Linux Audio

Check our new training course

Loading...
v4.6
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
 
 
 
 
  23
  24/* e1000_82575
  25 * e1000_82576
  26 */
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/types.h>
  31#include <linux/if_ether.h>
  32#include <linux/i2c.h>
  33
  34#include "e1000_mac.h"
  35#include "e1000_82575.h"
  36#include "e1000_i210.h"
  37#include "igb.h"
  38
  39static s32  igb_get_invariants_82575(struct e1000_hw *);
  40static s32  igb_acquire_phy_82575(struct e1000_hw *);
  41static void igb_release_phy_82575(struct e1000_hw *);
  42static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  43static void igb_release_nvm_82575(struct e1000_hw *);
  44static s32  igb_check_for_link_82575(struct e1000_hw *);
  45static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  46static s32  igb_init_hw_82575(struct e1000_hw *);
  47static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  48static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
 
 
  49static s32  igb_reset_hw_82575(struct e1000_hw *);
  50static s32  igb_reset_hw_82580(struct e1000_hw *);
  51static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  52static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  53static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  54static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  55static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  56static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  57static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  58static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  59static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  60						 u16 *);
  61static s32  igb_get_phy_id_82575(struct e1000_hw *);
  62static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  63static bool igb_sgmii_active_82575(struct e1000_hw *);
  64static s32  igb_reset_init_script_82575(struct e1000_hw *);
  65static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  66static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  67static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  68static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  69static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  70static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  71static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  72static const u16 e1000_82580_rxpbs_table[] = {
  73	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  74
  75/* Due to a hw errata, if the host tries to  configure the VFTA register
  76 * while performing queries from the BMC or DMA, then the VFTA in some
  77 * cases won't be written.
  78 */
  79
  80/**
  81 *  igb_write_vfta_i350 - Write value to VLAN filter table
  82 *  @hw: pointer to the HW structure
  83 *  @offset: register offset in VLAN filter table
  84 *  @value: register value written to VLAN filter table
  85 *
  86 *  Writes value at the given offset in the register array which stores
  87 *  the VLAN filter table.
  88 **/
  89static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  90{
  91	struct igb_adapter *adapter = hw->back;
  92	int i;
  93
  94	for (i = 10; i--;)
  95		array_wr32(E1000_VFTA, offset, value);
  96
  97	wrfl();
  98	adapter->shadow_vfta[offset] = value;
  99}
 100
 101/**
 102 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 103 *  @hw: pointer to the HW structure
 104 *
 105 *  Called to determine if the I2C pins are being used for I2C or as an
 106 *  external MDIO interface since the two options are mutually exclusive.
 107 **/
 108static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
 109{
 110	u32 reg = 0;
 111	bool ext_mdio = false;
 112
 113	switch (hw->mac.type) {
 114	case e1000_82575:
 115	case e1000_82576:
 116		reg = rd32(E1000_MDIC);
 117		ext_mdio = !!(reg & E1000_MDIC_DEST);
 118		break;
 119	case e1000_82580:
 120	case e1000_i350:
 121	case e1000_i354:
 122	case e1000_i210:
 123	case e1000_i211:
 124		reg = rd32(E1000_MDICNFG);
 125		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 126		break;
 127	default:
 128		break;
 129	}
 130	return ext_mdio;
 131}
 132
 133/**
 134 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 135 *  @hw: pointer to the HW structure
 136 *
 137 *  Poll the M88E1112 interfaces to see which interface achieved link.
 138 */
 139static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 140{
 141	struct e1000_phy_info *phy = &hw->phy;
 
 
 
 
 142	s32 ret_val;
 143	u16 data;
 144	u8 port = 0;
 145
 146	/* Check the copper medium. */
 147	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 148	if (ret_val)
 149		return ret_val;
 150
 151	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 152	if (ret_val)
 153		return ret_val;
 154
 155	if (data & E1000_M88E1112_STATUS_LINK)
 156		port = E1000_MEDIA_PORT_COPPER;
 157
 158	/* Check the other medium. */
 159	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 160	if (ret_val)
 161		return ret_val;
 162
 163	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 164	if (ret_val)
 165		return ret_val;
 166
 167
 168	if (data & E1000_M88E1112_STATUS_LINK)
 169		port = E1000_MEDIA_PORT_OTHER;
 170
 171	/* Determine if a swap needs to happen. */
 172	if (port && (hw->dev_spec._82575.media_port != port)) {
 173		hw->dev_spec._82575.media_port = port;
 174		hw->dev_spec._82575.media_changed = true;
 175	}
 176
 177	if (port == E1000_MEDIA_PORT_COPPER) {
 178		/* reset page to 0 */
 179		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 180		if (ret_val)
 181			return ret_val;
 182		igb_check_for_link_82575(hw);
 183	} else {
 184		igb_check_for_link_82575(hw);
 185		/* reset page to 0 */
 186		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 187		if (ret_val)
 188			return ret_val;
 189	}
 190
 191	return 0;
 192}
 193
 194/**
 195 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 196 *  @hw: pointer to the HW structure
 197 **/
 198static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 199{
 200	struct e1000_phy_info *phy = &hw->phy;
 201	s32 ret_val = 0;
 202	u32 ctrl_ext;
 203
 204	if (hw->phy.media_type != e1000_media_type_copper) {
 205		phy->type = e1000_phy_none;
 206		goto out;
 207	}
 208
 209	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 210	phy->reset_delay_us	= 100;
 211
 212	ctrl_ext = rd32(E1000_CTRL_EXT);
 213
 214	if (igb_sgmii_active_82575(hw)) {
 215		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 216		ctrl_ext |= E1000_CTRL_I2C_ENA;
 217	} else {
 218		phy->ops.reset = igb_phy_hw_reset;
 219		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 220	}
 221
 222	wr32(E1000_CTRL_EXT, ctrl_ext);
 223	igb_reset_mdicnfg_82580(hw);
 224
 225	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 226		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 227		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 228	} else {
 229		switch (hw->mac.type) {
 230		case e1000_82580:
 231		case e1000_i350:
 232		case e1000_i354:
 233		case e1000_i210:
 234		case e1000_i211:
 235			phy->ops.read_reg = igb_read_phy_reg_82580;
 236			phy->ops.write_reg = igb_write_phy_reg_82580;
 237			break;
 238		default:
 239			phy->ops.read_reg = igb_read_phy_reg_igp;
 240			phy->ops.write_reg = igb_write_phy_reg_igp;
 241		}
 242	}
 243
 244	/* set lan id */
 245	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 246			E1000_STATUS_FUNC_SHIFT;
 247
 248	/* Set phy->phy_addr and phy->id. */
 249	ret_val = igb_get_phy_id_82575(hw);
 250	if (ret_val)
 251		return ret_val;
 252
 253	/* Verify phy id and set remaining function pointers */
 254	switch (phy->id) {
 255	case M88E1543_E_PHY_ID:
 256	case M88E1512_E_PHY_ID:
 257	case I347AT4_E_PHY_ID:
 258	case M88E1112_E_PHY_ID:
 259	case M88E1111_I_PHY_ID:
 260		phy->type		= e1000_phy_m88;
 261		phy->ops.check_polarity	= igb_check_polarity_m88;
 262		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 263		if (phy->id != M88E1111_I_PHY_ID)
 264			phy->ops.get_cable_length =
 265					 igb_get_cable_length_m88_gen2;
 266		else
 267			phy->ops.get_cable_length = igb_get_cable_length_m88;
 268		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 269		/* Check if this PHY is configured for media swap. */
 270		if (phy->id == M88E1112_E_PHY_ID) {
 271			u16 data;
 272
 273			ret_val = phy->ops.write_reg(hw,
 274						     E1000_M88E1112_PAGE_ADDR,
 275						     2);
 276			if (ret_val)
 277				goto out;
 278
 279			ret_val = phy->ops.read_reg(hw,
 280						    E1000_M88E1112_MAC_CTRL_1,
 281						    &data);
 282			if (ret_val)
 283				goto out;
 284
 285			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 286			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 287			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 288			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 289				hw->mac.ops.check_for_link =
 290						igb_check_for_link_media_swap;
 291		}
 292		if (phy->id == M88E1512_E_PHY_ID) {
 293			ret_val = igb_initialize_M88E1512_phy(hw);
 294			if (ret_val)
 295				goto out;
 296		}
 297		if (phy->id == M88E1543_E_PHY_ID) {
 298			ret_val = igb_initialize_M88E1543_phy(hw);
 299			if (ret_val)
 300				goto out;
 301		}
 302		break;
 303	case IGP03E1000_E_PHY_ID:
 304		phy->type = e1000_phy_igp_3;
 305		phy->ops.get_phy_info = igb_get_phy_info_igp;
 306		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 307		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 308		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 309		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 
 
 310		break;
 311	case I82580_I_PHY_ID:
 312	case I350_I_PHY_ID:
 313		phy->type = e1000_phy_82580;
 314		phy->ops.force_speed_duplex =
 315					 igb_phy_force_speed_duplex_82580;
 316		phy->ops.get_cable_length = igb_get_cable_length_82580;
 317		phy->ops.get_phy_info = igb_get_phy_info_82580;
 318		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 319		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 
 
 320		break;
 321	case I210_I_PHY_ID:
 322		phy->type		= e1000_phy_i210;
 323		phy->ops.check_polarity	= igb_check_polarity_m88;
 324		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
 325		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 326		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 327		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 328		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 329		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 330		break;
 331	default:
 332		ret_val = -E1000_ERR_PHY;
 333		goto out;
 334	}
 335
 336out:
 337	return ret_val;
 338}
 339
 340/**
 341 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 342 *  @hw: pointer to the HW structure
 343 **/
 344static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 345{
 346	struct e1000_nvm_info *nvm = &hw->nvm;
 347	u32 eecd = rd32(E1000_EECD);
 348	u16 size;
 349
 350	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 351		     E1000_EECD_SIZE_EX_SHIFT);
 352
 353	/* Added to a constant, "size" becomes the left-shift value
 354	 * for setting word_size.
 355	 */
 356	size += NVM_WORD_SIZE_BASE_SHIFT;
 357
 358	/* Just in case size is out of range, cap it to the largest
 359	 * EEPROM size supported
 360	 */
 361	if (size > 15)
 362		size = 15;
 363
 364	nvm->word_size = 1 << size;
 365	nvm->opcode_bits = 8;
 366	nvm->delay_usec = 1;
 367
 368	switch (nvm->override) {
 369	case e1000_nvm_override_spi_large:
 370		nvm->page_size = 32;
 371		nvm->address_bits = 16;
 372		break;
 373	case e1000_nvm_override_spi_small:
 374		nvm->page_size = 8;
 375		nvm->address_bits = 8;
 376		break;
 377	default:
 378		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 379		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 380				    16 : 8;
 381		break;
 382	}
 383	if (nvm->word_size == (1 << 15))
 384		nvm->page_size = 128;
 385
 386	nvm->type = e1000_nvm_eeprom_spi;
 387
 388	/* NVM Function Pointers */
 389	nvm->ops.acquire = igb_acquire_nvm_82575;
 390	nvm->ops.release = igb_release_nvm_82575;
 391	nvm->ops.write = igb_write_nvm_spi;
 392	nvm->ops.validate = igb_validate_nvm_checksum;
 393	nvm->ops.update = igb_update_nvm_checksum;
 394	if (nvm->word_size < (1 << 15))
 395		nvm->ops.read = igb_read_nvm_eerd;
 396	else
 397		nvm->ops.read = igb_read_nvm_spi;
 398
 399	/* override generic family function pointers for specific descendants */
 400	switch (hw->mac.type) {
 401	case e1000_82580:
 402		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 403		nvm->ops.update = igb_update_nvm_checksum_82580;
 404		break;
 405	case e1000_i354:
 406	case e1000_i350:
 407		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 408		nvm->ops.update = igb_update_nvm_checksum_i350;
 409		break;
 410	default:
 411		break;
 412	}
 413
 414	return 0;
 415}
 416
 417/**
 418 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 419 *  @hw: pointer to the HW structure
 420 **/
 421static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 422{
 423	struct e1000_mac_info *mac = &hw->mac;
 424	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 425
 426	/* Set mta register count */
 427	mac->mta_reg_count = 128;
 428	/* Set uta register count */
 429	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 430	/* Set rar entry count */
 431	switch (mac->type) {
 432	case e1000_82576:
 433		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 434		break;
 435	case e1000_82580:
 436		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 437		break;
 438	case e1000_i350:
 439	case e1000_i354:
 440		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 441		break;
 442	default:
 443		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 444		break;
 445	}
 446	/* reset */
 447	if (mac->type >= e1000_82580)
 448		mac->ops.reset_hw = igb_reset_hw_82580;
 449	else
 450		mac->ops.reset_hw = igb_reset_hw_82575;
 451
 452	if (mac->type >= e1000_i210) {
 453		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 454		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 455
 456	} else {
 457		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 458		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 459	}
 460
 461	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 462		mac->ops.write_vfta = igb_write_vfta_i350;
 463	else
 464		mac->ops.write_vfta = igb_write_vfta;
 465
 466	/* Set if part includes ASF firmware */
 467	mac->asf_firmware_present = true;
 468	/* Set if manageability features are enabled. */
 469	mac->arc_subsystem_valid =
 470		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 471			? true : false;
 472	/* enable EEE on i350 parts and later parts */
 473	if (mac->type >= e1000_i350)
 474		dev_spec->eee_disable = false;
 475	else
 476		dev_spec->eee_disable = true;
 477	/* Allow a single clear of the SW semaphore on I210 and newer */
 478	if (mac->type >= e1000_i210)
 479		dev_spec->clear_semaphore_once = true;
 480	/* physical interface link setup */
 481	mac->ops.setup_physical_interface =
 482		(hw->phy.media_type == e1000_media_type_copper)
 483			? igb_setup_copper_link_82575
 484			: igb_setup_serdes_link_82575;
 485
 486	if (mac->type == e1000_82580) {
 487		switch (hw->device_id) {
 488		/* feature not supported on these id's */
 489		case E1000_DEV_ID_DH89XXCC_SGMII:
 490		case E1000_DEV_ID_DH89XXCC_SERDES:
 491		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 492		case E1000_DEV_ID_DH89XXCC_SFP:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493			break;
 494		default:
 495			hw->dev_spec._82575.mas_capable = true;
 
 
 
 496			break;
 497		}
 498	}
 499	return 0;
 500}
 501
 502/**
 503 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 504 *  @hw: pointer to the HW structure
 505 *
 506 *  The media type is chosen based on SFP module.
 507 *  compatibility flags retrieved from SFP ID EEPROM.
 508 **/
 509static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 510{
 511	s32 ret_val = E1000_ERR_CONFIG;
 512	u32 ctrl_ext = 0;
 513	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 514	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 515	u8 tranceiver_type = 0;
 516	s32 timeout = 3;
 517
 518	/* Turn I2C interface ON and power on sfp cage */
 519	ctrl_ext = rd32(E1000_CTRL_EXT);
 520	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 521	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 522
 523	wrfl();
 524
 525	/* Read SFP module data */
 526	while (timeout) {
 527		ret_val = igb_read_sfp_data_byte(hw,
 528			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 529			&tranceiver_type);
 530		if (ret_val == 0)
 531			break;
 532		msleep(100);
 533		timeout--;
 534	}
 535	if (ret_val != 0)
 536		goto out;
 537
 538	ret_val = igb_read_sfp_data_byte(hw,
 539			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 540			(u8 *)eth_flags);
 541	if (ret_val != 0)
 542		goto out;
 543
 544	/* Check if there is some SFP module plugged and powered */
 545	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 546	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 547		dev_spec->module_plugged = true;
 548		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 549			hw->phy.media_type = e1000_media_type_internal_serdes;
 550		} else if (eth_flags->e100_base_fx) {
 551			dev_spec->sgmii_active = true;
 552			hw->phy.media_type = e1000_media_type_internal_serdes;
 553		} else if (eth_flags->e1000_base_t) {
 554			dev_spec->sgmii_active = true;
 555			hw->phy.media_type = e1000_media_type_copper;
 556		} else {
 557			hw->phy.media_type = e1000_media_type_unknown;
 558			hw_dbg("PHY module has not been recognized\n");
 559			goto out;
 560		}
 561	} else {
 562		hw->phy.media_type = e1000_media_type_unknown;
 563	}
 564	ret_val = 0;
 565out:
 566	/* Restore I2C interface setting */
 567	wr32(E1000_CTRL_EXT, ctrl_ext);
 568	return ret_val;
 569}
 570
 571static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 572{
 573	struct e1000_mac_info *mac = &hw->mac;
 574	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 575	s32 ret_val;
 576	u32 ctrl_ext = 0;
 577	u32 link_mode = 0;
 578
 579	switch (hw->device_id) {
 580	case E1000_DEV_ID_82575EB_COPPER:
 581	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 582	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 583		mac->type = e1000_82575;
 584		break;
 585	case E1000_DEV_ID_82576:
 586	case E1000_DEV_ID_82576_NS:
 587	case E1000_DEV_ID_82576_NS_SERDES:
 588	case E1000_DEV_ID_82576_FIBER:
 589	case E1000_DEV_ID_82576_SERDES:
 590	case E1000_DEV_ID_82576_QUAD_COPPER:
 591	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 592	case E1000_DEV_ID_82576_SERDES_QUAD:
 593		mac->type = e1000_82576;
 594		break;
 595	case E1000_DEV_ID_82580_COPPER:
 596	case E1000_DEV_ID_82580_FIBER:
 597	case E1000_DEV_ID_82580_QUAD_FIBER:
 598	case E1000_DEV_ID_82580_SERDES:
 599	case E1000_DEV_ID_82580_SGMII:
 600	case E1000_DEV_ID_82580_COPPER_DUAL:
 601	case E1000_DEV_ID_DH89XXCC_SGMII:
 602	case E1000_DEV_ID_DH89XXCC_SERDES:
 603	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 604	case E1000_DEV_ID_DH89XXCC_SFP:
 605		mac->type = e1000_82580;
 606		break;
 607	case E1000_DEV_ID_I350_COPPER:
 608	case E1000_DEV_ID_I350_FIBER:
 609	case E1000_DEV_ID_I350_SERDES:
 610	case E1000_DEV_ID_I350_SGMII:
 611		mac->type = e1000_i350;
 
 
 612		break;
 613	case E1000_DEV_ID_I210_COPPER:
 614	case E1000_DEV_ID_I210_FIBER:
 615	case E1000_DEV_ID_I210_SERDES:
 616	case E1000_DEV_ID_I210_SGMII:
 617	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 618	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 619		mac->type = e1000_i210;
 
 620		break;
 621	case E1000_DEV_ID_I211_COPPER:
 622		mac->type = e1000_i211;
 
 
 
 
 
 
 
 
 623		break;
 624	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 625	case E1000_DEV_ID_I354_SGMII:
 626	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 627		mac->type = e1000_i354;
 
 
 
 628		break;
 629	default:
 630		return -E1000_ERR_MAC_INIT;
 631	}
 632
 633	/* Set media type */
 634	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 635	 * based on the EEPROM. We cannot rely upon device ID. There
 636	 * is no distinguishable difference between fiber and internal
 637	 * SerDes mode on the 82575. There can be an external PHY attached
 638	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 639	 */
 640	hw->phy.media_type = e1000_media_type_copper;
 641	dev_spec->sgmii_active = false;
 642	dev_spec->module_plugged = false;
 643
 644	ctrl_ext = rd32(E1000_CTRL_EXT);
 645
 646	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 647	switch (link_mode) {
 648	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 649		hw->phy.media_type = e1000_media_type_internal_serdes;
 650		break;
 651	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 652		/* Get phy control interface type set (MDIO vs. I2C)*/
 653		if (igb_sgmii_uses_mdio_82575(hw)) {
 654			hw->phy.media_type = e1000_media_type_copper;
 655			dev_spec->sgmii_active = true;
 656			break;
 657		}
 658		/* fall through for I2C based SGMII */
 659	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 660		/* read media type from SFP EEPROM */
 661		ret_val = igb_set_sfp_media_type_82575(hw);
 662		if ((ret_val != 0) ||
 663		    (hw->phy.media_type == e1000_media_type_unknown)) {
 664			/* If media type was not identified then return media
 665			 * type defined by the CTRL_EXT settings.
 666			 */
 667			hw->phy.media_type = e1000_media_type_internal_serdes;
 668
 669			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 670				hw->phy.media_type = e1000_media_type_copper;
 671				dev_spec->sgmii_active = true;
 672			}
 673
 674			break;
 675		}
 
 
 
 
 
 
 
 
 
 
 
 
 676
 677		/* do not change link mode for 100BaseFX */
 678		if (dev_spec->eth_flags.e100_base_fx)
 679			break;
 
 
 
 
 
 680
 681		/* change current link mode setting */
 682		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 
 
 
 
 
 683
 684		if (hw->phy.media_type == e1000_media_type_copper)
 685			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 
 686		else
 687			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 688
 689		wr32(E1000_CTRL_EXT, ctrl_ext);
 690
 
 
 
 
 
 
 
 
 
 691		break;
 692	default:
 693		break;
 694	}
 695
 696	/* mac initialization and operations */
 697	ret_val = igb_init_mac_params_82575(hw);
 698	if (ret_val)
 699		goto out;
 700
 701	/* NVM initialization */
 702	ret_val = igb_init_nvm_params_82575(hw);
 703	switch (hw->mac.type) {
 704	case e1000_i210:
 705	case e1000_i211:
 706		ret_val = igb_init_nvm_params_i210(hw);
 707		break;
 708	default:
 
 
 
 
 
 
 
 709		break;
 710	}
 711
 712	if (ret_val)
 713		goto out;
 714
 715	/* if part supports SR-IOV then initialize mailbox parameters */
 716	switch (mac->type) {
 717	case e1000_82576:
 718	case e1000_i350:
 719		igb_init_mbx_params_pf(hw);
 720		break;
 721	default:
 722		break;
 723	}
 724
 725	/* setup PHY parameters */
 726	ret_val = igb_init_phy_params_82575(hw);
 727
 728out:
 729	return ret_val;
 730}
 731
 732/**
 733 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 734 *  @hw: pointer to the HW structure
 735 *
 736 *  Acquire access rights to the correct PHY.  This is a
 737 *  function pointer entry point called by the api module.
 738 **/
 739static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 740{
 741	u16 mask = E1000_SWFW_PHY0_SM;
 742
 743	if (hw->bus.func == E1000_FUNC_1)
 744		mask = E1000_SWFW_PHY1_SM;
 745	else if (hw->bus.func == E1000_FUNC_2)
 746		mask = E1000_SWFW_PHY2_SM;
 747	else if (hw->bus.func == E1000_FUNC_3)
 748		mask = E1000_SWFW_PHY3_SM;
 749
 750	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 751}
 752
 753/**
 754 *  igb_release_phy_82575 - Release rights to access PHY
 755 *  @hw: pointer to the HW structure
 756 *
 757 *  A wrapper to release access rights to the correct PHY.  This is a
 758 *  function pointer entry point called by the api module.
 759 **/
 760static void igb_release_phy_82575(struct e1000_hw *hw)
 761{
 762	u16 mask = E1000_SWFW_PHY0_SM;
 763
 764	if (hw->bus.func == E1000_FUNC_1)
 765		mask = E1000_SWFW_PHY1_SM;
 766	else if (hw->bus.func == E1000_FUNC_2)
 767		mask = E1000_SWFW_PHY2_SM;
 768	else if (hw->bus.func == E1000_FUNC_3)
 769		mask = E1000_SWFW_PHY3_SM;
 770
 771	hw->mac.ops.release_swfw_sync(hw, mask);
 772}
 773
 774/**
 775 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 776 *  @hw: pointer to the HW structure
 777 *  @offset: register offset to be read
 778 *  @data: pointer to the read data
 779 *
 780 *  Reads the PHY register at offset using the serial gigabit media independent
 781 *  interface and stores the retrieved information in data.
 782 **/
 783static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 784					  u16 *data)
 785{
 786	s32 ret_val = -E1000_ERR_PARAM;
 787
 788	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 789		hw_dbg("PHY Address %u is out of range\n", offset);
 790		goto out;
 791	}
 792
 793	ret_val = hw->phy.ops.acquire(hw);
 794	if (ret_val)
 795		goto out;
 796
 797	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 798
 799	hw->phy.ops.release(hw);
 800
 801out:
 802	return ret_val;
 803}
 804
 805/**
 806 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 807 *  @hw: pointer to the HW structure
 808 *  @offset: register offset to write to
 809 *  @data: data to write at register offset
 810 *
 811 *  Writes the data to PHY register at the offset using the serial gigabit
 812 *  media independent interface.
 813 **/
 814static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 815					   u16 data)
 816{
 817	s32 ret_val = -E1000_ERR_PARAM;
 818
 819
 820	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 821		hw_dbg("PHY Address %d is out of range\n", offset);
 822		goto out;
 823	}
 824
 825	ret_val = hw->phy.ops.acquire(hw);
 826	if (ret_val)
 827		goto out;
 828
 829	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 830
 831	hw->phy.ops.release(hw);
 832
 833out:
 834	return ret_val;
 835}
 836
 837/**
 838 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 839 *  @hw: pointer to the HW structure
 840 *
 841 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 842 *  sgmi interface.
 843 **/
 844static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 845{
 846	struct e1000_phy_info *phy = &hw->phy;
 847	s32  ret_val = 0;
 848	u16 phy_id;
 849	u32 ctrl_ext;
 850	u32 mdic;
 851
 852	/* Extra read required for some PHY's on i354 */
 853	if (hw->mac.type == e1000_i354)
 854		igb_get_phy_id(hw);
 855
 856	/* For SGMII PHYs, we try the list of possible addresses until
 857	 * we find one that works.  For non-SGMII PHYs
 858	 * (e.g. integrated copper PHYs), an address of 1 should
 859	 * work.  The result of this function should mean phy->phy_addr
 860	 * and phy->id are set correctly.
 861	 */
 862	if (!(igb_sgmii_active_82575(hw))) {
 863		phy->addr = 1;
 864		ret_val = igb_get_phy_id(hw);
 865		goto out;
 866	}
 867
 868	if (igb_sgmii_uses_mdio_82575(hw)) {
 869		switch (hw->mac.type) {
 870		case e1000_82575:
 871		case e1000_82576:
 872			mdic = rd32(E1000_MDIC);
 873			mdic &= E1000_MDIC_PHY_MASK;
 874			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 875			break;
 876		case e1000_82580:
 877		case e1000_i350:
 878		case e1000_i354:
 879		case e1000_i210:
 880		case e1000_i211:
 881			mdic = rd32(E1000_MDICNFG);
 882			mdic &= E1000_MDICNFG_PHY_MASK;
 883			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 884			break;
 885		default:
 886			ret_val = -E1000_ERR_PHY;
 887			goto out;
 
 888		}
 889		ret_val = igb_get_phy_id(hw);
 890		goto out;
 891	}
 892
 893	/* Power on sgmii phy if it is disabled */
 894	ctrl_ext = rd32(E1000_CTRL_EXT);
 895	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 896	wrfl();
 897	msleep(300);
 898
 899	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 
 900	 * Therefore, we need to test 1-7
 901	 */
 902	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 903		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 904		if (ret_val == 0) {
 905			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 906			       phy_id, phy->addr);
 907			/* At the time of this writing, The M88 part is
 
 908			 * the only supported SGMII PHY product.
 909			 */
 910			if (phy_id == M88_VENDOR)
 911				break;
 912		} else {
 913			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 914		}
 915	}
 916
 917	/* A valid PHY type couldn't be found. */
 918	if (phy->addr == 8) {
 919		phy->addr = 0;
 920		ret_val = -E1000_ERR_PHY;
 921		goto out;
 922	} else {
 923		ret_val = igb_get_phy_id(hw);
 924	}
 925
 926	/* restore previous sfp cage power state */
 927	wr32(E1000_CTRL_EXT, ctrl_ext);
 928
 929out:
 930	return ret_val;
 931}
 932
 933/**
 934 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 935 *  @hw: pointer to the HW structure
 936 *
 937 *  Resets the PHY using the serial gigabit media independent interface.
 938 **/
 939static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 940{
 941	struct e1000_phy_info *phy = &hw->phy;
 942	s32 ret_val;
 943
 944	/* This isn't a true "hard" reset, but is the only reset
 
 945	 * available to us at this time.
 946	 */
 947
 948	hw_dbg("Soft resetting SGMII attached PHY...\n");
 949
 950	/* SFP documentation requires the following to configure the SPF module
 
 951	 * to work on SGMII.  No further documentation is given.
 952	 */
 953	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 954	if (ret_val)
 955		goto out;
 956
 957	ret_val = igb_phy_sw_reset(hw);
 958	if (ret_val)
 959		goto out;
 960
 961	if (phy->id == M88E1512_E_PHY_ID)
 962		ret_val = igb_initialize_M88E1512_phy(hw);
 963	if (phy->id == M88E1543_E_PHY_ID)
 964		ret_val = igb_initialize_M88E1543_phy(hw);
 965out:
 966	return ret_val;
 967}
 968
 969/**
 970 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 971 *  @hw: pointer to the HW structure
 972 *  @active: true to enable LPLU, false to disable
 973 *
 974 *  Sets the LPLU D0 state according to the active flag.  When
 975 *  activating LPLU this function also disables smart speed
 976 *  and vice versa.  LPLU will not be activated unless the
 977 *  device autonegotiation advertisement meets standards of
 978 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 979 *  This is a function pointer entry point only called by
 980 *  PHY setup routines.
 981 **/
 982static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 983{
 984	struct e1000_phy_info *phy = &hw->phy;
 985	s32 ret_val;
 986	u16 data;
 987
 988	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 989	if (ret_val)
 990		goto out;
 991
 992	if (active) {
 993		data |= IGP02E1000_PM_D0_LPLU;
 994		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 995						 data);
 996		if (ret_val)
 997			goto out;
 998
 999		/* When LPLU is enabled, we should disable SmartSpeed */
1000		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1001						&data);
1002		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1003		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1004						 data);
1005		if (ret_val)
1006			goto out;
1007	} else {
1008		data &= ~IGP02E1000_PM_D0_LPLU;
1009		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1010						 data);
1011		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
1012		 * during Dx states where the power conservation is most
1013		 * important.  During driver activity we should enable
1014		 * SmartSpeed, so performance is maintained.
1015		 */
1016		if (phy->smart_speed == e1000_smart_speed_on) {
1017			ret_val = phy->ops.read_reg(hw,
1018					IGP01E1000_PHY_PORT_CONFIG, &data);
1019			if (ret_val)
1020				goto out;
1021
1022			data |= IGP01E1000_PSCFR_SMART_SPEED;
1023			ret_val = phy->ops.write_reg(hw,
1024					IGP01E1000_PHY_PORT_CONFIG, data);
1025			if (ret_val)
1026				goto out;
1027		} else if (phy->smart_speed == e1000_smart_speed_off) {
1028			ret_val = phy->ops.read_reg(hw,
1029					IGP01E1000_PHY_PORT_CONFIG, &data);
1030			if (ret_val)
1031				goto out;
1032
1033			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1034			ret_val = phy->ops.write_reg(hw,
1035					IGP01E1000_PHY_PORT_CONFIG, data);
1036			if (ret_val)
1037				goto out;
1038		}
1039	}
1040
1041out:
1042	return ret_val;
1043}
1044
1045/**
1046 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1047 *  @hw: pointer to the HW structure
1048 *  @active: true to enable LPLU, false to disable
1049 *
1050 *  Sets the LPLU D0 state according to the active flag.  When
1051 *  activating LPLU this function also disables smart speed
1052 *  and vice versa.  LPLU will not be activated unless the
1053 *  device autonegotiation advertisement meets standards of
1054 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1055 *  This is a function pointer entry point only called by
1056 *  PHY setup routines.
1057 **/
1058static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1059{
1060	struct e1000_phy_info *phy = &hw->phy;
 
1061	u16 data;
1062
1063	data = rd32(E1000_82580_PHY_POWER_MGMT);
1064
1065	if (active) {
1066		data |= E1000_82580_PM_D0_LPLU;
1067
1068		/* When LPLU is enabled, we should disable SmartSpeed */
1069		data &= ~E1000_82580_PM_SPD;
1070	} else {
1071		data &= ~E1000_82580_PM_D0_LPLU;
1072
1073		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
1074		 * during Dx states where the power conservation is most
1075		 * important.  During driver activity we should enable
1076		 * SmartSpeed, so performance is maintained.
1077		 */
1078		if (phy->smart_speed == e1000_smart_speed_on)
1079			data |= E1000_82580_PM_SPD;
1080		else if (phy->smart_speed == e1000_smart_speed_off)
1081			data &= ~E1000_82580_PM_SPD; }
1082
1083	wr32(E1000_82580_PHY_POWER_MGMT, data);
1084	return 0;
1085}
1086
1087/**
1088 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1089 *  @hw: pointer to the HW structure
1090 *  @active: boolean used to enable/disable lplu
1091 *
1092 *  Success returns 0, Failure returns 1
1093 *
1094 *  The low power link up (lplu) state is set to the power management level D3
1095 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1096 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1097 *  is used during Dx states where the power conservation is most important.
1098 *  During driver activity, SmartSpeed should be enabled so performance is
1099 *  maintained.
1100 **/
1101static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1102{
1103	struct e1000_phy_info *phy = &hw->phy;
 
1104	u16 data;
1105
1106	data = rd32(E1000_82580_PHY_POWER_MGMT);
1107
1108	if (!active) {
1109		data &= ~E1000_82580_PM_D3_LPLU;
1110		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
1111		 * during Dx states where the power conservation is most
1112		 * important.  During driver activity we should enable
1113		 * SmartSpeed, so performance is maintained.
1114		 */
1115		if (phy->smart_speed == e1000_smart_speed_on)
1116			data |= E1000_82580_PM_SPD;
1117		else if (phy->smart_speed == e1000_smart_speed_off)
1118			data &= ~E1000_82580_PM_SPD;
1119	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1120		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1121		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1122		data |= E1000_82580_PM_D3_LPLU;
1123		/* When LPLU is enabled, we should disable SmartSpeed */
1124		data &= ~E1000_82580_PM_SPD;
1125	}
1126
1127	wr32(E1000_82580_PHY_POWER_MGMT, data);
1128	return 0;
1129}
1130
1131/**
1132 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1133 *  @hw: pointer to the HW structure
1134 *
1135 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1136 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1137 *  Return successful if access grant bit set, else clear the request for
1138 *  EEPROM access and return -E1000_ERR_NVM (-1).
1139 **/
1140static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1141{
1142	s32 ret_val;
1143
1144	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145	if (ret_val)
1146		goto out;
1147
1148	ret_val = igb_acquire_nvm(hw);
1149
1150	if (ret_val)
1151		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1152
1153out:
1154	return ret_val;
1155}
1156
1157/**
1158 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1159 *  @hw: pointer to the HW structure
1160 *
1161 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1162 *  then release the semaphores acquired.
1163 **/
1164static void igb_release_nvm_82575(struct e1000_hw *hw)
1165{
1166	igb_release_nvm(hw);
1167	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1168}
1169
1170/**
1171 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1172 *  @hw: pointer to the HW structure
1173 *  @mask: specifies which semaphore to acquire
1174 *
1175 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1176 *  will also specify which port we're acquiring the lock for.
1177 **/
1178static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1179{
1180	u32 swfw_sync;
1181	u32 swmask = mask;
1182	u32 fwmask = mask << 16;
1183	s32 ret_val = 0;
1184	s32 i = 0, timeout = 200;
1185
1186	while (i < timeout) {
1187		if (igb_get_hw_semaphore(hw)) {
1188			ret_val = -E1000_ERR_SWFW_SYNC;
1189			goto out;
1190		}
1191
1192		swfw_sync = rd32(E1000_SW_FW_SYNC);
1193		if (!(swfw_sync & (fwmask | swmask)))
1194			break;
1195
1196		/* Firmware currently using resource (fwmask)
 
1197		 * or other software thread using resource (swmask)
1198		 */
1199		igb_put_hw_semaphore(hw);
1200		mdelay(5);
1201		i++;
1202	}
1203
1204	if (i == timeout) {
1205		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1206		ret_val = -E1000_ERR_SWFW_SYNC;
1207		goto out;
1208	}
1209
1210	swfw_sync |= swmask;
1211	wr32(E1000_SW_FW_SYNC, swfw_sync);
1212
1213	igb_put_hw_semaphore(hw);
1214
1215out:
1216	return ret_val;
1217}
1218
1219/**
1220 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1221 *  @hw: pointer to the HW structure
1222 *  @mask: specifies which semaphore to acquire
1223 *
1224 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1225 *  will also specify which port we're releasing the lock for.
1226 **/
1227static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1228{
1229	u32 swfw_sync;
1230
1231	while (igb_get_hw_semaphore(hw) != 0)
1232		; /* Empty */
1233
1234	swfw_sync = rd32(E1000_SW_FW_SYNC);
1235	swfw_sync &= ~mask;
1236	wr32(E1000_SW_FW_SYNC, swfw_sync);
1237
1238	igb_put_hw_semaphore(hw);
1239}
1240
1241/**
1242 *  igb_get_cfg_done_82575 - Read config done bit
1243 *  @hw: pointer to the HW structure
1244 *
1245 *  Read the management control register for the config done bit for
1246 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1247 *  to read the config done bit, so an error is *ONLY* logged and returns
1248 *  0.  If we were to return with error, EEPROM-less silicon
1249 *  would not be able to be reset or change link.
1250 **/
1251static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1252{
1253	s32 timeout = PHY_CFG_TIMEOUT;
 
1254	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1255
1256	if (hw->bus.func == 1)
1257		mask = E1000_NVM_CFG_DONE_PORT_1;
1258	else if (hw->bus.func == E1000_FUNC_2)
1259		mask = E1000_NVM_CFG_DONE_PORT_2;
1260	else if (hw->bus.func == E1000_FUNC_3)
1261		mask = E1000_NVM_CFG_DONE_PORT_3;
1262
1263	while (timeout) {
1264		if (rd32(E1000_EEMNGCTL) & mask)
1265			break;
1266		usleep_range(1000, 2000);
1267		timeout--;
1268	}
1269	if (!timeout)
1270		hw_dbg("MNG configuration cycle has not completed.\n");
1271
1272	/* If EEPROM is not marked present, init the PHY manually */
1273	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1274	    (hw->phy.type == e1000_phy_igp_3))
1275		igb_phy_init_script_igp3(hw);
1276
1277	return 0;
1278}
1279
1280/**
1281 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1282 *  @hw: pointer to the HW structure
1283 *  @speed: stores the current speed
1284 *  @duplex: stores the current duplex
1285 *
1286 *  This is a wrapper function, if using the serial gigabit media independent
1287 *  interface, use PCS to retrieve the link speed and duplex information.
1288 *  Otherwise, use the generic function to get the link speed and duplex info.
1289 **/
1290static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1291					u16 *duplex)
1292{
1293	s32 ret_val;
1294
1295	if (hw->phy.media_type != e1000_media_type_copper)
1296		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1297							       duplex);
1298	else
1299		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1300								    duplex);
1301
1302	return ret_val;
1303}
1304
1305/**
1306 *  igb_check_for_link_82575 - Check for link
1307 *  @hw: pointer to the HW structure
1308 *
1309 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1310 *  use the generic interface for determining link.
1311 **/
1312static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1313{
1314	s32 ret_val;
1315	u16 speed, duplex;
1316
1317	if (hw->phy.media_type != e1000_media_type_copper) {
1318		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1319							     &duplex);
1320		/* Use this flag to determine if link needs to be checked or
 
1321		 * not.  If  we have link clear the flag so that we do not
1322		 * continue to check for link.
1323		 */
1324		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1325
1326		/* Configure Flow Control now that Auto-Neg has completed.
1327		 * First, we need to restore the desired flow control
1328		 * settings because we may have had to re-autoneg with a
1329		 * different link partner.
1330		 */
1331		ret_val = igb_config_fc_after_link_up(hw);
1332		if (ret_val)
1333			hw_dbg("Error configuring flow control\n");
1334	} else {
1335		ret_val = igb_check_for_copper_link(hw);
1336	}
1337
1338	return ret_val;
1339}
1340
1341/**
1342 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1343 *  @hw: pointer to the HW structure
1344 **/
1345void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1346{
1347	u32 reg;
1348
1349
1350	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1351	    !igb_sgmii_active_82575(hw))
1352		return;
1353
1354	/* Enable PCS to turn on link */
1355	reg = rd32(E1000_PCS_CFG0);
1356	reg |= E1000_PCS_CFG_PCS_EN;
1357	wr32(E1000_PCS_CFG0, reg);
1358
1359	/* Power up the laser */
1360	reg = rd32(E1000_CTRL_EXT);
1361	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1362	wr32(E1000_CTRL_EXT, reg);
1363
1364	/* flush the write to verify completion */
1365	wrfl();
1366	usleep_range(1000, 2000);
1367}
1368
1369/**
1370 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1371 *  @hw: pointer to the HW structure
1372 *  @speed: stores the current speed
1373 *  @duplex: stores the current duplex
1374 *
1375 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1376 *  duplex, then store the values in the pointers provided.
1377 **/
1378static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1379						u16 *duplex)
1380{
1381	struct e1000_mac_info *mac = &hw->mac;
1382	u32 pcs, status;
1383
1384	/* Set up defaults for the return values of this function */
1385	mac->serdes_has_link = false;
1386	*speed = 0;
1387	*duplex = 0;
1388
1389	/* Read the PCS Status register for link state. For non-copper mode,
 
1390	 * the status register is not accurate. The PCS status register is
1391	 * used instead.
1392	 */
1393	pcs = rd32(E1000_PCS_LSTAT);
1394
1395	/* The link up bit determines when link is up on autoneg. The sync ok
 
1396	 * gets set once both sides sync up and agree upon link. Stable link
1397	 * can be determined by checking for both link up and link sync ok
1398	 */
1399	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1400		mac->serdes_has_link = true;
1401
1402		/* Detect and store PCS speed */
1403		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1404			*speed = SPEED_1000;
1405		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1406			*speed = SPEED_100;
1407		else
1408			*speed = SPEED_10;
 
1409
1410		/* Detect and store PCS duplex */
1411		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1412			*duplex = FULL_DUPLEX;
1413		else
1414			*duplex = HALF_DUPLEX;
1415
1416	/* Check if it is an I354 2.5Gb backplane connection. */
1417		if (mac->type == e1000_i354) {
1418			status = rd32(E1000_STATUS);
1419			if ((status & E1000_STATUS_2P5_SKU) &&
1420			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1421				*speed = SPEED_2500;
1422				*duplex = FULL_DUPLEX;
1423				hw_dbg("2500 Mbs, ");
1424				hw_dbg("Full Duplex\n");
1425			}
1426		}
1427
1428	}
1429
1430	return 0;
1431}
1432
1433/**
1434 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1435 *  @hw: pointer to the HW structure
1436 *
1437 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1438 *  when management pass thru is not enabled.
1439 **/
1440void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1441{
1442	u32 reg;
1443
1444	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1445	    igb_sgmii_active_82575(hw))
1446		return;
1447
1448	if (!igb_enable_mng_pass_thru(hw)) {
1449		/* Disable PCS to turn off link */
1450		reg = rd32(E1000_PCS_CFG0);
1451		reg &= ~E1000_PCS_CFG_PCS_EN;
1452		wr32(E1000_PCS_CFG0, reg);
1453
1454		/* shutdown the laser */
1455		reg = rd32(E1000_CTRL_EXT);
1456		reg |= E1000_CTRL_EXT_SDP3_DATA;
1457		wr32(E1000_CTRL_EXT, reg);
1458
1459		/* flush the write to verify completion */
1460		wrfl();
1461		usleep_range(1000, 2000);
1462	}
1463}
1464
1465/**
1466 *  igb_reset_hw_82575 - Reset hardware
1467 *  @hw: pointer to the HW structure
1468 *
1469 *  This resets the hardware into a known state.  This is a
1470 *  function pointer entry point called by the api module.
1471 **/
1472static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1473{
1474	u32 ctrl;
1475	s32 ret_val;
1476
1477	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 
1478	 * on the last TLP read/write transaction when MAC is reset.
1479	 */
1480	ret_val = igb_disable_pcie_master(hw);
1481	if (ret_val)
1482		hw_dbg("PCI-E Master disable polling has failed.\n");
1483
1484	/* set the completion timeout for interface */
1485	ret_val = igb_set_pcie_completion_timeout(hw);
1486	if (ret_val)
1487		hw_dbg("PCI-E Set completion timeout has failed.\n");
 
1488
1489	hw_dbg("Masking off all interrupts\n");
1490	wr32(E1000_IMC, 0xffffffff);
1491
1492	wr32(E1000_RCTL, 0);
1493	wr32(E1000_TCTL, E1000_TCTL_PSP);
1494	wrfl();
1495
1496	usleep_range(10000, 20000);
1497
1498	ctrl = rd32(E1000_CTRL);
1499
1500	hw_dbg("Issuing a global reset to MAC\n");
1501	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1502
1503	ret_val = igb_get_auto_rd_done(hw);
1504	if (ret_val) {
1505		/* When auto config read does not complete, do not
 
1506		 * return with an error. This can happen in situations
1507		 * where there is no eeprom and prevents getting link.
1508		 */
1509		hw_dbg("Auto Read Done did not complete\n");
1510	}
1511
1512	/* If EEPROM is not present, run manual init scripts */
1513	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1514		igb_reset_init_script_82575(hw);
1515
1516	/* Clear any pending interrupt events. */
1517	wr32(E1000_IMC, 0xffffffff);
1518	rd32(E1000_ICR);
1519
1520	/* Install any alternate MAC address into RAR0 */
1521	ret_val = igb_check_alt_mac_addr(hw);
1522
1523	return ret_val;
1524}
1525
1526/**
1527 *  igb_init_hw_82575 - Initialize hardware
1528 *  @hw: pointer to the HW structure
1529 *
1530 *  This inits the hardware readying it for operation.
1531 **/
1532static s32 igb_init_hw_82575(struct e1000_hw *hw)
1533{
1534	struct e1000_mac_info *mac = &hw->mac;
1535	s32 ret_val;
1536	u16 i, rar_count = mac->rar_entry_count;
1537
1538	if ((hw->mac.type >= e1000_i210) &&
1539	    !(igb_get_flash_presence_i210(hw))) {
1540		ret_val = igb_pll_workaround_i210(hw);
1541		if (ret_val)
1542			return ret_val;
1543	}
1544
1545	/* Initialize identification LED */
1546	ret_val = igb_id_led_init(hw);
1547	if (ret_val) {
1548		hw_dbg("Error initializing identification LED\n");
1549		/* This is not fatal and we should not stop init due to this */
1550	}
1551
1552	/* Disabling VLAN filtering */
1553	hw_dbg("Initializing the IEEE VLAN\n");
1554	igb_clear_vfta(hw);
 
 
 
1555
1556	/* Setup the receive address */
1557	igb_init_rx_addrs(hw, rar_count);
1558
1559	/* Zero out the Multicast HASH table */
1560	hw_dbg("Zeroing the MTA\n");
1561	for (i = 0; i < mac->mta_reg_count; i++)
1562		array_wr32(E1000_MTA, i, 0);
1563
1564	/* Zero out the Unicast HASH table */
1565	hw_dbg("Zeroing the UTA\n");
1566	for (i = 0; i < mac->uta_reg_count; i++)
1567		array_wr32(E1000_UTA, i, 0);
1568
1569	/* Setup link and flow control */
1570	ret_val = igb_setup_link(hw);
1571
1572	/* Clear all of the statistics registers (clear on read).  It is
 
1573	 * important that we do this after we have tried to establish link
1574	 * because the symbol error count will increment wildly if there
1575	 * is no link.
1576	 */
1577	igb_clear_hw_cntrs_82575(hw);
1578	return ret_val;
1579}
1580
1581/**
1582 *  igb_setup_copper_link_82575 - Configure copper link settings
1583 *  @hw: pointer to the HW structure
1584 *
1585 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1586 *  for link, once link is established calls to configure collision distance
1587 *  and flow control are called.
1588 **/
1589static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1590{
1591	u32 ctrl;
1592	s32  ret_val;
1593	u32 phpm_reg;
1594
1595	ctrl = rd32(E1000_CTRL);
1596	ctrl |= E1000_CTRL_SLU;
1597	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1598	wr32(E1000_CTRL, ctrl);
1599
1600	/* Clear Go Link Disconnect bit on supported devices */
1601	switch (hw->mac.type) {
1602	case e1000_82580:
1603	case e1000_i350:
1604	case e1000_i210:
1605	case e1000_i211:
1606		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1607		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1608		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1609		break;
1610	default:
1611		break;
1612	}
1613
1614	ret_val = igb_setup_serdes_link_82575(hw);
1615	if (ret_val)
1616		goto out;
1617
1618	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1619		/* allow time for SFP cage time to power up phy */
1620		msleep(300);
1621
1622		ret_val = hw->phy.ops.reset(hw);
1623		if (ret_val) {
1624			hw_dbg("Error resetting the PHY.\n");
1625			goto out;
1626		}
1627	}
1628	switch (hw->phy.type) {
1629	case e1000_phy_i210:
1630	case e1000_phy_m88:
1631		switch (hw->phy.id) {
1632		case I347AT4_E_PHY_ID:
1633		case M88E1112_E_PHY_ID:
1634		case M88E1543_E_PHY_ID:
1635		case M88E1512_E_PHY_ID:
1636		case I210_I_PHY_ID:
1637			ret_val = igb_copper_link_setup_m88_gen2(hw);
1638			break;
1639		default:
1640			ret_val = igb_copper_link_setup_m88(hw);
1641			break;
1642		}
1643		break;
1644	case e1000_phy_igp_3:
1645		ret_val = igb_copper_link_setup_igp(hw);
1646		break;
1647	case e1000_phy_82580:
1648		ret_val = igb_copper_link_setup_82580(hw);
1649		break;
1650	default:
1651		ret_val = -E1000_ERR_PHY;
1652		break;
1653	}
1654
1655	if (ret_val)
1656		goto out;
1657
1658	ret_val = igb_setup_copper_link(hw);
1659out:
1660	return ret_val;
1661}
1662
1663/**
1664 *  igb_setup_serdes_link_82575 - Setup link for serdes
1665 *  @hw: pointer to the HW structure
1666 *
1667 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1668 *  used on copper connections where the serialized gigabit media independent
1669 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1670 *  for auto-negotiation or forces speed/duplex.
1671 **/
1672static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1673{
1674	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1675	bool pcs_autoneg;
1676	s32 ret_val = 0;
1677	u16 data;
1678
1679	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1680	    !igb_sgmii_active_82575(hw))
1681		return ret_val;
1682
1683
1684	/* On the 82575, SerDes loopback mode persists until it is
 
1685	 * explicitly turned off or a power cycle is performed.  A read to
1686	 * the register does not indicate its status.  Therefore, we ensure
1687	 * loopback mode is disabled during initialization.
1688	 */
1689	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1690
1691	/* power on the sfp cage if present and turn on I2C */
1692	ctrl_ext = rd32(E1000_CTRL_EXT);
1693	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1694	ctrl_ext |= E1000_CTRL_I2C_ENA;
1695	wr32(E1000_CTRL_EXT, ctrl_ext);
1696
1697	ctrl_reg = rd32(E1000_CTRL);
1698	ctrl_reg |= E1000_CTRL_SLU;
1699
1700	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1701		/* set both sw defined pins */
1702		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1703
1704		/* Set switch control to serdes energy detect */
1705		reg = rd32(E1000_CONNSW);
1706		reg |= E1000_CONNSW_ENRGSRC;
1707		wr32(E1000_CONNSW, reg);
1708	}
1709
1710	reg = rd32(E1000_PCS_LCTL);
1711
1712	/* default pcs_autoneg to the same setting as mac autoneg */
1713	pcs_autoneg = hw->mac.autoneg;
1714
1715	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1716	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1717		/* sgmii mode lets the phy handle forcing speed/duplex */
1718		pcs_autoneg = true;
1719		/* autoneg time out should be disabled for SGMII mode */
1720		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1721		break;
1722	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1723		/* disable PCS autoneg and support parallel detect only */
1724		pcs_autoneg = false;
1725	default:
1726		if (hw->mac.type == e1000_82575 ||
1727		    hw->mac.type == e1000_82576) {
1728			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1729			if (ret_val) {
1730				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1731				return ret_val;
1732			}
1733
1734			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1735				pcs_autoneg = false;
1736		}
1737
1738		/* non-SGMII modes only supports a speed of 1000/Full for the
 
1739		 * link so it is best to just force the MAC and let the pcs
1740		 * link either autoneg or be forced to 1000/Full
1741		 */
1742		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1743				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1744
1745		/* set speed of 1000/Full if speed/duplex is forced */
1746		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1747		break;
1748	}
1749
1750	wr32(E1000_CTRL, ctrl_reg);
1751
1752	/* New SerDes mode allows for forcing speed or autonegotiating speed
 
1753	 * at 1gb. Autoneg should be default set by most drivers. This is the
1754	 * mode that will be compatible with older link partners and switches.
1755	 * However, both are supported by the hardware and some drivers/tools.
1756	 */
1757	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1758		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1759
 
 
 
 
 
 
1760	if (pcs_autoneg) {
1761		/* Set PCS register for autoneg */
1762		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1763		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1764
1765		/* Disable force flow control for autoneg */
1766		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1767
1768		/* Configure flow control advertisement for autoneg */
1769		anadv_reg = rd32(E1000_PCS_ANADV);
1770		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1771		switch (hw->fc.requested_mode) {
1772		case e1000_fc_full:
1773		case e1000_fc_rx_pause:
1774			anadv_reg |= E1000_TXCW_ASM_DIR;
1775			anadv_reg |= E1000_TXCW_PAUSE;
1776			break;
1777		case e1000_fc_tx_pause:
1778			anadv_reg |= E1000_TXCW_ASM_DIR;
1779			break;
1780		default:
1781			break;
1782		}
1783		wr32(E1000_PCS_ANADV, anadv_reg);
1784
1785		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1786	} else {
1787		/* Set PCS register for forced link */
1788		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1789
1790		/* Force flow control for forced link */
1791		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1792
1793		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1794	}
1795
1796	wr32(E1000_PCS_LCTL, reg);
1797
1798	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1799		igb_force_mac_fc(hw);
1800
1801	return ret_val;
1802}
1803
1804/**
1805 *  igb_sgmii_active_82575 - Return sgmii state
1806 *  @hw: pointer to the HW structure
1807 *
1808 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1809 *  which can be enabled for use in the embedded applications.  Simply
1810 *  return the current state of the sgmii interface.
1811 **/
1812static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1813{
1814	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1815	return dev_spec->sgmii_active;
1816}
1817
1818/**
1819 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1820 *  @hw: pointer to the HW structure
1821 *
1822 *  Inits recommended HW defaults after a reset when there is no EEPROM
1823 *  detected. This is only for the 82575.
1824 **/
1825static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1826{
1827	if (hw->mac.type == e1000_82575) {
1828		hw_dbg("Running reset init script for 82575\n");
1829		/* SerDes configuration via SERDESCTRL */
1830		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1831		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1832		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1833		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1834
1835		/* CCM configuration via CCMCTL register */
1836		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1837		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1838
1839		/* PCIe lanes configuration */
1840		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1841		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1842		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1843		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1844
1845		/* PCIe PLL Configuration */
1846		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1847		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1848		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1849	}
1850
1851	return 0;
1852}
1853
1854/**
1855 *  igb_read_mac_addr_82575 - Read device MAC address
1856 *  @hw: pointer to the HW structure
1857 **/
1858static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1859{
1860	s32 ret_val = 0;
1861
1862	/* If there's an alternate MAC address place it in RAR0
 
1863	 * so that it will override the Si installed default perm
1864	 * address.
1865	 */
1866	ret_val = igb_check_alt_mac_addr(hw);
1867	if (ret_val)
1868		goto out;
1869
1870	ret_val = igb_read_mac_addr(hw);
1871
1872out:
1873	return ret_val;
1874}
1875
1876/**
1877 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1878 * @hw: pointer to the HW structure
1879 *
1880 * In the case of a PHY power down to save power, or to turn off link during a
1881 * driver unload, or wake on lan is not enabled, remove the link.
1882 **/
1883void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1884{
1885	/* If the management interface is not enabled, then power down */
1886	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1887		igb_power_down_phy_copper(hw);
1888}
1889
1890/**
1891 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1892 *  @hw: pointer to the HW structure
1893 *
1894 *  Clears the hardware counters by reading the counter registers.
1895 **/
1896static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1897{
1898	igb_clear_hw_cntrs_base(hw);
1899
1900	rd32(E1000_PRC64);
1901	rd32(E1000_PRC127);
1902	rd32(E1000_PRC255);
1903	rd32(E1000_PRC511);
1904	rd32(E1000_PRC1023);
1905	rd32(E1000_PRC1522);
1906	rd32(E1000_PTC64);
1907	rd32(E1000_PTC127);
1908	rd32(E1000_PTC255);
1909	rd32(E1000_PTC511);
1910	rd32(E1000_PTC1023);
1911	rd32(E1000_PTC1522);
1912
1913	rd32(E1000_ALGNERRC);
1914	rd32(E1000_RXERRC);
1915	rd32(E1000_TNCRS);
1916	rd32(E1000_CEXTERR);
1917	rd32(E1000_TSCTC);
1918	rd32(E1000_TSCTFC);
1919
1920	rd32(E1000_MGTPRC);
1921	rd32(E1000_MGTPDC);
1922	rd32(E1000_MGTPTC);
1923
1924	rd32(E1000_IAC);
1925	rd32(E1000_ICRXOC);
1926
1927	rd32(E1000_ICRXPTC);
1928	rd32(E1000_ICRXATC);
1929	rd32(E1000_ICTXPTC);
1930	rd32(E1000_ICTXATC);
1931	rd32(E1000_ICTXQEC);
1932	rd32(E1000_ICTXQMTC);
1933	rd32(E1000_ICRXDMTC);
1934
1935	rd32(E1000_CBTMPC);
1936	rd32(E1000_HTDPMC);
1937	rd32(E1000_CBRMPC);
1938	rd32(E1000_RPTHC);
1939	rd32(E1000_HGPTC);
1940	rd32(E1000_HTCBDPC);
1941	rd32(E1000_HGORCL);
1942	rd32(E1000_HGORCH);
1943	rd32(E1000_HGOTCL);
1944	rd32(E1000_HGOTCH);
1945	rd32(E1000_LENERRS);
1946
1947	/* This register should not be read in copper configurations */
1948	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1949	    igb_sgmii_active_82575(hw))
1950		rd32(E1000_SCVPC);
1951}
1952
1953/**
1954 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1955 *  @hw: pointer to the HW structure
1956 *
1957 *  After rx enable if manageability is enabled then there is likely some
1958 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1959 *  function clears the fifos and flushes any packets that came in as rx was
1960 *  being enabled.
1961 **/
1962void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1963{
1964	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1965	int i, ms_wait;
1966
1967	/* disable IPv6 options as per hardware errata */
1968	rfctl = rd32(E1000_RFCTL);
1969	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1970	wr32(E1000_RFCTL, rfctl);
1971
1972	if (hw->mac.type != e1000_82575 ||
1973	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1974		return;
1975
1976	/* Disable all RX queues */
1977	for (i = 0; i < 4; i++) {
1978		rxdctl[i] = rd32(E1000_RXDCTL(i));
1979		wr32(E1000_RXDCTL(i),
1980		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1981	}
1982	/* Poll all queues to verify they have shut down */
1983	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1984		usleep_range(1000, 2000);
1985		rx_enabled = 0;
1986		for (i = 0; i < 4; i++)
1987			rx_enabled |= rd32(E1000_RXDCTL(i));
1988		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1989			break;
1990	}
1991
1992	if (ms_wait == 10)
1993		hw_dbg("Queue disable timed out after 10ms\n");
1994
1995	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1996	 * incoming packets are rejected.  Set enable and wait 2ms so that
1997	 * any packet that was coming in as RCTL.EN was set is flushed
1998	 */
 
1999	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2000
2001	rlpml = rd32(E1000_RLPML);
2002	wr32(E1000_RLPML, 0);
2003
2004	rctl = rd32(E1000_RCTL);
2005	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2006	temp_rctl |= E1000_RCTL_LPE;
2007
2008	wr32(E1000_RCTL, temp_rctl);
2009	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2010	wrfl();
2011	usleep_range(2000, 3000);
2012
2013	/* Enable RX queues that were previously enabled and restore our
2014	 * previous state
2015	 */
2016	for (i = 0; i < 4; i++)
2017		wr32(E1000_RXDCTL(i), rxdctl[i]);
2018	wr32(E1000_RCTL, rctl);
2019	wrfl();
2020
2021	wr32(E1000_RLPML, rlpml);
2022	wr32(E1000_RFCTL, rfctl);
2023
2024	/* Flush receive errors generated by workaround */
2025	rd32(E1000_ROC);
2026	rd32(E1000_RNBC);
2027	rd32(E1000_MPC);
2028}
2029
2030/**
2031 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2032 *  @hw: pointer to the HW structure
2033 *
2034 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2035 *  however the hardware default for these parts is 500us to 1ms which is less
2036 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2037 *  increase the value to either 10ms to 200ms for capability version 1 config,
2038 *  or 16ms to 55ms for version 2.
2039 **/
2040static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2041{
2042	u32 gcr = rd32(E1000_GCR);
2043	s32 ret_val = 0;
2044	u16 pcie_devctl2;
2045
2046	/* only take action if timeout value is defaulted to 0 */
2047	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2048		goto out;
2049
2050	/* if capabilities version is type 1 we can write the
 
2051	 * timeout of 10ms to 200ms through the GCR register
2052	 */
2053	if (!(gcr & E1000_GCR_CAP_VER2)) {
2054		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2055		goto out;
2056	}
2057
2058	/* for version 2 capabilities we need to write the config space
 
2059	 * directly in order to set the completion timeout value for
2060	 * 16ms to 55ms
2061	 */
2062	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2063					&pcie_devctl2);
2064	if (ret_val)
2065		goto out;
2066
2067	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2068
2069	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2070					 &pcie_devctl2);
2071out:
2072	/* disable completion timeout resend */
2073	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2074
2075	wr32(E1000_GCR, gcr);
2076	return ret_val;
2077}
2078
2079/**
2080 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2081 *  @hw: pointer to the hardware struct
2082 *  @enable: state to enter, either enabled or disabled
2083 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2084 *
2085 *  enables/disables L2 switch anti-spoofing functionality.
2086 **/
2087void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2088{
2089	u32 reg_val, reg_offset;
2090
2091	switch (hw->mac.type) {
2092	case e1000_82576:
2093		reg_offset = E1000_DTXSWC;
2094		break;
2095	case e1000_i350:
2096	case e1000_i354:
2097		reg_offset = E1000_TXSWC;
 
 
 
 
 
 
 
 
 
 
2098		break;
2099	default:
2100		return;
2101	}
2102
2103	reg_val = rd32(reg_offset);
2104	if (enable) {
2105		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2106			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2107		/* The PF can spoof - it has to in order to
2108		 * support emulation mode NICs
2109		 */
2110		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2111	} else {
2112		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2113			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2114	}
2115	wr32(reg_offset, reg_val);
2116}
2117
2118/**
2119 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2120 *  @hw: pointer to the hardware struct
2121 *  @enable: state to enter, either enabled or disabled
2122 *
2123 *  enables/disables L2 switch loopback functionality.
2124 **/
2125void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2126{
2127	u32 dtxswc;
2128
2129	switch (hw->mac.type) {
2130	case e1000_82576:
2131		dtxswc = rd32(E1000_DTXSWC);
2132		if (enable)
2133			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2134		else
2135			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2136		wr32(E1000_DTXSWC, dtxswc);
2137		break;
2138	case e1000_i354:
2139	case e1000_i350:
2140		dtxswc = rd32(E1000_TXSWC);
2141		if (enable)
2142			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2143		else
2144			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2145		wr32(E1000_TXSWC, dtxswc);
2146		break;
2147	default:
2148		/* Currently no other hardware supports loopback */
2149		break;
2150	}
2151
 
2152}
2153
2154/**
2155 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2156 *  @hw: pointer to the hardware struct
2157 *  @enable: state to enter, either enabled or disabled
2158 *
2159 *  enables/disables replication of packets across multiple pools.
2160 **/
2161void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2162{
2163	u32 vt_ctl = rd32(E1000_VT_CTL);
2164
2165	if (enable)
2166		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2167	else
2168		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2169
2170	wr32(E1000_VT_CTL, vt_ctl);
2171}
2172
2173/**
2174 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2175 *  @hw: pointer to the HW structure
2176 *  @offset: register offset to be read
2177 *  @data: pointer to the read data
2178 *
2179 *  Reads the MDI control register in the PHY at offset and stores the
2180 *  information read to data.
2181 **/
2182s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2183{
2184	s32 ret_val;
2185
 
2186	ret_val = hw->phy.ops.acquire(hw);
2187	if (ret_val)
2188		goto out;
2189
2190	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2191
2192	hw->phy.ops.release(hw);
2193
2194out:
2195	return ret_val;
2196}
2197
2198/**
2199 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2200 *  @hw: pointer to the HW structure
2201 *  @offset: register offset to write to
2202 *  @data: data to write to register at offset
2203 *
2204 *  Writes data to MDI control register in the PHY at offset.
2205 **/
2206s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2207{
2208	s32 ret_val;
2209
2210
2211	ret_val = hw->phy.ops.acquire(hw);
2212	if (ret_val)
2213		goto out;
2214
2215	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2216
2217	hw->phy.ops.release(hw);
2218
2219out:
2220	return ret_val;
2221}
2222
2223/**
2224 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2225 *  @hw: pointer to the HW structure
2226 *
2227 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2228 *  the values found in the EEPROM.  This addresses an issue in which these
2229 *  bits are not restored from EEPROM after reset.
2230 **/
2231static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2232{
2233	s32 ret_val = 0;
2234	u32 mdicnfg;
2235	u16 nvm_data = 0;
2236
2237	if (hw->mac.type != e1000_82580)
2238		goto out;
2239	if (!igb_sgmii_active_82575(hw))
2240		goto out;
2241
2242	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2243				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2244				   &nvm_data);
2245	if (ret_val) {
2246		hw_dbg("NVM Read Error\n");
2247		goto out;
2248	}
2249
2250	mdicnfg = rd32(E1000_MDICNFG);
2251	if (nvm_data & NVM_WORD24_EXT_MDIO)
2252		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2253	if (nvm_data & NVM_WORD24_COM_MDIO)
2254		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2255	wr32(E1000_MDICNFG, mdicnfg);
2256out:
2257	return ret_val;
2258}
2259
2260/**
2261 *  igb_reset_hw_82580 - Reset hardware
2262 *  @hw: pointer to the HW structure
2263 *
2264 *  This resets function or entire device (all ports, etc.)
2265 *  to a known state.
2266 **/
2267static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2268{
2269	s32 ret_val = 0;
2270	/* BH SW mailbox bit in SW_FW_SYNC */
2271	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2272	u32 ctrl;
2273	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2274
2275	hw->dev_spec._82575.global_device_reset = false;
2276
2277	/* due to hw errata, global device reset doesn't always
2278	 * work on 82580
2279	 */
2280	if (hw->mac.type == e1000_82580)
2281		global_device_reset = false;
2282
2283	/* Get current control state. */
2284	ctrl = rd32(E1000_CTRL);
2285
2286	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 
2287	 * on the last TLP read/write transaction when MAC is reset.
2288	 */
2289	ret_val = igb_disable_pcie_master(hw);
2290	if (ret_val)
2291		hw_dbg("PCI-E Master disable polling has failed.\n");
2292
2293	hw_dbg("Masking off all interrupts\n");
2294	wr32(E1000_IMC, 0xffffffff);
2295	wr32(E1000_RCTL, 0);
2296	wr32(E1000_TCTL, E1000_TCTL_PSP);
2297	wrfl();
2298
2299	usleep_range(10000, 11000);
2300
2301	/* Determine whether or not a global dev reset is requested */
2302	if (global_device_reset &&
2303		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2304			global_device_reset = false;
2305
2306	if (global_device_reset &&
2307		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2308		ctrl |= E1000_CTRL_DEV_RST;
2309	else
2310		ctrl |= E1000_CTRL_RST;
2311
2312	wr32(E1000_CTRL, ctrl);
2313	wrfl();
2314
2315	/* Add delay to insure DEV_RST has time to complete */
2316	if (global_device_reset)
2317		usleep_range(5000, 6000);
2318
2319	ret_val = igb_get_auto_rd_done(hw);
2320	if (ret_val) {
2321		/* When auto config read does not complete, do not
 
2322		 * return with an error. This can happen in situations
2323		 * where there is no eeprom and prevents getting link.
2324		 */
2325		hw_dbg("Auto Read Done did not complete\n");
2326	}
2327
 
 
 
 
2328	/* clear global device reset status bit */
2329	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2330
2331	/* Clear any pending interrupt events. */
2332	wr32(E1000_IMC, 0xffffffff);
2333	rd32(E1000_ICR);
2334
2335	ret_val = igb_reset_mdicnfg_82580(hw);
2336	if (ret_val)
2337		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2338
2339	/* Install any alternate MAC address into RAR0 */
2340	ret_val = igb_check_alt_mac_addr(hw);
2341
2342	/* Release semaphore */
2343	if (global_device_reset)
2344		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2345
2346	return ret_val;
2347}
2348
2349/**
2350 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2351 *  @data: data received by reading RXPBS register
2352 *
2353 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2354 *  This function converts the retrieved value into the correct table value
2355 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2356 *  0x0 36  72 144   1   2   4   8  16
2357 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2358 */
2359u16 igb_rxpbs_adjust_82580(u32 data)
2360{
2361	u16 ret_val = 0;
2362
2363	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2364		ret_val = e1000_82580_rxpbs_table[data];
2365
2366	return ret_val;
2367}
2368
2369/**
2370 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2371 *  checksum
2372 *  @hw: pointer to the HW structure
2373 *  @offset: offset in words of the checksum protected region
2374 *
2375 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2376 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2377 **/
2378static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2379						 u16 offset)
2380{
2381	s32 ret_val = 0;
2382	u16 checksum = 0;
2383	u16 i, nvm_data;
2384
2385	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2386		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2387		if (ret_val) {
2388			hw_dbg("NVM Read Error\n");
2389			goto out;
2390		}
2391		checksum += nvm_data;
2392	}
2393
2394	if (checksum != (u16) NVM_SUM) {
2395		hw_dbg("NVM Checksum Invalid\n");
2396		ret_val = -E1000_ERR_NVM;
2397		goto out;
2398	}
2399
2400out:
2401	return ret_val;
2402}
2403
2404/**
2405 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2406 *  checksum
2407 *  @hw: pointer to the HW structure
2408 *  @offset: offset in words of the checksum protected region
2409 *
2410 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2411 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2412 *  value to the EEPROM.
2413 **/
2414static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2415{
2416	s32 ret_val;
2417	u16 checksum = 0;
2418	u16 i, nvm_data;
2419
2420	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2421		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2422		if (ret_val) {
2423			hw_dbg("NVM Read Error while updating checksum.\n");
2424			goto out;
2425		}
2426		checksum += nvm_data;
2427	}
2428	checksum = (u16) NVM_SUM - checksum;
2429	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2430				&checksum);
2431	if (ret_val)
2432		hw_dbg("NVM Write Error while updating checksum.\n");
2433
2434out:
2435	return ret_val;
2436}
2437
2438/**
2439 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2440 *  @hw: pointer to the HW structure
2441 *
2442 *  Calculates the EEPROM section checksum by reading/adding each word of
2443 *  the EEPROM and then verifies that the sum of the EEPROM is
2444 *  equal to 0xBABA.
2445 **/
2446static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2447{
2448	s32 ret_val = 0;
2449	u16 eeprom_regions_count = 1;
2450	u16 j, nvm_data;
2451	u16 nvm_offset;
2452
2453	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2454	if (ret_val) {
2455		hw_dbg("NVM Read Error\n");
2456		goto out;
2457	}
2458
2459	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2460		/* if checksums compatibility bit is set validate checksums
2461		 * for all 4 ports.
2462		 */
2463		eeprom_regions_count = 4;
2464	}
2465
2466	for (j = 0; j < eeprom_regions_count; j++) {
2467		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2468		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2469								nvm_offset);
2470		if (ret_val != 0)
2471			goto out;
2472	}
2473
2474out:
2475	return ret_val;
2476}
2477
2478/**
2479 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2480 *  @hw: pointer to the HW structure
2481 *
2482 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2483 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2484 *  checksum and writes the value to the EEPROM.
2485 **/
2486static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2487{
2488	s32 ret_val;
2489	u16 j, nvm_data;
2490	u16 nvm_offset;
2491
2492	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2493	if (ret_val) {
2494		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
 
2495		goto out;
2496	}
2497
2498	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2499		/* set compatibility bit to validate checksums appropriately */
2500		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2501		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2502					&nvm_data);
2503		if (ret_val) {
2504			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
 
2505			goto out;
2506		}
2507	}
2508
2509	for (j = 0; j < 4; j++) {
2510		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2511		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2512		if (ret_val)
2513			goto out;
2514	}
2515
2516out:
2517	return ret_val;
2518}
2519
2520/**
2521 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2522 *  @hw: pointer to the HW structure
2523 *
2524 *  Calculates the EEPROM section checksum by reading/adding each word of
2525 *  the EEPROM and then verifies that the sum of the EEPROM is
2526 *  equal to 0xBABA.
2527 **/
2528static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2529{
2530	s32 ret_val = 0;
2531	u16 j;
2532	u16 nvm_offset;
2533
2534	for (j = 0; j < 4; j++) {
2535		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2536		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2537								nvm_offset);
2538		if (ret_val != 0)
2539			goto out;
2540	}
2541
2542out:
2543	return ret_val;
2544}
2545
2546/**
2547 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2548 *  @hw: pointer to the HW structure
2549 *
2550 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2551 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2552 *  checksum and writes the value to the EEPROM.
2553 **/
2554static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2555{
2556	s32 ret_val = 0;
2557	u16 j;
2558	u16 nvm_offset;
2559
2560	for (j = 0; j < 4; j++) {
2561		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2562		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2563		if (ret_val != 0)
2564			goto out;
2565	}
2566
2567out:
2568	return ret_val;
2569}
2570
2571/**
2572 *  __igb_access_emi_reg - Read/write EMI register
2573 *  @hw: pointer to the HW structure
2574 *  @addr: EMI address to program
2575 *  @data: pointer to value to read/write from/to the EMI address
2576 *  @read: boolean flag to indicate read or write
2577 **/
2578static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2579				  u16 *data, bool read)
2580{
2581	s32 ret_val = 0;
2582
2583	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2584	if (ret_val)
2585		return ret_val;
2586
2587	if (read)
2588		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2589	else
2590		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2591
2592	return ret_val;
2593}
2594
2595/**
2596 *  igb_read_emi_reg - Read Extended Management Interface register
2597 *  @hw: pointer to the HW structure
2598 *  @addr: EMI address to program
2599 *  @data: value to be read from the EMI address
2600 **/
2601s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2602{
2603	return __igb_access_emi_reg(hw, addr, data, true);
2604}
2605
2606/**
2607 *  igb_set_eee_i350 - Enable/disable EEE support
2608 *  @hw: pointer to the HW structure
2609 *  @adv1G: boolean flag enabling 1G EEE advertisement
2610 *  @adv100m: boolean flag enabling 100M EEE advertisement
2611 *
2612 *  Enable/disable EEE based on setting in dev_spec structure.
2613 *
2614 **/
2615s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2616{
2617	u32 ipcnfg, eeer;
 
2618
2619	if ((hw->mac.type < e1000_i350) ||
2620	    (hw->phy.media_type != e1000_media_type_copper))
 
2621		goto out;
2622	ipcnfg = rd32(E1000_IPCNFG);
2623	eeer = rd32(E1000_EEER);
2624
2625	/* enable or disable per user setting */
2626	if (!(hw->dev_spec._82575.eee_disable)) {
2627		u32 eee_su = rd32(E1000_EEE_SU);
2628
2629		if (adv100M)
2630			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2631		else
2632			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2633
2634		if (adv1G)
2635			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2636		else
2637			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2638
2639		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2640			E1000_EEER_LPI_FC);
2641
2642		/* This bit should not be set in normal operation. */
2643		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2644			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2645
2646	} else {
2647		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2648			E1000_IPCNFG_EEE_100M_AN);
2649		eeer &= ~(E1000_EEER_TX_LPI_EN |
2650			E1000_EEER_RX_LPI_EN |
2651			E1000_EEER_LPI_FC);
2652	}
2653	wr32(E1000_IPCNFG, ipcnfg);
2654	wr32(E1000_EEER, eeer);
2655	rd32(E1000_IPCNFG);
2656	rd32(E1000_EEER);
2657out:
2658
2659	return 0;
2660}
2661
2662/**
2663 *  igb_set_eee_i354 - Enable/disable EEE support
2664 *  @hw: pointer to the HW structure
2665 *  @adv1G: boolean flag enabling 1G EEE advertisement
2666 *  @adv100m: boolean flag enabling 100M EEE advertisement
2667 *
2668 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2669 *
2670 **/
2671s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2672{
2673	struct e1000_phy_info *phy = &hw->phy;
2674	s32 ret_val = 0;
2675	u16 phy_data;
2676
2677	if ((hw->phy.media_type != e1000_media_type_copper) ||
2678	    ((phy->id != M88E1543_E_PHY_ID) &&
2679	     (phy->id != M88E1512_E_PHY_ID)))
2680		goto out;
2681
2682	if (!hw->dev_spec._82575.eee_disable) {
2683		/* Switch to PHY page 18. */
2684		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2685		if (ret_val)
2686			goto out;
2687
2688		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2689					    &phy_data);
2690		if (ret_val)
2691			goto out;
2692
2693		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2694		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2695					     phy_data);
2696		if (ret_val)
2697			goto out;
2698
2699		/* Return the PHY to page 0. */
2700		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2701		if (ret_val)
2702			goto out;
2703
2704		/* Turn on EEE advertisement. */
2705		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2706					     E1000_EEE_ADV_DEV_I354,
2707					     &phy_data);
2708		if (ret_val)
2709			goto out;
2710
2711		if (adv100M)
2712			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2713		else
2714			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2715
2716		if (adv1G)
2717			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2718		else
2719			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2720
2721		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2722						E1000_EEE_ADV_DEV_I354,
2723						phy_data);
2724	} else {
2725		/* Turn off EEE advertisement. */
2726		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2727					     E1000_EEE_ADV_DEV_I354,
2728					     &phy_data);
2729		if (ret_val)
2730			goto out;
2731
2732		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2733			      E1000_EEE_ADV_1000_SUPPORTED);
2734		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2735					      E1000_EEE_ADV_DEV_I354,
2736					      phy_data);
2737	}
2738
2739out:
2740	return ret_val;
2741}
2742
2743/**
2744 *  igb_get_eee_status_i354 - Get EEE status
2745 *  @hw: pointer to the HW structure
2746 *  @status: EEE status
2747 *
2748 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2749 *  been received.
2750 **/
2751s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2752{
2753	struct e1000_phy_info *phy = &hw->phy;
2754	s32 ret_val = 0;
2755	u16 phy_data;
2756
2757	/* Check if EEE is supported on this device. */
2758	if ((hw->phy.media_type != e1000_media_type_copper) ||
2759	    ((phy->id != M88E1543_E_PHY_ID) &&
2760	     (phy->id != M88E1512_E_PHY_ID)))
2761		goto out;
2762
2763	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2764				     E1000_PCS_STATUS_DEV_I354,
2765				     &phy_data);
2766	if (ret_val)
2767		goto out;
2768
2769	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2770			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2771
2772out:
2773	return ret_val;
2774}
2775
2776static const u8 e1000_emc_temp_data[4] = {
2777	E1000_EMC_INTERNAL_DATA,
2778	E1000_EMC_DIODE1_DATA,
2779	E1000_EMC_DIODE2_DATA,
2780	E1000_EMC_DIODE3_DATA
2781};
2782static const u8 e1000_emc_therm_limit[4] = {
2783	E1000_EMC_INTERNAL_THERM_LIMIT,
2784	E1000_EMC_DIODE1_THERM_LIMIT,
2785	E1000_EMC_DIODE2_THERM_LIMIT,
2786	E1000_EMC_DIODE3_THERM_LIMIT
2787};
2788
2789#ifdef CONFIG_IGB_HWMON
2790/**
2791 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2792 *  @hw: pointer to hardware structure
2793 *
2794 *  Updates the temperatures in mac.thermal_sensor_data
2795 **/
2796static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2797{
2798	u16 ets_offset;
2799	u16 ets_cfg;
2800	u16 ets_sensor;
2801	u8  num_sensors;
2802	u8  sensor_index;
2803	u8  sensor_location;
2804	u8  i;
2805	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2806
2807	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2808		return E1000_NOT_IMPLEMENTED;
2809
2810	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2811
2812	/* Return the internal sensor only if ETS is unsupported */
2813	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2814	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2815		return 0;
2816
2817	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2818	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2819	    != NVM_ETS_TYPE_EMC)
2820		return E1000_NOT_IMPLEMENTED;
2821
2822	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2823	if (num_sensors > E1000_MAX_SENSORS)
2824		num_sensors = E1000_MAX_SENSORS;
2825
2826	for (i = 1; i < num_sensors; i++) {
2827		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2828		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2829				NVM_ETS_DATA_INDEX_SHIFT);
2830		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2831				   NVM_ETS_DATA_LOC_SHIFT);
2832
2833		if (sensor_location != 0)
2834			hw->phy.ops.read_i2c_byte(hw,
2835					e1000_emc_temp_data[sensor_index],
2836					E1000_I2C_THERMAL_SENSOR_ADDR,
2837					&data->sensor[i].temp);
2838	}
2839	return 0;
2840}
2841
2842/**
2843 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2844 *  @hw: pointer to hardware structure
2845 *
2846 *  Sets the thermal sensor thresholds according to the NVM map
2847 *  and save off the threshold and location values into mac.thermal_sensor_data
2848 **/
2849static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2850{
2851	u16 ets_offset;
2852	u16 ets_cfg;
2853	u16 ets_sensor;
2854	u8  low_thresh_delta;
2855	u8  num_sensors;
2856	u8  sensor_index;
2857	u8  sensor_location;
2858	u8  therm_limit;
2859	u8  i;
2860	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2861
2862	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2863		return E1000_NOT_IMPLEMENTED;
2864
2865	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2866
2867	data->sensor[0].location = 0x1;
2868	data->sensor[0].caution_thresh =
2869		(rd32(E1000_THHIGHTC) & 0xFF);
2870	data->sensor[0].max_op_thresh =
2871		(rd32(E1000_THLOWTC) & 0xFF);
2872
2873	/* Return the internal sensor only if ETS is unsupported */
2874	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2875	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2876		return 0;
2877
2878	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2879	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2880	    != NVM_ETS_TYPE_EMC)
2881		return E1000_NOT_IMPLEMENTED;
2882
2883	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2884			    NVM_ETS_LTHRES_DELTA_SHIFT);
2885	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2886
2887	for (i = 1; i <= num_sensors; i++) {
2888		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2889		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2890				NVM_ETS_DATA_INDEX_SHIFT);
2891		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2892				   NVM_ETS_DATA_LOC_SHIFT);
2893		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2894
2895		hw->phy.ops.write_i2c_byte(hw,
2896			e1000_emc_therm_limit[sensor_index],
2897			E1000_I2C_THERMAL_SENSOR_ADDR,
2898			therm_limit);
2899
2900		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2901			data->sensor[i].location = sensor_location;
2902			data->sensor[i].caution_thresh = therm_limit;
2903			data->sensor[i].max_op_thresh = therm_limit -
2904							low_thresh_delta;
2905		}
2906	}
2907	return 0;
2908}
2909
2910#endif
2911static struct e1000_mac_operations e1000_mac_ops_82575 = {
2912	.init_hw              = igb_init_hw_82575,
2913	.check_for_link       = igb_check_for_link_82575,
2914	.rar_set              = igb_rar_set,
2915	.read_mac_addr        = igb_read_mac_addr_82575,
2916	.get_speed_and_duplex = igb_get_link_up_info_82575,
2917#ifdef CONFIG_IGB_HWMON
2918	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2919	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2920#endif
2921};
2922
2923static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2924	.acquire              = igb_acquire_phy_82575,
2925	.get_cfg_done         = igb_get_cfg_done_82575,
2926	.release              = igb_release_phy_82575,
2927	.write_i2c_byte       = igb_write_i2c_byte,
2928	.read_i2c_byte        = igb_read_i2c_byte,
2929};
2930
2931static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2932	.acquire              = igb_acquire_nvm_82575,
2933	.read                 = igb_read_nvm_eerd,
2934	.release              = igb_release_nvm_82575,
2935	.write                = igb_write_nvm_spi,
2936};
2937
2938const struct e1000_info e1000_82575_info = {
2939	.get_invariants = igb_get_invariants_82575,
2940	.mac_ops = &e1000_mac_ops_82575,
2941	.phy_ops = &e1000_phy_ops_82575,
2942	.nvm_ops = &e1000_nvm_ops_82575,
2943};
2944
v3.5.6
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28/* e1000_82575
  29 * e1000_82576
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/types.h>
  35#include <linux/if_ether.h>
 
  36
  37#include "e1000_mac.h"
  38#include "e1000_82575.h"
  39#include "e1000_i210.h"
 
  40
  41static s32  igb_get_invariants_82575(struct e1000_hw *);
  42static s32  igb_acquire_phy_82575(struct e1000_hw *);
  43static void igb_release_phy_82575(struct e1000_hw *);
  44static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  45static void igb_release_nvm_82575(struct e1000_hw *);
  46static s32  igb_check_for_link_82575(struct e1000_hw *);
  47static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  48static s32  igb_init_hw_82575(struct e1000_hw *);
  49static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  50static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  51static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
  52static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
  53static s32  igb_reset_hw_82575(struct e1000_hw *);
  54static s32  igb_reset_hw_82580(struct e1000_hw *);
  55static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  56static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  57static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  58static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  59static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  60static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  61static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  62static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  63static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  64						 u16 *);
  65static s32  igb_get_phy_id_82575(struct e1000_hw *);
  66static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  67static bool igb_sgmii_active_82575(struct e1000_hw *);
  68static s32  igb_reset_init_script_82575(struct e1000_hw *);
  69static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  70static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  71static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  72static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  73static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  74static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  75static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  76static const u16 e1000_82580_rxpbs_table[] =
  77	{ 36, 72, 144, 1, 2, 4, 8, 16,
  78	  35, 70, 140 };
  79#define E1000_82580_RXPBS_TABLE_SIZE \
  80	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82/**
  83 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  84 *  @hw: pointer to the HW structure
  85 *
  86 *  Called to determine if the I2C pins are being used for I2C or as an
  87 *  external MDIO interface since the two options are mutually exclusive.
  88 **/
  89static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  90{
  91	u32 reg = 0;
  92	bool ext_mdio = false;
  93
  94	switch (hw->mac.type) {
  95	case e1000_82575:
  96	case e1000_82576:
  97		reg = rd32(E1000_MDIC);
  98		ext_mdio = !!(reg & E1000_MDIC_DEST);
  99		break;
 100	case e1000_82580:
 101	case e1000_i350:
 
 102	case e1000_i210:
 103	case e1000_i211:
 104		reg = rd32(E1000_MDICNFG);
 105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 106		break;
 107	default:
 108		break;
 109	}
 110	return ext_mdio;
 111}
 112
 113static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 
 
 
 
 
 
 114{
 115	struct e1000_phy_info *phy = &hw->phy;
 116	struct e1000_nvm_info *nvm = &hw->nvm;
 117	struct e1000_mac_info *mac = &hw->mac;
 118	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
 119	u32 eecd;
 120	s32 ret_val;
 121	u16 size;
 122	u32 ctrl_ext = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123
 124	switch (hw->device_id) {
 125	case E1000_DEV_ID_82575EB_COPPER:
 126	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 127	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 128		mac->type = e1000_82575;
 
 
 
 
 
 
 
 
 
 
 
 
 129		break;
 130	case E1000_DEV_ID_82576:
 131	case E1000_DEV_ID_82576_NS:
 132	case E1000_DEV_ID_82576_NS_SERDES:
 133	case E1000_DEV_ID_82576_FIBER:
 134	case E1000_DEV_ID_82576_SERDES:
 135	case E1000_DEV_ID_82576_QUAD_COPPER:
 136	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 137	case E1000_DEV_ID_82576_SERDES_QUAD:
 138		mac->type = e1000_82576;
 139		break;
 140	case E1000_DEV_ID_82580_COPPER:
 141	case E1000_DEV_ID_82580_FIBER:
 142	case E1000_DEV_ID_82580_QUAD_FIBER:
 143	case E1000_DEV_ID_82580_SERDES:
 144	case E1000_DEV_ID_82580_SGMII:
 145	case E1000_DEV_ID_82580_COPPER_DUAL:
 146	case E1000_DEV_ID_DH89XXCC_SGMII:
 147	case E1000_DEV_ID_DH89XXCC_SERDES:
 148	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 149	case E1000_DEV_ID_DH89XXCC_SFP:
 150		mac->type = e1000_82580;
 151		break;
 152	case E1000_DEV_ID_I350_COPPER:
 153	case E1000_DEV_ID_I350_FIBER:
 154	case E1000_DEV_ID_I350_SERDES:
 155	case E1000_DEV_ID_I350_SGMII:
 156		mac->type = e1000_i350;
 
 
 
 
 157		break;
 158	case E1000_DEV_ID_I210_COPPER:
 159	case E1000_DEV_ID_I210_COPPER_OEM1:
 160	case E1000_DEV_ID_I210_COPPER_IT:
 161	case E1000_DEV_ID_I210_FIBER:
 162	case E1000_DEV_ID_I210_SERDES:
 163	case E1000_DEV_ID_I210_SGMII:
 164		mac->type = e1000_i210;
 165		break;
 166	case E1000_DEV_ID_I211_COPPER:
 167		mac->type = e1000_i211;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168		break;
 169	default:
 170		return -E1000_ERR_MAC_INIT;
 
 
 171		break;
 172	}
 
 
 
 
 173
 174	/* Set media type */
 175	/*
 176	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
 177	 * based on the EEPROM. We cannot rely upon device ID. There
 178	 * is no distinguishable difference between fiber and internal
 179	 * SerDes mode on the 82575. There can be an external PHY attached
 180	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 181	 */
 182	phy->media_type = e1000_media_type_copper;
 183	dev_spec->sgmii_active = false;
 184
 185	ctrl_ext = rd32(E1000_CTRL_EXT);
 186	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
 187	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 188		dev_spec->sgmii_active = true;
 
 189		break;
 190	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 191	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 192		hw->phy.media_type = e1000_media_type_internal_serdes;
 
 193		break;
 194	default:
 195		break;
 196	}
 197
 
 
 
 
 
 
 
 
 
 
 
 
 198	/* Set mta register count */
 199	mac->mta_reg_count = 128;
 
 
 200	/* Set rar entry count */
 201	switch (mac->type) {
 202	case e1000_82576:
 203		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 204		break;
 205	case e1000_82580:
 206		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 207		break;
 208	case e1000_i350:
 
 209		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 210		break;
 211	default:
 212		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 213		break;
 214	}
 215	/* reset */
 216	if (mac->type >= e1000_82580)
 217		mac->ops.reset_hw = igb_reset_hw_82580;
 218	else
 219		mac->ops.reset_hw = igb_reset_hw_82575;
 220
 221	if (mac->type >= e1000_i210) {
 222		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 223		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 
 224	} else {
 225		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 226		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 227	}
 228
 
 
 
 
 
 229	/* Set if part includes ASF firmware */
 230	mac->asf_firmware_present = true;
 231	/* Set if manageability features are enabled. */
 232	mac->arc_subsystem_valid =
 233		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 234			? true : false;
 235	/* enable EEE on i350 parts and later parts */
 236	if (mac->type >= e1000_i350)
 237		dev_spec->eee_disable = false;
 238	else
 239		dev_spec->eee_disable = true;
 
 
 
 240	/* physical interface link setup */
 241	mac->ops.setup_physical_interface =
 242		(hw->phy.media_type == e1000_media_type_copper)
 243			? igb_setup_copper_link_82575
 244			: igb_setup_serdes_link_82575;
 245
 246	/* NVM initialization */
 247	eecd = rd32(E1000_EECD);
 248	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 249		     E1000_EECD_SIZE_EX_SHIFT);
 250
 251	/*
 252	 * Added to a constant, "size" becomes the left-shift value
 253	 * for setting word_size.
 254	 */
 255	size += NVM_WORD_SIZE_BASE_SHIFT;
 256
 257	nvm->word_size = 1 << size;
 258	if (hw->mac.type < e1000_i210) {
 259		nvm->opcode_bits        = 8;
 260		nvm->delay_usec         = 1;
 261		switch (nvm->override) {
 262		case e1000_nvm_override_spi_large:
 263			nvm->page_size    = 32;
 264			nvm->address_bits = 16;
 265			break;
 266		case e1000_nvm_override_spi_small:
 267			nvm->page_size    = 8;
 268			nvm->address_bits = 8;
 269			break;
 270		default:
 271			nvm->page_size    = eecd
 272				& E1000_EECD_ADDR_BITS ? 32 : 8;
 273			nvm->address_bits = eecd
 274				& E1000_EECD_ADDR_BITS ? 16 : 8;
 275			break;
 276		}
 277		if (nvm->word_size == (1 << 15))
 278			nvm->page_size = 128;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279
 280		nvm->type = e1000_nvm_eeprom_spi;
 281	} else
 282		nvm->type = e1000_nvm_flash_hw;
 
 
 
 
 
 
 
 
 
 
 
 283
 284	/*
 285	 * Check for invalid size
 286	 */
 287	if ((hw->mac.type == e1000_82576) && (size > 15)) {
 288		pr_notice("The NVM size is not valid, defaulting to 32K\n");
 289		size = 15;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292	/* NVM Function Pointers */
 293	switch (hw->mac.type) {
 294	case e1000_82580:
 295		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 296		nvm->ops.update = igb_update_nvm_checksum_82580;
 297		nvm->ops.acquire = igb_acquire_nvm_82575;
 298		nvm->ops.release = igb_release_nvm_82575;
 299		if (nvm->word_size < (1 << 15))
 300			nvm->ops.read = igb_read_nvm_eerd;
 301		else
 302			nvm->ops.read = igb_read_nvm_spi;
 303		nvm->ops.write = igb_write_nvm_spi;
 
 
 
 304		break;
 305	case e1000_i350:
 306		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 307		nvm->ops.update = igb_update_nvm_checksum_i350;
 308		nvm->ops.acquire = igb_acquire_nvm_82575;
 309		nvm->ops.release = igb_release_nvm_82575;
 310		if (nvm->word_size < (1 << 15))
 311			nvm->ops.read = igb_read_nvm_eerd;
 312		else
 313			nvm->ops.read = igb_read_nvm_spi;
 314		nvm->ops.write = igb_write_nvm_spi;
 
 315		break;
 316	case e1000_i210:
 317		nvm->ops.validate = igb_validate_nvm_checksum_i210;
 318		nvm->ops.update   = igb_update_nvm_checksum_i210;
 319		nvm->ops.acquire = igb_acquire_nvm_i210;
 320		nvm->ops.release = igb_release_nvm_i210;
 321		nvm->ops.read    = igb_read_nvm_srrd_i210;
 322		nvm->ops.valid_led_default = igb_valid_led_default_i210;
 323		break;
 324	case e1000_i211:
 325		nvm->ops.acquire  = igb_acquire_nvm_i210;
 326		nvm->ops.release  = igb_release_nvm_i210;
 327		nvm->ops.read     = igb_read_nvm_i211;
 328		nvm->ops.valid_led_default = igb_valid_led_default_i210;
 329		nvm->ops.validate = NULL;
 330		nvm->ops.update   = NULL;
 331		nvm->ops.write    = NULL;
 332		break;
 333	default:
 334		nvm->ops.validate = igb_validate_nvm_checksum;
 335		nvm->ops.update = igb_update_nvm_checksum;
 336		nvm->ops.acquire = igb_acquire_nvm_82575;
 337		nvm->ops.release = igb_release_nvm_82575;
 338		if (nvm->word_size < (1 << 15))
 339			nvm->ops.read = igb_read_nvm_eerd;
 340		else
 341			nvm->ops.read = igb_read_nvm_spi;
 342		nvm->ops.write = igb_write_nvm_spi;
 343		break;
 344	}
 345
 346	/* if part supports SR-IOV then initialize mailbox parameters */
 347	switch (mac->type) {
 348	case e1000_82576:
 349	case e1000_i350:
 350		igb_init_mbx_params_pf(hw);
 351		break;
 352	default:
 353		break;
 354	}
 355
 356	/* setup PHY parameters */
 357	if (phy->media_type != e1000_media_type_copper) {
 358		phy->type = e1000_phy_none;
 359		return 0;
 360	}
 361
 362	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 363	phy->reset_delay_us      = 100;
 
 
 364
 365	ctrl_ext = rd32(E1000_CTRL_EXT);
 366
 367	/* PHY function pointers */
 368	if (igb_sgmii_active_82575(hw)) {
 369		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
 370		ctrl_ext |= E1000_CTRL_I2C_ENA;
 371	} else {
 372		phy->ops.reset      = igb_phy_hw_reset;
 373		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 374	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375
 376	wr32(E1000_CTRL_EXT, ctrl_ext);
 377	igb_reset_mdicnfg_82580(hw);
 
 
 378
 379	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 380		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
 381		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
 382	} else if ((hw->mac.type == e1000_82580)
 383		|| (hw->mac.type == e1000_i350)) {
 384		phy->ops.read_reg   = igb_read_phy_reg_82580;
 385		phy->ops.write_reg  = igb_write_phy_reg_82580;
 386	} else if (hw->phy.type >= e1000_phy_i210) {
 387		phy->ops.read_reg   = igb_read_phy_reg_gs40g;
 388		phy->ops.write_reg  = igb_write_phy_reg_gs40g;
 389	} else {
 390		phy->ops.read_reg   = igb_read_phy_reg_igp;
 391		phy->ops.write_reg  = igb_write_phy_reg_igp;
 392	}
 393
 394	/* set lan id */
 395	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 396	               E1000_STATUS_FUNC_SHIFT;
 397
 398	/* Set phy->phy_addr and phy->id. */
 399	ret_val = igb_get_phy_id_82575(hw);
 400	if (ret_val)
 401		return ret_val;
 402
 403	/* Verify phy id and set remaining function pointers */
 404	switch (phy->id) {
 405	case I347AT4_E_PHY_ID:
 406	case M88E1112_E_PHY_ID:
 407	case M88E1111_I_PHY_ID:
 408		phy->type                   = e1000_phy_m88;
 409		phy->ops.get_phy_info       = igb_get_phy_info_m88;
 410
 411		if (phy->id == I347AT4_E_PHY_ID ||
 412		    phy->id == M88E1112_E_PHY_ID)
 413			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 414		else
 415			phy->ops.get_cable_length = igb_get_cable_length_m88;
 
 
 416
 417		if (phy->id == I210_I_PHY_ID) {
 418			phy->ops.get_cable_length =
 419					 igb_get_cable_length_m88_gen2;
 420			phy->ops.set_d0_lplu_state =
 421					igb_set_d0_lplu_state_82580;
 422			phy->ops.set_d3_lplu_state =
 423					igb_set_d3_lplu_state_82580;
 424		}
 425		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 426		break;
 427	case IGP03E1000_E_PHY_ID:
 428		phy->type                   = e1000_phy_igp_3;
 429		phy->ops.get_phy_info       = igb_get_phy_info_igp;
 430		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
 431		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 432		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
 433		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
 
 
 
 
 
 
 
 
 434		break;
 435	case I82580_I_PHY_ID:
 436	case I350_I_PHY_ID:
 437		phy->type                   = e1000_phy_82580;
 438		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
 439		phy->ops.get_cable_length   = igb_get_cable_length_82580;
 440		phy->ops.get_phy_info       = igb_get_phy_info_82580;
 441		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
 442		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
 443		break;
 444	case I210_I_PHY_ID:
 445		phy->type                   = e1000_phy_i210;
 446		phy->ops.get_phy_info       = igb_get_phy_info_m88;
 447		phy->ops.check_polarity     = igb_check_polarity_m88;
 448		phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2;
 449		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
 450		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
 451		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 
 
 452		break;
 453	default:
 454		return -E1000_ERR_PHY;
 455	}
 456
 457	return 0;
 
 
 
 
 458}
 459
 460/**
 461 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 462 *  @hw: pointer to the HW structure
 463 *
 464 *  Acquire access rights to the correct PHY.  This is a
 465 *  function pointer entry point called by the api module.
 466 **/
 467static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 468{
 469	u16 mask = E1000_SWFW_PHY0_SM;
 470
 471	if (hw->bus.func == E1000_FUNC_1)
 472		mask = E1000_SWFW_PHY1_SM;
 473	else if (hw->bus.func == E1000_FUNC_2)
 474		mask = E1000_SWFW_PHY2_SM;
 475	else if (hw->bus.func == E1000_FUNC_3)
 476		mask = E1000_SWFW_PHY3_SM;
 477
 478	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 479}
 480
 481/**
 482 *  igb_release_phy_82575 - Release rights to access PHY
 483 *  @hw: pointer to the HW structure
 484 *
 485 *  A wrapper to release access rights to the correct PHY.  This is a
 486 *  function pointer entry point called by the api module.
 487 **/
 488static void igb_release_phy_82575(struct e1000_hw *hw)
 489{
 490	u16 mask = E1000_SWFW_PHY0_SM;
 491
 492	if (hw->bus.func == E1000_FUNC_1)
 493		mask = E1000_SWFW_PHY1_SM;
 494	else if (hw->bus.func == E1000_FUNC_2)
 495		mask = E1000_SWFW_PHY2_SM;
 496	else if (hw->bus.func == E1000_FUNC_3)
 497		mask = E1000_SWFW_PHY3_SM;
 498
 499	hw->mac.ops.release_swfw_sync(hw, mask);
 500}
 501
 502/**
 503 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 504 *  @hw: pointer to the HW structure
 505 *  @offset: register offset to be read
 506 *  @data: pointer to the read data
 507 *
 508 *  Reads the PHY register at offset using the serial gigabit media independent
 509 *  interface and stores the retrieved information in data.
 510 **/
 511static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 512					  u16 *data)
 513{
 514	s32 ret_val = -E1000_ERR_PARAM;
 515
 516	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 517		hw_dbg("PHY Address %u is out of range\n", offset);
 518		goto out;
 519	}
 520
 521	ret_val = hw->phy.ops.acquire(hw);
 522	if (ret_val)
 523		goto out;
 524
 525	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 526
 527	hw->phy.ops.release(hw);
 528
 529out:
 530	return ret_val;
 531}
 532
 533/**
 534 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 535 *  @hw: pointer to the HW structure
 536 *  @offset: register offset to write to
 537 *  @data: data to write at register offset
 538 *
 539 *  Writes the data to PHY register at the offset using the serial gigabit
 540 *  media independent interface.
 541 **/
 542static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 543					   u16 data)
 544{
 545	s32 ret_val = -E1000_ERR_PARAM;
 546
 547
 548	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 549		hw_dbg("PHY Address %d is out of range\n", offset);
 550		goto out;
 551	}
 552
 553	ret_val = hw->phy.ops.acquire(hw);
 554	if (ret_val)
 555		goto out;
 556
 557	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 558
 559	hw->phy.ops.release(hw);
 560
 561out:
 562	return ret_val;
 563}
 564
 565/**
 566 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 567 *  @hw: pointer to the HW structure
 568 *
 569 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 570 *  sgmi interface.
 571 **/
 572static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 573{
 574	struct e1000_phy_info *phy = &hw->phy;
 575	s32  ret_val = 0;
 576	u16 phy_id;
 577	u32 ctrl_ext;
 578	u32 mdic;
 579
 580	/*
 581	 * For SGMII PHYs, we try the list of possible addresses until
 
 
 
 582	 * we find one that works.  For non-SGMII PHYs
 583	 * (e.g. integrated copper PHYs), an address of 1 should
 584	 * work.  The result of this function should mean phy->phy_addr
 585	 * and phy->id are set correctly.
 586	 */
 587	if (!(igb_sgmii_active_82575(hw))) {
 588		phy->addr = 1;
 589		ret_val = igb_get_phy_id(hw);
 590		goto out;
 591	}
 592
 593	if (igb_sgmii_uses_mdio_82575(hw)) {
 594		switch (hw->mac.type) {
 595		case e1000_82575:
 596		case e1000_82576:
 597			mdic = rd32(E1000_MDIC);
 598			mdic &= E1000_MDIC_PHY_MASK;
 599			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 600			break;
 601		case e1000_82580:
 602		case e1000_i350:
 
 603		case e1000_i210:
 604		case e1000_i211:
 605			mdic = rd32(E1000_MDICNFG);
 606			mdic &= E1000_MDICNFG_PHY_MASK;
 607			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 608			break;
 609		default:
 610			ret_val = -E1000_ERR_PHY;
 611			goto out;
 612			break;
 613		}
 614		ret_val = igb_get_phy_id(hw);
 615		goto out;
 616	}
 617
 618	/* Power on sgmii phy if it is disabled */
 619	ctrl_ext = rd32(E1000_CTRL_EXT);
 620	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 621	wrfl();
 622	msleep(300);
 623
 624	/*
 625	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
 626	 * Therefore, we need to test 1-7
 627	 */
 628	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 629		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 630		if (ret_val == 0) {
 631			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 632			       phy_id, phy->addr);
 633			/*
 634			 * At the time of this writing, The M88 part is
 635			 * the only supported SGMII PHY product.
 636			 */
 637			if (phy_id == M88_VENDOR)
 638				break;
 639		} else {
 640			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 641		}
 642	}
 643
 644	/* A valid PHY type couldn't be found. */
 645	if (phy->addr == 8) {
 646		phy->addr = 0;
 647		ret_val = -E1000_ERR_PHY;
 648		goto out;
 649	} else {
 650		ret_val = igb_get_phy_id(hw);
 651	}
 652
 653	/* restore previous sfp cage power state */
 654	wr32(E1000_CTRL_EXT, ctrl_ext);
 655
 656out:
 657	return ret_val;
 658}
 659
 660/**
 661 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 662 *  @hw: pointer to the HW structure
 663 *
 664 *  Resets the PHY using the serial gigabit media independent interface.
 665 **/
 666static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 667{
 
 668	s32 ret_val;
 669
 670	/*
 671	 * This isn't a true "hard" reset, but is the only reset
 672	 * available to us at this time.
 673	 */
 674
 675	hw_dbg("Soft resetting SGMII attached PHY...\n");
 676
 677	/*
 678	 * SFP documentation requires the following to configure the SPF module
 679	 * to work on SGMII.  No further documentation is given.
 680	 */
 681	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 682	if (ret_val)
 683		goto out;
 684
 685	ret_val = igb_phy_sw_reset(hw);
 
 
 686
 
 
 
 
 687out:
 688	return ret_val;
 689}
 690
 691/**
 692 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 693 *  @hw: pointer to the HW structure
 694 *  @active: true to enable LPLU, false to disable
 695 *
 696 *  Sets the LPLU D0 state according to the active flag.  When
 697 *  activating LPLU this function also disables smart speed
 698 *  and vice versa.  LPLU will not be activated unless the
 699 *  device autonegotiation advertisement meets standards of
 700 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 701 *  This is a function pointer entry point only called by
 702 *  PHY setup routines.
 703 **/
 704static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 705{
 706	struct e1000_phy_info *phy = &hw->phy;
 707	s32 ret_val;
 708	u16 data;
 709
 710	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 711	if (ret_val)
 712		goto out;
 713
 714	if (active) {
 715		data |= IGP02E1000_PM_D0_LPLU;
 716		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 717						 data);
 718		if (ret_val)
 719			goto out;
 720
 721		/* When LPLU is enabled, we should disable SmartSpeed */
 722		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 723						&data);
 724		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 725		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 726						 data);
 727		if (ret_val)
 728			goto out;
 729	} else {
 730		data &= ~IGP02E1000_PM_D0_LPLU;
 731		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 732						 data);
 733		/*
 734		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 735		 * during Dx states where the power conservation is most
 736		 * important.  During driver activity we should enable
 737		 * SmartSpeed, so performance is maintained.
 738		 */
 739		if (phy->smart_speed == e1000_smart_speed_on) {
 740			ret_val = phy->ops.read_reg(hw,
 741					IGP01E1000_PHY_PORT_CONFIG, &data);
 742			if (ret_val)
 743				goto out;
 744
 745			data |= IGP01E1000_PSCFR_SMART_SPEED;
 746			ret_val = phy->ops.write_reg(hw,
 747					IGP01E1000_PHY_PORT_CONFIG, data);
 748			if (ret_val)
 749				goto out;
 750		} else if (phy->smart_speed == e1000_smart_speed_off) {
 751			ret_val = phy->ops.read_reg(hw,
 752					IGP01E1000_PHY_PORT_CONFIG, &data);
 753			if (ret_val)
 754				goto out;
 755
 756			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 757			ret_val = phy->ops.write_reg(hw,
 758					IGP01E1000_PHY_PORT_CONFIG, data);
 759			if (ret_val)
 760				goto out;
 761		}
 762	}
 763
 764out:
 765	return ret_val;
 766}
 767
 768/**
 769 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 770 *  @hw: pointer to the HW structure
 771 *  @active: true to enable LPLU, false to disable
 772 *
 773 *  Sets the LPLU D0 state according to the active flag.  When
 774 *  activating LPLU this function also disables smart speed
 775 *  and vice versa.  LPLU will not be activated unless the
 776 *  device autonegotiation advertisement meets standards of
 777 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 778 *  This is a function pointer entry point only called by
 779 *  PHY setup routines.
 780 **/
 781static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
 782{
 783	struct e1000_phy_info *phy = &hw->phy;
 784	s32 ret_val = 0;
 785	u16 data;
 786
 787	data = rd32(E1000_82580_PHY_POWER_MGMT);
 788
 789	if (active) {
 790		data |= E1000_82580_PM_D0_LPLU;
 791
 792		/* When LPLU is enabled, we should disable SmartSpeed */
 793		data &= ~E1000_82580_PM_SPD;
 794	} else {
 795		data &= ~E1000_82580_PM_D0_LPLU;
 796
 797		/*
 798		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 799		 * during Dx states where the power conservation is most
 800		 * important.  During driver activity we should enable
 801		 * SmartSpeed, so performance is maintained.
 802		 */
 803		if (phy->smart_speed == e1000_smart_speed_on)
 804			data |= E1000_82580_PM_SPD;
 805		else if (phy->smart_speed == e1000_smart_speed_off)
 806			data &= ~E1000_82580_PM_SPD; }
 807
 808	wr32(E1000_82580_PHY_POWER_MGMT, data);
 809	return ret_val;
 810}
 811
 812/**
 813 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
 814 *  @hw: pointer to the HW structure
 815 *  @active: boolean used to enable/disable lplu
 816 *
 817 *  Success returns 0, Failure returns 1
 818 *
 819 *  The low power link up (lplu) state is set to the power management level D3
 820 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 821 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 822 *  is used during Dx states where the power conservation is most important.
 823 *  During driver activity, SmartSpeed should be enabled so performance is
 824 *  maintained.
 825 **/
 826s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
 827{
 828	struct e1000_phy_info *phy = &hw->phy;
 829	s32 ret_val = 0;
 830	u16 data;
 831
 832	data = rd32(E1000_82580_PHY_POWER_MGMT);
 833
 834	if (!active) {
 835		data &= ~E1000_82580_PM_D3_LPLU;
 836		/*
 837		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 838		 * during Dx states where the power conservation is most
 839		 * important.  During driver activity we should enable
 840		 * SmartSpeed, so performance is maintained.
 841		 */
 842		if (phy->smart_speed == e1000_smart_speed_on)
 843			data |= E1000_82580_PM_SPD;
 844		else if (phy->smart_speed == e1000_smart_speed_off)
 845			data &= ~E1000_82580_PM_SPD;
 846	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
 847		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
 848		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
 849		data |= E1000_82580_PM_D3_LPLU;
 850		/* When LPLU is enabled, we should disable SmartSpeed */
 851		data &= ~E1000_82580_PM_SPD;
 852	}
 853
 854	wr32(E1000_82580_PHY_POWER_MGMT, data);
 855	return ret_val;
 856}
 857
 858/**
 859 *  igb_acquire_nvm_82575 - Request for access to EEPROM
 860 *  @hw: pointer to the HW structure
 861 *
 862 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 863 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 864 *  Return successful if access grant bit set, else clear the request for
 865 *  EEPROM access and return -E1000_ERR_NVM (-1).
 866 **/
 867static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
 868{
 869	s32 ret_val;
 870
 871	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
 872	if (ret_val)
 873		goto out;
 874
 875	ret_val = igb_acquire_nvm(hw);
 876
 877	if (ret_val)
 878		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
 879
 880out:
 881	return ret_val;
 882}
 883
 884/**
 885 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
 886 *  @hw: pointer to the HW structure
 887 *
 888 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 889 *  then release the semaphores acquired.
 890 **/
 891static void igb_release_nvm_82575(struct e1000_hw *hw)
 892{
 893	igb_release_nvm(hw);
 894	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
 895}
 896
 897/**
 898 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
 899 *  @hw: pointer to the HW structure
 900 *  @mask: specifies which semaphore to acquire
 901 *
 902 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 903 *  will also specify which port we're acquiring the lock for.
 904 **/
 905static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 906{
 907	u32 swfw_sync;
 908	u32 swmask = mask;
 909	u32 fwmask = mask << 16;
 910	s32 ret_val = 0;
 911	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
 912
 913	while (i < timeout) {
 914		if (igb_get_hw_semaphore(hw)) {
 915			ret_val = -E1000_ERR_SWFW_SYNC;
 916			goto out;
 917		}
 918
 919		swfw_sync = rd32(E1000_SW_FW_SYNC);
 920		if (!(swfw_sync & (fwmask | swmask)))
 921			break;
 922
 923		/*
 924		 * Firmware currently using resource (fwmask)
 925		 * or other software thread using resource (swmask)
 926		 */
 927		igb_put_hw_semaphore(hw);
 928		mdelay(5);
 929		i++;
 930	}
 931
 932	if (i == timeout) {
 933		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 934		ret_val = -E1000_ERR_SWFW_SYNC;
 935		goto out;
 936	}
 937
 938	swfw_sync |= swmask;
 939	wr32(E1000_SW_FW_SYNC, swfw_sync);
 940
 941	igb_put_hw_semaphore(hw);
 942
 943out:
 944	return ret_val;
 945}
 946
 947/**
 948 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
 949 *  @hw: pointer to the HW structure
 950 *  @mask: specifies which semaphore to acquire
 951 *
 952 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 953 *  will also specify which port we're releasing the lock for.
 954 **/
 955static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 956{
 957	u32 swfw_sync;
 958
 959	while (igb_get_hw_semaphore(hw) != 0);
 960	/* Empty */
 961
 962	swfw_sync = rd32(E1000_SW_FW_SYNC);
 963	swfw_sync &= ~mask;
 964	wr32(E1000_SW_FW_SYNC, swfw_sync);
 965
 966	igb_put_hw_semaphore(hw);
 967}
 968
 969/**
 970 *  igb_get_cfg_done_82575 - Read config done bit
 971 *  @hw: pointer to the HW structure
 972 *
 973 *  Read the management control register for the config done bit for
 974 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 975 *  to read the config done bit, so an error is *ONLY* logged and returns
 976 *  0.  If we were to return with error, EEPROM-less silicon
 977 *  would not be able to be reset or change link.
 978 **/
 979static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
 980{
 981	s32 timeout = PHY_CFG_TIMEOUT;
 982	s32 ret_val = 0;
 983	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 984
 985	if (hw->bus.func == 1)
 986		mask = E1000_NVM_CFG_DONE_PORT_1;
 987	else if (hw->bus.func == E1000_FUNC_2)
 988		mask = E1000_NVM_CFG_DONE_PORT_2;
 989	else if (hw->bus.func == E1000_FUNC_3)
 990		mask = E1000_NVM_CFG_DONE_PORT_3;
 991
 992	while (timeout) {
 993		if (rd32(E1000_EEMNGCTL) & mask)
 994			break;
 995		msleep(1);
 996		timeout--;
 997	}
 998	if (!timeout)
 999		hw_dbg("MNG configuration cycle has not completed.\n");
1000
1001	/* If EEPROM is not marked present, init the PHY manually */
1002	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1003	    (hw->phy.type == e1000_phy_igp_3))
1004		igb_phy_init_script_igp3(hw);
1005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006	return ret_val;
1007}
1008
1009/**
1010 *  igb_check_for_link_82575 - Check for link
1011 *  @hw: pointer to the HW structure
1012 *
1013 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1014 *  use the generic interface for determining link.
1015 **/
1016static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1017{
1018	s32 ret_val;
1019	u16 speed, duplex;
1020
1021	if (hw->phy.media_type != e1000_media_type_copper) {
1022		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1023		                                             &duplex);
1024		/*
1025		 * Use this flag to determine if link needs to be checked or
1026		 * not.  If  we have link clear the flag so that we do not
1027		 * continue to check for link.
1028		 */
1029		hw->mac.get_link_status = !hw->mac.serdes_has_link;
 
 
 
 
 
 
 
 
 
1030	} else {
1031		ret_val = igb_check_for_copper_link(hw);
1032	}
1033
1034	return ret_val;
1035}
1036
1037/**
1038 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1039 *  @hw: pointer to the HW structure
1040 **/
1041void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1042{
1043	u32 reg;
1044
1045
1046	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1047	    !igb_sgmii_active_82575(hw))
1048		return;
1049
1050	/* Enable PCS to turn on link */
1051	reg = rd32(E1000_PCS_CFG0);
1052	reg |= E1000_PCS_CFG_PCS_EN;
1053	wr32(E1000_PCS_CFG0, reg);
1054
1055	/* Power up the laser */
1056	reg = rd32(E1000_CTRL_EXT);
1057	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1058	wr32(E1000_CTRL_EXT, reg);
1059
1060	/* flush the write to verify completion */
1061	wrfl();
1062	msleep(1);
1063}
1064
1065/**
1066 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1067 *  @hw: pointer to the HW structure
1068 *  @speed: stores the current speed
1069 *  @duplex: stores the current duplex
1070 *
1071 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1072 *  duplex, then store the values in the pointers provided.
1073 **/
1074static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1075						u16 *duplex)
1076{
1077	struct e1000_mac_info *mac = &hw->mac;
1078	u32 pcs;
1079
1080	/* Set up defaults for the return values of this function */
1081	mac->serdes_has_link = false;
1082	*speed = 0;
1083	*duplex = 0;
1084
1085	/*
1086	 * Read the PCS Status register for link state. For non-copper mode,
1087	 * the status register is not accurate. The PCS status register is
1088	 * used instead.
1089	 */
1090	pcs = rd32(E1000_PCS_LSTAT);
1091
1092	/*
1093	 * The link up bit determines when link is up on autoneg. The sync ok
1094	 * gets set once both sides sync up and agree upon link. Stable link
1095	 * can be determined by checking for both link up and link sync ok
1096	 */
1097	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1098		mac->serdes_has_link = true;
1099
1100		/* Detect and store PCS speed */
1101		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1102			*speed = SPEED_1000;
1103		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1104			*speed = SPEED_100;
1105		} else {
1106			*speed = SPEED_10;
1107		}
1108
1109		/* Detect and store PCS duplex */
1110		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1111			*duplex = FULL_DUPLEX;
1112		} else {
1113			*duplex = HALF_DUPLEX;
 
 
 
 
 
 
 
 
 
 
 
1114		}
 
1115	}
1116
1117	return 0;
1118}
1119
1120/**
1121 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1122 *  @hw: pointer to the HW structure
1123 *
1124 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1125 *  when management pass thru is not enabled.
1126 **/
1127void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1128{
1129	u32 reg;
1130
1131	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1132	    igb_sgmii_active_82575(hw))
1133		return;
1134
1135	if (!igb_enable_mng_pass_thru(hw)) {
1136		/* Disable PCS to turn off link */
1137		reg = rd32(E1000_PCS_CFG0);
1138		reg &= ~E1000_PCS_CFG_PCS_EN;
1139		wr32(E1000_PCS_CFG0, reg);
1140
1141		/* shutdown the laser */
1142		reg = rd32(E1000_CTRL_EXT);
1143		reg |= E1000_CTRL_EXT_SDP3_DATA;
1144		wr32(E1000_CTRL_EXT, reg);
1145
1146		/* flush the write to verify completion */
1147		wrfl();
1148		msleep(1);
1149	}
1150}
1151
1152/**
1153 *  igb_reset_hw_82575 - Reset hardware
1154 *  @hw: pointer to the HW structure
1155 *
1156 *  This resets the hardware into a known state.  This is a
1157 *  function pointer entry point called by the api module.
1158 **/
1159static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1160{
1161	u32 ctrl, icr;
1162	s32 ret_val;
1163
1164	/*
1165	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1166	 * on the last TLP read/write transaction when MAC is reset.
1167	 */
1168	ret_val = igb_disable_pcie_master(hw);
1169	if (ret_val)
1170		hw_dbg("PCI-E Master disable polling has failed.\n");
1171
1172	/* set the completion timeout for interface */
1173	ret_val = igb_set_pcie_completion_timeout(hw);
1174	if (ret_val) {
1175		hw_dbg("PCI-E Set completion timeout has failed.\n");
1176	}
1177
1178	hw_dbg("Masking off all interrupts\n");
1179	wr32(E1000_IMC, 0xffffffff);
1180
1181	wr32(E1000_RCTL, 0);
1182	wr32(E1000_TCTL, E1000_TCTL_PSP);
1183	wrfl();
1184
1185	msleep(10);
1186
1187	ctrl = rd32(E1000_CTRL);
1188
1189	hw_dbg("Issuing a global reset to MAC\n");
1190	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1191
1192	ret_val = igb_get_auto_rd_done(hw);
1193	if (ret_val) {
1194		/*
1195		 * When auto config read does not complete, do not
1196		 * return with an error. This can happen in situations
1197		 * where there is no eeprom and prevents getting link.
1198		 */
1199		hw_dbg("Auto Read Done did not complete\n");
1200	}
1201
1202	/* If EEPROM is not present, run manual init scripts */
1203	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1204		igb_reset_init_script_82575(hw);
1205
1206	/* Clear any pending interrupt events. */
1207	wr32(E1000_IMC, 0xffffffff);
1208	icr = rd32(E1000_ICR);
1209
1210	/* Install any alternate MAC address into RAR0 */
1211	ret_val = igb_check_alt_mac_addr(hw);
1212
1213	return ret_val;
1214}
1215
1216/**
1217 *  igb_init_hw_82575 - Initialize hardware
1218 *  @hw: pointer to the HW structure
1219 *
1220 *  This inits the hardware readying it for operation.
1221 **/
1222static s32 igb_init_hw_82575(struct e1000_hw *hw)
1223{
1224	struct e1000_mac_info *mac = &hw->mac;
1225	s32 ret_val;
1226	u16 i, rar_count = mac->rar_entry_count;
1227
 
 
 
 
 
 
 
1228	/* Initialize identification LED */
1229	ret_val = igb_id_led_init(hw);
1230	if (ret_val) {
1231		hw_dbg("Error initializing identification LED\n");
1232		/* This is not fatal and we should not stop init due to this */
1233	}
1234
1235	/* Disabling VLAN filtering */
1236	hw_dbg("Initializing the IEEE VLAN\n");
1237	if (hw->mac.type == e1000_i350)
1238		igb_clear_vfta_i350(hw);
1239	else
1240		igb_clear_vfta(hw);
1241
1242	/* Setup the receive address */
1243	igb_init_rx_addrs(hw, rar_count);
1244
1245	/* Zero out the Multicast HASH table */
1246	hw_dbg("Zeroing the MTA\n");
1247	for (i = 0; i < mac->mta_reg_count; i++)
1248		array_wr32(E1000_MTA, i, 0);
1249
1250	/* Zero out the Unicast HASH table */
1251	hw_dbg("Zeroing the UTA\n");
1252	for (i = 0; i < mac->uta_reg_count; i++)
1253		array_wr32(E1000_UTA, i, 0);
1254
1255	/* Setup link and flow control */
1256	ret_val = igb_setup_link(hw);
1257
1258	/*
1259	 * Clear all of the statistics registers (clear on read).  It is
1260	 * important that we do this after we have tried to establish link
1261	 * because the symbol error count will increment wildly if there
1262	 * is no link.
1263	 */
1264	igb_clear_hw_cntrs_82575(hw);
1265	return ret_val;
1266}
1267
1268/**
1269 *  igb_setup_copper_link_82575 - Configure copper link settings
1270 *  @hw: pointer to the HW structure
1271 *
1272 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1273 *  for link, once link is established calls to configure collision distance
1274 *  and flow control are called.
1275 **/
1276static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1277{
1278	u32 ctrl;
1279	s32  ret_val;
 
1280
1281	ctrl = rd32(E1000_CTRL);
1282	ctrl |= E1000_CTRL_SLU;
1283	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1284	wr32(E1000_CTRL, ctrl);
1285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286	ret_val = igb_setup_serdes_link_82575(hw);
1287	if (ret_val)
1288		goto out;
1289
1290	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1291		/* allow time for SFP cage time to power up phy */
1292		msleep(300);
1293
1294		ret_val = hw->phy.ops.reset(hw);
1295		if (ret_val) {
1296			hw_dbg("Error resetting the PHY.\n");
1297			goto out;
1298		}
1299	}
1300	switch (hw->phy.type) {
1301	case e1000_phy_i210:
1302	case e1000_phy_m88:
1303		if (hw->phy.id == I347AT4_E_PHY_ID ||
1304		    hw->phy.id == M88E1112_E_PHY_ID)
 
 
 
 
1305			ret_val = igb_copper_link_setup_m88_gen2(hw);
1306		else
 
1307			ret_val = igb_copper_link_setup_m88(hw);
 
 
1308		break;
1309	case e1000_phy_igp_3:
1310		ret_val = igb_copper_link_setup_igp(hw);
1311		break;
1312	case e1000_phy_82580:
1313		ret_val = igb_copper_link_setup_82580(hw);
1314		break;
1315	default:
1316		ret_val = -E1000_ERR_PHY;
1317		break;
1318	}
1319
1320	if (ret_val)
1321		goto out;
1322
1323	ret_val = igb_setup_copper_link(hw);
1324out:
1325	return ret_val;
1326}
1327
1328/**
1329 *  igb_setup_serdes_link_82575 - Setup link for serdes
1330 *  @hw: pointer to the HW structure
1331 *
1332 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1333 *  used on copper connections where the serialized gigabit media independent
1334 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1335 *  for auto-negotiation or forces speed/duplex.
1336 **/
1337static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1338{
1339	u32 ctrl_ext, ctrl_reg, reg;
1340	bool pcs_autoneg;
1341	s32 ret_val = E1000_SUCCESS;
1342	u16 data;
1343
1344	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1345	    !igb_sgmii_active_82575(hw))
1346		return ret_val;
1347
1348
1349	/*
1350	 * On the 82575, SerDes loopback mode persists until it is
1351	 * explicitly turned off or a power cycle is performed.  A read to
1352	 * the register does not indicate its status.  Therefore, we ensure
1353	 * loopback mode is disabled during initialization.
1354	 */
1355	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1356
1357	/* power on the sfp cage if present */
1358	ctrl_ext = rd32(E1000_CTRL_EXT);
1359	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 
1360	wr32(E1000_CTRL_EXT, ctrl_ext);
1361
1362	ctrl_reg = rd32(E1000_CTRL);
1363	ctrl_reg |= E1000_CTRL_SLU;
1364
1365	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1366		/* set both sw defined pins */
1367		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1368
1369		/* Set switch control to serdes energy detect */
1370		reg = rd32(E1000_CONNSW);
1371		reg |= E1000_CONNSW_ENRGSRC;
1372		wr32(E1000_CONNSW, reg);
1373	}
1374
1375	reg = rd32(E1000_PCS_LCTL);
1376
1377	/* default pcs_autoneg to the same setting as mac autoneg */
1378	pcs_autoneg = hw->mac.autoneg;
1379
1380	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1381	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1382		/* sgmii mode lets the phy handle forcing speed/duplex */
1383		pcs_autoneg = true;
1384		/* autoneg time out should be disabled for SGMII mode */
1385		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1386		break;
1387	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1388		/* disable PCS autoneg and support parallel detect only */
1389		pcs_autoneg = false;
1390	default:
1391		if (hw->mac.type == e1000_82575 ||
1392		    hw->mac.type == e1000_82576) {
1393			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1394			if (ret_val) {
1395				printk(KERN_DEBUG "NVM Read Error\n\n");
1396				return ret_val;
1397			}
1398
1399			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1400				pcs_autoneg = false;
1401		}
1402
1403		/*
1404		 * non-SGMII modes only supports a speed of 1000/Full for the
1405		 * link so it is best to just force the MAC and let the pcs
1406		 * link either autoneg or be forced to 1000/Full
1407		 */
1408		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1409		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1410
1411		/* set speed of 1000/Full if speed/duplex is forced */
1412		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1413		break;
1414	}
1415
1416	wr32(E1000_CTRL, ctrl_reg);
1417
1418	/*
1419	 * New SerDes mode allows for forcing speed or autonegotiating speed
1420	 * at 1gb. Autoneg should be default set by most drivers. This is the
1421	 * mode that will be compatible with older link partners and switches.
1422	 * However, both are supported by the hardware and some drivers/tools.
1423	 */
1424	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1425		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1426
1427	/*
1428	 * We force flow control to prevent the CTRL register values from being
1429	 * overwritten by the autonegotiated flow control values
1430	 */
1431	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1432
1433	if (pcs_autoneg) {
1434		/* Set PCS register for autoneg */
1435		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1436		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1438	} else {
1439		/* Set PCS register for forced link */
1440		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1441
 
 
 
1442		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1443	}
1444
1445	wr32(E1000_PCS_LCTL, reg);
1446
1447	if (!igb_sgmii_active_82575(hw))
1448		igb_force_mac_fc(hw);
1449
1450	return ret_val;
1451}
1452
1453/**
1454 *  igb_sgmii_active_82575 - Return sgmii state
1455 *  @hw: pointer to the HW structure
1456 *
1457 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1458 *  which can be enabled for use in the embedded applications.  Simply
1459 *  return the current state of the sgmii interface.
1460 **/
1461static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1462{
1463	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1464	return dev_spec->sgmii_active;
1465}
1466
1467/**
1468 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1469 *  @hw: pointer to the HW structure
1470 *
1471 *  Inits recommended HW defaults after a reset when there is no EEPROM
1472 *  detected. This is only for the 82575.
1473 **/
1474static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1475{
1476	if (hw->mac.type == e1000_82575) {
1477		hw_dbg("Running reset init script for 82575\n");
1478		/* SerDes configuration via SERDESCTRL */
1479		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1480		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1481		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1482		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1483
1484		/* CCM configuration via CCMCTL register */
1485		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1486		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1487
1488		/* PCIe lanes configuration */
1489		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1490		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1491		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1492		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1493
1494		/* PCIe PLL Configuration */
1495		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1496		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1497		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1498	}
1499
1500	return 0;
1501}
1502
1503/**
1504 *  igb_read_mac_addr_82575 - Read device MAC address
1505 *  @hw: pointer to the HW structure
1506 **/
1507static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1508{
1509	s32 ret_val = 0;
1510
1511	/*
1512	 * If there's an alternate MAC address place it in RAR0
1513	 * so that it will override the Si installed default perm
1514	 * address.
1515	 */
1516	ret_val = igb_check_alt_mac_addr(hw);
1517	if (ret_val)
1518		goto out;
1519
1520	ret_val = igb_read_mac_addr(hw);
1521
1522out:
1523	return ret_val;
1524}
1525
1526/**
1527 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1528 * @hw: pointer to the HW structure
1529 *
1530 * In the case of a PHY power down to save power, or to turn off link during a
1531 * driver unload, or wake on lan is not enabled, remove the link.
1532 **/
1533void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1534{
1535	/* If the management interface is not enabled, then power down */
1536	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1537		igb_power_down_phy_copper(hw);
1538}
1539
1540/**
1541 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1542 *  @hw: pointer to the HW structure
1543 *
1544 *  Clears the hardware counters by reading the counter registers.
1545 **/
1546static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1547{
1548	igb_clear_hw_cntrs_base(hw);
1549
1550	rd32(E1000_PRC64);
1551	rd32(E1000_PRC127);
1552	rd32(E1000_PRC255);
1553	rd32(E1000_PRC511);
1554	rd32(E1000_PRC1023);
1555	rd32(E1000_PRC1522);
1556	rd32(E1000_PTC64);
1557	rd32(E1000_PTC127);
1558	rd32(E1000_PTC255);
1559	rd32(E1000_PTC511);
1560	rd32(E1000_PTC1023);
1561	rd32(E1000_PTC1522);
1562
1563	rd32(E1000_ALGNERRC);
1564	rd32(E1000_RXERRC);
1565	rd32(E1000_TNCRS);
1566	rd32(E1000_CEXTERR);
1567	rd32(E1000_TSCTC);
1568	rd32(E1000_TSCTFC);
1569
1570	rd32(E1000_MGTPRC);
1571	rd32(E1000_MGTPDC);
1572	rd32(E1000_MGTPTC);
1573
1574	rd32(E1000_IAC);
1575	rd32(E1000_ICRXOC);
1576
1577	rd32(E1000_ICRXPTC);
1578	rd32(E1000_ICRXATC);
1579	rd32(E1000_ICTXPTC);
1580	rd32(E1000_ICTXATC);
1581	rd32(E1000_ICTXQEC);
1582	rd32(E1000_ICTXQMTC);
1583	rd32(E1000_ICRXDMTC);
1584
1585	rd32(E1000_CBTMPC);
1586	rd32(E1000_HTDPMC);
1587	rd32(E1000_CBRMPC);
1588	rd32(E1000_RPTHC);
1589	rd32(E1000_HGPTC);
1590	rd32(E1000_HTCBDPC);
1591	rd32(E1000_HGORCL);
1592	rd32(E1000_HGORCH);
1593	rd32(E1000_HGOTCL);
1594	rd32(E1000_HGOTCH);
1595	rd32(E1000_LENERRS);
1596
1597	/* This register should not be read in copper configurations */
1598	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1599	    igb_sgmii_active_82575(hw))
1600		rd32(E1000_SCVPC);
1601}
1602
1603/**
1604 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1605 *  @hw: pointer to the HW structure
1606 *
1607 *  After rx enable if managability is enabled then there is likely some
1608 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1609 *  function clears the fifos and flushes any packets that came in as rx was
1610 *  being enabled.
1611 **/
1612void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1613{
1614	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1615	int i, ms_wait;
1616
 
 
 
 
 
1617	if (hw->mac.type != e1000_82575 ||
1618	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1619		return;
1620
1621	/* Disable all RX queues */
1622	for (i = 0; i < 4; i++) {
1623		rxdctl[i] = rd32(E1000_RXDCTL(i));
1624		wr32(E1000_RXDCTL(i),
1625		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1626	}
1627	/* Poll all queues to verify they have shut down */
1628	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1629		msleep(1);
1630		rx_enabled = 0;
1631		for (i = 0; i < 4; i++)
1632			rx_enabled |= rd32(E1000_RXDCTL(i));
1633		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1634			break;
1635	}
1636
1637	if (ms_wait == 10)
1638		hw_dbg("Queue disable timed out after 10ms\n");
1639
1640	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1641	 * incoming packets are rejected.  Set enable and wait 2ms so that
1642	 * any packet that was coming in as RCTL.EN was set is flushed
1643	 */
1644	rfctl = rd32(E1000_RFCTL);
1645	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1646
1647	rlpml = rd32(E1000_RLPML);
1648	wr32(E1000_RLPML, 0);
1649
1650	rctl = rd32(E1000_RCTL);
1651	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1652	temp_rctl |= E1000_RCTL_LPE;
1653
1654	wr32(E1000_RCTL, temp_rctl);
1655	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1656	wrfl();
1657	msleep(2);
1658
1659	/* Enable RX queues that were previously enabled and restore our
1660	 * previous state
1661	 */
1662	for (i = 0; i < 4; i++)
1663		wr32(E1000_RXDCTL(i), rxdctl[i]);
1664	wr32(E1000_RCTL, rctl);
1665	wrfl();
1666
1667	wr32(E1000_RLPML, rlpml);
1668	wr32(E1000_RFCTL, rfctl);
1669
1670	/* Flush receive errors generated by workaround */
1671	rd32(E1000_ROC);
1672	rd32(E1000_RNBC);
1673	rd32(E1000_MPC);
1674}
1675
1676/**
1677 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1678 *  @hw: pointer to the HW structure
1679 *
1680 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1681 *  however the hardware default for these parts is 500us to 1ms which is less
1682 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1683 *  increase the value to either 10ms to 200ms for capability version 1 config,
1684 *  or 16ms to 55ms for version 2.
1685 **/
1686static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1687{
1688	u32 gcr = rd32(E1000_GCR);
1689	s32 ret_val = 0;
1690	u16 pcie_devctl2;
1691
1692	/* only take action if timeout value is defaulted to 0 */
1693	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1694		goto out;
1695
1696	/*
1697	 * if capababilities version is type 1 we can write the
1698	 * timeout of 10ms to 200ms through the GCR register
1699	 */
1700	if (!(gcr & E1000_GCR_CAP_VER2)) {
1701		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1702		goto out;
1703	}
1704
1705	/*
1706	 * for version 2 capabilities we need to write the config space
1707	 * directly in order to set the completion timeout value for
1708	 * 16ms to 55ms
1709	 */
1710	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1711	                                &pcie_devctl2);
1712	if (ret_val)
1713		goto out;
1714
1715	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1716
1717	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1718	                                 &pcie_devctl2);
1719out:
1720	/* disable completion timeout resend */
1721	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1722
1723	wr32(E1000_GCR, gcr);
1724	return ret_val;
1725}
1726
1727/**
1728 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1729 *  @hw: pointer to the hardware struct
1730 *  @enable: state to enter, either enabled or disabled
1731 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1732 *
1733 *  enables/disables L2 switch anti-spoofing functionality.
1734 **/
1735void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1736{
1737	u32 dtxswc;
1738
1739	switch (hw->mac.type) {
1740	case e1000_82576:
 
 
1741	case e1000_i350:
1742		dtxswc = rd32(E1000_DTXSWC);
1743		if (enable) {
1744			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1745				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1746			/* The PF can spoof - it has to in order to
1747			 * support emulation mode NICs */
1748			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1749		} else {
1750			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1751				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1752		}
1753		wr32(E1000_DTXSWC, dtxswc);
1754		break;
1755	default:
1756		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
1757	}
 
1758}
1759
1760/**
1761 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1762 *  @hw: pointer to the hardware struct
1763 *  @enable: state to enter, either enabled or disabled
1764 *
1765 *  enables/disables L2 switch loopback functionality.
1766 **/
1767void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1768{
1769	u32 dtxswc;
1770
1771	switch (hw->mac.type) {
1772	case e1000_82576:
1773		dtxswc = rd32(E1000_DTXSWC);
1774		if (enable)
1775			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1776		else
1777			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1778		wr32(E1000_DTXSWC, dtxswc);
1779		break;
 
1780	case e1000_i350:
1781		dtxswc = rd32(E1000_TXSWC);
1782		if (enable)
1783			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1784		else
1785			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1786		wr32(E1000_TXSWC, dtxswc);
1787		break;
1788	default:
1789		/* Currently no other hardware supports loopback */
1790		break;
1791	}
1792
1793
1794}
1795
1796/**
1797 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1798 *  @hw: pointer to the hardware struct
1799 *  @enable: state to enter, either enabled or disabled
1800 *
1801 *  enables/disables replication of packets across multiple pools.
1802 **/
1803void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1804{
1805	u32 vt_ctl = rd32(E1000_VT_CTL);
1806
1807	if (enable)
1808		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1809	else
1810		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1811
1812	wr32(E1000_VT_CTL, vt_ctl);
1813}
1814
1815/**
1816 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1817 *  @hw: pointer to the HW structure
1818 *  @offset: register offset to be read
1819 *  @data: pointer to the read data
1820 *
1821 *  Reads the MDI control register in the PHY at offset and stores the
1822 *  information read to data.
1823 **/
1824static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1825{
1826	s32 ret_val;
1827
1828
1829	ret_val = hw->phy.ops.acquire(hw);
1830	if (ret_val)
1831		goto out;
1832
1833	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1834
1835	hw->phy.ops.release(hw);
1836
1837out:
1838	return ret_val;
1839}
1840
1841/**
1842 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1843 *  @hw: pointer to the HW structure
1844 *  @offset: register offset to write to
1845 *  @data: data to write to register at offset
1846 *
1847 *  Writes data to MDI control register in the PHY at offset.
1848 **/
1849static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1850{
1851	s32 ret_val;
1852
1853
1854	ret_val = hw->phy.ops.acquire(hw);
1855	if (ret_val)
1856		goto out;
1857
1858	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1859
1860	hw->phy.ops.release(hw);
1861
1862out:
1863	return ret_val;
1864}
1865
1866/**
1867 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1868 *  @hw: pointer to the HW structure
1869 *
1870 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1871 *  the values found in the EEPROM.  This addresses an issue in which these
1872 *  bits are not restored from EEPROM after reset.
1873 **/
1874static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1875{
1876	s32 ret_val = 0;
1877	u32 mdicnfg;
1878	u16 nvm_data = 0;
1879
1880	if (hw->mac.type != e1000_82580)
1881		goto out;
1882	if (!igb_sgmii_active_82575(hw))
1883		goto out;
1884
1885	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1886				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1887				   &nvm_data);
1888	if (ret_val) {
1889		hw_dbg("NVM Read Error\n");
1890		goto out;
1891	}
1892
1893	mdicnfg = rd32(E1000_MDICNFG);
1894	if (nvm_data & NVM_WORD24_EXT_MDIO)
1895		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1896	if (nvm_data & NVM_WORD24_COM_MDIO)
1897		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1898	wr32(E1000_MDICNFG, mdicnfg);
1899out:
1900	return ret_val;
1901}
1902
1903/**
1904 *  igb_reset_hw_82580 - Reset hardware
1905 *  @hw: pointer to the HW structure
1906 *
1907 *  This resets function or entire device (all ports, etc.)
1908 *  to a known state.
1909 **/
1910static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1911{
1912	s32 ret_val = 0;
1913	/* BH SW mailbox bit in SW_FW_SYNC */
1914	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1915	u32 ctrl, icr;
1916	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1917
 
1918
1919	hw->dev_spec._82575.global_device_reset = false;
 
 
 
 
1920
1921	/* Get current control state. */
1922	ctrl = rd32(E1000_CTRL);
1923
1924	/*
1925	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1926	 * on the last TLP read/write transaction when MAC is reset.
1927	 */
1928	ret_val = igb_disable_pcie_master(hw);
1929	if (ret_val)
1930		hw_dbg("PCI-E Master disable polling has failed.\n");
1931
1932	hw_dbg("Masking off all interrupts\n");
1933	wr32(E1000_IMC, 0xffffffff);
1934	wr32(E1000_RCTL, 0);
1935	wr32(E1000_TCTL, E1000_TCTL_PSP);
1936	wrfl();
1937
1938	msleep(10);
1939
1940	/* Determine whether or not a global dev reset is requested */
1941	if (global_device_reset &&
1942		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
1943			global_device_reset = false;
1944
1945	if (global_device_reset &&
1946		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1947		ctrl |= E1000_CTRL_DEV_RST;
1948	else
1949		ctrl |= E1000_CTRL_RST;
1950
1951	wr32(E1000_CTRL, ctrl);
1952	wrfl();
1953
1954	/* Add delay to insure DEV_RST has time to complete */
1955	if (global_device_reset)
1956		msleep(5);
1957
1958	ret_val = igb_get_auto_rd_done(hw);
1959	if (ret_val) {
1960		/*
1961		 * When auto config read does not complete, do not
1962		 * return with an error. This can happen in situations
1963		 * where there is no eeprom and prevents getting link.
1964		 */
1965		hw_dbg("Auto Read Done did not complete\n");
1966	}
1967
1968	/* If EEPROM is not present, run manual init scripts */
1969	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1970		igb_reset_init_script_82575(hw);
1971
1972	/* clear global device reset status bit */
1973	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1974
1975	/* Clear any pending interrupt events. */
1976	wr32(E1000_IMC, 0xffffffff);
1977	icr = rd32(E1000_ICR);
1978
1979	ret_val = igb_reset_mdicnfg_82580(hw);
1980	if (ret_val)
1981		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1982
1983	/* Install any alternate MAC address into RAR0 */
1984	ret_val = igb_check_alt_mac_addr(hw);
1985
1986	/* Release semaphore */
1987	if (global_device_reset)
1988		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
1989
1990	return ret_val;
1991}
1992
1993/**
1994 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1995 *  @data: data received by reading RXPBS register
1996 *
1997 *  The 82580 uses a table based approach for packet buffer allocation sizes.
1998 *  This function converts the retrieved value into the correct table value
1999 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2000 *  0x0 36  72 144   1   2   4   8  16
2001 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2002 */
2003u16 igb_rxpbs_adjust_82580(u32 data)
2004{
2005	u16 ret_val = 0;
2006
2007	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2008		ret_val = e1000_82580_rxpbs_table[data];
2009
2010	return ret_val;
2011}
2012
2013/**
2014 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2015 *  checksum
2016 *  @hw: pointer to the HW structure
2017 *  @offset: offset in words of the checksum protected region
2018 *
2019 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2020 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2021 **/
2022static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2023						 u16 offset)
2024{
2025	s32 ret_val = 0;
2026	u16 checksum = 0;
2027	u16 i, nvm_data;
2028
2029	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2030		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2031		if (ret_val) {
2032			hw_dbg("NVM Read Error\n");
2033			goto out;
2034		}
2035		checksum += nvm_data;
2036	}
2037
2038	if (checksum != (u16) NVM_SUM) {
2039		hw_dbg("NVM Checksum Invalid\n");
2040		ret_val = -E1000_ERR_NVM;
2041		goto out;
2042	}
2043
2044out:
2045	return ret_val;
2046}
2047
2048/**
2049 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2050 *  checksum
2051 *  @hw: pointer to the HW structure
2052 *  @offset: offset in words of the checksum protected region
2053 *
2054 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2055 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2056 *  value to the EEPROM.
2057 **/
2058static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2059{
2060	s32 ret_val;
2061	u16 checksum = 0;
2062	u16 i, nvm_data;
2063
2064	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2065		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2066		if (ret_val) {
2067			hw_dbg("NVM Read Error while updating checksum.\n");
2068			goto out;
2069		}
2070		checksum += nvm_data;
2071	}
2072	checksum = (u16) NVM_SUM - checksum;
2073	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2074				&checksum);
2075	if (ret_val)
2076		hw_dbg("NVM Write Error while updating checksum.\n");
2077
2078out:
2079	return ret_val;
2080}
2081
2082/**
2083 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2084 *  @hw: pointer to the HW structure
2085 *
2086 *  Calculates the EEPROM section checksum by reading/adding each word of
2087 *  the EEPROM and then verifies that the sum of the EEPROM is
2088 *  equal to 0xBABA.
2089 **/
2090static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2091{
2092	s32 ret_val = 0;
2093	u16 eeprom_regions_count = 1;
2094	u16 j, nvm_data;
2095	u16 nvm_offset;
2096
2097	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2098	if (ret_val) {
2099		hw_dbg("NVM Read Error\n");
2100		goto out;
2101	}
2102
2103	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2104		/* if checksums compatibility bit is set validate checksums
2105		 * for all 4 ports. */
 
2106		eeprom_regions_count = 4;
2107	}
2108
2109	for (j = 0; j < eeprom_regions_count; j++) {
2110		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2111		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2112								nvm_offset);
2113		if (ret_val != 0)
2114			goto out;
2115	}
2116
2117out:
2118	return ret_val;
2119}
2120
2121/**
2122 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2123 *  @hw: pointer to the HW structure
2124 *
2125 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2126 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2127 *  checksum and writes the value to the EEPROM.
2128 **/
2129static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2130{
2131	s32 ret_val;
2132	u16 j, nvm_data;
2133	u16 nvm_offset;
2134
2135	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2136	if (ret_val) {
2137		hw_dbg("NVM Read Error while updating checksum"
2138			" compatibility bit.\n");
2139		goto out;
2140	}
2141
2142	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2143		/* set compatibility bit to validate checksums appropriately */
2144		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2145		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2146					&nvm_data);
2147		if (ret_val) {
2148			hw_dbg("NVM Write Error while updating checksum"
2149				" compatibility bit.\n");
2150			goto out;
2151		}
2152	}
2153
2154	for (j = 0; j < 4; j++) {
2155		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2156		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2157		if (ret_val)
2158			goto out;
2159	}
2160
2161out:
2162	return ret_val;
2163}
2164
2165/**
2166 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2167 *  @hw: pointer to the HW structure
2168 *
2169 *  Calculates the EEPROM section checksum by reading/adding each word of
2170 *  the EEPROM and then verifies that the sum of the EEPROM is
2171 *  equal to 0xBABA.
2172 **/
2173static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2174{
2175	s32 ret_val = 0;
2176	u16 j;
2177	u16 nvm_offset;
2178
2179	for (j = 0; j < 4; j++) {
2180		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2181		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2182								nvm_offset);
2183		if (ret_val != 0)
2184			goto out;
2185	}
2186
2187out:
2188	return ret_val;
2189}
2190
2191/**
2192 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2193 *  @hw: pointer to the HW structure
2194 *
2195 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2196 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2197 *  checksum and writes the value to the EEPROM.
2198 **/
2199static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2200{
2201	s32 ret_val = 0;
2202	u16 j;
2203	u16 nvm_offset;
2204
2205	for (j = 0; j < 4; j++) {
2206		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2207		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2208		if (ret_val != 0)
2209			goto out;
2210	}
2211
2212out:
2213	return ret_val;
2214}
2215
2216/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2217 *  igb_set_eee_i350 - Enable/disable EEE support
2218 *  @hw: pointer to the HW structure
 
 
2219 *
2220 *  Enable/disable EEE based on setting in dev_spec structure.
2221 *
2222 **/
2223s32 igb_set_eee_i350(struct e1000_hw *hw)
2224{
2225	s32 ret_val = 0;
2226	u32 ipcnfg, eeer, ctrl_ext;
2227
2228	ctrl_ext = rd32(E1000_CTRL_EXT);
2229	if ((hw->mac.type != e1000_i350) ||
2230	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2231		goto out;
2232	ipcnfg = rd32(E1000_IPCNFG);
2233	eeer = rd32(E1000_EEER);
2234
2235	/* enable or disable per user setting */
2236	if (!(hw->dev_spec._82575.eee_disable)) {
2237		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2238			E1000_IPCNFG_EEE_100M_AN);
2239		eeer |= (E1000_EEER_TX_LPI_EN |
2240			E1000_EEER_RX_LPI_EN |
 
 
 
 
 
 
 
 
 
2241			E1000_EEER_LPI_FC);
2242
 
 
 
 
2243	} else {
2244		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2245			E1000_IPCNFG_EEE_100M_AN);
2246		eeer &= ~(E1000_EEER_TX_LPI_EN |
2247			E1000_EEER_RX_LPI_EN |
2248			E1000_EEER_LPI_FC);
2249	}
2250	wr32(E1000_IPCNFG, ipcnfg);
2251	wr32(E1000_EEER, eeer);
 
 
2252out:
2253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254	return ret_val;
2255}
2256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257static struct e1000_mac_operations e1000_mac_ops_82575 = {
2258	.init_hw              = igb_init_hw_82575,
2259	.check_for_link       = igb_check_for_link_82575,
2260	.rar_set              = igb_rar_set,
2261	.read_mac_addr        = igb_read_mac_addr_82575,
2262	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
 
 
 
 
2263};
2264
2265static struct e1000_phy_operations e1000_phy_ops_82575 = {
2266	.acquire              = igb_acquire_phy_82575,
2267	.get_cfg_done         = igb_get_cfg_done_82575,
2268	.release              = igb_release_phy_82575,
 
 
2269};
2270
2271static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2272	.acquire              = igb_acquire_nvm_82575,
2273	.read                 = igb_read_nvm_eerd,
2274	.release              = igb_release_nvm_82575,
2275	.write                = igb_write_nvm_spi,
2276};
2277
2278const struct e1000_info e1000_82575_info = {
2279	.get_invariants = igb_get_invariants_82575,
2280	.mac_ops = &e1000_mac_ops_82575,
2281	.phy_ops = &e1000_phy_ops_82575,
2282	.nvm_ops = &e1000_nvm_ops_82575,
2283};
2284