Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * arch/arm/kernel/kprobes-test.c
   3 *
   4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11/*
  12 * This file contains test code for ARM kprobes.
  13 *
  14 * The top level function run_all_tests() executes tests for all of the
  15 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
  16 * fall into two categories; run_api_tests() checks basic functionality of the
  17 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
  18 * instruction decoding and simulation.
  19 *
  20 * run_test_cases() first checks the kprobes decoding table for self consistency
  21 * (using table_test()) then executes a series of test cases for each of the CPU
  22 * instruction forms. coverage_start() and coverage_end() are used to verify
  23 * that these test cases cover all of the possible combinations of instructions
  24 * described by the kprobes decoding tables.
  25 *
  26 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
  27 * which use the macros defined in kprobes-test.h. The rest of this
  28 * documentation will describe the operation of the framework used by these
  29 * test cases.
  30 */
  31
  32/*
  33 * TESTING METHODOLOGY
  34 * -------------------
  35 *
  36 * The methodology used to test an ARM instruction 'test_insn' is to use
  37 * inline assembler like:
  38 *
  39 * test_before: nop
  40 * test_case:	test_insn
  41 * test_after:	nop
  42 *
  43 * When the test case is run a kprobe is placed of each nop. The
  44 * post-handler of the test_before probe is used to modify the saved CPU
  45 * register context to that which we require for the test case. The
  46 * pre-handler of the of the test_after probe saves a copy of the CPU
  47 * register context. In this way we can execute test_insn with a specific
  48 * register context and see the results afterwards.
  49 *
  50 * To actually test the kprobes instruction emulation we perform the above
  51 * step a second time but with an additional kprobe on the test_case
  52 * instruction itself. If the emulation is accurate then the results seen
  53 * by the test_after probe will be identical to the first run which didn't
  54 * have a probe on test_case.
  55 *
  56 * Each test case is run several times with a variety of variations in the
  57 * flags value of stored in CPSR, and for Thumb code, different ITState.
  58 *
  59 * For instructions which can modify PC, a second test_after probe is used
  60 * like this:
  61 *
  62 * test_before: nop
  63 * test_case:	test_insn
  64 * test_after:	nop
  65 *		b test_done
  66 * test_after2: nop
  67 * test_done:
  68 *
  69 * The test case is constructed such that test_insn branches to
  70 * test_after2, or, if testing a conditional instruction, it may just
  71 * continue to test_after. The probes inserted at both locations let us
  72 * determine which happened. A similar approach is used for testing
  73 * backwards branches...
  74 *
  75 *		b test_before
  76 *		b test_done  @ helps to cope with off by 1 branches
  77 * test_after2: nop
  78 *		b test_done
  79 * test_before: nop
  80 * test_case:	test_insn
  81 * test_after:	nop
  82 * test_done:
  83 *
  84 * The macros used to generate the assembler instructions describe above
  85 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
  86 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
  87 * 99 represent: test_before, test_case, test_after2 and test_done.
  88 *
  89 * FRAMEWORK
  90 * ---------
  91 *
  92 * Each test case is wrapped between the pair of macros TESTCASE_START and
  93 * TESTCASE_END. As well as performing the inline assembler boilerplate,
  94 * these call out to the kprobes_test_case_start() and
  95 * kprobes_test_case_end() functions which drive the execution of the test
  96 * case. The specific arguments to use for each test case are stored as
  97 * inline data constructed using the various TEST_ARG_* macros. Putting
  98 * this all together, a simple test case may look like:
  99 *
 100 *	TESTCASE_START("Testing mov r0, r7")
 101 *	TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
 102 *	TEST_ARG_END("")
 103 *	TEST_INSTRUCTION("mov r0, r7")
 104 *	TESTCASE_END
 105 *
 106 * Note, in practice the single convenience macro TEST_R would be used for this
 107 * instead.
 108 *
 109 * The above would expand to assembler looking something like:
 110 *
 111 *	@ TESTCASE_START
 112 *	bl	__kprobes_test_case_start
 113 *	@ start of inline data...
 114 *	.ascii "mov r0, r7"	@ text title for test case
 115 *	.byte	0
 116 *	.align	2
 117 *
 118 *	@ TEST_ARG_REG
 119 *	.byte	ARG_TYPE_REG
 120 *	.byte	7
 121 *	.short	0
 122 *	.word	0x1234567
 123 *
 124 *	@ TEST_ARG_END
 125 *	.byte	ARG_TYPE_END
 126 *	.byte	TEST_ISA	@ flags, including ISA being tested
 127 *	.short	50f-0f		@ offset of 'test_before'
 128 *	.short	2f-0f		@ offset of 'test_after2' (if relevent)
 129 *	.short	99f-0f		@ offset of 'test_done'
 130 *	@ start of test case code...
 131 *	0:
 132 *	.code	TEST_ISA	@ switch to ISA being tested
 133 *
 134 *	@ TEST_INSTRUCTION
 135 *	50:	nop		@ location for 'test_before' probe
 136 *	1:	mov r0, r7	@ the test case instruction 'test_insn'
 137 *		nop		@ location for 'test_after' probe
 138 *
 139 *	// TESTCASE_END
 140 *	2:
 141 *	99:	bl __kprobes_test_case_end_##TEST_ISA
 142 *	.code	NONMAL_ISA
 143 *
 144 * When the above is execute the following happens...
 145 *
 146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
 147 * for a stack buffer and calls the C function kprobes_test_case_start().
 148 * This C function will do some initial processing of the inline data and
 149 * setup some global state. It then inserts the test_before and test_after
 150 * kprobes and returns a value which causes the assembler wrapper to jump
 151 * to the start of the test case code, (local label '0').
 152 *
 153 * When the test case code executes, the test_before probe will be hit and
 154 * test_before_post_handler will call setup_test_context(). This fills the
 155 * stack buffer and CPU registers with a test pattern and then processes
 156 * the test case arguments. In our example there is one TEST_ARG_REG which
 157 * indicates that R7 should be loaded with the value 0x12345678.
 158 *
 159 * When the test_before probe ends, the test case continues and executes
 160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
 161 * pre-handler for this (test_after_pre_handler) will save a copy of the
 162 * CPU register context. This should now have R0 holding the same value as
 163 * R7.
 164 *
 165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
 166 * an assembler wrapper which switches back to the ISA used by the test
 167 * code and calls the C function kprobes_test_case_end().
 168 *
 169 * For each run through the test case, test_case_run_count is incremented
 170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
 171 * register and stack buffer contents from the test case just run. It then
 172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
 173 * value to cause the test case code to be re-run.
 174 *
 175 * For odd numbered runs, kprobes_test_case_end() compares the register and
 176 * stack buffer contents to those that were saved on the previous even
 177 * numbered run (the one without the kprobe on test_insn). These should be
 178 * the same if the kprobe instruction simulation routine is correct.
 179 *
 180 * The pair of test case runs is repeated with different combinations of
 181 * flag values in CPSR and, for Thumb, different ITState. This is
 182 * controlled by test_context_cpsr().
 183 *
 184 * BUILDING TEST CASES
 185 * -------------------
 186 *
 187 *
 188 * As an aid to building test cases, the stack buffer is initialised with
 189 * some special values:
 190 *
 191 *   [SP+13*4]	Contains SP+120. This can be used to test instructions
 192 *		which load a value into SP.
 193 *
 194 *   [SP+15*4]	When testing branching instructions using TEST_BRANCH_{F,B},
 195 *		this holds the target address of the branch, 'test_after2'.
 196 *		This can be used to test instructions which load a PC value
 197 *		from memory.
 198 */
 199
 200#include <linux/kernel.h>
 201#include <linux/module.h>
 202#include <linux/slab.h>
 203#include <linux/kprobes.h>
 204
 205#include <asm/opcodes.h>
 206
 207#include "kprobes.h"
 208#include "kprobes-test.h"
 209
 210
 211#define BENCHMARKING	1
 212
 213
 214/*
 215 * Test basic API
 216 */
 217
 218static bool test_regs_ok;
 219static int test_func_instance;
 220static int pre_handler_called;
 221static int post_handler_called;
 222static int jprobe_func_called;
 223static int kretprobe_handler_called;
 224
 225#define FUNC_ARG1 0x12345678
 226#define FUNC_ARG2 0xabcdef
 227
 228
 229#ifndef CONFIG_THUMB2_KERNEL
 230
 231long arm_func(long r0, long r1);
 232
 233static void __used __naked __arm_kprobes_test_func(void)
 234{
 235	__asm__ __volatile__ (
 236		".arm					\n\t"
 237		".type arm_func, %%function		\n\t"
 238		"arm_func:				\n\t"
 239		"adds	r0, r0, r1			\n\t"
 240		"bx	lr				\n\t"
 241		".code "NORMAL_ISA	 /* Back to Thumb if necessary */
 242		: : : "r0", "r1", "cc"
 243	);
 244}
 245
 246#else /* CONFIG_THUMB2_KERNEL */
 247
 248long thumb16_func(long r0, long r1);
 249long thumb32even_func(long r0, long r1);
 250long thumb32odd_func(long r0, long r1);
 251
 252static void __used __naked __thumb_kprobes_test_funcs(void)
 253{
 254	__asm__ __volatile__ (
 255		".type thumb16_func, %%function		\n\t"
 256		"thumb16_func:				\n\t"
 257		"adds.n	r0, r0, r1			\n\t"
 258		"bx	lr				\n\t"
 259
 260		".align					\n\t"
 261		".type thumb32even_func, %%function	\n\t"
 262		"thumb32even_func:			\n\t"
 263		"adds.w	r0, r0, r1			\n\t"
 264		"bx	lr				\n\t"
 265
 266		".align					\n\t"
 267		"nop.n					\n\t"
 268		".type thumb32odd_func, %%function	\n\t"
 269		"thumb32odd_func:			\n\t"
 270		"adds.w	r0, r0, r1			\n\t"
 271		"bx	lr				\n\t"
 272
 273		: : : "r0", "r1", "cc"
 274	);
 275}
 276
 277#endif /* CONFIG_THUMB2_KERNEL */
 278
 279
 280static int call_test_func(long (*func)(long, long), bool check_test_regs)
 281{
 282	long ret;
 283
 284	++test_func_instance;
 285	test_regs_ok = false;
 286
 287	ret = (*func)(FUNC_ARG1, FUNC_ARG2);
 288	if (ret != FUNC_ARG1 + FUNC_ARG2) {
 289		pr_err("FAIL: call_test_func: func returned %lx\n", ret);
 290		return false;
 291	}
 292
 293	if (check_test_regs && !test_regs_ok) {
 294		pr_err("FAIL: test regs not OK\n");
 295		return false;
 296	}
 297
 298	return true;
 299}
 300
 301static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
 302{
 303	pre_handler_called = test_func_instance;
 304	if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
 305		test_regs_ok = true;
 306	return 0;
 307}
 308
 309static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
 310				unsigned long flags)
 311{
 312	post_handler_called = test_func_instance;
 313	if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
 314		test_regs_ok = false;
 315}
 316
 317static struct kprobe the_kprobe = {
 318	.addr		= 0,
 319	.pre_handler	= pre_handler,
 320	.post_handler	= post_handler
 321};
 322
 323static int test_kprobe(long (*func)(long, long))
 324{
 325	int ret;
 326
 327	the_kprobe.addr = (kprobe_opcode_t *)func;
 328	ret = register_kprobe(&the_kprobe);
 329	if (ret < 0) {
 330		pr_err("FAIL: register_kprobe failed with %d\n", ret);
 331		return ret;
 332	}
 333
 334	ret = call_test_func(func, true);
 335
 336	unregister_kprobe(&the_kprobe);
 337	the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
 338
 339	if (!ret)
 340		return -EINVAL;
 341	if (pre_handler_called != test_func_instance) {
 342		pr_err("FAIL: kprobe pre_handler not called\n");
 343		return -EINVAL;
 344	}
 345	if (post_handler_called != test_func_instance) {
 346		pr_err("FAIL: kprobe post_handler not called\n");
 347		return -EINVAL;
 348	}
 349	if (!call_test_func(func, false))
 350		return -EINVAL;
 351	if (pre_handler_called == test_func_instance ||
 352				post_handler_called == test_func_instance) {
 353		pr_err("FAIL: probe called after unregistering\n");
 354		return -EINVAL;
 355	}
 356
 357	return 0;
 358}
 359
 360static void __kprobes jprobe_func(long r0, long r1)
 361{
 362	jprobe_func_called = test_func_instance;
 363	if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
 364		test_regs_ok = true;
 365	jprobe_return();
 366}
 367
 368static struct jprobe the_jprobe = {
 369	.entry		= jprobe_func,
 370};
 371
 372static int test_jprobe(long (*func)(long, long))
 373{
 374	int ret;
 375
 376	the_jprobe.kp.addr = (kprobe_opcode_t *)func;
 377	ret = register_jprobe(&the_jprobe);
 378	if (ret < 0) {
 379		pr_err("FAIL: register_jprobe failed with %d\n", ret);
 380		return ret;
 381	}
 382
 383	ret = call_test_func(func, true);
 384
 385	unregister_jprobe(&the_jprobe);
 386	the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 387
 388	if (!ret)
 389		return -EINVAL;
 390	if (jprobe_func_called != test_func_instance) {
 391		pr_err("FAIL: jprobe handler function not called\n");
 392		return -EINVAL;
 393	}
 394	if (!call_test_func(func, false))
 395		return -EINVAL;
 396	if (jprobe_func_called == test_func_instance) {
 397		pr_err("FAIL: probe called after unregistering\n");
 398		return -EINVAL;
 399	}
 400
 401	return 0;
 402}
 403
 404static int __kprobes
 405kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
 406{
 407	kretprobe_handler_called = test_func_instance;
 408	if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
 409		test_regs_ok = true;
 410	return 0;
 411}
 412
 413static struct kretprobe the_kretprobe = {
 414	.handler	= kretprobe_handler,
 415};
 416
 417static int test_kretprobe(long (*func)(long, long))
 418{
 419	int ret;
 420
 421	the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
 422	ret = register_kretprobe(&the_kretprobe);
 423	if (ret < 0) {
 424		pr_err("FAIL: register_kretprobe failed with %d\n", ret);
 425		return ret;
 426	}
 427
 428	ret = call_test_func(func, true);
 429
 430	unregister_kretprobe(&the_kretprobe);
 431	the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
 432
 433	if (!ret)
 434		return -EINVAL;
 435	if (kretprobe_handler_called != test_func_instance) {
 436		pr_err("FAIL: kretprobe handler not called\n");
 437		return -EINVAL;
 438	}
 439	if (!call_test_func(func, false))
 440		return -EINVAL;
 441	if (jprobe_func_called == test_func_instance) {
 442		pr_err("FAIL: kretprobe called after unregistering\n");
 443		return -EINVAL;
 444	}
 445
 446	return 0;
 447}
 448
 449static int run_api_tests(long (*func)(long, long))
 450{
 451	int ret;
 452
 453	pr_info("    kprobe\n");
 454	ret = test_kprobe(func);
 455	if (ret < 0)
 456		return ret;
 457
 458	pr_info("    jprobe\n");
 459	ret = test_jprobe(func);
 460	if (ret < 0)
 461		return ret;
 462
 463	pr_info("    kretprobe\n");
 464	ret = test_kretprobe(func);
 465	if (ret < 0)
 466		return ret;
 467
 468	return 0;
 469}
 470
 471
 472/*
 473 * Benchmarking
 474 */
 475
 476#if BENCHMARKING
 477
 478static void __naked benchmark_nop(void)
 479{
 480	__asm__ __volatile__ (
 481		"nop		\n\t"
 482		"bx	lr"
 483	);
 484}
 485
 486#ifdef CONFIG_THUMB2_KERNEL
 487#define wide ".w"
 488#else
 489#define wide
 490#endif
 491
 492static void __naked benchmark_pushpop1(void)
 493{
 494	__asm__ __volatile__ (
 495		"stmdb"wide"	sp!, {r3-r11,lr}  \n\t"
 496		"ldmia"wide"	sp!, {r3-r11,pc}"
 497	);
 498}
 499
 500static void __naked benchmark_pushpop2(void)
 501{
 502	__asm__ __volatile__ (
 503		"stmdb"wide"	sp!, {r0-r8,lr}  \n\t"
 504		"ldmia"wide"	sp!, {r0-r8,pc}"
 505	);
 506}
 507
 508static void __naked benchmark_pushpop3(void)
 509{
 510	__asm__ __volatile__ (
 511		"stmdb"wide"	sp!, {r4,lr}  \n\t"
 512		"ldmia"wide"	sp!, {r4,pc}"
 513	);
 514}
 515
 516static void __naked benchmark_pushpop4(void)
 517{
 518	__asm__ __volatile__ (
 519		"stmdb"wide"	sp!, {r0,lr}  \n\t"
 520		"ldmia"wide"	sp!, {r0,pc}"
 521	);
 522}
 523
 524
 525#ifdef CONFIG_THUMB2_KERNEL
 526
 527static void __naked benchmark_pushpop_thumb(void)
 528{
 529	__asm__ __volatile__ (
 530		"push.n	{r0-r7,lr}  \n\t"
 531		"pop.n	{r0-r7,pc}"
 532	);
 533}
 534
 535#endif
 536
 537static int __kprobes
 538benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
 539{
 540	return 0;
 541}
 542
 543static int benchmark(void(*fn)(void))
 544{
 545	unsigned n, i, t, t0;
 546
 547	for (n = 1000; ; n *= 2) {
 548		t0 = sched_clock();
 549		for (i = n; i > 0; --i)
 550			fn();
 551		t = sched_clock() - t0;
 552		if (t >= 250000000)
 553			break; /* Stop once we took more than 0.25 seconds */
 554	}
 555	return t / n; /* Time for one iteration in nanoseconds */
 556};
 557
 558static int kprobe_benchmark(void(*fn)(void), unsigned offset)
 559{
 560	struct kprobe k = {
 561		.addr		= (kprobe_opcode_t *)((uintptr_t)fn + offset),
 562		.pre_handler	= benchmark_pre_handler,
 563	};
 564
 565	int ret = register_kprobe(&k);
 566	if (ret < 0) {
 567		pr_err("FAIL: register_kprobe failed with %d\n", ret);
 568		return ret;
 569	}
 570
 571	ret = benchmark(fn);
 572
 573	unregister_kprobe(&k);
 574	return ret;
 575};
 576
 577struct benchmarks {
 578	void		(*fn)(void);
 579	unsigned	offset;
 580	const char	*title;
 581};
 582
 583static int run_benchmarks(void)
 584{
 585	int ret;
 586	struct benchmarks list[] = {
 587		{&benchmark_nop, 0, "nop"},
 588		/*
 589		 * benchmark_pushpop{1,3} will have the optimised
 590		 * instruction emulation, whilst benchmark_pushpop{2,4} will
 591		 * be the equivalent unoptimised instructions.
 592		 */
 593		{&benchmark_pushpop1, 0, "stmdb	sp!, {r3-r11,lr}"},
 594		{&benchmark_pushpop1, 4, "ldmia	sp!, {r3-r11,pc}"},
 595		{&benchmark_pushpop2, 0, "stmdb	sp!, {r0-r8,lr}"},
 596		{&benchmark_pushpop2, 4, "ldmia	sp!, {r0-r8,pc}"},
 597		{&benchmark_pushpop3, 0, "stmdb	sp!, {r4,lr}"},
 598		{&benchmark_pushpop3, 4, "ldmia	sp!, {r4,pc}"},
 599		{&benchmark_pushpop4, 0, "stmdb	sp!, {r0,lr}"},
 600		{&benchmark_pushpop4, 4, "ldmia	sp!, {r0,pc}"},
 601#ifdef CONFIG_THUMB2_KERNEL
 602		{&benchmark_pushpop_thumb, 0, "push.n	{r0-r7,lr}"},
 603		{&benchmark_pushpop_thumb, 2, "pop.n	{r0-r7,pc}"},
 604#endif
 605		{0}
 606	};
 607
 608	struct benchmarks *b;
 609	for (b = list; b->fn; ++b) {
 610		ret = kprobe_benchmark(b->fn, b->offset);
 611		if (ret < 0)
 612			return ret;
 613		pr_info("    %dns for kprobe %s\n", ret, b->title);
 614	}
 615
 616	pr_info("\n");
 617	return 0;
 618}
 619
 620#endif /* BENCHMARKING */
 621
 622
 623/*
 624 * Decoding table self-consistency tests
 625 */
 626
 627static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
 628	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
 629	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
 630	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
 631	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
 632	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
 633	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
 634};
 635
 636static int table_iter(const union decode_item *table,
 637			int (*fn)(const struct decode_header *, void *),
 638			void *args)
 639{
 640	const struct decode_header *h = (struct decode_header *)table;
 641	int result;
 642
 643	for (;;) {
 644		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 645
 646		if (type == DECODE_TYPE_END)
 647			return 0;
 648
 649		result = fn(h, args);
 650		if (result)
 651			return result;
 652
 653		h = (struct decode_header *)
 654			((uintptr_t)h + decode_struct_sizes[type]);
 655
 656	}
 657}
 658
 659static int table_test_fail(const struct decode_header *h, const char* message)
 660{
 661
 662	pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
 663					message, h->mask.bits, h->value.bits);
 664	return -EINVAL;
 665}
 666
 667struct table_test_args {
 668	const union decode_item *root_table;
 669	u32			parent_mask;
 670	u32			parent_value;
 671};
 672
 673static int table_test_fn(const struct decode_header *h, void *args)
 674{
 675	struct table_test_args *a = (struct table_test_args *)args;
 676	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 677
 678	if (h->value.bits & ~h->mask.bits)
 679		return table_test_fail(h, "Match value has bits not in mask");
 680
 681	if ((h->mask.bits & a->parent_mask) != a->parent_mask)
 682		return table_test_fail(h, "Mask has bits not in parent mask");
 683
 684	if ((h->value.bits ^ a->parent_value) & a->parent_mask)
 685		return table_test_fail(h, "Value is inconsistent with parent");
 686
 687	if (type == DECODE_TYPE_TABLE) {
 688		struct decode_table *d = (struct decode_table *)h;
 689		struct table_test_args args2 = *a;
 690		args2.parent_mask = h->mask.bits;
 691		args2.parent_value = h->value.bits;
 692		return table_iter(d->table.table, table_test_fn, &args2);
 693	}
 694
 695	return 0;
 696}
 697
 698static int table_test(const union decode_item *table)
 699{
 700	struct table_test_args args = {
 701		.root_table	= table,
 702		.parent_mask	= 0,
 703		.parent_value	= 0
 704	};
 705	return table_iter(args.root_table, table_test_fn, &args);
 706}
 707
 708
 709/*
 710 * Decoding table test coverage analysis
 711 *
 712 * coverage_start() builds a coverage_table which contains a list of
 713 * coverage_entry's to match each entry in the specified kprobes instruction
 714 * decoding table.
 715 *
 716 * When test cases are run, coverage_add() is called to process each case.
 717 * This looks up the corresponding entry in the coverage_table and sets it as
 718 * being matched, as well as clearing the regs flag appropriate for the test.
 719 *
 720 * After all test cases have been run, coverage_end() is called to check that
 721 * all entries in coverage_table have been matched and that all regs flags are
 722 * cleared. I.e. that all possible combinations of instructions described by
 723 * the kprobes decoding tables have had a test case executed for them.
 724 */
 725
 726bool coverage_fail;
 727
 728#define MAX_COVERAGE_ENTRIES 256
 729
 730struct coverage_entry {
 731	const struct decode_header	*header;
 732	unsigned			regs;
 733	unsigned			nesting;
 734	char				matched;
 735};
 736
 737struct coverage_table {
 738	struct coverage_entry	*base;
 739	unsigned		num_entries;
 740	unsigned		nesting;
 741};
 742
 743struct coverage_table coverage;
 744
 745#define COVERAGE_ANY_REG	(1<<0)
 746#define COVERAGE_SP		(1<<1)
 747#define COVERAGE_PC		(1<<2)
 748#define COVERAGE_PCWB		(1<<3)
 749
 750static const char coverage_register_lookup[16] = {
 751	[REG_TYPE_ANY]		= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 752	[REG_TYPE_SAMEAS16]	= COVERAGE_ANY_REG,
 753	[REG_TYPE_SP]		= COVERAGE_SP,
 754	[REG_TYPE_PC]		= COVERAGE_PC,
 755	[REG_TYPE_NOSP]		= COVERAGE_ANY_REG | COVERAGE_SP,
 756	[REG_TYPE_NOSPPC]	= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
 757	[REG_TYPE_NOPC]		= COVERAGE_ANY_REG | COVERAGE_PC,
 758	[REG_TYPE_NOPCWB]	= COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
 759	[REG_TYPE_NOPCX]	= COVERAGE_ANY_REG,
 760	[REG_TYPE_NOSPPCX]	= COVERAGE_ANY_REG | COVERAGE_SP,
 761};
 762
 763unsigned coverage_start_registers(const struct decode_header *h)
 764{
 765	unsigned regs = 0;
 766	int i;
 767	for (i = 0; i < 20; i += 4) {
 768		int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
 769		regs |= coverage_register_lookup[r] << i;
 770	}
 771	return regs;
 772}
 773
 774static int coverage_start_fn(const struct decode_header *h, void *args)
 775{
 776	struct coverage_table *coverage = (struct coverage_table *)args;
 777	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 778	struct coverage_entry *entry = coverage->base + coverage->num_entries;
 779
 780	if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
 781		pr_err("FAIL: Out of space for test coverage data");
 782		return -ENOMEM;
 783	}
 784
 785	++coverage->num_entries;
 786
 787	entry->header = h;
 788	entry->regs = coverage_start_registers(h);
 789	entry->nesting = coverage->nesting;
 790	entry->matched = false;
 791
 792	if (type == DECODE_TYPE_TABLE) {
 793		struct decode_table *d = (struct decode_table *)h;
 794		int ret;
 795		++coverage->nesting;
 796		ret = table_iter(d->table.table, coverage_start_fn, coverage);
 797		--coverage->nesting;
 798		return ret;
 799	}
 800
 801	return 0;
 802}
 803
 804static int coverage_start(const union decode_item *table)
 805{
 806	coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
 807				sizeof(struct coverage_entry), GFP_KERNEL);
 808	coverage.num_entries = 0;
 809	coverage.nesting = 0;
 810	return table_iter(table, coverage_start_fn, &coverage);
 811}
 812
 813static void
 814coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
 815{
 816	int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
 817	int i;
 818	for (i = 0; i < 20; i += 4) {
 819		enum decode_reg_type reg_type = (regs >> i) & 0xf;
 820		int reg = (insn >> i) & 0xf;
 821		int flag;
 822
 823		if (!reg_type)
 824			continue;
 825
 826		if (reg == 13)
 827			flag = COVERAGE_SP;
 828		else if (reg == 15)
 829			flag = COVERAGE_PC;
 830		else
 831			flag = COVERAGE_ANY_REG;
 832		entry->regs &= ~(flag << i);
 833
 834		switch (reg_type) {
 835
 836		case REG_TYPE_NONE:
 837		case REG_TYPE_ANY:
 838		case REG_TYPE_SAMEAS16:
 839			break;
 840
 841		case REG_TYPE_SP:
 842			if (reg != 13)
 843				return;
 844			break;
 845
 846		case REG_TYPE_PC:
 847			if (reg != 15)
 848				return;
 849			break;
 850
 851		case REG_TYPE_NOSP:
 852			if (reg == 13)
 853				return;
 854			break;
 855
 856		case REG_TYPE_NOSPPC:
 857		case REG_TYPE_NOSPPCX:
 858			if (reg == 13 || reg == 15)
 859				return;
 860			break;
 861
 862		case REG_TYPE_NOPCWB:
 863			if (!is_writeback(insn))
 864				break;
 865			if (reg == 15) {
 866				entry->regs &= ~(COVERAGE_PCWB << i);
 867				return;
 868			}
 869			break;
 870
 871		case REG_TYPE_NOPC:
 872		case REG_TYPE_NOPCX:
 873			if (reg == 15)
 874				return;
 875			break;
 876		}
 877
 878	}
 879}
 880
 881static void coverage_add(kprobe_opcode_t insn)
 882{
 883	struct coverage_entry *entry = coverage.base;
 884	struct coverage_entry *end = coverage.base + coverage.num_entries;
 885	bool matched = false;
 886	unsigned nesting = 0;
 887
 888	for (; entry < end; ++entry) {
 889		const struct decode_header *h = entry->header;
 890		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
 891
 892		if (entry->nesting > nesting)
 893			continue; /* Skip sub-table we didn't match */
 894
 895		if (entry->nesting < nesting)
 896			break; /* End of sub-table we were scanning */
 897
 898		if (!matched) {
 899			if ((insn & h->mask.bits) != h->value.bits)
 900				continue;
 901			entry->matched = true;
 902		}
 903
 904		switch (type) {
 905
 906		case DECODE_TYPE_TABLE:
 907			++nesting;
 908			break;
 909
 910		case DECODE_TYPE_CUSTOM:
 911		case DECODE_TYPE_SIMULATE:
 912		case DECODE_TYPE_EMULATE:
 913			coverage_add_registers(entry, insn);
 914			return;
 915
 916		case DECODE_TYPE_OR:
 917			matched = true;
 918			break;
 919
 920		case DECODE_TYPE_REJECT:
 921		default:
 922			return;
 923		}
 924
 925	}
 926}
 927
 928static void coverage_end(void)
 929{
 930	struct coverage_entry *entry = coverage.base;
 931	struct coverage_entry *end = coverage.base + coverage.num_entries;
 932
 933	for (; entry < end; ++entry) {
 934		u32 mask = entry->header->mask.bits;
 935		u32 value = entry->header->value.bits;
 936
 937		if (entry->regs) {
 938			pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
 939				mask, value, entry->regs);
 940			coverage_fail = true;
 941		}
 942		if (!entry->matched) {
 943			pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
 944				mask, value);
 945			coverage_fail = true;
 946		}
 947	}
 948
 949	kfree(coverage.base);
 950}
 951
 952
 953/*
 954 * Framework for instruction set test cases
 955 */
 956
 957void __naked __kprobes_test_case_start(void)
 958{
 959	__asm__ __volatile__ (
 960		"stmdb	sp!, {r4-r11}				\n\t"
 961		"sub	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 962		"bic	r0, lr, #1  @ r0 = inline title string	\n\t"
 963		"mov	r1, sp					\n\t"
 964		"bl	kprobes_test_case_start			\n\t"
 965		"bx	r0					\n\t"
 966	);
 967}
 968
 969#ifndef CONFIG_THUMB2_KERNEL
 970
 971void __naked __kprobes_test_case_end_32(void)
 972{
 973	__asm__ __volatile__ (
 974		"mov	r4, lr					\n\t"
 975		"bl	kprobes_test_case_end			\n\t"
 976		"cmp	r0, #0					\n\t"
 977		"movne	pc, r0					\n\t"
 978		"mov	r0, r4					\n\t"
 979		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 980		"ldmia	sp!, {r4-r11}				\n\t"
 981		"mov	pc, r0					\n\t"
 982	);
 983}
 984
 985#else /* CONFIG_THUMB2_KERNEL */
 986
 987void __naked __kprobes_test_case_end_16(void)
 988{
 989	__asm__ __volatile__ (
 990		"mov	r4, lr					\n\t"
 991		"bl	kprobes_test_case_end			\n\t"
 992		"cmp	r0, #0					\n\t"
 993		"bxne	r0					\n\t"
 994		"mov	r0, r4					\n\t"
 995		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
 996		"ldmia	sp!, {r4-r11}				\n\t"
 997		"bx	r0					\n\t"
 998	);
 999}
1000
1001void __naked __kprobes_test_case_end_32(void)
1002{
1003	__asm__ __volatile__ (
1004		".arm						\n\t"
1005		"orr	lr, lr, #1  @ will return to Thumb code	\n\t"
1006		"ldr	pc, 1f					\n\t"
1007		"1:						\n\t"
1008		".word	__kprobes_test_case_end_16		\n\t"
1009	);
1010}
1011
1012#endif
1013
1014
1015int kprobe_test_flags;
1016int kprobe_test_cc_position;
1017
1018static int test_try_count;
1019static int test_pass_count;
1020static int test_fail_count;
1021
1022static struct pt_regs initial_regs;
1023static struct pt_regs expected_regs;
1024static struct pt_regs result_regs;
1025
1026static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1027
1028static const char *current_title;
1029static struct test_arg *current_args;
1030static u32 *current_stack;
1031static uintptr_t current_branch_target;
1032
1033static uintptr_t current_code_start;
1034static kprobe_opcode_t current_instruction;
1035
1036
1037#define TEST_CASE_PASSED -1
1038#define TEST_CASE_FAILED -2
1039
1040static int test_case_run_count;
1041static bool test_case_is_thumb;
1042static int test_instance;
1043
1044/*
1045 * We ignore the state of the imprecise abort disable flag (CPSR.A) because this
1046 * can change randomly as the kernel doesn't take care to preserve or initialise
1047 * this across context switches. Also, with Security Extentions, the flag may
1048 * not be under control of the kernel; for this reason we ignore the state of
1049 * the FIQ disable flag CPSR.F as well.
1050 */
1051#define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)
1052
1053static unsigned long test_check_cc(int cc, unsigned long cpsr)
1054{
1055	int ret = arm_check_condition(cc << 28, cpsr);
1056
1057	return (ret != ARM_OPCODE_CONDTEST_FAIL);
1058}
1059
1060static int is_last_scenario;
1061static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1062static int memory_needs_checking;
1063
1064static unsigned long test_context_cpsr(int scenario)
1065{
1066	unsigned long cpsr;
1067
1068	probe_should_run = 1;
1069
1070	/* Default case is that we cycle through 16 combinations of flags */
1071	cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1072	cpsr |= (scenario & 0xf) << 16; /* GE flags */
1073	cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1074
1075	if (!test_case_is_thumb) {
1076		/* Testing ARM code */
1077		int cc = current_instruction >> 28;
1078
1079		probe_should_run = test_check_cc(cc, cpsr) != 0;
1080		if (scenario == 15)
1081			is_last_scenario = true;
1082
1083	} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1084		/* Testing Thumb code without setting ITSTATE */
1085		if (kprobe_test_cc_position) {
1086			int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1087			probe_should_run = test_check_cc(cc, cpsr) != 0;
1088		}
1089
1090		if (scenario == 15)
1091			is_last_scenario = true;
1092
1093	} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1094		/* Testing Thumb code with all combinations of ITSTATE */
1095		unsigned x = (scenario >> 4);
1096		unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1097		unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1098
1099		if (mask > 0x1f) {
1100			/* Finish by testing state from instruction 'itt al' */
1101			cond_base = 7;
1102			mask = 0x4;
1103			if ((scenario & 0xf) == 0xf)
1104				is_last_scenario = true;
1105		}
1106
1107		cpsr |= cond_base << 13;	/* ITSTATE<7:5> */
1108		cpsr |= (mask & 0x1) << 12;	/* ITSTATE<4> */
1109		cpsr |= (mask & 0x2) << 10;	/* ITSTATE<3> */
1110		cpsr |= (mask & 0x4) << 8;	/* ITSTATE<2> */
1111		cpsr |= (mask & 0x8) << 23;	/* ITSTATE<1> */
1112		cpsr |= (mask & 0x10) << 21;	/* ITSTATE<0> */
1113
1114		probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1115
1116	} else {
1117		/* Testing Thumb code with several combinations of ITSTATE */
1118		switch (scenario) {
1119		case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1120			cpsr = 0x00000800;
1121			probe_should_run = 0;
1122			break;
1123		case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1124			cpsr = 0xf0007800;
1125			probe_should_run = 0;
1126			break;
1127		case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1128			cpsr = 0x00009800;
1129			break;
1130		case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1131			cpsr = 0xf0002800;
1132			is_last_scenario = true;
1133			break;
1134		}
1135	}
1136
1137	return cpsr;
1138}
1139
1140static void setup_test_context(struct pt_regs *regs)
1141{
1142	int scenario = test_case_run_count>>1;
1143	unsigned long val;
1144	struct test_arg *args;
1145	int i;
1146
1147	is_last_scenario = false;
1148	memory_needs_checking = false;
1149
1150	/* Initialise test memory on stack */
1151	val = (scenario & 1) ? VALM : ~VALM;
1152	for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1153		current_stack[i] = val + (i << 8);
1154	/* Put target of branch on stack for tests which load PC from memory */
1155	if (current_branch_target)
1156		current_stack[15] = current_branch_target;
1157	/* Put a value for SP on stack for tests which load SP from memory */
1158	current_stack[13] = (u32)current_stack + 120;
1159
1160	/* Initialise register values to their default state */
1161	val = (scenario & 2) ? VALR : ~VALR;
1162	for (i = 0; i < 13; ++i)
1163		regs->uregs[i] = val ^ (i << 8);
1164	regs->ARM_lr = val ^ (14 << 8);
1165	regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1166	regs->ARM_cpsr |= test_context_cpsr(scenario);
1167
1168	/* Perform testcase specific register setup  */
1169	args = current_args;
1170	for (; args[0].type != ARG_TYPE_END; ++args)
1171		switch (args[0].type) {
1172		case ARG_TYPE_REG: {
1173			struct test_arg_regptr *arg =
1174				(struct test_arg_regptr *)args;
1175			regs->uregs[arg->reg] = arg->val;
1176			break;
1177		}
1178		case ARG_TYPE_PTR: {
1179			struct test_arg_regptr *arg =
1180				(struct test_arg_regptr *)args;
1181			regs->uregs[arg->reg] =
1182				(unsigned long)current_stack + arg->val;
1183			memory_needs_checking = true;
1184			break;
1185		}
1186		case ARG_TYPE_MEM: {
1187			struct test_arg_mem *arg = (struct test_arg_mem *)args;
1188			current_stack[arg->index] = arg->val;
1189			break;
1190		}
1191		default:
1192			break;
1193		}
1194}
1195
1196struct test_probe {
1197	struct kprobe	kprobe;
1198	bool		registered;
1199	int		hit;
1200};
1201
1202static void unregister_test_probe(struct test_probe *probe)
1203{
1204	if (probe->registered) {
1205		unregister_kprobe(&probe->kprobe);
1206		probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1207	}
1208	probe->registered = false;
1209}
1210
1211static int register_test_probe(struct test_probe *probe)
1212{
1213	int ret;
1214
1215	if (probe->registered)
1216		BUG();
1217
1218	ret = register_kprobe(&probe->kprobe);
1219	if (ret >= 0) {
1220		probe->registered = true;
1221		probe->hit = -1;
1222	}
1223	return ret;
1224}
1225
1226static int __kprobes
1227test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1228{
1229	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1230	return 0;
1231}
1232
1233static void __kprobes
1234test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1235							unsigned long flags)
1236{
1237	setup_test_context(regs);
1238	initial_regs = *regs;
1239	initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1240}
1241
1242static int __kprobes
1243test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1244{
1245	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1246	return 0;
1247}
1248
1249static int __kprobes
1250test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1251{
1252	if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1253		return 0; /* Already run for this test instance */
1254
1255	result_regs = *regs;
1256	result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1257
1258	/* Undo any changes done to SP by the test case */
1259	regs->ARM_sp = (unsigned long)current_stack;
1260
1261	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1262	return 0;
1263}
1264
1265static struct test_probe test_before_probe = {
1266	.kprobe.pre_handler	= test_before_pre_handler,
1267	.kprobe.post_handler	= test_before_post_handler,
1268};
1269
1270static struct test_probe test_case_probe = {
1271	.kprobe.pre_handler	= test_case_pre_handler,
1272};
1273
1274static struct test_probe test_after_probe = {
1275	.kprobe.pre_handler	= test_after_pre_handler,
1276};
1277
1278static struct test_probe test_after2_probe = {
1279	.kprobe.pre_handler	= test_after_pre_handler,
1280};
1281
1282static void test_case_cleanup(void)
1283{
1284	unregister_test_probe(&test_before_probe);
1285	unregister_test_probe(&test_case_probe);
1286	unregister_test_probe(&test_after_probe);
1287	unregister_test_probe(&test_after2_probe);
1288}
1289
1290static void print_registers(struct pt_regs *regs)
1291{
1292	pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1293		regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1294	pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1295		regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1296	pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1297		regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1298	pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1299		regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1300	pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1301}
1302
1303static void print_memory(u32 *mem, size_t size)
1304{
1305	int i;
1306	for (i = 0; i < size / sizeof(u32); i += 4)
1307		pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1308						mem[i+2], mem[i+3]);
1309}
1310
1311static size_t expected_memory_size(u32 *sp)
1312{
1313	size_t size = sizeof(expected_memory);
1314	int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1315	if (offset > 0)
1316		size -= offset;
1317	return size;
1318}
1319
1320static void test_case_failed(const char *message)
1321{
1322	test_case_cleanup();
1323
1324	pr_err("FAIL: %s\n", message);
1325	pr_err("FAIL: Test %s\n", current_title);
1326	pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1327}
1328
1329static unsigned long next_instruction(unsigned long pc)
1330{
1331#ifdef CONFIG_THUMB2_KERNEL
1332	if ((pc & 1) && !is_wide_instruction(*(u16 *)(pc - 1)))
1333		return pc + 2;
1334	else
1335#endif
1336	return pc + 4;
1337}
1338
1339static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
1340{
1341	struct test_arg *args;
1342	struct test_arg_end *end_arg;
1343	unsigned long test_code;
1344
1345	args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);
1346
1347	current_title = title;
1348	current_args = args;
1349	current_stack = stack;
1350
1351	++test_try_count;
1352
1353	while (args->type != ARG_TYPE_END)
1354		++args;
1355	end_arg = (struct test_arg_end *)args;
1356
1357	test_code = (unsigned long)(args + 1); /* Code starts after args */
1358
1359	test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1360	if (test_case_is_thumb)
1361		test_code |= 1;
1362
1363	current_code_start = test_code;
1364
1365	current_branch_target = 0;
1366	if (end_arg->branch_offset != end_arg->end_offset)
1367		current_branch_target = test_code + end_arg->branch_offset;
1368
1369	test_code += end_arg->code_offset;
1370	test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1371
1372	test_code = next_instruction(test_code);
1373	test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1374
1375	if (test_case_is_thumb) {
1376		u16 *p = (u16 *)(test_code & ~1);
1377		current_instruction = p[0];
1378		if (is_wide_instruction(current_instruction)) {
1379			current_instruction <<= 16;
1380			current_instruction |= p[1];
1381		}
1382	} else {
1383		current_instruction = *(u32 *)test_code;
1384	}
1385
1386	if (current_title[0] == '.')
1387		verbose("%s\n", current_title);
1388	else
1389		verbose("%s\t@ %0*x\n", current_title,
1390					test_case_is_thumb ? 4 : 8,
1391					current_instruction);
1392
1393	test_code = next_instruction(test_code);
1394	test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1395
1396	if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1397		if (!test_case_is_thumb ||
1398			is_wide_instruction(current_instruction)) {
1399				test_case_failed("expected 16-bit instruction");
1400				goto fail;
1401		}
1402	} else {
1403		if (test_case_is_thumb &&
1404			!is_wide_instruction(current_instruction)) {
1405				test_case_failed("expected 32-bit instruction");
1406				goto fail;
1407		}
1408	}
1409
1410	coverage_add(current_instruction);
1411
1412	if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1413		if (register_test_probe(&test_case_probe) < 0)
1414			goto pass;
1415		test_case_failed("registered probe for unsupported instruction");
1416		goto fail;
1417	}
1418
1419	if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1420		if (register_test_probe(&test_case_probe) >= 0)
1421			goto pass;
1422		test_case_failed("couldn't register probe for supported instruction");
1423		goto fail;
1424	}
1425
1426	if (register_test_probe(&test_before_probe) < 0) {
1427		test_case_failed("register test_before_probe failed");
1428		goto fail;
1429	}
1430	if (register_test_probe(&test_after_probe) < 0) {
1431		test_case_failed("register test_after_probe failed");
1432		goto fail;
1433	}
1434	if (current_branch_target) {
1435		test_after2_probe.kprobe.addr =
1436				(kprobe_opcode_t *)current_branch_target;
1437		if (register_test_probe(&test_after2_probe) < 0) {
1438			test_case_failed("register test_after2_probe failed");
1439			goto fail;
1440		}
1441	}
1442
1443	/* Start first run of test case */
1444	test_case_run_count = 0;
1445	++test_instance;
1446	return current_code_start;
1447pass:
1448	test_case_run_count = TEST_CASE_PASSED;
1449	return (uintptr_t)test_after_probe.kprobe.addr;
1450fail:
1451	test_case_run_count = TEST_CASE_FAILED;
1452	return (uintptr_t)test_after_probe.kprobe.addr;
1453}
1454
1455static bool check_test_results(void)
1456{
1457	size_t mem_size = 0;
1458	u32 *mem = 0;
1459
1460	if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1461		test_case_failed("registers differ");
1462		goto fail;
1463	}
1464
1465	if (memory_needs_checking) {
1466		mem = (u32 *)result_regs.ARM_sp;
1467		mem_size = expected_memory_size(mem);
1468		if (memcmp(expected_memory, mem, mem_size)) {
1469			test_case_failed("test memory differs");
1470			goto fail;
1471		}
1472	}
1473
1474	return true;
1475
1476fail:
1477	pr_err("initial_regs:\n");
1478	print_registers(&initial_regs);
1479	pr_err("expected_regs:\n");
1480	print_registers(&expected_regs);
1481	pr_err("result_regs:\n");
1482	print_registers(&result_regs);
1483
1484	if (mem) {
1485		pr_err("current_stack=%p\n", current_stack);
1486		pr_err("expected_memory:\n");
1487		print_memory(expected_memory, mem_size);
1488		pr_err("result_memory:\n");
1489		print_memory(mem, mem_size);
1490	}
1491
1492	return false;
1493}
1494
1495static uintptr_t __used kprobes_test_case_end(void)
1496{
1497	if (test_case_run_count < 0) {
1498		if (test_case_run_count == TEST_CASE_PASSED)
1499			/* kprobes_test_case_start did all the needed testing */
1500			goto pass;
1501		else
1502			/* kprobes_test_case_start failed */
1503			goto fail;
1504	}
1505
1506	if (test_before_probe.hit != test_instance) {
1507		test_case_failed("test_before_handler not run");
1508		goto fail;
1509	}
1510
1511	if (test_after_probe.hit != test_instance &&
1512				test_after2_probe.hit != test_instance) {
1513		test_case_failed("test_after_handler not run");
1514		goto fail;
1515	}
1516
1517	/*
1518	 * Even numbered test runs ran without a probe on the test case so
1519	 * we can gather reference results. The subsequent odd numbered run
1520	 * will have the probe inserted.
1521	*/
1522	if ((test_case_run_count & 1) == 0) {
1523		/* Save results from run without probe */
1524		u32 *mem = (u32 *)result_regs.ARM_sp;
1525		expected_regs = result_regs;
1526		memcpy(expected_memory, mem, expected_memory_size(mem));
1527
1528		/* Insert probe onto test case instruction */
1529		if (register_test_probe(&test_case_probe) < 0) {
1530			test_case_failed("register test_case_probe failed");
1531			goto fail;
1532		}
1533	} else {
1534		/* Check probe ran as expected */
1535		if (probe_should_run == 1) {
1536			if (test_case_probe.hit != test_instance) {
1537				test_case_failed("test_case_handler not run");
1538				goto fail;
1539			}
1540		} else if (probe_should_run == 0) {
1541			if (test_case_probe.hit == test_instance) {
1542				test_case_failed("test_case_handler ran");
1543				goto fail;
1544			}
1545		}
1546
1547		/* Remove probe for any subsequent reference run */
1548		unregister_test_probe(&test_case_probe);
1549
1550		if (!check_test_results())
1551			goto fail;
1552
1553		if (is_last_scenario)
1554			goto pass;
1555	}
1556
1557	/* Do next test run */
1558	++test_case_run_count;
1559	++test_instance;
1560	return current_code_start;
1561fail:
1562	++test_fail_count;
1563	goto end;
1564pass:
1565	++test_pass_count;
1566end:
1567	test_case_cleanup();
1568	return 0;
1569}
1570
1571
1572/*
1573 * Top level test functions
1574 */
1575
1576static int run_test_cases(void (*tests)(void), const union decode_item *table)
1577{
1578	int ret;
1579
1580	pr_info("    Check decoding tables\n");
1581	ret = table_test(table);
1582	if (ret)
1583		return ret;
1584
1585	pr_info("    Run test cases\n");
1586	ret = coverage_start(table);
1587	if (ret)
1588		return ret;
1589
1590	tests();
1591
1592	coverage_end();
1593	return 0;
1594}
1595
1596
1597static int __init run_all_tests(void)
1598{
1599	int ret = 0;
1600
1601	pr_info("Begining kprobe tests...\n");
1602
1603#ifndef CONFIG_THUMB2_KERNEL
1604
1605	pr_info("Probe ARM code\n");
1606	ret = run_api_tests(arm_func);
1607	if (ret)
1608		goto out;
1609
1610	pr_info("ARM instruction simulation\n");
1611	ret = run_test_cases(kprobe_arm_test_cases, kprobe_decode_arm_table);
1612	if (ret)
1613		goto out;
1614
1615#else /* CONFIG_THUMB2_KERNEL */
1616
1617	pr_info("Probe 16-bit Thumb code\n");
1618	ret = run_api_tests(thumb16_func);
1619	if (ret)
1620		goto out;
1621
1622	pr_info("Probe 32-bit Thumb code, even halfword\n");
1623	ret = run_api_tests(thumb32even_func);
1624	if (ret)
1625		goto out;
1626
1627	pr_info("Probe 32-bit Thumb code, odd halfword\n");
1628	ret = run_api_tests(thumb32odd_func);
1629	if (ret)
1630		goto out;
1631
1632	pr_info("16-bit Thumb instruction simulation\n");
1633	ret = run_test_cases(kprobe_thumb16_test_cases,
1634				kprobe_decode_thumb16_table);
1635	if (ret)
1636		goto out;
1637
1638	pr_info("32-bit Thumb instruction simulation\n");
1639	ret = run_test_cases(kprobe_thumb32_test_cases,
1640				kprobe_decode_thumb32_table);
1641	if (ret)
1642		goto out;
1643#endif
1644
1645	pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1646		test_try_count, test_pass_count, test_fail_count);
1647	if (test_fail_count) {
1648		ret = -EINVAL;
1649		goto out;
1650	}
1651
1652#if BENCHMARKING
1653	pr_info("Benchmarks\n");
1654	ret = run_benchmarks();
1655	if (ret)
1656		goto out;
1657#endif
1658
1659#if __LINUX_ARM_ARCH__ >= 7
1660	/* We are able to run all test cases so coverage should be complete */
1661	if (coverage_fail) {
1662		pr_err("FAIL: Test coverage checks failed\n");
1663		ret = -EINVAL;
1664		goto out;
1665	}
1666#endif
1667
1668out:
1669	if (ret == 0)
1670		pr_info("Finished kprobe tests OK\n");
1671	else
1672		pr_err("kprobe tests failed\n");
1673
1674	return ret;
1675}
1676
1677
1678/*
1679 * Module setup
1680 */
1681
1682#ifdef MODULE
1683
1684static void __exit kprobe_test_exit(void)
1685{
1686}
1687
1688module_init(run_all_tests)
1689module_exit(kprobe_test_exit)
1690MODULE_LICENSE("GPL");
1691
1692#else /* !MODULE */
1693
1694late_initcall(run_all_tests);
1695
1696#endif