Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1#undef DEBUG
  2
  3/*
  4 * ARM performance counter support.
  5 *
  6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  8 *
  9 * This code is based on the sparc64 perf event code, which is in turn based
 10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
 11 * code.
 12 */
 13#define pr_fmt(fmt) "hw perfevents: " fmt
 14
 15#include <linux/bitmap.h>
 16#include <linux/interrupt.h>
 17#include <linux/kernel.h>
 18#include <linux/export.h>
 19#include <linux/perf_event.h>
 20#include <linux/platform_device.h>
 21#include <linux/spinlock.h>
 22#include <linux/uaccess.h>
 23
 24#include <asm/cputype.h>
 25#include <asm/irq.h>
 26#include <asm/irq_regs.h>
 27#include <asm/pmu.h>
 28#include <asm/stacktrace.h>
 29
 30/*
 31 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
 32 * another platform that supports more, we need to increase this to be the
 33 * largest of all platforms.
 34 *
 35 * ARMv7 supports up to 32 events:
 36 *  cycle counter CCNT + 31 events counters CNT0..30.
 37 *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
 38 */
 39#define ARMPMU_MAX_HWEVENTS		32
 40
 41static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
 42static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
 43static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
 44
 45#define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
 46
 47/* Set at runtime when we know what CPU type we are. */
 48static struct arm_pmu *cpu_pmu;
 49
 50enum arm_perf_pmu_ids
 51armpmu_get_pmu_id(void)
 52{
 53	int id = -ENODEV;
 54
 55	if (cpu_pmu != NULL)
 56		id = cpu_pmu->id;
 57
 58	return id;
 59}
 60EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
 61
 62int perf_num_counters(void)
 63{
 64	int max_events = 0;
 65
 66	if (cpu_pmu != NULL)
 67		max_events = cpu_pmu->num_events;
 68
 69	return max_events;
 70}
 71EXPORT_SYMBOL_GPL(perf_num_counters);
 72
 73#define HW_OP_UNSUPPORTED		0xFFFF
 74
 75#define C(_x) \
 76	PERF_COUNT_HW_CACHE_##_x
 77
 78#define CACHE_OP_UNSUPPORTED		0xFFFF
 79
 80static int
 81armpmu_map_cache_event(const unsigned (*cache_map)
 82				      [PERF_COUNT_HW_CACHE_MAX]
 83				      [PERF_COUNT_HW_CACHE_OP_MAX]
 84				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
 85		       u64 config)
 86{
 87	unsigned int cache_type, cache_op, cache_result, ret;
 88
 89	cache_type = (config >>  0) & 0xff;
 90	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 91		return -EINVAL;
 92
 93	cache_op = (config >>  8) & 0xff;
 94	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 95		return -EINVAL;
 96
 97	cache_result = (config >> 16) & 0xff;
 98	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 99		return -EINVAL;
100
101	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
102
103	if (ret == CACHE_OP_UNSUPPORTED)
104		return -ENOENT;
105
106	return ret;
107}
108
109static int
110armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
111{
112	int mapping = (*event_map)[config];
113	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
114}
115
116static int
117armpmu_map_raw_event(u32 raw_event_mask, u64 config)
118{
119	return (int)(config & raw_event_mask);
120}
121
122static int map_cpu_event(struct perf_event *event,
123			 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
124			 const unsigned (*cache_map)
125					[PERF_COUNT_HW_CACHE_MAX]
126					[PERF_COUNT_HW_CACHE_OP_MAX]
127					[PERF_COUNT_HW_CACHE_RESULT_MAX],
128			 u32 raw_event_mask)
129{
130	u64 config = event->attr.config;
131
132	switch (event->attr.type) {
133	case PERF_TYPE_HARDWARE:
134		return armpmu_map_event(event_map, config);
135	case PERF_TYPE_HW_CACHE:
136		return armpmu_map_cache_event(cache_map, config);
137	case PERF_TYPE_RAW:
138		return armpmu_map_raw_event(raw_event_mask, config);
139	}
140
141	return -ENOENT;
142}
143
144int
145armpmu_event_set_period(struct perf_event *event,
146			struct hw_perf_event *hwc,
147			int idx)
148{
149	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
150	s64 left = local64_read(&hwc->period_left);
151	s64 period = hwc->sample_period;
152	int ret = 0;
153
154	if (unlikely(left <= -period)) {
155		left = period;
156		local64_set(&hwc->period_left, left);
157		hwc->last_period = period;
158		ret = 1;
159	}
160
161	if (unlikely(left <= 0)) {
162		left += period;
163		local64_set(&hwc->period_left, left);
164		hwc->last_period = period;
165		ret = 1;
166	}
167
168	if (left > (s64)armpmu->max_period)
169		left = armpmu->max_period;
170
171	local64_set(&hwc->prev_count, (u64)-left);
172
173	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
174
175	perf_event_update_userpage(event);
176
177	return ret;
178}
179
180u64
181armpmu_event_update(struct perf_event *event,
182		    struct hw_perf_event *hwc,
183		    int idx)
184{
185	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
186	u64 delta, prev_raw_count, new_raw_count;
187
188again:
189	prev_raw_count = local64_read(&hwc->prev_count);
190	new_raw_count = armpmu->read_counter(idx);
191
192	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
193			     new_raw_count) != prev_raw_count)
194		goto again;
195
196	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
197
198	local64_add(delta, &event->count);
199	local64_sub(delta, &hwc->period_left);
200
201	return new_raw_count;
202}
203
204static void
205armpmu_read(struct perf_event *event)
206{
207	struct hw_perf_event *hwc = &event->hw;
208
209	/* Don't read disabled counters! */
210	if (hwc->idx < 0)
211		return;
212
213	armpmu_event_update(event, hwc, hwc->idx);
214}
215
216static void
217armpmu_stop(struct perf_event *event, int flags)
218{
219	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
220	struct hw_perf_event *hwc = &event->hw;
221
222	/*
223	 * ARM pmu always has to update the counter, so ignore
224	 * PERF_EF_UPDATE, see comments in armpmu_start().
225	 */
226	if (!(hwc->state & PERF_HES_STOPPED)) {
227		armpmu->disable(hwc, hwc->idx);
228		barrier(); /* why? */
229		armpmu_event_update(event, hwc, hwc->idx);
230		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
231	}
232}
233
234static void
235armpmu_start(struct perf_event *event, int flags)
236{
237	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
238	struct hw_perf_event *hwc = &event->hw;
239
240	/*
241	 * ARM pmu always has to reprogram the period, so ignore
242	 * PERF_EF_RELOAD, see the comment below.
243	 */
244	if (flags & PERF_EF_RELOAD)
245		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
246
247	hwc->state = 0;
248	/*
249	 * Set the period again. Some counters can't be stopped, so when we
250	 * were stopped we simply disabled the IRQ source and the counter
251	 * may have been left counting. If we don't do this step then we may
252	 * get an interrupt too soon or *way* too late if the overflow has
253	 * happened since disabling.
254	 */
255	armpmu_event_set_period(event, hwc, hwc->idx);
256	armpmu->enable(hwc, hwc->idx);
257}
258
259static void
260armpmu_del(struct perf_event *event, int flags)
261{
262	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
263	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
264	struct hw_perf_event *hwc = &event->hw;
265	int idx = hwc->idx;
266
267	WARN_ON(idx < 0);
268
269	armpmu_stop(event, PERF_EF_UPDATE);
270	hw_events->events[idx] = NULL;
271	clear_bit(idx, hw_events->used_mask);
272
273	perf_event_update_userpage(event);
274}
275
276static int
277armpmu_add(struct perf_event *event, int flags)
278{
279	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
280	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
281	struct hw_perf_event *hwc = &event->hw;
282	int idx;
283	int err = 0;
284
285	perf_pmu_disable(event->pmu);
286
287	/* If we don't have a space for the counter then finish early. */
288	idx = armpmu->get_event_idx(hw_events, hwc);
289	if (idx < 0) {
290		err = idx;
291		goto out;
292	}
293
294	/*
295	 * If there is an event in the counter we are going to use then make
296	 * sure it is disabled.
297	 */
298	event->hw.idx = idx;
299	armpmu->disable(hwc, idx);
300	hw_events->events[idx] = event;
301
302	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
303	if (flags & PERF_EF_START)
304		armpmu_start(event, PERF_EF_RELOAD);
305
306	/* Propagate our changes to the userspace mapping. */
307	perf_event_update_userpage(event);
308
309out:
310	perf_pmu_enable(event->pmu);
311	return err;
312}
313
314static int
315validate_event(struct pmu_hw_events *hw_events,
316	       struct perf_event *event)
317{
318	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
319	struct hw_perf_event fake_event = event->hw;
320	struct pmu *leader_pmu = event->group_leader->pmu;
321
322	if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
323		return 1;
324
325	return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
326}
327
328static int
329validate_group(struct perf_event *event)
330{
331	struct perf_event *sibling, *leader = event->group_leader;
332	struct pmu_hw_events fake_pmu;
333	DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
334
335	/*
336	 * Initialise the fake PMU. We only need to populate the
337	 * used_mask for the purposes of validation.
338	 */
339	memset(fake_used_mask, 0, sizeof(fake_used_mask));
340	fake_pmu.used_mask = fake_used_mask;
341
342	if (!validate_event(&fake_pmu, leader))
343		return -EINVAL;
344
345	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
346		if (!validate_event(&fake_pmu, sibling))
347			return -EINVAL;
348	}
349
350	if (!validate_event(&fake_pmu, event))
351		return -EINVAL;
352
353	return 0;
354}
355
356static irqreturn_t armpmu_platform_irq(int irq, void *dev)
357{
358	struct arm_pmu *armpmu = (struct arm_pmu *) dev;
359	struct platform_device *plat_device = armpmu->plat_device;
360	struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
361
362	return plat->handle_irq(irq, dev, armpmu->handle_irq);
363}
364
365static void
366armpmu_release_hardware(struct arm_pmu *armpmu)
367{
368	int i, irq, irqs;
369	struct platform_device *pmu_device = armpmu->plat_device;
370	struct arm_pmu_platdata *plat =
371		dev_get_platdata(&pmu_device->dev);
372
373	irqs = min(pmu_device->num_resources, num_possible_cpus());
374
375	for (i = 0; i < irqs; ++i) {
376		if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
377			continue;
378		irq = platform_get_irq(pmu_device, i);
379		if (irq >= 0) {
380			if (plat && plat->disable_irq)
381				plat->disable_irq(irq);
382			free_irq(irq, armpmu);
383		}
384	}
385
386	release_pmu(armpmu->type);
387}
388
389static int
390armpmu_reserve_hardware(struct arm_pmu *armpmu)
391{
392	struct arm_pmu_platdata *plat;
393	irq_handler_t handle_irq;
394	int i, err, irq, irqs;
395	struct platform_device *pmu_device = armpmu->plat_device;
396
397	if (!pmu_device)
398		return -ENODEV;
399
400	err = reserve_pmu(armpmu->type);
401	if (err) {
402		pr_warning("unable to reserve pmu\n");
403		return err;
404	}
405
406	plat = dev_get_platdata(&pmu_device->dev);
407	if (plat && plat->handle_irq)
408		handle_irq = armpmu_platform_irq;
409	else
410		handle_irq = armpmu->handle_irq;
411
412	irqs = min(pmu_device->num_resources, num_possible_cpus());
413	if (irqs < 1) {
414		pr_err("no irqs for PMUs defined\n");
415		return -ENODEV;
416	}
417
418	for (i = 0; i < irqs; ++i) {
419		err = 0;
420		irq = platform_get_irq(pmu_device, i);
421		if (irq < 0)
422			continue;
423
424		/*
425		 * If we have a single PMU interrupt that we can't shift,
426		 * assume that we're running on a uniprocessor machine and
427		 * continue. Otherwise, continue without this interrupt.
428		 */
429		if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
430			pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
431				    irq, i);
432			continue;
433		}
434
435		err = request_irq(irq, handle_irq,
436				  IRQF_DISABLED | IRQF_NOBALANCING,
437				  "arm-pmu", armpmu);
438		if (err) {
439			pr_err("unable to request IRQ%d for ARM PMU counters\n",
440				irq);
441			armpmu_release_hardware(armpmu);
442			return err;
443		} else if (plat && plat->enable_irq)
444			plat->enable_irq(irq);
445
446		cpumask_set_cpu(i, &armpmu->active_irqs);
447	}
448
449	return 0;
450}
451
452static void
453hw_perf_event_destroy(struct perf_event *event)
454{
455	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
456	atomic_t *active_events	 = &armpmu->active_events;
457	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
458
459	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
460		armpmu_release_hardware(armpmu);
461		mutex_unlock(pmu_reserve_mutex);
462	}
463}
464
465static int
466event_requires_mode_exclusion(struct perf_event_attr *attr)
467{
468	return attr->exclude_idle || attr->exclude_user ||
469	       attr->exclude_kernel || attr->exclude_hv;
470}
471
472static int
473__hw_perf_event_init(struct perf_event *event)
474{
475	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
476	struct hw_perf_event *hwc = &event->hw;
477	int mapping, err;
478
479	mapping = armpmu->map_event(event);
480
481	if (mapping < 0) {
482		pr_debug("event %x:%llx not supported\n", event->attr.type,
483			 event->attr.config);
484		return mapping;
485	}
486
487	/*
488	 * We don't assign an index until we actually place the event onto
489	 * hardware. Use -1 to signify that we haven't decided where to put it
490	 * yet. For SMP systems, each core has it's own PMU so we can't do any
491	 * clever allocation or constraints checking at this point.
492	 */
493	hwc->idx		= -1;
494	hwc->config_base	= 0;
495	hwc->config		= 0;
496	hwc->event_base		= 0;
497
498	/*
499	 * Check whether we need to exclude the counter from certain modes.
500	 */
501	if ((!armpmu->set_event_filter ||
502	     armpmu->set_event_filter(hwc, &event->attr)) &&
503	     event_requires_mode_exclusion(&event->attr)) {
504		pr_debug("ARM performance counters do not support "
505			 "mode exclusion\n");
506		return -EOPNOTSUPP;
507	}
508
509	/*
510	 * Store the event encoding into the config_base field.
511	 */
512	hwc->config_base	    |= (unsigned long)mapping;
513
514	if (!hwc->sample_period) {
515		/*
516		 * For non-sampling runs, limit the sample_period to half
517		 * of the counter width. That way, the new counter value
518		 * is far less likely to overtake the previous one unless
519		 * you have some serious IRQ latency issues.
520		 */
521		hwc->sample_period  = armpmu->max_period >> 1;
522		hwc->last_period    = hwc->sample_period;
523		local64_set(&hwc->period_left, hwc->sample_period);
524	}
525
526	err = 0;
527	if (event->group_leader != event) {
528		err = validate_group(event);
529		if (err)
530			return -EINVAL;
531	}
532
533	return err;
534}
535
536static int armpmu_event_init(struct perf_event *event)
537{
538	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
539	int err = 0;
540	atomic_t *active_events = &armpmu->active_events;
541
542	/* does not support taken branch sampling */
543	if (has_branch_stack(event))
544		return -EOPNOTSUPP;
545
546	if (armpmu->map_event(event) == -ENOENT)
547		return -ENOENT;
548
549	event->destroy = hw_perf_event_destroy;
550
551	if (!atomic_inc_not_zero(active_events)) {
552		mutex_lock(&armpmu->reserve_mutex);
553		if (atomic_read(active_events) == 0)
554			err = armpmu_reserve_hardware(armpmu);
555
556		if (!err)
557			atomic_inc(active_events);
558		mutex_unlock(&armpmu->reserve_mutex);
559	}
560
561	if (err)
562		return err;
563
564	err = __hw_perf_event_init(event);
565	if (err)
566		hw_perf_event_destroy(event);
567
568	return err;
569}
570
571static void armpmu_enable(struct pmu *pmu)
572{
573	struct arm_pmu *armpmu = to_arm_pmu(pmu);
574	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
575	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
576
577	if (enabled)
578		armpmu->start();
579}
580
581static void armpmu_disable(struct pmu *pmu)
582{
583	struct arm_pmu *armpmu = to_arm_pmu(pmu);
584	armpmu->stop();
585}
586
587static void __init armpmu_init(struct arm_pmu *armpmu)
588{
589	atomic_set(&armpmu->active_events, 0);
590	mutex_init(&armpmu->reserve_mutex);
591
592	armpmu->pmu = (struct pmu) {
593		.pmu_enable	= armpmu_enable,
594		.pmu_disable	= armpmu_disable,
595		.event_init	= armpmu_event_init,
596		.add		= armpmu_add,
597		.del		= armpmu_del,
598		.start		= armpmu_start,
599		.stop		= armpmu_stop,
600		.read		= armpmu_read,
601	};
602}
603
604int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
605{
606	armpmu_init(armpmu);
607	return perf_pmu_register(&armpmu->pmu, name, type);
608}
609
610/* Include the PMU-specific implementations. */
611#include "perf_event_xscale.c"
612#include "perf_event_v6.c"
613#include "perf_event_v7.c"
614
615/*
616 * Ensure the PMU has sane values out of reset.
617 * This requires SMP to be available, so exists as a separate initcall.
618 */
619static int __init
620cpu_pmu_reset(void)
621{
622	if (cpu_pmu && cpu_pmu->reset)
623		return on_each_cpu(cpu_pmu->reset, NULL, 1);
624	return 0;
625}
626arch_initcall(cpu_pmu_reset);
627
628/*
629 * PMU platform driver and devicetree bindings.
630 */
631static struct of_device_id armpmu_of_device_ids[] = {
632	{.compatible = "arm,cortex-a9-pmu"},
633	{.compatible = "arm,cortex-a8-pmu"},
634	{.compatible = "arm,arm1136-pmu"},
635	{.compatible = "arm,arm1176-pmu"},
636	{},
637};
638
639static struct platform_device_id armpmu_plat_device_ids[] = {
640	{.name = "arm-pmu"},
641	{},
642};
643
644static int __devinit armpmu_device_probe(struct platform_device *pdev)
645{
646	if (!cpu_pmu)
647		return -ENODEV;
648
649	cpu_pmu->plat_device = pdev;
650	return 0;
651}
652
653static struct platform_driver armpmu_driver = {
654	.driver		= {
655		.name	= "arm-pmu",
656		.of_match_table = armpmu_of_device_ids,
657	},
658	.probe		= armpmu_device_probe,
659	.id_table	= armpmu_plat_device_ids,
660};
661
662static int __init register_pmu_driver(void)
663{
664	return platform_driver_register(&armpmu_driver);
665}
666device_initcall(register_pmu_driver);
667
668static struct pmu_hw_events *armpmu_get_cpu_events(void)
669{
670	return &__get_cpu_var(cpu_hw_events);
671}
672
673static void __init cpu_pmu_init(struct arm_pmu *armpmu)
674{
675	int cpu;
676	for_each_possible_cpu(cpu) {
677		struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
678		events->events = per_cpu(hw_events, cpu);
679		events->used_mask = per_cpu(used_mask, cpu);
680		raw_spin_lock_init(&events->pmu_lock);
681	}
682	armpmu->get_hw_events = armpmu_get_cpu_events;
683	armpmu->type = ARM_PMU_DEVICE_CPU;
684}
685
686/*
687 * PMU hardware loses all context when a CPU goes offline.
688 * When a CPU is hotplugged back in, since some hardware registers are
689 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
690 * junk values out of them.
691 */
692static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
693					unsigned long action, void *hcpu)
694{
695	if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
696		return NOTIFY_DONE;
697
698	if (cpu_pmu && cpu_pmu->reset)
699		cpu_pmu->reset(NULL);
700
701	return NOTIFY_OK;
702}
703
704static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
705	.notifier_call = pmu_cpu_notify,
706};
707
708/*
709 * CPU PMU identification and registration.
710 */
711static int __init
712init_hw_perf_events(void)
713{
714	unsigned long cpuid = read_cpuid_id();
715	unsigned long implementor = (cpuid & 0xFF000000) >> 24;
716	unsigned long part_number = (cpuid & 0xFFF0);
717
718	/* ARM Ltd CPUs. */
719	if (0x41 == implementor) {
720		switch (part_number) {
721		case 0xB360:	/* ARM1136 */
722		case 0xB560:	/* ARM1156 */
723		case 0xB760:	/* ARM1176 */
724			cpu_pmu = armv6pmu_init();
725			break;
726		case 0xB020:	/* ARM11mpcore */
727			cpu_pmu = armv6mpcore_pmu_init();
728			break;
729		case 0xC080:	/* Cortex-A8 */
730			cpu_pmu = armv7_a8_pmu_init();
731			break;
732		case 0xC090:	/* Cortex-A9 */
733			cpu_pmu = armv7_a9_pmu_init();
734			break;
735		case 0xC050:	/* Cortex-A5 */
736			cpu_pmu = armv7_a5_pmu_init();
737			break;
738		case 0xC0F0:	/* Cortex-A15 */
739			cpu_pmu = armv7_a15_pmu_init();
740			break;
741		case 0xC070:	/* Cortex-A7 */
742			cpu_pmu = armv7_a7_pmu_init();
743			break;
744		}
745	/* Intel CPUs [xscale]. */
746	} else if (0x69 == implementor) {
747		part_number = (cpuid >> 13) & 0x7;
748		switch (part_number) {
749		case 1:
750			cpu_pmu = xscale1pmu_init();
751			break;
752		case 2:
753			cpu_pmu = xscale2pmu_init();
754			break;
755		}
756	}
757
758	if (cpu_pmu) {
759		pr_info("enabled with %s PMU driver, %d counters available\n",
760			cpu_pmu->name, cpu_pmu->num_events);
761		cpu_pmu_init(cpu_pmu);
762		register_cpu_notifier(&pmu_cpu_notifier);
763		armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
764	} else {
765		pr_info("no hardware support available\n");
766	}
767
768	return 0;
769}
770early_initcall(init_hw_perf_events);
771
772/*
773 * Callchain handling code.
774 */
775
776/*
777 * The registers we're interested in are at the end of the variable
778 * length saved register structure. The fp points at the end of this
779 * structure so the address of this struct is:
780 * (struct frame_tail *)(xxx->fp)-1
781 *
782 * This code has been adapted from the ARM OProfile support.
783 */
784struct frame_tail {
785	struct frame_tail __user *fp;
786	unsigned long sp;
787	unsigned long lr;
788} __attribute__((packed));
789
790/*
791 * Get the return address for a single stackframe and return a pointer to the
792 * next frame tail.
793 */
794static struct frame_tail __user *
795user_backtrace(struct frame_tail __user *tail,
796	       struct perf_callchain_entry *entry)
797{
798	struct frame_tail buftail;
799
800	/* Also check accessibility of one struct frame_tail beyond */
801	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
802		return NULL;
803	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
804		return NULL;
805
806	perf_callchain_store(entry, buftail.lr);
807
808	/*
809	 * Frame pointers should strictly progress back up the stack
810	 * (towards higher addresses).
811	 */
812	if (tail + 1 >= buftail.fp)
813		return NULL;
814
815	return buftail.fp - 1;
816}
817
818void
819perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
820{
821	struct frame_tail __user *tail;
822
823
824	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
825
826	while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
827	       tail && !((unsigned long)tail & 0x3))
828		tail = user_backtrace(tail, entry);
829}
830
831/*
832 * Gets called by walk_stackframe() for every stackframe. This will be called
833 * whist unwinding the stackframe and is like a subroutine return so we use
834 * the PC.
835 */
836static int
837callchain_trace(struct stackframe *fr,
838		void *data)
839{
840	struct perf_callchain_entry *entry = data;
841	perf_callchain_store(entry, fr->pc);
842	return 0;
843}
844
845void
846perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
847{
848	struct stackframe fr;
849
850	fr.fp = regs->ARM_fp;
851	fr.sp = regs->ARM_sp;
852	fr.lr = regs->ARM_lr;
853	fr.pc = regs->ARM_pc;
854	walk_stackframe(&fr, callchain_trace, entry);
855}