Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/mm.h>
 20#include <linux/err.h>
 21#include <linux/cpu.h>
 
 22#include <linux/seq_file.h>
 23#include <linux/irq.h>
 24#include <linux/nmi.h>
 25#include <linux/percpu.h>
 26#include <linux/clockchips.h>
 27#include <linux/completion.h>
 28#include <linux/cpufreq.h>
 29#include <linux/irq_work.h>
 30
 31#include <linux/atomic.h>
 32#include <asm/smp.h>
 33#include <asm/cacheflush.h>
 34#include <asm/cpu.h>
 35#include <asm/cputype.h>
 36#include <asm/exception.h>
 37#include <asm/idmap.h>
 38#include <asm/topology.h>
 39#include <asm/mmu_context.h>
 40#include <asm/pgtable.h>
 41#include <asm/pgalloc.h>
 42#include <asm/processor.h>
 43#include <asm/sections.h>
 44#include <asm/tlbflush.h>
 45#include <asm/ptrace.h>
 
 46#include <asm/smp_plat.h>
 47#include <asm/virt.h>
 48#include <asm/mach/arch.h>
 49#include <asm/mpu.h>
 50
 51#define CREATE_TRACE_POINTS
 52#include <trace/events/ipi.h>
 53
 54/*
 55 * as from 2.5, kernels no longer have an init_tasks structure
 56 * so we need some other way of telling a new secondary core
 57 * where to place its SVC stack
 58 */
 59struct secondary_data secondary_data;
 60
 61/*
 62 * control for which core is the next to come out of the secondary
 63 * boot "holding pen"
 64 */
 65volatile int pen_release = -1;
 66
 67enum ipi_msg_type {
 68	IPI_WAKEUP,
 69	IPI_TIMER,
 70	IPI_RESCHEDULE,
 71	IPI_CALL_FUNC,
 
 72	IPI_CPU_STOP,
 73	IPI_IRQ_WORK,
 74	IPI_COMPLETION,
 75	IPI_CPU_BACKTRACE,
 76	/*
 77	 * SGI8-15 can be reserved by secure firmware, and thus may
 78	 * not be usable by the kernel. Please keep the above limited
 79	 * to at most 8 entries.
 80	 */
 81};
 82
 83static DECLARE_COMPLETION(cpu_running);
 84
 85static struct smp_operations smp_ops;
 86
 87void __init smp_set_ops(const struct smp_operations *ops)
 88{
 89	if (ops)
 90		smp_ops = *ops;
 91};
 92
 93static unsigned long get_arch_pgd(pgd_t *pgd)
 94{
 95#ifdef CONFIG_ARM_LPAE
 96	return __phys_to_pfn(virt_to_phys(pgd));
 97#else
 98	return virt_to_phys(pgd);
 99#endif
100}
101
102int __cpu_up(unsigned int cpu, struct task_struct *idle)
103{
104	int ret;
105
106	if (!smp_ops.smp_boot_secondary)
107		return -ENOSYS;
108
109	/*
110	 * We need to tell the secondary core where to find
111	 * its stack and the page tables.
112	 */
113	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
114#ifdef CONFIG_ARM_MPU
115	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
116#endif
117
118#ifdef CONFIG_MMU
119	secondary_data.pgdir = virt_to_phys(idmap_pgd);
120	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
121#endif
122	sync_cache_w(&secondary_data);
123
124	/*
125	 * Now bring the CPU into our world.
126	 */
127	ret = smp_ops.smp_boot_secondary(cpu, idle);
128	if (ret == 0) {
129		/*
130		 * CPU was successfully started, wait for it
131		 * to come online or time out.
132		 */
133		wait_for_completion_timeout(&cpu_running,
134						 msecs_to_jiffies(1000));
135
136		if (!cpu_online(cpu)) {
137			pr_crit("CPU%u: failed to come online\n", cpu);
138			ret = -EIO;
139		}
140	} else {
141		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
142	}
143
 
 
144
145	memset(&secondary_data, 0, sizeof(secondary_data));
146	return ret;
147}
148
149/* platform specific SMP operations */
150void __init smp_init_cpus(void)
151{
152	if (smp_ops.smp_init_cpus)
153		smp_ops.smp_init_cpus();
154}
155
156int platform_can_secondary_boot(void)
157{
158	return !!smp_ops.smp_boot_secondary;
159}
160
161int platform_can_cpu_hotplug(void)
162{
163#ifdef CONFIG_HOTPLUG_CPU
164	if (smp_ops.cpu_kill)
165		return 1;
166#endif
167
168	return 0;
169}
170
171#ifdef CONFIG_HOTPLUG_CPU
172static int platform_cpu_kill(unsigned int cpu)
173{
174	if (smp_ops.cpu_kill)
175		return smp_ops.cpu_kill(cpu);
176	return 1;
177}
178
179static int platform_cpu_disable(unsigned int cpu)
180{
181	if (smp_ops.cpu_disable)
182		return smp_ops.cpu_disable(cpu);
183
184	return 0;
185}
186
187int platform_can_hotplug_cpu(unsigned int cpu)
188{
189	/* cpu_die must be specified to support hotplug */
190	if (!smp_ops.cpu_die)
191		return 0;
192
193	if (smp_ops.cpu_can_disable)
194		return smp_ops.cpu_can_disable(cpu);
195
196	/*
197	 * By default, allow disabling all CPUs except the first one,
198	 * since this is special on a lot of platforms, e.g. because
199	 * of clock tick interrupts.
200	 */
201	return cpu != 0;
202}
203
204/*
205 * __cpu_disable runs on the processor to be shutdown.
206 */
207int __cpu_disable(void)
208{
209	unsigned int cpu = smp_processor_id();
210	int ret;
211
212	ret = platform_cpu_disable(cpu);
213	if (ret)
214		return ret;
215
216	/*
217	 * Take this CPU offline.  Once we clear this, we can't return,
218	 * and we must not schedule until we're ready to give up the cpu.
219	 */
220	set_cpu_online(cpu, false);
221
222	/*
223	 * OK - migrate IRQs away from this CPU
224	 */
225	migrate_irqs();
226
227	/*
 
 
 
 
 
228	 * Flush user cache and TLB mappings, and then remove this CPU
229	 * from the vm mask set of all processes.
230	 *
231	 * Caches are flushed to the Level of Unification Inner Shareable
232	 * to write-back dirty lines to unified caches shared by all CPUs.
233	 */
234	flush_cache_louis();
235	local_flush_tlb_all();
236
237	clear_tasks_mm_cpumask(cpu);
238
239	return 0;
240}
241
242static DECLARE_COMPLETION(cpu_died);
243
244/*
245 * called on the thread which is asking for a CPU to be shutdown -
246 * waits until shutdown has completed, or it is timed out.
247 */
248void __cpu_die(unsigned int cpu)
249{
250	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
251		pr_err("CPU%u: cpu didn't die\n", cpu);
252		return;
253	}
254	pr_notice("CPU%u: shutdown\n", cpu);
255
256	/*
257	 * platform_cpu_kill() is generally expected to do the powering off
258	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
259	 * be done by the CPU which is dying in preference to supporting
260	 * this call, but that means there is _no_ synchronisation between
261	 * the requesting CPU and the dying CPU actually losing power.
262	 */
263	if (!platform_cpu_kill(cpu))
264		pr_err("CPU%u: unable to kill\n", cpu);
265}
266
267/*
268 * Called from the idle thread for the CPU which has been shutdown.
269 *
270 * Note that we disable IRQs here, but do not re-enable them
271 * before returning to the caller. This is also the behaviour
272 * of the other hotplug-cpu capable cores, so presumably coming
273 * out of idle fixes this.
274 */
275void arch_cpu_idle_dead(void)
276{
277	unsigned int cpu = smp_processor_id();
278
279	idle_task_exit();
280
281	local_irq_disable();
 
282
283	/*
284	 * Flush the data out of the L1 cache for this CPU.  This must be
285	 * before the completion to ensure that data is safely written out
286	 * before platform_cpu_kill() gets called - which may disable
287	 * *this* CPU and power down its cache.
288	 */
289	flush_cache_louis();
290
291	/*
292	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
293	 * this returns, power and/or clocks can be removed at any point
294	 * from this CPU and its cache by platform_cpu_kill().
295	 */
296	complete(&cpu_died);
297
298	/*
299	 * Ensure that the cache lines associated with that completion are
300	 * written out.  This covers the case where _this_ CPU is doing the
301	 * powering down, to ensure that the completion is visible to the
302	 * CPU waiting for this one.
303	 */
304	flush_cache_louis();
305
306	/*
307	 * The actual CPU shutdown procedure is at least platform (if not
308	 * CPU) specific.  This may remove power, or it may simply spin.
309	 *
310	 * Platforms are generally expected *NOT* to return from this call,
311	 * although there are some which do because they have no way to
312	 * power down the CPU.  These platforms are the _only_ reason we
313	 * have a return path which uses the fragment of assembly below.
314	 *
315	 * The return path should not be used for platforms which can
316	 * power off the CPU.
317	 */
318	if (smp_ops.cpu_die)
319		smp_ops.cpu_die(cpu);
320
321	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
322		cpu);
323
324	/*
325	 * Do not return to the idle loop - jump back to the secondary
326	 * cpu initialisation.  There's some initialisation which needs
327	 * to be repeated to undo the effects of taking the CPU offline.
328	 */
329	__asm__("mov	sp, %0\n"
330	"	mov	fp, #0\n"
331	"	b	secondary_start_kernel"
332		:
333		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
334}
335#endif /* CONFIG_HOTPLUG_CPU */
336
337/*
338 * Called by both boot and secondaries to move global data into
339 * per-processor storage.
340 */
341static void smp_store_cpu_info(unsigned int cpuid)
342{
343	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
344
345	cpu_info->loops_per_jiffy = loops_per_jiffy;
346	cpu_info->cpuid = read_cpuid_id();
347
348	store_cpu_topology(cpuid);
349}
350
 
 
351/*
352 * This is the secondary CPU boot entry.  We're using this CPUs
353 * idle thread stack, but a set of temporary page tables.
354 */
355asmlinkage void secondary_start_kernel(void)
356{
357	struct mm_struct *mm = &init_mm;
358	unsigned int cpu;
359
360	/*
361	 * The identity mapping is uncached (strongly ordered), so
362	 * switch away from it before attempting any exclusive accesses.
363	 */
364	cpu_switch_mm(mm->pgd, mm);
365	local_flush_bp_all();
366	enter_lazy_tlb(mm, current);
367	local_flush_tlb_all();
368
369	/*
370	 * All kernel threads share the same mm context; grab a
371	 * reference and switch to it.
372	 */
373	cpu = smp_processor_id();
374	atomic_inc(&mm->mm_count);
375	current->active_mm = mm;
376	cpumask_set_cpu(cpu, mm_cpumask(mm));
 
 
 
377
378	cpu_init();
379
380	pr_debug("CPU%u: Booted secondary processor\n", cpu);
381
 
382	preempt_disable();
383	trace_hardirqs_off();
384
385	/*
386	 * Give the platform a chance to do its own initialisation.
387	 */
388	if (smp_ops.smp_secondary_init)
389		smp_ops.smp_secondary_init(cpu);
390
391	notify_cpu_starting(cpu);
392
393	calibrate_delay();
394
395	smp_store_cpu_info(cpu);
396
397	/*
398	 * OK, now it's safe to let the boot CPU continue.  Wait for
399	 * the CPU migration code to notice that the CPU is online
400	 * before we continue - which happens after __cpu_up returns.
401	 */
402	set_cpu_online(cpu, true);
403	complete(&cpu_running);
404
 
 
 
 
 
405	local_irq_enable();
406	local_fiq_enable();
407	local_abt_enable();
408
409	/*
410	 * OK, it's off to the idle thread for us
411	 */
412	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
413}
414
415void __init smp_cpus_done(unsigned int max_cpus)
416{
417	int cpu;
418	unsigned long bogosum = 0;
419
420	for_each_online_cpu(cpu)
421		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
422
423	printk(KERN_INFO "SMP: Total of %d processors activated "
424	       "(%lu.%02lu BogoMIPS).\n",
425	       num_online_cpus(),
426	       bogosum / (500000/HZ),
427	       (bogosum / (5000/HZ)) % 100);
428
429	hyp_mode_check();
430}
431
432void __init smp_prepare_boot_cpu(void)
433{
434	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
435}
436
437void __init smp_prepare_cpus(unsigned int max_cpus)
438{
439	unsigned int ncores = num_possible_cpus();
440
441	init_cpu_topology();
442
443	smp_store_cpu_info(smp_processor_id());
444
445	/*
446	 * are we trying to boot more cores than exist?
447	 */
448	if (max_cpus > ncores)
449		max_cpus = ncores;
450	if (ncores > 1 && max_cpus) {
451		/*
 
 
 
 
 
 
452		 * Initialise the present map, which describes the set of CPUs
453		 * actually populated at the present time. A platform should
454		 * re-initialize the map in the platforms smp_prepare_cpus()
455		 * if present != possible (e.g. physical hotplug).
456		 */
457		init_cpu_present(cpu_possible_mask);
458
459		/*
460		 * Initialise the SCU if there are more than one CPU
461		 * and let them know where to start.
462		 */
463		if (smp_ops.smp_prepare_cpus)
464			smp_ops.smp_prepare_cpus(max_cpus);
465	}
466}
467
468static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
469
470void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
471{
472	if (!__smp_cross_call)
473		__smp_cross_call = fn;
474}
475
476static const char *ipi_types[NR_IPI] __tracepoint_string = {
477#define S(x,s)	[x] = s
478	S(IPI_WAKEUP, "CPU wakeup interrupts"),
 
 
 
 
 
 
 
 
 
479	S(IPI_TIMER, "Timer broadcast interrupts"),
480	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
481	S(IPI_CALL_FUNC, "Function call interrupts"),
 
482	S(IPI_CPU_STOP, "CPU stop interrupts"),
483	S(IPI_IRQ_WORK, "IRQ work interrupts"),
484	S(IPI_COMPLETION, "completion interrupts"),
485};
486
487static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
488{
489	trace_ipi_raise(target, ipi_types[ipinr]);
490	__smp_cross_call(target, ipinr);
491}
492
493void show_ipi_list(struct seq_file *p, int prec)
494{
495	unsigned int cpu, i;
496
497	for (i = 0; i < NR_IPI; i++) {
498		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
499
500		for_each_online_cpu(cpu)
501			seq_printf(p, "%10u ",
502				   __get_irq_stat(cpu, ipi_irqs[i]));
503
504		seq_printf(p, " %s\n", ipi_types[i]);
505	}
506}
507
508u64 smp_irq_stat_cpu(unsigned int cpu)
509{
510	u64 sum = 0;
511	int i;
512
513	for (i = 0; i < NR_IPI; i++)
514		sum += __get_irq_stat(cpu, ipi_irqs[i]);
515
516	return sum;
517}
518
519void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 
 
 
 
 
520{
521	smp_cross_call(mask, IPI_CALL_FUNC);
 
522}
523
524void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 
525{
526	smp_cross_call(mask, IPI_WAKEUP);
527}
 
 
 
528
529void arch_send_call_function_single_ipi(int cpu)
 
530{
531	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
532}
533
534#ifdef CONFIG_IRQ_WORK
535void arch_irq_work_raise(void)
536{
537	if (arch_irq_work_has_interrupt())
538		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539}
540#endif
541
542#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
543void tick_broadcast(const struct cpumask *mask)
544{
545	smp_cross_call(mask, IPI_TIMER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546}
547#endif
548
549static DEFINE_RAW_SPINLOCK(stop_lock);
550
551/*
552 * ipi_cpu_stop - handle IPI from smp_send_stop()
553 */
554static void ipi_cpu_stop(unsigned int cpu)
555{
556	if (system_state == SYSTEM_BOOTING ||
557	    system_state == SYSTEM_RUNNING) {
558		raw_spin_lock(&stop_lock);
559		pr_crit("CPU%u: stopping\n", cpu);
560		dump_stack();
561		raw_spin_unlock(&stop_lock);
562	}
563
564	set_cpu_online(cpu, false);
565
566	local_fiq_disable();
567	local_irq_disable();
568
569	while (1)
570		cpu_relax();
571}
572
573static DEFINE_PER_CPU(struct completion *, cpu_completion);
574
575int register_ipi_completion(struct completion *completion, int cpu)
576{
577	per_cpu(cpu_completion, cpu) = completion;
578	return IPI_COMPLETION;
579}
580
581static void ipi_complete(unsigned int cpu)
582{
583	complete(per_cpu(cpu_completion, cpu));
584}
585
586/*
587 * Main handler for inter-processor interrupts
588 */
589asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
590{
591	handle_IPI(ipinr, regs);
592}
593
594void handle_IPI(int ipinr, struct pt_regs *regs)
595{
596	unsigned int cpu = smp_processor_id();
597	struct pt_regs *old_regs = set_irq_regs(regs);
598
599	if ((unsigned)ipinr < NR_IPI) {
600		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
601		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
602	}
603
604	switch (ipinr) {
605	case IPI_WAKEUP:
606		break;
607
608#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
609	case IPI_TIMER:
610		irq_enter();
611		tick_receive_broadcast();
612		irq_exit();
613		break;
614#endif
615
616	case IPI_RESCHEDULE:
617		scheduler_ipi();
618		break;
619
620	case IPI_CALL_FUNC:
621		irq_enter();
622		generic_smp_call_function_interrupt();
623		irq_exit();
624		break;
625
626	case IPI_CPU_STOP:
627		irq_enter();
628		ipi_cpu_stop(cpu);
629		irq_exit();
630		break;
631
632#ifdef CONFIG_IRQ_WORK
633	case IPI_IRQ_WORK:
634		irq_enter();
635		irq_work_run();
636		irq_exit();
637		break;
638#endif
639
640	case IPI_COMPLETION:
641		irq_enter();
642		ipi_complete(cpu);
643		irq_exit();
644		break;
645
646	case IPI_CPU_BACKTRACE:
647		irq_enter();
648		nmi_cpu_backtrace(regs);
649		irq_exit();
650		break;
651
652	default:
653		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
654		        cpu, ipinr);
655		break;
656	}
657
658	if ((unsigned)ipinr < NR_IPI)
659		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
660	set_irq_regs(old_regs);
661}
662
663void smp_send_reschedule(int cpu)
664{
665	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
666}
667
 
 
 
 
 
 
 
 
 
 
 
668void smp_send_stop(void)
669{
670	unsigned long timeout;
671	struct cpumask mask;
672
673	cpumask_copy(&mask, cpu_online_mask);
674	cpumask_clear_cpu(smp_processor_id(), &mask);
675	if (!cpumask_empty(&mask))
676		smp_cross_call(&mask, IPI_CPU_STOP);
677
678	/* Wait up to one second for other CPUs to stop */
679	timeout = USEC_PER_SEC;
680	while (num_online_cpus() > 1 && timeout--)
681		udelay(1);
682
683	if (num_online_cpus() > 1)
684		pr_warn("SMP: failed to stop secondary CPUs\n");
 
 
685}
686
687/*
688 * not supported here
689 */
690int setup_profiling_timer(unsigned int multiplier)
691{
692	return -EINVAL;
693}
694
695#ifdef CONFIG_CPU_FREQ
696
697static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
698static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
699static unsigned long global_l_p_j_ref;
700static unsigned long global_l_p_j_ref_freq;
701
702static int cpufreq_callback(struct notifier_block *nb,
703					unsigned long val, void *data)
704{
705	struct cpufreq_freqs *freq = data;
706	int cpu = freq->cpu;
707
708	if (freq->flags & CPUFREQ_CONST_LOOPS)
709		return NOTIFY_OK;
710
711	if (!per_cpu(l_p_j_ref, cpu)) {
712		per_cpu(l_p_j_ref, cpu) =
713			per_cpu(cpu_data, cpu).loops_per_jiffy;
714		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
715		if (!global_l_p_j_ref) {
716			global_l_p_j_ref = loops_per_jiffy;
717			global_l_p_j_ref_freq = freq->old;
718		}
719	}
720
721	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
722	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
723		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
724						global_l_p_j_ref_freq,
725						freq->new);
726		per_cpu(cpu_data, cpu).loops_per_jiffy =
727			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
728					per_cpu(l_p_j_ref_freq, cpu),
729					freq->new);
730	}
731	return NOTIFY_OK;
732}
733
734static struct notifier_block cpufreq_notifier = {
735	.notifier_call  = cpufreq_callback,
736};
737
738static int __init register_cpufreq_notifier(void)
739{
740	return cpufreq_register_notifier(&cpufreq_notifier,
741						CPUFREQ_TRANSITION_NOTIFIER);
742}
743core_initcall(register_cpufreq_notifier);
744
745#endif
746
747static void raise_nmi(cpumask_t *mask)
748{
749	/*
750	 * Generate the backtrace directly if we are running in a calling
751	 * context that is not preemptible by the backtrace IPI. Note
752	 * that nmi_cpu_backtrace() automatically removes the current cpu
753	 * from mask.
754	 */
755	if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled())
756		nmi_cpu_backtrace(NULL);
757
758	smp_cross_call(mask, IPI_CPU_BACKTRACE);
759}
760
761void arch_trigger_all_cpu_backtrace(bool include_self)
762{
763	nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
764}
v3.5.6
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/mm.h>
 20#include <linux/err.h>
 21#include <linux/cpu.h>
 22#include <linux/smp.h>
 23#include <linux/seq_file.h>
 24#include <linux/irq.h>
 
 25#include <linux/percpu.h>
 26#include <linux/clockchips.h>
 27#include <linux/completion.h>
 
 
 28
 29#include <linux/atomic.h>
 
 30#include <asm/cacheflush.h>
 31#include <asm/cpu.h>
 32#include <asm/cputype.h>
 33#include <asm/exception.h>
 34#include <asm/idmap.h>
 35#include <asm/topology.h>
 36#include <asm/mmu_context.h>
 37#include <asm/pgtable.h>
 38#include <asm/pgalloc.h>
 39#include <asm/processor.h>
 40#include <asm/sections.h>
 41#include <asm/tlbflush.h>
 42#include <asm/ptrace.h>
 43#include <asm/localtimer.h>
 44#include <asm/smp_plat.h>
 
 
 
 
 
 
 45
 46/*
 47 * as from 2.5, kernels no longer have an init_tasks structure
 48 * so we need some other way of telling a new secondary core
 49 * where to place its SVC stack
 50 */
 51struct secondary_data secondary_data;
 52
 
 
 
 
 
 
 53enum ipi_msg_type {
 54	IPI_TIMER = 2,
 
 55	IPI_RESCHEDULE,
 56	IPI_CALL_FUNC,
 57	IPI_CALL_FUNC_SINGLE,
 58	IPI_CPU_STOP,
 
 
 
 
 
 
 
 
 59};
 60
 61static DECLARE_COMPLETION(cpu_running);
 62
 63int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64{
 65	int ret;
 66
 
 
 
 67	/*
 68	 * We need to tell the secondary core where to find
 69	 * its stack and the page tables.
 70	 */
 71	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 
 
 
 
 
 72	secondary_data.pgdir = virt_to_phys(idmap_pgd);
 73	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
 74	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
 75	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
 76
 77	/*
 78	 * Now bring the CPU into our world.
 79	 */
 80	ret = boot_secondary(cpu, idle);
 81	if (ret == 0) {
 82		/*
 83		 * CPU was successfully started, wait for it
 84		 * to come online or time out.
 85		 */
 86		wait_for_completion_timeout(&cpu_running,
 87						 msecs_to_jiffies(1000));
 88
 89		if (!cpu_online(cpu)) {
 90			pr_crit("CPU%u: failed to come online\n", cpu);
 91			ret = -EIO;
 92		}
 93	} else {
 94		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 95	}
 96
 97	secondary_data.stack = NULL;
 98	secondary_data.pgdir = 0;
 99
 
100	return ret;
101}
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103#ifdef CONFIG_HOTPLUG_CPU
104static void percpu_timer_stop(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
106/*
107 * __cpu_disable runs on the processor to be shutdown.
108 */
109int __cpu_disable(void)
110{
111	unsigned int cpu = smp_processor_id();
112	int ret;
113
114	ret = platform_cpu_disable(cpu);
115	if (ret)
116		return ret;
117
118	/*
119	 * Take this CPU offline.  Once we clear this, we can't return,
120	 * and we must not schedule until we're ready to give up the cpu.
121	 */
122	set_cpu_online(cpu, false);
123
124	/*
125	 * OK - migrate IRQs away from this CPU
126	 */
127	migrate_irqs();
128
129	/*
130	 * Stop the local timer for this CPU.
131	 */
132	percpu_timer_stop();
133
134	/*
135	 * Flush user cache and TLB mappings, and then remove this CPU
136	 * from the vm mask set of all processes.
 
 
 
137	 */
138	flush_cache_all();
139	local_flush_tlb_all();
140
141	clear_tasks_mm_cpumask(cpu);
142
143	return 0;
144}
145
146static DECLARE_COMPLETION(cpu_died);
147
148/*
149 * called on the thread which is asking for a CPU to be shutdown -
150 * waits until shutdown has completed, or it is timed out.
151 */
152void __cpu_die(unsigned int cpu)
153{
154	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
155		pr_err("CPU%u: cpu didn't die\n", cpu);
156		return;
157	}
158	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
159
 
 
 
 
 
 
 
160	if (!platform_cpu_kill(cpu))
161		printk("CPU%u: unable to kill\n", cpu);
162}
163
164/*
165 * Called from the idle thread for the CPU which has been shutdown.
166 *
167 * Note that we disable IRQs here, but do not re-enable them
168 * before returning to the caller. This is also the behaviour
169 * of the other hotplug-cpu capable cores, so presumably coming
170 * out of idle fixes this.
171 */
172void __ref cpu_die(void)
173{
174	unsigned int cpu = smp_processor_id();
175
176	idle_task_exit();
177
178	local_irq_disable();
179	mb();
180
181	/* Tell __cpu_die() that this CPU is now safe to dispose of */
 
 
 
 
 
 
 
 
 
 
 
 
182	complete(&cpu_died);
183
184	/*
185	 * actual CPU shutdown procedure is at least platform (if not
186	 * CPU) specific.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187	 */
188	platform_cpu_die(cpu);
 
 
 
 
189
190	/*
191	 * Do not return to the idle loop - jump back to the secondary
192	 * cpu initialisation.  There's some initialisation which needs
193	 * to be repeated to undo the effects of taking the CPU offline.
194	 */
195	__asm__("mov	sp, %0\n"
196	"	mov	fp, #0\n"
197	"	b	secondary_start_kernel"
198		:
199		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
200}
201#endif /* CONFIG_HOTPLUG_CPU */
202
203/*
204 * Called by both boot and secondaries to move global data into
205 * per-processor storage.
206 */
207static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
208{
209	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
210
211	cpu_info->loops_per_jiffy = loops_per_jiffy;
 
212
213	store_cpu_topology(cpuid);
214}
215
216static void percpu_timer_setup(void);
217
218/*
219 * This is the secondary CPU boot entry.  We're using this CPUs
220 * idle thread stack, but a set of temporary page tables.
221 */
222asmlinkage void __cpuinit secondary_start_kernel(void)
223{
224	struct mm_struct *mm = &init_mm;
225	unsigned int cpu = smp_processor_id();
 
 
 
 
 
 
 
 
 
226
227	/*
228	 * All kernel threads share the same mm context; grab a
229	 * reference and switch to it.
230	 */
 
231	atomic_inc(&mm->mm_count);
232	current->active_mm = mm;
233	cpumask_set_cpu(cpu, mm_cpumask(mm));
234	cpu_switch_mm(mm->pgd, mm);
235	enter_lazy_tlb(mm, current);
236	local_flush_tlb_all();
237
238	printk("CPU%u: Booted secondary processor\n", cpu);
 
 
239
240	cpu_init();
241	preempt_disable();
242	trace_hardirqs_off();
243
244	/*
245	 * Give the platform a chance to do its own initialisation.
246	 */
247	platform_secondary_init(cpu);
 
248
249	notify_cpu_starting(cpu);
250
251	calibrate_delay();
252
253	smp_store_cpu_info(cpu);
254
255	/*
256	 * OK, now it's safe to let the boot CPU continue.  Wait for
257	 * the CPU migration code to notice that the CPU is online
258	 * before we continue - which happens after __cpu_up returns.
259	 */
260	set_cpu_online(cpu, true);
261	complete(&cpu_running);
262
263	/*
264	 * Setup the percpu timer for this CPU.
265	 */
266	percpu_timer_setup();
267
268	local_irq_enable();
269	local_fiq_enable();
 
270
271	/*
272	 * OK, it's off to the idle thread for us
273	 */
274	cpu_idle();
275}
276
277void __init smp_cpus_done(unsigned int max_cpus)
278{
279	int cpu;
280	unsigned long bogosum = 0;
281
282	for_each_online_cpu(cpu)
283		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
284
285	printk(KERN_INFO "SMP: Total of %d processors activated "
286	       "(%lu.%02lu BogoMIPS).\n",
287	       num_online_cpus(),
288	       bogosum / (500000/HZ),
289	       (bogosum / (5000/HZ)) % 100);
 
 
290}
291
292void __init smp_prepare_boot_cpu(void)
293{
 
294}
295
296void __init smp_prepare_cpus(unsigned int max_cpus)
297{
298	unsigned int ncores = num_possible_cpus();
299
300	init_cpu_topology();
301
302	smp_store_cpu_info(smp_processor_id());
303
304	/*
305	 * are we trying to boot more cores than exist?
306	 */
307	if (max_cpus > ncores)
308		max_cpus = ncores;
309	if (ncores > 1 && max_cpus) {
310		/*
311		 * Enable the local timer or broadcast device for the
312		 * boot CPU, but only if we have more than one CPU.
313		 */
314		percpu_timer_setup();
315
316		/*
317		 * Initialise the present map, which describes the set of CPUs
318		 * actually populated at the present time. A platform should
319		 * re-initialize the map in platform_smp_prepare_cpus() if
320		 * present != possible (e.g. physical hotplug).
321		 */
322		init_cpu_present(cpu_possible_mask);
323
324		/*
325		 * Initialise the SCU if there are more than one CPU
326		 * and let them know where to start.
327		 */
328		platform_smp_prepare_cpus(max_cpus);
 
329	}
330}
331
332static void (*smp_cross_call)(const struct cpumask *, unsigned int);
333
334void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
335{
336	smp_cross_call = fn;
 
337}
338
339void arch_send_call_function_ipi_mask(const struct cpumask *mask)
340{
341	smp_cross_call(mask, IPI_CALL_FUNC);
342}
343
344void arch_send_call_function_single_ipi(int cpu)
345{
346	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
347}
348
349static const char *ipi_types[NR_IPI] = {
350#define S(x,s)	[x - IPI_TIMER] = s
351	S(IPI_TIMER, "Timer broadcast interrupts"),
352	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
353	S(IPI_CALL_FUNC, "Function call interrupts"),
354	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
355	S(IPI_CPU_STOP, "CPU stop interrupts"),
 
 
356};
357
 
 
 
 
 
 
358void show_ipi_list(struct seq_file *p, int prec)
359{
360	unsigned int cpu, i;
361
362	for (i = 0; i < NR_IPI; i++) {
363		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
364
365		for_each_present_cpu(cpu)
366			seq_printf(p, "%10u ",
367				   __get_irq_stat(cpu, ipi_irqs[i]));
368
369		seq_printf(p, " %s\n", ipi_types[i]);
370	}
371}
372
373u64 smp_irq_stat_cpu(unsigned int cpu)
374{
375	u64 sum = 0;
376	int i;
377
378	for (i = 0; i < NR_IPI; i++)
379		sum += __get_irq_stat(cpu, ipi_irqs[i]);
380
381	return sum;
382}
383
384/*
385 * Timer (local or broadcast) support
386 */
387static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
388
389static void ipi_timer(void)
390{
391	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
392	evt->event_handler(evt);
393}
394
395#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
396static void smp_timer_broadcast(const struct cpumask *mask)
397{
398	smp_cross_call(mask, IPI_TIMER);
399}
400#else
401#define smp_timer_broadcast	NULL
402#endif
403
404static void broadcast_timer_set_mode(enum clock_event_mode mode,
405	struct clock_event_device *evt)
406{
 
407}
408
409static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
 
410{
411	evt->name	= "dummy_timer";
412	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
413			  CLOCK_EVT_FEAT_PERIODIC |
414			  CLOCK_EVT_FEAT_DUMMY;
415	evt->rating	= 400;
416	evt->mult	= 1;
417	evt->set_mode	= broadcast_timer_set_mode;
418
419	clockevents_register_device(evt);
420}
421
422static struct local_timer_ops *lt_ops;
423
424#ifdef CONFIG_LOCAL_TIMERS
425int local_timer_register(struct local_timer_ops *ops)
426{
427	if (!is_smp() || !setup_max_cpus)
428		return -ENXIO;
429
430	if (lt_ops)
431		return -EBUSY;
432
433	lt_ops = ops;
434	return 0;
435}
436#endif
437
438static void __cpuinit percpu_timer_setup(void)
 
439{
440	unsigned int cpu = smp_processor_id();
441	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
442
443	evt->cpumask = cpumask_of(cpu);
444	evt->broadcast = smp_timer_broadcast;
445
446	if (!lt_ops || lt_ops->setup(evt))
447		broadcast_timer_setup(evt);
448}
449
450#ifdef CONFIG_HOTPLUG_CPU
451/*
452 * The generic clock events code purposely does not stop the local timer
453 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
454 * manually here.
455 */
456static void percpu_timer_stop(void)
457{
458	unsigned int cpu = smp_processor_id();
459	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
460
461	if (lt_ops)
462		lt_ops->stop(evt);
463}
464#endif
465
466static DEFINE_RAW_SPINLOCK(stop_lock);
467
468/*
469 * ipi_cpu_stop - handle IPI from smp_send_stop()
470 */
471static void ipi_cpu_stop(unsigned int cpu)
472{
473	if (system_state == SYSTEM_BOOTING ||
474	    system_state == SYSTEM_RUNNING) {
475		raw_spin_lock(&stop_lock);
476		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
477		dump_stack();
478		raw_spin_unlock(&stop_lock);
479	}
480
481	set_cpu_online(cpu, false);
482
483	local_fiq_disable();
484	local_irq_disable();
485
486	while (1)
487		cpu_relax();
488}
489
 
 
 
 
 
 
 
 
 
 
 
 
 
490/*
491 * Main handler for inter-processor interrupts
492 */
493asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
494{
495	handle_IPI(ipinr, regs);
496}
497
498void handle_IPI(int ipinr, struct pt_regs *regs)
499{
500	unsigned int cpu = smp_processor_id();
501	struct pt_regs *old_regs = set_irq_regs(regs);
502
503	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
504		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
 
 
505
506	switch (ipinr) {
 
 
 
 
507	case IPI_TIMER:
508		irq_enter();
509		ipi_timer();
510		irq_exit();
511		break;
 
512
513	case IPI_RESCHEDULE:
514		scheduler_ipi();
515		break;
516
517	case IPI_CALL_FUNC:
518		irq_enter();
519		generic_smp_call_function_interrupt();
520		irq_exit();
521		break;
522
523	case IPI_CALL_FUNC_SINGLE:
524		irq_enter();
525		generic_smp_call_function_single_interrupt();
 
 
 
 
 
 
 
526		irq_exit();
527		break;
 
528
529	case IPI_CPU_STOP:
 
 
 
 
 
 
530		irq_enter();
531		ipi_cpu_stop(cpu);
532		irq_exit();
533		break;
534
535	default:
536		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
537		       cpu, ipinr);
538		break;
539	}
 
 
 
540	set_irq_regs(old_regs);
541}
542
543void smp_send_reschedule(int cpu)
544{
545	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
546}
547
548#ifdef CONFIG_HOTPLUG_CPU
549static void smp_kill_cpus(cpumask_t *mask)
550{
551	unsigned int cpu;
552	for_each_cpu(cpu, mask)
553		platform_cpu_kill(cpu);
554}
555#else
556static void smp_kill_cpus(cpumask_t *mask) { }
557#endif
558
559void smp_send_stop(void)
560{
561	unsigned long timeout;
562	struct cpumask mask;
563
564	cpumask_copy(&mask, cpu_online_mask);
565	cpumask_clear_cpu(smp_processor_id(), &mask);
566	if (!cpumask_empty(&mask))
567		smp_cross_call(&mask, IPI_CPU_STOP);
568
569	/* Wait up to one second for other CPUs to stop */
570	timeout = USEC_PER_SEC;
571	while (num_online_cpus() > 1 && timeout--)
572		udelay(1);
573
574	if (num_online_cpus() > 1)
575		pr_warning("SMP: failed to stop secondary CPUs\n");
576
577	smp_kill_cpus(&mask);
578}
579
580/*
581 * not supported here
582 */
583int setup_profiling_timer(unsigned int multiplier)
584{
585	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586}