Loading...
1/*
2 * Copyright (C) 2001-2004 by David Brownell
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19/* this file is part of ehci-hcd.c */
20
21/*-------------------------------------------------------------------------*/
22
23/*
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
25 *
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
30 *
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
34 *
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
39 */
40
41/*-------------------------------------------------------------------------*/
42
43/* fill a qtd, returning how much of the buffer we were able to queue up */
44
45static int
46qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 size_t len, int token, int maxpacket)
48{
49 int i, count;
50 u64 addr = buf;
51
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
56 if (likely (len < count)) /* ... iff needed */
57 count = len;
58 else {
59 buf += 0x1000;
60 buf &= ~0x0fff;
61
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i = 1; count < len && i < 5; i++) {
64 addr = buf;
65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 (u32)(addr >> 32));
68 buf += 0x1000;
69 if ((count + 0x1000) < len)
70 count += 0x1000;
71 else
72 count = len;
73 }
74
75 /* short packets may only terminate transfers */
76 if (count != len)
77 count -= (count % maxpacket);
78 }
79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 qtd->length = count;
81
82 return count;
83}
84
85/*-------------------------------------------------------------------------*/
86
87static inline void
88qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89{
90 struct ehci_qh_hw *hw = qh->hw;
91
92 /* writes to an active overlay are unsafe */
93 WARN_ON(qh->qh_state != QH_STATE_IDLE);
94
95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 hw->hw_alt_next = EHCI_LIST_END(ehci);
97
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 * ever clear it.
102 */
103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
104 unsigned is_out, epnum;
105
106 is_out = qh->is_out;
107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 usb_settoggle(qh->ps.udev, epnum, is_out, 1);
111 }
112 }
113
114 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115}
116
117/* if it weren't for a common silicon quirk (writing the dummy into the qh
118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119 * recovery (including urb dequeue) would need software changes to a QH...
120 */
121static void
122qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123{
124 struct ehci_qtd *qtd;
125
126 qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
127
128 /*
129 * first qtd may already be partially processed.
130 * If we come here during unlink, the QH overlay region
131 * might have reference to the just unlinked qtd. The
132 * qtd is updated in qh_completions(). Update the QH
133 * overlay here.
134 */
135 if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
136 qh->hw->hw_qtd_next = qtd->hw_next;
137 if (qh->should_be_inactive)
138 ehci_warn(ehci, "qh %p should be inactive!\n", qh);
139 } else {
140 qh_update(ehci, qh, qtd);
141 }
142 qh->should_be_inactive = 0;
143}
144
145/*-------------------------------------------------------------------------*/
146
147static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
148
149static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
150 struct usb_host_endpoint *ep)
151{
152 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
153 struct ehci_qh *qh = ep->hcpriv;
154 unsigned long flags;
155
156 spin_lock_irqsave(&ehci->lock, flags);
157 qh->clearing_tt = 0;
158 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
159 && ehci->rh_state == EHCI_RH_RUNNING)
160 qh_link_async(ehci, qh);
161 spin_unlock_irqrestore(&ehci->lock, flags);
162}
163
164static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
165 struct urb *urb, u32 token)
166{
167
168 /* If an async split transaction gets an error or is unlinked,
169 * the TT buffer may be left in an indeterminate state. We
170 * have to clear the TT buffer.
171 *
172 * Note: this routine is never called for Isochronous transfers.
173 */
174 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
175#ifdef CONFIG_DYNAMIC_DEBUG
176 struct usb_device *tt = urb->dev->tt->hub;
177 dev_dbg(&tt->dev,
178 "clear tt buffer port %d, a%d ep%d t%08x\n",
179 urb->dev->ttport, urb->dev->devnum,
180 usb_pipeendpoint(urb->pipe), token);
181#endif /* CONFIG_DYNAMIC_DEBUG */
182 if (!ehci_is_TDI(ehci)
183 || urb->dev->tt->hub !=
184 ehci_to_hcd(ehci)->self.root_hub) {
185 if (usb_hub_clear_tt_buffer(urb) == 0)
186 qh->clearing_tt = 1;
187 } else {
188
189 /* REVISIT ARC-derived cores don't clear the root
190 * hub TT buffer in this way...
191 */
192 }
193 }
194}
195
196static int qtd_copy_status (
197 struct ehci_hcd *ehci,
198 struct urb *urb,
199 size_t length,
200 u32 token
201)
202{
203 int status = -EINPROGRESS;
204
205 /* count IN/OUT bytes, not SETUP (even short packets) */
206 if (likely (QTD_PID (token) != 2))
207 urb->actual_length += length - QTD_LENGTH (token);
208
209 /* don't modify error codes */
210 if (unlikely(urb->unlinked))
211 return status;
212
213 /* force cleanup after short read; not always an error */
214 if (unlikely (IS_SHORT_READ (token)))
215 status = -EREMOTEIO;
216
217 /* serious "can't proceed" faults reported by the hardware */
218 if (token & QTD_STS_HALT) {
219 if (token & QTD_STS_BABBLE) {
220 /* FIXME "must" disable babbling device's port too */
221 status = -EOVERFLOW;
222 /* CERR nonzero + halt --> stall */
223 } else if (QTD_CERR(token)) {
224 status = -EPIPE;
225
226 /* In theory, more than one of the following bits can be set
227 * since they are sticky and the transaction is retried.
228 * Which to test first is rather arbitrary.
229 */
230 } else if (token & QTD_STS_MMF) {
231 /* fs/ls interrupt xfer missed the complete-split */
232 status = -EPROTO;
233 } else if (token & QTD_STS_DBE) {
234 status = (QTD_PID (token) == 1) /* IN ? */
235 ? -ENOSR /* hc couldn't read data */
236 : -ECOMM; /* hc couldn't write data */
237 } else if (token & QTD_STS_XACT) {
238 /* timeout, bad CRC, wrong PID, etc */
239 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
240 urb->dev->devpath,
241 usb_pipeendpoint(urb->pipe),
242 usb_pipein(urb->pipe) ? "in" : "out");
243 status = -EPROTO;
244 } else { /* unknown */
245 status = -EPROTO;
246 }
247 }
248
249 return status;
250}
251
252static void
253ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
254{
255 if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
256 /* ... update hc-wide periodic stats */
257 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
258 }
259
260 if (unlikely(urb->unlinked)) {
261 COUNT(ehci->stats.unlink);
262 } else {
263 /* report non-error and short read status as zero */
264 if (status == -EINPROGRESS || status == -EREMOTEIO)
265 status = 0;
266 COUNT(ehci->stats.complete);
267 }
268
269#ifdef EHCI_URB_TRACE
270 ehci_dbg (ehci,
271 "%s %s urb %p ep%d%s status %d len %d/%d\n",
272 __func__, urb->dev->devpath, urb,
273 usb_pipeendpoint (urb->pipe),
274 usb_pipein (urb->pipe) ? "in" : "out",
275 status,
276 urb->actual_length, urb->transfer_buffer_length);
277#endif
278
279 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
280 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
281}
282
283static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
284
285/*
286 * Process and free completed qtds for a qh, returning URBs to drivers.
287 * Chases up to qh->hw_current. Returns nonzero if the caller should
288 * unlink qh.
289 */
290static unsigned
291qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
292{
293 struct ehci_qtd *last, *end = qh->dummy;
294 struct list_head *entry, *tmp;
295 int last_status;
296 int stopped;
297 u8 state;
298 struct ehci_qh_hw *hw = qh->hw;
299
300 /* completions (or tasks on other cpus) must never clobber HALT
301 * till we've gone through and cleaned everything up, even when
302 * they add urbs to this qh's queue or mark them for unlinking.
303 *
304 * NOTE: unlinking expects to be done in queue order.
305 *
306 * It's a bug for qh->qh_state to be anything other than
307 * QH_STATE_IDLE, unless our caller is scan_async() or
308 * scan_intr().
309 */
310 state = qh->qh_state;
311 qh->qh_state = QH_STATE_COMPLETING;
312 stopped = (state == QH_STATE_IDLE);
313
314 rescan:
315 last = NULL;
316 last_status = -EINPROGRESS;
317 qh->dequeue_during_giveback = 0;
318
319 /* remove de-activated QTDs from front of queue.
320 * after faults (including short reads), cleanup this urb
321 * then let the queue advance.
322 * if queue is stopped, handles unlinks.
323 */
324 list_for_each_safe (entry, tmp, &qh->qtd_list) {
325 struct ehci_qtd *qtd;
326 struct urb *urb;
327 u32 token = 0;
328
329 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
330 urb = qtd->urb;
331
332 /* clean up any state from previous QTD ...*/
333 if (last) {
334 if (likely (last->urb != urb)) {
335 ehci_urb_done(ehci, last->urb, last_status);
336 last_status = -EINPROGRESS;
337 }
338 ehci_qtd_free (ehci, last);
339 last = NULL;
340 }
341
342 /* ignore urbs submitted during completions we reported */
343 if (qtd == end)
344 break;
345
346 /* hardware copies qtd out of qh overlay */
347 rmb ();
348 token = hc32_to_cpu(ehci, qtd->hw_token);
349
350 /* always clean up qtds the hc de-activated */
351 retry_xacterr:
352 if ((token & QTD_STS_ACTIVE) == 0) {
353
354 /* Report Data Buffer Error: non-fatal but useful */
355 if (token & QTD_STS_DBE)
356 ehci_dbg(ehci,
357 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
358 urb,
359 usb_endpoint_num(&urb->ep->desc),
360 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
361 urb->transfer_buffer_length,
362 qtd,
363 qh);
364
365 /* on STALL, error, and short reads this urb must
366 * complete and all its qtds must be recycled.
367 */
368 if ((token & QTD_STS_HALT) != 0) {
369
370 /* retry transaction errors until we
371 * reach the software xacterr limit
372 */
373 if ((token & QTD_STS_XACT) &&
374 QTD_CERR(token) == 0 &&
375 ++qh->xacterrs < QH_XACTERR_MAX &&
376 !urb->unlinked) {
377 ehci_dbg(ehci,
378 "detected XactErr len %zu/%zu retry %d\n",
379 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
380
381 /* reset the token in the qtd and the
382 * qh overlay (which still contains
383 * the qtd) so that we pick up from
384 * where we left off
385 */
386 token &= ~QTD_STS_HALT;
387 token |= QTD_STS_ACTIVE |
388 (EHCI_TUNE_CERR << 10);
389 qtd->hw_token = cpu_to_hc32(ehci,
390 token);
391 wmb();
392 hw->hw_token = cpu_to_hc32(ehci,
393 token);
394 goto retry_xacterr;
395 }
396 stopped = 1;
397 qh->unlink_reason |= QH_UNLINK_HALTED;
398
399 /* magic dummy for some short reads; qh won't advance.
400 * that silicon quirk can kick in with this dummy too.
401 *
402 * other short reads won't stop the queue, including
403 * control transfers (status stage handles that) or
404 * most other single-qtd reads ... the queue stops if
405 * URB_SHORT_NOT_OK was set so the driver submitting
406 * the urbs could clean it up.
407 */
408 } else if (IS_SHORT_READ (token)
409 && !(qtd->hw_alt_next
410 & EHCI_LIST_END(ehci))) {
411 stopped = 1;
412 qh->unlink_reason |= QH_UNLINK_SHORT_READ;
413 }
414
415 /* stop scanning when we reach qtds the hc is using */
416 } else if (likely (!stopped
417 && ehci->rh_state >= EHCI_RH_RUNNING)) {
418 break;
419
420 /* scan the whole queue for unlinks whenever it stops */
421 } else {
422 stopped = 1;
423
424 /* cancel everything if we halt, suspend, etc */
425 if (ehci->rh_state < EHCI_RH_RUNNING) {
426 last_status = -ESHUTDOWN;
427 qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
428 }
429
430 /* this qtd is active; skip it unless a previous qtd
431 * for its urb faulted, or its urb was canceled.
432 */
433 else if (last_status == -EINPROGRESS && !urb->unlinked)
434 continue;
435
436 /*
437 * If this was the active qtd when the qh was unlinked
438 * and the overlay's token is active, then the overlay
439 * hasn't been written back to the qtd yet so use its
440 * token instead of the qtd's. After the qtd is
441 * processed and removed, the overlay won't be valid
442 * any more.
443 */
444 if (state == QH_STATE_IDLE &&
445 qh->qtd_list.next == &qtd->qtd_list &&
446 (hw->hw_token & ACTIVE_BIT(ehci))) {
447 token = hc32_to_cpu(ehci, hw->hw_token);
448 hw->hw_token &= ~ACTIVE_BIT(ehci);
449 qh->should_be_inactive = 1;
450
451 /* An unlink may leave an incomplete
452 * async transaction in the TT buffer.
453 * We have to clear it.
454 */
455 ehci_clear_tt_buffer(ehci, qh, urb, token);
456 }
457 }
458
459 /* unless we already know the urb's status, collect qtd status
460 * and update count of bytes transferred. in common short read
461 * cases with only one data qtd (including control transfers),
462 * queue processing won't halt. but with two or more qtds (for
463 * example, with a 32 KB transfer), when the first qtd gets a
464 * short read the second must be removed by hand.
465 */
466 if (last_status == -EINPROGRESS) {
467 last_status = qtd_copy_status(ehci, urb,
468 qtd->length, token);
469 if (last_status == -EREMOTEIO
470 && (qtd->hw_alt_next
471 & EHCI_LIST_END(ehci)))
472 last_status = -EINPROGRESS;
473
474 /* As part of low/full-speed endpoint-halt processing
475 * we must clear the TT buffer (11.17.5).
476 */
477 if (unlikely(last_status != -EINPROGRESS &&
478 last_status != -EREMOTEIO)) {
479 /* The TT's in some hubs malfunction when they
480 * receive this request following a STALL (they
481 * stop sending isochronous packets). Since a
482 * STALL can't leave the TT buffer in a busy
483 * state (if you believe Figures 11-48 - 11-51
484 * in the USB 2.0 spec), we won't clear the TT
485 * buffer in this case. Strictly speaking this
486 * is a violation of the spec.
487 */
488 if (last_status != -EPIPE)
489 ehci_clear_tt_buffer(ehci, qh, urb,
490 token);
491 }
492 }
493
494 /* if we're removing something not at the queue head,
495 * patch the hardware queue pointer.
496 */
497 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
498 last = list_entry (qtd->qtd_list.prev,
499 struct ehci_qtd, qtd_list);
500 last->hw_next = qtd->hw_next;
501 }
502
503 /* remove qtd; it's recycled after possible urb completion */
504 list_del (&qtd->qtd_list);
505 last = qtd;
506
507 /* reinit the xacterr counter for the next qtd */
508 qh->xacterrs = 0;
509 }
510
511 /* last urb's completion might still need calling */
512 if (likely (last != NULL)) {
513 ehci_urb_done(ehci, last->urb, last_status);
514 ehci_qtd_free (ehci, last);
515 }
516
517 /* Do we need to rescan for URBs dequeued during a giveback? */
518 if (unlikely(qh->dequeue_during_giveback)) {
519 /* If the QH is already unlinked, do the rescan now. */
520 if (state == QH_STATE_IDLE)
521 goto rescan;
522
523 /* Otherwise the caller must unlink the QH. */
524 }
525
526 /* restore original state; caller must unlink or relink */
527 qh->qh_state = state;
528
529 /* be sure the hardware's done with the qh before refreshing
530 * it after fault cleanup, or recovering from silicon wrongly
531 * overlaying the dummy qtd (which reduces DMA chatter).
532 *
533 * We won't refresh a QH that's linked (after the HC
534 * stopped the queue). That avoids a race:
535 * - HC reads first part of QH;
536 * - CPU updates that first part and the token;
537 * - HC reads rest of that QH, including token
538 * Result: HC gets an inconsistent image, and then
539 * DMAs to/from the wrong memory (corrupting it).
540 *
541 * That should be rare for interrupt transfers,
542 * except maybe high bandwidth ...
543 */
544 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
545 qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
546
547 /* Let the caller know if the QH needs to be unlinked. */
548 return qh->unlink_reason;
549}
550
551/*-------------------------------------------------------------------------*/
552
553// high bandwidth multiplier, as encoded in highspeed endpoint descriptors
554#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
555// ... and packet size, for any kind of endpoint descriptor
556#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
557
558/*
559 * reverse of qh_urb_transaction: free a list of TDs.
560 * used for cleanup after errors, before HC sees an URB's TDs.
561 */
562static void qtd_list_free (
563 struct ehci_hcd *ehci,
564 struct urb *urb,
565 struct list_head *qtd_list
566) {
567 struct list_head *entry, *temp;
568
569 list_for_each_safe (entry, temp, qtd_list) {
570 struct ehci_qtd *qtd;
571
572 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
573 list_del (&qtd->qtd_list);
574 ehci_qtd_free (ehci, qtd);
575 }
576}
577
578/*
579 * create a list of filled qtds for this URB; won't link into qh.
580 */
581static struct list_head *
582qh_urb_transaction (
583 struct ehci_hcd *ehci,
584 struct urb *urb,
585 struct list_head *head,
586 gfp_t flags
587) {
588 struct ehci_qtd *qtd, *qtd_prev;
589 dma_addr_t buf;
590 int len, this_sg_len, maxpacket;
591 int is_input;
592 u32 token;
593 int i;
594 struct scatterlist *sg;
595
596 /*
597 * URBs map to sequences of QTDs: one logical transaction
598 */
599 qtd = ehci_qtd_alloc (ehci, flags);
600 if (unlikely (!qtd))
601 return NULL;
602 list_add_tail (&qtd->qtd_list, head);
603 qtd->urb = urb;
604
605 token = QTD_STS_ACTIVE;
606 token |= (EHCI_TUNE_CERR << 10);
607 /* for split transactions, SplitXState initialized to zero */
608
609 len = urb->transfer_buffer_length;
610 is_input = usb_pipein (urb->pipe);
611 if (usb_pipecontrol (urb->pipe)) {
612 /* SETUP pid */
613 qtd_fill(ehci, qtd, urb->setup_dma,
614 sizeof (struct usb_ctrlrequest),
615 token | (2 /* "setup" */ << 8), 8);
616
617 /* ... and always at least one more pid */
618 token ^= QTD_TOGGLE;
619 qtd_prev = qtd;
620 qtd = ehci_qtd_alloc (ehci, flags);
621 if (unlikely (!qtd))
622 goto cleanup;
623 qtd->urb = urb;
624 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
625 list_add_tail (&qtd->qtd_list, head);
626
627 /* for zero length DATA stages, STATUS is always IN */
628 if (len == 0)
629 token |= (1 /* "in" */ << 8);
630 }
631
632 /*
633 * data transfer stage: buffer setup
634 */
635 i = urb->num_mapped_sgs;
636 if (len > 0 && i > 0) {
637 sg = urb->sg;
638 buf = sg_dma_address(sg);
639
640 /* urb->transfer_buffer_length may be smaller than the
641 * size of the scatterlist (or vice versa)
642 */
643 this_sg_len = min_t(int, sg_dma_len(sg), len);
644 } else {
645 sg = NULL;
646 buf = urb->transfer_dma;
647 this_sg_len = len;
648 }
649
650 if (is_input)
651 token |= (1 /* "in" */ << 8);
652 /* else it's already initted to "out" pid (0 << 8) */
653
654 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
655
656 /*
657 * buffer gets wrapped in one or more qtds;
658 * last one may be "short" (including zero len)
659 * and may serve as a control status ack
660 */
661 for (;;) {
662 int this_qtd_len;
663
664 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
665 maxpacket);
666 this_sg_len -= this_qtd_len;
667 len -= this_qtd_len;
668 buf += this_qtd_len;
669
670 /*
671 * short reads advance to a "magic" dummy instead of the next
672 * qtd ... that forces the queue to stop, for manual cleanup.
673 * (this will usually be overridden later.)
674 */
675 if (is_input)
676 qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
677
678 /* qh makes control packets use qtd toggle; maybe switch it */
679 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
680 token ^= QTD_TOGGLE;
681
682 if (likely(this_sg_len <= 0)) {
683 if (--i <= 0 || len <= 0)
684 break;
685 sg = sg_next(sg);
686 buf = sg_dma_address(sg);
687 this_sg_len = min_t(int, sg_dma_len(sg), len);
688 }
689
690 qtd_prev = qtd;
691 qtd = ehci_qtd_alloc (ehci, flags);
692 if (unlikely (!qtd))
693 goto cleanup;
694 qtd->urb = urb;
695 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
696 list_add_tail (&qtd->qtd_list, head);
697 }
698
699 /*
700 * unless the caller requires manual cleanup after short reads,
701 * have the alt_next mechanism keep the queue running after the
702 * last data qtd (the only one, for control and most other cases).
703 */
704 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
705 || usb_pipecontrol (urb->pipe)))
706 qtd->hw_alt_next = EHCI_LIST_END(ehci);
707
708 /*
709 * control requests may need a terminating data "status" ack;
710 * other OUT ones may need a terminating short packet
711 * (zero length).
712 */
713 if (likely (urb->transfer_buffer_length != 0)) {
714 int one_more = 0;
715
716 if (usb_pipecontrol (urb->pipe)) {
717 one_more = 1;
718 token ^= 0x0100; /* "in" <--> "out" */
719 token |= QTD_TOGGLE; /* force DATA1 */
720 } else if (usb_pipeout(urb->pipe)
721 && (urb->transfer_flags & URB_ZERO_PACKET)
722 && !(urb->transfer_buffer_length % maxpacket)) {
723 one_more = 1;
724 }
725 if (one_more) {
726 qtd_prev = qtd;
727 qtd = ehci_qtd_alloc (ehci, flags);
728 if (unlikely (!qtd))
729 goto cleanup;
730 qtd->urb = urb;
731 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
732 list_add_tail (&qtd->qtd_list, head);
733
734 /* never any data in such packets */
735 qtd_fill(ehci, qtd, 0, 0, token, 0);
736 }
737 }
738
739 /* by default, enable interrupt on urb completion */
740 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
741 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
742 return head;
743
744cleanup:
745 qtd_list_free (ehci, urb, head);
746 return NULL;
747}
748
749/*-------------------------------------------------------------------------*/
750
751// Would be best to create all qh's from config descriptors,
752// when each interface/altsetting is established. Unlink
753// any previous qh and cancel its urbs first; endpoints are
754// implicitly reset then (data toggle too).
755// That'd mean updating how usbcore talks to HCDs. (2.7?)
756
757
758/*
759 * Each QH holds a qtd list; a QH is used for everything except iso.
760 *
761 * For interrupt urbs, the scheduler must set the microframe scheduling
762 * mask(s) each time the QH gets scheduled. For highspeed, that's
763 * just one microframe in the s-mask. For split interrupt transactions
764 * there are additional complications: c-mask, maybe FSTNs.
765 */
766static struct ehci_qh *
767qh_make (
768 struct ehci_hcd *ehci,
769 struct urb *urb,
770 gfp_t flags
771) {
772 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
773 u32 info1 = 0, info2 = 0;
774 int is_input, type;
775 int maxp = 0;
776 struct usb_tt *tt = urb->dev->tt;
777 struct ehci_qh_hw *hw;
778
779 if (!qh)
780 return qh;
781
782 /*
783 * init endpoint/device data for this QH
784 */
785 info1 |= usb_pipeendpoint (urb->pipe) << 8;
786 info1 |= usb_pipedevice (urb->pipe) << 0;
787
788 is_input = usb_pipein (urb->pipe);
789 type = usb_pipetype (urb->pipe);
790 maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
791
792 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
793 * acts like up to 3KB, but is built from smaller packets.
794 */
795 if (max_packet(maxp) > 1024) {
796 ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
797 goto done;
798 }
799
800 /* Compute interrupt scheduling parameters just once, and save.
801 * - allowing for high bandwidth, how many nsec/uframe are used?
802 * - split transactions need a second CSPLIT uframe; same question
803 * - splits also need a schedule gap (for full/low speed I/O)
804 * - qh has a polling interval
805 *
806 * For control/bulk requests, the HC or TT handles these.
807 */
808 if (type == PIPE_INTERRUPT) {
809 unsigned tmp;
810
811 qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
812 is_input, 0,
813 hb_mult(maxp) * max_packet(maxp)));
814 qh->ps.phase = NO_FRAME;
815
816 if (urb->dev->speed == USB_SPEED_HIGH) {
817 qh->ps.c_usecs = 0;
818 qh->gap_uf = 0;
819
820 if (urb->interval > 1 && urb->interval < 8) {
821 /* NOTE interval 2 or 4 uframes could work.
822 * But interval 1 scheduling is simpler, and
823 * includes high bandwidth.
824 */
825 urb->interval = 1;
826 } else if (urb->interval > ehci->periodic_size << 3) {
827 urb->interval = ehci->periodic_size << 3;
828 }
829 qh->ps.period = urb->interval >> 3;
830
831 /* period for bandwidth allocation */
832 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
833 1 << (urb->ep->desc.bInterval - 1));
834
835 /* Allow urb->interval to override */
836 qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
837 qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
838 } else {
839 int think_time;
840
841 /* gap is f(FS/LS transfer times) */
842 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
843 is_input, 0, maxp) / (125 * 1000);
844
845 /* FIXME this just approximates SPLIT/CSPLIT times */
846 if (is_input) { // SPLIT, gap, CSPLIT+DATA
847 qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
848 qh->ps.usecs = HS_USECS(1);
849 } else { // SPLIT+DATA, gap, CSPLIT
850 qh->ps.usecs += HS_USECS(1);
851 qh->ps.c_usecs = HS_USECS(0);
852 }
853
854 think_time = tt ? tt->think_time : 0;
855 qh->ps.tt_usecs = NS_TO_US(think_time +
856 usb_calc_bus_time (urb->dev->speed,
857 is_input, 0, max_packet (maxp)));
858 if (urb->interval > ehci->periodic_size)
859 urb->interval = ehci->periodic_size;
860 qh->ps.period = urb->interval;
861
862 /* period for bandwidth allocation */
863 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
864 urb->ep->desc.bInterval);
865 tmp = rounddown_pow_of_two(tmp);
866
867 /* Allow urb->interval to override */
868 qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
869 qh->ps.bw_uperiod = qh->ps.bw_period << 3;
870 }
871 }
872
873 /* support for tt scheduling, and access to toggles */
874 qh->ps.udev = urb->dev;
875 qh->ps.ep = urb->ep;
876
877 /* using TT? */
878 switch (urb->dev->speed) {
879 case USB_SPEED_LOW:
880 info1 |= QH_LOW_SPEED;
881 /* FALL THROUGH */
882
883 case USB_SPEED_FULL:
884 /* EPS 0 means "full" */
885 if (type != PIPE_INTERRUPT)
886 info1 |= (EHCI_TUNE_RL_TT << 28);
887 if (type == PIPE_CONTROL) {
888 info1 |= QH_CONTROL_EP; /* for TT */
889 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
890 }
891 info1 |= maxp << 16;
892
893 info2 |= (EHCI_TUNE_MULT_TT << 30);
894
895 /* Some Freescale processors have an erratum in which the
896 * port number in the queue head was 0..N-1 instead of 1..N.
897 */
898 if (ehci_has_fsl_portno_bug(ehci))
899 info2 |= (urb->dev->ttport-1) << 23;
900 else
901 info2 |= urb->dev->ttport << 23;
902
903 /* set the address of the TT; for TDI's integrated
904 * root hub tt, leave it zeroed.
905 */
906 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
907 info2 |= tt->hub->devnum << 16;
908
909 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
910
911 break;
912
913 case USB_SPEED_HIGH: /* no TT involved */
914 info1 |= QH_HIGH_SPEED;
915 if (type == PIPE_CONTROL) {
916 info1 |= (EHCI_TUNE_RL_HS << 28);
917 info1 |= 64 << 16; /* usb2 fixed maxpacket */
918 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
919 info2 |= (EHCI_TUNE_MULT_HS << 30);
920 } else if (type == PIPE_BULK) {
921 info1 |= (EHCI_TUNE_RL_HS << 28);
922 /* The USB spec says that high speed bulk endpoints
923 * always use 512 byte maxpacket. But some device
924 * vendors decided to ignore that, and MSFT is happy
925 * to help them do so. So now people expect to use
926 * such nonconformant devices with Linux too; sigh.
927 */
928 info1 |= max_packet(maxp) << 16;
929 info2 |= (EHCI_TUNE_MULT_HS << 30);
930 } else { /* PIPE_INTERRUPT */
931 info1 |= max_packet (maxp) << 16;
932 info2 |= hb_mult (maxp) << 30;
933 }
934 break;
935 default:
936 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
937 urb->dev->speed);
938done:
939 qh_destroy(ehci, qh);
940 return NULL;
941 }
942
943 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
944
945 /* init as live, toggle clear */
946 qh->qh_state = QH_STATE_IDLE;
947 hw = qh->hw;
948 hw->hw_info1 = cpu_to_hc32(ehci, info1);
949 hw->hw_info2 = cpu_to_hc32(ehci, info2);
950 qh->is_out = !is_input;
951 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
952 return qh;
953}
954
955/*-------------------------------------------------------------------------*/
956
957static void enable_async(struct ehci_hcd *ehci)
958{
959 if (ehci->async_count++)
960 return;
961
962 /* Stop waiting to turn off the async schedule */
963 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
964
965 /* Don't start the schedule until ASS is 0 */
966 ehci_poll_ASS(ehci);
967 turn_on_io_watchdog(ehci);
968}
969
970static void disable_async(struct ehci_hcd *ehci)
971{
972 if (--ehci->async_count)
973 return;
974
975 /* The async schedule and unlink lists are supposed to be empty */
976 WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
977 !list_empty(&ehci->async_idle));
978
979 /* Don't turn off the schedule until ASS is 1 */
980 ehci_poll_ASS(ehci);
981}
982
983/* move qh (and its qtds) onto async queue; maybe enable queue. */
984
985static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
986{
987 __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
988 struct ehci_qh *head;
989
990 /* Don't link a QH if there's a Clear-TT-Buffer pending */
991 if (unlikely(qh->clearing_tt))
992 return;
993
994 WARN_ON(qh->qh_state != QH_STATE_IDLE);
995
996 /* clear halt and/or toggle; and maybe recover from silicon quirk */
997 qh_refresh(ehci, qh);
998
999 /* splice right after start */
1000 head = ehci->async;
1001 qh->qh_next = head->qh_next;
1002 qh->hw->hw_next = head->hw->hw_next;
1003 wmb ();
1004
1005 head->qh_next.qh = qh;
1006 head->hw->hw_next = dma;
1007
1008 qh->qh_state = QH_STATE_LINKED;
1009 qh->xacterrs = 0;
1010 qh->unlink_reason = 0;
1011 /* qtd completions reported later by interrupt */
1012
1013 enable_async(ehci);
1014}
1015
1016/*-------------------------------------------------------------------------*/
1017
1018/*
1019 * For control/bulk/interrupt, return QH with these TDs appended.
1020 * Allocates and initializes the QH if necessary.
1021 * Returns null if it can't allocate a QH it needs to.
1022 * If the QH has TDs (urbs) already, that's great.
1023 */
1024static struct ehci_qh *qh_append_tds (
1025 struct ehci_hcd *ehci,
1026 struct urb *urb,
1027 struct list_head *qtd_list,
1028 int epnum,
1029 void **ptr
1030)
1031{
1032 struct ehci_qh *qh = NULL;
1033 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1034
1035 qh = (struct ehci_qh *) *ptr;
1036 if (unlikely (qh == NULL)) {
1037 /* can't sleep here, we have ehci->lock... */
1038 qh = qh_make (ehci, urb, GFP_ATOMIC);
1039 *ptr = qh;
1040 }
1041 if (likely (qh != NULL)) {
1042 struct ehci_qtd *qtd;
1043
1044 if (unlikely (list_empty (qtd_list)))
1045 qtd = NULL;
1046 else
1047 qtd = list_entry (qtd_list->next, struct ehci_qtd,
1048 qtd_list);
1049
1050 /* control qh may need patching ... */
1051 if (unlikely (epnum == 0)) {
1052
1053 /* usb_reset_device() briefly reverts to address 0 */
1054 if (usb_pipedevice (urb->pipe) == 0)
1055 qh->hw->hw_info1 &= ~qh_addr_mask;
1056 }
1057
1058 /* just one way to queue requests: swap with the dummy qtd.
1059 * only hc or qh_refresh() ever modify the overlay.
1060 */
1061 if (likely (qtd != NULL)) {
1062 struct ehci_qtd *dummy;
1063 dma_addr_t dma;
1064 __hc32 token;
1065
1066 /* to avoid racing the HC, use the dummy td instead of
1067 * the first td of our list (becomes new dummy). both
1068 * tds stay deactivated until we're done, when the
1069 * HC is allowed to fetch the old dummy (4.10.2).
1070 */
1071 token = qtd->hw_token;
1072 qtd->hw_token = HALT_BIT(ehci);
1073
1074 dummy = qh->dummy;
1075
1076 dma = dummy->qtd_dma;
1077 *dummy = *qtd;
1078 dummy->qtd_dma = dma;
1079
1080 list_del (&qtd->qtd_list);
1081 list_add (&dummy->qtd_list, qtd_list);
1082 list_splice_tail(qtd_list, &qh->qtd_list);
1083
1084 ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1085 qh->dummy = qtd;
1086
1087 /* hc must see the new dummy at list end */
1088 dma = qtd->qtd_dma;
1089 qtd = list_entry (qh->qtd_list.prev,
1090 struct ehci_qtd, qtd_list);
1091 qtd->hw_next = QTD_NEXT(ehci, dma);
1092
1093 /* let the hc process these next qtds */
1094 wmb ();
1095 dummy->hw_token = token;
1096
1097 urb->hcpriv = qh;
1098 }
1099 }
1100 return qh;
1101}
1102
1103/*-------------------------------------------------------------------------*/
1104
1105static int
1106submit_async (
1107 struct ehci_hcd *ehci,
1108 struct urb *urb,
1109 struct list_head *qtd_list,
1110 gfp_t mem_flags
1111) {
1112 int epnum;
1113 unsigned long flags;
1114 struct ehci_qh *qh = NULL;
1115 int rc;
1116
1117 epnum = urb->ep->desc.bEndpointAddress;
1118
1119#ifdef EHCI_URB_TRACE
1120 {
1121 struct ehci_qtd *qtd;
1122 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1123 ehci_dbg(ehci,
1124 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1125 __func__, urb->dev->devpath, urb,
1126 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1127 urb->transfer_buffer_length,
1128 qtd, urb->ep->hcpriv);
1129 }
1130#endif
1131
1132 spin_lock_irqsave (&ehci->lock, flags);
1133 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1134 rc = -ESHUTDOWN;
1135 goto done;
1136 }
1137 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1138 if (unlikely(rc))
1139 goto done;
1140
1141 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1142 if (unlikely(qh == NULL)) {
1143 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1144 rc = -ENOMEM;
1145 goto done;
1146 }
1147
1148 /* Control/bulk operations through TTs don't need scheduling,
1149 * the HC and TT handle it when the TT has a buffer ready.
1150 */
1151 if (likely (qh->qh_state == QH_STATE_IDLE))
1152 qh_link_async(ehci, qh);
1153 done:
1154 spin_unlock_irqrestore (&ehci->lock, flags);
1155 if (unlikely (qh == NULL))
1156 qtd_list_free (ehci, urb, qtd_list);
1157 return rc;
1158}
1159
1160/*-------------------------------------------------------------------------*/
1161#ifdef CONFIG_USB_HCD_TEST_MODE
1162/*
1163 * This function creates the qtds and submits them for the
1164 * SINGLE_STEP_SET_FEATURE Test.
1165 * This is done in two parts: first SETUP req for GetDesc is sent then
1166 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1167 *
1168 * is_setup : i/p arguement decides which of the two stage needs to be
1169 * performed; TRUE - SETUP and FALSE - IN+STATUS
1170 * Returns 0 if success
1171 */
1172static int submit_single_step_set_feature(
1173 struct usb_hcd *hcd,
1174 struct urb *urb,
1175 int is_setup
1176) {
1177 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
1178 struct list_head qtd_list;
1179 struct list_head *head;
1180
1181 struct ehci_qtd *qtd, *qtd_prev;
1182 dma_addr_t buf;
1183 int len, maxpacket;
1184 u32 token;
1185
1186 INIT_LIST_HEAD(&qtd_list);
1187 head = &qtd_list;
1188
1189 /* URBs map to sequences of QTDs: one logical transaction */
1190 qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1191 if (unlikely(!qtd))
1192 return -1;
1193 list_add_tail(&qtd->qtd_list, head);
1194 qtd->urb = urb;
1195
1196 token = QTD_STS_ACTIVE;
1197 token |= (EHCI_TUNE_CERR << 10);
1198
1199 len = urb->transfer_buffer_length;
1200 /*
1201 * Check if the request is to perform just the SETUP stage (getDesc)
1202 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1203 * 15 secs after the setup
1204 */
1205 if (is_setup) {
1206 /* SETUP pid */
1207 qtd_fill(ehci, qtd, urb->setup_dma,
1208 sizeof(struct usb_ctrlrequest),
1209 token | (2 /* "setup" */ << 8), 8);
1210
1211 submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1212 return 0; /*Return now; we shall come back after 15 seconds*/
1213 }
1214
1215 /*
1216 * IN: data transfer stage: buffer setup : start the IN txn phase for
1217 * the get_Desc SETUP which was sent 15seconds back
1218 */
1219 token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/
1220 buf = urb->transfer_dma;
1221
1222 token |= (1 /* "in" */ << 8); /*This is IN stage*/
1223
1224 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, 0));
1225
1226 qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1227
1228 /*
1229 * Our IN phase shall always be a short read; so keep the queue running
1230 * and let it advance to the next qtd which zero length OUT status
1231 */
1232 qtd->hw_alt_next = EHCI_LIST_END(ehci);
1233
1234 /* STATUS stage for GetDesc control request */
1235 token ^= 0x0100; /* "in" <--> "out" */
1236 token |= QTD_TOGGLE; /* force DATA1 */
1237
1238 qtd_prev = qtd;
1239 qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1240 if (unlikely(!qtd))
1241 goto cleanup;
1242 qtd->urb = urb;
1243 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1244 list_add_tail(&qtd->qtd_list, head);
1245
1246 /* dont fill any data in such packets */
1247 qtd_fill(ehci, qtd, 0, 0, token, 0);
1248
1249 /* by default, enable interrupt on urb completion */
1250 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
1251 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
1252
1253 submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1254
1255 return 0;
1256
1257cleanup:
1258 qtd_list_free(ehci, urb, head);
1259 return -1;
1260}
1261#endif /* CONFIG_USB_HCD_TEST_MODE */
1262
1263/*-------------------------------------------------------------------------*/
1264
1265static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1266{
1267 struct ehci_qh *prev;
1268
1269 /* Add to the end of the list of QHs waiting for the next IAAD */
1270 qh->qh_state = QH_STATE_UNLINK_WAIT;
1271 list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1272
1273 /* Unlink it from the schedule */
1274 prev = ehci->async;
1275 while (prev->qh_next.qh != qh)
1276 prev = prev->qh_next.qh;
1277
1278 prev->hw->hw_next = qh->hw->hw_next;
1279 prev->qh_next = qh->qh_next;
1280 if (ehci->qh_scan_next == qh)
1281 ehci->qh_scan_next = qh->qh_next.qh;
1282}
1283
1284static void start_iaa_cycle(struct ehci_hcd *ehci)
1285{
1286 /* If the controller isn't running, we don't have to wait for it */
1287 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1288 end_unlink_async(ehci);
1289
1290 /* Otherwise start a new IAA cycle if one isn't already running */
1291 } else if (ehci->rh_state == EHCI_RH_RUNNING &&
1292 !ehci->iaa_in_progress) {
1293
1294 /* Make sure the unlinks are all visible to the hardware */
1295 wmb();
1296
1297 ehci_writel(ehci, ehci->command | CMD_IAAD,
1298 &ehci->regs->command);
1299 ehci_readl(ehci, &ehci->regs->command);
1300 ehci->iaa_in_progress = true;
1301 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1302 }
1303}
1304
1305static void end_iaa_cycle(struct ehci_hcd *ehci)
1306{
1307 if (ehci->has_synopsys_hc_bug)
1308 ehci_writel(ehci, (u32) ehci->async->qh_dma,
1309 &ehci->regs->async_next);
1310
1311 /* The current IAA cycle has ended */
1312 ehci->iaa_in_progress = false;
1313
1314 end_unlink_async(ehci);
1315}
1316
1317/* See if the async qh for the qtds being unlinked are now gone from the HC */
1318
1319static void end_unlink_async(struct ehci_hcd *ehci)
1320{
1321 struct ehci_qh *qh;
1322 bool early_exit;
1323
1324 if (list_empty(&ehci->async_unlink))
1325 return;
1326 qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1327 unlink_node); /* QH whose IAA cycle just ended */
1328
1329 /*
1330 * If async_unlinking is set then this routine is already running,
1331 * either on the stack or on another CPU.
1332 */
1333 early_exit = ehci->async_unlinking;
1334
1335 /* If the controller isn't running, process all the waiting QHs */
1336 if (ehci->rh_state < EHCI_RH_RUNNING)
1337 list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1338
1339 /*
1340 * Intel (?) bug: The HC can write back the overlay region even
1341 * after the IAA interrupt occurs. In self-defense, always go
1342 * through two IAA cycles for each QH.
1343 */
1344 else if (qh->qh_state == QH_STATE_UNLINK) {
1345 /*
1346 * Second IAA cycle has finished. Process only the first
1347 * waiting QH (NVIDIA (?) bug).
1348 */
1349 list_move_tail(&qh->unlink_node, &ehci->async_idle);
1350 }
1351
1352 /*
1353 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1354 * after the IAA interrupt occurs. To prevent problems, QHs that
1355 * may still be active will wait until 2 ms have passed with no
1356 * change to the hw_current and hw_token fields (this delay occurs
1357 * between the two IAA cycles).
1358 *
1359 * The EHCI spec (4.8.2) says that active QHs must not be removed
1360 * from the async schedule and recommends waiting until the QH
1361 * goes inactive. This is ridiculous because the QH will _never_
1362 * become inactive if the endpoint NAKs indefinitely.
1363 */
1364
1365 /* Some reasons for unlinking guarantee the QH can't be active */
1366 else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1367 QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1368 goto DelayDone;
1369
1370 /* The QH can't be active if the queue was and still is empty... */
1371 else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1372 list_empty(&qh->qtd_list))
1373 goto DelayDone;
1374
1375 /* ... or if the QH has halted */
1376 else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1377 goto DelayDone;
1378
1379 /* Otherwise we have to wait until the QH stops changing */
1380 else {
1381 __hc32 qh_current, qh_token;
1382
1383 qh_current = qh->hw->hw_current;
1384 qh_token = qh->hw->hw_token;
1385 if (qh_current != ehci->old_current ||
1386 qh_token != ehci->old_token) {
1387 ehci->old_current = qh_current;
1388 ehci->old_token = qh_token;
1389 ehci_enable_event(ehci,
1390 EHCI_HRTIMER_ACTIVE_UNLINK, true);
1391 return;
1392 }
1393 DelayDone:
1394 qh->qh_state = QH_STATE_UNLINK;
1395 early_exit = true;
1396 }
1397 ehci->old_current = ~0; /* Prepare for next QH */
1398
1399 /* Start a new IAA cycle if any QHs are waiting for it */
1400 if (!list_empty(&ehci->async_unlink))
1401 start_iaa_cycle(ehci);
1402
1403 /*
1404 * Don't allow nesting or concurrent calls,
1405 * or wait for the second IAA cycle for the next QH.
1406 */
1407 if (early_exit)
1408 return;
1409
1410 /* Process the idle QHs */
1411 ehci->async_unlinking = true;
1412 while (!list_empty(&ehci->async_idle)) {
1413 qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1414 unlink_node);
1415 list_del(&qh->unlink_node);
1416
1417 qh->qh_state = QH_STATE_IDLE;
1418 qh->qh_next.qh = NULL;
1419
1420 if (!list_empty(&qh->qtd_list))
1421 qh_completions(ehci, qh);
1422 if (!list_empty(&qh->qtd_list) &&
1423 ehci->rh_state == EHCI_RH_RUNNING)
1424 qh_link_async(ehci, qh);
1425 disable_async(ehci);
1426 }
1427 ehci->async_unlinking = false;
1428}
1429
1430static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1431
1432static void unlink_empty_async(struct ehci_hcd *ehci)
1433{
1434 struct ehci_qh *qh;
1435 struct ehci_qh *qh_to_unlink = NULL;
1436 int count = 0;
1437
1438 /* Find the last async QH which has been empty for a timer cycle */
1439 for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1440 if (list_empty(&qh->qtd_list) &&
1441 qh->qh_state == QH_STATE_LINKED) {
1442 ++count;
1443 if (qh->unlink_cycle != ehci->async_unlink_cycle)
1444 qh_to_unlink = qh;
1445 }
1446 }
1447
1448 /* If nothing else is being unlinked, unlink the last empty QH */
1449 if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1450 qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1451 start_unlink_async(ehci, qh_to_unlink);
1452 --count;
1453 }
1454
1455 /* Other QHs will be handled later */
1456 if (count > 0) {
1457 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1458 ++ehci->async_unlink_cycle;
1459 }
1460}
1461
1462#ifdef CONFIG_PM
1463
1464/* The root hub is suspended; unlink all the async QHs */
1465static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1466{
1467 struct ehci_qh *qh;
1468
1469 while (ehci->async->qh_next.qh) {
1470 qh = ehci->async->qh_next.qh;
1471 WARN_ON(!list_empty(&qh->qtd_list));
1472 single_unlink_async(ehci, qh);
1473 }
1474}
1475
1476#endif
1477
1478/* makes sure the async qh will become idle */
1479/* caller must own ehci->lock */
1480
1481static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1482{
1483 /* If the QH isn't linked then there's nothing we can do. */
1484 if (qh->qh_state != QH_STATE_LINKED)
1485 return;
1486
1487 single_unlink_async(ehci, qh);
1488 start_iaa_cycle(ehci);
1489}
1490
1491/*-------------------------------------------------------------------------*/
1492
1493static void scan_async (struct ehci_hcd *ehci)
1494{
1495 struct ehci_qh *qh;
1496 bool check_unlinks_later = false;
1497
1498 ehci->qh_scan_next = ehci->async->qh_next.qh;
1499 while (ehci->qh_scan_next) {
1500 qh = ehci->qh_scan_next;
1501 ehci->qh_scan_next = qh->qh_next.qh;
1502
1503 /* clean any finished work for this qh */
1504 if (!list_empty(&qh->qtd_list)) {
1505 int temp;
1506
1507 /*
1508 * Unlinks could happen here; completion reporting
1509 * drops the lock. That's why ehci->qh_scan_next
1510 * always holds the next qh to scan; if the next qh
1511 * gets unlinked then ehci->qh_scan_next is adjusted
1512 * in single_unlink_async().
1513 */
1514 temp = qh_completions(ehci, qh);
1515 if (unlikely(temp)) {
1516 start_unlink_async(ehci, qh);
1517 } else if (list_empty(&qh->qtd_list)
1518 && qh->qh_state == QH_STATE_LINKED) {
1519 qh->unlink_cycle = ehci->async_unlink_cycle;
1520 check_unlinks_later = true;
1521 }
1522 }
1523 }
1524
1525 /*
1526 * Unlink empty entries, reducing DMA usage as well
1527 * as HCD schedule-scanning costs. Delay for any qh
1528 * we just scanned, there's a not-unusual case that it
1529 * doesn't stay idle for long.
1530 */
1531 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1532 !(ehci->enabled_hrtimer_events &
1533 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1534 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1535 ++ehci->async_unlink_cycle;
1536 }
1537}
1/*
2 * Copyright (C) 2001-2004 by David Brownell
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18
19/* this file is part of ehci-hcd.c */
20
21/*-------------------------------------------------------------------------*/
22
23/*
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
25 *
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
30 *
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
34 *
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
39 */
40
41/*-------------------------------------------------------------------------*/
42
43/* fill a qtd, returning how much of the buffer we were able to queue up */
44
45static int
46qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
47 size_t len, int token, int maxpacket)
48{
49 int i, count;
50 u64 addr = buf;
51
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
54 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
55 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
56 if (likely (len < count)) /* ... iff needed */
57 count = len;
58 else {
59 buf += 0x1000;
60 buf &= ~0x0fff;
61
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i = 1; count < len && i < 5; i++) {
64 addr = buf;
65 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
66 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
67 (u32)(addr >> 32));
68 buf += 0x1000;
69 if ((count + 0x1000) < len)
70 count += 0x1000;
71 else
72 count = len;
73 }
74
75 /* short packets may only terminate transfers */
76 if (count != len)
77 count -= (count % maxpacket);
78 }
79 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
80 qtd->length = count;
81
82 return count;
83}
84
85/*-------------------------------------------------------------------------*/
86
87static inline void
88qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
89{
90 struct ehci_qh_hw *hw = qh->hw;
91
92 /* writes to an active overlay are unsafe */
93 BUG_ON(qh->qh_state != QH_STATE_IDLE);
94
95 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
96 hw->hw_alt_next = EHCI_LIST_END(ehci);
97
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
101 * ever clear it.
102 */
103 if (!(hw->hw_info1 & cpu_to_hc32(ehci, 1 << 14))) {
104 unsigned is_out, epnum;
105
106 is_out = qh->is_out;
107 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
108 if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) {
109 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
110 usb_settoggle (qh->dev, epnum, is_out, 1);
111 }
112 }
113
114 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
115}
116
117/* if it weren't for a common silicon quirk (writing the dummy into the qh
118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119 * recovery (including urb dequeue) would need software changes to a QH...
120 */
121static void
122qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
123{
124 struct ehci_qtd *qtd;
125
126 if (list_empty (&qh->qtd_list))
127 qtd = qh->dummy;
128 else {
129 qtd = list_entry (qh->qtd_list.next,
130 struct ehci_qtd, qtd_list);
131 /*
132 * first qtd may already be partially processed.
133 * If we come here during unlink, the QH overlay region
134 * might have reference to the just unlinked qtd. The
135 * qtd is updated in qh_completions(). Update the QH
136 * overlay here.
137 */
138 if (cpu_to_hc32(ehci, qtd->qtd_dma) == qh->hw->hw_current) {
139 qh->hw->hw_qtd_next = qtd->hw_next;
140 qtd = NULL;
141 }
142 }
143
144 if (qtd)
145 qh_update (ehci, qh, qtd);
146}
147
148/*-------------------------------------------------------------------------*/
149
150static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
151
152static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
153 struct usb_host_endpoint *ep)
154{
155 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
156 struct ehci_qh *qh = ep->hcpriv;
157 unsigned long flags;
158
159 spin_lock_irqsave(&ehci->lock, flags);
160 qh->clearing_tt = 0;
161 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
162 && ehci->rh_state == EHCI_RH_RUNNING)
163 qh_link_async(ehci, qh);
164 spin_unlock_irqrestore(&ehci->lock, flags);
165}
166
167static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
168 struct urb *urb, u32 token)
169{
170
171 /* If an async split transaction gets an error or is unlinked,
172 * the TT buffer may be left in an indeterminate state. We
173 * have to clear the TT buffer.
174 *
175 * Note: this routine is never called for Isochronous transfers.
176 */
177 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
178#ifdef DEBUG
179 struct usb_device *tt = urb->dev->tt->hub;
180 dev_dbg(&tt->dev,
181 "clear tt buffer port %d, a%d ep%d t%08x\n",
182 urb->dev->ttport, urb->dev->devnum,
183 usb_pipeendpoint(urb->pipe), token);
184#endif /* DEBUG */
185 if (!ehci_is_TDI(ehci)
186 || urb->dev->tt->hub !=
187 ehci_to_hcd(ehci)->self.root_hub) {
188 if (usb_hub_clear_tt_buffer(urb) == 0)
189 qh->clearing_tt = 1;
190 } else {
191
192 /* REVISIT ARC-derived cores don't clear the root
193 * hub TT buffer in this way...
194 */
195 }
196 }
197}
198
199static int qtd_copy_status (
200 struct ehci_hcd *ehci,
201 struct urb *urb,
202 size_t length,
203 u32 token
204)
205{
206 int status = -EINPROGRESS;
207
208 /* count IN/OUT bytes, not SETUP (even short packets) */
209 if (likely (QTD_PID (token) != 2))
210 urb->actual_length += length - QTD_LENGTH (token);
211
212 /* don't modify error codes */
213 if (unlikely(urb->unlinked))
214 return status;
215
216 /* force cleanup after short read; not always an error */
217 if (unlikely (IS_SHORT_READ (token)))
218 status = -EREMOTEIO;
219
220 /* serious "can't proceed" faults reported by the hardware */
221 if (token & QTD_STS_HALT) {
222 if (token & QTD_STS_BABBLE) {
223 /* FIXME "must" disable babbling device's port too */
224 status = -EOVERFLOW;
225 /* CERR nonzero + halt --> stall */
226 } else if (QTD_CERR(token)) {
227 status = -EPIPE;
228
229 /* In theory, more than one of the following bits can be set
230 * since they are sticky and the transaction is retried.
231 * Which to test first is rather arbitrary.
232 */
233 } else if (token & QTD_STS_MMF) {
234 /* fs/ls interrupt xfer missed the complete-split */
235 status = -EPROTO;
236 } else if (token & QTD_STS_DBE) {
237 status = (QTD_PID (token) == 1) /* IN ? */
238 ? -ENOSR /* hc couldn't read data */
239 : -ECOMM; /* hc couldn't write data */
240 } else if (token & QTD_STS_XACT) {
241 /* timeout, bad CRC, wrong PID, etc */
242 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
243 urb->dev->devpath,
244 usb_pipeendpoint(urb->pipe),
245 usb_pipein(urb->pipe) ? "in" : "out");
246 status = -EPROTO;
247 } else { /* unknown */
248 status = -EPROTO;
249 }
250
251 ehci_vdbg (ehci,
252 "dev%d ep%d%s qtd token %08x --> status %d\n",
253 usb_pipedevice (urb->pipe),
254 usb_pipeendpoint (urb->pipe),
255 usb_pipein (urb->pipe) ? "in" : "out",
256 token, status);
257 }
258
259 return status;
260}
261
262static void
263ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
264__releases(ehci->lock)
265__acquires(ehci->lock)
266{
267 if (likely (urb->hcpriv != NULL)) {
268 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
269
270 /* S-mask in a QH means it's an interrupt urb */
271 if ((qh->hw->hw_info2 & cpu_to_hc32(ehci, QH_SMASK)) != 0) {
272
273 /* ... update hc-wide periodic stats (for usbfs) */
274 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
275 }
276 qh_put (qh);
277 }
278
279 if (unlikely(urb->unlinked)) {
280 COUNT(ehci->stats.unlink);
281 } else {
282 /* report non-error and short read status as zero */
283 if (status == -EINPROGRESS || status == -EREMOTEIO)
284 status = 0;
285 COUNT(ehci->stats.complete);
286 }
287
288#ifdef EHCI_URB_TRACE
289 ehci_dbg (ehci,
290 "%s %s urb %p ep%d%s status %d len %d/%d\n",
291 __func__, urb->dev->devpath, urb,
292 usb_pipeendpoint (urb->pipe),
293 usb_pipein (urb->pipe) ? "in" : "out",
294 status,
295 urb->actual_length, urb->transfer_buffer_length);
296#endif
297
298 /* complete() can reenter this HCD */
299 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
300 spin_unlock (&ehci->lock);
301 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
302 spin_lock (&ehci->lock);
303}
304
305static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
306static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh);
307
308static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
309
310/*
311 * Process and free completed qtds for a qh, returning URBs to drivers.
312 * Chases up to qh->hw_current. Returns number of completions called,
313 * indicating how much "real" work we did.
314 */
315static unsigned
316qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
317{
318 struct ehci_qtd *last, *end = qh->dummy;
319 struct list_head *entry, *tmp;
320 int last_status;
321 int stopped;
322 unsigned count = 0;
323 u8 state;
324 struct ehci_qh_hw *hw = qh->hw;
325
326 if (unlikely (list_empty (&qh->qtd_list)))
327 return count;
328
329 /* completions (or tasks on other cpus) must never clobber HALT
330 * till we've gone through and cleaned everything up, even when
331 * they add urbs to this qh's queue or mark them for unlinking.
332 *
333 * NOTE: unlinking expects to be done in queue order.
334 *
335 * It's a bug for qh->qh_state to be anything other than
336 * QH_STATE_IDLE, unless our caller is scan_async() or
337 * scan_periodic().
338 */
339 state = qh->qh_state;
340 qh->qh_state = QH_STATE_COMPLETING;
341 stopped = (state == QH_STATE_IDLE);
342
343 rescan:
344 last = NULL;
345 last_status = -EINPROGRESS;
346 qh->needs_rescan = 0;
347
348 /* remove de-activated QTDs from front of queue.
349 * after faults (including short reads), cleanup this urb
350 * then let the queue advance.
351 * if queue is stopped, handles unlinks.
352 */
353 list_for_each_safe (entry, tmp, &qh->qtd_list) {
354 struct ehci_qtd *qtd;
355 struct urb *urb;
356 u32 token = 0;
357
358 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
359 urb = qtd->urb;
360
361 /* clean up any state from previous QTD ...*/
362 if (last) {
363 if (likely (last->urb != urb)) {
364 ehci_urb_done(ehci, last->urb, last_status);
365 count++;
366 last_status = -EINPROGRESS;
367 }
368 ehci_qtd_free (ehci, last);
369 last = NULL;
370 }
371
372 /* ignore urbs submitted during completions we reported */
373 if (qtd == end)
374 break;
375
376 /* hardware copies qtd out of qh overlay */
377 rmb ();
378 token = hc32_to_cpu(ehci, qtd->hw_token);
379
380 /* always clean up qtds the hc de-activated */
381 retry_xacterr:
382 if ((token & QTD_STS_ACTIVE) == 0) {
383
384 /* Report Data Buffer Error: non-fatal but useful */
385 if (token & QTD_STS_DBE)
386 ehci_dbg(ehci,
387 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
388 urb,
389 usb_endpoint_num(&urb->ep->desc),
390 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
391 urb->transfer_buffer_length,
392 qtd,
393 qh);
394
395 /* on STALL, error, and short reads this urb must
396 * complete and all its qtds must be recycled.
397 */
398 if ((token & QTD_STS_HALT) != 0) {
399
400 /* retry transaction errors until we
401 * reach the software xacterr limit
402 */
403 if ((token & QTD_STS_XACT) &&
404 QTD_CERR(token) == 0 &&
405 ++qh->xacterrs < QH_XACTERR_MAX &&
406 !urb->unlinked) {
407 ehci_dbg(ehci,
408 "detected XactErr len %zu/%zu retry %d\n",
409 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
410
411 /* reset the token in the qtd and the
412 * qh overlay (which still contains
413 * the qtd) so that we pick up from
414 * where we left off
415 */
416 token &= ~QTD_STS_HALT;
417 token |= QTD_STS_ACTIVE |
418 (EHCI_TUNE_CERR << 10);
419 qtd->hw_token = cpu_to_hc32(ehci,
420 token);
421 wmb();
422 hw->hw_token = cpu_to_hc32(ehci,
423 token);
424 goto retry_xacterr;
425 }
426 stopped = 1;
427
428 /* magic dummy for some short reads; qh won't advance.
429 * that silicon quirk can kick in with this dummy too.
430 *
431 * other short reads won't stop the queue, including
432 * control transfers (status stage handles that) or
433 * most other single-qtd reads ... the queue stops if
434 * URB_SHORT_NOT_OK was set so the driver submitting
435 * the urbs could clean it up.
436 */
437 } else if (IS_SHORT_READ (token)
438 && !(qtd->hw_alt_next
439 & EHCI_LIST_END(ehci))) {
440 stopped = 1;
441 }
442
443 /* stop scanning when we reach qtds the hc is using */
444 } else if (likely (!stopped
445 && ehci->rh_state == EHCI_RH_RUNNING)) {
446 break;
447
448 /* scan the whole queue for unlinks whenever it stops */
449 } else {
450 stopped = 1;
451
452 /* cancel everything if we halt, suspend, etc */
453 if (ehci->rh_state != EHCI_RH_RUNNING)
454 last_status = -ESHUTDOWN;
455
456 /* this qtd is active; skip it unless a previous qtd
457 * for its urb faulted, or its urb was canceled.
458 */
459 else if (last_status == -EINPROGRESS && !urb->unlinked)
460 continue;
461
462 /* qh unlinked; token in overlay may be most current */
463 if (state == QH_STATE_IDLE
464 && cpu_to_hc32(ehci, qtd->qtd_dma)
465 == hw->hw_current) {
466 token = hc32_to_cpu(ehci, hw->hw_token);
467
468 /* An unlink may leave an incomplete
469 * async transaction in the TT buffer.
470 * We have to clear it.
471 */
472 ehci_clear_tt_buffer(ehci, qh, urb, token);
473 }
474 }
475
476 /* unless we already know the urb's status, collect qtd status
477 * and update count of bytes transferred. in common short read
478 * cases with only one data qtd (including control transfers),
479 * queue processing won't halt. but with two or more qtds (for
480 * example, with a 32 KB transfer), when the first qtd gets a
481 * short read the second must be removed by hand.
482 */
483 if (last_status == -EINPROGRESS) {
484 last_status = qtd_copy_status(ehci, urb,
485 qtd->length, token);
486 if (last_status == -EREMOTEIO
487 && (qtd->hw_alt_next
488 & EHCI_LIST_END(ehci)))
489 last_status = -EINPROGRESS;
490
491 /* As part of low/full-speed endpoint-halt processing
492 * we must clear the TT buffer (11.17.5).
493 */
494 if (unlikely(last_status != -EINPROGRESS &&
495 last_status != -EREMOTEIO)) {
496 /* The TT's in some hubs malfunction when they
497 * receive this request following a STALL (they
498 * stop sending isochronous packets). Since a
499 * STALL can't leave the TT buffer in a busy
500 * state (if you believe Figures 11-48 - 11-51
501 * in the USB 2.0 spec), we won't clear the TT
502 * buffer in this case. Strictly speaking this
503 * is a violation of the spec.
504 */
505 if (last_status != -EPIPE)
506 ehci_clear_tt_buffer(ehci, qh, urb,
507 token);
508 }
509 }
510
511 /* if we're removing something not at the queue head,
512 * patch the hardware queue pointer.
513 */
514 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
515 last = list_entry (qtd->qtd_list.prev,
516 struct ehci_qtd, qtd_list);
517 last->hw_next = qtd->hw_next;
518 }
519
520 /* remove qtd; it's recycled after possible urb completion */
521 list_del (&qtd->qtd_list);
522 last = qtd;
523
524 /* reinit the xacterr counter for the next qtd */
525 qh->xacterrs = 0;
526 }
527
528 /* last urb's completion might still need calling */
529 if (likely (last != NULL)) {
530 ehci_urb_done(ehci, last->urb, last_status);
531 count++;
532 ehci_qtd_free (ehci, last);
533 }
534
535 /* Do we need to rescan for URBs dequeued during a giveback? */
536 if (unlikely(qh->needs_rescan)) {
537 /* If the QH is already unlinked, do the rescan now. */
538 if (state == QH_STATE_IDLE)
539 goto rescan;
540
541 /* Otherwise we have to wait until the QH is fully unlinked.
542 * Our caller will start an unlink if qh->needs_rescan is
543 * set. But if an unlink has already started, nothing needs
544 * to be done.
545 */
546 if (state != QH_STATE_LINKED)
547 qh->needs_rescan = 0;
548 }
549
550 /* restore original state; caller must unlink or relink */
551 qh->qh_state = state;
552
553 /* be sure the hardware's done with the qh before refreshing
554 * it after fault cleanup, or recovering from silicon wrongly
555 * overlaying the dummy qtd (which reduces DMA chatter).
556 */
557 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) {
558 switch (state) {
559 case QH_STATE_IDLE:
560 qh_refresh(ehci, qh);
561 break;
562 case QH_STATE_LINKED:
563 /* We won't refresh a QH that's linked (after the HC
564 * stopped the queue). That avoids a race:
565 * - HC reads first part of QH;
566 * - CPU updates that first part and the token;
567 * - HC reads rest of that QH, including token
568 * Result: HC gets an inconsistent image, and then
569 * DMAs to/from the wrong memory (corrupting it).
570 *
571 * That should be rare for interrupt transfers,
572 * except maybe high bandwidth ...
573 */
574
575 /* Tell the caller to start an unlink */
576 qh->needs_rescan = 1;
577 break;
578 /* otherwise, unlink already started */
579 }
580 }
581
582 return count;
583}
584
585/*-------------------------------------------------------------------------*/
586
587// high bandwidth multiplier, as encoded in highspeed endpoint descriptors
588#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
589// ... and packet size, for any kind of endpoint descriptor
590#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
591
592/*
593 * reverse of qh_urb_transaction: free a list of TDs.
594 * used for cleanup after errors, before HC sees an URB's TDs.
595 */
596static void qtd_list_free (
597 struct ehci_hcd *ehci,
598 struct urb *urb,
599 struct list_head *qtd_list
600) {
601 struct list_head *entry, *temp;
602
603 list_for_each_safe (entry, temp, qtd_list) {
604 struct ehci_qtd *qtd;
605
606 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
607 list_del (&qtd->qtd_list);
608 ehci_qtd_free (ehci, qtd);
609 }
610}
611
612/*
613 * create a list of filled qtds for this URB; won't link into qh.
614 */
615static struct list_head *
616qh_urb_transaction (
617 struct ehci_hcd *ehci,
618 struct urb *urb,
619 struct list_head *head,
620 gfp_t flags
621) {
622 struct ehci_qtd *qtd, *qtd_prev;
623 dma_addr_t buf;
624 int len, this_sg_len, maxpacket;
625 int is_input;
626 u32 token;
627 int i;
628 struct scatterlist *sg;
629
630 /*
631 * URBs map to sequences of QTDs: one logical transaction
632 */
633 qtd = ehci_qtd_alloc (ehci, flags);
634 if (unlikely (!qtd))
635 return NULL;
636 list_add_tail (&qtd->qtd_list, head);
637 qtd->urb = urb;
638
639 token = QTD_STS_ACTIVE;
640 token |= (EHCI_TUNE_CERR << 10);
641 /* for split transactions, SplitXState initialized to zero */
642
643 len = urb->transfer_buffer_length;
644 is_input = usb_pipein (urb->pipe);
645 if (usb_pipecontrol (urb->pipe)) {
646 /* SETUP pid */
647 qtd_fill(ehci, qtd, urb->setup_dma,
648 sizeof (struct usb_ctrlrequest),
649 token | (2 /* "setup" */ << 8), 8);
650
651 /* ... and always at least one more pid */
652 token ^= QTD_TOGGLE;
653 qtd_prev = qtd;
654 qtd = ehci_qtd_alloc (ehci, flags);
655 if (unlikely (!qtd))
656 goto cleanup;
657 qtd->urb = urb;
658 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
659 list_add_tail (&qtd->qtd_list, head);
660
661 /* for zero length DATA stages, STATUS is always IN */
662 if (len == 0)
663 token |= (1 /* "in" */ << 8);
664 }
665
666 /*
667 * data transfer stage: buffer setup
668 */
669 i = urb->num_mapped_sgs;
670 if (len > 0 && i > 0) {
671 sg = urb->sg;
672 buf = sg_dma_address(sg);
673
674 /* urb->transfer_buffer_length may be smaller than the
675 * size of the scatterlist (or vice versa)
676 */
677 this_sg_len = min_t(int, sg_dma_len(sg), len);
678 } else {
679 sg = NULL;
680 buf = urb->transfer_dma;
681 this_sg_len = len;
682 }
683
684 if (is_input)
685 token |= (1 /* "in" */ << 8);
686 /* else it's already initted to "out" pid (0 << 8) */
687
688 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
689
690 /*
691 * buffer gets wrapped in one or more qtds;
692 * last one may be "short" (including zero len)
693 * and may serve as a control status ack
694 */
695 for (;;) {
696 int this_qtd_len;
697
698 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
699 maxpacket);
700 this_sg_len -= this_qtd_len;
701 len -= this_qtd_len;
702 buf += this_qtd_len;
703
704 /*
705 * short reads advance to a "magic" dummy instead of the next
706 * qtd ... that forces the queue to stop, for manual cleanup.
707 * (this will usually be overridden later.)
708 */
709 if (is_input)
710 qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
711
712 /* qh makes control packets use qtd toggle; maybe switch it */
713 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
714 token ^= QTD_TOGGLE;
715
716 if (likely(this_sg_len <= 0)) {
717 if (--i <= 0 || len <= 0)
718 break;
719 sg = sg_next(sg);
720 buf = sg_dma_address(sg);
721 this_sg_len = min_t(int, sg_dma_len(sg), len);
722 }
723
724 qtd_prev = qtd;
725 qtd = ehci_qtd_alloc (ehci, flags);
726 if (unlikely (!qtd))
727 goto cleanup;
728 qtd->urb = urb;
729 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
730 list_add_tail (&qtd->qtd_list, head);
731 }
732
733 /*
734 * unless the caller requires manual cleanup after short reads,
735 * have the alt_next mechanism keep the queue running after the
736 * last data qtd (the only one, for control and most other cases).
737 */
738 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
739 || usb_pipecontrol (urb->pipe)))
740 qtd->hw_alt_next = EHCI_LIST_END(ehci);
741
742 /*
743 * control requests may need a terminating data "status" ack;
744 * other OUT ones may need a terminating short packet
745 * (zero length).
746 */
747 if (likely (urb->transfer_buffer_length != 0)) {
748 int one_more = 0;
749
750 if (usb_pipecontrol (urb->pipe)) {
751 one_more = 1;
752 token ^= 0x0100; /* "in" <--> "out" */
753 token |= QTD_TOGGLE; /* force DATA1 */
754 } else if (usb_pipeout(urb->pipe)
755 && (urb->transfer_flags & URB_ZERO_PACKET)
756 && !(urb->transfer_buffer_length % maxpacket)) {
757 one_more = 1;
758 }
759 if (one_more) {
760 qtd_prev = qtd;
761 qtd = ehci_qtd_alloc (ehci, flags);
762 if (unlikely (!qtd))
763 goto cleanup;
764 qtd->urb = urb;
765 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
766 list_add_tail (&qtd->qtd_list, head);
767
768 /* never any data in such packets */
769 qtd_fill(ehci, qtd, 0, 0, token, 0);
770 }
771 }
772
773 /* by default, enable interrupt on urb completion */
774 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
775 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
776 return head;
777
778cleanup:
779 qtd_list_free (ehci, urb, head);
780 return NULL;
781}
782
783/*-------------------------------------------------------------------------*/
784
785// Would be best to create all qh's from config descriptors,
786// when each interface/altsetting is established. Unlink
787// any previous qh and cancel its urbs first; endpoints are
788// implicitly reset then (data toggle too).
789// That'd mean updating how usbcore talks to HCDs. (2.7?)
790
791
792/*
793 * Each QH holds a qtd list; a QH is used for everything except iso.
794 *
795 * For interrupt urbs, the scheduler must set the microframe scheduling
796 * mask(s) each time the QH gets scheduled. For highspeed, that's
797 * just one microframe in the s-mask. For split interrupt transactions
798 * there are additional complications: c-mask, maybe FSTNs.
799 */
800static struct ehci_qh *
801qh_make (
802 struct ehci_hcd *ehci,
803 struct urb *urb,
804 gfp_t flags
805) {
806 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
807 u32 info1 = 0, info2 = 0;
808 int is_input, type;
809 int maxp = 0;
810 struct usb_tt *tt = urb->dev->tt;
811 struct ehci_qh_hw *hw;
812
813 if (!qh)
814 return qh;
815
816 /*
817 * init endpoint/device data for this QH
818 */
819 info1 |= usb_pipeendpoint (urb->pipe) << 8;
820 info1 |= usb_pipedevice (urb->pipe) << 0;
821
822 is_input = usb_pipein (urb->pipe);
823 type = usb_pipetype (urb->pipe);
824 maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
825
826 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
827 * acts like up to 3KB, but is built from smaller packets.
828 */
829 if (max_packet(maxp) > 1024) {
830 ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
831 goto done;
832 }
833
834 /* Compute interrupt scheduling parameters just once, and save.
835 * - allowing for high bandwidth, how many nsec/uframe are used?
836 * - split transactions need a second CSPLIT uframe; same question
837 * - splits also need a schedule gap (for full/low speed I/O)
838 * - qh has a polling interval
839 *
840 * For control/bulk requests, the HC or TT handles these.
841 */
842 if (type == PIPE_INTERRUPT) {
843 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
844 is_input, 0,
845 hb_mult(maxp) * max_packet(maxp)));
846 qh->start = NO_FRAME;
847 qh->stamp = ehci->periodic_stamp;
848
849 if (urb->dev->speed == USB_SPEED_HIGH) {
850 qh->c_usecs = 0;
851 qh->gap_uf = 0;
852
853 qh->period = urb->interval >> 3;
854 if (qh->period == 0 && urb->interval != 1) {
855 /* NOTE interval 2 or 4 uframes could work.
856 * But interval 1 scheduling is simpler, and
857 * includes high bandwidth.
858 */
859 urb->interval = 1;
860 } else if (qh->period > ehci->periodic_size) {
861 qh->period = ehci->periodic_size;
862 urb->interval = qh->period << 3;
863 }
864 } else {
865 int think_time;
866
867 /* gap is f(FS/LS transfer times) */
868 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
869 is_input, 0, maxp) / (125 * 1000);
870
871 /* FIXME this just approximates SPLIT/CSPLIT times */
872 if (is_input) { // SPLIT, gap, CSPLIT+DATA
873 qh->c_usecs = qh->usecs + HS_USECS (0);
874 qh->usecs = HS_USECS (1);
875 } else { // SPLIT+DATA, gap, CSPLIT
876 qh->usecs += HS_USECS (1);
877 qh->c_usecs = HS_USECS (0);
878 }
879
880 think_time = tt ? tt->think_time : 0;
881 qh->tt_usecs = NS_TO_US (think_time +
882 usb_calc_bus_time (urb->dev->speed,
883 is_input, 0, max_packet (maxp)));
884 qh->period = urb->interval;
885 if (qh->period > ehci->periodic_size) {
886 qh->period = ehci->periodic_size;
887 urb->interval = qh->period;
888 }
889 }
890 }
891
892 /* support for tt scheduling, and access to toggles */
893 qh->dev = urb->dev;
894
895 /* using TT? */
896 switch (urb->dev->speed) {
897 case USB_SPEED_LOW:
898 info1 |= (1 << 12); /* EPS "low" */
899 /* FALL THROUGH */
900
901 case USB_SPEED_FULL:
902 /* EPS 0 means "full" */
903 if (type != PIPE_INTERRUPT)
904 info1 |= (EHCI_TUNE_RL_TT << 28);
905 if (type == PIPE_CONTROL) {
906 info1 |= (1 << 27); /* for TT */
907 info1 |= 1 << 14; /* toggle from qtd */
908 }
909 info1 |= maxp << 16;
910
911 info2 |= (EHCI_TUNE_MULT_TT << 30);
912
913 /* Some Freescale processors have an erratum in which the
914 * port number in the queue head was 0..N-1 instead of 1..N.
915 */
916 if (ehci_has_fsl_portno_bug(ehci))
917 info2 |= (urb->dev->ttport-1) << 23;
918 else
919 info2 |= urb->dev->ttport << 23;
920
921 /* set the address of the TT; for TDI's integrated
922 * root hub tt, leave it zeroed.
923 */
924 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
925 info2 |= tt->hub->devnum << 16;
926
927 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
928
929 break;
930
931 case USB_SPEED_HIGH: /* no TT involved */
932 info1 |= (2 << 12); /* EPS "high" */
933 if (type == PIPE_CONTROL) {
934 info1 |= (EHCI_TUNE_RL_HS << 28);
935 info1 |= 64 << 16; /* usb2 fixed maxpacket */
936 info1 |= 1 << 14; /* toggle from qtd */
937 info2 |= (EHCI_TUNE_MULT_HS << 30);
938 } else if (type == PIPE_BULK) {
939 info1 |= (EHCI_TUNE_RL_HS << 28);
940 /* The USB spec says that high speed bulk endpoints
941 * always use 512 byte maxpacket. But some device
942 * vendors decided to ignore that, and MSFT is happy
943 * to help them do so. So now people expect to use
944 * such nonconformant devices with Linux too; sigh.
945 */
946 info1 |= max_packet(maxp) << 16;
947 info2 |= (EHCI_TUNE_MULT_HS << 30);
948 } else { /* PIPE_INTERRUPT */
949 info1 |= max_packet (maxp) << 16;
950 info2 |= hb_mult (maxp) << 30;
951 }
952 break;
953 default:
954 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
955 urb->dev->speed);
956done:
957 qh_put (qh);
958 return NULL;
959 }
960
961 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
962
963 /* init as live, toggle clear, advance to dummy */
964 qh->qh_state = QH_STATE_IDLE;
965 hw = qh->hw;
966 hw->hw_info1 = cpu_to_hc32(ehci, info1);
967 hw->hw_info2 = cpu_to_hc32(ehci, info2);
968 qh->is_out = !is_input;
969 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
970 qh_refresh (ehci, qh);
971 return qh;
972}
973
974/*-------------------------------------------------------------------------*/
975
976/* move qh (and its qtds) onto async queue; maybe enable queue. */
977
978static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
979{
980 __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
981 struct ehci_qh *head;
982
983 /* Don't link a QH if there's a Clear-TT-Buffer pending */
984 if (unlikely(qh->clearing_tt))
985 return;
986
987 WARN_ON(qh->qh_state != QH_STATE_IDLE);
988
989 /* (re)start the async schedule? */
990 head = ehci->async;
991 timer_action_done (ehci, TIMER_ASYNC_OFF);
992 if (!head->qh_next.qh) {
993 if (!(ehci->command & CMD_ASE)) {
994 /* in case a clear of CMD_ASE didn't take yet */
995 (void)handshake(ehci, &ehci->regs->status,
996 STS_ASS, 0, 150);
997 ehci->command |= CMD_ASE;
998 ehci_writel(ehci, ehci->command, &ehci->regs->command);
999 /* posted write need not be known to HC yet ... */
1000 }
1001 }
1002
1003 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1004 qh_refresh(ehci, qh);
1005
1006 /* splice right after start */
1007 qh->qh_next = head->qh_next;
1008 qh->hw->hw_next = head->hw->hw_next;
1009 wmb ();
1010
1011 head->qh_next.qh = qh;
1012 head->hw->hw_next = dma;
1013
1014 qh_get(qh);
1015 qh->xacterrs = 0;
1016 qh->qh_state = QH_STATE_LINKED;
1017 /* qtd completions reported later by interrupt */
1018}
1019
1020/*-------------------------------------------------------------------------*/
1021
1022/*
1023 * For control/bulk/interrupt, return QH with these TDs appended.
1024 * Allocates and initializes the QH if necessary.
1025 * Returns null if it can't allocate a QH it needs to.
1026 * If the QH has TDs (urbs) already, that's great.
1027 */
1028static struct ehci_qh *qh_append_tds (
1029 struct ehci_hcd *ehci,
1030 struct urb *urb,
1031 struct list_head *qtd_list,
1032 int epnum,
1033 void **ptr
1034)
1035{
1036 struct ehci_qh *qh = NULL;
1037 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1038
1039 qh = (struct ehci_qh *) *ptr;
1040 if (unlikely (qh == NULL)) {
1041 /* can't sleep here, we have ehci->lock... */
1042 qh = qh_make (ehci, urb, GFP_ATOMIC);
1043 *ptr = qh;
1044 }
1045 if (likely (qh != NULL)) {
1046 struct ehci_qtd *qtd;
1047
1048 if (unlikely (list_empty (qtd_list)))
1049 qtd = NULL;
1050 else
1051 qtd = list_entry (qtd_list->next, struct ehci_qtd,
1052 qtd_list);
1053
1054 /* control qh may need patching ... */
1055 if (unlikely (epnum == 0)) {
1056
1057 /* usb_reset_device() briefly reverts to address 0 */
1058 if (usb_pipedevice (urb->pipe) == 0)
1059 qh->hw->hw_info1 &= ~qh_addr_mask;
1060 }
1061
1062 /* just one way to queue requests: swap with the dummy qtd.
1063 * only hc or qh_refresh() ever modify the overlay.
1064 */
1065 if (likely (qtd != NULL)) {
1066 struct ehci_qtd *dummy;
1067 dma_addr_t dma;
1068 __hc32 token;
1069
1070 /* to avoid racing the HC, use the dummy td instead of
1071 * the first td of our list (becomes new dummy). both
1072 * tds stay deactivated until we're done, when the
1073 * HC is allowed to fetch the old dummy (4.10.2).
1074 */
1075 token = qtd->hw_token;
1076 qtd->hw_token = HALT_BIT(ehci);
1077
1078 dummy = qh->dummy;
1079
1080 dma = dummy->qtd_dma;
1081 *dummy = *qtd;
1082 dummy->qtd_dma = dma;
1083
1084 list_del (&qtd->qtd_list);
1085 list_add (&dummy->qtd_list, qtd_list);
1086 list_splice_tail(qtd_list, &qh->qtd_list);
1087
1088 ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1089 qh->dummy = qtd;
1090
1091 /* hc must see the new dummy at list end */
1092 dma = qtd->qtd_dma;
1093 qtd = list_entry (qh->qtd_list.prev,
1094 struct ehci_qtd, qtd_list);
1095 qtd->hw_next = QTD_NEXT(ehci, dma);
1096
1097 /* let the hc process these next qtds */
1098 wmb ();
1099 dummy->hw_token = token;
1100
1101 urb->hcpriv = qh_get (qh);
1102 }
1103 }
1104 return qh;
1105}
1106
1107/*-------------------------------------------------------------------------*/
1108
1109static int
1110submit_async (
1111 struct ehci_hcd *ehci,
1112 struct urb *urb,
1113 struct list_head *qtd_list,
1114 gfp_t mem_flags
1115) {
1116 int epnum;
1117 unsigned long flags;
1118 struct ehci_qh *qh = NULL;
1119 int rc;
1120
1121 epnum = urb->ep->desc.bEndpointAddress;
1122
1123#ifdef EHCI_URB_TRACE
1124 {
1125 struct ehci_qtd *qtd;
1126 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1127 ehci_dbg(ehci,
1128 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1129 __func__, urb->dev->devpath, urb,
1130 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1131 urb->transfer_buffer_length,
1132 qtd, urb->ep->hcpriv);
1133 }
1134#endif
1135
1136 spin_lock_irqsave (&ehci->lock, flags);
1137 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1138 rc = -ESHUTDOWN;
1139 goto done;
1140 }
1141 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1142 if (unlikely(rc))
1143 goto done;
1144
1145 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1146 if (unlikely(qh == NULL)) {
1147 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1148 rc = -ENOMEM;
1149 goto done;
1150 }
1151
1152 /* Control/bulk operations through TTs don't need scheduling,
1153 * the HC and TT handle it when the TT has a buffer ready.
1154 */
1155 if (likely (qh->qh_state == QH_STATE_IDLE))
1156 qh_link_async(ehci, qh);
1157 done:
1158 spin_unlock_irqrestore (&ehci->lock, flags);
1159 if (unlikely (qh == NULL))
1160 qtd_list_free (ehci, urb, qtd_list);
1161 return rc;
1162}
1163
1164/*-------------------------------------------------------------------------*/
1165
1166/* the async qh for the qtds being reclaimed are now unlinked from the HC */
1167
1168static void end_unlink_async (struct ehci_hcd *ehci)
1169{
1170 struct ehci_qh *qh = ehci->reclaim;
1171 struct ehci_qh *next;
1172
1173 iaa_watchdog_done(ehci);
1174
1175 // qh->hw_next = cpu_to_hc32(qh->qh_dma);
1176 qh->qh_state = QH_STATE_IDLE;
1177 qh->qh_next.qh = NULL;
1178 qh_put (qh); // refcount from reclaim
1179
1180 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1181 next = qh->reclaim;
1182 ehci->reclaim = next;
1183 qh->reclaim = NULL;
1184
1185 qh_completions (ehci, qh);
1186
1187 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
1188 qh_link_async (ehci, qh);
1189 } else {
1190 /* it's not free to turn the async schedule on/off; leave it
1191 * active but idle for a while once it empties.
1192 */
1193 if (ehci->rh_state == EHCI_RH_RUNNING
1194 && ehci->async->qh_next.qh == NULL)
1195 timer_action (ehci, TIMER_ASYNC_OFF);
1196 }
1197 qh_put(qh); /* refcount from async list */
1198
1199 if (next) {
1200 ehci->reclaim = NULL;
1201 start_unlink_async (ehci, next);
1202 }
1203
1204 if (ehci->has_synopsys_hc_bug)
1205 ehci_writel(ehci, (u32) ehci->async->qh_dma,
1206 &ehci->regs->async_next);
1207}
1208
1209/* makes sure the async qh will become idle */
1210/* caller must own ehci->lock */
1211
1212static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
1213{
1214 struct ehci_qh *prev;
1215
1216#ifdef DEBUG
1217 assert_spin_locked(&ehci->lock);
1218 if (ehci->reclaim
1219 || (qh->qh_state != QH_STATE_LINKED
1220 && qh->qh_state != QH_STATE_UNLINK_WAIT)
1221 )
1222 BUG ();
1223#endif
1224
1225 /* stop async schedule right now? */
1226 if (unlikely (qh == ehci->async)) {
1227 /* can't get here without STS_ASS set */
1228 if (ehci->rh_state != EHCI_RH_HALTED
1229 && !ehci->reclaim) {
1230 /* ... and CMD_IAAD clear */
1231 ehci->command &= ~CMD_ASE;
1232 ehci_writel(ehci, ehci->command, &ehci->regs->command);
1233 wmb ();
1234 // handshake later, if we need to
1235 timer_action_done (ehci, TIMER_ASYNC_OFF);
1236 }
1237 return;
1238 }
1239
1240 qh->qh_state = QH_STATE_UNLINK;
1241 ehci->reclaim = qh = qh_get (qh);
1242
1243 prev = ehci->async;
1244 while (prev->qh_next.qh != qh)
1245 prev = prev->qh_next.qh;
1246
1247 prev->hw->hw_next = qh->hw->hw_next;
1248 prev->qh_next = qh->qh_next;
1249 if (ehci->qh_scan_next == qh)
1250 ehci->qh_scan_next = qh->qh_next.qh;
1251 wmb ();
1252
1253 /* If the controller isn't running, we don't have to wait for it */
1254 if (unlikely(ehci->rh_state != EHCI_RH_RUNNING)) {
1255 /* if (unlikely (qh->reclaim != 0))
1256 * this will recurse, probably not much
1257 */
1258 end_unlink_async (ehci);
1259 return;
1260 }
1261
1262 ehci_writel(ehci, ehci->command | CMD_IAAD, &ehci->regs->command);
1263 (void)ehci_readl(ehci, &ehci->regs->command);
1264 iaa_watchdog_start(ehci);
1265}
1266
1267/*-------------------------------------------------------------------------*/
1268
1269static void scan_async (struct ehci_hcd *ehci)
1270{
1271 bool stopped;
1272 struct ehci_qh *qh;
1273 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1274
1275 timer_action_done (ehci, TIMER_ASYNC_SHRINK);
1276 stopped = (ehci->rh_state != EHCI_RH_RUNNING);
1277
1278 ehci->qh_scan_next = ehci->async->qh_next.qh;
1279 while (ehci->qh_scan_next) {
1280 qh = ehci->qh_scan_next;
1281 ehci->qh_scan_next = qh->qh_next.qh;
1282 rescan:
1283 /* clean any finished work for this qh */
1284 if (!list_empty(&qh->qtd_list)) {
1285 int temp;
1286
1287 /*
1288 * Unlinks could happen here; completion reporting
1289 * drops the lock. That's why ehci->qh_scan_next
1290 * always holds the next qh to scan; if the next qh
1291 * gets unlinked then ehci->qh_scan_next is adjusted
1292 * in start_unlink_async().
1293 */
1294 qh = qh_get(qh);
1295 temp = qh_completions(ehci, qh);
1296 if (qh->needs_rescan)
1297 unlink_async(ehci, qh);
1298 qh->unlink_time = jiffies + EHCI_SHRINK_JIFFIES;
1299 qh_put(qh);
1300 if (temp != 0)
1301 goto rescan;
1302 }
1303
1304 /* unlink idle entries, reducing DMA usage as well
1305 * as HCD schedule-scanning costs. delay for any qh
1306 * we just scanned, there's a not-unusual case that it
1307 * doesn't stay idle for long.
1308 * (plus, avoids some kind of re-activation race.)
1309 */
1310 if (list_empty(&qh->qtd_list)
1311 && qh->qh_state == QH_STATE_LINKED) {
1312 if (!ehci->reclaim && (stopped ||
1313 time_after_eq(jiffies, qh->unlink_time)))
1314 start_unlink_async(ehci, qh);
1315 else
1316 action = TIMER_ASYNC_SHRINK;
1317 }
1318 }
1319 if (action == TIMER_ASYNC_SHRINK)
1320 timer_action (ehci, TIMER_ASYNC_SHRINK);
1321}