Linux Audio

Check our new training course

Loading...
v4.6
  1/* Intel(R) Gigabit Ethernet Linux driver
  2 * Copyright(c) 2007-2014 Intel Corporation.
  3 * This program is free software; you can redistribute it and/or modify it
  4 * under the terms and conditions of the GNU General Public License,
  5 * version 2, as published by the Free Software Foundation.
  6 *
  7 * This program is distributed in the hope it will be useful, but WITHOUT
  8 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 10 * more details.
 11 *
 12 * You should have received a copy of the GNU General Public License along with
 13 * this program; if not, see <http://www.gnu.org/licenses/>.
 14 *
 15 * The full GNU General Public License is included in this distribution in
 16 * the file called "COPYING".
 17 *
 18 * Contact Information:
 19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 21 */
 
 
 
 
 
 22
 23#include <linux/if_ether.h>
 24#include <linux/delay.h>
 25
 26#include "e1000_mac.h"
 27#include "e1000_nvm.h"
 28
 29/**
 30 *  igb_raise_eec_clk - Raise EEPROM clock
 31 *  @hw: pointer to the HW structure
 32 *  @eecd: pointer to the EEPROM
 33 *
 34 *  Enable/Raise the EEPROM clock bit.
 35 **/
 36static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
 37{
 38	*eecd = *eecd | E1000_EECD_SK;
 39	wr32(E1000_EECD, *eecd);
 40	wrfl();
 41	udelay(hw->nvm.delay_usec);
 42}
 43
 44/**
 45 *  igb_lower_eec_clk - Lower EEPROM clock
 46 *  @hw: pointer to the HW structure
 47 *  @eecd: pointer to the EEPROM
 48 *
 49 *  Clear/Lower the EEPROM clock bit.
 50 **/
 51static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
 52{
 53	*eecd = *eecd & ~E1000_EECD_SK;
 54	wr32(E1000_EECD, *eecd);
 55	wrfl();
 56	udelay(hw->nvm.delay_usec);
 57}
 58
 59/**
 60 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
 61 *  @hw: pointer to the HW structure
 62 *  @data: data to send to the EEPROM
 63 *  @count: number of bits to shift out
 64 *
 65 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 66 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 67 *  In order to do this, "data" must be broken down into bits.
 68 **/
 69static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
 70{
 71	struct e1000_nvm_info *nvm = &hw->nvm;
 72	u32 eecd = rd32(E1000_EECD);
 73	u32 mask;
 74
 75	mask = 0x01 << (count - 1);
 76	if (nvm->type == e1000_nvm_eeprom_spi)
 77		eecd |= E1000_EECD_DO;
 78
 79	do {
 80		eecd &= ~E1000_EECD_DI;
 81
 82		if (data & mask)
 83			eecd |= E1000_EECD_DI;
 84
 85		wr32(E1000_EECD, eecd);
 86		wrfl();
 87
 88		udelay(nvm->delay_usec);
 89
 90		igb_raise_eec_clk(hw, &eecd);
 91		igb_lower_eec_clk(hw, &eecd);
 92
 93		mask >>= 1;
 94	} while (mask);
 95
 96	eecd &= ~E1000_EECD_DI;
 97	wr32(E1000_EECD, eecd);
 98}
 99
100/**
101 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
102 *  @hw: pointer to the HW structure
103 *  @count: number of bits to shift in
104 *
105 *  In order to read a register from the EEPROM, we need to shift 'count' bits
106 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
107 *  the EEPROM (setting the SK bit), and then reading the value of the data out
108 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
109 *  always be clear.
110 **/
111static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
112{
113	u32 eecd;
114	u32 i;
115	u16 data;
116
117	eecd = rd32(E1000_EECD);
118
119	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
120	data = 0;
121
122	for (i = 0; i < count; i++) {
123		data <<= 1;
124		igb_raise_eec_clk(hw, &eecd);
125
126		eecd = rd32(E1000_EECD);
127
128		eecd &= ~E1000_EECD_DI;
129		if (eecd & E1000_EECD_DO)
130			data |= 1;
131
132		igb_lower_eec_clk(hw, &eecd);
133	}
134
135	return data;
136}
137
138/**
139 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
140 *  @hw: pointer to the HW structure
141 *  @ee_reg: EEPROM flag for polling
142 *
143 *  Polls the EEPROM status bit for either read or write completion based
144 *  upon the value of 'ee_reg'.
145 **/
146static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
147{
148	u32 attempts = 100000;
149	u32 i, reg = 0;
150	s32 ret_val = -E1000_ERR_NVM;
151
152	for (i = 0; i < attempts; i++) {
153		if (ee_reg == E1000_NVM_POLL_READ)
154			reg = rd32(E1000_EERD);
155		else
156			reg = rd32(E1000_EEWR);
157
158		if (reg & E1000_NVM_RW_REG_DONE) {
159			ret_val = 0;
160			break;
161		}
162
163		udelay(5);
164	}
165
166	return ret_val;
167}
168
169/**
170 *  igb_acquire_nvm - Generic request for access to EEPROM
171 *  @hw: pointer to the HW structure
172 *
173 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
174 *  Return successful if access grant bit set, else clear the request for
175 *  EEPROM access and return -E1000_ERR_NVM (-1).
176 **/
177s32 igb_acquire_nvm(struct e1000_hw *hw)
178{
179	u32 eecd = rd32(E1000_EECD);
180	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
181	s32 ret_val = 0;
182
183
184	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
185	eecd = rd32(E1000_EECD);
186
187	while (timeout) {
188		if (eecd & E1000_EECD_GNT)
189			break;
190		udelay(5);
191		eecd = rd32(E1000_EECD);
192		timeout--;
193	}
194
195	if (!timeout) {
196		eecd &= ~E1000_EECD_REQ;
197		wr32(E1000_EECD, eecd);
198		hw_dbg("Could not acquire NVM grant\n");
199		ret_val = -E1000_ERR_NVM;
200	}
201
202	return ret_val;
203}
204
205/**
206 *  igb_standby_nvm - Return EEPROM to standby state
207 *  @hw: pointer to the HW structure
208 *
209 *  Return the EEPROM to a standby state.
210 **/
211static void igb_standby_nvm(struct e1000_hw *hw)
212{
213	struct e1000_nvm_info *nvm = &hw->nvm;
214	u32 eecd = rd32(E1000_EECD);
215
216	if (nvm->type == e1000_nvm_eeprom_spi) {
217		/* Toggle CS to flush commands */
218		eecd |= E1000_EECD_CS;
219		wr32(E1000_EECD, eecd);
220		wrfl();
221		udelay(nvm->delay_usec);
222		eecd &= ~E1000_EECD_CS;
223		wr32(E1000_EECD, eecd);
224		wrfl();
225		udelay(nvm->delay_usec);
226	}
227}
228
229/**
230 *  e1000_stop_nvm - Terminate EEPROM command
231 *  @hw: pointer to the HW structure
232 *
233 *  Terminates the current command by inverting the EEPROM's chip select pin.
234 **/
235static void e1000_stop_nvm(struct e1000_hw *hw)
236{
237	u32 eecd;
238
239	eecd = rd32(E1000_EECD);
240	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
241		/* Pull CS high */
242		eecd |= E1000_EECD_CS;
243		igb_lower_eec_clk(hw, &eecd);
244	}
245}
246
247/**
248 *  igb_release_nvm - Release exclusive access to EEPROM
249 *  @hw: pointer to the HW structure
250 *
251 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
252 **/
253void igb_release_nvm(struct e1000_hw *hw)
254{
255	u32 eecd;
256
257	e1000_stop_nvm(hw);
258
259	eecd = rd32(E1000_EECD);
260	eecd &= ~E1000_EECD_REQ;
261	wr32(E1000_EECD, eecd);
262}
263
264/**
265 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
266 *  @hw: pointer to the HW structure
267 *
268 *  Setups the EEPROM for reading and writing.
269 **/
270static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
271{
272	struct e1000_nvm_info *nvm = &hw->nvm;
273	u32 eecd = rd32(E1000_EECD);
274	s32 ret_val = 0;
275	u16 timeout = 0;
276	u8 spi_stat_reg;
277
278
279	if (nvm->type == e1000_nvm_eeprom_spi) {
280		/* Clear SK and CS */
281		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
282		wr32(E1000_EECD, eecd);
283		wrfl();
284		udelay(1);
285		timeout = NVM_MAX_RETRY_SPI;
286
287		/* Read "Status Register" repeatedly until the LSB is cleared.
 
288		 * The EEPROM will signal that the command has been completed
289		 * by clearing bit 0 of the internal status register.  If it's
290		 * not cleared within 'timeout', then error out.
291		 */
292		while (timeout) {
293			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
294					       hw->nvm.opcode_bits);
295			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
296			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
297				break;
298
299			udelay(5);
300			igb_standby_nvm(hw);
301			timeout--;
302		}
303
304		if (!timeout) {
305			hw_dbg("SPI NVM Status error\n");
306			ret_val = -E1000_ERR_NVM;
307			goto out;
308		}
309	}
310
311out:
312	return ret_val;
313}
314
315/**
316 *  igb_read_nvm_spi - Read EEPROM's using SPI
317 *  @hw: pointer to the HW structure
318 *  @offset: offset of word in the EEPROM to read
319 *  @words: number of words to read
320 *  @data: word read from the EEPROM
321 *
322 *  Reads a 16 bit word from the EEPROM.
323 **/
324s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
325{
326	struct e1000_nvm_info *nvm = &hw->nvm;
327	u32 i = 0;
328	s32 ret_val;
329	u16 word_in;
330	u8 read_opcode = NVM_READ_OPCODE_SPI;
331
332	/* A check for invalid values:  offset too large, too many words,
 
333	 * and not enough words.
334	 */
335	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
336	    (words == 0)) {
337		hw_dbg("nvm parameter(s) out of bounds\n");
338		ret_val = -E1000_ERR_NVM;
339		goto out;
340	}
341
342	ret_val = nvm->ops.acquire(hw);
343	if (ret_val)
344		goto out;
345
346	ret_val = igb_ready_nvm_eeprom(hw);
347	if (ret_val)
348		goto release;
349
350	igb_standby_nvm(hw);
351
352	if ((nvm->address_bits == 8) && (offset >= 128))
353		read_opcode |= NVM_A8_OPCODE_SPI;
354
355	/* Send the READ command (opcode + addr) */
356	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
357	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
358
359	/* Read the data.  SPI NVMs increment the address with each byte
 
360	 * read and will roll over if reading beyond the end.  This allows
361	 * us to read the whole NVM from any offset
362	 */
363	for (i = 0; i < words; i++) {
364		word_in = igb_shift_in_eec_bits(hw, 16);
365		data[i] = (word_in >> 8) | (word_in << 8);
366	}
367
368release:
369	nvm->ops.release(hw);
370
371out:
372	return ret_val;
373}
374
375/**
376 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
377 *  @hw: pointer to the HW structure
378 *  @offset: offset of word in the EEPROM to read
379 *  @words: number of words to read
380 *  @data: word read from the EEPROM
381 *
382 *  Reads a 16 bit word from the EEPROM using the EERD register.
383 **/
384s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
385{
386	struct e1000_nvm_info *nvm = &hw->nvm;
387	u32 i, eerd = 0;
388	s32 ret_val = 0;
389
390	/* A check for invalid values:  offset too large, too many words,
 
391	 * and not enough words.
392	 */
393	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
394	    (words == 0)) {
395		hw_dbg("nvm parameter(s) out of bounds\n");
396		ret_val = -E1000_ERR_NVM;
397		goto out;
398	}
399
400	for (i = 0; i < words; i++) {
401		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
402			E1000_NVM_RW_REG_START;
403
404		wr32(E1000_EERD, eerd);
405		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
406		if (ret_val)
407			break;
408
409		data[i] = (rd32(E1000_EERD) >>
410			E1000_NVM_RW_REG_DATA);
411	}
412
413out:
414	return ret_val;
415}
416
417/**
418 *  igb_write_nvm_spi - Write to EEPROM using SPI
419 *  @hw: pointer to the HW structure
420 *  @offset: offset within the EEPROM to be written to
421 *  @words: number of words to write
422 *  @data: 16 bit word(s) to be written to the EEPROM
423 *
424 *  Writes data to EEPROM at offset using SPI interface.
425 *
426 *  If e1000_update_nvm_checksum is not called after this function , the
427 *  EEPROM will most likley contain an invalid checksum.
428 **/
429s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
430{
431	struct e1000_nvm_info *nvm = &hw->nvm;
432	s32 ret_val = -E1000_ERR_NVM;
433	u16 widx = 0;
434
435	/* A check for invalid values:  offset too large, too many words,
 
436	 * and not enough words.
437	 */
438	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
439	    (words == 0)) {
440		hw_dbg("nvm parameter(s) out of bounds\n");
441		return ret_val;
 
442	}
443
 
 
 
 
 
 
444	while (widx < words) {
445		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
446
447		ret_val = nvm->ops.acquire(hw);
448		if (ret_val)
449			return ret_val;
450
451		ret_val = igb_ready_nvm_eeprom(hw);
452		if (ret_val) {
453			nvm->ops.release(hw);
454			return ret_val;
455		}
456
457		igb_standby_nvm(hw);
458
459		/* Send the WRITE ENABLE command (8 bit opcode) */
460		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
461					 nvm->opcode_bits);
462
463		igb_standby_nvm(hw);
464
465		/* Some SPI eeproms use the 8th address bit embedded in the
 
466		 * opcode
467		 */
468		if ((nvm->address_bits == 8) && (offset >= 128))
469			write_opcode |= NVM_A8_OPCODE_SPI;
470
471		/* Send the Write command (8-bit opcode + addr) */
472		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
473		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
474					 nvm->address_bits);
475
476		/* Loop to allow for up to whole page write of eeprom */
477		while (widx < words) {
478			u16 word_out = data[widx];
479
480			word_out = (word_out >> 8) | (word_out << 8);
481			igb_shift_out_eec_bits(hw, word_out, 16);
482			widx++;
483
484			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
485				igb_standby_nvm(hw);
486				break;
487			}
488		}
489		usleep_range(1000, 2000);
490		nvm->ops.release(hw);
491	}
492
 
 
 
 
 
493	return ret_val;
494}
495
496/**
497 *  igb_read_part_string - Read device part number
498 *  @hw: pointer to the HW structure
499 *  @part_num: pointer to device part number
500 *  @part_num_size: size of part number buffer
501 *
502 *  Reads the product board assembly (PBA) number from the EEPROM and stores
503 *  the value in part_num.
504 **/
505s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
506{
507	s32 ret_val;
508	u16 nvm_data;
509	u16 pointer;
510	u16 offset;
511	u16 length;
512
513	if (part_num == NULL) {
514		hw_dbg("PBA string buffer was null\n");
515		ret_val = E1000_ERR_INVALID_ARGUMENT;
516		goto out;
517	}
518
519	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
520	if (ret_val) {
521		hw_dbg("NVM Read Error\n");
522		goto out;
523	}
524
525	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
526	if (ret_val) {
527		hw_dbg("NVM Read Error\n");
528		goto out;
529	}
530
531	/* if nvm_data is not ptr guard the PBA must be in legacy format which
 
532	 * means pointer is actually our second data word for the PBA number
533	 * and we can decode it into an ascii string
534	 */
535	if (nvm_data != NVM_PBA_PTR_GUARD) {
536		hw_dbg("NVM PBA number is not stored as string\n");
537
538		/* we will need 11 characters to store the PBA */
539		if (part_num_size < 11) {
540			hw_dbg("PBA string buffer too small\n");
541			return E1000_ERR_NO_SPACE;
542		}
543
544		/* extract hex string from data and pointer */
545		part_num[0] = (nvm_data >> 12) & 0xF;
546		part_num[1] = (nvm_data >> 8) & 0xF;
547		part_num[2] = (nvm_data >> 4) & 0xF;
548		part_num[3] = nvm_data & 0xF;
549		part_num[4] = (pointer >> 12) & 0xF;
550		part_num[5] = (pointer >> 8) & 0xF;
551		part_num[6] = '-';
552		part_num[7] = 0;
553		part_num[8] = (pointer >> 4) & 0xF;
554		part_num[9] = pointer & 0xF;
555
556		/* put a null character on the end of our string */
557		part_num[10] = '\0';
558
559		/* switch all the data but the '-' to hex char */
560		for (offset = 0; offset < 10; offset++) {
561			if (part_num[offset] < 0xA)
562				part_num[offset] += '0';
563			else if (part_num[offset] < 0x10)
564				part_num[offset] += 'A' - 0xA;
565		}
566
567		goto out;
568	}
569
570	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
571	if (ret_val) {
572		hw_dbg("NVM Read Error\n");
573		goto out;
574	}
575
576	if (length == 0xFFFF || length == 0) {
577		hw_dbg("NVM PBA number section invalid length\n");
578		ret_val = E1000_ERR_NVM_PBA_SECTION;
579		goto out;
580	}
581	/* check if part_num buffer is big enough */
582	if (part_num_size < (((u32)length * 2) - 1)) {
583		hw_dbg("PBA string buffer too small\n");
584		ret_val = E1000_ERR_NO_SPACE;
585		goto out;
586	}
587
588	/* trim pba length from start of string */
589	pointer++;
590	length--;
591
592	for (offset = 0; offset < length; offset++) {
593		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
594		if (ret_val) {
595			hw_dbg("NVM Read Error\n");
596			goto out;
597		}
598		part_num[offset * 2] = (u8)(nvm_data >> 8);
599		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
600	}
601	part_num[offset * 2] = '\0';
602
603out:
604	return ret_val;
605}
606
607/**
608 *  igb_read_mac_addr - Read device MAC address
609 *  @hw: pointer to the HW structure
610 *
611 *  Reads the device MAC address from the EEPROM and stores the value.
612 *  Since devices with two ports use the same EEPROM, we increment the
613 *  last bit in the MAC address for the second port.
614 **/
615s32 igb_read_mac_addr(struct e1000_hw *hw)
616{
617	u32 rar_high;
618	u32 rar_low;
619	u16 i;
620
621	rar_high = rd32(E1000_RAH(0));
622	rar_low = rd32(E1000_RAL(0));
623
624	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
625		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
626
627	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
628		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
629
630	for (i = 0; i < ETH_ALEN; i++)
631		hw->mac.addr[i] = hw->mac.perm_addr[i];
632
633	return 0;
634}
635
636/**
637 *  igb_validate_nvm_checksum - Validate EEPROM checksum
638 *  @hw: pointer to the HW structure
639 *
640 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
641 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
642 **/
643s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
644{
645	s32 ret_val = 0;
646	u16 checksum = 0;
647	u16 i, nvm_data;
648
649	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
650		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
651		if (ret_val) {
652			hw_dbg("NVM Read Error\n");
653			goto out;
654		}
655		checksum += nvm_data;
656	}
657
658	if (checksum != (u16) NVM_SUM) {
659		hw_dbg("NVM Checksum Invalid\n");
660		ret_val = -E1000_ERR_NVM;
661		goto out;
662	}
663
664out:
665	return ret_val;
666}
667
668/**
669 *  igb_update_nvm_checksum - Update EEPROM checksum
670 *  @hw: pointer to the HW structure
671 *
672 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
673 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
674 *  value to the EEPROM.
675 **/
676s32 igb_update_nvm_checksum(struct e1000_hw *hw)
677{
678	s32  ret_val;
679	u16 checksum = 0;
680	u16 i, nvm_data;
681
682	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
683		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
684		if (ret_val) {
685			hw_dbg("NVM Read Error while updating checksum.\n");
686			goto out;
687		}
688		checksum += nvm_data;
689	}
690	checksum = (u16) NVM_SUM - checksum;
691	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
692	if (ret_val)
693		hw_dbg("NVM Write Error while updating checksum.\n");
694
695out:
696	return ret_val;
697}
698
699/**
700 *  igb_get_fw_version - Get firmware version information
701 *  @hw: pointer to the HW structure
702 *  @fw_vers: pointer to output structure
703 *
704 *  unsupported MAC types will return all 0 version structure
705 **/
706void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
707{
708	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
709	u8 q, hval, rem, result;
710	u16 comb_verh, comb_verl, comb_offset;
711
712	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
713
714	/* basic eeprom version numbers and bits used vary by part and by tool
715	 * used to create the nvm images. Check which data format we have.
716	 */
717	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
718	switch (hw->mac.type) {
719	case e1000_i211:
720		igb_read_invm_version(hw, fw_vers);
721		return;
722	case e1000_82575:
723	case e1000_82576:
724	case e1000_82580:
725		/* Use this format, unless EETRACK ID exists,
726		 * then use alternate format
727		 */
728		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
729			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
730			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
731					      >> NVM_MAJOR_SHIFT;
732			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
733					      >> NVM_MINOR_SHIFT;
734			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
735			goto etrack_id;
736		}
737		break;
738	case e1000_i210:
739		if (!(igb_get_flash_presence_i210(hw))) {
740			igb_read_invm_version(hw, fw_vers);
741			return;
742		}
743		/* fall through */
744	case e1000_i350:
745		/* find combo image version */
746		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
747		if ((comb_offset != 0x0) &&
748		    (comb_offset != NVM_VER_INVALID)) {
749
750			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
751					 + 1), 1, &comb_verh);
752			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
753					 1, &comb_verl);
754
755			/* get Option Rom version if it exists and is valid */
756			if ((comb_verh && comb_verl) &&
757			    ((comb_verh != NVM_VER_INVALID) &&
758			     (comb_verl != NVM_VER_INVALID))) {
759
760				fw_vers->or_valid = true;
761				fw_vers->or_major =
762					comb_verl >> NVM_COMB_VER_SHFT;
763				fw_vers->or_build =
764					(comb_verl << NVM_COMB_VER_SHFT)
765					| (comb_verh >> NVM_COMB_VER_SHFT);
766				fw_vers->or_patch =
767					comb_verh & NVM_COMB_VER_MASK;
768			}
769		}
770		break;
771	default:
772		return;
773	}
774	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
775	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
776			      >> NVM_MAJOR_SHIFT;
777
778	/* check for old style version format in newer images*/
779	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
780		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
781	} else {
782		eeprom_verl = (fw_version & NVM_MINOR_MASK)
783				>> NVM_MINOR_SHIFT;
784	}
785	/* Convert minor value to hex before assigning to output struct
786	 * Val to be converted will not be higher than 99, per tool output
787	 */
788	q = eeprom_verl / NVM_HEX_CONV;
789	hval = q * NVM_HEX_TENS;
790	rem = eeprom_verl % NVM_HEX_CONV;
791	result = hval + rem;
792	fw_vers->eep_minor = result;
793
794etrack_id:
795	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
796		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
797		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
798		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
799			| eeprom_verl;
800	}
801}
v3.5.6
  1/*******************************************************************************
  2
  3  Intel(R) Gigabit Ethernet Linux driver
  4  Copyright(c) 2007-2012 Intel Corporation.
  5
  6  This program is free software; you can redistribute it and/or modify it
  7  under the terms and conditions of the GNU General Public License,
  8  version 2, as published by the Free Software Foundation.
  9
 10  This program is distributed in the hope it will be useful, but WITHOUT
 11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13  more details.
 14
 15  You should have received a copy of the GNU General Public License along with
 16  this program; if not, write to the Free Software Foundation, Inc.,
 17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 18
 19  The full GNU General Public License is included in this distribution in
 20  the file called "COPYING".
 21
 22  Contact Information:
 23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 25
 26*******************************************************************************/
 27
 28#include <linux/if_ether.h>
 29#include <linux/delay.h>
 30
 31#include "e1000_mac.h"
 32#include "e1000_nvm.h"
 33
 34/**
 35 *  igb_raise_eec_clk - Raise EEPROM clock
 36 *  @hw: pointer to the HW structure
 37 *  @eecd: pointer to the EEPROM
 38 *
 39 *  Enable/Raise the EEPROM clock bit.
 40 **/
 41static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
 42{
 43	*eecd = *eecd | E1000_EECD_SK;
 44	wr32(E1000_EECD, *eecd);
 45	wrfl();
 46	udelay(hw->nvm.delay_usec);
 47}
 48
 49/**
 50 *  igb_lower_eec_clk - Lower EEPROM clock
 51 *  @hw: pointer to the HW structure
 52 *  @eecd: pointer to the EEPROM
 53 *
 54 *  Clear/Lower the EEPROM clock bit.
 55 **/
 56static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
 57{
 58	*eecd = *eecd & ~E1000_EECD_SK;
 59	wr32(E1000_EECD, *eecd);
 60	wrfl();
 61	udelay(hw->nvm.delay_usec);
 62}
 63
 64/**
 65 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
 66 *  @hw: pointer to the HW structure
 67 *  @data: data to send to the EEPROM
 68 *  @count: number of bits to shift out
 69 *
 70 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 71 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 72 *  In order to do this, "data" must be broken down into bits.
 73 **/
 74static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
 75{
 76	struct e1000_nvm_info *nvm = &hw->nvm;
 77	u32 eecd = rd32(E1000_EECD);
 78	u32 mask;
 79
 80	mask = 0x01 << (count - 1);
 81	if (nvm->type == e1000_nvm_eeprom_spi)
 82		eecd |= E1000_EECD_DO;
 83
 84	do {
 85		eecd &= ~E1000_EECD_DI;
 86
 87		if (data & mask)
 88			eecd |= E1000_EECD_DI;
 89
 90		wr32(E1000_EECD, eecd);
 91		wrfl();
 92
 93		udelay(nvm->delay_usec);
 94
 95		igb_raise_eec_clk(hw, &eecd);
 96		igb_lower_eec_clk(hw, &eecd);
 97
 98		mask >>= 1;
 99	} while (mask);
100
101	eecd &= ~E1000_EECD_DI;
102	wr32(E1000_EECD, eecd);
103}
104
105/**
106 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
107 *  @hw: pointer to the HW structure
108 *  @count: number of bits to shift in
109 *
110 *  In order to read a register from the EEPROM, we need to shift 'count' bits
111 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
112 *  the EEPROM (setting the SK bit), and then reading the value of the data out
113 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
114 *  always be clear.
115 **/
116static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
117{
118	u32 eecd;
119	u32 i;
120	u16 data;
121
122	eecd = rd32(E1000_EECD);
123
124	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
125	data = 0;
126
127	for (i = 0; i < count; i++) {
128		data <<= 1;
129		igb_raise_eec_clk(hw, &eecd);
130
131		eecd = rd32(E1000_EECD);
132
133		eecd &= ~E1000_EECD_DI;
134		if (eecd & E1000_EECD_DO)
135			data |= 1;
136
137		igb_lower_eec_clk(hw, &eecd);
138	}
139
140	return data;
141}
142
143/**
144 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
145 *  @hw: pointer to the HW structure
146 *  @ee_reg: EEPROM flag for polling
147 *
148 *  Polls the EEPROM status bit for either read or write completion based
149 *  upon the value of 'ee_reg'.
150 **/
151static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
152{
153	u32 attempts = 100000;
154	u32 i, reg = 0;
155	s32 ret_val = -E1000_ERR_NVM;
156
157	for (i = 0; i < attempts; i++) {
158		if (ee_reg == E1000_NVM_POLL_READ)
159			reg = rd32(E1000_EERD);
160		else
161			reg = rd32(E1000_EEWR);
162
163		if (reg & E1000_NVM_RW_REG_DONE) {
164			ret_val = 0;
165			break;
166		}
167
168		udelay(5);
169	}
170
171	return ret_val;
172}
173
174/**
175 *  igb_acquire_nvm - Generic request for access to EEPROM
176 *  @hw: pointer to the HW structure
177 *
178 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
179 *  Return successful if access grant bit set, else clear the request for
180 *  EEPROM access and return -E1000_ERR_NVM (-1).
181 **/
182s32 igb_acquire_nvm(struct e1000_hw *hw)
183{
184	u32 eecd = rd32(E1000_EECD);
185	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
186	s32 ret_val = 0;
187
188
189	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
190	eecd = rd32(E1000_EECD);
191
192	while (timeout) {
193		if (eecd & E1000_EECD_GNT)
194			break;
195		udelay(5);
196		eecd = rd32(E1000_EECD);
197		timeout--;
198	}
199
200	if (!timeout) {
201		eecd &= ~E1000_EECD_REQ;
202		wr32(E1000_EECD, eecd);
203		hw_dbg("Could not acquire NVM grant\n");
204		ret_val = -E1000_ERR_NVM;
205	}
206
207	return ret_val;
208}
209
210/**
211 *  igb_standby_nvm - Return EEPROM to standby state
212 *  @hw: pointer to the HW structure
213 *
214 *  Return the EEPROM to a standby state.
215 **/
216static void igb_standby_nvm(struct e1000_hw *hw)
217{
218	struct e1000_nvm_info *nvm = &hw->nvm;
219	u32 eecd = rd32(E1000_EECD);
220
221	if (nvm->type == e1000_nvm_eeprom_spi) {
222		/* Toggle CS to flush commands */
223		eecd |= E1000_EECD_CS;
224		wr32(E1000_EECD, eecd);
225		wrfl();
226		udelay(nvm->delay_usec);
227		eecd &= ~E1000_EECD_CS;
228		wr32(E1000_EECD, eecd);
229		wrfl();
230		udelay(nvm->delay_usec);
231	}
232}
233
234/**
235 *  e1000_stop_nvm - Terminate EEPROM command
236 *  @hw: pointer to the HW structure
237 *
238 *  Terminates the current command by inverting the EEPROM's chip select pin.
239 **/
240static void e1000_stop_nvm(struct e1000_hw *hw)
241{
242	u32 eecd;
243
244	eecd = rd32(E1000_EECD);
245	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
246		/* Pull CS high */
247		eecd |= E1000_EECD_CS;
248		igb_lower_eec_clk(hw, &eecd);
249	}
250}
251
252/**
253 *  igb_release_nvm - Release exclusive access to EEPROM
254 *  @hw: pointer to the HW structure
255 *
256 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
257 **/
258void igb_release_nvm(struct e1000_hw *hw)
259{
260	u32 eecd;
261
262	e1000_stop_nvm(hw);
263
264	eecd = rd32(E1000_EECD);
265	eecd &= ~E1000_EECD_REQ;
266	wr32(E1000_EECD, eecd);
267}
268
269/**
270 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
271 *  @hw: pointer to the HW structure
272 *
273 *  Setups the EEPROM for reading and writing.
274 **/
275static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
276{
277	struct e1000_nvm_info *nvm = &hw->nvm;
278	u32 eecd = rd32(E1000_EECD);
279	s32 ret_val = 0;
280	u16 timeout = 0;
281	u8 spi_stat_reg;
282
283
284	if (nvm->type == e1000_nvm_eeprom_spi) {
285		/* Clear SK and CS */
286		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
287		wr32(E1000_EECD, eecd);
288		wrfl();
289		udelay(1);
290		timeout = NVM_MAX_RETRY_SPI;
291
292		/*
293		 * Read "Status Register" repeatedly until the LSB is cleared.
294		 * The EEPROM will signal that the command has been completed
295		 * by clearing bit 0 of the internal status register.  If it's
296		 * not cleared within 'timeout', then error out.
297		 */
298		while (timeout) {
299			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
300						 hw->nvm.opcode_bits);
301			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
302			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
303				break;
304
305			udelay(5);
306			igb_standby_nvm(hw);
307			timeout--;
308		}
309
310		if (!timeout) {
311			hw_dbg("SPI NVM Status error\n");
312			ret_val = -E1000_ERR_NVM;
313			goto out;
314		}
315	}
316
317out:
318	return ret_val;
319}
320
321/**
322 *  igb_read_nvm_spi - Read EEPROM's using SPI
323 *  @hw: pointer to the HW structure
324 *  @offset: offset of word in the EEPROM to read
325 *  @words: number of words to read
326 *  @data: word read from the EEPROM
327 *
328 *  Reads a 16 bit word from the EEPROM.
329 **/
330s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
331{
332	struct e1000_nvm_info *nvm = &hw->nvm;
333	u32 i = 0;
334	s32 ret_val;
335	u16 word_in;
336	u8 read_opcode = NVM_READ_OPCODE_SPI;
337
338	/*
339	 * A check for invalid values:  offset too large, too many words,
340	 * and not enough words.
341	 */
342	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
343	    (words == 0)) {
344		hw_dbg("nvm parameter(s) out of bounds\n");
345		ret_val = -E1000_ERR_NVM;
346		goto out;
347	}
348
349	ret_val = nvm->ops.acquire(hw);
350	if (ret_val)
351		goto out;
352
353	ret_val = igb_ready_nvm_eeprom(hw);
354	if (ret_val)
355		goto release;
356
357	igb_standby_nvm(hw);
358
359	if ((nvm->address_bits == 8) && (offset >= 128))
360		read_opcode |= NVM_A8_OPCODE_SPI;
361
362	/* Send the READ command (opcode + addr) */
363	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
364	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
365
366	/*
367	 * Read the data.  SPI NVMs increment the address with each byte
368	 * read and will roll over if reading beyond the end.  This allows
369	 * us to read the whole NVM from any offset
370	 */
371	for (i = 0; i < words; i++) {
372		word_in = igb_shift_in_eec_bits(hw, 16);
373		data[i] = (word_in >> 8) | (word_in << 8);
374	}
375
376release:
377	nvm->ops.release(hw);
378
379out:
380	return ret_val;
381}
382
383/**
384 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
385 *  @hw: pointer to the HW structure
386 *  @offset: offset of word in the EEPROM to read
387 *  @words: number of words to read
388 *  @data: word read from the EEPROM
389 *
390 *  Reads a 16 bit word from the EEPROM using the EERD register.
391 **/
392s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
393{
394	struct e1000_nvm_info *nvm = &hw->nvm;
395	u32 i, eerd = 0;
396	s32 ret_val = 0;
397
398	/*
399	 * A check for invalid values:  offset too large, too many words,
400	 * and not enough words.
401	 */
402	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
403	    (words == 0)) {
404		hw_dbg("nvm parameter(s) out of bounds\n");
405		ret_val = -E1000_ERR_NVM;
406		goto out;
407	}
408
409	for (i = 0; i < words; i++) {
410		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
411		       E1000_NVM_RW_REG_START;
412
413		wr32(E1000_EERD, eerd);
414		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
415		if (ret_val)
416			break;
417
418		data[i] = (rd32(E1000_EERD) >>
419			E1000_NVM_RW_REG_DATA);
420	}
421
422out:
423	return ret_val;
424}
425
426/**
427 *  igb_write_nvm_spi - Write to EEPROM using SPI
428 *  @hw: pointer to the HW structure
429 *  @offset: offset within the EEPROM to be written to
430 *  @words: number of words to write
431 *  @data: 16 bit word(s) to be written to the EEPROM
432 *
433 *  Writes data to EEPROM at offset using SPI interface.
434 *
435 *  If e1000_update_nvm_checksum is not called after this function , the
436 *  EEPROM will most likley contain an invalid checksum.
437 **/
438s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
439{
440	struct e1000_nvm_info *nvm = &hw->nvm;
441	s32 ret_val;
442	u16 widx = 0;
443
444	/*
445	 * A check for invalid values:  offset too large, too many words,
446	 * and not enough words.
447	 */
448	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
449	    (words == 0)) {
450		hw_dbg("nvm parameter(s) out of bounds\n");
451		ret_val = -E1000_ERR_NVM;
452		goto out;
453	}
454
455	ret_val = hw->nvm.ops.acquire(hw);
456	if (ret_val)
457		goto out;
458
459	msleep(10);
460
461	while (widx < words) {
462		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
463
 
 
 
 
464		ret_val = igb_ready_nvm_eeprom(hw);
465		if (ret_val)
466			goto release;
 
 
467
468		igb_standby_nvm(hw);
469
470		/* Send the WRITE ENABLE command (8 bit opcode) */
471		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
472					 nvm->opcode_bits);
473
474		igb_standby_nvm(hw);
475
476		/*
477		 * Some SPI eeproms use the 8th address bit embedded in the
478		 * opcode
479		 */
480		if ((nvm->address_bits == 8) && (offset >= 128))
481			write_opcode |= NVM_A8_OPCODE_SPI;
482
483		/* Send the Write command (8-bit opcode + addr) */
484		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
485		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
486					 nvm->address_bits);
487
488		/* Loop to allow for up to whole page write of eeprom */
489		while (widx < words) {
490			u16 word_out = data[widx];
 
491			word_out = (word_out >> 8) | (word_out << 8);
492			igb_shift_out_eec_bits(hw, word_out, 16);
493			widx++;
494
495			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
496				igb_standby_nvm(hw);
497				break;
498			}
499		}
 
 
500	}
501
502	msleep(10);
503release:
504	hw->nvm.ops.release(hw);
505
506out:
507	return ret_val;
508}
509
510/**
511 *  igb_read_part_string - Read device part number
512 *  @hw: pointer to the HW structure
513 *  @part_num: pointer to device part number
514 *  @part_num_size: size of part number buffer
515 *
516 *  Reads the product board assembly (PBA) number from the EEPROM and stores
517 *  the value in part_num.
518 **/
519s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
520{
521	s32 ret_val;
522	u16 nvm_data;
523	u16 pointer;
524	u16 offset;
525	u16 length;
526
527	if (part_num == NULL) {
528		hw_dbg("PBA string buffer was null\n");
529		ret_val = E1000_ERR_INVALID_ARGUMENT;
530		goto out;
531	}
532
533	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
534	if (ret_val) {
535		hw_dbg("NVM Read Error\n");
536		goto out;
537	}
538
539	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
540	if (ret_val) {
541		hw_dbg("NVM Read Error\n");
542		goto out;
543	}
544
545	/*
546	 * if nvm_data is not ptr guard the PBA must be in legacy format which
547	 * means pointer is actually our second data word for the PBA number
548	 * and we can decode it into an ascii string
549	 */
550	if (nvm_data != NVM_PBA_PTR_GUARD) {
551		hw_dbg("NVM PBA number is not stored as string\n");
552
553		/* we will need 11 characters to store the PBA */
554		if (part_num_size < 11) {
555			hw_dbg("PBA string buffer too small\n");
556			return E1000_ERR_NO_SPACE;
557		}
558
559		/* extract hex string from data and pointer */
560		part_num[0] = (nvm_data >> 12) & 0xF;
561		part_num[1] = (nvm_data >> 8) & 0xF;
562		part_num[2] = (nvm_data >> 4) & 0xF;
563		part_num[3] = nvm_data & 0xF;
564		part_num[4] = (pointer >> 12) & 0xF;
565		part_num[5] = (pointer >> 8) & 0xF;
566		part_num[6] = '-';
567		part_num[7] = 0;
568		part_num[8] = (pointer >> 4) & 0xF;
569		part_num[9] = pointer & 0xF;
570
571		/* put a null character on the end of our string */
572		part_num[10] = '\0';
573
574		/* switch all the data but the '-' to hex char */
575		for (offset = 0; offset < 10; offset++) {
576			if (part_num[offset] < 0xA)
577				part_num[offset] += '0';
578			else if (part_num[offset] < 0x10)
579				part_num[offset] += 'A' - 0xA;
580		}
581
582		goto out;
583	}
584
585	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
586	if (ret_val) {
587		hw_dbg("NVM Read Error\n");
588		goto out;
589	}
590
591	if (length == 0xFFFF || length == 0) {
592		hw_dbg("NVM PBA number section invalid length\n");
593		ret_val = E1000_ERR_NVM_PBA_SECTION;
594		goto out;
595	}
596	/* check if part_num buffer is big enough */
597	if (part_num_size < (((u32)length * 2) - 1)) {
598		hw_dbg("PBA string buffer too small\n");
599		ret_val = E1000_ERR_NO_SPACE;
600		goto out;
601	}
602
603	/* trim pba length from start of string */
604	pointer++;
605	length--;
606
607	for (offset = 0; offset < length; offset++) {
608		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
609		if (ret_val) {
610			hw_dbg("NVM Read Error\n");
611			goto out;
612		}
613		part_num[offset * 2] = (u8)(nvm_data >> 8);
614		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
615	}
616	part_num[offset * 2] = '\0';
617
618out:
619	return ret_val;
620}
621
622/**
623 *  igb_read_mac_addr - Read device MAC address
624 *  @hw: pointer to the HW structure
625 *
626 *  Reads the device MAC address from the EEPROM and stores the value.
627 *  Since devices with two ports use the same EEPROM, we increment the
628 *  last bit in the MAC address for the second port.
629 **/
630s32 igb_read_mac_addr(struct e1000_hw *hw)
631{
632	u32 rar_high;
633	u32 rar_low;
634	u16 i;
635
636	rar_high = rd32(E1000_RAH(0));
637	rar_low = rd32(E1000_RAL(0));
638
639	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
640		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
641
642	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
643		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
644
645	for (i = 0; i < ETH_ALEN; i++)
646		hw->mac.addr[i] = hw->mac.perm_addr[i];
647
648	return 0;
649}
650
651/**
652 *  igb_validate_nvm_checksum - Validate EEPROM checksum
653 *  @hw: pointer to the HW structure
654 *
655 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
656 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
657 **/
658s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
659{
660	s32 ret_val = 0;
661	u16 checksum = 0;
662	u16 i, nvm_data;
663
664	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
665		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
666		if (ret_val) {
667			hw_dbg("NVM Read Error\n");
668			goto out;
669		}
670		checksum += nvm_data;
671	}
672
673	if (checksum != (u16) NVM_SUM) {
674		hw_dbg("NVM Checksum Invalid\n");
675		ret_val = -E1000_ERR_NVM;
676		goto out;
677	}
678
679out:
680	return ret_val;
681}
682
683/**
684 *  igb_update_nvm_checksum - Update EEPROM checksum
685 *  @hw: pointer to the HW structure
686 *
687 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
688 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
689 *  value to the EEPROM.
690 **/
691s32 igb_update_nvm_checksum(struct e1000_hw *hw)
692{
693	s32  ret_val;
694	u16 checksum = 0;
695	u16 i, nvm_data;
696
697	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
698		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
699		if (ret_val) {
700			hw_dbg("NVM Read Error while updating checksum.\n");
701			goto out;
702		}
703		checksum += nvm_data;
704	}
705	checksum = (u16) NVM_SUM - checksum;
706	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
707	if (ret_val)
708		hw_dbg("NVM Write Error while updating checksum.\n");
709
710out:
711	return ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
712}