Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 *
   3 * Intel Management Engine Interface (Intel MEI) Linux driver
   4 * Copyright (c) 2003-2012, Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 */
  16
  17#include <linux/pci.h>
  18
  19#include <linux/kthread.h>
  20#include <linux/interrupt.h>
  21
  22#include "mei_dev.h"
  23#include "hbm.h"
  24
  25#include "hw-me.h"
  26#include "hw-me-regs.h"
  27
  28#include "mei-trace.h"
  29
  30/**
  31 * mei_me_reg_read - Reads 32bit data from the mei device
  32 *
  33 * @hw: the me hardware structure
  34 * @offset: offset from which to read the data
  35 *
  36 * Return: register value (u32)
  37 */
  38static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
  39			       unsigned long offset)
  40{
  41	return ioread32(hw->mem_addr + offset);
  42}
  43
  44
  45/**
  46 * mei_me_reg_write - Writes 32bit data to the mei device
  47 *
  48 * @hw: the me hardware structure
  49 * @offset: offset from which to write the data
  50 * @value: register value to write (u32)
  51 */
  52static inline void mei_me_reg_write(const struct mei_me_hw *hw,
  53				 unsigned long offset, u32 value)
  54{
  55	iowrite32(value, hw->mem_addr + offset);
  56}
  57
  58/**
  59 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
  60 *  read window register
  61 *
  62 * @dev: the device structure
  63 *
  64 * Return: ME_CB_RW register value (u32)
  65 */
  66static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
  67{
  68	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
  69}
  70
  71/**
  72 * mei_me_hcbww_write - write 32bit data to the host circular buffer
  73 *
  74 * @dev: the device structure
  75 * @data: 32bit data to be written to the host circular buffer
  76 */
  77static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
  78{
  79	mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
  80}
  81
  82/**
  83 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
  84 *
  85 * @dev: the device structure
  86 *
  87 * Return: ME_CSR_HA register value (u32)
  88 */
  89static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
  90{
  91	u32 reg;
  92
  93	reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
  94	trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
  95
  96	return reg;
  97}
  98
  99/**
 100 * mei_hcsr_read - Reads 32bit data from the host CSR
 101 *
 102 * @dev: the device structure
 103 *
 104 * Return: H_CSR register value (u32)
 105 */
 106static inline u32 mei_hcsr_read(const struct mei_device *dev)
 107{
 108	u32 reg;
 109
 110	reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
 111	trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
 112
 113	return reg;
 114}
 115
 116/**
 117 * mei_hcsr_write - writes H_CSR register to the mei device
 118 *
 119 * @dev: the device structure
 120 * @reg: new register value
 121 */
 122static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
 123{
 124	trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
 125	mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
 126}
 127
 128/**
 129 * mei_hcsr_set - writes H_CSR register to the mei device,
 130 * and ignores the H_IS bit for it is write-one-to-zero.
 131 *
 132 * @dev: the device structure
 133 * @reg: new register value
 134 */
 135static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
 136{
 137	reg &= ~H_CSR_IS_MASK;
 138	mei_hcsr_write(dev, reg);
 139}
 140
 141/**
 142 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
 143 *
 144 * @dev: the device structure
 145 *
 146 * Return: H_D0I3C register value (u32)
 147 */
 148static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
 149{
 150	u32 reg;
 151
 152	reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
 153	trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
 154
 155	return reg;
 156}
 157
 158/**
 159 * mei_me_d0i3c_write - writes H_D0I3C register to device
 160 *
 161 * @dev: the device structure
 162 * @reg: new register value
 163 */
 164static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
 165{
 166	trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
 167	mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
 168}
 169
 170/**
 171 * mei_me_fw_status - read fw status register from pci config space
 172 *
 173 * @dev: mei device
 174 * @fw_status: fw status register values
 175 *
 176 * Return: 0 on success, error otherwise
 177 */
 178static int mei_me_fw_status(struct mei_device *dev,
 179			    struct mei_fw_status *fw_status)
 180{
 181	struct pci_dev *pdev = to_pci_dev(dev->dev);
 182	struct mei_me_hw *hw = to_me_hw(dev);
 183	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
 184	int ret;
 185	int i;
 186
 187	if (!fw_status)
 188		return -EINVAL;
 189
 190	fw_status->count = fw_src->count;
 191	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
 192		ret = pci_read_config_dword(pdev, fw_src->status[i],
 193					    &fw_status->status[i]);
 194		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
 195				       fw_src->status[i],
 196				       fw_status->status[i]);
 197		if (ret)
 198			return ret;
 199	}
 200
 201	return 0;
 202}
 203
 204/**
 205 * mei_me_hw_config - configure hw dependent settings
 206 *
 207 * @dev: mei device
 208 */
 209static void mei_me_hw_config(struct mei_device *dev)
 210{
 211	struct pci_dev *pdev = to_pci_dev(dev->dev);
 212	struct mei_me_hw *hw = to_me_hw(dev);
 213	u32 hcsr, reg;
 214
 215	/* Doesn't change in runtime */
 216	hcsr = mei_hcsr_read(dev);
 217	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
 218
 219	reg = 0;
 220	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
 221	trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
 222	hw->d0i3_supported =
 223		((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
 224
 225	hw->pg_state = MEI_PG_OFF;
 226	if (hw->d0i3_supported) {
 227		reg = mei_me_d0i3c_read(dev);
 228		if (reg & H_D0I3C_I3)
 229			hw->pg_state = MEI_PG_ON;
 230	}
 231}
 232
 233/**
 234 * mei_me_pg_state  - translate internal pg state
 235 *   to the mei power gating state
 236 *
 237 * @dev:  mei device
 238 *
 239 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 240 */
 241static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
 242{
 243	struct mei_me_hw *hw = to_me_hw(dev);
 244
 245	return hw->pg_state;
 246}
 247
 248/**
 249 * mei_me_intr_clear - clear and stop interrupts
 250 *
 251 * @dev: the device structure
 252 */
 253static void mei_me_intr_clear(struct mei_device *dev)
 254{
 255	u32 hcsr = mei_hcsr_read(dev);
 256
 257	if (hcsr & H_CSR_IS_MASK)
 258		mei_hcsr_write(dev, hcsr);
 259}
 260/**
 261 * mei_me_intr_enable - enables mei device interrupts
 262 *
 263 * @dev: the device structure
 264 */
 265static void mei_me_intr_enable(struct mei_device *dev)
 266{
 267	u32 hcsr = mei_hcsr_read(dev);
 268
 269	hcsr |= H_CSR_IE_MASK;
 270	mei_hcsr_set(dev, hcsr);
 271}
 272
 273/**
 274 * mei_me_intr_disable - disables mei device interrupts
 275 *
 276 * @dev: the device structure
 277 */
 278static void mei_me_intr_disable(struct mei_device *dev)
 279{
 280	u32 hcsr = mei_hcsr_read(dev);
 281
 282	hcsr  &= ~H_CSR_IE_MASK;
 283	mei_hcsr_set(dev, hcsr);
 284}
 285
 286/**
 287 * mei_me_hw_reset_release - release device from the reset
 288 *
 289 * @dev: the device structure
 290 */
 291static void mei_me_hw_reset_release(struct mei_device *dev)
 292{
 293	u32 hcsr = mei_hcsr_read(dev);
 294
 295	hcsr |= H_IG;
 296	hcsr &= ~H_RST;
 297	mei_hcsr_set(dev, hcsr);
 298
 299	/* complete this write before we set host ready on another CPU */
 300	mmiowb();
 301}
 302
 303/**
 304 * mei_me_host_set_ready - enable device
 305 *
 306 * @dev: mei device
 307 */
 308static void mei_me_host_set_ready(struct mei_device *dev)
 309{
 310	u32 hcsr = mei_hcsr_read(dev);
 311
 312	hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
 313	mei_hcsr_set(dev, hcsr);
 314}
 315
 316/**
 317 * mei_me_host_is_ready - check whether the host has turned ready
 318 *
 319 * @dev: mei device
 320 * Return: bool
 321 */
 322static bool mei_me_host_is_ready(struct mei_device *dev)
 323{
 324	u32 hcsr = mei_hcsr_read(dev);
 325
 326	return (hcsr & H_RDY) == H_RDY;
 327}
 328
 329/**
 330 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
 331 *
 332 * @dev: mei device
 333 * Return: bool
 334 */
 335static bool mei_me_hw_is_ready(struct mei_device *dev)
 336{
 337	u32 mecsr = mei_me_mecsr_read(dev);
 338
 339	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
 340}
 341
 342/**
 343 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
 344 *  or timeout is reached
 345 *
 346 * @dev: mei device
 347 * Return: 0 on success, error otherwise
 348 */
 349static int mei_me_hw_ready_wait(struct mei_device *dev)
 350{
 351	mutex_unlock(&dev->device_lock);
 352	wait_event_timeout(dev->wait_hw_ready,
 353			dev->recvd_hw_ready,
 354			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
 355	mutex_lock(&dev->device_lock);
 356	if (!dev->recvd_hw_ready) {
 357		dev_err(dev->dev, "wait hw ready failed\n");
 358		return -ETIME;
 359	}
 360
 361	mei_me_hw_reset_release(dev);
 362	dev->recvd_hw_ready = false;
 363	return 0;
 364}
 365
 366/**
 367 * mei_me_hw_start - hw start routine
 368 *
 369 * @dev: mei device
 370 * Return: 0 on success, error otherwise
 371 */
 372static int mei_me_hw_start(struct mei_device *dev)
 373{
 374	int ret = mei_me_hw_ready_wait(dev);
 375
 376	if (ret)
 377		return ret;
 378	dev_dbg(dev->dev, "hw is ready\n");
 379
 380	mei_me_host_set_ready(dev);
 381	return ret;
 382}
 383
 384
 385/**
 386 * mei_hbuf_filled_slots - gets number of device filled buffer slots
 387 *
 388 * @dev: the device structure
 389 *
 390 * Return: number of filled slots
 391 */
 392static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
 393{
 394	u32 hcsr;
 395	char read_ptr, write_ptr;
 396
 397	hcsr = mei_hcsr_read(dev);
 398
 399	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
 400	write_ptr = (char) ((hcsr & H_CBWP) >> 16);
 401
 402	return (unsigned char) (write_ptr - read_ptr);
 403}
 404
 405/**
 406 * mei_me_hbuf_is_empty - checks if host buffer is empty.
 407 *
 408 * @dev: the device structure
 409 *
 410 * Return: true if empty, false - otherwise.
 411 */
 412static bool mei_me_hbuf_is_empty(struct mei_device *dev)
 413{
 414	return mei_hbuf_filled_slots(dev) == 0;
 415}
 416
 417/**
 418 * mei_me_hbuf_empty_slots - counts write empty slots.
 419 *
 420 * @dev: the device structure
 421 *
 422 * Return: -EOVERFLOW if overflow, otherwise empty slots count
 423 */
 424static int mei_me_hbuf_empty_slots(struct mei_device *dev)
 425{
 426	unsigned char filled_slots, empty_slots;
 427
 428	filled_slots = mei_hbuf_filled_slots(dev);
 429	empty_slots = dev->hbuf_depth - filled_slots;
 430
 431	/* check for overflow */
 432	if (filled_slots > dev->hbuf_depth)
 433		return -EOVERFLOW;
 434
 435	return empty_slots;
 436}
 437
 438/**
 439 * mei_me_hbuf_max_len - returns size of hw buffer.
 440 *
 441 * @dev: the device structure
 442 *
 443 * Return: size of hw buffer in bytes
 444 */
 445static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
 446{
 447	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
 448}
 449
 450
 451/**
 452 * mei_me_write_message - writes a message to mei device.
 453 *
 454 * @dev: the device structure
 455 * @header: mei HECI header of message
 456 * @buf: message payload will be written
 457 *
 458 * Return: -EIO if write has failed
 459 */
 460static int mei_me_write_message(struct mei_device *dev,
 461			struct mei_msg_hdr *header,
 462			unsigned char *buf)
 463{
 464	unsigned long rem;
 465	unsigned long length = header->length;
 466	u32 *reg_buf = (u32 *)buf;
 467	u32 hcsr;
 468	u32 dw_cnt;
 469	int i;
 470	int empty_slots;
 471
 472	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
 473
 474	empty_slots = mei_hbuf_empty_slots(dev);
 475	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
 476
 477	dw_cnt = mei_data2slots(length);
 478	if (empty_slots < 0 || dw_cnt > empty_slots)
 479		return -EMSGSIZE;
 480
 481	mei_me_hcbww_write(dev, *((u32 *) header));
 482
 483	for (i = 0; i < length / 4; i++)
 484		mei_me_hcbww_write(dev, reg_buf[i]);
 485
 486	rem = length & 0x3;
 487	if (rem > 0) {
 488		u32 reg = 0;
 489
 490		memcpy(&reg, &buf[length - rem], rem);
 491		mei_me_hcbww_write(dev, reg);
 492	}
 493
 494	hcsr = mei_hcsr_read(dev) | H_IG;
 495	mei_hcsr_set(dev, hcsr);
 496	if (!mei_me_hw_is_ready(dev))
 497		return -EIO;
 498
 499	return 0;
 500}
 501
 502/**
 503 * mei_me_count_full_read_slots - counts read full slots.
 504 *
 505 * @dev: the device structure
 506 *
 507 * Return: -EOVERFLOW if overflow, otherwise filled slots count
 508 */
 509static int mei_me_count_full_read_slots(struct mei_device *dev)
 510{
 511	u32 me_csr;
 512	char read_ptr, write_ptr;
 513	unsigned char buffer_depth, filled_slots;
 514
 515	me_csr = mei_me_mecsr_read(dev);
 516	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
 517	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
 518	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
 519	filled_slots = (unsigned char) (write_ptr - read_ptr);
 520
 521	/* check for overflow */
 522	if (filled_slots > buffer_depth)
 523		return -EOVERFLOW;
 524
 525	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
 526	return (int)filled_slots;
 527}
 528
 529/**
 530 * mei_me_read_slots - reads a message from mei device.
 531 *
 532 * @dev: the device structure
 533 * @buffer: message buffer will be written
 534 * @buffer_length: message size will be read
 535 *
 536 * Return: always 0
 537 */
 538static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
 539		    unsigned long buffer_length)
 540{
 541	u32 *reg_buf = (u32 *)buffer;
 542	u32 hcsr;
 543
 544	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
 545		*reg_buf++ = mei_me_mecbrw_read(dev);
 546
 547	if (buffer_length > 0) {
 548		u32 reg = mei_me_mecbrw_read(dev);
 549
 550		memcpy(reg_buf, &reg, buffer_length);
 551	}
 552
 553	hcsr = mei_hcsr_read(dev) | H_IG;
 554	mei_hcsr_set(dev, hcsr);
 555	return 0;
 556}
 557
 558/**
 559 * mei_me_pg_set - write pg enter register
 560 *
 561 * @dev: the device structure
 562 */
 563static void mei_me_pg_set(struct mei_device *dev)
 564{
 565	struct mei_me_hw *hw = to_me_hw(dev);
 566	u32 reg;
 567
 568	reg = mei_me_reg_read(hw, H_HPG_CSR);
 569	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 570
 571	reg |= H_HPG_CSR_PGI;
 572
 573	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 574	mei_me_reg_write(hw, H_HPG_CSR, reg);
 575}
 576
 577/**
 578 * mei_me_pg_unset - write pg exit register
 579 *
 580 * @dev: the device structure
 581 */
 582static void mei_me_pg_unset(struct mei_device *dev)
 583{
 584	struct mei_me_hw *hw = to_me_hw(dev);
 585	u32 reg;
 586
 587	reg = mei_me_reg_read(hw, H_HPG_CSR);
 588	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 589
 590	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
 591
 592	reg |= H_HPG_CSR_PGIHEXR;
 593
 594	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 595	mei_me_reg_write(hw, H_HPG_CSR, reg);
 596}
 597
 598/**
 599 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
 600 *
 601 * @dev: the device structure
 602 *
 603 * Return: 0 on success an error code otherwise
 604 */
 605static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
 606{
 607	struct mei_me_hw *hw = to_me_hw(dev);
 608	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 609	int ret;
 610
 611	dev->pg_event = MEI_PG_EVENT_WAIT;
 612
 613	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 614	if (ret)
 615		return ret;
 616
 617	mutex_unlock(&dev->device_lock);
 618	wait_event_timeout(dev->wait_pg,
 619		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 620	mutex_lock(&dev->device_lock);
 621
 622	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
 623		mei_me_pg_set(dev);
 624		ret = 0;
 625	} else {
 626		ret = -ETIME;
 627	}
 628
 629	dev->pg_event = MEI_PG_EVENT_IDLE;
 630	hw->pg_state = MEI_PG_ON;
 631
 632	return ret;
 633}
 634
 635/**
 636 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
 637 *
 638 * @dev: the device structure
 639 *
 640 * Return: 0 on success an error code otherwise
 641 */
 642static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
 643{
 644	struct mei_me_hw *hw = to_me_hw(dev);
 645	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 646	int ret;
 647
 648	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
 649		goto reply;
 650
 651	dev->pg_event = MEI_PG_EVENT_WAIT;
 652
 653	mei_me_pg_unset(dev);
 654
 655	mutex_unlock(&dev->device_lock);
 656	wait_event_timeout(dev->wait_pg,
 657		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 658	mutex_lock(&dev->device_lock);
 659
 660reply:
 661	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 662		ret = -ETIME;
 663		goto out;
 664	}
 665
 666	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 667	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
 668	if (ret)
 669		return ret;
 670
 671	mutex_unlock(&dev->device_lock);
 672	wait_event_timeout(dev->wait_pg,
 673		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 674	mutex_lock(&dev->device_lock);
 675
 676	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
 677		ret = 0;
 678	else
 679		ret = -ETIME;
 680
 681out:
 682	dev->pg_event = MEI_PG_EVENT_IDLE;
 683	hw->pg_state = MEI_PG_OFF;
 684
 685	return ret;
 686}
 687
 688/**
 689 * mei_me_pg_in_transition - is device now in pg transition
 690 *
 691 * @dev: the device structure
 692 *
 693 * Return: true if in pg transition, false otherwise
 694 */
 695static bool mei_me_pg_in_transition(struct mei_device *dev)
 696{
 697	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
 698	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
 699}
 700
 701/**
 702 * mei_me_pg_is_enabled - detect if PG is supported by HW
 703 *
 704 * @dev: the device structure
 705 *
 706 * Return: true is pg supported, false otherwise
 707 */
 708static bool mei_me_pg_is_enabled(struct mei_device *dev)
 709{
 710	struct mei_me_hw *hw = to_me_hw(dev);
 711	u32 reg = mei_me_mecsr_read(dev);
 712
 713	if (hw->d0i3_supported)
 714		return true;
 715
 716	if ((reg & ME_PGIC_HRA) == 0)
 717		goto notsupported;
 718
 719	if (!dev->hbm_f_pg_supported)
 720		goto notsupported;
 721
 722	return true;
 723
 724notsupported:
 725	dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
 726		hw->d0i3_supported,
 727		!!(reg & ME_PGIC_HRA),
 728		dev->version.major_version,
 729		dev->version.minor_version,
 730		HBM_MAJOR_VERSION_PGI,
 731		HBM_MINOR_VERSION_PGI);
 732
 733	return false;
 734}
 735
 736/**
 737 * mei_me_d0i3_set - write d0i3 register bit on mei device.
 738 *
 739 * @dev: the device structure
 740 * @intr: ask for interrupt
 741 *
 742 * Return: D0I3C register value
 743 */
 744static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
 745{
 746	u32 reg = mei_me_d0i3c_read(dev);
 747
 748	reg |= H_D0I3C_I3;
 749	if (intr)
 750		reg |= H_D0I3C_IR;
 751	else
 752		reg &= ~H_D0I3C_IR;
 753	mei_me_d0i3c_write(dev, reg);
 754	/* read it to ensure HW consistency */
 755	reg = mei_me_d0i3c_read(dev);
 756	return reg;
 757}
 758
 759/**
 760 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
 761 *
 762 * @dev: the device structure
 763 *
 764 * Return: D0I3C register value
 765 */
 766static u32 mei_me_d0i3_unset(struct mei_device *dev)
 767{
 768	u32 reg = mei_me_d0i3c_read(dev);
 769
 770	reg &= ~H_D0I3C_I3;
 771	reg |= H_D0I3C_IR;
 772	mei_me_d0i3c_write(dev, reg);
 773	/* read it to ensure HW consistency */
 774	reg = mei_me_d0i3c_read(dev);
 775	return reg;
 776}
 777
 778/**
 779 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
 780 *
 781 * @dev: the device structure
 782 *
 783 * Return: 0 on success an error code otherwise
 784 */
 785static int mei_me_d0i3_enter_sync(struct mei_device *dev)
 786{
 787	struct mei_me_hw *hw = to_me_hw(dev);
 788	unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 789	unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 790	int ret;
 791	u32 reg;
 792
 793	reg = mei_me_d0i3c_read(dev);
 794	if (reg & H_D0I3C_I3) {
 795		/* we are in d0i3, nothing to do */
 796		dev_dbg(dev->dev, "d0i3 set not needed\n");
 797		ret = 0;
 798		goto on;
 799	}
 800
 801	/* PGI entry procedure */
 802	dev->pg_event = MEI_PG_EVENT_WAIT;
 803
 804	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 805	if (ret)
 806		/* FIXME: should we reset here? */
 807		goto out;
 808
 809	mutex_unlock(&dev->device_lock);
 810	wait_event_timeout(dev->wait_pg,
 811		dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
 812	mutex_lock(&dev->device_lock);
 813
 814	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 815		ret = -ETIME;
 816		goto out;
 817	}
 818	/* end PGI entry procedure */
 819
 820	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 821
 822	reg = mei_me_d0i3_set(dev, true);
 823	if (!(reg & H_D0I3C_CIP)) {
 824		dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
 825		ret = 0;
 826		goto on;
 827	}
 828
 829	mutex_unlock(&dev->device_lock);
 830	wait_event_timeout(dev->wait_pg,
 831		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
 832	mutex_lock(&dev->device_lock);
 833
 834	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 835		reg = mei_me_d0i3c_read(dev);
 836		if (!(reg & H_D0I3C_I3)) {
 837			ret = -ETIME;
 838			goto out;
 839		}
 840	}
 841
 842	ret = 0;
 843on:
 844	hw->pg_state = MEI_PG_ON;
 845out:
 846	dev->pg_event = MEI_PG_EVENT_IDLE;
 847	dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
 848	return ret;
 849}
 850
 851/**
 852 * mei_me_d0i3_enter - perform d0i3 entry procedure
 853 *   no hbm PG handshake
 854 *   no waiting for confirmation; runs with interrupts
 855 *   disabled
 856 *
 857 * @dev: the device structure
 858 *
 859 * Return: 0 on success an error code otherwise
 860 */
 861static int mei_me_d0i3_enter(struct mei_device *dev)
 862{
 863	struct mei_me_hw *hw = to_me_hw(dev);
 864	u32 reg;
 865
 866	reg = mei_me_d0i3c_read(dev);
 867	if (reg & H_D0I3C_I3) {
 868		/* we are in d0i3, nothing to do */
 869		dev_dbg(dev->dev, "already d0i3 : set not needed\n");
 870		goto on;
 871	}
 872
 873	mei_me_d0i3_set(dev, false);
 874on:
 875	hw->pg_state = MEI_PG_ON;
 876	dev->pg_event = MEI_PG_EVENT_IDLE;
 877	dev_dbg(dev->dev, "d0i3 enter\n");
 878	return 0;
 879}
 880
 881/**
 882 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
 883 *
 884 * @dev: the device structure
 885 *
 886 * Return: 0 on success an error code otherwise
 887 */
 888static int mei_me_d0i3_exit_sync(struct mei_device *dev)
 889{
 890	struct mei_me_hw *hw = to_me_hw(dev);
 891	unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 892	int ret;
 893	u32 reg;
 894
 895	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 896
 897	reg = mei_me_d0i3c_read(dev);
 898	if (!(reg & H_D0I3C_I3)) {
 899		/* we are not in d0i3, nothing to do */
 900		dev_dbg(dev->dev, "d0i3 exit not needed\n");
 901		ret = 0;
 902		goto off;
 903	}
 904
 905	reg = mei_me_d0i3_unset(dev);
 906	if (!(reg & H_D0I3C_CIP)) {
 907		dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
 908		ret = 0;
 909		goto off;
 910	}
 911
 912	mutex_unlock(&dev->device_lock);
 913	wait_event_timeout(dev->wait_pg,
 914		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 915	mutex_lock(&dev->device_lock);
 916
 917	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 918		reg = mei_me_d0i3c_read(dev);
 919		if (reg & H_D0I3C_I3) {
 920			ret = -ETIME;
 921			goto out;
 922		}
 923	}
 924
 925	ret = 0;
 926off:
 927	hw->pg_state = MEI_PG_OFF;
 928out:
 929	dev->pg_event = MEI_PG_EVENT_IDLE;
 930
 931	dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
 932	return ret;
 933}
 934
 935/**
 936 * mei_me_pg_legacy_intr - perform legacy pg processing
 937 *			   in interrupt thread handler
 938 *
 939 * @dev: the device structure
 940 */
 941static void mei_me_pg_legacy_intr(struct mei_device *dev)
 942{
 943	struct mei_me_hw *hw = to_me_hw(dev);
 944
 945	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
 946		return;
 947
 948	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
 949	hw->pg_state = MEI_PG_OFF;
 950	if (waitqueue_active(&dev->wait_pg))
 951		wake_up(&dev->wait_pg);
 952}
 953
 954/**
 955 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
 956 *
 957 * @dev: the device structure
 958 */
 959static void mei_me_d0i3_intr(struct mei_device *dev)
 960{
 961	struct mei_me_hw *hw = to_me_hw(dev);
 962
 963	if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
 964	    (hw->intr_source & H_D0I3C_IS)) {
 965		dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
 966		if (hw->pg_state == MEI_PG_ON) {
 967			hw->pg_state = MEI_PG_OFF;
 968			if (dev->hbm_state != MEI_HBM_IDLE) {
 969				/*
 970				 * force H_RDY because it could be
 971				 * wiped off during PG
 972				 */
 973				dev_dbg(dev->dev, "d0i3 set host ready\n");
 974				mei_me_host_set_ready(dev);
 975			}
 976		} else {
 977			hw->pg_state = MEI_PG_ON;
 978		}
 979
 980		wake_up(&dev->wait_pg);
 981	}
 982
 983	if (hw->pg_state == MEI_PG_ON && (hw->intr_source & H_IS)) {
 984		/*
 985		 * HW sent some data and we are in D0i3, so
 986		 * we got here because of HW initiated exit from D0i3.
 987		 * Start runtime pm resume sequence to exit low power state.
 988		 */
 989		dev_dbg(dev->dev, "d0i3 want resume\n");
 990		mei_hbm_pg_resume(dev);
 991	}
 992}
 993
 994/**
 995 * mei_me_pg_intr - perform pg processing in interrupt thread handler
 996 *
 997 * @dev: the device structure
 998 */
 999static void mei_me_pg_intr(struct mei_device *dev)
1000{
1001	struct mei_me_hw *hw = to_me_hw(dev);
1002
1003	if (hw->d0i3_supported)
1004		mei_me_d0i3_intr(dev);
1005	else
1006		mei_me_pg_legacy_intr(dev);
1007}
1008
1009/**
1010 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1011 *
1012 * @dev: the device structure
1013 *
1014 * Return: 0 on success an error code otherwise
1015 */
1016int mei_me_pg_enter_sync(struct mei_device *dev)
1017{
1018	struct mei_me_hw *hw = to_me_hw(dev);
1019
1020	if (hw->d0i3_supported)
1021		return mei_me_d0i3_enter_sync(dev);
1022	else
1023		return mei_me_pg_legacy_enter_sync(dev);
1024}
1025
1026/**
1027 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1028 *
1029 * @dev: the device structure
1030 *
1031 * Return: 0 on success an error code otherwise
1032 */
1033int mei_me_pg_exit_sync(struct mei_device *dev)
1034{
1035	struct mei_me_hw *hw = to_me_hw(dev);
1036
1037	if (hw->d0i3_supported)
1038		return mei_me_d0i3_exit_sync(dev);
1039	else
1040		return mei_me_pg_legacy_exit_sync(dev);
1041}
1042
1043/**
1044 * mei_me_hw_reset - resets fw via mei csr register.
1045 *
1046 * @dev: the device structure
1047 * @intr_enable: if interrupt should be enabled after reset.
1048 *
1049 * Return: 0 on success an error code otherwise
1050 */
1051static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1052{
1053	struct mei_me_hw *hw = to_me_hw(dev);
1054	int ret;
1055	u32 hcsr;
1056
1057	if (intr_enable) {
1058		mei_me_intr_enable(dev);
1059		if (hw->d0i3_supported) {
1060			ret = mei_me_d0i3_exit_sync(dev);
1061			if (ret)
1062				return ret;
1063		}
1064	}
1065
1066	hcsr = mei_hcsr_read(dev);
1067	/* H_RST may be found lit before reset is started,
1068	 * for example if preceding reset flow hasn't completed.
1069	 * In that case asserting H_RST will be ignored, therefore
1070	 * we need to clean H_RST bit to start a successful reset sequence.
1071	 */
1072	if ((hcsr & H_RST) == H_RST) {
1073		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1074		hcsr &= ~H_RST;
1075		mei_hcsr_set(dev, hcsr);
1076		hcsr = mei_hcsr_read(dev);
1077	}
1078
1079	hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1080
1081	if (!intr_enable)
1082		hcsr &= ~H_CSR_IE_MASK;
1083
1084	dev->recvd_hw_ready = false;
1085	mei_hcsr_write(dev, hcsr);
1086
1087	/*
1088	 * Host reads the H_CSR once to ensure that the
1089	 * posted write to H_CSR completes.
1090	 */
1091	hcsr = mei_hcsr_read(dev);
1092
1093	if ((hcsr & H_RST) == 0)
1094		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1095
1096	if ((hcsr & H_RDY) == H_RDY)
1097		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1098
1099	if (!intr_enable) {
1100		mei_me_hw_reset_release(dev);
1101		if (hw->d0i3_supported) {
1102			ret = mei_me_d0i3_enter(dev);
1103			if (ret)
1104				return ret;
1105		}
1106	}
1107	return 0;
1108}
1109
1110/**
1111 * mei_me_irq_quick_handler - The ISR of the MEI device
1112 *
1113 * @irq: The irq number
1114 * @dev_id: pointer to the device structure
1115 *
1116 * Return: irqreturn_t
1117 */
1118irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1119{
1120	struct mei_device *dev = (struct mei_device *)dev_id;
1121	struct mei_me_hw *hw = to_me_hw(dev);
1122	u32 hcsr;
1123
1124	hcsr = mei_hcsr_read(dev);
1125	if (!(hcsr & H_CSR_IS_MASK))
1126		return IRQ_NONE;
1127
1128	hw->intr_source = hcsr & H_CSR_IS_MASK;
1129	dev_dbg(dev->dev, "interrupt source 0x%08X.\n", hw->intr_source);
1130
1131	/* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
1132	mei_hcsr_write(dev, hcsr);
1133
1134	return IRQ_WAKE_THREAD;
1135}
1136
1137/**
1138 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1139 * processing.
1140 *
1141 * @irq: The irq number
1142 * @dev_id: pointer to the device structure
1143 *
1144 * Return: irqreturn_t
1145 *
1146 */
1147irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1148{
1149	struct mei_device *dev = (struct mei_device *) dev_id;
1150	struct mei_cl_cb complete_list;
1151	s32 slots;
1152	int rets = 0;
1153
1154	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1155	/* initialize our complete list */
1156	mutex_lock(&dev->device_lock);
1157	mei_io_list_init(&complete_list);
1158
1159	/* check if ME wants a reset */
1160	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1161		dev_warn(dev->dev, "FW not ready: resetting.\n");
1162		schedule_work(&dev->reset_work);
1163		goto end;
1164	}
1165
1166	mei_me_pg_intr(dev);
1167
1168	/*  check if we need to start the dev */
1169	if (!mei_host_is_ready(dev)) {
1170		if (mei_hw_is_ready(dev)) {
1171			dev_dbg(dev->dev, "we need to start the dev.\n");
1172			dev->recvd_hw_ready = true;
1173			wake_up(&dev->wait_hw_ready);
1174		} else {
1175			dev_dbg(dev->dev, "Spurious Interrupt\n");
1176		}
1177		goto end;
1178	}
1179	/* check slots available for reading */
1180	slots = mei_count_full_read_slots(dev);
1181	while (slots > 0) {
1182		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1183		rets = mei_irq_read_handler(dev, &complete_list, &slots);
1184		/* There is a race between ME write and interrupt delivery:
1185		 * Not all data is always available immediately after the
1186		 * interrupt, so try to read again on the next interrupt.
1187		 */
1188		if (rets == -ENODATA)
1189			break;
1190
1191		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1192			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1193						rets);
1194			schedule_work(&dev->reset_work);
1195			goto end;
1196		}
1197	}
1198
1199	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1200
1201	/*
1202	 * During PG handshake only allowed write is the replay to the
1203	 * PG exit message, so block calling write function
1204	 * if the pg event is in PG handshake
1205	 */
1206	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1207	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1208		rets = mei_irq_write_handler(dev, &complete_list);
1209		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1210	}
1211
1212	mei_irq_compl_handler(dev, &complete_list);
1213
1214end:
1215	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1216	mutex_unlock(&dev->device_lock);
1217	return IRQ_HANDLED;
1218}
1219
1220static const struct mei_hw_ops mei_me_hw_ops = {
1221
1222	.fw_status = mei_me_fw_status,
1223	.pg_state  = mei_me_pg_state,
1224
1225	.host_is_ready = mei_me_host_is_ready,
1226
1227	.hw_is_ready = mei_me_hw_is_ready,
1228	.hw_reset = mei_me_hw_reset,
1229	.hw_config = mei_me_hw_config,
1230	.hw_start = mei_me_hw_start,
1231
1232	.pg_in_transition = mei_me_pg_in_transition,
1233	.pg_is_enabled = mei_me_pg_is_enabled,
1234
1235	.intr_clear = mei_me_intr_clear,
1236	.intr_enable = mei_me_intr_enable,
1237	.intr_disable = mei_me_intr_disable,
1238
1239	.hbuf_free_slots = mei_me_hbuf_empty_slots,
1240	.hbuf_is_ready = mei_me_hbuf_is_empty,
1241	.hbuf_max_len = mei_me_hbuf_max_len,
1242
1243	.write = mei_me_write_message,
1244
1245	.rdbuf_full_slots = mei_me_count_full_read_slots,
1246	.read_hdr = mei_me_mecbrw_read,
1247	.read = mei_me_read_slots
1248};
1249
1250static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1251{
1252	u32 reg;
1253
1254	pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1255	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1256	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1257	return (reg & 0x600) == 0x200;
1258}
1259
1260#define MEI_CFG_FW_NM                           \
1261	.quirk_probe = mei_me_fw_type_nm
1262
1263static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1264{
1265	u32 reg;
1266	/* Read ME FW Status check for SPS Firmware */
1267	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
1268	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1269	/* if bits [19:16] = 15, running SPS Firmware */
1270	return (reg & 0xf0000) == 0xf0000;
1271}
1272
1273#define MEI_CFG_FW_SPS                           \
1274	.quirk_probe = mei_me_fw_type_sps
1275
1276
1277#define MEI_CFG_LEGACY_HFS                      \
1278	.fw_status.count = 0
1279
1280#define MEI_CFG_ICH_HFS                        \
1281	.fw_status.count = 1,                   \
1282	.fw_status.status[0] = PCI_CFG_HFS_1
1283
1284#define MEI_CFG_PCH_HFS                         \
1285	.fw_status.count = 2,                   \
1286	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1287	.fw_status.status[1] = PCI_CFG_HFS_2
1288
1289#define MEI_CFG_PCH8_HFS                        \
1290	.fw_status.count = 6,                   \
1291	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1292	.fw_status.status[1] = PCI_CFG_HFS_2,   \
1293	.fw_status.status[2] = PCI_CFG_HFS_3,   \
1294	.fw_status.status[3] = PCI_CFG_HFS_4,   \
1295	.fw_status.status[4] = PCI_CFG_HFS_5,   \
1296	.fw_status.status[5] = PCI_CFG_HFS_6
1297
1298/* ICH Legacy devices */
1299const struct mei_cfg mei_me_legacy_cfg = {
1300	MEI_CFG_LEGACY_HFS,
1301};
1302
1303/* ICH devices */
1304const struct mei_cfg mei_me_ich_cfg = {
1305	MEI_CFG_ICH_HFS,
1306};
1307
1308/* PCH devices */
1309const struct mei_cfg mei_me_pch_cfg = {
1310	MEI_CFG_PCH_HFS,
1311};
1312
1313
1314/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1315const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1316	MEI_CFG_PCH_HFS,
1317	MEI_CFG_FW_NM,
1318};
1319
1320/* PCH8 Lynx Point and newer devices */
1321const struct mei_cfg mei_me_pch8_cfg = {
1322	MEI_CFG_PCH8_HFS,
1323};
1324
1325/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1326const struct mei_cfg mei_me_pch8_sps_cfg = {
1327	MEI_CFG_PCH8_HFS,
1328	MEI_CFG_FW_SPS,
1329};
1330
1331/**
1332 * mei_me_dev_init - allocates and initializes the mei device structure
1333 *
1334 * @pdev: The pci device structure
1335 * @cfg: per device generation config
1336 *
1337 * Return: The mei_device_device pointer on success, NULL on failure.
1338 */
1339struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1340				   const struct mei_cfg *cfg)
1341{
1342	struct mei_device *dev;
1343	struct mei_me_hw *hw;
1344
1345	dev = kzalloc(sizeof(struct mei_device) +
1346			 sizeof(struct mei_me_hw), GFP_KERNEL);
1347	if (!dev)
1348		return NULL;
1349	hw = to_me_hw(dev);
1350
1351	mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1352	hw->cfg = cfg;
1353	return dev;
1354}
1355