of_low_ram_pfn();
1064 else
1065 max_low_pfn = max_pfn;
1066
1067 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1068#endif
1069
1070 /*
1071 * Find and reserve possible boot-time SMP configuration:
1072 */
1073 find_smp_config();
1074
1075 reserve_ibft_region();
1076
1077 early_alloc_pgt_buf();
1078
1079 /*
1080 * Need to conclude brk, before memblock_x86_fill()
1081 * it could use memblock_find_in_range, could overlap with
1082 * brk area.
1083 */
1084 reserve_brk();
1085
1086 cleanup_highmap();
1087
1088 memblock_set_current_limit(ISA_END_ADDRESS);
1089 memblock_x86_fill();
1090
1091 if (efi_enabled(EFI_BOOT)) {
1092 efi_fake_memmap();
1093 efi_find_mirror();
1094 }
1095
1096 /*
1097 * The EFI specification says that boot service code won't be called
1098 * after ExitBootServices(). This is, in fact, a lie.
1099 */
1100 if (efi_enabled(EFI_MEMMAP))
1101 efi_reserve_boot_services();
1102
1103 /* preallocate 4k for mptable mpc */
1104 early_reserve_e820_mpc_new();
1105
1106#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1107 setup_bios_corruption_check();
1108#endif
1109
1110#ifdef CONFIG_X86_32
1111 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1112 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1113#endif
1114
1115 reserve_real_mode();
1116
1117 trim_platform_memory_ranges();
1118 trim_low_memory_range();
1119
1120 init_mem_mapping();
1121
1122 early_trap_pf_init();
1123
1124 setup_real_mode();
1125
1126 memblock_set_current_limit(get_max_mapped());
1127
1128 /*
1129 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1130 */
1131
1132#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1133 if (init_ohci1394_dma_early)
1134 init_ohci1394_dma_on_all_controllers();
1135#endif
1136 /* Allocate bigger log buffer */
1137 setup_log_buf(1);
1138
1139 reserve_initrd();
1140
1141#if defined(CONFIG_ACPI) && defined(CONFIG_BLK_DEV_INITRD)
1142 acpi_initrd_override((void *)initrd_start, initrd_end - initrd_start);
1143#endif
1144
1145 vsmp_init();
1146
1147 io_delay_init();
1148
1149 /*
1150 * Parse the ACPI tables for possible boot-time SMP configuration.
1151 */
1152 acpi_boot_table_init();
1153
1154 early_acpi_boot_init();
1155
1156 initmem_init();
1157 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1158
1159 /*
1160 * Reserve memory for crash kernel after SRAT is parsed so that it
1161 * won't consume hotpluggable memory.
1162 */
1163 reserve_crashkernel();
1164
1165 memblock_find_dma_reserve();
1166
1167#ifdef CONFIG_KVM_GUEST
1168 kvmclock_init();
1169#endif
1170
1171 x86_init.paging.pagetable_init();
1172
1173 kasan_init();
1174
1175 if (boot_cpu_data.cpuid_level >= 0) {
1176 /* A CPU has %cr4 if and only if it has CPUID */
1177 mmu_cr4_features = __read_cr4();
1178 if (trampoline_cr4_features)
1179 *trampoline_cr4_features = mmu_cr4_features;
1180 }
1181
1182#ifdef CONFIG_X86_32
1183 /* sync back kernel address range */
1184 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1185 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1186 KERNEL_PGD_PTRS);
1187
1188 /*
1189 * sync back low identity map too. It is used for example
1190 * in the 32-bit EFI stub.
1191 */
1192 clone_pgd_range(initial_page_table,
1193 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1194 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1195#endif
1196
1197 tboot_probe();
1198
1199 map_vsyscall();
1200
1201 generic_apic_probe();
1202
1203 early_quirks();
1204
1205 /*
1206 * Read APIC and some other early information from ACPI tables.
1207 */
1208 acpi_boot_init();
1209 sfi_init();
1210 x86_dtb_init();
1211
1212 /*
1213 * get boot-time SMP configuration:
1214 */
1215 if (smp_found_config)
1216 get_smp_config();
1217
1218 prefill_possible_map();
1219
1220 init_cpu_to_node();
1221
1222 init_apic_mappings();
1223 io_apic_init_mappings();
1224
1225 kvm_guest_init();
1226
1227 e820_reserve_resources();
1228 e820_mark_nosave_regions(max_low_pfn);
1229
1230 x86_init.resources.reserve_resources();
1231
1232 e820_setup_gap();
1233
1234#ifdef CONFIG_VT
1235#if defined(CONFIG_VGA_CONSOLE)
1236 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1237 conswitchp = &vga_con;
1238#elif defined(CONFIG_DUMMY_CONSOLE)
1239 conswitchp = &dummy_con;
1240#endif
1241#endif
1242 x86_init.oem.banner();
1243
1244 x86_init.timers.wallclock_init();
1245
1246 mcheck_init();
1247
1248 arch_init_ideal_nops();
1249
1250 register_refined_jiffies(CLOCK_TICK_RATE);
1251
1252#ifdef CONFIG_EFI
1253 if (efi_enabled(EFI_BOOT))
1254 efi_apply_memmap_quirks();
1255#endif
1256}
1257
1258#ifdef CONFIG_X86_32
1259
1260static struct resource video_ram_resource = {
1261 .name = "Video RAM area",
1262 .start = 0xa0000,
1263 .end = 0xbffff,
1264 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1265};
1266
1267void __init i386_reserve_resources(void)
1268{
1269 request_resource(&iomem_resource, &video_ram_resource);
1270 reserve_standard_io_resources();
1271}
1272
1273#endif /* CONFIG_X86_32 */
1274
1275static struct notifier_block kernel_offset_notifier = {
1276 .notifier_call = dump_kernel_offset
1277};
1278
1279static int __init register_kernel_offset_dumper(void)
1280{
1281 atomic_notifier_chain_register(&panic_notifier_list,
1282 &kernel_offset_notifier);
1283 return 0;
1284}
1285__initcall(register_kernel_offset_dumper);
1286
1287void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1288{
1289 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1290 return;
1291
1292 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1293}
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20/*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24#include <linux/sched.h>
25#include <linux/mm.h>
26#include <linux/mmzone.h>
27#include <linux/screen_info.h>
28#include <linux/ioport.h>
29#include <linux/acpi.h>
30#include <linux/sfi.h>
31#include <linux/apm_bios.h>
32#include <linux/initrd.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/export.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53
54#include <linux/errno.h>
55#include <linux/kernel.h>
56#include <linux/stddef.h>
57#include <linux/unistd.h>
58#include <linux/ptrace.h>
59#include <linux/user.h>
60#include <linux/delay.h>
61
62#include <linux/kallsyms.h>
63#include <linux/cpufreq.h>
64#include <linux/dma-mapping.h>
65#include <linux/ctype.h>
66#include <linux/uaccess.h>
67
68#include <linux/percpu.h>
69#include <linux/crash_dump.h>
70#include <linux/tboot.h>
71#include <linux/jiffies.h>
72
73#include <video/edid.h>
74
75#include <asm/mtrr.h>
76#include <asm/apic.h>
77#include <asm/realmode.h>
78#include <asm/e820.h>
79#include <asm/mpspec.h>
80#include <asm/setup.h>
81#include <asm/efi.h>
82#include <asm/timer.h>
83#include <asm/i8259.h>
84#include <asm/sections.h>
85#include <asm/io_apic.h>
86#include <asm/ist.h>
87#include <asm/setup_arch.h>
88#include <asm/bios_ebda.h>
89#include <asm/cacheflush.h>
90#include <asm/processor.h>
91#include <asm/bugs.h>
92#include <asm/kasan.h>
93
94#include <asm/vsyscall.h>
95#include <asm/cpu.h>
96#include <asm/desc.h>
97#include <asm/dma.h>
98#include <asm/iommu.h>
99#include <asm/gart.h>
100#include <asm/mmu_context.h>
101#include <asm/proto.h>
102
103#include <asm/paravirt.h>
104#include <asm/hypervisor.h>
105#include <asm/olpc_ofw.h>
106
107#include <asm/percpu.h>
108#include <asm/topology.h>
109#include <asm/apicdef.h>
110#include <asm/amd_nb.h>
111#include <asm/mce.h>
112#include <asm/alternative.h>
113#include <asm/prom.h>
114#include <asm/microcode.h>
115#include <asm/mmu_context.h>
116#include <asm/kaslr.h>
117
118/*
119 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
120 * max_pfn_mapped: highest direct mapped pfn over 4GB
121 *
122 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
123 * represented by pfn_mapped
124 */
125unsigned long max_low_pfn_mapped;
126unsigned long max_pfn_mapped;
127
128#ifdef CONFIG_DMI
129RESERVE_BRK(dmi_alloc, 65536);
130#endif
131
132
133static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
134unsigned long _brk_end = (unsigned long)__brk_base;
135
136#ifdef CONFIG_X86_64
137int default_cpu_present_to_apicid(int mps_cpu)
138{
139 return __default_cpu_present_to_apicid(mps_cpu);
140}
141
142int default_check_phys_apicid_present(int phys_apicid)
143{
144 return __default_check_phys_apicid_present(phys_apicid);
145}
146#endif
147
148struct boot_params boot_params;
149
150/*
151 * Machine setup..
152 */
153static struct resource data_resource = {
154 .name = "Kernel data",
155 .start = 0,
156 .end = 0,
157 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
158};
159
160static struct resource code_resource = {
161 .name = "Kernel code",
162 .start = 0,
163 .end = 0,
164 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
165};
166
167static struct resource bss_resource = {
168 .name = "Kernel bss",
169 .start = 0,
170 .end = 0,
171 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
172};
173
174
175#ifdef CONFIG_X86_32
176/* cpu data as detected by the assembly code in head.S */
177struct cpuinfo_x86 new_cpu_data = {
178 .wp_works_ok = -1,
179};
180/* common cpu data for all cpus */
181struct cpuinfo_x86 boot_cpu_data __read_mostly = {
182 .wp_works_ok = -1,
183};
184EXPORT_SYMBOL(boot_cpu_data);
185
186unsigned int def_to_bigsmp;
187
188/* for MCA, but anyone else can use it if they want */
189unsigned int machine_id;
190unsigned int machine_submodel_id;
191unsigned int BIOS_revision;
192
193struct apm_info apm_info;
194EXPORT_SYMBOL(apm_info);
195
196#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
197 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
198struct ist_info ist_info;
199EXPORT_SYMBOL(ist_info);
200#else
201struct ist_info ist_info;
202#endif
203
204#else
205struct cpuinfo_x86 boot_cpu_data __read_mostly = {
206 .x86_phys_bits = MAX_PHYSMEM_BITS,
207};
208EXPORT_SYMBOL(boot_cpu_data);
209#endif
210
211
212#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
213__visible unsigned long mmu_cr4_features __ro_after_init;
214#else
215__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
216#endif
217
218/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
219int bootloader_type, bootloader_version;
220
221/*
222 * Setup options
223 */
224struct screen_info screen_info;
225EXPORT_SYMBOL(screen_info);
226struct edid_info edid_info;
227EXPORT_SYMBOL_GPL(edid_info);
228
229extern int root_mountflags;
230
231unsigned long saved_video_mode;
232
233#define RAMDISK_IMAGE_START_MASK 0x07FF
234#define RAMDISK_PROMPT_FLAG 0x8000
235#define RAMDISK_LOAD_FLAG 0x4000
236
237static char __initdata command_line[COMMAND_LINE_SIZE];
238#ifdef CONFIG_CMDLINE_BOOL
239static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
240#endif
241
242#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
243struct edd edd;
244#ifdef CONFIG_EDD_MODULE
245EXPORT_SYMBOL(edd);
246#endif
247/**
248 * copy_edd() - Copy the BIOS EDD information
249 * from boot_params into a safe place.
250 *
251 */
252static inline void __init copy_edd(void)
253{
254 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
255 sizeof(edd.mbr_signature));
256 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
257 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
258 edd.edd_info_nr = boot_params.eddbuf_entries;
259}
260#else
261static inline void __init copy_edd(void)
262{
263}
264#endif
265
266void * __init extend_brk(size_t size, size_t align)
267{
268 size_t mask = align - 1;
269 void *ret;
270
271 BUG_ON(_brk_start == 0);
272 BUG_ON(align & mask);
273
274 _brk_end = (_brk_end + mask) & ~mask;
275 BUG_ON((char *)(_brk_end + size) > __brk_limit);
276
277 ret = (void *)_brk_end;
278 _brk_end += size;
279
280 memset(ret, 0, size);
281
282 return ret;
283}
284
285#ifdef CONFIG_X86_32
286static void __init cleanup_highmap(void)
287{
288}
289#endif
290
291static void __init reserve_brk(void)
292{
293 if (_brk_end > _brk_start)
294 memblock_reserve(__pa_symbol(_brk_start),
295 _brk_end - _brk_start);
296
297 /* Mark brk area as locked down and no longer taking any
298 new allocations */
299 _brk_start = 0;
300}
301
302u64 relocated_ramdisk;
303
304#ifdef CONFIG_BLK_DEV_INITRD
305
306static u64 __init get_ramdisk_image(void)
307{
308 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
309
310 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
311
312 return ramdisk_image;
313}
314static u64 __init get_ramdisk_size(void)
315{
316 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
317
318 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
319
320 return ramdisk_size;
321}
322
323static void __init relocate_initrd(void)
324{
325 /* Assume only end is not page aligned */
326 u64 ramdisk_image = get_ramdisk_image();
327 u64 ramdisk_size = get_ramdisk_size();
328 u64 area_size = PAGE_ALIGN(ramdisk_size);
329
330 /* We need to move the initrd down into directly mapped mem */
331 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
332 area_size, PAGE_SIZE);
333
334 if (!relocated_ramdisk)
335 panic("Cannot find place for new RAMDISK of size %lld\n",
336 ramdisk_size);
337
338 /* Note: this includes all the mem currently occupied by
339 the initrd, we rely on that fact to keep the data intact. */
340 memblock_reserve(relocated_ramdisk, area_size);
341 initrd_start = relocated_ramdisk + PAGE_OFFSET;
342 initrd_end = initrd_start + ramdisk_size;
343 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
344 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
345
346 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
347
348 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
349 " [mem %#010llx-%#010llx]\n",
350 ramdisk_image, ramdisk_image + ramdisk_size - 1,
351 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
352}
353
354static void __init early_reserve_initrd(void)
355{
356 /* Assume only end is not page aligned */
357 u64 ramdisk_image = get_ramdisk_image();
358 u64 ramdisk_size = get_ramdisk_size();
359 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
360
361 if (!boot_params.hdr.type_of_loader ||
362 !ramdisk_image || !ramdisk_size)
363 return; /* No initrd provided by bootloader */
364
365 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
366}
367static void __init reserve_initrd(void)
368{
369 /* Assume only end is not page aligned */
370 u64 ramdisk_image = get_ramdisk_image();
371 u64 ramdisk_size = get_ramdisk_size();
372 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
373 u64 mapped_size;
374
375 if (!boot_params.hdr.type_of_loader ||
376 !ramdisk_image || !ramdisk_size)
377 return; /* No initrd provided by bootloader */
378
379 initrd_start = 0;
380
381 mapped_size = memblock_mem_size(max_pfn_mapped);
382 if (ramdisk_size >= (mapped_size>>1))
383 panic("initrd too large to handle, "
384 "disabling initrd (%lld needed, %lld available)\n",
385 ramdisk_size, mapped_size>>1);
386
387 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
388 ramdisk_end - 1);
389
390 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
391 PFN_DOWN(ramdisk_end))) {
392 /* All are mapped, easy case */
393 initrd_start = ramdisk_image + PAGE_OFFSET;
394 initrd_end = initrd_start + ramdisk_size;
395 return;
396 }
397
398 relocate_initrd();
399
400 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
401}
402
403#else
404static void __init early_reserve_initrd(void)
405{
406}
407static void __init reserve_initrd(void)
408{
409}
410#endif /* CONFIG_BLK_DEV_INITRD */
411
412static void __init parse_setup_data(void)
413{
414 struct setup_data *data;
415 u64 pa_data, pa_next;
416
417 pa_data = boot_params.hdr.setup_data;
418 while (pa_data) {
419 u32 data_len, data_type;
420
421 data = early_memremap(pa_data, sizeof(*data));
422 data_len = data->len + sizeof(struct setup_data);
423 data_type = data->type;
424 pa_next = data->next;
425 early_memunmap(data, sizeof(*data));
426
427 switch (data_type) {
428 case SETUP_E820_EXT:
429 parse_e820_ext(pa_data, data_len);
430 break;
431 case SETUP_DTB:
432 add_dtb(pa_data);
433 break;
434 case SETUP_EFI:
435 parse_efi_setup(pa_data, data_len);
436 break;
437 default:
438 break;
439 }
440 pa_data = pa_next;
441 }
442}
443
444static void __init e820_reserve_setup_data(void)
445{
446 struct setup_data *data;
447 u64 pa_data;
448
449 pa_data = boot_params.hdr.setup_data;
450 if (!pa_data)
451 return;
452
453 while (pa_data) {
454 data = early_memremap(pa_data, sizeof(*data));
455 e820_update_range(pa_data, sizeof(*data)+data->len,
456 E820_RAM, E820_RESERVED_KERN);
457 pa_data = data->next;
458 early_memunmap(data, sizeof(*data));
459 }
460
461 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
462 memcpy(e820_saved, e820, sizeof(struct e820map));
463 printk(KERN_INFO "extended physical RAM map:\n");
464 e820_print_map("reserve setup_data");
465}
466
467static void __init memblock_x86_reserve_range_setup_data(void)
468{
469 struct setup_data *data;
470 u64 pa_data;
471
472 pa_data = boot_params.hdr.setup_data;
473 while (pa_data) {
474 data = early_memremap(pa_data, sizeof(*data));
475 memblock_reserve(pa_data, sizeof(*data) + data->len);
476 pa_data = data->next;
477 early_memunmap(data, sizeof(*data));
478 }
479}
480
481/*
482 * --------- Crashkernel reservation ------------------------------
483 */
484
485#ifdef CONFIG_KEXEC_CORE
486
487/* 16M alignment for crash kernel regions */
488#define CRASH_ALIGN (16 << 20)
489
490/*
491 * Keep the crash kernel below this limit. On 32 bits earlier kernels
492 * would limit the kernel to the low 512 MiB due to mapping restrictions.
493 * On 64bit, old kexec-tools need to under 896MiB.
494 */
495#ifdef CONFIG_X86_32
496# define CRASH_ADDR_LOW_MAX (512 << 20)
497# define CRASH_ADDR_HIGH_MAX (512 << 20)
498#else
499# define CRASH_ADDR_LOW_MAX (896UL << 20)
500# define CRASH_ADDR_HIGH_MAX MAXMEM
501#endif
502
503static int __init reserve_crashkernel_low(void)
504{
505#ifdef CONFIG_X86_64
506 unsigned long long base, low_base = 0, low_size = 0;
507 unsigned long total_low_mem;
508 int ret;
509
510 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
511
512 /* crashkernel=Y,low */
513 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
514 if (ret) {
515 /*
516 * two parts from lib/swiotlb.c:
517 * -swiotlb size: user-specified with swiotlb= or default.
518 *
519 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
520 * to 8M for other buffers that may need to stay low too. Also
521 * make sure we allocate enough extra low memory so that we
522 * don't run out of DMA buffers for 32-bit devices.
523 */
524 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
525 } else {
526 /* passed with crashkernel=0,low ? */
527 if (!low_size)
528 return 0;
529 }
530
531 low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
532 if (!low_base) {
533 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
534 (unsigned long)(low_size >> 20));
535 return -ENOMEM;
536 }
537
538 ret = memblock_reserve(low_base, low_size);
539 if (ret) {
540 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
541 return ret;
542 }
543
544 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
545 (unsigned long)(low_size >> 20),
546 (unsigned long)(low_base >> 20),
547 (unsigned long)(total_low_mem >> 20));
548
549 crashk_low_res.start = low_base;
550 crashk_low_res.end = low_base + low_size - 1;
551 insert_resource(&iomem_resource, &crashk_low_res);
552#endif
553 return 0;
554}
555
556static void __init reserve_crashkernel(void)
557{
558 unsigned long long crash_size, crash_base, total_mem;
559 bool high = false;
560 int ret;
561
562 total_mem = memblock_phys_mem_size();
563
564 /* crashkernel=XM */
565 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
566 if (ret != 0 || crash_size <= 0) {
567 /* crashkernel=X,high */
568 ret = parse_crashkernel_high(boot_command_line, total_mem,
569 &crash_size, &crash_base);
570 if (ret != 0 || crash_size <= 0)
571 return;
572 high = true;
573 }
574
575 /* 0 means: find the address automatically */
576 if (crash_base <= 0) {
577 /*
578 * kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
579 */
580 crash_base = memblock_find_in_range(CRASH_ALIGN,
581 high ? CRASH_ADDR_HIGH_MAX
582 : CRASH_ADDR_LOW_MAX,
583 crash_size, CRASH_ALIGN);
584 if (!crash_base) {
585 pr_info("crashkernel reservation failed - No suitable area found.\n");
586 return;
587 }
588
589 } else {
590 unsigned long long start;
591
592 start = memblock_find_in_range(crash_base,
593 crash_base + crash_size,
594 crash_size, 1 << 20);
595 if (start != crash_base) {
596 pr_info("crashkernel reservation failed - memory is in use.\n");
597 return;
598 }
599 }
600 ret = memblock_reserve(crash_base, crash_size);
601 if (ret) {
602 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
603 return;
604 }
605
606 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
607 memblock_free(crash_base, crash_size);
608 return;
609 }
610
611 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
612 (unsigned long)(crash_size >> 20),
613 (unsigned long)(crash_base >> 20),
614 (unsigned long)(total_mem >> 20));
615
616 crashk_res.start = crash_base;
617 crashk_res.end = crash_base + crash_size - 1;
618 insert_resource(&iomem_resource, &crashk_res);
619}
620#else
621static void __init reserve_crashkernel(void)
622{
623}
624#endif
625
626static struct resource standard_io_resources[] = {
627 { .name = "dma1", .start = 0x00, .end = 0x1f,
628 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 { .name = "pic1", .start = 0x20, .end = 0x21,
630 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 { .name = "timer0", .start = 0x40, .end = 0x43,
632 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 { .name = "timer1", .start = 0x50, .end = 0x53,
634 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 { .name = "keyboard", .start = 0x60, .end = 0x60,
636 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 { .name = "keyboard", .start = 0x64, .end = 0x64,
638 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
640 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 { .name = "pic2", .start = 0xa0, .end = 0xa1,
642 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 { .name = "dma2", .start = 0xc0, .end = 0xdf,
644 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
645 { .name = "fpu", .start = 0xf0, .end = 0xff,
646 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
647};
648
649void __init reserve_standard_io_resources(void)
650{
651 int i;
652
653 /* request I/O space for devices used on all i[345]86 PCs */
654 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
655 request_resource(&ioport_resource, &standard_io_resources[i]);
656
657}
658
659static __init void reserve_ibft_region(void)
660{
661 unsigned long addr, size = 0;
662
663 addr = find_ibft_region(&size);
664
665 if (size)
666 memblock_reserve(addr, size);
667}
668
669static bool __init snb_gfx_workaround_needed(void)
670{
671#ifdef CONFIG_PCI
672 int i;
673 u16 vendor, devid;
674 static const __initconst u16 snb_ids[] = {
675 0x0102,
676 0x0112,
677 0x0122,
678 0x0106,
679 0x0116,
680 0x0126,
681 0x010a,
682 };
683
684 /* Assume no if something weird is going on with PCI */
685 if (!early_pci_allowed())
686 return false;
687
688 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
689 if (vendor != 0x8086)
690 return false;
691
692 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
693 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
694 if (devid == snb_ids[i])
695 return true;
696#endif
697
698 return false;
699}
700
701/*
702 * Sandy Bridge graphics has trouble with certain ranges, exclude
703 * them from allocation.
704 */
705static void __init trim_snb_memory(void)
706{
707 static const __initconst unsigned long bad_pages[] = {
708 0x20050000,
709 0x20110000,
710 0x20130000,
711 0x20138000,
712 0x40004000,
713 };
714 int i;
715
716 if (!snb_gfx_workaround_needed())
717 return;
718
719 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
720
721 /*
722 * Reserve all memory below the 1 MB mark that has not
723 * already been reserved.
724 */
725 memblock_reserve(0, 1<<20);
726
727 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
728 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
729 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
730 bad_pages[i]);
731 }
732}
733
734/*
735 * Here we put platform-specific memory range workarounds, i.e.
736 * memory known to be corrupt or otherwise in need to be reserved on
737 * specific platforms.
738 *
739 * If this gets used more widely it could use a real dispatch mechanism.
740 */
741static void __init trim_platform_memory_ranges(void)
742{
743 trim_snb_memory();
744}
745
746static void __init trim_bios_range(void)
747{
748 /*
749 * A special case is the first 4Kb of memory;
750 * This is a BIOS owned area, not kernel ram, but generally
751 * not listed as such in the E820 table.
752 *
753 * This typically reserves additional memory (64KiB by default)
754 * since some BIOSes are known to corrupt low memory. See the
755 * Kconfig help text for X86_RESERVE_LOW.
756 */
757 e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
758
759 /*
760 * special case: Some BIOSen report the PC BIOS
761 * area (640->1Mb) as ram even though it is not.
762 * take them out.
763 */
764 e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
765
766 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
767}
768
769/* called before trim_bios_range() to spare extra sanitize */
770static void __init e820_add_kernel_range(void)
771{
772 u64 start = __pa_symbol(_text);
773 u64 size = __pa_symbol(_end) - start;
774
775 /*
776 * Complain if .text .data and .bss are not marked as E820_RAM and
777 * attempt to fix it by adding the range. We may have a confused BIOS,
778 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
779 * exclude kernel range. If we really are running on top non-RAM,
780 * we will crash later anyways.
781 */
782 if (e820_all_mapped(start, start + size, E820_RAM))
783 return;
784
785 pr_warn(".text .data .bss are not marked as E820_RAM!\n");
786 e820_remove_range(start, size, E820_RAM, 0);
787 e820_add_region(start, size, E820_RAM);
788}
789
790static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
791
792static int __init parse_reservelow(char *p)
793{
794 unsigned long long size;
795
796 if (!p)
797 return -EINVAL;
798
799 size = memparse(p, &p);
800
801 if (size < 4096)
802 size = 4096;
803
804 if (size > 640*1024)
805 size = 640*1024;
806
807 reserve_low = size;
808
809 return 0;
810}
811
812early_param("reservelow", parse_reservelow);
813
814static void __init trim_low_memory_range(void)
815{
816 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
817}
818
819/*
820 * Dump out kernel offset information on panic.
821 */
822static int
823dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
824{
825 if (kaslr_enabled()) {
826 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
827 kaslr_offset(),
828 __START_KERNEL,
829 __START_KERNEL_map,
830 MODULES_VADDR-1);
831 } else {
832 pr_emerg("Kernel Offset: disabled\n");
833 }
834
835 return 0;
836}
837
838/*
839 * Determine if we were loaded by an EFI loader. If so, then we have also been
840 * passed the efi memmap, systab, etc., so we should use these data structures
841 * for initialization. Note, the efi init code path is determined by the
842 * global efi_enabled. This allows the same kernel image to be used on existing
843 * systems (with a traditional BIOS) as well as on EFI systems.
844 */
845/*
846 * setup_arch - architecture-specific boot-time initializations
847 *
848 * Note: On x86_64, fixmaps are ready for use even before this is called.
849 */
850
851void __init setup_arch(char **cmdline_p)
852{
853 memblock_reserve(__pa_symbol(_text),
854 (unsigned long)__bss_stop - (unsigned long)_text);
855
856 early_reserve_initrd();
857
858 /*
859 * At this point everything still needed from the boot loader
860 * or BIOS or kernel text should be early reserved or marked not
861 * RAM in e820. All other memory is free game.
862 */
863
864#ifdef CONFIG_X86_32
865 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
866
867 /*
868 * copy kernel address range established so far and switch
869 * to the proper swapper page table
870 */
871 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
872 initial_page_table + KERNEL_PGD_BOUNDARY,
873 KERNEL_PGD_PTRS);
874
875 load_cr3(swapper_pg_dir);
876 /*
877 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
878 * a cr3 based tlb flush, so the following __flush_tlb_all()
879 * will not flush anything because the cpu quirk which clears
880 * X86_FEATURE_PGE has not been invoked yet. Though due to the
881 * load_cr3() above the TLB has been flushed already. The
882 * quirk is invoked before subsequent calls to __flush_tlb_all()
883 * so proper operation is guaranteed.
884 */
885 __flush_tlb_all();
886#else
887 printk(KERN_INFO "Command line: %s\n", boot_command_line);
888#endif
889
890 /*
891 * If we have OLPC OFW, we might end up relocating the fixmap due to
892 * reserve_top(), so do this before touching the ioremap area.
893 */
894 olpc_ofw_detect();
895
896 early_trap_init();
897 early_cpu_init();
898 early_ioremap_init();
899
900 setup_olpc_ofw_pgd();
901
902 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
903 screen_info = boot_params.screen_info;
904 edid_info = boot_params.edid_info;
905#ifdef CONFIG_X86_32
906 apm_info.bios = boot_params.apm_bios_info;
907 ist_info = boot_params.ist_info;
908#endif
909 saved_video_mode = boot_params.hdr.vid_mode;
910 bootloader_type = boot_params.hdr.type_of_loader;
911 if ((bootloader_type >> 4) == 0xe) {
912 bootloader_type &= 0xf;
913 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
914 }
915 bootloader_version = bootloader_type & 0xf;
916 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
917
918#ifdef CONFIG_BLK_DEV_RAM
919 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
920 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
921 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
922#endif
923#ifdef CONFIG_EFI
924 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
925 EFI32_LOADER_SIGNATURE, 4)) {
926 set_bit(EFI_BOOT, &efi.flags);
927 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
928 EFI64_LOADER_SIGNATURE, 4)) {
929 set_bit(EFI_BOOT, &efi.flags);
930 set_bit(EFI_64BIT, &efi.flags);
931 }
932
933 if (efi_enabled(EFI_BOOT))
934 efi_memblock_x86_reserve_range();
935#endif
936
937 x86_init.oem.arch_setup();
938
939 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
940 setup_memory_map();
941 parse_setup_data();
942
943 copy_edd();
944
945 if (!boot_params.hdr.root_flags)
946 root_mountflags &= ~MS_RDONLY;
947 init_mm.start_code = (unsigned long) _text;
948 init_mm.end_code = (unsigned long) _etext;
949 init_mm.end_data = (unsigned long) _edata;
950 init_mm.brk = _brk_end;
951
952 mpx_mm_init(&init_mm);
953
954 code_resource.start = __pa_symbol(_text);
955 code_resource.end = __pa_symbol(_etext)-1;
956 data_resource.start = __pa_symbol(_etext);
957 data_resource.end = __pa_symbol(_edata)-1;
958 bss_resource.start = __pa_symbol(__bss_start);
959 bss_resource.end = __pa_symbol(__bss_stop)-1;
960
961#ifdef CONFIG_CMDLINE_BOOL
962#ifdef CONFIG_CMDLINE_OVERRIDE
963 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
964#else
965 if (builtin_cmdline[0]) {
966 /* append boot loader cmdline to builtin */
967 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
968 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
969 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
970 }
971#endif
972#endif
973
974 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
975 *cmdline_p = command_line;
976
977 /*
978 * x86_configure_nx() is called before parse_early_param() to detect
979 * whether hardware doesn't support NX (so that the early EHCI debug
980 * console setup can safely call set_fixmap()). It may then be called
981 * again from within noexec_setup() during parsing early parameters
982 * to honor the respective command line option.
983 */
984 x86_configure_nx();
985
986 parse_early_param();
987
988#ifdef CONFIG_MEMORY_HOTPLUG
989 /*
990 * Memory used by the kernel cannot be hot-removed because Linux
991 * cannot migrate the kernel pages. When memory hotplug is
992 * enabled, we should prevent memblock from allocating memory
993 * for the kernel.
994 *
995 * ACPI SRAT records all hotpluggable memory ranges. But before
996 * SRAT is parsed, we don't know about it.
997 *
998 * The kernel image is loaded into memory at very early time. We
999 * cannot prevent this anyway. So on NUMA system, we set any
1000 * node the kernel resides in as un-hotpluggable.
1001 *
1002 * Since on modern servers, one node could have double-digit
1003 * gigabytes memory, we can assume the memory around the kernel
1004 * image is also un-hotpluggable. So before SRAT is parsed, just
1005 * allocate memory near the kernel image to try the best to keep
1006 * the kernel away from hotpluggable memory.
1007 */
1008 if (movable_node_is_enabled())
1009 memblock_set_bottom_up(true);
1010#endif
1011
1012 x86_report_nx();
1013
1014 /* after early param, so could get panic from serial */
1015 memblock_x86_reserve_range_setup_data();
1016
1017 if (acpi_mps_check()) {
1018#ifdef CONFIG_X86_LOCAL_APIC
1019 disable_apic = 1;
1020#endif
1021 setup_clear_cpu_cap(X86_FEATURE_APIC);
1022 }
1023
1024#ifdef CONFIG_PCI
1025 if (pci_early_dump_regs)
1026 early_dump_pci_devices();
1027#endif
1028
1029 /* update the e820_saved too */
1030 e820_reserve_setup_data();
1031 finish_e820_parsing();
1032
1033 if (efi_enabled(EFI_BOOT))
1034 efi_init();
1035
1036 dmi_scan_machine();
1037 dmi_memdev_walk();
1038 dmi_set_dump_stack_arch_desc();
1039
1040 /*
1041 * VMware detection requires dmi to be available, so this
1042 * needs to be done after dmi_scan_machine, for the BP.
1043 */
1044 init_hypervisor_platform();
1045
1046 x86_init.resources.probe_roms();
1047
1048 /* after parse_early_param, so could debug it */
1049 insert_resource(&iomem_resource, &code_resource);
1050 insert_resource(&iomem_resource, &data_resource);
1051 insert_resource(&iomem_resource, &bss_resource);
1052
1053 e820_add_kernel_range();
1054 trim_bios_range();
1055#ifdef CONFIG_X86_32
1056 if (ppro_with_ram_bug()) {
1057 e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1058 E820_RESERVED);
1059 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
1060 printk(KERN_INFO "fixed physical RAM map:\n");
1061 e820_print_map("bad_ppro");
1062 }
1063#else
1064 early_gart_iommu_check();
1065#endif
1066
1067 /*
1068 * partially used pages are not usable - thus
1069 * we are rounding upwards:
1070 */
1071 max_pfn = e820_end_of_ram_pfn();
1072
1073 /* update e820 for memory not covered by WB MTRRs */
1074 mtrr_bp_init();
1075 if (mtrr_trim_uncached_memory(max_pfn))
1076 max_pfn = e820_end_of_ram_pfn();
1077
1078 max_possible_pfn = max_pfn;
1079
1080 /*
1081 * Define random base addresses for memory sections after max_pfn is
1082 * defined and before each memory section base is used.
1083 */
1084 kernel_randomize_memory();
1085
1086#ifdef CONFIG_X86_32
1087 /* max_low_pfn get updated here */
1088 find_low_pfn_range();
1089#else
1090 check_x2apic();
1091
1092 /* How many end-of-memory variables you have, grandma! */
1093 /* need this before calling reserve_initrd */
1094 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1095 max_low_pfn = e820_end_of_low_ram_pfn();
1096 else
1097 max_low_pfn = max_pfn;
1098
1099 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1100#endif
1101
1102 /*
1103 * Find and reserve possible boot-time SMP configuration:
1104 */
1105 find_smp_config();
1106
1107 reserve_ibft_region();
1108
1109 early_alloc_pgt_buf();
1110
1111 /*
1112 * Need to conclude brk, before memblock_x86_fill()
1113 * it could use memblock_find_in_range, could overlap with
1114 * brk area.
1115 */
1116 reserve_brk();
1117
1118 cleanup_highmap();
1119
1120 memblock_set_current_limit(ISA_END_ADDRESS);
1121 memblock_x86_fill();
1122
1123 reserve_bios_regions();
1124
1125 if (efi_enabled(EFI_MEMMAP)) {
1126 efi_fake_memmap();
1127 efi_find_mirror();
1128 efi_esrt_init();
1129
1130 /*
1131 * The EFI specification says that boot service code won't be
1132 * called after ExitBootServices(). This is, in fact, a lie.
1133 */
1134 efi_reserve_boot_services();
1135 }
1136
1137 /* preallocate 4k for mptable mpc */
1138 early_reserve_e820_mpc_new();
1139
1140#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141 setup_bios_corruption_check();
1142#endif
1143
1144#ifdef CONFIG_X86_32
1145 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1147#endif
1148
1149 reserve_real_mode();
1150
1151 trim_platform_memory_ranges();
1152 trim_low_memory_range();
1153
1154 init_mem_mapping();
1155
1156 early_trap_pf_init();
1157
1158 /*
1159 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1160 * with the current CR4 value. This may not be necessary, but
1161 * auditing all the early-boot CR4 manipulation would be needed to
1162 * rule it out.
1163 */
1164 mmu_cr4_features = __read_cr4();
1165
1166 memblock_set_current_limit(get_max_mapped());
1167
1168 /*
1169 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1170 */
1171
1172#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1173 if (init_ohci1394_dma_early)
1174 init_ohci1394_dma_on_all_controllers();
1175#endif
1176 /* Allocate bigger log buffer */
1177 setup_log_buf(1);
1178
1179 reserve_initrd();
1180
1181 acpi_table_upgrade();
1182
1183 vsmp_init();
1184
1185 io_delay_init();
1186
1187 /*
1188 * Parse the ACPI tables for possible boot-time SMP configuration.
1189 */
1190 acpi_boot_table_init();
1191
1192 early_acpi_boot_init();
1193
1194 initmem_init();
1195 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1196
1197 /*
1198 * Reserve memory for crash kernel after SRAT is parsed so that it
1199 * won't consume hotpluggable memory.
1200 */
1201 reserve_crashkernel();
1202
1203 memblock_find_dma_reserve();
1204
1205#ifdef CONFIG_KVM_GUEST
1206 kvmclock_init();
1207#endif
1208
1209 x86_init.paging.pagetable_init();
1210
1211 kasan_init();
1212
1213#ifdef CONFIG_X86_32
1214 /* sync back kernel address range */
1215 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1216 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1217 KERNEL_PGD_PTRS);
1218
1219 /*
1220 * sync back low identity map too. It is used for example
1221 * in the 32-bit EFI stub.
1222 */
1223 clone_pgd_range(initial_page_table,
1224 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1225 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1226#endif
1227
1228 tboot_probe();
1229
1230 map_vsyscall();
1231
1232 generic_apic_probe();
1233
1234 early_quirks();
1235
1236 /*
1237 * Read APIC and some other early information from ACPI tables.
1238 */
1239 acpi_boot_init();
1240 sfi_init();
1241 x86_dtb_init();
1242
1243 /*
1244 * get boot-time SMP configuration:
1245 */
1246 get_smp_config();
1247
1248 /*
1249 * Systems w/o ACPI and mptables might not have it mapped the local
1250 * APIC yet, but prefill_possible_map() might need to access it.
1251 */
1252 init_apic_mappings();
1253
1254 prefill_possible_map();
1255
1256 init_cpu_to_node();
1257
1258 io_apic_init_mappings();
1259
1260 kvm_guest_init();
1261
1262 e820_reserve_resources();
1263 e820_mark_nosave_regions(max_low_pfn);
1264
1265 x86_init.resources.reserve_resources();
1266
1267 e820_setup_gap();
1268
1269#ifdef CONFIG_VT
1270#if defined(CONFIG_VGA_CONSOLE)
1271 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1272 conswitchp = &vga_con;
1273#elif defined(CONFIG_DUMMY_CONSOLE)
1274 conswitchp = &dummy_con;
1275#endif
1276#endif
1277 x86_init.oem.banner();
1278
1279 x86_init.timers.wallclock_init();
1280
1281 mcheck_init();
1282
1283 arch_init_ideal_nops();
1284
1285 register_refined_jiffies(CLOCK_TICK_RATE);
1286
1287#ifdef CONFIG_EFI
1288 if (efi_enabled(EFI_BOOT))
1289 efi_apply_memmap_quirks();
1290#endif
1291}
1292
1293#ifdef CONFIG_X86_32
1294
1295static struct resource video_ram_resource = {
1296 .name = "Video RAM area",
1297 .start = 0xa0000,
1298 .end = 0xbffff,
1299 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1300};
1301
1302void __init i386_reserve_resources(void)
1303{
1304 request_resource(&iomem_resource, &video_ram_resource);
1305 reserve_standard_io_resources();
1306}
1307
1308#endif /* CONFIG_X86_32 */
1309
1310static struct notifier_block kernel_offset_notifier = {
1311 .notifier_call = dump_kernel_offset
1312};
1313
1314static int __init register_kernel_offset_dumper(void)
1315{
1316 atomic_notifier_chain_register(&panic_notifier_list,
1317 &kernel_offset_notifier);
1318 return 0;
1319}
1320__initcall(register_kernel_offset_dumper);
1321
1322void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1323{
1324 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1325 return;
1326
1327 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1328}