Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Virtual Memory Map support
  3 *
  4 * (C) 2007 sgi. Christoph Lameter.
  5 *
  6 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  7 * virt_to_page, page_address() to be implemented as a base offset
  8 * calculation without memory access.
  9 *
 10 * However, virtual mappings need a page table and TLBs. Many Linux
 11 * architectures already map their physical space using 1-1 mappings
 12 * via TLBs. For those arches the virtual memory map is essentially
 13 * for free if we use the same page size as the 1-1 mappings. In that
 14 * case the overhead consists of a few additional pages that are
 15 * allocated to create a view of memory for vmemmap.
 16 *
 17 * The architecture is expected to provide a vmemmap_populate() function
 18 * to instantiate the mapping.
 19 */
 20#include <linux/mm.h>
 21#include <linux/mmzone.h>
 22#include <linux/bootmem.h>
 23#include <linux/memremap.h>
 24#include <linux/highmem.h>
 25#include <linux/slab.h>
 26#include <linux/spinlock.h>
 27#include <linux/vmalloc.h>
 28#include <linux/sched.h>
 29#include <asm/dma.h>
 30#include <asm/pgalloc.h>
 31#include <asm/pgtable.h>
 32
 33/*
 34 * Allocate a block of memory to be used to back the virtual memory map
 35 * or to back the page tables that are used to create the mapping.
 36 * Uses the main allocators if they are available, else bootmem.
 37 */
 38
 39static void * __init_refok __earlyonly_bootmem_alloc(int node,
 40				unsigned long size,
 41				unsigned long align,
 42				unsigned long goal)
 43{
 44	return memblock_virt_alloc_try_nid(size, align, goal,
 45					    BOOTMEM_ALLOC_ACCESSIBLE, node);
 46}
 47
 48static void *vmemmap_buf;
 49static void *vmemmap_buf_end;
 50
 51void * __meminit vmemmap_alloc_block(unsigned long size, int node)
 52{
 53	/* If the main allocator is up use that, fallback to bootmem. */
 54	if (slab_is_available()) {
 55		struct page *page;
 56
 57		if (node_state(node, N_HIGH_MEMORY))
 58			page = alloc_pages_node(
 59				node, GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT,
 60				get_order(size));
 61		else
 62			page = alloc_pages(
 63				GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT,
 64				get_order(size));
 65		if (page)
 66			return page_address(page);
 67		return NULL;
 68	} else
 69		return __earlyonly_bootmem_alloc(node, size, size,
 70				__pa(MAX_DMA_ADDRESS));
 71}
 72
 73/* need to make sure size is all the same during early stage */
 74static void * __meminit alloc_block_buf(unsigned long size, int node)
 75{
 76	void *ptr;
 77
 78	if (!vmemmap_buf)
 79		return vmemmap_alloc_block(size, node);
 80
 81	/* take the from buf */
 82	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
 83	if (ptr + size > vmemmap_buf_end)
 84		return vmemmap_alloc_block(size, node);
 85
 86	vmemmap_buf = ptr + size;
 87
 88	return ptr;
 89}
 90
 91static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
 92{
 93	return altmap->base_pfn + altmap->reserve + altmap->alloc
 94		+ altmap->align;
 95}
 96
 97static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
 98{
 99	unsigned long allocated = altmap->alloc + altmap->align;
100
101	if (altmap->free > allocated)
102		return altmap->free - allocated;
103	return 0;
104}
105
106/**
107 * vmem_altmap_alloc - allocate pages from the vmem_altmap reservation
108 * @altmap - reserved page pool for the allocation
109 * @nr_pfns - size (in pages) of the allocation
110 *
111 * Allocations are aligned to the size of the request
112 */
113static unsigned long __meminit vmem_altmap_alloc(struct vmem_altmap *altmap,
114		unsigned long nr_pfns)
115{
116	unsigned long pfn = vmem_altmap_next_pfn(altmap);
117	unsigned long nr_align;
118
119	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
120	nr_align = ALIGN(pfn, nr_align) - pfn;
121
122	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
123		return ULONG_MAX;
124	altmap->alloc += nr_pfns;
125	altmap->align += nr_align;
126	return pfn + nr_align;
127}
128
129static void * __meminit altmap_alloc_block_buf(unsigned long size,
130		struct vmem_altmap *altmap)
131{
132	unsigned long pfn, nr_pfns;
133	void *ptr;
134
135	if (size & ~PAGE_MASK) {
136		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
137				__func__, size);
138		return NULL;
139	}
140
141	nr_pfns = size >> PAGE_SHIFT;
142	pfn = vmem_altmap_alloc(altmap, nr_pfns);
143	if (pfn < ULONG_MAX)
144		ptr = __va(__pfn_to_phys(pfn));
145	else
146		ptr = NULL;
147	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
148			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
149
150	return ptr;
151}
152
153/* need to make sure size is all the same during early stage */
154void * __meminit __vmemmap_alloc_block_buf(unsigned long size, int node,
155		struct vmem_altmap *altmap)
156{
157	if (altmap)
158		return altmap_alloc_block_buf(size, altmap);
159	return alloc_block_buf(size, node);
160}
161
162void __meminit vmemmap_verify(pte_t *pte, int node,
163				unsigned long start, unsigned long end)
164{
165	unsigned long pfn = pte_pfn(*pte);
166	int actual_node = early_pfn_to_nid(pfn);
167
168	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
169		pr_warn("[%lx-%lx] potential offnode page_structs\n",
170			start, end - 1);
171}
172
173pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
174{
175	pte_t *pte = pte_offset_kernel(pmd, addr);
176	if (pte_none(*pte)) {
177		pte_t entry;
178		void *p = alloc_block_buf(PAGE_SIZE, node);
179		if (!p)
180			return NULL;
181		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
182		set_pte_at(&init_mm, addr, pte, entry);
183	}
184	return pte;
185}
186
187pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
188{
189	pmd_t *pmd = pmd_offset(pud, addr);
190	if (pmd_none(*pmd)) {
191		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
192		if (!p)
193			return NULL;
194		pmd_populate_kernel(&init_mm, pmd, p);
195	}
196	return pmd;
197}
198
199pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
200{
201	pud_t *pud = pud_offset(pgd, addr);
202	if (pud_none(*pud)) {
203		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
204		if (!p)
205			return NULL;
206		pud_populate(&init_mm, pud, p);
207	}
208	return pud;
209}
210
211pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
212{
213	pgd_t *pgd = pgd_offset_k(addr);
214	if (pgd_none(*pgd)) {
215		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
216		if (!p)
217			return NULL;
218		pgd_populate(&init_mm, pgd, p);
219	}
220	return pgd;
221}
222
223int __meminit vmemmap_populate_basepages(unsigned long start,
224					 unsigned long end, int node)
225{
226	unsigned long addr = start;
 
227	pgd_t *pgd;
228	pud_t *pud;
229	pmd_t *pmd;
230	pte_t *pte;
231
232	for (; addr < end; addr += PAGE_SIZE) {
233		pgd = vmemmap_pgd_populate(addr, node);
234		if (!pgd)
235			return -ENOMEM;
236		pud = vmemmap_pud_populate(pgd, addr, node);
237		if (!pud)
238			return -ENOMEM;
239		pmd = vmemmap_pmd_populate(pud, addr, node);
240		if (!pmd)
241			return -ENOMEM;
242		pte = vmemmap_pte_populate(pmd, addr, node);
243		if (!pte)
244			return -ENOMEM;
245		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
246	}
247
248	return 0;
249}
250
251struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
252{
253	unsigned long start;
254	unsigned long end;
255	struct page *map;
256
257	map = pfn_to_page(pnum * PAGES_PER_SECTION);
258	start = (unsigned long)map;
259	end = (unsigned long)(map + PAGES_PER_SECTION);
260
261	if (vmemmap_populate(start, end, nid))
262		return NULL;
263
264	return map;
265}
266
267void __init sparse_mem_maps_populate_node(struct page **map_map,
268					  unsigned long pnum_begin,
269					  unsigned long pnum_end,
270					  unsigned long map_count, int nodeid)
271{
272	unsigned long pnum;
273	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
274	void *vmemmap_buf_start;
275
276	size = ALIGN(size, PMD_SIZE);
277	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
278			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
279
280	if (vmemmap_buf_start) {
281		vmemmap_buf = vmemmap_buf_start;
282		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
283	}
284
285	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
286		struct mem_section *ms;
287
288		if (!present_section_nr(pnum))
289			continue;
290
291		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
292		if (map_map[pnum])
293			continue;
294		ms = __nr_to_section(pnum);
295		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
296		       __func__);
297		ms->section_mem_map = 0;
298	}
299
300	if (vmemmap_buf_start) {
301		/* need to free left buf */
302		memblock_free_early(__pa(vmemmap_buf),
303				    vmemmap_buf_end - vmemmap_buf);
304		vmemmap_buf = NULL;
305		vmemmap_buf_end = NULL;
306	}
307}
v3.5.6
  1/*
  2 * Virtual Memory Map support
  3 *
  4 * (C) 2007 sgi. Christoph Lameter.
  5 *
  6 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  7 * virt_to_page, page_address() to be implemented as a base offset
  8 * calculation without memory access.
  9 *
 10 * However, virtual mappings need a page table and TLBs. Many Linux
 11 * architectures already map their physical space using 1-1 mappings
 12 * via TLBs. For those arches the virtual memory map is essentially
 13 * for free if we use the same page size as the 1-1 mappings. In that
 14 * case the overhead consists of a few additional pages that are
 15 * allocated to create a view of memory for vmemmap.
 16 *
 17 * The architecture is expected to provide a vmemmap_populate() function
 18 * to instantiate the mapping.
 19 */
 20#include <linux/mm.h>
 21#include <linux/mmzone.h>
 22#include <linux/bootmem.h>
 
 23#include <linux/highmem.h>
 24#include <linux/slab.h>
 25#include <linux/spinlock.h>
 26#include <linux/vmalloc.h>
 27#include <linux/sched.h>
 28#include <asm/dma.h>
 29#include <asm/pgalloc.h>
 30#include <asm/pgtable.h>
 31
 32/*
 33 * Allocate a block of memory to be used to back the virtual memory map
 34 * or to back the page tables that are used to create the mapping.
 35 * Uses the main allocators if they are available, else bootmem.
 36 */
 37
 38static void * __init_refok __earlyonly_bootmem_alloc(int node,
 39				unsigned long size,
 40				unsigned long align,
 41				unsigned long goal)
 42{
 43	return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
 
 44}
 45
 46static void *vmemmap_buf;
 47static void *vmemmap_buf_end;
 48
 49void * __meminit vmemmap_alloc_block(unsigned long size, int node)
 50{
 51	/* If the main allocator is up use that, fallback to bootmem. */
 52	if (slab_is_available()) {
 53		struct page *page;
 54
 55		if (node_state(node, N_HIGH_MEMORY))
 56			page = alloc_pages_node(node,
 57				GFP_KERNEL | __GFP_ZERO, get_order(size));
 
 58		else
 59			page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
 
 60				get_order(size));
 61		if (page)
 62			return page_address(page);
 63		return NULL;
 64	} else
 65		return __earlyonly_bootmem_alloc(node, size, size,
 66				__pa(MAX_DMA_ADDRESS));
 67}
 68
 69/* need to make sure size is all the same during early stage */
 70void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
 71{
 72	void *ptr;
 73
 74	if (!vmemmap_buf)
 75		return vmemmap_alloc_block(size, node);
 76
 77	/* take the from buf */
 78	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
 79	if (ptr + size > vmemmap_buf_end)
 80		return vmemmap_alloc_block(size, node);
 81
 82	vmemmap_buf = ptr + size;
 83
 84	return ptr;
 85}
 86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87void __meminit vmemmap_verify(pte_t *pte, int node,
 88				unsigned long start, unsigned long end)
 89{
 90	unsigned long pfn = pte_pfn(*pte);
 91	int actual_node = early_pfn_to_nid(pfn);
 92
 93	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
 94		printk(KERN_WARNING "[%lx-%lx] potential offnode "
 95			"page_structs\n", start, end - 1);
 96}
 97
 98pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
 99{
100	pte_t *pte = pte_offset_kernel(pmd, addr);
101	if (pte_none(*pte)) {
102		pte_t entry;
103		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
104		if (!p)
105			return NULL;
106		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
107		set_pte_at(&init_mm, addr, pte, entry);
108	}
109	return pte;
110}
111
112pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
113{
114	pmd_t *pmd = pmd_offset(pud, addr);
115	if (pmd_none(*pmd)) {
116		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
117		if (!p)
118			return NULL;
119		pmd_populate_kernel(&init_mm, pmd, p);
120	}
121	return pmd;
122}
123
124pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
125{
126	pud_t *pud = pud_offset(pgd, addr);
127	if (pud_none(*pud)) {
128		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
129		if (!p)
130			return NULL;
131		pud_populate(&init_mm, pud, p);
132	}
133	return pud;
134}
135
136pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
137{
138	pgd_t *pgd = pgd_offset_k(addr);
139	if (pgd_none(*pgd)) {
140		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
141		if (!p)
142			return NULL;
143		pgd_populate(&init_mm, pgd, p);
144	}
145	return pgd;
146}
147
148int __meminit vmemmap_populate_basepages(struct page *start_page,
149						unsigned long size, int node)
150{
151	unsigned long addr = (unsigned long)start_page;
152	unsigned long end = (unsigned long)(start_page + size);
153	pgd_t *pgd;
154	pud_t *pud;
155	pmd_t *pmd;
156	pte_t *pte;
157
158	for (; addr < end; addr += PAGE_SIZE) {
159		pgd = vmemmap_pgd_populate(addr, node);
160		if (!pgd)
161			return -ENOMEM;
162		pud = vmemmap_pud_populate(pgd, addr, node);
163		if (!pud)
164			return -ENOMEM;
165		pmd = vmemmap_pmd_populate(pud, addr, node);
166		if (!pmd)
167			return -ENOMEM;
168		pte = vmemmap_pte_populate(pmd, addr, node);
169		if (!pte)
170			return -ENOMEM;
171		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
172	}
173
174	return 0;
175}
176
177struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
178{
179	struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
180	int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
181	if (error)
 
 
 
 
 
 
182		return NULL;
183
184	return map;
185}
186
187void __init sparse_mem_maps_populate_node(struct page **map_map,
188					  unsigned long pnum_begin,
189					  unsigned long pnum_end,
190					  unsigned long map_count, int nodeid)
191{
192	unsigned long pnum;
193	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
194	void *vmemmap_buf_start;
195
196	size = ALIGN(size, PMD_SIZE);
197	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
198			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
199
200	if (vmemmap_buf_start) {
201		vmemmap_buf = vmemmap_buf_start;
202		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
203	}
204
205	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
206		struct mem_section *ms;
207
208		if (!present_section_nr(pnum))
209			continue;
210
211		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
212		if (map_map[pnum])
213			continue;
214		ms = __nr_to_section(pnum);
215		printk(KERN_ERR "%s: sparsemem memory map backing failed "
216			"some memory will not be available.\n", __func__);
217		ms->section_mem_map = 0;
218	}
219
220	if (vmemmap_buf_start) {
221		/* need to free left buf */
222		free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
 
223		vmemmap_buf = NULL;
224		vmemmap_buf_end = NULL;
225	}
226}