Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2** I/O Sapic Driver - PCI interrupt line support
   3**
   4**      (c) Copyright 1999 Grant Grundler
   5**      (c) Copyright 1999 Hewlett-Packard Company
   6**
   7**      This program is free software; you can redistribute it and/or modify
   8**      it under the terms of the GNU General Public License as published by
   9**      the Free Software Foundation; either version 2 of the License, or
  10**      (at your option) any later version.
  11**
  12** The I/O sapic driver manages the Interrupt Redirection Table which is
  13** the control logic to convert PCI line based interrupts into a Message
  14** Signaled Interrupt (aka Transaction Based Interrupt, TBI).
  15**
  16** Acronyms
  17** --------
  18** HPA  Hard Physical Address (aka MMIO address)
  19** IRQ  Interrupt ReQuest. Implies Line based interrupt.
  20** IRT	Interrupt Routing Table (provided by PAT firmware)
  21** IRdT Interrupt Redirection Table. IRQ line to TXN ADDR/DATA
  22**      table which is implemented in I/O SAPIC.
  23** ISR  Interrupt Service Routine. aka Interrupt handler.
  24** MSI	Message Signaled Interrupt. PCI 2.2 functionality.
  25**      aka Transaction Based Interrupt (or TBI).
  26** PA   Precision Architecture. HP's RISC architecture.
  27** RISC Reduced Instruction Set Computer.
  28**
  29**
  30** What's a Message Signalled Interrupt?
  31** -------------------------------------
  32** MSI is a write transaction which targets a processor and is similar
  33** to a processor write to memory or MMIO. MSIs can be generated by I/O
  34** devices as well as processors and require *architecture* to work.
  35**
  36** PA only supports MSI. So I/O subsystems must either natively generate
  37** MSIs (e.g. GSC or HP-PB) or convert line based interrupts into MSIs
  38** (e.g. PCI and EISA).  IA64 supports MSIs via a "local SAPIC" which
  39** acts on behalf of a processor.
  40**
  41** MSI allows any I/O device to interrupt any processor. This makes
  42** load balancing of the interrupt processing possible on an SMP platform.
  43** Interrupts are also ordered WRT to DMA data.  It's possible on I/O
  44** coherent systems to completely eliminate PIO reads from the interrupt
  45** path. The device and driver must be designed and implemented to
  46** guarantee all DMA has been issued (issues about atomicity here)
  47** before the MSI is issued. I/O status can then safely be read from
  48** DMA'd data by the ISR.
  49**
  50**
  51** PA Firmware
  52** -----------
  53** PA-RISC platforms have two fundamentally different types of firmware.
  54** For PCI devices, "Legacy" PDC initializes the "INTERRUPT_LINE" register
  55** and BARs similar to a traditional PC BIOS.
  56** The newer "PAT" firmware supports PDC calls which return tables.
  57** PAT firmware only initializes the PCI Console and Boot interface.
  58** With these tables, the OS can program all other PCI devices.
  59**
  60** One such PAT PDC call returns the "Interrupt Routing Table" (IRT).
  61** The IRT maps each PCI slot's INTA-D "output" line to an I/O SAPIC
  62** input line.  If the IRT is not available, this driver assumes
  63** INTERRUPT_LINE register has been programmed by firmware. The latter
  64** case also means online addition of PCI cards can NOT be supported
  65** even if HW support is present.
  66**
  67** All platforms with PAT firmware to date (Oct 1999) use one Interrupt
  68** Routing Table for the entire platform.
  69**
  70** Where's the iosapic?
  71** --------------------
  72** I/O sapic is part of the "Core Electronics Complex". And on HP platforms
  73** it's integrated as part of the PCI bus adapter, "lba".  So no bus walk
  74** will discover I/O Sapic. I/O Sapic driver learns about each device
  75** when lba driver advertises the presence of the I/O sapic by calling
  76** iosapic_register().
  77**
  78**
  79** IRQ handling notes
  80** ------------------
  81** The IO-SAPIC can indicate to the CPU which interrupt was asserted.
  82** So, unlike the GSC-ASIC and Dino, we allocate one CPU interrupt per
  83** IO-SAPIC interrupt and call the device driver's handler directly.
  84** The IO-SAPIC driver hijacks the CPU interrupt handler so it can
  85** issue the End Of Interrupt command to the IO-SAPIC.
  86**
  87** Overview of exported iosapic functions
  88** --------------------------------------
  89** (caveat: code isn't finished yet - this is just the plan)
  90**
  91** iosapic_init:
  92**   o initialize globals (lock, etc)
  93**   o try to read IRT. Presence of IRT determines if this is
  94**     a PAT platform or not.
  95**
  96** iosapic_register():
  97**   o create iosapic_info instance data structure
  98**   o allocate vector_info array for this iosapic
  99**   o initialize vector_info - read corresponding IRdT?
 100**
 101** iosapic_xlate_pin: (only called by fixup_irq for PAT platform)
 102**   o intr_pin = read cfg (INTERRUPT_PIN);
 103**   o if (device under PCI-PCI bridge)
 104**               translate slot/pin
 105**
 106** iosapic_fixup_irq:
 107**   o if PAT platform (IRT present)
 108**	   intr_pin = iosapic_xlate_pin(isi,pcidev):
 109**         intr_line = find IRT entry(isi, PCI_SLOT(pcidev), intr_pin)
 110**         save IRT entry into vector_info later
 111**         write cfg INTERRUPT_LINE (with intr_line)?
 112**     else
 113**         intr_line = pcidev->irq
 114**         IRT pointer = NULL
 115**     endif
 116**   o locate vector_info (needs: isi, intr_line)
 117**   o allocate processor "irq" and get txn_addr/data
 118**   o request_irq(processor_irq,  iosapic_interrupt, vector_info,...)
 119**
 120** iosapic_enable_irq:
 121**   o clear any pending IRQ on that line
 122**   o enable IRdT - call enable_irq(vector[line]->processor_irq)
 123**   o write EOI in case line is already asserted.
 124**
 125** iosapic_disable_irq:
 126**   o disable IRdT - call disable_irq(vector[line]->processor_irq)
 127*/
 128
 129
 130/* FIXME: determine which include files are really needed */
 131#include <linux/types.h>
 132#include <linux/kernel.h>
 133#include <linux/spinlock.h>
 134#include <linux/pci.h>
 135#include <linux/init.h>
 136#include <linux/slab.h>
 137#include <linux/interrupt.h>
 138
 139#include <asm/byteorder.h>	/* get in-line asm for swab */
 140#include <asm/pdc.h>
 141#include <asm/pdcpat.h>
 142#include <asm/page.h>
 143#include <asm/io.h>		/* read/write functions */
 144#ifdef CONFIG_SUPERIO
 145#include <asm/superio.h>
 146#endif
 147
 148#include <asm/ropes.h>
 149#include "iosapic_private.h"
 150
 151#define MODULE_NAME "iosapic"
 152
 153/* "local" compile flags */
 154#undef PCI_BRIDGE_FUNCS
 155#undef DEBUG_IOSAPIC
 156#undef DEBUG_IOSAPIC_IRT
 157
 158
 159#ifdef DEBUG_IOSAPIC
 160#define DBG(x...) printk(x)
 161#else /* DEBUG_IOSAPIC */
 162#define DBG(x...)
 163#endif /* DEBUG_IOSAPIC */
 164
 165#ifdef DEBUG_IOSAPIC_IRT
 166#define DBG_IRT(x...) printk(x)
 167#else
 168#define DBG_IRT(x...)
 169#endif
 170
 171#ifdef CONFIG_64BIT
 172#define COMPARE_IRTE_ADDR(irte, hpa)	((irte)->dest_iosapic_addr == (hpa))
 173#else
 174#define COMPARE_IRTE_ADDR(irte, hpa)	\
 175		((irte)->dest_iosapic_addr == ((hpa) | 0xffffffff00000000ULL))
 176#endif
 177
 178#define IOSAPIC_REG_SELECT              0x00
 179#define IOSAPIC_REG_WINDOW              0x10
 180#define IOSAPIC_REG_EOI                 0x40
 181
 182#define IOSAPIC_REG_VERSION		0x1
 183
 184#define IOSAPIC_IRDT_ENTRY(idx)		(0x10+(idx)*2)
 185#define IOSAPIC_IRDT_ENTRY_HI(idx)	(0x11+(idx)*2)
 186
 187static inline unsigned int iosapic_read(void __iomem *iosapic, unsigned int reg)
 188{
 189	writel(reg, iosapic + IOSAPIC_REG_SELECT);
 190	return readl(iosapic + IOSAPIC_REG_WINDOW);
 191}
 192
 193static inline void iosapic_write(void __iomem *iosapic, unsigned int reg, u32 val)
 194{
 195	writel(reg, iosapic + IOSAPIC_REG_SELECT);
 196	writel(val, iosapic + IOSAPIC_REG_WINDOW);
 197}
 198
 199#define IOSAPIC_VERSION_MASK	0x000000ff
 200#define	IOSAPIC_VERSION(ver)	((int) (ver & IOSAPIC_VERSION_MASK))
 201
 202#define IOSAPIC_MAX_ENTRY_MASK          0x00ff0000
 203#define IOSAPIC_MAX_ENTRY_SHIFT         0x10
 204#define	IOSAPIC_IRDT_MAX_ENTRY(ver)	\
 205	(int) (((ver) & IOSAPIC_MAX_ENTRY_MASK) >> IOSAPIC_MAX_ENTRY_SHIFT)
 206
 207/* bits in the "low" I/O Sapic IRdT entry */
 208#define IOSAPIC_IRDT_ENABLE       0x10000
 209#define IOSAPIC_IRDT_PO_LOW       0x02000
 210#define IOSAPIC_IRDT_LEVEL_TRIG   0x08000
 211#define IOSAPIC_IRDT_MODE_LPRI    0x00100
 212
 213/* bits in the "high" I/O Sapic IRdT entry */
 214#define IOSAPIC_IRDT_ID_EID_SHIFT              0x10
 215
 216
 217static DEFINE_SPINLOCK(iosapic_lock);
 218
 219static inline void iosapic_eoi(void __iomem *addr, unsigned int data)
 220{
 221	__raw_writel(data, addr);
 222}
 223
 224/*
 225** REVISIT: future platforms may have more than one IRT.
 226** If so, the following three fields form a structure which
 227** then be linked into a list. Names are chosen to make searching
 228** for them easy - not necessarily accurate (eg "cell").
 229**
 230** Alternative: iosapic_info could point to the IRT it's in.
 231** iosapic_register() could search a list of IRT's.
 232*/
 233static struct irt_entry *irt_cell;
 234static size_t irt_num_entry;
 235
 236static struct irt_entry *iosapic_alloc_irt(int num_entries)
 237{
 238	unsigned long a;
 239
 240	/* The IRT needs to be 8-byte aligned for the PDC call. 
 241	 * Normally kmalloc would guarantee larger alignment, but
 242	 * if CONFIG_DEBUG_SLAB is enabled, then we can get only
 243	 * 4-byte alignment on 32-bit kernels
 244	 */
 245	a = (unsigned long)kmalloc(sizeof(struct irt_entry) * num_entries + 8, GFP_KERNEL);
 246	a = (a + 7UL) & ~7UL;
 247	return (struct irt_entry *)a;
 248}
 249
 250/**
 251 * iosapic_load_irt - Fill in the interrupt routing table
 252 * @cell_num: The cell number of the CPU we're currently executing on
 253 * @irt: The address to place the new IRT at
 254 * @return The number of entries found
 255 *
 256 * The "Get PCI INT Routing Table Size" option returns the number of 
 257 * entries in the PCI interrupt routing table for the cell specified 
 258 * in the cell_number argument.  The cell number must be for a cell 
 259 * within the caller's protection domain.
 260 *
 261 * The "Get PCI INT Routing Table" option returns, for the cell 
 262 * specified in the cell_number argument, the PCI interrupt routing 
 263 * table in the caller allocated memory pointed to by mem_addr.
 264 * We assume the IRT only contains entries for I/O SAPIC and
 265 * calculate the size based on the size of I/O sapic entries.
 266 *
 267 * The PCI interrupt routing table entry format is derived from the
 268 * IA64 SAL Specification 2.4.   The PCI interrupt routing table defines
 269 * the routing of PCI interrupt signals between the PCI device output
 270 * "pins" and the IO SAPICs' input "lines" (including core I/O PCI
 271 * devices).  This table does NOT include information for devices/slots
 272 * behind PCI to PCI bridges. See PCI to PCI Bridge Architecture Spec.
 273 * for the architected method of routing of IRQ's behind PPB's.
 274 */
 275
 276
 277static int __init
 278iosapic_load_irt(unsigned long cell_num, struct irt_entry **irt)
 279{
 280	long status;              /* PDC return value status */
 281	struct irt_entry *table;  /* start of interrupt routing tbl */
 282	unsigned long num_entries = 0UL;
 283
 284	BUG_ON(!irt);
 285
 286	if (is_pdc_pat()) {
 287		/* Use pat pdc routine to get interrupt routing table size */
 288		DBG("calling get_irt_size (cell %ld)\n", cell_num);
 289		status = pdc_pat_get_irt_size(&num_entries, cell_num);
 290		DBG("get_irt_size: %ld\n", status);
 291
 292		BUG_ON(status != PDC_OK);
 293		BUG_ON(num_entries == 0);
 294
 295		/*
 296		** allocate memory for interrupt routing table
 297		** This interface isn't really right. We are assuming
 298		** the contents of the table are exclusively
 299		** for I/O sapic devices.
 300		*/
 301		table = iosapic_alloc_irt(num_entries);
 302		if (table == NULL) {
 303			printk(KERN_WARNING MODULE_NAME ": read_irt : can "
 304					"not alloc mem for IRT\n");
 305			return 0;
 306		}
 307
 308		/* get PCI INT routing table */
 309		status = pdc_pat_get_irt(table, cell_num);
 310		DBG("pdc_pat_get_irt: %ld\n", status);
 311		WARN_ON(status != PDC_OK);
 312	} else {
 313		/*
 314		** C3000/J5000 (and similar) platforms with Sprockets PDC
 315		** will return exactly one IRT for all iosapics.
 316		** So if we have one, don't need to get it again.
 317		*/
 318		if (irt_cell)
 319			return 0;
 320
 321		/* Should be using the Elroy's HPA, but it's ignored anyway */
 322		status = pdc_pci_irt_size(&num_entries, 0);
 323		DBG("pdc_pci_irt_size: %ld\n", status);
 324
 325		if (status != PDC_OK) {
 326			/* Not a "legacy" system with I/O SAPIC either */
 327			return 0;
 328		}
 329
 330		BUG_ON(num_entries == 0);
 331
 332		table = iosapic_alloc_irt(num_entries);
 333		if (!table) {
 334			printk(KERN_WARNING MODULE_NAME ": read_irt : can "
 335					"not alloc mem for IRT\n");
 336			return 0;
 337		}
 338
 339		/* HPA ignored by this call too. */
 340		status = pdc_pci_irt(num_entries, 0, table);
 341		BUG_ON(status != PDC_OK);
 342	}
 343
 344	/* return interrupt table address */
 345	*irt = table;
 346
 347#ifdef DEBUG_IOSAPIC_IRT
 348{
 349	struct irt_entry *p = table;
 350	int i;
 351
 352	printk(MODULE_NAME " Interrupt Routing Table (cell %ld)\n", cell_num);
 353	printk(MODULE_NAME " start = 0x%p num_entries %ld entry_size %d\n",
 354		table,
 355		num_entries,
 356		(int) sizeof(struct irt_entry));
 357
 358	for (i = 0 ; i < num_entries ; i++, p++) {
 359		printk(MODULE_NAME " %02x %02x %02x %02x %02x %02x %02x %02x %08x%08x\n",
 360		p->entry_type, p->entry_length, p->interrupt_type,
 361		p->polarity_trigger, p->src_bus_irq_devno, p->src_bus_id,
 362		p->src_seg_id, p->dest_iosapic_intin,
 363		((u32 *) p)[2],
 364		((u32 *) p)[3]
 365		);
 366	}
 367}
 368#endif /* DEBUG_IOSAPIC_IRT */
 369
 370	return num_entries;
 371}
 372
 373
 374
 375void __init iosapic_init(void)
 376{
 377	unsigned long cell = 0;
 378
 379	DBG("iosapic_init()\n");
 380
 381#ifdef __LP64__
 382	if (is_pdc_pat()) {
 383		int status;
 384		struct pdc_pat_cell_num cell_info;
 385
 386		status = pdc_pat_cell_get_number(&cell_info);
 387		if (status == PDC_OK) {
 388			cell = cell_info.cell_num;
 389		}
 390	}
 391#endif
 392
 393	/* get interrupt routing table for this cell */
 394	irt_num_entry = iosapic_load_irt(cell, &irt_cell);
 395	if (irt_num_entry == 0)
 396		irt_cell = NULL;	/* old PDC w/o iosapic */
 397}
 398
 399
 400/*
 401** Return the IRT entry in case we need to look something else up.
 402*/
 403static struct irt_entry *
 404irt_find_irqline(struct iosapic_info *isi, u8 slot, u8 intr_pin)
 405{
 406	struct irt_entry *i = irt_cell;
 407	int cnt;	/* track how many entries we've looked at */
 408	u8 irq_devno = (slot << IRT_DEV_SHIFT) | (intr_pin-1);
 409
 410	DBG_IRT("irt_find_irqline() SLOT %d pin %d\n", slot, intr_pin);
 411
 412	for (cnt=0; cnt < irt_num_entry; cnt++, i++) {
 413
 414		/*
 415		** Validate: entry_type, entry_length, interrupt_type
 416		**
 417		** Difference between validate vs compare is the former
 418		** should print debug info and is not expected to "fail"
 419		** on current platforms.
 420		*/
 421		if (i->entry_type != IRT_IOSAPIC_TYPE) {
 422			DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d type %d\n", i, cnt, i->entry_type);
 423			continue;
 424		}
 425		
 426		if (i->entry_length != IRT_IOSAPIC_LENGTH) {
 427			DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d  length %d\n", i, cnt, i->entry_length);
 428			continue;
 429		}
 430
 431		if (i->interrupt_type != IRT_VECTORED_INTR) {
 432			DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry  %d interrupt_type %d\n", i, cnt, i->interrupt_type);
 433			continue;
 434		}
 435
 436		if (!COMPARE_IRTE_ADDR(i, isi->isi_hpa))
 437			continue;
 438
 439		if ((i->src_bus_irq_devno & IRT_IRQ_DEVNO_MASK) != irq_devno)
 440			continue;
 441
 442		/*
 443		** Ignore: src_bus_id and rc_seg_id correlate with
 444		**         iosapic_info->isi_hpa on HP platforms.
 445		**         If needed, pass in "PFA" (aka config space addr)
 446		**         instead of slot.
 447		*/
 448
 449		/* Found it! */
 450		return i;
 451	}
 452
 453	printk(KERN_WARNING MODULE_NAME ": 0x%lx : no IRT entry for slot %d, pin %d\n",
 454			isi->isi_hpa, slot, intr_pin);
 455	return NULL;
 456}
 457
 458
 459/*
 460** xlate_pin() supports the skewing of IRQ lines done by subsidiary bridges.
 461** Legacy PDC already does this translation for us and stores it in INTR_LINE.
 462**
 463** PAT PDC needs to basically do what legacy PDC does:
 464** o read PIN
 465** o adjust PIN in case device is "behind" a PPB
 466**     (eg 4-port 100BT and SCSI/LAN "Combo Card")
 467** o convert slot/pin to I/O SAPIC input line.
 468**
 469** HP platforms only support:
 470** o one level of skewing for any number of PPBs
 471** o only support PCI-PCI Bridges.
 472*/
 473static struct irt_entry *
 474iosapic_xlate_pin(struct iosapic_info *isi, struct pci_dev *pcidev)
 475{
 476	u8 intr_pin, intr_slot;
 477
 478	pci_read_config_byte(pcidev, PCI_INTERRUPT_PIN, &intr_pin);
 479
 480	DBG_IRT("iosapic_xlate_pin(%s) SLOT %d pin %d\n",
 481		pcidev->slot_name, PCI_SLOT(pcidev->devfn), intr_pin);
 482
 483	if (intr_pin == 0) {
 484		/* The device does NOT support/use IRQ lines.  */
 485		return NULL;
 486	}
 487
 488	/* Check if pcidev behind a PPB */
 489	if (pcidev->bus->parent) {
 490		/* Convert pcidev INTR_PIN into something we
 491		** can lookup in the IRT.
 492		*/
 493#ifdef PCI_BRIDGE_FUNCS
 494		/*
 495		** Proposal #1:
 496		**
 497		** call implementation specific translation function
 498		** This is architecturally "cleaner". HP-UX doesn't
 499		** support other secondary bus types (eg. E/ISA) directly.
 500		** May be needed for other processor (eg IA64) architectures
 501		** or by some ambitous soul who wants to watch TV.
 502		*/
 503		if (pci_bridge_funcs->xlate_intr_line) {
 504			intr_pin = pci_bridge_funcs->xlate_intr_line(pcidev);
 505		}
 506#else	/* PCI_BRIDGE_FUNCS */
 507		struct pci_bus *p = pcidev->bus;
 508		/*
 509		** Proposal #2:
 510		** The "pin" is skewed ((pin + dev - 1) % 4).
 511		**
 512		** This isn't very clean since I/O SAPIC must assume:
 513		**   - all platforms only have PCI busses.
 514		**   - only PCI-PCI bridge (eg not PCI-EISA, PCI-PCMCIA)
 515		**   - IRQ routing is only skewed once regardless of
 516		**     the number of PPB's between iosapic and device.
 517		**     (Bit3 expansion chassis follows this rule)
 518		**
 519		** Advantage is it's really easy to implement.
 520		*/
 521		intr_pin = pci_swizzle_interrupt_pin(pcidev, intr_pin);
 522#endif /* PCI_BRIDGE_FUNCS */
 523
 524		/*
 525		 * Locate the host slot of the PPB.
 526		 */
 527		while (p->parent->parent)
 528			p = p->parent;
 529
 530		intr_slot = PCI_SLOT(p->self->devfn);
 531	} else {
 532		intr_slot = PCI_SLOT(pcidev->devfn);
 533	}
 534	DBG_IRT("iosapic_xlate_pin:  bus %d slot %d pin %d\n",
 535			pcidev->bus->busn_res.start, intr_slot, intr_pin);
 536
 537	return irt_find_irqline(isi, intr_slot, intr_pin);
 538}
 539
 540static void iosapic_rd_irt_entry(struct vector_info *vi , u32 *dp0, u32 *dp1)
 541{
 542	struct iosapic_info *isp = vi->iosapic;
 543	u8 idx = vi->irqline;
 544
 545	*dp0 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY(idx));
 546	*dp1 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY_HI(idx));
 547}
 548
 549
 550static void iosapic_wr_irt_entry(struct vector_info *vi, u32 dp0, u32 dp1)
 551{
 552	struct iosapic_info *isp = vi->iosapic;
 553
 554	DBG_IRT("iosapic_wr_irt_entry(): irq %d hpa %lx 0x%x 0x%x\n",
 555		vi->irqline, isp->isi_hpa, dp0, dp1);
 556
 557	iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY(vi->irqline), dp0);
 558
 559	/* Read the window register to flush the writes down to HW  */
 560	dp0 = readl(isp->addr+IOSAPIC_REG_WINDOW);
 561
 562	iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY_HI(vi->irqline), dp1);
 563
 564	/* Read the window register to flush the writes down to HW  */
 565	dp1 = readl(isp->addr+IOSAPIC_REG_WINDOW);
 566}
 567
 568/*
 569** set_irt prepares the data (dp0, dp1) according to the vector_info
 570** and target cpu (id_eid).  dp0/dp1 are then used to program I/O SAPIC
 571** IRdT for the given "vector" (aka IRQ line).
 572*/
 573static void
 574iosapic_set_irt_data( struct vector_info *vi, u32 *dp0, u32 *dp1)
 575{
 576	u32 mode = 0;
 577	struct irt_entry *p = vi->irte;
 578
 579	if ((p->polarity_trigger & IRT_PO_MASK) == IRT_ACTIVE_LO)
 580		mode |= IOSAPIC_IRDT_PO_LOW;
 581
 582	if (((p->polarity_trigger >> IRT_EL_SHIFT) & IRT_EL_MASK) == IRT_LEVEL_TRIG)
 583		mode |= IOSAPIC_IRDT_LEVEL_TRIG;
 584
 585	/*
 586	** IA64 REVISIT
 587	** PA doesn't support EXTINT or LPRIO bits.
 588	*/
 589
 590	*dp0 = mode | (u32) vi->txn_data;
 591
 592	/*
 593	** Extracting id_eid isn't a real clean way of getting it.
 594	** But the encoding is the same for both PA and IA64 platforms.
 595	*/
 596	if (is_pdc_pat()) {
 597		/*
 598		** PAT PDC just hands it to us "right".
 599		** txn_addr comes from cpu_data[x].txn_addr.
 600		*/
 601		*dp1 = (u32) (vi->txn_addr);
 602	} else {
 603		/* 
 604		** eg if base_addr == 0xfffa0000),
 605		**    we want to get 0xa0ff0000.
 606		**
 607		** eid	0x0ff00000 -> 0x00ff0000
 608		** id	0x000ff000 -> 0xff000000
 609		*/
 610		*dp1 = (((u32)vi->txn_addr & 0x0ff00000) >> 4) |
 611			(((u32)vi->txn_addr & 0x000ff000) << 12);
 612	}
 613	DBG_IRT("iosapic_set_irt_data(): 0x%x 0x%x\n", *dp0, *dp1);
 614}
 615
 616
 617static void iosapic_mask_irq(struct irq_data *d)
 618{
 619	unsigned long flags;
 620	struct vector_info *vi = irq_data_get_irq_chip_data(d);
 621	u32 d0, d1;
 622
 623	spin_lock_irqsave(&iosapic_lock, flags);
 624	iosapic_rd_irt_entry(vi, &d0, &d1);
 625	d0 |= IOSAPIC_IRDT_ENABLE;
 626	iosapic_wr_irt_entry(vi, d0, d1);
 627	spin_unlock_irqrestore(&iosapic_lock, flags);
 628}
 629
 630static void iosapic_unmask_irq(struct irq_data *d)
 631{
 632	struct vector_info *vi = irq_data_get_irq_chip_data(d);
 633	u32 d0, d1;
 634
 635	/* data is initialized by fixup_irq */
 636	WARN_ON(vi->txn_irq  == 0);
 637
 638	iosapic_set_irt_data(vi, &d0, &d1);
 639	iosapic_wr_irt_entry(vi, d0, d1);
 640
 641#ifdef DEBUG_IOSAPIC_IRT
 642{
 643	u32 *t = (u32 *) ((ulong) vi->eoi_addr & ~0xffUL);
 644	printk("iosapic_enable_irq(): regs %p", vi->eoi_addr);
 645	for ( ; t < vi->eoi_addr; t++)
 646		printk(" %x", readl(t));
 647	printk("\n");
 648}
 649
 650printk("iosapic_enable_irq(): sel ");
 651{
 652	struct iosapic_info *isp = vi->iosapic;
 653
 654	for (d0=0x10; d0<0x1e; d0++) {
 655		d1 = iosapic_read(isp->addr, d0);
 656		printk(" %x", d1);
 657	}
 658}
 659printk("\n");
 660#endif
 661
 662	/*
 663	 * Issuing I/O SAPIC an EOI causes an interrupt IFF IRQ line is
 664	 * asserted.  IRQ generally should not be asserted when a driver
 665	 * enables their IRQ. It can lead to "interesting" race conditions
 666	 * in the driver initialization sequence.
 667	 */
 668	DBG(KERN_DEBUG "enable_irq(%d): eoi(%p, 0x%x)\n", d->irq,
 669			vi->eoi_addr, vi->eoi_data);
 670	iosapic_eoi(vi->eoi_addr, vi->eoi_data);
 671}
 672
 673static void iosapic_eoi_irq(struct irq_data *d)
 674{
 675	struct vector_info *vi = irq_data_get_irq_chip_data(d);
 676
 677	iosapic_eoi(vi->eoi_addr, vi->eoi_data);
 678	cpu_eoi_irq(d);
 679}
 680
 681#ifdef CONFIG_SMP
 682static int iosapic_set_affinity_irq(struct irq_data *d,
 683				    const struct cpumask *dest, bool force)
 684{
 685	struct vector_info *vi = irq_data_get_irq_chip_data(d);
 686	u32 d0, d1, dummy_d0;
 687	unsigned long flags;
 688	int dest_cpu;
 689
 690	dest_cpu = cpu_check_affinity(d, dest);
 691	if (dest_cpu < 0)
 692		return -1;
 693
 694	cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(dest_cpu));
 695	vi->txn_addr = txn_affinity_addr(d->irq, dest_cpu);
 696
 697	spin_lock_irqsave(&iosapic_lock, flags);
 698	/* d1 contains the destination CPU, so only want to set that
 699	 * entry */
 700	iosapic_rd_irt_entry(vi, &d0, &d1);
 701	iosapic_set_irt_data(vi, &dummy_d0, &d1);
 702	iosapic_wr_irt_entry(vi, d0, d1);
 703	spin_unlock_irqrestore(&iosapic_lock, flags);
 704
 705	return 0;
 706}
 707#endif
 708
 709static struct irq_chip iosapic_interrupt_type = {
 710	.name		=	"IO-SAPIC-level",
 711	.irq_unmask	=	iosapic_unmask_irq,
 712	.irq_mask	=	iosapic_mask_irq,
 713	.irq_ack	=	cpu_ack_irq,
 714	.irq_eoi	=	iosapic_eoi_irq,
 715#ifdef CONFIG_SMP
 716	.irq_set_affinity =	iosapic_set_affinity_irq,
 717#endif
 718};
 719
 720int iosapic_fixup_irq(void *isi_obj, struct pci_dev *pcidev)
 721{
 722	struct iosapic_info *isi = isi_obj;
 723	struct irt_entry *irte = NULL;  /* only used if PAT PDC */
 724	struct vector_info *vi;
 725	int isi_line;	/* line used by device */
 726
 727	if (!isi) {
 728		printk(KERN_WARNING MODULE_NAME ": hpa not registered for %s\n",
 729			pci_name(pcidev));
 730		return -1;
 731	}
 732
 733#ifdef CONFIG_SUPERIO
 734	/*
 735	 * HACK ALERT! (non-compliant PCI device support)
 736	 *
 737	 * All SuckyIO interrupts are routed through the PIC's on function 1.
 738	 * But SuckyIO OHCI USB controller gets an IRT entry anyway because
 739	 * it advertises INT D for INT_PIN.  Use that IRT entry to get the
 740	 * SuckyIO interrupt routing for PICs on function 1 (*BLEECCHH*).
 741	 */
 742	if (is_superio_device(pcidev)) {
 743		/* We must call superio_fixup_irq() to register the pdev */
 744		pcidev->irq = superio_fixup_irq(pcidev);
 745
 746		/* Don't return if need to program the IOSAPIC's IRT... */
 747		if (PCI_FUNC(pcidev->devfn) != SUPERIO_USB_FN)
 748			return pcidev->irq;
 749	}
 750#endif /* CONFIG_SUPERIO */
 751
 752	/* lookup IRT entry for isi/slot/pin set */
 753	irte = iosapic_xlate_pin(isi, pcidev);
 754	if (!irte) {
 755		printk("iosapic: no IRTE for %s (IRQ not connected?)\n",
 756				pci_name(pcidev));
 757		return -1;
 758	}
 759	DBG_IRT("iosapic_fixup_irq(): irte %p %x %x %x %x %x %x %x %x\n",
 760		irte,
 761		irte->entry_type,
 762		irte->entry_length,
 763		irte->polarity_trigger,
 764		irte->src_bus_irq_devno,
 765		irte->src_bus_id,
 766		irte->src_seg_id,
 767		irte->dest_iosapic_intin,
 768		(u32) irte->dest_iosapic_addr);
 769	isi_line = irte->dest_iosapic_intin;
 770
 771	/* get vector info for this input line */
 772	vi = isi->isi_vector + isi_line;
 773	DBG_IRT("iosapic_fixup_irq:  line %d vi 0x%p\n", isi_line, vi);
 774
 775	/* If this IRQ line has already been setup, skip it */
 776	if (vi->irte)
 777		goto out;
 778
 779	vi->irte = irte;
 780
 781	/*
 782	 * Allocate processor IRQ
 783	 *
 784	 * XXX/FIXME The txn_alloc_irq() code and related code should be
 785	 * moved to enable_irq(). That way we only allocate processor IRQ
 786	 * bits for devices that actually have drivers claiming them.
 787	 * Right now we assign an IRQ to every PCI device present,
 788	 * regardless of whether it's used or not.
 789	 */
 790	vi->txn_irq = txn_alloc_irq(8);
 791
 792	if (vi->txn_irq < 0)
 793		panic("I/O sapic: couldn't get TXN IRQ\n");
 794
 795	/* enable_irq() will use txn_* to program IRdT */
 796	vi->txn_addr = txn_alloc_addr(vi->txn_irq);
 797	vi->txn_data = txn_alloc_data(vi->txn_irq);
 798
 799	vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
 800	vi->eoi_data = cpu_to_le32(vi->txn_data);
 801
 802	cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
 803
 804 out:
 805	pcidev->irq = vi->txn_irq;
 806
 807	DBG_IRT("iosapic_fixup_irq() %d:%d %x %x line %d irq %d\n",
 808		PCI_SLOT(pcidev->devfn), PCI_FUNC(pcidev->devfn),
 809		pcidev->vendor, pcidev->device, isi_line, pcidev->irq);
 810
 811	return pcidev->irq;
 812}
 813
 814static struct iosapic_info *iosapic_list;
 815
 816#ifdef CONFIG_64BIT
 817int iosapic_serial_irq(struct parisc_device *dev)
 818{
 819	struct iosapic_info *isi;
 820	struct irt_entry *irte;
 821	struct vector_info *vi;
 822	int cnt;
 823	int intin;
 824
 825	intin = (dev->mod_info >> 24) & 15;
 826
 827	/* lookup IRT entry for isi/slot/pin set */
 828	for (cnt = 0; cnt < irt_num_entry; cnt++) {
 829		irte = &irt_cell[cnt];
 830		if (COMPARE_IRTE_ADDR(irte, dev->mod0) &&
 831		    irte->dest_iosapic_intin == intin)
 832			break;
 833	}
 834	if (cnt >= irt_num_entry)
 835		return 0; /* no irq found, force polling */
 836
 837	DBG_IRT("iosapic_serial_irq(): irte %p %x %x %x %x %x %x %x %x\n",
 838		irte,
 839		irte->entry_type,
 840		irte->entry_length,
 841		irte->polarity_trigger,
 842		irte->src_bus_irq_devno,
 843		irte->src_bus_id,
 844		irte->src_seg_id,
 845		irte->dest_iosapic_intin,
 846		(u32) irte->dest_iosapic_addr);
 847
 848	/* search for iosapic */
 849	for (isi = iosapic_list; isi; isi = isi->isi_next)
 850		if (isi->isi_hpa == dev->mod0)
 851			break;
 852	if (!isi)
 853		return 0; /* no iosapic found, force polling */
 854
 855	/* get vector info for this input line */
 856	vi = isi->isi_vector + intin;
 857	DBG_IRT("iosapic_serial_irq:  line %d vi 0x%p\n", iosapic_intin, vi);
 858
 859	/* If this IRQ line has already been setup, skip it */
 860	if (vi->irte)
 861		goto out;
 862
 863	vi->irte = irte;
 864
 865	/*
 866	 * Allocate processor IRQ
 867	 *
 868	 * XXX/FIXME The txn_alloc_irq() code and related code should be
 869	 * moved to enable_irq(). That way we only allocate processor IRQ
 870	 * bits for devices that actually have drivers claiming them.
 871	 * Right now we assign an IRQ to every PCI device present,
 872	 * regardless of whether it's used or not.
 873	 */
 874	vi->txn_irq = txn_alloc_irq(8);
 875
 876	if (vi->txn_irq < 0)
 877		panic("I/O sapic: couldn't get TXN IRQ\n");
 878
 879	/* enable_irq() will use txn_* to program IRdT */
 880	vi->txn_addr = txn_alloc_addr(vi->txn_irq);
 881	vi->txn_data = txn_alloc_data(vi->txn_irq);
 882
 883	vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
 884	vi->eoi_data = cpu_to_le32(vi->txn_data);
 885
 886	cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
 887
 888 out:
 889
 890	return vi->txn_irq;
 891}
 892#endif
 893
 894
 895/*
 896** squirrel away the I/O Sapic Version
 897*/
 898static unsigned int
 899iosapic_rd_version(struct iosapic_info *isi)
 900{
 901	return iosapic_read(isi->addr, IOSAPIC_REG_VERSION);
 902}
 903
 904
 905/*
 906** iosapic_register() is called by "drivers" with an integrated I/O SAPIC.
 907** Caller must be certain they have an I/O SAPIC and know its MMIO address.
 908**
 909**	o allocate iosapic_info and add it to the list
 910**	o read iosapic version and squirrel that away
 911**	o read size of IRdT.
 912**	o allocate and initialize isi_vector[]
 913**	o allocate irq region
 914*/
 915void *iosapic_register(unsigned long hpa)
 916{
 917	struct iosapic_info *isi = NULL;
 918	struct irt_entry *irte = irt_cell;
 919	struct vector_info *vip;
 920	int cnt;	/* track how many entries we've looked at */
 921
 922	/*
 923	 * Astro based platforms can only support PCI OLARD if they implement
 924	 * PAT PDC.  Legacy PDC omits LBAs with no PCI devices from the IRT.
 925	 * Search the IRT and ignore iosapic's which aren't in the IRT.
 926	 */
 927	for (cnt=0; cnt < irt_num_entry; cnt++, irte++) {
 928		WARN_ON(IRT_IOSAPIC_TYPE != irte->entry_type);
 929		if (COMPARE_IRTE_ADDR(irte, hpa))
 930			break;
 931	}
 932
 933	if (cnt >= irt_num_entry) {
 934		DBG("iosapic_register() ignoring 0x%lx (NOT FOUND)\n", hpa);
 935		return NULL;
 936	}
 937
 938	isi = kzalloc(sizeof(struct iosapic_info), GFP_KERNEL);
 939	if (!isi) {
 940		BUG();
 941		return NULL;
 942	}
 943
 944	isi->addr = ioremap_nocache(hpa, 4096);
 945	isi->isi_hpa = hpa;
 946	isi->isi_version = iosapic_rd_version(isi);
 947	isi->isi_num_vectors = IOSAPIC_IRDT_MAX_ENTRY(isi->isi_version) + 1;
 948
 949	vip = isi->isi_vector = kcalloc(isi->isi_num_vectors,
 950					sizeof(struct vector_info), GFP_KERNEL);
 951	if (vip == NULL) {
 952		kfree(isi);
 953		return NULL;
 954	}
 955
 956	for (cnt=0; cnt < isi->isi_num_vectors; cnt++, vip++) {
 957		vip->irqline = (unsigned char) cnt;
 958		vip->iosapic = isi;
 959	}
 960	isi->isi_next = iosapic_list;
 961	iosapic_list = isi;
 962	return isi;
 963}
 964
 965
 966#ifdef DEBUG_IOSAPIC
 967
 968static void
 969iosapic_prt_irt(void *irt, long num_entry)
 970{
 971	unsigned int i, *irp = (unsigned int *) irt;
 972
 973
 974	printk(KERN_DEBUG MODULE_NAME ": Interrupt Routing Table (%lx entries)\n", num_entry);
 975
 976	for (i=0; i<num_entry; i++, irp += 4) {
 977		printk(KERN_DEBUG "%p : %2d %.8x %.8x %.8x %.8x\n",
 978					irp, i, irp[0], irp[1], irp[2], irp[3]);
 979	}
 980}
 981
 982
 983static void
 984iosapic_prt_vi(struct vector_info *vi)
 985{
 986	printk(KERN_DEBUG MODULE_NAME ": vector_info[%d] is at %p\n", vi->irqline, vi);
 987	printk(KERN_DEBUG "\t\tstatus:	 %.4x\n", vi->status);
 988	printk(KERN_DEBUG "\t\ttxn_irq:  %d\n",  vi->txn_irq);
 989	printk(KERN_DEBUG "\t\ttxn_addr: %lx\n", vi->txn_addr);
 990	printk(KERN_DEBUG "\t\ttxn_data: %lx\n", vi->txn_data);
 991	printk(KERN_DEBUG "\t\teoi_addr: %p\n",  vi->eoi_addr);
 992	printk(KERN_DEBUG "\t\teoi_data: %x\n",  vi->eoi_data);
 993}
 994
 995
 996static void
 997iosapic_prt_isi(struct iosapic_info *isi)
 998{
 999	printk(KERN_DEBUG MODULE_NAME ": io_sapic_info at %p\n", isi);
1000	printk(KERN_DEBUG "\t\tisi_hpa:       %lx\n", isi->isi_hpa);
1001	printk(KERN_DEBUG "\t\tisi_status:    %x\n", isi->isi_status);
1002	printk(KERN_DEBUG "\t\tisi_version:   %x\n", isi->isi_version);
1003	printk(KERN_DEBUG "\t\tisi_vector:    %p\n", isi->isi_vector);
1004}
1005#endif /* DEBUG_IOSAPIC */
v3.5.6
  1/*
  2** I/O Sapic Driver - PCI interrupt line support
  3**
  4**      (c) Copyright 1999 Grant Grundler
  5**      (c) Copyright 1999 Hewlett-Packard Company
  6**
  7**      This program is free software; you can redistribute it and/or modify
  8**      it under the terms of the GNU General Public License as published by
  9**      the Free Software Foundation; either version 2 of the License, or
 10**      (at your option) any later version.
 11**
 12** The I/O sapic driver manages the Interrupt Redirection Table which is
 13** the control logic to convert PCI line based interrupts into a Message
 14** Signaled Interrupt (aka Transaction Based Interrupt, TBI).
 15**
 16** Acronyms
 17** --------
 18** HPA  Hard Physical Address (aka MMIO address)
 19** IRQ  Interrupt ReQuest. Implies Line based interrupt.
 20** IRT	Interrupt Routing Table (provided by PAT firmware)
 21** IRdT Interrupt Redirection Table. IRQ line to TXN ADDR/DATA
 22**      table which is implemented in I/O SAPIC.
 23** ISR  Interrupt Service Routine. aka Interrupt handler.
 24** MSI	Message Signaled Interrupt. PCI 2.2 functionality.
 25**      aka Transaction Based Interrupt (or TBI).
 26** PA   Precision Architecture. HP's RISC architecture.
 27** RISC Reduced Instruction Set Computer.
 28**
 29**
 30** What's a Message Signalled Interrupt?
 31** -------------------------------------
 32** MSI is a write transaction which targets a processor and is similar
 33** to a processor write to memory or MMIO. MSIs can be generated by I/O
 34** devices as well as processors and require *architecture* to work.
 35**
 36** PA only supports MSI. So I/O subsystems must either natively generate
 37** MSIs (e.g. GSC or HP-PB) or convert line based interrupts into MSIs
 38** (e.g. PCI and EISA).  IA64 supports MSIs via a "local SAPIC" which
 39** acts on behalf of a processor.
 40**
 41** MSI allows any I/O device to interrupt any processor. This makes
 42** load balancing of the interrupt processing possible on an SMP platform.
 43** Interrupts are also ordered WRT to DMA data.  It's possible on I/O
 44** coherent systems to completely eliminate PIO reads from the interrupt
 45** path. The device and driver must be designed and implemented to
 46** guarantee all DMA has been issued (issues about atomicity here)
 47** before the MSI is issued. I/O status can then safely be read from
 48** DMA'd data by the ISR.
 49**
 50**
 51** PA Firmware
 52** -----------
 53** PA-RISC platforms have two fundamentally different types of firmware.
 54** For PCI devices, "Legacy" PDC initializes the "INTERRUPT_LINE" register
 55** and BARs similar to a traditional PC BIOS.
 56** The newer "PAT" firmware supports PDC calls which return tables.
 57** PAT firmware only initializes the PCI Console and Boot interface.
 58** With these tables, the OS can program all other PCI devices.
 59**
 60** One such PAT PDC call returns the "Interrupt Routing Table" (IRT).
 61** The IRT maps each PCI slot's INTA-D "output" line to an I/O SAPIC
 62** input line.  If the IRT is not available, this driver assumes
 63** INTERRUPT_LINE register has been programmed by firmware. The latter
 64** case also means online addition of PCI cards can NOT be supported
 65** even if HW support is present.
 66**
 67** All platforms with PAT firmware to date (Oct 1999) use one Interrupt
 68** Routing Table for the entire platform.
 69**
 70** Where's the iosapic?
 71** --------------------
 72** I/O sapic is part of the "Core Electronics Complex". And on HP platforms
 73** it's integrated as part of the PCI bus adapter, "lba".  So no bus walk
 74** will discover I/O Sapic. I/O Sapic driver learns about each device
 75** when lba driver advertises the presence of the I/O sapic by calling
 76** iosapic_register().
 77**
 78**
 79** IRQ handling notes
 80** ------------------
 81** The IO-SAPIC can indicate to the CPU which interrupt was asserted.
 82** So, unlike the GSC-ASIC and Dino, we allocate one CPU interrupt per
 83** IO-SAPIC interrupt and call the device driver's handler directly.
 84** The IO-SAPIC driver hijacks the CPU interrupt handler so it can
 85** issue the End Of Interrupt command to the IO-SAPIC.
 86**
 87** Overview of exported iosapic functions
 88** --------------------------------------
 89** (caveat: code isn't finished yet - this is just the plan)
 90**
 91** iosapic_init:
 92**   o initialize globals (lock, etc)
 93**   o try to read IRT. Presence of IRT determines if this is
 94**     a PAT platform or not.
 95**
 96** iosapic_register():
 97**   o create iosapic_info instance data structure
 98**   o allocate vector_info array for this iosapic
 99**   o initialize vector_info - read corresponding IRdT?
100**
101** iosapic_xlate_pin: (only called by fixup_irq for PAT platform)
102**   o intr_pin = read cfg (INTERRUPT_PIN);
103**   o if (device under PCI-PCI bridge)
104**               translate slot/pin
105**
106** iosapic_fixup_irq:
107**   o if PAT platform (IRT present)
108**	   intr_pin = iosapic_xlate_pin(isi,pcidev):
109**         intr_line = find IRT entry(isi, PCI_SLOT(pcidev), intr_pin)
110**         save IRT entry into vector_info later
111**         write cfg INTERRUPT_LINE (with intr_line)?
112**     else
113**         intr_line = pcidev->irq
114**         IRT pointer = NULL
115**     endif
116**   o locate vector_info (needs: isi, intr_line)
117**   o allocate processor "irq" and get txn_addr/data
118**   o request_irq(processor_irq,  iosapic_interrupt, vector_info,...)
119**
120** iosapic_enable_irq:
121**   o clear any pending IRQ on that line
122**   o enable IRdT - call enable_irq(vector[line]->processor_irq)
123**   o write EOI in case line is already asserted.
124**
125** iosapic_disable_irq:
126**   o disable IRdT - call disable_irq(vector[line]->processor_irq)
127*/
128
129
130/* FIXME: determine which include files are really needed */
131#include <linux/types.h>
132#include <linux/kernel.h>
133#include <linux/spinlock.h>
134#include <linux/pci.h>
135#include <linux/init.h>
136#include <linux/slab.h>
137#include <linux/interrupt.h>
138
139#include <asm/byteorder.h>	/* get in-line asm for swab */
140#include <asm/pdc.h>
141#include <asm/pdcpat.h>
142#include <asm/page.h>
143#include <asm/io.h>		/* read/write functions */
144#ifdef CONFIG_SUPERIO
145#include <asm/superio.h>
146#endif
147
148#include <asm/ropes.h>
149#include "./iosapic_private.h"
150
151#define MODULE_NAME "iosapic"
152
153/* "local" compile flags */
154#undef PCI_BRIDGE_FUNCS
155#undef DEBUG_IOSAPIC
156#undef DEBUG_IOSAPIC_IRT
157
158
159#ifdef DEBUG_IOSAPIC
160#define DBG(x...) printk(x)
161#else /* DEBUG_IOSAPIC */
162#define DBG(x...)
163#endif /* DEBUG_IOSAPIC */
164
165#ifdef DEBUG_IOSAPIC_IRT
166#define DBG_IRT(x...) printk(x)
167#else
168#define DBG_IRT(x...)
169#endif
170
171#ifdef CONFIG_64BIT
172#define COMPARE_IRTE_ADDR(irte, hpa)	((irte)->dest_iosapic_addr == (hpa))
173#else
174#define COMPARE_IRTE_ADDR(irte, hpa)	\
175		((irte)->dest_iosapic_addr == ((hpa) | 0xffffffff00000000ULL))
176#endif
177
178#define IOSAPIC_REG_SELECT              0x00
179#define IOSAPIC_REG_WINDOW              0x10
180#define IOSAPIC_REG_EOI                 0x40
181
182#define IOSAPIC_REG_VERSION		0x1
183
184#define IOSAPIC_IRDT_ENTRY(idx)		(0x10+(idx)*2)
185#define IOSAPIC_IRDT_ENTRY_HI(idx)	(0x11+(idx)*2)
186
187static inline unsigned int iosapic_read(void __iomem *iosapic, unsigned int reg)
188{
189	writel(reg, iosapic + IOSAPIC_REG_SELECT);
190	return readl(iosapic + IOSAPIC_REG_WINDOW);
191}
192
193static inline void iosapic_write(void __iomem *iosapic, unsigned int reg, u32 val)
194{
195	writel(reg, iosapic + IOSAPIC_REG_SELECT);
196	writel(val, iosapic + IOSAPIC_REG_WINDOW);
197}
198
199#define IOSAPIC_VERSION_MASK	0x000000ff
200#define	IOSAPIC_VERSION(ver)	((int) (ver & IOSAPIC_VERSION_MASK))
201
202#define IOSAPIC_MAX_ENTRY_MASK          0x00ff0000
203#define IOSAPIC_MAX_ENTRY_SHIFT         0x10
204#define	IOSAPIC_IRDT_MAX_ENTRY(ver)	\
205	(int) (((ver) & IOSAPIC_MAX_ENTRY_MASK) >> IOSAPIC_MAX_ENTRY_SHIFT)
206
207/* bits in the "low" I/O Sapic IRdT entry */
208#define IOSAPIC_IRDT_ENABLE       0x10000
209#define IOSAPIC_IRDT_PO_LOW       0x02000
210#define IOSAPIC_IRDT_LEVEL_TRIG   0x08000
211#define IOSAPIC_IRDT_MODE_LPRI    0x00100
212
213/* bits in the "high" I/O Sapic IRdT entry */
214#define IOSAPIC_IRDT_ID_EID_SHIFT              0x10
215
216
217static DEFINE_SPINLOCK(iosapic_lock);
218
219static inline void iosapic_eoi(void __iomem *addr, unsigned int data)
220{
221	__raw_writel(data, addr);
222}
223
224/*
225** REVISIT: future platforms may have more than one IRT.
226** If so, the following three fields form a structure which
227** then be linked into a list. Names are chosen to make searching
228** for them easy - not necessarily accurate (eg "cell").
229**
230** Alternative: iosapic_info could point to the IRT it's in.
231** iosapic_register() could search a list of IRT's.
232*/
233static struct irt_entry *irt_cell;
234static size_t irt_num_entry;
235
236static struct irt_entry *iosapic_alloc_irt(int num_entries)
237{
238	unsigned long a;
239
240	/* The IRT needs to be 8-byte aligned for the PDC call. 
241	 * Normally kmalloc would guarantee larger alignment, but
242	 * if CONFIG_DEBUG_SLAB is enabled, then we can get only
243	 * 4-byte alignment on 32-bit kernels
244	 */
245	a = (unsigned long)kmalloc(sizeof(struct irt_entry) * num_entries + 8, GFP_KERNEL);
246	a = (a + 7UL) & ~7UL;
247	return (struct irt_entry *)a;
248}
249
250/**
251 * iosapic_load_irt - Fill in the interrupt routing table
252 * @cell_num: The cell number of the CPU we're currently executing on
253 * @irt: The address to place the new IRT at
254 * @return The number of entries found
255 *
256 * The "Get PCI INT Routing Table Size" option returns the number of 
257 * entries in the PCI interrupt routing table for the cell specified 
258 * in the cell_number argument.  The cell number must be for a cell 
259 * within the caller's protection domain.
260 *
261 * The "Get PCI INT Routing Table" option returns, for the cell 
262 * specified in the cell_number argument, the PCI interrupt routing 
263 * table in the caller allocated memory pointed to by mem_addr.
264 * We assume the IRT only contains entries for I/O SAPIC and
265 * calculate the size based on the size of I/O sapic entries.
266 *
267 * The PCI interrupt routing table entry format is derived from the
268 * IA64 SAL Specification 2.4.   The PCI interrupt routing table defines
269 * the routing of PCI interrupt signals between the PCI device output
270 * "pins" and the IO SAPICs' input "lines" (including core I/O PCI
271 * devices).  This table does NOT include information for devices/slots
272 * behind PCI to PCI bridges. See PCI to PCI Bridge Architecture Spec.
273 * for the architected method of routing of IRQ's behind PPB's.
274 */
275
276
277static int __init
278iosapic_load_irt(unsigned long cell_num, struct irt_entry **irt)
279{
280	long status;              /* PDC return value status */
281	struct irt_entry *table;  /* start of interrupt routing tbl */
282	unsigned long num_entries = 0UL;
283
284	BUG_ON(!irt);
285
286	if (is_pdc_pat()) {
287		/* Use pat pdc routine to get interrupt routing table size */
288		DBG("calling get_irt_size (cell %ld)\n", cell_num);
289		status = pdc_pat_get_irt_size(&num_entries, cell_num);
290		DBG("get_irt_size: %ld\n", status);
291
292		BUG_ON(status != PDC_OK);
293		BUG_ON(num_entries == 0);
294
295		/*
296		** allocate memory for interrupt routing table
297		** This interface isn't really right. We are assuming
298		** the contents of the table are exclusively
299		** for I/O sapic devices.
300		*/
301		table = iosapic_alloc_irt(num_entries);
302		if (table == NULL) {
303			printk(KERN_WARNING MODULE_NAME ": read_irt : can "
304					"not alloc mem for IRT\n");
305			return 0;
306		}
307
308		/* get PCI INT routing table */
309		status = pdc_pat_get_irt(table, cell_num);
310		DBG("pdc_pat_get_irt: %ld\n", status);
311		WARN_ON(status != PDC_OK);
312	} else {
313		/*
314		** C3000/J5000 (and similar) platforms with Sprockets PDC
315		** will return exactly one IRT for all iosapics.
316		** So if we have one, don't need to get it again.
317		*/
318		if (irt_cell)
319			return 0;
320
321		/* Should be using the Elroy's HPA, but it's ignored anyway */
322		status = pdc_pci_irt_size(&num_entries, 0);
323		DBG("pdc_pci_irt_size: %ld\n", status);
324
325		if (status != PDC_OK) {
326			/* Not a "legacy" system with I/O SAPIC either */
327			return 0;
328		}
329
330		BUG_ON(num_entries == 0);
331
332		table = iosapic_alloc_irt(num_entries);
333		if (!table) {
334			printk(KERN_WARNING MODULE_NAME ": read_irt : can "
335					"not alloc mem for IRT\n");
336			return 0;
337		}
338
339		/* HPA ignored by this call too. */
340		status = pdc_pci_irt(num_entries, 0, table);
341		BUG_ON(status != PDC_OK);
342	}
343
344	/* return interrupt table address */
345	*irt = table;
346
347#ifdef DEBUG_IOSAPIC_IRT
348{
349	struct irt_entry *p = table;
350	int i;
351
352	printk(MODULE_NAME " Interrupt Routing Table (cell %ld)\n", cell_num);
353	printk(MODULE_NAME " start = 0x%p num_entries %ld entry_size %d\n",
354		table,
355		num_entries,
356		(int) sizeof(struct irt_entry));
357
358	for (i = 0 ; i < num_entries ; i++, p++) {
359		printk(MODULE_NAME " %02x %02x %02x %02x %02x %02x %02x %02x %08x%08x\n",
360		p->entry_type, p->entry_length, p->interrupt_type,
361		p->polarity_trigger, p->src_bus_irq_devno, p->src_bus_id,
362		p->src_seg_id, p->dest_iosapic_intin,
363		((u32 *) p)[2],
364		((u32 *) p)[3]
365		);
366	}
367}
368#endif /* DEBUG_IOSAPIC_IRT */
369
370	return num_entries;
371}
372
373
374
375void __init iosapic_init(void)
376{
377	unsigned long cell = 0;
378
379	DBG("iosapic_init()\n");
380
381#ifdef __LP64__
382	if (is_pdc_pat()) {
383		int status;
384		struct pdc_pat_cell_num cell_info;
385
386		status = pdc_pat_cell_get_number(&cell_info);
387		if (status == PDC_OK) {
388			cell = cell_info.cell_num;
389		}
390	}
391#endif
392
393	/* get interrupt routing table for this cell */
394	irt_num_entry = iosapic_load_irt(cell, &irt_cell);
395	if (irt_num_entry == 0)
396		irt_cell = NULL;	/* old PDC w/o iosapic */
397}
398
399
400/*
401** Return the IRT entry in case we need to look something else up.
402*/
403static struct irt_entry *
404irt_find_irqline(struct iosapic_info *isi, u8 slot, u8 intr_pin)
405{
406	struct irt_entry *i = irt_cell;
407	int cnt;	/* track how many entries we've looked at */
408	u8 irq_devno = (slot << IRT_DEV_SHIFT) | (intr_pin-1);
409
410	DBG_IRT("irt_find_irqline() SLOT %d pin %d\n", slot, intr_pin);
411
412	for (cnt=0; cnt < irt_num_entry; cnt++, i++) {
413
414		/*
415		** Validate: entry_type, entry_length, interrupt_type
416		**
417		** Difference between validate vs compare is the former
418		** should print debug info and is not expected to "fail"
419		** on current platforms.
420		*/
421		if (i->entry_type != IRT_IOSAPIC_TYPE) {
422			DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d type %d\n", i, cnt, i->entry_type);
423			continue;
424		}
425		
426		if (i->entry_length != IRT_IOSAPIC_LENGTH) {
427			DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d  length %d\n", i, cnt, i->entry_length);
428			continue;
429		}
430
431		if (i->interrupt_type != IRT_VECTORED_INTR) {
432			DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry  %d interrupt_type %d\n", i, cnt, i->interrupt_type);
433			continue;
434		}
435
436		if (!COMPARE_IRTE_ADDR(i, isi->isi_hpa))
437			continue;
438
439		if ((i->src_bus_irq_devno & IRT_IRQ_DEVNO_MASK) != irq_devno)
440			continue;
441
442		/*
443		** Ignore: src_bus_id and rc_seg_id correlate with
444		**         iosapic_info->isi_hpa on HP platforms.
445		**         If needed, pass in "PFA" (aka config space addr)
446		**         instead of slot.
447		*/
448
449		/* Found it! */
450		return i;
451	}
452
453	printk(KERN_WARNING MODULE_NAME ": 0x%lx : no IRT entry for slot %d, pin %d\n",
454			isi->isi_hpa, slot, intr_pin);
455	return NULL;
456}
457
458
459/*
460** xlate_pin() supports the skewing of IRQ lines done by subsidiary bridges.
461** Legacy PDC already does this translation for us and stores it in INTR_LINE.
462**
463** PAT PDC needs to basically do what legacy PDC does:
464** o read PIN
465** o adjust PIN in case device is "behind" a PPB
466**     (eg 4-port 100BT and SCSI/LAN "Combo Card")
467** o convert slot/pin to I/O SAPIC input line.
468**
469** HP platforms only support:
470** o one level of skewing for any number of PPBs
471** o only support PCI-PCI Bridges.
472*/
473static struct irt_entry *
474iosapic_xlate_pin(struct iosapic_info *isi, struct pci_dev *pcidev)
475{
476	u8 intr_pin, intr_slot;
477
478	pci_read_config_byte(pcidev, PCI_INTERRUPT_PIN, &intr_pin);
479
480	DBG_IRT("iosapic_xlate_pin(%s) SLOT %d pin %d\n",
481		pcidev->slot_name, PCI_SLOT(pcidev->devfn), intr_pin);
482
483	if (intr_pin == 0) {
484		/* The device does NOT support/use IRQ lines.  */
485		return NULL;
486	}
487
488	/* Check if pcidev behind a PPB */
489	if (pcidev->bus->parent) {
490		/* Convert pcidev INTR_PIN into something we
491		** can lookup in the IRT.
492		*/
493#ifdef PCI_BRIDGE_FUNCS
494		/*
495		** Proposal #1:
496		**
497		** call implementation specific translation function
498		** This is architecturally "cleaner". HP-UX doesn't
499		** support other secondary bus types (eg. E/ISA) directly.
500		** May be needed for other processor (eg IA64) architectures
501		** or by some ambitous soul who wants to watch TV.
502		*/
503		if (pci_bridge_funcs->xlate_intr_line) {
504			intr_pin = pci_bridge_funcs->xlate_intr_line(pcidev);
505		}
506#else	/* PCI_BRIDGE_FUNCS */
507		struct pci_bus *p = pcidev->bus;
508		/*
509		** Proposal #2:
510		** The "pin" is skewed ((pin + dev - 1) % 4).
511		**
512		** This isn't very clean since I/O SAPIC must assume:
513		**   - all platforms only have PCI busses.
514		**   - only PCI-PCI bridge (eg not PCI-EISA, PCI-PCMCIA)
515		**   - IRQ routing is only skewed once regardless of
516		**     the number of PPB's between iosapic and device.
517		**     (Bit3 expansion chassis follows this rule)
518		**
519		** Advantage is it's really easy to implement.
520		*/
521		intr_pin = pci_swizzle_interrupt_pin(pcidev, intr_pin);
522#endif /* PCI_BRIDGE_FUNCS */
523
524		/*
525		 * Locate the host slot of the PPB.
526		 */
527		while (p->parent->parent)
528			p = p->parent;
529
530		intr_slot = PCI_SLOT(p->self->devfn);
531	} else {
532		intr_slot = PCI_SLOT(pcidev->devfn);
533	}
534	DBG_IRT("iosapic_xlate_pin:  bus %d slot %d pin %d\n",
535				pcidev->bus->secondary, intr_slot, intr_pin);
536
537	return irt_find_irqline(isi, intr_slot, intr_pin);
538}
539
540static void iosapic_rd_irt_entry(struct vector_info *vi , u32 *dp0, u32 *dp1)
541{
542	struct iosapic_info *isp = vi->iosapic;
543	u8 idx = vi->irqline;
544
545	*dp0 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY(idx));
546	*dp1 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY_HI(idx));
547}
548
549
550static void iosapic_wr_irt_entry(struct vector_info *vi, u32 dp0, u32 dp1)
551{
552	struct iosapic_info *isp = vi->iosapic;
553
554	DBG_IRT("iosapic_wr_irt_entry(): irq %d hpa %lx 0x%x 0x%x\n",
555		vi->irqline, isp->isi_hpa, dp0, dp1);
556
557	iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY(vi->irqline), dp0);
558
559	/* Read the window register to flush the writes down to HW  */
560	dp0 = readl(isp->addr+IOSAPIC_REG_WINDOW);
561
562	iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY_HI(vi->irqline), dp1);
563
564	/* Read the window register to flush the writes down to HW  */
565	dp1 = readl(isp->addr+IOSAPIC_REG_WINDOW);
566}
567
568/*
569** set_irt prepares the data (dp0, dp1) according to the vector_info
570** and target cpu (id_eid).  dp0/dp1 are then used to program I/O SAPIC
571** IRdT for the given "vector" (aka IRQ line).
572*/
573static void
574iosapic_set_irt_data( struct vector_info *vi, u32 *dp0, u32 *dp1)
575{
576	u32 mode = 0;
577	struct irt_entry *p = vi->irte;
578
579	if ((p->polarity_trigger & IRT_PO_MASK) == IRT_ACTIVE_LO)
580		mode |= IOSAPIC_IRDT_PO_LOW;
581
582	if (((p->polarity_trigger >> IRT_EL_SHIFT) & IRT_EL_MASK) == IRT_LEVEL_TRIG)
583		mode |= IOSAPIC_IRDT_LEVEL_TRIG;
584
585	/*
586	** IA64 REVISIT
587	** PA doesn't support EXTINT or LPRIO bits.
588	*/
589
590	*dp0 = mode | (u32) vi->txn_data;
591
592	/*
593	** Extracting id_eid isn't a real clean way of getting it.
594	** But the encoding is the same for both PA and IA64 platforms.
595	*/
596	if (is_pdc_pat()) {
597		/*
598		** PAT PDC just hands it to us "right".
599		** txn_addr comes from cpu_data[x].txn_addr.
600		*/
601		*dp1 = (u32) (vi->txn_addr);
602	} else {
603		/* 
604		** eg if base_addr == 0xfffa0000),
605		**    we want to get 0xa0ff0000.
606		**
607		** eid	0x0ff00000 -> 0x00ff0000
608		** id	0x000ff000 -> 0xff000000
609		*/
610		*dp1 = (((u32)vi->txn_addr & 0x0ff00000) >> 4) |
611			(((u32)vi->txn_addr & 0x000ff000) << 12);
612	}
613	DBG_IRT("iosapic_set_irt_data(): 0x%x 0x%x\n", *dp0, *dp1);
614}
615
616
617static void iosapic_mask_irq(struct irq_data *d)
618{
619	unsigned long flags;
620	struct vector_info *vi = irq_data_get_irq_chip_data(d);
621	u32 d0, d1;
622
623	spin_lock_irqsave(&iosapic_lock, flags);
624	iosapic_rd_irt_entry(vi, &d0, &d1);
625	d0 |= IOSAPIC_IRDT_ENABLE;
626	iosapic_wr_irt_entry(vi, d0, d1);
627	spin_unlock_irqrestore(&iosapic_lock, flags);
628}
629
630static void iosapic_unmask_irq(struct irq_data *d)
631{
632	struct vector_info *vi = irq_data_get_irq_chip_data(d);
633	u32 d0, d1;
634
635	/* data is initialized by fixup_irq */
636	WARN_ON(vi->txn_irq  == 0);
637
638	iosapic_set_irt_data(vi, &d0, &d1);
639	iosapic_wr_irt_entry(vi, d0, d1);
640
641#ifdef DEBUG_IOSAPIC_IRT
642{
643	u32 *t = (u32 *) ((ulong) vi->eoi_addr & ~0xffUL);
644	printk("iosapic_enable_irq(): regs %p", vi->eoi_addr);
645	for ( ; t < vi->eoi_addr; t++)
646		printk(" %x", readl(t));
647	printk("\n");
648}
649
650printk("iosapic_enable_irq(): sel ");
651{
652	struct iosapic_info *isp = vi->iosapic;
653
654	for (d0=0x10; d0<0x1e; d0++) {
655		d1 = iosapic_read(isp->addr, d0);
656		printk(" %x", d1);
657	}
658}
659printk("\n");
660#endif
661
662	/*
663	 * Issuing I/O SAPIC an EOI causes an interrupt IFF IRQ line is
664	 * asserted.  IRQ generally should not be asserted when a driver
665	 * enables their IRQ. It can lead to "interesting" race conditions
666	 * in the driver initialization sequence.
667	 */
668	DBG(KERN_DEBUG "enable_irq(%d): eoi(%p, 0x%x)\n", d->irq,
669			vi->eoi_addr, vi->eoi_data);
670	iosapic_eoi(vi->eoi_addr, vi->eoi_data);
671}
672
673static void iosapic_eoi_irq(struct irq_data *d)
674{
675	struct vector_info *vi = irq_data_get_irq_chip_data(d);
676
677	iosapic_eoi(vi->eoi_addr, vi->eoi_data);
678	cpu_eoi_irq(d);
679}
680
681#ifdef CONFIG_SMP
682static int iosapic_set_affinity_irq(struct irq_data *d,
683				    const struct cpumask *dest, bool force)
684{
685	struct vector_info *vi = irq_data_get_irq_chip_data(d);
686	u32 d0, d1, dummy_d0;
687	unsigned long flags;
688	int dest_cpu;
689
690	dest_cpu = cpu_check_affinity(d, dest);
691	if (dest_cpu < 0)
692		return -1;
693
694	cpumask_copy(d->affinity, cpumask_of(dest_cpu));
695	vi->txn_addr = txn_affinity_addr(d->irq, dest_cpu);
696
697	spin_lock_irqsave(&iosapic_lock, flags);
698	/* d1 contains the destination CPU, so only want to set that
699	 * entry */
700	iosapic_rd_irt_entry(vi, &d0, &d1);
701	iosapic_set_irt_data(vi, &dummy_d0, &d1);
702	iosapic_wr_irt_entry(vi, d0, d1);
703	spin_unlock_irqrestore(&iosapic_lock, flags);
704
705	return 0;
706}
707#endif
708
709static struct irq_chip iosapic_interrupt_type = {
710	.name		=	"IO-SAPIC-level",
711	.irq_unmask	=	iosapic_unmask_irq,
712	.irq_mask	=	iosapic_mask_irq,
713	.irq_ack	=	cpu_ack_irq,
714	.irq_eoi	=	iosapic_eoi_irq,
715#ifdef CONFIG_SMP
716	.irq_set_affinity =	iosapic_set_affinity_irq,
717#endif
718};
719
720int iosapic_fixup_irq(void *isi_obj, struct pci_dev *pcidev)
721{
722	struct iosapic_info *isi = isi_obj;
723	struct irt_entry *irte = NULL;  /* only used if PAT PDC */
724	struct vector_info *vi;
725	int isi_line;	/* line used by device */
726
727	if (!isi) {
728		printk(KERN_WARNING MODULE_NAME ": hpa not registered for %s\n",
729			pci_name(pcidev));
730		return -1;
731	}
732
733#ifdef CONFIG_SUPERIO
734	/*
735	 * HACK ALERT! (non-compliant PCI device support)
736	 *
737	 * All SuckyIO interrupts are routed through the PIC's on function 1.
738	 * But SuckyIO OHCI USB controller gets an IRT entry anyway because
739	 * it advertises INT D for INT_PIN.  Use that IRT entry to get the
740	 * SuckyIO interrupt routing for PICs on function 1 (*BLEECCHH*).
741	 */
742	if (is_superio_device(pcidev)) {
743		/* We must call superio_fixup_irq() to register the pdev */
744		pcidev->irq = superio_fixup_irq(pcidev);
745
746		/* Don't return if need to program the IOSAPIC's IRT... */
747		if (PCI_FUNC(pcidev->devfn) != SUPERIO_USB_FN)
748			return pcidev->irq;
749	}
750#endif /* CONFIG_SUPERIO */
751
752	/* lookup IRT entry for isi/slot/pin set */
753	irte = iosapic_xlate_pin(isi, pcidev);
754	if (!irte) {
755		printk("iosapic: no IRTE for %s (IRQ not connected?)\n",
756				pci_name(pcidev));
757		return -1;
758	}
759	DBG_IRT("iosapic_fixup_irq(): irte %p %x %x %x %x %x %x %x %x\n",
760		irte,
761		irte->entry_type,
762		irte->entry_length,
763		irte->polarity_trigger,
764		irte->src_bus_irq_devno,
765		irte->src_bus_id,
766		irte->src_seg_id,
767		irte->dest_iosapic_intin,
768		(u32) irte->dest_iosapic_addr);
769	isi_line = irte->dest_iosapic_intin;
770
771	/* get vector info for this input line */
772	vi = isi->isi_vector + isi_line;
773	DBG_IRT("iosapic_fixup_irq:  line %d vi 0x%p\n", isi_line, vi);
774
775	/* If this IRQ line has already been setup, skip it */
776	if (vi->irte)
777		goto out;
778
779	vi->irte = irte;
780
781	/*
782	 * Allocate processor IRQ
783	 *
784	 * XXX/FIXME The txn_alloc_irq() code and related code should be
785	 * moved to enable_irq(). That way we only allocate processor IRQ
786	 * bits for devices that actually have drivers claiming them.
787	 * Right now we assign an IRQ to every PCI device present,
788	 * regardless of whether it's used or not.
789	 */
790	vi->txn_irq = txn_alloc_irq(8);
791
792	if (vi->txn_irq < 0)
793		panic("I/O sapic: couldn't get TXN IRQ\n");
794
795	/* enable_irq() will use txn_* to program IRdT */
796	vi->txn_addr = txn_alloc_addr(vi->txn_irq);
797	vi->txn_data = txn_alloc_data(vi->txn_irq);
798
799	vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
800	vi->eoi_data = cpu_to_le32(vi->txn_data);
801
802	cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
803
804 out:
805	pcidev->irq = vi->txn_irq;
806
807	DBG_IRT("iosapic_fixup_irq() %d:%d %x %x line %d irq %d\n",
808		PCI_SLOT(pcidev->devfn), PCI_FUNC(pcidev->devfn),
809		pcidev->vendor, pcidev->device, isi_line, pcidev->irq);
810
811	return pcidev->irq;
812}
813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
814
815/*
816** squirrel away the I/O Sapic Version
817*/
818static unsigned int
819iosapic_rd_version(struct iosapic_info *isi)
820{
821	return iosapic_read(isi->addr, IOSAPIC_REG_VERSION);
822}
823
824
825/*
826** iosapic_register() is called by "drivers" with an integrated I/O SAPIC.
827** Caller must be certain they have an I/O SAPIC and know its MMIO address.
828**
829**	o allocate iosapic_info and add it to the list
830**	o read iosapic version and squirrel that away
831**	o read size of IRdT.
832**	o allocate and initialize isi_vector[]
833**	o allocate irq region
834*/
835void *iosapic_register(unsigned long hpa)
836{
837	struct iosapic_info *isi = NULL;
838	struct irt_entry *irte = irt_cell;
839	struct vector_info *vip;
840	int cnt;	/* track how many entries we've looked at */
841
842	/*
843	 * Astro based platforms can only support PCI OLARD if they implement
844	 * PAT PDC.  Legacy PDC omits LBAs with no PCI devices from the IRT.
845	 * Search the IRT and ignore iosapic's which aren't in the IRT.
846	 */
847	for (cnt=0; cnt < irt_num_entry; cnt++, irte++) {
848		WARN_ON(IRT_IOSAPIC_TYPE != irte->entry_type);
849		if (COMPARE_IRTE_ADDR(irte, hpa))
850			break;
851	}
852
853	if (cnt >= irt_num_entry) {
854		DBG("iosapic_register() ignoring 0x%lx (NOT FOUND)\n", hpa);
855		return NULL;
856	}
857
858	isi = kzalloc(sizeof(struct iosapic_info), GFP_KERNEL);
859	if (!isi) {
860		BUG();
861		return NULL;
862	}
863
864	isi->addr = ioremap_nocache(hpa, 4096);
865	isi->isi_hpa = hpa;
866	isi->isi_version = iosapic_rd_version(isi);
867	isi->isi_num_vectors = IOSAPIC_IRDT_MAX_ENTRY(isi->isi_version) + 1;
868
869	vip = isi->isi_vector = kcalloc(isi->isi_num_vectors,
870					sizeof(struct vector_info), GFP_KERNEL);
871	if (vip == NULL) {
872		kfree(isi);
873		return NULL;
874	}
875
876	for (cnt=0; cnt < isi->isi_num_vectors; cnt++, vip++) {
877		vip->irqline = (unsigned char) cnt;
878		vip->iosapic = isi;
879	}
 
 
880	return isi;
881}
882
883
884#ifdef DEBUG_IOSAPIC
885
886static void
887iosapic_prt_irt(void *irt, long num_entry)
888{
889	unsigned int i, *irp = (unsigned int *) irt;
890
891
892	printk(KERN_DEBUG MODULE_NAME ": Interrupt Routing Table (%lx entries)\n", num_entry);
893
894	for (i=0; i<num_entry; i++, irp += 4) {
895		printk(KERN_DEBUG "%p : %2d %.8x %.8x %.8x %.8x\n",
896					irp, i, irp[0], irp[1], irp[2], irp[3]);
897	}
898}
899
900
901static void
902iosapic_prt_vi(struct vector_info *vi)
903{
904	printk(KERN_DEBUG MODULE_NAME ": vector_info[%d] is at %p\n", vi->irqline, vi);
905	printk(KERN_DEBUG "\t\tstatus:	 %.4x\n", vi->status);
906	printk(KERN_DEBUG "\t\ttxn_irq:  %d\n",  vi->txn_irq);
907	printk(KERN_DEBUG "\t\ttxn_addr: %lx\n", vi->txn_addr);
908	printk(KERN_DEBUG "\t\ttxn_data: %lx\n", vi->txn_data);
909	printk(KERN_DEBUG "\t\teoi_addr: %p\n",  vi->eoi_addr);
910	printk(KERN_DEBUG "\t\teoi_data: %x\n",  vi->eoi_data);
911}
912
913
914static void
915iosapic_prt_isi(struct iosapic_info *isi)
916{
917	printk(KERN_DEBUG MODULE_NAME ": io_sapic_info at %p\n", isi);
918	printk(KERN_DEBUG "\t\tisi_hpa:       %lx\n", isi->isi_hpa);
919	printk(KERN_DEBUG "\t\tisi_status:    %x\n", isi->isi_status);
920	printk(KERN_DEBUG "\t\tisi_version:   %x\n", isi->isi_version);
921	printk(KERN_DEBUG "\t\tisi_vector:    %p\n", isi->isi_vector);
922}
923#endif /* DEBUG_IOSAPIC */