Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright (C) 2015 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-cache-policy.h"
   8#include "dm-cache-policy-internal.h"
   9#include "dm.h"
  10
  11#include <linux/hash.h>
  12#include <linux/jiffies.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/vmalloc.h>
  16#include <linux/math64.h>
  17
  18#define DM_MSG_PREFIX "cache-policy-smq"
  19
  20/*----------------------------------------------------------------*/
  21
  22/*
  23 * Safe division functions that return zero on divide by zero.
  24 */
  25static unsigned safe_div(unsigned n, unsigned d)
  26{
  27	return d ? n / d : 0u;
  28}
  29
  30static unsigned safe_mod(unsigned n, unsigned d)
  31{
  32	return d ? n % d : 0u;
  33}
  34
  35/*----------------------------------------------------------------*/
  36
  37struct entry {
  38	unsigned hash_next:28;
  39	unsigned prev:28;
  40	unsigned next:28;
  41	unsigned level:7;
  42	bool dirty:1;
  43	bool allocated:1;
  44	bool sentinel:1;
  45
  46	dm_oblock_t oblock;
  47};
  48
  49/*----------------------------------------------------------------*/
  50
  51#define INDEXER_NULL ((1u << 28u) - 1u)
  52
  53/*
  54 * An entry_space manages a set of entries that we use for the queues.
  55 * The clean and dirty queues share entries, so this object is separate
  56 * from the queue itself.
  57 */
  58struct entry_space {
  59	struct entry *begin;
  60	struct entry *end;
  61};
  62
  63static int space_init(struct entry_space *es, unsigned nr_entries)
  64{
  65	if (!nr_entries) {
  66		es->begin = es->end = NULL;
  67		return 0;
  68	}
  69
  70	es->begin = vzalloc(sizeof(struct entry) * nr_entries);
  71	if (!es->begin)
  72		return -ENOMEM;
  73
  74	es->end = es->begin + nr_entries;
  75	return 0;
  76}
  77
  78static void space_exit(struct entry_space *es)
  79{
  80	vfree(es->begin);
  81}
  82
  83static struct entry *__get_entry(struct entry_space *es, unsigned block)
  84{
  85	struct entry *e;
  86
  87	e = es->begin + block;
  88	BUG_ON(e >= es->end);
  89
  90	return e;
  91}
  92
  93static unsigned to_index(struct entry_space *es, struct entry *e)
  94{
  95	BUG_ON(e < es->begin || e >= es->end);
  96	return e - es->begin;
  97}
  98
  99static struct entry *to_entry(struct entry_space *es, unsigned block)
 100{
 101	if (block == INDEXER_NULL)
 102		return NULL;
 103
 104	return __get_entry(es, block);
 105}
 106
 107/*----------------------------------------------------------------*/
 108
 109struct ilist {
 110	unsigned nr_elts;	/* excluding sentinel entries */
 111	unsigned head, tail;
 112};
 113
 114static void l_init(struct ilist *l)
 115{
 116	l->nr_elts = 0;
 117	l->head = l->tail = INDEXER_NULL;
 118}
 119
 120static struct entry *l_head(struct entry_space *es, struct ilist *l)
 121{
 122	return to_entry(es, l->head);
 123}
 124
 125static struct entry *l_tail(struct entry_space *es, struct ilist *l)
 126{
 127	return to_entry(es, l->tail);
 128}
 129
 130static struct entry *l_next(struct entry_space *es, struct entry *e)
 131{
 132	return to_entry(es, e->next);
 133}
 134
 135static struct entry *l_prev(struct entry_space *es, struct entry *e)
 136{
 137	return to_entry(es, e->prev);
 138}
 139
 140static bool l_empty(struct ilist *l)
 141{
 142	return l->head == INDEXER_NULL;
 143}
 144
 145static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
 146{
 147	struct entry *head = l_head(es, l);
 148
 149	e->next = l->head;
 150	e->prev = INDEXER_NULL;
 151
 152	if (head)
 153		head->prev = l->head = to_index(es, e);
 154	else
 155		l->head = l->tail = to_index(es, e);
 156
 157	if (!e->sentinel)
 158		l->nr_elts++;
 159}
 160
 161static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
 162{
 163	struct entry *tail = l_tail(es, l);
 164
 165	e->next = INDEXER_NULL;
 166	e->prev = l->tail;
 167
 168	if (tail)
 169		tail->next = l->tail = to_index(es, e);
 170	else
 171		l->head = l->tail = to_index(es, e);
 172
 173	if (!e->sentinel)
 174		l->nr_elts++;
 175}
 176
 177static void l_add_before(struct entry_space *es, struct ilist *l,
 178			 struct entry *old, struct entry *e)
 179{
 180	struct entry *prev = l_prev(es, old);
 181
 182	if (!prev)
 183		l_add_head(es, l, e);
 184
 185	else {
 186		e->prev = old->prev;
 187		e->next = to_index(es, old);
 188		prev->next = old->prev = to_index(es, e);
 189
 190		if (!e->sentinel)
 191			l->nr_elts++;
 192	}
 193}
 194
 195static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
 196{
 197	struct entry *prev = l_prev(es, e);
 198	struct entry *next = l_next(es, e);
 199
 200	if (prev)
 201		prev->next = e->next;
 202	else
 203		l->head = e->next;
 204
 205	if (next)
 206		next->prev = e->prev;
 207	else
 208		l->tail = e->prev;
 209
 210	if (!e->sentinel)
 211		l->nr_elts--;
 212}
 213
 214static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
 215{
 216	struct entry *e;
 217
 218	for (e = l_tail(es, l); e; e = l_prev(es, e))
 219		if (!e->sentinel) {
 220			l_del(es, l, e);
 221			return e;
 222		}
 223
 224	return NULL;
 225}
 226
 227/*----------------------------------------------------------------*/
 228
 229/*
 230 * The stochastic-multi-queue is a set of lru lists stacked into levels.
 231 * Entries are moved up levels when they are used, which loosely orders the
 232 * most accessed entries in the top levels and least in the bottom.  This
 233 * structure is *much* better than a single lru list.
 234 */
 235#define MAX_LEVELS 64u
 236
 237struct queue {
 238	struct entry_space *es;
 239
 240	unsigned nr_elts;
 241	unsigned nr_levels;
 242	struct ilist qs[MAX_LEVELS];
 243
 244	/*
 245	 * We maintain a count of the number of entries we would like in each
 246	 * level.
 247	 */
 248	unsigned last_target_nr_elts;
 249	unsigned nr_top_levels;
 250	unsigned nr_in_top_levels;
 251	unsigned target_count[MAX_LEVELS];
 252};
 253
 254static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
 255{
 256	unsigned i;
 257
 258	q->es = es;
 259	q->nr_elts = 0;
 260	q->nr_levels = nr_levels;
 261
 262	for (i = 0; i < q->nr_levels; i++) {
 263		l_init(q->qs + i);
 264		q->target_count[i] = 0u;
 265	}
 266
 267	q->last_target_nr_elts = 0u;
 268	q->nr_top_levels = 0u;
 269	q->nr_in_top_levels = 0u;
 270}
 271
 272static unsigned q_size(struct queue *q)
 273{
 274	return q->nr_elts;
 275}
 276
 277/*
 278 * Insert an entry to the back of the given level.
 279 */
 280static void q_push(struct queue *q, struct entry *e)
 281{
 282	if (!e->sentinel)
 283		q->nr_elts++;
 284
 285	l_add_tail(q->es, q->qs + e->level, e);
 286}
 287
 288static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
 289{
 290	if (!e->sentinel)
 291		q->nr_elts++;
 292
 293	l_add_before(q->es, q->qs + e->level, old, e);
 294}
 295
 296static void q_del(struct queue *q, struct entry *e)
 297{
 298	l_del(q->es, q->qs + e->level, e);
 299	if (!e->sentinel)
 300		q->nr_elts--;
 301}
 302
 303/*
 304 * Return the oldest entry of the lowest populated level.
 305 */
 306static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
 307{
 308	unsigned level;
 309	struct entry *e;
 310
 311	max_level = min(max_level, q->nr_levels);
 312
 313	for (level = 0; level < max_level; level++)
 314		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
 315			if (e->sentinel) {
 316				if (can_cross_sentinel)
 317					continue;
 318				else
 319					break;
 320			}
 321
 322			return e;
 323		}
 324
 325	return NULL;
 326}
 327
 328static struct entry *q_pop(struct queue *q)
 329{
 330	struct entry *e = q_peek(q, q->nr_levels, true);
 331
 332	if (e)
 333		q_del(q, e);
 334
 335	return e;
 336}
 337
 338/*
 339 * Pops an entry from a level that is not past a sentinel.
 340 */
 341static struct entry *q_pop_old(struct queue *q, unsigned max_level)
 342{
 343	struct entry *e = q_peek(q, max_level, false);
 344
 345	if (e)
 346		q_del(q, e);
 347
 348	return e;
 349}
 350
 351/*
 352 * This function assumes there is a non-sentinel entry to pop.  It's only
 353 * used by redistribute, so we know this is true.  It also doesn't adjust
 354 * the q->nr_elts count.
 355 */
 356static struct entry *__redist_pop_from(struct queue *q, unsigned level)
 357{
 358	struct entry *e;
 359
 360	for (; level < q->nr_levels; level++)
 361		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
 362			if (!e->sentinel) {
 363				l_del(q->es, q->qs + e->level, e);
 364				return e;
 365			}
 366
 367	return NULL;
 368}
 369
 370static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
 371{
 372	unsigned level, nr_levels, entries_per_level, remainder;
 373
 374	BUG_ON(lbegin > lend);
 375	BUG_ON(lend > q->nr_levels);
 376	nr_levels = lend - lbegin;
 377	entries_per_level = safe_div(nr_elts, nr_levels);
 378	remainder = safe_mod(nr_elts, nr_levels);
 379
 380	for (level = lbegin; level < lend; level++)
 381		q->target_count[level] =
 382			(level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
 383}
 384
 385/*
 386 * Typically we have fewer elements in the top few levels which allows us
 387 * to adjust the promote threshold nicely.
 388 */
 389static void q_set_targets(struct queue *q)
 390{
 391	if (q->last_target_nr_elts == q->nr_elts)
 392		return;
 393
 394	q->last_target_nr_elts = q->nr_elts;
 395
 396	if (q->nr_top_levels > q->nr_levels)
 397		q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
 398
 399	else {
 400		q_set_targets_subrange_(q, q->nr_in_top_levels,
 401					q->nr_levels - q->nr_top_levels, q->nr_levels);
 402
 403		if (q->nr_in_top_levels < q->nr_elts)
 404			q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
 405						0, q->nr_levels - q->nr_top_levels);
 406		else
 407			q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
 408	}
 409}
 410
 411static void q_redistribute(struct queue *q)
 412{
 413	unsigned target, level;
 414	struct ilist *l, *l_above;
 415	struct entry *e;
 416
 417	q_set_targets(q);
 418
 419	for (level = 0u; level < q->nr_levels - 1u; level++) {
 420		l = q->qs + level;
 421		target = q->target_count[level];
 422
 423		/*
 424		 * Pull down some entries from the level above.
 425		 */
 426		while (l->nr_elts < target) {
 427			e = __redist_pop_from(q, level + 1u);
 428			if (!e) {
 429				/* bug in nr_elts */
 430				break;
 431			}
 432
 433			e->level = level;
 434			l_add_tail(q->es, l, e);
 435		}
 436
 437		/*
 438		 * Push some entries up.
 439		 */
 440		l_above = q->qs + level + 1u;
 441		while (l->nr_elts > target) {
 442			e = l_pop_tail(q->es, l);
 443
 444			if (!e)
 445				/* bug in nr_elts */
 446				break;
 447
 448			e->level = level + 1u;
 449			l_add_head(q->es, l_above, e);
 450		}
 451	}
 452}
 453
 454static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels)
 455{
 456	struct entry *de;
 457	unsigned new_level;
 458
 459	q_del(q, e);
 460
 461	if (extra_levels && (e->level < q->nr_levels - 1u)) {
 462		new_level = min(q->nr_levels - 1u, e->level + extra_levels);
 463		for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) {
 464			if (de->sentinel)
 465				continue;
 466
 467			q_del(q, de);
 468			de->level = e->level;
 469
 470			if (dest)
 471				q_push_before(q, dest, de);
 472			else
 473				q_push(q, de);
 474			break;
 475		}
 476
 477		e->level = new_level;
 478	}
 479
 480	q_push(q, e);
 481}
 482
 483static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels)
 484{
 485	q_requeue_before(q, NULL, e, extra_levels);
 486}
 487
 488/*----------------------------------------------------------------*/
 489
 490#define FP_SHIFT 8
 491#define SIXTEENTH (1u << (FP_SHIFT - 4u))
 492#define EIGHTH (1u << (FP_SHIFT - 3u))
 493
 494struct stats {
 495	unsigned hit_threshold;
 496	unsigned hits;
 497	unsigned misses;
 498};
 499
 500enum performance {
 501	Q_POOR,
 502	Q_FAIR,
 503	Q_WELL
 504};
 505
 506static void stats_init(struct stats *s, unsigned nr_levels)
 507{
 508	s->hit_threshold = (nr_levels * 3u) / 4u;
 509	s->hits = 0u;
 510	s->misses = 0u;
 511}
 512
 513static void stats_reset(struct stats *s)
 514{
 515	s->hits = s->misses = 0u;
 516}
 517
 518static void stats_level_accessed(struct stats *s, unsigned level)
 519{
 520	if (level >= s->hit_threshold)
 521		s->hits++;
 522	else
 523		s->misses++;
 524}
 525
 526static void stats_miss(struct stats *s)
 527{
 528	s->misses++;
 529}
 530
 531/*
 532 * There are times when we don't have any confidence in the hotspot queue.
 533 * Such as when a fresh cache is created and the blocks have been spread
 534 * out across the levels, or if an io load changes.  We detect this by
 535 * seeing how often a lookup is in the top levels of the hotspot queue.
 536 */
 537static enum performance stats_assess(struct stats *s)
 538{
 539	unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
 540
 541	if (confidence < SIXTEENTH)
 542		return Q_POOR;
 543
 544	else if (confidence < EIGHTH)
 545		return Q_FAIR;
 546
 547	else
 548		return Q_WELL;
 549}
 550
 551/*----------------------------------------------------------------*/
 552
 553struct hash_table {
 554	struct entry_space *es;
 555	unsigned long long hash_bits;
 556	unsigned *buckets;
 557};
 558
 559/*
 560 * All cache entries are stored in a chained hash table.  To save space we
 561 * use indexing again, and only store indexes to the next entry.
 562 */
 563static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries)
 564{
 565	unsigned i, nr_buckets;
 566
 567	ht->es = es;
 568	nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
 569	ht->hash_bits = __ffs(nr_buckets);
 570
 571	ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
 572	if (!ht->buckets)
 573		return -ENOMEM;
 574
 575	for (i = 0; i < nr_buckets; i++)
 576		ht->buckets[i] = INDEXER_NULL;
 577
 578	return 0;
 579}
 580
 581static void h_exit(struct hash_table *ht)
 582{
 583	vfree(ht->buckets);
 584}
 585
 586static struct entry *h_head(struct hash_table *ht, unsigned bucket)
 587{
 588	return to_entry(ht->es, ht->buckets[bucket]);
 589}
 590
 591static struct entry *h_next(struct hash_table *ht, struct entry *e)
 592{
 593	return to_entry(ht->es, e->hash_next);
 594}
 595
 596static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e)
 597{
 598	e->hash_next = ht->buckets[bucket];
 599	ht->buckets[bucket] = to_index(ht->es, e);
 600}
 601
 602static void h_insert(struct hash_table *ht, struct entry *e)
 603{
 604	unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
 605	__h_insert(ht, h, e);
 606}
 607
 608static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock,
 609				struct entry **prev)
 610{
 611	struct entry *e;
 612
 613	*prev = NULL;
 614	for (e = h_head(ht, h); e; e = h_next(ht, e)) {
 615		if (e->oblock == oblock)
 616			return e;
 617
 618		*prev = e;
 619	}
 620
 621	return NULL;
 622}
 623
 624static void __h_unlink(struct hash_table *ht, unsigned h,
 625		       struct entry *e, struct entry *prev)
 626{
 627	if (prev)
 628		prev->hash_next = e->hash_next;
 629	else
 630		ht->buckets[h] = e->hash_next;
 631}
 632
 633/*
 634 * Also moves each entry to the front of the bucket.
 635 */
 636static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock)
 637{
 638	struct entry *e, *prev;
 639	unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
 640
 641	e = __h_lookup(ht, h, oblock, &prev);
 642	if (e && prev) {
 643		/*
 644		 * Move to the front because this entry is likely
 645		 * to be hit again.
 646		 */
 647		__h_unlink(ht, h, e, prev);
 648		__h_insert(ht, h, e);
 649	}
 650
 651	return e;
 652}
 653
 654static void h_remove(struct hash_table *ht, struct entry *e)
 655{
 656	unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
 657	struct entry *prev;
 658
 659	/*
 660	 * The down side of using a singly linked list is we have to
 661	 * iterate the bucket to remove an item.
 662	 */
 663	e = __h_lookup(ht, h, e->oblock, &prev);
 664	if (e)
 665		__h_unlink(ht, h, e, prev);
 666}
 667
 668/*----------------------------------------------------------------*/
 669
 670struct entry_alloc {
 671	struct entry_space *es;
 672	unsigned begin;
 673
 674	unsigned nr_allocated;
 675	struct ilist free;
 676};
 677
 678static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
 679			   unsigned begin, unsigned end)
 680{
 681	unsigned i;
 682
 683	ea->es = es;
 684	ea->nr_allocated = 0u;
 685	ea->begin = begin;
 686
 687	l_init(&ea->free);
 688	for (i = begin; i != end; i++)
 689		l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
 690}
 691
 692static void init_entry(struct entry *e)
 693{
 694	/*
 695	 * We can't memset because that would clear the hotspot and
 696	 * sentinel bits which remain constant.
 697	 */
 698	e->hash_next = INDEXER_NULL;
 699	e->next = INDEXER_NULL;
 700	e->prev = INDEXER_NULL;
 701	e->level = 0u;
 702	e->allocated = true;
 703}
 704
 705static struct entry *alloc_entry(struct entry_alloc *ea)
 706{
 707	struct entry *e;
 708
 709	if (l_empty(&ea->free))
 710		return NULL;
 711
 712	e = l_pop_tail(ea->es, &ea->free);
 713	init_entry(e);
 714	ea->nr_allocated++;
 715
 716	return e;
 717}
 718
 719/*
 720 * This assumes the cblock hasn't already been allocated.
 721 */
 722static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
 723{
 724	struct entry *e = __get_entry(ea->es, ea->begin + i);
 725
 726	BUG_ON(e->allocated);
 727
 728	l_del(ea->es, &ea->free, e);
 729	init_entry(e);
 730	ea->nr_allocated++;
 731
 732	return e;
 733}
 734
 735static void free_entry(struct entry_alloc *ea, struct entry *e)
 736{
 737	BUG_ON(!ea->nr_allocated);
 738	BUG_ON(!e->allocated);
 739
 740	ea->nr_allocated--;
 741	e->allocated = false;
 742	l_add_tail(ea->es, &ea->free, e);
 743}
 744
 745static bool allocator_empty(struct entry_alloc *ea)
 746{
 747	return l_empty(&ea->free);
 748}
 749
 750static unsigned get_index(struct entry_alloc *ea, struct entry *e)
 751{
 752	return to_index(ea->es, e) - ea->begin;
 753}
 754
 755static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
 756{
 757	return __get_entry(ea->es, ea->begin + index);
 758}
 759
 760/*----------------------------------------------------------------*/
 761
 762#define NR_HOTSPOT_LEVELS 64u
 763#define NR_CACHE_LEVELS 64u
 764
 765#define WRITEBACK_PERIOD (10 * HZ)
 766#define DEMOTE_PERIOD (60 * HZ)
 767
 768#define HOTSPOT_UPDATE_PERIOD (HZ)
 769#define CACHE_UPDATE_PERIOD (10u * HZ)
 770
 771struct smq_policy {
 772	struct dm_cache_policy policy;
 773
 774	/* protects everything */
 775	spinlock_t lock;
 776	dm_cblock_t cache_size;
 777	sector_t cache_block_size;
 778
 779	sector_t hotspot_block_size;
 780	unsigned nr_hotspot_blocks;
 781	unsigned cache_blocks_per_hotspot_block;
 782	unsigned hotspot_level_jump;
 783
 784	struct entry_space es;
 785	struct entry_alloc writeback_sentinel_alloc;
 786	struct entry_alloc demote_sentinel_alloc;
 787	struct entry_alloc hotspot_alloc;
 788	struct entry_alloc cache_alloc;
 789
 790	unsigned long *hotspot_hit_bits;
 791	unsigned long *cache_hit_bits;
 792
 793	/*
 794	 * We maintain three queues of entries.  The cache proper,
 795	 * consisting of a clean and dirty queue, containing the currently
 796	 * active mappings.  The hotspot queue uses a larger block size to
 797	 * track blocks that are being hit frequently and potential
 798	 * candidates for promotion to the cache.
 799	 */
 800	struct queue hotspot;
 801	struct queue clean;
 802	struct queue dirty;
 803
 804	struct stats hotspot_stats;
 805	struct stats cache_stats;
 806
 807	/*
 808	 * Keeps track of time, incremented by the core.  We use this to
 809	 * avoid attributing multiple hits within the same tick.
 810	 */
 811	unsigned tick;
 812
 813	/*
 814	 * The hash tables allows us to quickly find an entry by origin
 815	 * block.
 816	 */
 817	struct hash_table table;
 818	struct hash_table hotspot_table;
 819
 820	bool current_writeback_sentinels;
 821	unsigned long next_writeback_period;
 822
 823	bool current_demote_sentinels;
 824	unsigned long next_demote_period;
 825
 826	unsigned write_promote_level;
 827	unsigned read_promote_level;
 828
 829	unsigned long next_hotspot_period;
 830	unsigned long next_cache_period;
 831};
 832
 833/*----------------------------------------------------------------*/
 834
 835static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
 836{
 837	return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
 838}
 839
 840static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
 841{
 842	return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
 843}
 844
 845static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
 846{
 847	return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
 848}
 849
 850static void __update_writeback_sentinels(struct smq_policy *mq)
 851{
 852	unsigned level;
 853	struct queue *q = &mq->dirty;
 854	struct entry *sentinel;
 855
 856	for (level = 0; level < q->nr_levels; level++) {
 857		sentinel = writeback_sentinel(mq, level);
 858		q_del(q, sentinel);
 859		q_push(q, sentinel);
 860	}
 861}
 862
 863static void __update_demote_sentinels(struct smq_policy *mq)
 864{
 865	unsigned level;
 866	struct queue *q = &mq->clean;
 867	struct entry *sentinel;
 868
 869	for (level = 0; level < q->nr_levels; level++) {
 870		sentinel = demote_sentinel(mq, level);
 871		q_del(q, sentinel);
 872		q_push(q, sentinel);
 873	}
 874}
 875
 876static void update_sentinels(struct smq_policy *mq)
 877{
 878	if (time_after(jiffies, mq->next_writeback_period)) {
 879		__update_writeback_sentinels(mq);
 880		mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
 881		mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
 882	}
 883
 884	if (time_after(jiffies, mq->next_demote_period)) {
 885		__update_demote_sentinels(mq);
 886		mq->next_demote_period = jiffies + DEMOTE_PERIOD;
 887		mq->current_demote_sentinels = !mq->current_demote_sentinels;
 888	}
 889}
 890
 891static void __sentinels_init(struct smq_policy *mq)
 892{
 893	unsigned level;
 894	struct entry *sentinel;
 895
 896	for (level = 0; level < NR_CACHE_LEVELS; level++) {
 897		sentinel = writeback_sentinel(mq, level);
 898		sentinel->level = level;
 899		q_push(&mq->dirty, sentinel);
 900
 901		sentinel = demote_sentinel(mq, level);
 902		sentinel->level = level;
 903		q_push(&mq->clean, sentinel);
 904	}
 905}
 906
 907static void sentinels_init(struct smq_policy *mq)
 908{
 909	mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
 910	mq->next_demote_period = jiffies + DEMOTE_PERIOD;
 911
 912	mq->current_writeback_sentinels = false;
 913	mq->current_demote_sentinels = false;
 914	__sentinels_init(mq);
 915
 916	mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
 917	mq->current_demote_sentinels = !mq->current_demote_sentinels;
 918	__sentinels_init(mq);
 919}
 920
 921/*----------------------------------------------------------------*/
 922
 923/*
 924 * These methods tie together the dirty queue, clean queue and hash table.
 925 */
 926static void push_new(struct smq_policy *mq, struct entry *e)
 927{
 928	struct queue *q = e->dirty ? &mq->dirty : &mq->clean;
 929	h_insert(&mq->table, e);
 930	q_push(q, e);
 931}
 932
 933static void push(struct smq_policy *mq, struct entry *e)
 934{
 935	struct entry *sentinel;
 936
 937	h_insert(&mq->table, e);
 938
 939	/*
 940	 * Punch this into the queue just in front of the sentinel, to
 941	 * ensure it's cleaned straight away.
 942	 */
 943	if (e->dirty) {
 944		sentinel = writeback_sentinel(mq, e->level);
 945		q_push_before(&mq->dirty, sentinel, e);
 946	} else {
 947		sentinel = demote_sentinel(mq, e->level);
 948		q_push_before(&mq->clean, sentinel, e);
 949	}
 950}
 951
 952/*
 953 * Removes an entry from cache.  Removes from the hash table.
 954 */
 955static void __del(struct smq_policy *mq, struct queue *q, struct entry *e)
 956{
 957	q_del(q, e);
 958	h_remove(&mq->table, e);
 959}
 960
 961static void del(struct smq_policy *mq, struct entry *e)
 962{
 963	__del(mq, e->dirty ? &mq->dirty : &mq->clean, e);
 964}
 965
 966static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level)
 967{
 968	struct entry *e = q_pop_old(q, max_level);
 969	if (e)
 970		h_remove(&mq->table, e);
 971	return e;
 972}
 973
 974static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
 975{
 976	return to_cblock(get_index(&mq->cache_alloc, e));
 977}
 978
 979static void requeue(struct smq_policy *mq, struct entry *e)
 980{
 981	struct entry *sentinel;
 982
 983	if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
 984		if (e->dirty) {
 985			sentinel = writeback_sentinel(mq, e->level);
 986			q_requeue_before(&mq->dirty, sentinel, e, 1u);
 987		} else {
 988			sentinel = demote_sentinel(mq, e->level);
 989			q_requeue_before(&mq->clean, sentinel, e, 1u);
 990		}
 991	}
 992}
 993
 994static unsigned default_promote_level(struct smq_policy *mq)
 995{
 996	/*
 997	 * The promote level depends on the current performance of the
 998	 * cache.
 999	 *
1000	 * If the cache is performing badly, then we can't afford
1001	 * to promote much without causing performance to drop below that
1002	 * of the origin device.
1003	 *
1004	 * If the cache is performing well, then we don't need to promote
1005	 * much.  If it isn't broken, don't fix it.
1006	 *
1007	 * If the cache is middling then we promote more.
1008	 *
1009	 * This scheme reminds me of a graph of entropy vs probability of a
1010	 * binary variable.
1011	 */
1012	static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1013
1014	unsigned hits = mq->cache_stats.hits;
1015	unsigned misses = mq->cache_stats.misses;
1016	unsigned index = safe_div(hits << 4u, hits + misses);
1017	return table[index];
1018}
1019
1020static void update_promote_levels(struct smq_policy *mq)
1021{
1022	/*
1023	 * If there are unused cache entries then we want to be really
1024	 * eager to promote.
1025	 */
1026	unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1027		default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1028
1029	/*
1030	 * If the hotspot queue is performing badly then we have little
1031	 * confidence that we know which blocks to promote.  So we cut down
1032	 * the amount of promotions.
1033	 */
1034	switch (stats_assess(&mq->hotspot_stats)) {
1035	case Q_POOR:
1036		threshold_level /= 4u;
1037		break;
1038
1039	case Q_FAIR:
1040		threshold_level /= 2u;
1041		break;
1042
1043	case Q_WELL:
1044		break;
1045	}
1046
1047	mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1048	mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u;
1049}
1050
1051/*
1052 * If the hotspot queue is performing badly, then we try and move entries
1053 * around more quickly.
1054 */
1055static void update_level_jump(struct smq_policy *mq)
1056{
1057	switch (stats_assess(&mq->hotspot_stats)) {
1058	case Q_POOR:
1059		mq->hotspot_level_jump = 4u;
1060		break;
1061
1062	case Q_FAIR:
1063		mq->hotspot_level_jump = 2u;
1064		break;
1065
1066	case Q_WELL:
1067		mq->hotspot_level_jump = 1u;
1068		break;
1069	}
1070}
1071
1072static void end_hotspot_period(struct smq_policy *mq)
1073{
1074	clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1075	update_promote_levels(mq);
1076
1077	if (time_after(jiffies, mq->next_hotspot_period)) {
1078		update_level_jump(mq);
1079		q_redistribute(&mq->hotspot);
1080		stats_reset(&mq->hotspot_stats);
1081		mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1082	}
1083}
1084
1085static void end_cache_period(struct smq_policy *mq)
1086{
1087	if (time_after(jiffies, mq->next_cache_period)) {
1088		clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1089
1090		q_redistribute(&mq->dirty);
1091		q_redistribute(&mq->clean);
1092		stats_reset(&mq->cache_stats);
1093
1094		mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1095	}
1096}
1097
1098static int demote_cblock(struct smq_policy *mq,
1099			 struct policy_locker *locker,
1100			 dm_oblock_t *oblock)
1101{
1102	struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false);
1103	if (!demoted)
1104		/*
1105		 * We could get a block from mq->dirty, but that
1106		 * would add extra latency to the triggering bio as it
1107		 * waits for the writeback.  Better to not promote this
1108		 * time and hope there's a clean block next time this block
1109		 * is hit.
1110		 */
1111		return -ENOSPC;
1112
1113	if (locker->fn(locker, demoted->oblock))
1114		/*
1115		 * We couldn't lock this block.
1116		 */
1117		return -EBUSY;
1118
1119	del(mq, demoted);
1120	*oblock = demoted->oblock;
1121	free_entry(&mq->cache_alloc, demoted);
1122
1123	return 0;
1124}
1125
1126enum promote_result {
1127	PROMOTE_NOT,
1128	PROMOTE_TEMPORARY,
1129	PROMOTE_PERMANENT
1130};
1131
1132/*
1133 * Converts a boolean into a promote result.
1134 */
1135static enum promote_result maybe_promote(bool promote)
1136{
1137	return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1138}
1139
1140static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio,
1141					  bool fast_promote)
1142{
1143	if (bio_data_dir(bio) == WRITE) {
1144		if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1145			return PROMOTE_TEMPORARY;
1146
1147		else
1148			return maybe_promote(hs_e->level >= mq->write_promote_level);
1149	} else
1150		return maybe_promote(hs_e->level >= mq->read_promote_level);
1151}
1152
1153static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock,
1154			    struct policy_locker *locker,
1155			    struct policy_result *result, enum promote_result pr)
1156{
1157	int r;
1158	struct entry *e;
1159
1160	if (allocator_empty(&mq->cache_alloc)) {
1161		result->op = POLICY_REPLACE;
1162		r = demote_cblock(mq, locker, &result->old_oblock);
1163		if (r) {
1164			result->op = POLICY_MISS;
1165			return;
1166		}
1167
1168	} else
1169		result->op = POLICY_NEW;
1170
1171	e = alloc_entry(&mq->cache_alloc);
1172	BUG_ON(!e);
1173	e->oblock = oblock;
1174
1175	if (pr == PROMOTE_TEMPORARY)
1176		push(mq, e);
1177	else
1178		push_new(mq, e);
1179
1180	result->cblock = infer_cblock(mq, e);
1181}
1182
1183static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1184{
1185	sector_t r = from_oblock(b);
1186	(void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1187	return to_oblock(r);
1188}
1189
1190static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio)
1191{
1192	unsigned hi;
1193	dm_oblock_t hb = to_hblock(mq, b);
1194	struct entry *e = h_lookup(&mq->hotspot_table, hb);
1195
1196	if (e) {
1197		stats_level_accessed(&mq->hotspot_stats, e->level);
1198
1199		hi = get_index(&mq->hotspot_alloc, e);
1200		q_requeue(&mq->hotspot, e,
1201			  test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1202			  0u : mq->hotspot_level_jump);
1203
1204	} else {
1205		stats_miss(&mq->hotspot_stats);
1206
1207		e = alloc_entry(&mq->hotspot_alloc);
1208		if (!e) {
1209			e = q_pop(&mq->hotspot);
1210			if (e) {
1211				h_remove(&mq->hotspot_table, e);
1212				hi = get_index(&mq->hotspot_alloc, e);
1213				clear_bit(hi, mq->hotspot_hit_bits);
1214			}
1215
1216		}
1217
1218		if (e) {
1219			e->oblock = hb;
1220			q_push(&mq->hotspot, e);
1221			h_insert(&mq->hotspot_table, e);
1222		}
1223	}
1224
1225	return e;
1226}
1227
1228/*
1229 * Looks the oblock up in the hash table, then decides whether to put in
1230 * pre_cache, or cache etc.
1231 */
1232static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock,
1233	       bool can_migrate, bool fast_promote,
1234	       struct policy_locker *locker, struct policy_result *result)
1235{
1236	struct entry *e, *hs_e;
1237	enum promote_result pr;
1238
1239	hs_e = update_hotspot_queue(mq, oblock, bio);
1240
1241	e = h_lookup(&mq->table, oblock);
1242	if (e) {
1243		stats_level_accessed(&mq->cache_stats, e->level);
1244
1245		requeue(mq, e);
1246		result->op = POLICY_HIT;
1247		result->cblock = infer_cblock(mq, e);
1248
1249	} else {
1250		stats_miss(&mq->cache_stats);
1251
1252		pr = should_promote(mq, hs_e, bio, fast_promote);
1253		if (pr == PROMOTE_NOT)
1254			result->op = POLICY_MISS;
1255
1256		else {
1257			if (!can_migrate) {
1258				result->op = POLICY_MISS;
1259				return -EWOULDBLOCK;
1260			}
1261
1262			insert_in_cache(mq, oblock, locker, result, pr);
1263		}
1264	}
1265
1266	return 0;
1267}
1268
1269/*----------------------------------------------------------------*/
1270
1271/*
1272 * Public interface, via the policy struct.  See dm-cache-policy.h for a
1273 * description of these.
1274 */
1275
1276static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1277{
1278	return container_of(p, struct smq_policy, policy);
1279}
1280
1281static void smq_destroy(struct dm_cache_policy *p)
1282{
1283	struct smq_policy *mq = to_smq_policy(p);
1284
1285	h_exit(&mq->hotspot_table);
1286	h_exit(&mq->table);
1287	free_bitset(mq->hotspot_hit_bits);
1288	free_bitset(mq->cache_hit_bits);
1289	space_exit(&mq->es);
1290	kfree(mq);
1291}
1292
1293static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
1294		   bool can_block, bool can_migrate, bool fast_promote,
1295		   struct bio *bio, struct policy_locker *locker,
1296		   struct policy_result *result)
1297{
1298	int r;
1299	unsigned long flags;
1300	struct smq_policy *mq = to_smq_policy(p);
1301
1302	result->op = POLICY_MISS;
1303
1304	spin_lock_irqsave(&mq->lock, flags);
1305	r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result);
1306	spin_unlock_irqrestore(&mq->lock, flags);
1307
1308	return r;
1309}
1310
1311static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
1312{
1313	int r;
1314	unsigned long flags;
1315	struct smq_policy *mq = to_smq_policy(p);
1316	struct entry *e;
1317
1318	spin_lock_irqsave(&mq->lock, flags);
1319	e = h_lookup(&mq->table, oblock);
1320	if (e) {
1321		*cblock = infer_cblock(mq, e);
1322		r = 0;
1323	} else
1324		r = -ENOENT;
1325	spin_unlock_irqrestore(&mq->lock, flags);
1326
1327	return r;
1328}
1329
1330static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set)
1331{
1332	struct entry *e;
1333
1334	e = h_lookup(&mq->table, oblock);
1335	BUG_ON(!e);
1336
1337	del(mq, e);
1338	e->dirty = set;
1339	push(mq, e);
1340}
1341
1342static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1343{
1344	unsigned long flags;
1345	struct smq_policy *mq = to_smq_policy(p);
1346
1347	spin_lock_irqsave(&mq->lock, flags);
1348	__smq_set_clear_dirty(mq, oblock, true);
1349	spin_unlock_irqrestore(&mq->lock, flags);
1350}
1351
1352static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
1353{
1354	struct smq_policy *mq = to_smq_policy(p);
1355	unsigned long flags;
1356
1357	spin_lock_irqsave(&mq->lock, flags);
1358	__smq_set_clear_dirty(mq, oblock, false);
1359	spin_unlock_irqrestore(&mq->lock, flags);
1360}
1361
1362static int smq_load_mapping(struct dm_cache_policy *p,
1363			    dm_oblock_t oblock, dm_cblock_t cblock,
1364			    uint32_t hint, bool hint_valid)
1365{
1366	struct smq_policy *mq = to_smq_policy(p);
1367	struct entry *e;
1368
1369	e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1370	e->oblock = oblock;
1371	e->dirty = false;	/* this gets corrected in a minute */
1372	e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : 1;
1373	push(mq, e);
1374
1375	return 0;
1376}
1377
1378static int smq_save_hints(struct smq_policy *mq, struct queue *q,
1379			  policy_walk_fn fn, void *context)
1380{
1381	int r;
1382	unsigned level;
1383	struct entry *e;
1384
1385	for (level = 0; level < q->nr_levels; level++)
1386		for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
1387			if (!e->sentinel) {
1388				r = fn(context, infer_cblock(mq, e),
1389				       e->oblock, e->level);
1390				if (r)
1391					return r;
1392			}
1393		}
1394
1395	return 0;
1396}
1397
1398static int smq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1399			     void *context)
1400{
1401	struct smq_policy *mq = to_smq_policy(p);
1402	int r = 0;
1403
1404	/*
1405	 * We don't need to lock here since this method is only called once
1406	 * the IO has stopped.
1407	 */
1408	r = smq_save_hints(mq, &mq->clean, fn, context);
1409	if (!r)
1410		r = smq_save_hints(mq, &mq->dirty, fn, context);
1411
1412	return r;
1413}
1414
1415static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock)
1416{
1417	struct entry *e;
1418
1419	e = h_lookup(&mq->table, oblock);
1420	BUG_ON(!e);
1421
1422	del(mq, e);
1423	free_entry(&mq->cache_alloc, e);
1424}
1425
1426static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1427{
1428	struct smq_policy *mq = to_smq_policy(p);
1429	unsigned long flags;
1430
1431	spin_lock_irqsave(&mq->lock, flags);
1432	__remove_mapping(mq, oblock);
1433	spin_unlock_irqrestore(&mq->lock, flags);
1434}
1435
1436static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock)
1437{
1438	struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1439
1440	if (!e || !e->allocated)
1441		return -ENODATA;
1442
1443	del(mq, e);
1444	free_entry(&mq->cache_alloc, e);
1445
1446	return 0;
1447}
1448
1449static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1450{
1451	int r;
1452	unsigned long flags;
1453	struct smq_policy *mq = to_smq_policy(p);
1454
1455	spin_lock_irqsave(&mq->lock, flags);
1456	r = __remove_cblock(mq, cblock);
1457	spin_unlock_irqrestore(&mq->lock, flags);
1458
1459	return r;
1460}
1461
1462
1463#define CLEAN_TARGET_CRITICAL 5u /* percent */
1464
1465static bool clean_target_met(struct smq_policy *mq, bool critical)
1466{
1467	if (critical) {
1468		/*
1469		 * Cache entries may not be populated.  So we're cannot rely on the
1470		 * size of the clean queue.
1471		 */
1472		unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty);
1473		unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u;
1474
1475		return nr_clean >= target;
1476	} else
1477		return !q_size(&mq->dirty);
1478}
1479
1480static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock,
1481				dm_cblock_t *cblock, bool critical_only)
1482{
1483	struct entry *e = NULL;
1484	bool target_met = clean_target_met(mq, critical_only);
1485
1486	if (critical_only)
1487		/*
1488		 * Always try and keep the bottom level clean.
1489		 */
1490		e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels);
1491
1492	else
1493		e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels);
1494
1495	if (!e)
1496		return -ENODATA;
1497
1498	*oblock = e->oblock;
1499	*cblock = infer_cblock(mq, e);
1500	e->dirty = false;
1501	push_new(mq, e);
1502
1503	return 0;
1504}
1505
1506static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1507			      dm_cblock_t *cblock, bool critical_only)
1508{
1509	int r;
1510	unsigned long flags;
1511	struct smq_policy *mq = to_smq_policy(p);
1512
1513	spin_lock_irqsave(&mq->lock, flags);
1514	r = __smq_writeback_work(mq, oblock, cblock, critical_only);
1515	spin_unlock_irqrestore(&mq->lock, flags);
1516
1517	return r;
1518}
1519
1520static void __force_mapping(struct smq_policy *mq,
1521			    dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1522{
1523	struct entry *e = h_lookup(&mq->table, current_oblock);
1524
1525	if (e) {
1526		del(mq, e);
1527		e->oblock = new_oblock;
1528		e->dirty = true;
1529		push(mq, e);
1530	}
1531}
1532
1533static void smq_force_mapping(struct dm_cache_policy *p,
1534			      dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1535{
1536	unsigned long flags;
1537	struct smq_policy *mq = to_smq_policy(p);
1538
1539	spin_lock_irqsave(&mq->lock, flags);
1540	__force_mapping(mq, current_oblock, new_oblock);
1541	spin_unlock_irqrestore(&mq->lock, flags);
1542}
1543
1544static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1545{
1546	dm_cblock_t r;
1547	unsigned long flags;
1548	struct smq_policy *mq = to_smq_policy(p);
1549
1550	spin_lock_irqsave(&mq->lock, flags);
1551	r = to_cblock(mq->cache_alloc.nr_allocated);
1552	spin_unlock_irqrestore(&mq->lock, flags);
1553
1554	return r;
1555}
1556
1557static void smq_tick(struct dm_cache_policy *p, bool can_block)
1558{
1559	struct smq_policy *mq = to_smq_policy(p);
1560	unsigned long flags;
1561
1562	spin_lock_irqsave(&mq->lock, flags);
1563	mq->tick++;
1564	update_sentinels(mq);
1565	end_hotspot_period(mq);
1566	end_cache_period(mq);
1567	spin_unlock_irqrestore(&mq->lock, flags);
1568}
1569
1570/*
1571 * smq has no config values, but the old mq policy did.  To avoid breaking
1572 * software we continue to accept these configurables for the mq policy,
1573 * but they have no effect.
1574 */
1575static int mq_set_config_value(struct dm_cache_policy *p,
1576			       const char *key, const char *value)
1577{
1578	unsigned long tmp;
1579
1580	if (kstrtoul(value, 10, &tmp))
1581		return -EINVAL;
1582
1583	if (!strcasecmp(key, "random_threshold") ||
1584	    !strcasecmp(key, "sequential_threshold") ||
1585	    !strcasecmp(key, "discard_promote_adjustment") ||
1586	    !strcasecmp(key, "read_promote_adjustment") ||
1587	    !strcasecmp(key, "write_promote_adjustment")) {
1588		DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1589		return 0;
1590	}
1591
1592	return -EINVAL;
1593}
1594
1595static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1596				 unsigned maxlen, ssize_t *sz_ptr)
1597{
1598	ssize_t sz = *sz_ptr;
1599
1600	DMEMIT("10 random_threshold 0 "
1601	       "sequential_threshold 0 "
1602	       "discard_promote_adjustment 0 "
1603	       "read_promote_adjustment 0 "
1604	       "write_promote_adjustment 0 ");
1605
1606	*sz_ptr = sz;
1607	return 0;
1608}
1609
1610/* Init the policy plugin interface function pointers. */
1611static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1612{
1613	mq->policy.destroy = smq_destroy;
1614	mq->policy.map = smq_map;
1615	mq->policy.lookup = smq_lookup;
1616	mq->policy.set_dirty = smq_set_dirty;
1617	mq->policy.clear_dirty = smq_clear_dirty;
1618	mq->policy.load_mapping = smq_load_mapping;
1619	mq->policy.walk_mappings = smq_walk_mappings;
1620	mq->policy.remove_mapping = smq_remove_mapping;
1621	mq->policy.remove_cblock = smq_remove_cblock;
1622	mq->policy.writeback_work = smq_writeback_work;
1623	mq->policy.force_mapping = smq_force_mapping;
1624	mq->policy.residency = smq_residency;
1625	mq->policy.tick = smq_tick;
1626
1627	if (mimic_mq) {
1628		mq->policy.set_config_value = mq_set_config_value;
1629		mq->policy.emit_config_values = mq_emit_config_values;
1630	}
1631}
1632
1633static bool too_many_hotspot_blocks(sector_t origin_size,
1634				    sector_t hotspot_block_size,
1635				    unsigned nr_hotspot_blocks)
1636{
1637	return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1638}
1639
1640static void calc_hotspot_params(sector_t origin_size,
1641				sector_t cache_block_size,
1642				unsigned nr_cache_blocks,
1643				sector_t *hotspot_block_size,
1644				unsigned *nr_hotspot_blocks)
1645{
1646	*hotspot_block_size = cache_block_size * 16u;
1647	*nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1648
1649	while ((*hotspot_block_size > cache_block_size) &&
1650	       too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1651		*hotspot_block_size /= 2u;
1652}
1653
1654static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size,
1655					    sector_t origin_size,
1656					    sector_t cache_block_size,
1657					    bool mimic_mq)
1658{
1659	unsigned i;
1660	unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1661	unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1662	struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1663
1664	if (!mq)
1665		return NULL;
1666
1667	init_policy_functions(mq, mimic_mq);
1668	mq->cache_size = cache_size;
1669	mq->cache_block_size = cache_block_size;
1670
1671	calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1672			    &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1673
1674	mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1675	mq->hotspot_level_jump = 1u;
1676	if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1677		DMERR("couldn't initialize entry space");
1678		goto bad_pool_init;
1679	}
1680
1681	init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1682        for (i = 0; i < nr_sentinels_per_queue; i++)
1683		get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1684
1685	init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1686        for (i = 0; i < nr_sentinels_per_queue; i++)
1687		get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1688
1689	init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1690		       total_sentinels + mq->nr_hotspot_blocks);
1691
1692	init_allocator(&mq->cache_alloc, &mq->es,
1693		       total_sentinels + mq->nr_hotspot_blocks,
1694		       total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1695
1696	mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1697	if (!mq->hotspot_hit_bits) {
1698		DMERR("couldn't allocate hotspot hit bitset");
1699		goto bad_hotspot_hit_bits;
1700	}
1701	clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1702
1703	if (from_cblock(cache_size)) {
1704		mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1705		if (!mq->cache_hit_bits) {
1706			DMERR("couldn't allocate cache hit bitset");
1707			goto bad_cache_hit_bits;
1708		}
1709		clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1710	} else
1711		mq->cache_hit_bits = NULL;
1712
1713	mq->tick = 0;
1714	spin_lock_init(&mq->lock);
1715
1716	q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1717	mq->hotspot.nr_top_levels = 8;
1718	mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1719					   from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1720
1721	q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1722	q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1723
1724	stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1725	stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1726
1727	if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1728		goto bad_alloc_table;
1729
1730	if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1731		goto bad_alloc_hotspot_table;
1732
1733	sentinels_init(mq);
1734	mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1735
1736	mq->next_hotspot_period = jiffies;
1737	mq->next_cache_period = jiffies;
1738
1739	return &mq->policy;
1740
1741bad_alloc_hotspot_table:
1742	h_exit(&mq->table);
1743bad_alloc_table:
1744	free_bitset(mq->cache_hit_bits);
1745bad_cache_hit_bits:
1746	free_bitset(mq->hotspot_hit_bits);
1747bad_hotspot_hit_bits:
1748	space_exit(&mq->es);
1749bad_pool_init:
1750	kfree(mq);
1751
1752	return NULL;
1753}
1754
1755static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1756					  sector_t origin_size,
1757					  sector_t cache_block_size)
1758{
1759	return __smq_create(cache_size, origin_size, cache_block_size, false);
1760}
1761
1762static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1763					 sector_t origin_size,
1764					 sector_t cache_block_size)
1765{
1766	return __smq_create(cache_size, origin_size, cache_block_size, true);
1767}
1768
1769/*----------------------------------------------------------------*/
1770
1771static struct dm_cache_policy_type smq_policy_type = {
1772	.name = "smq",
1773	.version = {1, 5, 0},
1774	.hint_size = 4,
1775	.owner = THIS_MODULE,
1776	.create = smq_create
1777};
1778
1779static struct dm_cache_policy_type mq_policy_type = {
1780	.name = "mq",
1781	.version = {1, 5, 0},
1782	.hint_size = 4,
1783	.owner = THIS_MODULE,
1784	.create = mq_create,
1785};
1786
1787static struct dm_cache_policy_type default_policy_type = {
1788	.name = "default",
1789	.version = {1, 5, 0},
1790	.hint_size = 4,
1791	.owner = THIS_MODULE,
1792	.create = smq_create,
1793	.real = &smq_policy_type
1794};
1795
1796static int __init smq_init(void)
1797{
1798	int r;
1799
1800	r = dm_cache_policy_register(&smq_policy_type);
1801	if (r) {
1802		DMERR("register failed %d", r);
1803		return -ENOMEM;
1804	}
1805
1806	r = dm_cache_policy_register(&mq_policy_type);
1807	if (r) {
1808		DMERR("register failed (as mq) %d", r);
1809		dm_cache_policy_unregister(&smq_policy_type);
1810		return -ENOMEM;
1811	}
1812
1813	r = dm_cache_policy_register(&default_policy_type);
1814	if (r) {
1815		DMERR("register failed (as default) %d", r);
1816		dm_cache_policy_unregister(&mq_policy_type);
1817		dm_cache_policy_unregister(&smq_policy_type);
1818		return -ENOMEM;
1819	}
1820
1821	return 0;
1822}
1823
1824static void __exit smq_exit(void)
1825{
1826	dm_cache_policy_unregister(&smq_policy_type);
1827	dm_cache_policy_unregister(&mq_policy_type);
1828	dm_cache_policy_unregister(&default_policy_type);
1829}
1830
1831module_init(smq_init);
1832module_exit(smq_exit);
1833
1834MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1835MODULE_LICENSE("GPL");
1836MODULE_DESCRIPTION("smq cache policy");
1837
1838MODULE_ALIAS("dm-cache-default");
1839MODULE_ALIAS("dm-cache-mq");