Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
   3 *
   4 * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/completion.h>
  21#include <linux/delay.h>
  22#include <linux/dmaengine.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/dmapool.h>
  25#include <linux/err.h>
  26#include <linux/interrupt.h>
  27#include <linux/io.h>
  28#include <linux/kernel.h>
  29#include <linux/kthread.h>
  30#include <linux/module.h>
  31#include <linux/platform_device.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/of.h>
  34#include <linux/of_device.h>
  35#include <linux/reset.h>
  36#include <linux/spi/spi.h>
  37
  38#define SPI_COMMAND1				0x000
  39#define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
  40#define SPI_PACKED				(1 << 5)
  41#define SPI_TX_EN				(1 << 11)
  42#define SPI_RX_EN				(1 << 12)
  43#define SPI_BOTH_EN_BYTE			(1 << 13)
  44#define SPI_BOTH_EN_BIT				(1 << 14)
  45#define SPI_LSBYTE_FE				(1 << 15)
  46#define SPI_LSBIT_FE				(1 << 16)
  47#define SPI_BIDIROE				(1 << 17)
  48#define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
  49#define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
  50#define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
  51#define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
  52#define SPI_IDLE_SDA_MASK			(3 << 18)
  53#define SPI_CS_SS_VAL				(1 << 20)
  54#define SPI_CS_SW_HW				(1 << 21)
  55/* SPI_CS_POL_INACTIVE bits are default high */
  56						/* n from 0 to 3 */
  57#define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
  58#define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)
  59
  60#define SPI_CS_SEL_0				(0 << 26)
  61#define SPI_CS_SEL_1				(1 << 26)
  62#define SPI_CS_SEL_2				(2 << 26)
  63#define SPI_CS_SEL_3				(3 << 26)
  64#define SPI_CS_SEL_MASK				(3 << 26)
  65#define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
  66#define SPI_CONTROL_MODE_0			(0 << 28)
  67#define SPI_CONTROL_MODE_1			(1 << 28)
  68#define SPI_CONTROL_MODE_2			(2 << 28)
  69#define SPI_CONTROL_MODE_3			(3 << 28)
  70#define SPI_CONTROL_MODE_MASK			(3 << 28)
  71#define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
  72#define SPI_M_S					(1 << 30)
  73#define SPI_PIO					(1 << 31)
  74
  75#define SPI_COMMAND2				0x004
  76#define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
  77#define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)
  78
  79#define SPI_CS_TIMING1				0x008
  80#define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
  81#define SPI_CS_SETUP_HOLD(reg, cs, val)			\
  82		((((val) & 0xFFu) << ((cs) * 8)) |	\
  83		((reg) & ~(0xFFu << ((cs) * 8))))
  84
  85#define SPI_CS_TIMING2				0x00C
  86#define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
  87#define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
  88#define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
  89#define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
  90#define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
  91#define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
  92#define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
  93#define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
  94#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
  95		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
  96			((reg) & ~(1 << ((cs) * 8 + 5))))
  97#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
  98		(reg = (((val) & 0xF) << ((cs) * 8)) |		\
  99			((reg) & ~(0xF << ((cs) * 8))))
 100
 101#define SPI_TRANS_STATUS			0x010
 102#define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
 103#define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
 104#define SPI_RDY					(1 << 30)
 105
 106#define SPI_FIFO_STATUS				0x014
 107#define SPI_RX_FIFO_EMPTY			(1 << 0)
 108#define SPI_RX_FIFO_FULL			(1 << 1)
 109#define SPI_TX_FIFO_EMPTY			(1 << 2)
 110#define SPI_TX_FIFO_FULL			(1 << 3)
 111#define SPI_RX_FIFO_UNF				(1 << 4)
 112#define SPI_RX_FIFO_OVF				(1 << 5)
 113#define SPI_TX_FIFO_UNF				(1 << 6)
 114#define SPI_TX_FIFO_OVF				(1 << 7)
 115#define SPI_ERR					(1 << 8)
 116#define SPI_TX_FIFO_FLUSH			(1 << 14)
 117#define SPI_RX_FIFO_FLUSH			(1 << 15)
 118#define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
 119#define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
 120#define SPI_FRAME_END				(1 << 30)
 121#define SPI_CS_INACTIVE				(1 << 31)
 122
 123#define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
 124			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
 125#define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
 126
 127#define SPI_TX_DATA				0x018
 128#define SPI_RX_DATA				0x01C
 129
 130#define SPI_DMA_CTL				0x020
 131#define SPI_TX_TRIG_1				(0 << 15)
 132#define SPI_TX_TRIG_4				(1 << 15)
 133#define SPI_TX_TRIG_8				(2 << 15)
 134#define SPI_TX_TRIG_16				(3 << 15)
 135#define SPI_TX_TRIG_MASK			(3 << 15)
 136#define SPI_RX_TRIG_1				(0 << 19)
 137#define SPI_RX_TRIG_4				(1 << 19)
 138#define SPI_RX_TRIG_8				(2 << 19)
 139#define SPI_RX_TRIG_16				(3 << 19)
 140#define SPI_RX_TRIG_MASK			(3 << 19)
 141#define SPI_IE_TX				(1 << 28)
 142#define SPI_IE_RX				(1 << 29)
 143#define SPI_CONT				(1 << 30)
 144#define SPI_DMA					(1 << 31)
 145#define SPI_DMA_EN				SPI_DMA
 146
 147#define SPI_DMA_BLK				0x024
 148#define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)
 149
 150#define SPI_TX_FIFO				0x108
 151#define SPI_RX_FIFO				0x188
 152#define MAX_CHIP_SELECT				4
 153#define SPI_FIFO_DEPTH				64
 154#define DATA_DIR_TX				(1 << 0)
 155#define DATA_DIR_RX				(1 << 1)
 156
 157#define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
 158#define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
 159#define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
 160#define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
 161#define MAX_HOLD_CYCLES				16
 162#define SPI_DEFAULT_SPEED			25000000
 163
 164struct tegra_spi_data {
 165	struct device				*dev;
 166	struct spi_master			*master;
 167	spinlock_t				lock;
 168
 169	struct clk				*clk;
 170	struct reset_control			*rst;
 171	void __iomem				*base;
 172	phys_addr_t				phys;
 173	unsigned				irq;
 174	u32					cur_speed;
 175
 176	struct spi_device			*cur_spi;
 177	struct spi_device			*cs_control;
 178	unsigned				cur_pos;
 179	unsigned				words_per_32bit;
 180	unsigned				bytes_per_word;
 181	unsigned				curr_dma_words;
 182	unsigned				cur_direction;
 183
 184	unsigned				cur_rx_pos;
 185	unsigned				cur_tx_pos;
 186
 187	unsigned				dma_buf_size;
 188	unsigned				max_buf_size;
 189	bool					is_curr_dma_xfer;
 190
 191	struct completion			rx_dma_complete;
 192	struct completion			tx_dma_complete;
 193
 194	u32					tx_status;
 195	u32					rx_status;
 196	u32					status_reg;
 197	bool					is_packed;
 198
 199	u32					command1_reg;
 200	u32					dma_control_reg;
 201	u32					def_command1_reg;
 202
 203	struct completion			xfer_completion;
 204	struct spi_transfer			*curr_xfer;
 205	struct dma_chan				*rx_dma_chan;
 206	u32					*rx_dma_buf;
 207	dma_addr_t				rx_dma_phys;
 208	struct dma_async_tx_descriptor		*rx_dma_desc;
 209
 210	struct dma_chan				*tx_dma_chan;
 211	u32					*tx_dma_buf;
 212	dma_addr_t				tx_dma_phys;
 213	struct dma_async_tx_descriptor		*tx_dma_desc;
 214};
 215
 216static int tegra_spi_runtime_suspend(struct device *dev);
 217static int tegra_spi_runtime_resume(struct device *dev);
 218
 219static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
 220		unsigned long reg)
 221{
 222	return readl(tspi->base + reg);
 223}
 224
 225static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
 226		u32 val, unsigned long reg)
 227{
 228	writel(val, tspi->base + reg);
 229
 230	/* Read back register to make sure that register writes completed */
 231	if (reg != SPI_TX_FIFO)
 232		readl(tspi->base + SPI_COMMAND1);
 233}
 234
 235static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
 236{
 237	u32 val;
 238
 239	/* Write 1 to clear status register */
 240	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
 241	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
 242
 243	/* Clear fifo status error if any */
 244	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 245	if (val & SPI_ERR)
 246		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
 247				SPI_FIFO_STATUS);
 248}
 249
 250static unsigned tegra_spi_calculate_curr_xfer_param(
 251	struct spi_device *spi, struct tegra_spi_data *tspi,
 252	struct spi_transfer *t)
 253{
 254	unsigned remain_len = t->len - tspi->cur_pos;
 255	unsigned max_word;
 256	unsigned bits_per_word = t->bits_per_word;
 257	unsigned max_len;
 258	unsigned total_fifo_words;
 259
 260	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
 261
 262	if (bits_per_word == 8 || bits_per_word == 16) {
 263		tspi->is_packed = 1;
 264		tspi->words_per_32bit = 32/bits_per_word;
 265	} else {
 266		tspi->is_packed = 0;
 267		tspi->words_per_32bit = 1;
 268	}
 269
 270	if (tspi->is_packed) {
 271		max_len = min(remain_len, tspi->max_buf_size);
 272		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
 273		total_fifo_words = (max_len + 3) / 4;
 274	} else {
 275		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
 276		max_word = min(max_word, tspi->max_buf_size/4);
 277		tspi->curr_dma_words = max_word;
 278		total_fifo_words = max_word;
 279	}
 280	return total_fifo_words;
 281}
 282
 283static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
 284	struct tegra_spi_data *tspi, struct spi_transfer *t)
 285{
 286	unsigned nbytes;
 287	unsigned tx_empty_count;
 288	u32 fifo_status;
 289	unsigned max_n_32bit;
 290	unsigned i, count;
 291	unsigned int written_words;
 292	unsigned fifo_words_left;
 293	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
 294
 295	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 296	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
 297
 298	if (tspi->is_packed) {
 299		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
 300		written_words = min(fifo_words_left, tspi->curr_dma_words);
 301		nbytes = written_words * tspi->bytes_per_word;
 302		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
 303		for (count = 0; count < max_n_32bit; count++) {
 304			u32 x = 0;
 305
 306			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
 307				x |= (u32)(*tx_buf++) << (i * 8);
 308			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
 309		}
 310	} else {
 311		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
 312		written_words = max_n_32bit;
 313		nbytes = written_words * tspi->bytes_per_word;
 314		for (count = 0; count < max_n_32bit; count++) {
 315			u32 x = 0;
 316
 317			for (i = 0; nbytes && (i < tspi->bytes_per_word);
 318							i++, nbytes--)
 319				x |= (u32)(*tx_buf++) << (i * 8);
 320			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
 321		}
 322	}
 323	tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
 324	return written_words;
 325}
 326
 327static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
 328		struct tegra_spi_data *tspi, struct spi_transfer *t)
 329{
 330	unsigned rx_full_count;
 331	u32 fifo_status;
 332	unsigned i, count;
 333	unsigned int read_words = 0;
 334	unsigned len;
 335	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
 336
 337	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 338	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
 339	if (tspi->is_packed) {
 340		len = tspi->curr_dma_words * tspi->bytes_per_word;
 341		for (count = 0; count < rx_full_count; count++) {
 342			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
 343
 344			for (i = 0; len && (i < 4); i++, len--)
 345				*rx_buf++ = (x >> i*8) & 0xFF;
 346		}
 347		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 348		read_words += tspi->curr_dma_words;
 349	} else {
 350		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
 351
 352		for (count = 0; count < rx_full_count; count++) {
 353			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
 354
 355			for (i = 0; (i < tspi->bytes_per_word); i++)
 356				*rx_buf++ = (x >> (i*8)) & 0xFF;
 357		}
 358		tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
 359		read_words += rx_full_count;
 360	}
 361	return read_words;
 362}
 363
 364static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
 365		struct tegra_spi_data *tspi, struct spi_transfer *t)
 366{
 367	/* Make the dma buffer to read by cpu */
 368	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
 369				tspi->dma_buf_size, DMA_TO_DEVICE);
 370
 371	if (tspi->is_packed) {
 372		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
 373
 374		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
 375	} else {
 376		unsigned int i;
 377		unsigned int count;
 378		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
 379		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
 380
 381		for (count = 0; count < tspi->curr_dma_words; count++) {
 382			u32 x = 0;
 383
 384			for (i = 0; consume && (i < tspi->bytes_per_word);
 385							i++, consume--)
 386				x |= (u32)(*tx_buf++) << (i * 8);
 387			tspi->tx_dma_buf[count] = x;
 388		}
 389	}
 390	tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 391
 392	/* Make the dma buffer to read by dma */
 393	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
 394				tspi->dma_buf_size, DMA_TO_DEVICE);
 395}
 396
 397static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
 398		struct tegra_spi_data *tspi, struct spi_transfer *t)
 399{
 400	/* Make the dma buffer to read by cpu */
 401	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
 402		tspi->dma_buf_size, DMA_FROM_DEVICE);
 403
 404	if (tspi->is_packed) {
 405		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
 406
 407		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
 408	} else {
 409		unsigned int i;
 410		unsigned int count;
 411		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
 412		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
 413
 414		for (count = 0; count < tspi->curr_dma_words; count++) {
 415			u32 x = tspi->rx_dma_buf[count] & rx_mask;
 416
 417			for (i = 0; (i < tspi->bytes_per_word); i++)
 418				*rx_buf++ = (x >> (i*8)) & 0xFF;
 419		}
 420	}
 421	tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
 422
 423	/* Make the dma buffer to read by dma */
 424	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
 425		tspi->dma_buf_size, DMA_FROM_DEVICE);
 426}
 427
 428static void tegra_spi_dma_complete(void *args)
 429{
 430	struct completion *dma_complete = args;
 431
 432	complete(dma_complete);
 433}
 434
 435static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
 436{
 437	reinit_completion(&tspi->tx_dma_complete);
 438	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
 439				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
 440				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
 441	if (!tspi->tx_dma_desc) {
 442		dev_err(tspi->dev, "Not able to get desc for Tx\n");
 443		return -EIO;
 444	}
 445
 446	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
 447	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
 448
 449	dmaengine_submit(tspi->tx_dma_desc);
 450	dma_async_issue_pending(tspi->tx_dma_chan);
 451	return 0;
 452}
 453
 454static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
 455{
 456	reinit_completion(&tspi->rx_dma_complete);
 457	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
 458				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
 459				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
 460	if (!tspi->rx_dma_desc) {
 461		dev_err(tspi->dev, "Not able to get desc for Rx\n");
 462		return -EIO;
 463	}
 464
 465	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
 466	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
 467
 468	dmaengine_submit(tspi->rx_dma_desc);
 469	dma_async_issue_pending(tspi->rx_dma_chan);
 470	return 0;
 471}
 472
 473static int tegra_spi_start_dma_based_transfer(
 474		struct tegra_spi_data *tspi, struct spi_transfer *t)
 475{
 476	u32 val;
 477	unsigned int len;
 478	int ret = 0;
 479	u32 status;
 480
 481	/* Make sure that Rx and Tx fifo are empty */
 482	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
 483	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
 484		dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
 485			(unsigned)status);
 486		return -EIO;
 487	}
 488
 489	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
 490	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
 491
 492	if (tspi->is_packed)
 493		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
 494					4) * 4;
 495	else
 496		len = tspi->curr_dma_words * 4;
 497
 498	/* Set attention level based on length of transfer */
 499	if (len & 0xF)
 500		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
 501	else if (((len) >> 4) & 0x1)
 502		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
 503	else
 504		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
 505
 506	if (tspi->cur_direction & DATA_DIR_TX)
 507		val |= SPI_IE_TX;
 508
 509	if (tspi->cur_direction & DATA_DIR_RX)
 510		val |= SPI_IE_RX;
 511
 512	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 513	tspi->dma_control_reg = val;
 514
 515	if (tspi->cur_direction & DATA_DIR_TX) {
 516		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
 517		ret = tegra_spi_start_tx_dma(tspi, len);
 518		if (ret < 0) {
 519			dev_err(tspi->dev,
 520				"Starting tx dma failed, err %d\n", ret);
 521			return ret;
 522		}
 523	}
 524
 525	if (tspi->cur_direction & DATA_DIR_RX) {
 526		/* Make the dma buffer to read by dma */
 527		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
 528				tspi->dma_buf_size, DMA_FROM_DEVICE);
 529
 530		ret = tegra_spi_start_rx_dma(tspi, len);
 531		if (ret < 0) {
 532			dev_err(tspi->dev,
 533				"Starting rx dma failed, err %d\n", ret);
 534			if (tspi->cur_direction & DATA_DIR_TX)
 535				dmaengine_terminate_all(tspi->tx_dma_chan);
 536			return ret;
 537		}
 538	}
 539	tspi->is_curr_dma_xfer = true;
 540	tspi->dma_control_reg = val;
 541
 542	val |= SPI_DMA_EN;
 543	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 544	return ret;
 545}
 546
 547static int tegra_spi_start_cpu_based_transfer(
 548		struct tegra_spi_data *tspi, struct spi_transfer *t)
 549{
 550	u32 val;
 551	unsigned cur_words;
 552
 553	if (tspi->cur_direction & DATA_DIR_TX)
 554		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
 555	else
 556		cur_words = tspi->curr_dma_words;
 557
 558	val = SPI_DMA_BLK_SET(cur_words - 1);
 559	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
 560
 561	val = 0;
 562	if (tspi->cur_direction & DATA_DIR_TX)
 563		val |= SPI_IE_TX;
 564
 565	if (tspi->cur_direction & DATA_DIR_RX)
 566		val |= SPI_IE_RX;
 567
 568	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 569	tspi->dma_control_reg = val;
 570
 571	tspi->is_curr_dma_xfer = false;
 572
 573	val |= SPI_DMA_EN;
 574	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
 575	return 0;
 576}
 577
 578static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
 579			bool dma_to_memory)
 580{
 581	struct dma_chan *dma_chan;
 582	u32 *dma_buf;
 583	dma_addr_t dma_phys;
 584	int ret;
 585	struct dma_slave_config dma_sconfig;
 586
 587	dma_chan = dma_request_slave_channel_reason(tspi->dev,
 588					dma_to_memory ? "rx" : "tx");
 589	if (IS_ERR(dma_chan)) {
 590		ret = PTR_ERR(dma_chan);
 591		if (ret != -EPROBE_DEFER)
 592			dev_err(tspi->dev,
 593				"Dma channel is not available: %d\n", ret);
 594		return ret;
 595	}
 596
 597	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
 598				&dma_phys, GFP_KERNEL);
 599	if (!dma_buf) {
 600		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
 601		dma_release_channel(dma_chan);
 602		return -ENOMEM;
 603	}
 604
 605	if (dma_to_memory) {
 606		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
 607		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 608		dma_sconfig.src_maxburst = 0;
 609	} else {
 610		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
 611		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 612		dma_sconfig.dst_maxburst = 0;
 613	}
 614
 615	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
 616	if (ret)
 617		goto scrub;
 618	if (dma_to_memory) {
 619		tspi->rx_dma_chan = dma_chan;
 620		tspi->rx_dma_buf = dma_buf;
 621		tspi->rx_dma_phys = dma_phys;
 622	} else {
 623		tspi->tx_dma_chan = dma_chan;
 624		tspi->tx_dma_buf = dma_buf;
 625		tspi->tx_dma_phys = dma_phys;
 626	}
 627	return 0;
 628
 629scrub:
 630	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
 631	dma_release_channel(dma_chan);
 632	return ret;
 633}
 634
 635static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
 636	bool dma_to_memory)
 637{
 638	u32 *dma_buf;
 639	dma_addr_t dma_phys;
 640	struct dma_chan *dma_chan;
 641
 642	if (dma_to_memory) {
 643		dma_buf = tspi->rx_dma_buf;
 644		dma_chan = tspi->rx_dma_chan;
 645		dma_phys = tspi->rx_dma_phys;
 646		tspi->rx_dma_chan = NULL;
 647		tspi->rx_dma_buf = NULL;
 648	} else {
 649		dma_buf = tspi->tx_dma_buf;
 650		dma_chan = tspi->tx_dma_chan;
 651		dma_phys = tspi->tx_dma_phys;
 652		tspi->tx_dma_buf = NULL;
 653		tspi->tx_dma_chan = NULL;
 654	}
 655	if (!dma_chan)
 656		return;
 657
 658	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
 659	dma_release_channel(dma_chan);
 660}
 661
 662static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
 663		struct spi_transfer *t, bool is_first_of_msg)
 664{
 665	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
 666	u32 speed = t->speed_hz;
 667	u8 bits_per_word = t->bits_per_word;
 668	u32 command1;
 669	int req_mode;
 670
 671	if (speed != tspi->cur_speed) {
 672		clk_set_rate(tspi->clk, speed);
 673		tspi->cur_speed = speed;
 674	}
 675
 676	tspi->cur_spi = spi;
 677	tspi->cur_pos = 0;
 678	tspi->cur_rx_pos = 0;
 679	tspi->cur_tx_pos = 0;
 680	tspi->curr_xfer = t;
 681
 682	if (is_first_of_msg) {
 683		tegra_spi_clear_status(tspi);
 684
 685		command1 = tspi->def_command1_reg;
 686		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
 687
 688		command1 &= ~SPI_CONTROL_MODE_MASK;
 689		req_mode = spi->mode & 0x3;
 690		if (req_mode == SPI_MODE_0)
 691			command1 |= SPI_CONTROL_MODE_0;
 692		else if (req_mode == SPI_MODE_1)
 693			command1 |= SPI_CONTROL_MODE_1;
 694		else if (req_mode == SPI_MODE_2)
 695			command1 |= SPI_CONTROL_MODE_2;
 696		else if (req_mode == SPI_MODE_3)
 697			command1 |= SPI_CONTROL_MODE_3;
 698
 699		if (tspi->cs_control) {
 700			if (tspi->cs_control != spi)
 701				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 702			tspi->cs_control = NULL;
 703		} else
 704			tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 705
 706		command1 |= SPI_CS_SW_HW;
 707		if (spi->mode & SPI_CS_HIGH)
 708			command1 |= SPI_CS_SS_VAL;
 709		else
 710			command1 &= ~SPI_CS_SS_VAL;
 711
 712		tegra_spi_writel(tspi, 0, SPI_COMMAND2);
 713	} else {
 714		command1 = tspi->command1_reg;
 715		command1 &= ~SPI_BIT_LENGTH(~0);
 716		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
 717	}
 718
 719	return command1;
 720}
 721
 722static int tegra_spi_start_transfer_one(struct spi_device *spi,
 723		struct spi_transfer *t, u32 command1)
 724{
 725	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
 726	unsigned total_fifo_words;
 727	int ret;
 728
 729	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
 730
 731	if (tspi->is_packed)
 732		command1 |= SPI_PACKED;
 733
 734	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
 735	tspi->cur_direction = 0;
 736	if (t->rx_buf) {
 737		command1 |= SPI_RX_EN;
 738		tspi->cur_direction |= DATA_DIR_RX;
 739	}
 740	if (t->tx_buf) {
 741		command1 |= SPI_TX_EN;
 742		tspi->cur_direction |= DATA_DIR_TX;
 743	}
 744	command1 |= SPI_CS_SEL(spi->chip_select);
 745	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
 746	tspi->command1_reg = command1;
 747
 748	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
 749		tspi->def_command1_reg, (unsigned)command1);
 750
 751	if (total_fifo_words > SPI_FIFO_DEPTH)
 752		ret = tegra_spi_start_dma_based_transfer(tspi, t);
 753	else
 754		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
 755	return ret;
 756}
 757
 758static int tegra_spi_setup(struct spi_device *spi)
 759{
 760	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
 761	u32 val;
 762	unsigned long flags;
 763	int ret;
 764
 765	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
 766		spi->bits_per_word,
 767		spi->mode & SPI_CPOL ? "" : "~",
 768		spi->mode & SPI_CPHA ? "" : "~",
 769		spi->max_speed_hz);
 770
 771	ret = pm_runtime_get_sync(tspi->dev);
 772	if (ret < 0) {
 773		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
 774		return ret;
 775	}
 776
 777	spin_lock_irqsave(&tspi->lock, flags);
 778	val = tspi->def_command1_reg;
 779	if (spi->mode & SPI_CS_HIGH)
 780		val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
 781	else
 782		val |= SPI_CS_POL_INACTIVE(spi->chip_select);
 783	tspi->def_command1_reg = val;
 784	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
 785	spin_unlock_irqrestore(&tspi->lock, flags);
 786
 787	pm_runtime_put(tspi->dev);
 788	return 0;
 789}
 790
 791static void tegra_spi_transfer_delay(int delay)
 792{
 793	if (!delay)
 794		return;
 795
 796	if (delay >= 1000)
 797		mdelay(delay / 1000);
 798
 799	udelay(delay % 1000);
 800}
 801
 802static int tegra_spi_transfer_one_message(struct spi_master *master,
 803			struct spi_message *msg)
 804{
 805	bool is_first_msg = true;
 806	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
 807	struct spi_transfer *xfer;
 808	struct spi_device *spi = msg->spi;
 809	int ret;
 810	bool skip = false;
 811
 812	msg->status = 0;
 813	msg->actual_length = 0;
 814
 815	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 816		u32 cmd1;
 817
 818		reinit_completion(&tspi->xfer_completion);
 819
 820		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
 821
 822		if (!xfer->len) {
 823			ret = 0;
 824			skip = true;
 825			goto complete_xfer;
 826		}
 827
 828		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
 829		if (ret < 0) {
 830			dev_err(tspi->dev,
 831				"spi can not start transfer, err %d\n", ret);
 832			goto complete_xfer;
 833		}
 834
 835		is_first_msg = false;
 836		ret = wait_for_completion_timeout(&tspi->xfer_completion,
 837						SPI_DMA_TIMEOUT);
 838		if (WARN_ON(ret == 0)) {
 839			dev_err(tspi->dev,
 840				"spi trasfer timeout, err %d\n", ret);
 841			ret = -EIO;
 842			goto complete_xfer;
 843		}
 844
 845		if (tspi->tx_status ||  tspi->rx_status) {
 846			dev_err(tspi->dev, "Error in Transfer\n");
 847			ret = -EIO;
 848			goto complete_xfer;
 849		}
 850		msg->actual_length += xfer->len;
 851
 852complete_xfer:
 853		if (ret < 0 || skip) {
 854			tegra_spi_writel(tspi, tspi->def_command1_reg,
 855					SPI_COMMAND1);
 856			tegra_spi_transfer_delay(xfer->delay_usecs);
 857			goto exit;
 858		} else if (list_is_last(&xfer->transfer_list,
 859					&msg->transfers)) {
 860			if (xfer->cs_change)
 861				tspi->cs_control = spi;
 862			else {
 863				tegra_spi_writel(tspi, tspi->def_command1_reg,
 864						SPI_COMMAND1);
 865				tegra_spi_transfer_delay(xfer->delay_usecs);
 866			}
 867		} else if (xfer->cs_change) {
 868			tegra_spi_writel(tspi, tspi->def_command1_reg,
 869					SPI_COMMAND1);
 870			tegra_spi_transfer_delay(xfer->delay_usecs);
 871		}
 872
 873	}
 874	ret = 0;
 875exit:
 876	msg->status = ret;
 877	spi_finalize_current_message(master);
 878	return ret;
 879}
 880
 881static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
 882{
 883	struct spi_transfer *t = tspi->curr_xfer;
 884	unsigned long flags;
 885
 886	spin_lock_irqsave(&tspi->lock, flags);
 887	if (tspi->tx_status ||  tspi->rx_status) {
 888		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
 889			tspi->status_reg);
 890		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
 891			tspi->command1_reg, tspi->dma_control_reg);
 892		reset_control_assert(tspi->rst);
 893		udelay(2);
 894		reset_control_deassert(tspi->rst);
 895		complete(&tspi->xfer_completion);
 896		goto exit;
 897	}
 898
 899	if (tspi->cur_direction & DATA_DIR_RX)
 900		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
 901
 902	if (tspi->cur_direction & DATA_DIR_TX)
 903		tspi->cur_pos = tspi->cur_tx_pos;
 904	else
 905		tspi->cur_pos = tspi->cur_rx_pos;
 906
 907	if (tspi->cur_pos == t->len) {
 908		complete(&tspi->xfer_completion);
 909		goto exit;
 910	}
 911
 912	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
 913	tegra_spi_start_cpu_based_transfer(tspi, t);
 914exit:
 915	spin_unlock_irqrestore(&tspi->lock, flags);
 916	return IRQ_HANDLED;
 917}
 918
 919static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
 920{
 921	struct spi_transfer *t = tspi->curr_xfer;
 922	long wait_status;
 923	int err = 0;
 924	unsigned total_fifo_words;
 925	unsigned long flags;
 926
 927	/* Abort dmas if any error */
 928	if (tspi->cur_direction & DATA_DIR_TX) {
 929		if (tspi->tx_status) {
 930			dmaengine_terminate_all(tspi->tx_dma_chan);
 931			err += 1;
 932		} else {
 933			wait_status = wait_for_completion_interruptible_timeout(
 934				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
 935			if (wait_status <= 0) {
 936				dmaengine_terminate_all(tspi->tx_dma_chan);
 937				dev_err(tspi->dev, "TxDma Xfer failed\n");
 938				err += 1;
 939			}
 940		}
 941	}
 942
 943	if (tspi->cur_direction & DATA_DIR_RX) {
 944		if (tspi->rx_status) {
 945			dmaengine_terminate_all(tspi->rx_dma_chan);
 946			err += 2;
 947		} else {
 948			wait_status = wait_for_completion_interruptible_timeout(
 949				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
 950			if (wait_status <= 0) {
 951				dmaengine_terminate_all(tspi->rx_dma_chan);
 952				dev_err(tspi->dev, "RxDma Xfer failed\n");
 953				err += 2;
 954			}
 955		}
 956	}
 957
 958	spin_lock_irqsave(&tspi->lock, flags);
 959	if (err) {
 960		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
 961			tspi->status_reg);
 962		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
 963			tspi->command1_reg, tspi->dma_control_reg);
 964		reset_control_assert(tspi->rst);
 965		udelay(2);
 966		reset_control_deassert(tspi->rst);
 967		complete(&tspi->xfer_completion);
 968		spin_unlock_irqrestore(&tspi->lock, flags);
 969		return IRQ_HANDLED;
 970	}
 971
 972	if (tspi->cur_direction & DATA_DIR_RX)
 973		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
 974
 975	if (tspi->cur_direction & DATA_DIR_TX)
 976		tspi->cur_pos = tspi->cur_tx_pos;
 977	else
 978		tspi->cur_pos = tspi->cur_rx_pos;
 979
 980	if (tspi->cur_pos == t->len) {
 981		complete(&tspi->xfer_completion);
 982		goto exit;
 983	}
 984
 985	/* Continue transfer in current message */
 986	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
 987							tspi, t);
 988	if (total_fifo_words > SPI_FIFO_DEPTH)
 989		err = tegra_spi_start_dma_based_transfer(tspi, t);
 990	else
 991		err = tegra_spi_start_cpu_based_transfer(tspi, t);
 992
 993exit:
 994	spin_unlock_irqrestore(&tspi->lock, flags);
 995	return IRQ_HANDLED;
 996}
 997
 998static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
 999{
1000	struct tegra_spi_data *tspi = context_data;
1001
1002	if (!tspi->is_curr_dma_xfer)
1003		return handle_cpu_based_xfer(tspi);
1004	return handle_dma_based_xfer(tspi);
1005}
1006
1007static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1008{
1009	struct tegra_spi_data *tspi = context_data;
1010
1011	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1012	if (tspi->cur_direction & DATA_DIR_TX)
1013		tspi->tx_status = tspi->status_reg &
1014					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1015
1016	if (tspi->cur_direction & DATA_DIR_RX)
1017		tspi->rx_status = tspi->status_reg &
1018					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1019	tegra_spi_clear_status(tspi);
1020
1021	return IRQ_WAKE_THREAD;
1022}
1023
1024static const struct of_device_id tegra_spi_of_match[] = {
1025	{ .compatible = "nvidia,tegra114-spi", },
1026	{}
1027};
1028MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1029
1030static int tegra_spi_probe(struct platform_device *pdev)
1031{
1032	struct spi_master	*master;
1033	struct tegra_spi_data	*tspi;
1034	struct resource		*r;
1035	int ret, spi_irq;
1036
1037	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1038	if (!master) {
1039		dev_err(&pdev->dev, "master allocation failed\n");
1040		return -ENOMEM;
1041	}
1042	platform_set_drvdata(pdev, master);
1043	tspi = spi_master_get_devdata(master);
1044
1045	if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1046				 &master->max_speed_hz))
1047		master->max_speed_hz = 25000000; /* 25MHz */
1048
1049	/* the spi->mode bits understood by this driver: */
1050	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1051	master->setup = tegra_spi_setup;
1052	master->transfer_one_message = tegra_spi_transfer_one_message;
1053	master->num_chipselect = MAX_CHIP_SELECT;
1054	master->auto_runtime_pm = true;
1055
1056	tspi->master = master;
1057	tspi->dev = &pdev->dev;
1058	spin_lock_init(&tspi->lock);
1059
1060	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1061	tspi->base = devm_ioremap_resource(&pdev->dev, r);
1062	if (IS_ERR(tspi->base)) {
1063		ret = PTR_ERR(tspi->base);
1064		goto exit_free_master;
1065	}
1066	tspi->phys = r->start;
1067
1068	spi_irq = platform_get_irq(pdev, 0);
1069	tspi->irq = spi_irq;
1070	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1071			tegra_spi_isr_thread, IRQF_ONESHOT,
1072			dev_name(&pdev->dev), tspi);
1073	if (ret < 0) {
1074		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1075					tspi->irq);
1076		goto exit_free_master;
1077	}
1078
1079	tspi->clk = devm_clk_get(&pdev->dev, "spi");
1080	if (IS_ERR(tspi->clk)) {
1081		dev_err(&pdev->dev, "can not get clock\n");
1082		ret = PTR_ERR(tspi->clk);
1083		goto exit_free_irq;
1084	}
1085
1086	tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1087	if (IS_ERR(tspi->rst)) {
1088		dev_err(&pdev->dev, "can not get reset\n");
1089		ret = PTR_ERR(tspi->rst);
1090		goto exit_free_irq;
1091	}
1092
1093	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1094	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1095
1096	ret = tegra_spi_init_dma_param(tspi, true);
1097	if (ret < 0)
1098		goto exit_free_irq;
1099	ret = tegra_spi_init_dma_param(tspi, false);
1100	if (ret < 0)
1101		goto exit_rx_dma_free;
1102	tspi->max_buf_size = tspi->dma_buf_size;
1103	init_completion(&tspi->tx_dma_complete);
1104	init_completion(&tspi->rx_dma_complete);
1105
1106	init_completion(&tspi->xfer_completion);
1107
1108	pm_runtime_enable(&pdev->dev);
1109	if (!pm_runtime_enabled(&pdev->dev)) {
1110		ret = tegra_spi_runtime_resume(&pdev->dev);
1111		if (ret)
1112			goto exit_pm_disable;
1113	}
1114
1115	ret = pm_runtime_get_sync(&pdev->dev);
1116	if (ret < 0) {
1117		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1118		goto exit_pm_disable;
1119	}
1120	tspi->def_command1_reg  = SPI_M_S;
1121	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1122	pm_runtime_put(&pdev->dev);
1123
1124	master->dev.of_node = pdev->dev.of_node;
1125	ret = devm_spi_register_master(&pdev->dev, master);
1126	if (ret < 0) {
1127		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1128		goto exit_pm_disable;
1129	}
1130	return ret;
1131
1132exit_pm_disable:
1133	pm_runtime_disable(&pdev->dev);
1134	if (!pm_runtime_status_suspended(&pdev->dev))
1135		tegra_spi_runtime_suspend(&pdev->dev);
1136	tegra_spi_deinit_dma_param(tspi, false);
1137exit_rx_dma_free:
1138	tegra_spi_deinit_dma_param(tspi, true);
1139exit_free_irq:
1140	free_irq(spi_irq, tspi);
1141exit_free_master:
1142	spi_master_put(master);
1143	return ret;
1144}
1145
1146static int tegra_spi_remove(struct platform_device *pdev)
1147{
1148	struct spi_master *master = platform_get_drvdata(pdev);
1149	struct tegra_spi_data	*tspi = spi_master_get_devdata(master);
1150
1151	free_irq(tspi->irq, tspi);
1152
1153	if (tspi->tx_dma_chan)
1154		tegra_spi_deinit_dma_param(tspi, false);
1155
1156	if (tspi->rx_dma_chan)
1157		tegra_spi_deinit_dma_param(tspi, true);
1158
1159	pm_runtime_disable(&pdev->dev);
1160	if (!pm_runtime_status_suspended(&pdev->dev))
1161		tegra_spi_runtime_suspend(&pdev->dev);
1162
1163	return 0;
1164}
1165
1166#ifdef CONFIG_PM_SLEEP
1167static int tegra_spi_suspend(struct device *dev)
1168{
1169	struct spi_master *master = dev_get_drvdata(dev);
1170
1171	return spi_master_suspend(master);
1172}
1173
1174static int tegra_spi_resume(struct device *dev)
1175{
1176	struct spi_master *master = dev_get_drvdata(dev);
1177	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1178	int ret;
1179
1180	ret = pm_runtime_get_sync(dev);
1181	if (ret < 0) {
1182		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1183		return ret;
1184	}
1185	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1186	pm_runtime_put(dev);
1187
1188	return spi_master_resume(master);
1189}
1190#endif
1191
1192static int tegra_spi_runtime_suspend(struct device *dev)
1193{
1194	struct spi_master *master = dev_get_drvdata(dev);
1195	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1196
1197	/* Flush all write which are in PPSB queue by reading back */
1198	tegra_spi_readl(tspi, SPI_COMMAND1);
1199
1200	clk_disable_unprepare(tspi->clk);
1201	return 0;
1202}
1203
1204static int tegra_spi_runtime_resume(struct device *dev)
1205{
1206	struct spi_master *master = dev_get_drvdata(dev);
1207	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1208	int ret;
1209
1210	ret = clk_prepare_enable(tspi->clk);
1211	if (ret < 0) {
1212		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1213		return ret;
1214	}
1215	return 0;
1216}
1217
1218static const struct dev_pm_ops tegra_spi_pm_ops = {
1219	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1220		tegra_spi_runtime_resume, NULL)
1221	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1222};
1223static struct platform_driver tegra_spi_driver = {
1224	.driver = {
1225		.name		= "spi-tegra114",
1226		.pm		= &tegra_spi_pm_ops,
1227		.of_match_table	= tegra_spi_of_match,
1228	},
1229	.probe =	tegra_spi_probe,
1230	.remove =	tegra_spi_remove,
1231};
1232module_platform_driver(tegra_spi_driver);
1233
1234MODULE_ALIAS("platform:spi-tegra114");
1235MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1236MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1237MODULE_LICENSE("GPL v2");