Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/cgroup.h>
  32#include <linux/cred.h>
  33#include <linux/ctype.h>
  34#include <linux/errno.h>
 
  35#include <linux/init_task.h>
  36#include <linux/kernel.h>
  37#include <linux/list.h>
  38#include <linux/magic.h>
  39#include <linux/mm.h>
  40#include <linux/mutex.h>
  41#include <linux/mount.h>
  42#include <linux/pagemap.h>
  43#include <linux/proc_fs.h>
  44#include <linux/rcupdate.h>
  45#include <linux/sched.h>
 
 
  46#include <linux/slab.h>
 
  47#include <linux/spinlock.h>
  48#include <linux/percpu-rwsem.h>
  49#include <linux/string.h>
  50#include <linux/sort.h>
  51#include <linux/kmod.h>
 
  52#include <linux/delayacct.h>
  53#include <linux/cgroupstats.h>
  54#include <linux/hashtable.h>
 
  55#include <linux/pid_namespace.h>
  56#include <linux/idr.h>
  57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
 
 
 
  58#include <linux/kthread.h>
  59#include <linux/delay.h>
  60#include <linux/atomic.h>
  61#include <linux/cpuset.h>
  62#include <linux/proc_ns.h>
  63#include <linux/nsproxy.h>
  64#include <linux/proc_ns.h>
  65#include <net/sock.h>
  66
  67/*
  68 * pidlists linger the following amount before being destroyed.  The goal
  69 * is avoiding frequent destruction in the middle of consecutive read calls
  70 * Expiring in the middle is a performance problem not a correctness one.
  71 * 1 sec should be enough.
  72 */
  73#define CGROUP_PIDLIST_DESTROY_DELAY	HZ
  74
  75#define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
  76					 MAX_CFTYPE_NAME + 2)
  77
  78/*
  79 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  80 * hierarchy must be performed while holding it.
  81 *
  82 * css_set_lock protects task->cgroups pointer, the list of css_set
  83 * objects, and the chain of tasks off each css_set.
 
 
 
  84 *
  85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  86 * cgroup.h can use them for lockdep annotations.
 
 
 
  87 */
  88#ifdef CONFIG_PROVE_RCU
  89DEFINE_MUTEX(cgroup_mutex);
  90DEFINE_SPINLOCK(css_set_lock);
  91EXPORT_SYMBOL_GPL(cgroup_mutex);
  92EXPORT_SYMBOL_GPL(css_set_lock);
  93#else
  94static DEFINE_MUTEX(cgroup_mutex);
  95static DEFINE_SPINLOCK(css_set_lock);
  96#endif
  97
  98/*
  99 * Protects cgroup_idr and css_idr so that IDs can be released without
 100 * grabbing cgroup_mutex.
 
 
 101 */
 102static DEFINE_SPINLOCK(cgroup_idr_lock);
 
 
 
 103
 104/*
 105 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 106 * against file removal/re-creation across css hiding.
 107 */
 108static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 109
 110/*
 111 * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
 112 * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
 
 113 */
 114static DEFINE_SPINLOCK(release_agent_path_lock);
 
 115
 116struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
 
 
 
 
 117
 118#define cgroup_assert_mutex_or_rcu_locked()				\
 119	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 120			   !lockdep_is_held(&cgroup_mutex),		\
 121			   "cgroup_mutex or RCU read lock required");
 122
 123/*
 124 * cgroup destruction makes heavy use of work items and there can be a lot
 125 * of concurrent destructions.  Use a separate workqueue so that cgroup
 126 * destruction work items don't end up filling up max_active of system_wq
 127 * which may lead to deadlock.
 128 */
 129static struct workqueue_struct *cgroup_destroy_wq;
 130
 131/*
 132 * pidlist destructions need to be flushed on cgroup destruction.  Use a
 133 * separate workqueue as flush domain.
 134 */
 135static struct workqueue_struct *cgroup_pidlist_destroy_wq;
 136
 137/* generate an array of cgroup subsystem pointers */
 138#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 139static struct cgroup_subsys *cgroup_subsys[] = {
 140#include <linux/cgroup_subsys.h>
 141};
 142#undef SUBSYS
 143
 144/* array of cgroup subsystem names */
 145#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 146static const char *cgroup_subsys_name[] = {
 147#include <linux/cgroup_subsys.h>
 148};
 149#undef SUBSYS
 150
 151/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 152#define SUBSYS(_x)								\
 153	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
 154	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
 155	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
 156	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 157#include <linux/cgroup_subsys.h>
 158#undef SUBSYS
 159
 160#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 161static struct static_key_true *cgroup_subsys_enabled_key[] = {
 162#include <linux/cgroup_subsys.h>
 163};
 164#undef SUBSYS
 165
 166#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 167static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 168#include <linux/cgroup_subsys.h>
 
 
 
 
 
 169};
 170#undef SUBSYS
 171
 172/*
 173 * The default hierarchy, reserved for the subsystems that are otherwise
 174 * unattached - it never has more than a single cgroup, and all tasks are
 175 * part of that cgroup.
 176 */
 177struct cgroup_root cgrp_dfl_root;
 178EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 179
 180/*
 181 * The default hierarchy always exists but is hidden until mounted for the
 182 * first time.  This is for backward compatibility.
 183 */
 184static bool cgrp_dfl_visible;
 185
 186/* Controllers blocked by the commandline in v1 */
 187static u16 cgroup_no_v1_mask;
 188
 189/* some controllers are not supported in the default hierarchy */
 190static u16 cgrp_dfl_inhibit_ss_mask;
 191
 192/* some controllers are implicitly enabled on the default hierarchy */
 193static unsigned long cgrp_dfl_implicit_ss_mask;
 194
 195/* The list of hierarchy roots */
 196
 197static LIST_HEAD(cgroup_roots);
 198static int cgroup_root_count;
 199
 200/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 201static DEFINE_IDR(cgroup_hierarchy_idr);
 202
 203/*
 204 * Assign a monotonically increasing serial number to csses.  It guarantees
 205 * cgroups with bigger numbers are newer than those with smaller numbers.
 206 * Also, as csses are always appended to the parent's ->children list, it
 207 * guarantees that sibling csses are always sorted in the ascending serial
 208 * number order on the list.  Protected by cgroup_mutex.
 209 */
 210static u64 css_serial_nr_next = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211
 212/*
 213 * These bitmask flags indicate whether tasks in the fork and exit paths have
 214 * fork/exit handlers to call. This avoids us having to do extra work in the
 215 * fork/exit path to check which subsystems have fork/exit callbacks.
 216 */
 217static u16 have_fork_callback __read_mostly;
 218static u16 have_exit_callback __read_mostly;
 219static u16 have_free_callback __read_mostly;
 220
 221/* cgroup namespace for init task */
 222struct cgroup_namespace init_cgroup_ns = {
 223	.count		= { .counter = 2, },
 224	.user_ns	= &init_user_ns,
 225	.ns.ops		= &cgroupns_operations,
 226	.ns.inum	= PROC_CGROUP_INIT_INO,
 227	.root_cset	= &init_css_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228};
 229
 230/* Ditto for the can_fork callback. */
 231static u16 have_canfork_callback __read_mostly;
 232
 233static struct file_system_type cgroup2_fs_type;
 234static struct cftype cgroup_dfl_base_files[];
 235static struct cftype cgroup_legacy_base_files[];
 236
 237static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
 238static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
 239static int cgroup_apply_control(struct cgroup *cgrp);
 240static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 241static void css_task_iter_advance(struct css_task_iter *it);
 242static int cgroup_destroy_locked(struct cgroup *cgrp);
 243static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 244					      struct cgroup_subsys *ss);
 245static void css_release(struct percpu_ref *ref);
 246static void kill_css(struct cgroup_subsys_state *css);
 247static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 248			      struct cgroup *cgrp, struct cftype cfts[],
 249			      bool is_add);
 250
 251/**
 252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 253 * @ssid: subsys ID of interest
 254 *
 255 * cgroup_subsys_enabled() can only be used with literal subsys names which
 256 * is fine for individual subsystems but unsuitable for cgroup core.  This
 257 * is slower static_key_enabled() based test indexed by @ssid.
 258 */
 259static bool cgroup_ssid_enabled(int ssid)
 260{
 261	if (CGROUP_SUBSYS_COUNT == 0)
 262		return false;
 263
 264	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 265}
 
 266
 267static bool cgroup_ssid_no_v1(int ssid)
 268{
 269	return cgroup_no_v1_mask & (1 << ssid);
 270}
 271
 272/**
 273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 274 * @cgrp: the cgroup of interest
 275 *
 276 * The default hierarchy is the v2 interface of cgroup and this function
 277 * can be used to test whether a cgroup is on the default hierarchy for
 278 * cases where a subsystem should behave differnetly depending on the
 279 * interface version.
 280 *
 281 * The set of behaviors which change on the default hierarchy are still
 282 * being determined and the mount option is prefixed with __DEVEL__.
 283 *
 284 * List of changed behaviors:
 285 *
 286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 287 *   and "name" are disallowed.
 288 *
 289 * - When mounting an existing superblock, mount options should match.
 290 *
 291 * - Remount is disallowed.
 292 *
 293 * - rename(2) is disallowed.
 294 *
 295 * - "tasks" is removed.  Everything should be at process granularity.  Use
 296 *   "cgroup.procs" instead.
 297 *
 298 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 299 *   recycled inbetween reads.
 300 *
 301 * - "release_agent" and "notify_on_release" are removed.  Replacement
 302 *   notification mechanism will be implemented.
 303 *
 304 * - "cgroup.clone_children" is removed.
 305 *
 306 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 307 *   and its descendants contain no task; otherwise, 1.  The file also
 308 *   generates kernfs notification which can be monitored through poll and
 309 *   [di]notify when the value of the file changes.
 310 *
 311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 312 *   take masks of ancestors with non-empty cpus/mems, instead of being
 313 *   moved to an ancestor.
 314 *
 315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 316 *   masks of ancestors.
 317 *
 318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
 319 *   is not created.
 320 *
 321 * - blkcg: blk-throttle becomes properly hierarchical.
 322 *
 323 * - debug: disallowed on the default hierarchy.
 324 */
 325static bool cgroup_on_dfl(const struct cgroup *cgrp)
 326{
 327	return cgrp->root == &cgrp_dfl_root;
 328}
 329
 330/* IDR wrappers which synchronize using cgroup_idr_lock */
 331static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 332			    gfp_t gfp_mask)
 333{
 334	int ret;
 335
 336	idr_preload(gfp_mask);
 337	spin_lock_bh(&cgroup_idr_lock);
 338	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 339	spin_unlock_bh(&cgroup_idr_lock);
 340	idr_preload_end();
 341	return ret;
 342}
 343
 344static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 345{
 346	void *ret;
 347
 348	spin_lock_bh(&cgroup_idr_lock);
 349	ret = idr_replace(idr, ptr, id);
 350	spin_unlock_bh(&cgroup_idr_lock);
 351	return ret;
 352}
 
 353
 354static void cgroup_idr_remove(struct idr *idr, int id)
 355{
 356	spin_lock_bh(&cgroup_idr_lock);
 357	idr_remove(idr, id);
 358	spin_unlock_bh(&cgroup_idr_lock);
 359}
 360
 361static struct cgroup *cgroup_parent(struct cgroup *cgrp)
 362{
 363	struct cgroup_subsys_state *parent_css = cgrp->self.parent;
 364
 365	if (parent_css)
 366		return container_of(parent_css, struct cgroup, self);
 367	return NULL;
 368}
 369
 370/* subsystems visibly enabled on a cgroup */
 371static u16 cgroup_control(struct cgroup *cgrp)
 372{
 373	struct cgroup *parent = cgroup_parent(cgrp);
 374	u16 root_ss_mask = cgrp->root->subsys_mask;
 375
 376	if (parent)
 377		return parent->subtree_control;
 378
 379	if (cgroup_on_dfl(cgrp))
 380		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 381				  cgrp_dfl_implicit_ss_mask);
 382	return root_ss_mask;
 383}
 384
 385/* subsystems enabled on a cgroup */
 386static u16 cgroup_ss_mask(struct cgroup *cgrp)
 387{
 388	struct cgroup *parent = cgroup_parent(cgrp);
 389
 390	if (parent)
 391		return parent->subtree_ss_mask;
 392
 393	return cgrp->root->subsys_mask;
 394}
 395
 396/**
 397 * cgroup_css - obtain a cgroup's css for the specified subsystem
 398 * @cgrp: the cgroup of interest
 399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 400 *
 401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 402 * function must be called either under cgroup_mutex or rcu_read_lock() and
 403 * the caller is responsible for pinning the returned css if it wants to
 404 * keep accessing it outside the said locks.  This function may return
 405 * %NULL if @cgrp doesn't have @subsys_id enabled.
 406 */
 407static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 408					      struct cgroup_subsys *ss)
 409{
 410	if (ss)
 411		return rcu_dereference_check(cgrp->subsys[ss->id],
 412					lockdep_is_held(&cgroup_mutex));
 413	else
 414		return &cgrp->self;
 415}
 416
 417/**
 418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 419 * @cgrp: the cgroup of interest
 420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 421 *
 422 * Similar to cgroup_css() but returns the effective css, which is defined
 423 * as the matching css of the nearest ancestor including self which has @ss
 424 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 425 * function is guaranteed to return non-NULL css.
 426 */
 427static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 428						struct cgroup_subsys *ss)
 429{
 430	lockdep_assert_held(&cgroup_mutex);
 431
 432	if (!ss)
 433		return &cgrp->self;
 434
 435	/*
 436	 * This function is used while updating css associations and thus
 437	 * can't test the csses directly.  Test ss_mask.
 438	 */
 439	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 440		cgrp = cgroup_parent(cgrp);
 441		if (!cgrp)
 442			return NULL;
 443	}
 444
 445	return cgroup_css(cgrp, ss);
 446}
 447
 448/**
 449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 450 * @cgrp: the cgroup of interest
 451 * @ss: the subsystem of interest
 452 *
 453 * Find and get the effective css of @cgrp for @ss.  The effective css is
 454 * defined as the matching css of the nearest ancestor including self which
 455 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 456 * the root css is returned, so this function always returns a valid css.
 457 * The returned css must be put using css_put().
 458 */
 459struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 460					     struct cgroup_subsys *ss)
 461{
 462	struct cgroup_subsys_state *css;
 463
 464	rcu_read_lock();
 465
 466	do {
 467		css = cgroup_css(cgrp, ss);
 468
 469		if (css && css_tryget_online(css))
 470			goto out_unlock;
 471		cgrp = cgroup_parent(cgrp);
 472	} while (cgrp);
 473
 474	css = init_css_set.subsys[ss->id];
 475	css_get(css);
 476out_unlock:
 477	rcu_read_unlock();
 478	return css;
 479}
 480
 481/* convenient tests for these bits */
 482static inline bool cgroup_is_dead(const struct cgroup *cgrp)
 483{
 484	return !(cgrp->self.flags & CSS_ONLINE);
 485}
 486
 487static void cgroup_get(struct cgroup *cgrp)
 488{
 489	WARN_ON_ONCE(cgroup_is_dead(cgrp));
 490	css_get(&cgrp->self);
 491}
 
 
 
 
 
 492
 493static bool cgroup_tryget(struct cgroup *cgrp)
 494{
 495	return css_tryget(&cgrp->self);
 496}
 497
 498struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 499{
 500	struct cgroup *cgrp = of->kn->parent->priv;
 501	struct cftype *cft = of_cft(of);
 502
 503	/*
 504	 * This is open and unprotected implementation of cgroup_css().
 505	 * seq_css() is only called from a kernfs file operation which has
 506	 * an active reference on the file.  Because all the subsystem
 507	 * files are drained before a css is disassociated with a cgroup,
 508	 * the matching css from the cgroup's subsys table is guaranteed to
 509	 * be and stay valid until the enclosing operation is complete.
 510	 */
 511	if (cft->ss)
 512		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 513	else
 514		return &cgrp->self;
 515}
 516EXPORT_SYMBOL_GPL(of_css);
 517
 518static int notify_on_release(const struct cgroup *cgrp)
 519{
 520	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 521}
 522
 523/**
 524 * for_each_css - iterate all css's of a cgroup
 525 * @css: the iteration cursor
 526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 527 * @cgrp: the target cgroup to iterate css's of
 528 *
 529 * Should be called under cgroup_[tree_]mutex.
 530 */
 531#define for_each_css(css, ssid, cgrp)					\
 532	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
 533		if (!((css) = rcu_dereference_check(			\
 534				(cgrp)->subsys[(ssid)],			\
 535				lockdep_is_held(&cgroup_mutex)))) { }	\
 536		else
 537
 538/**
 539 * for_each_e_css - iterate all effective css's of a cgroup
 540 * @css: the iteration cursor
 541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 542 * @cgrp: the target cgroup to iterate css's of
 543 *
 544 * Should be called under cgroup_[tree_]mutex.
 545 */
 546#define for_each_e_css(css, ssid, cgrp)					\
 547	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
 548		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
 549			;						\
 550		else
 551
 552/**
 553 * for_each_subsys - iterate all enabled cgroup subsystems
 554 * @ss: the iteration cursor
 555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 556 */
 557#define for_each_subsys(ss, ssid)					\
 558	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT &&		\
 559	     (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
 560
 561/**
 562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 563 * @ss: the iteration cursor
 564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 565 * @ss_mask: the bitmask
 566 *
 567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 568 * @ss_mask is set.
 569 */
 570#define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
 571	unsigned long __ss_mask = (ss_mask);				\
 572	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
 573		(ssid) = 0;						\
 574		break;							\
 575	}								\
 576	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
 577		(ss) = cgroup_subsys[ssid];				\
 578		{
 579
 580#define while_each_subsys_mask()					\
 581		}							\
 582	}								\
 583} while (false)
 584
 585/* iterate across the hierarchies */
 586#define for_each_root(root)						\
 587	list_for_each_entry((root), &cgroup_roots, root_list)
 588
 589/* iterate over child cgrps, lock should be held throughout iteration */
 590#define cgroup_for_each_live_child(child, cgrp)				\
 591	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 592		if (({ lockdep_assert_held(&cgroup_mutex);		\
 593		       cgroup_is_dead(child); }))			\
 594			;						\
 595		else
 596
 597/* walk live descendants in preorder */
 598#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
 599	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
 600		if (({ lockdep_assert_held(&cgroup_mutex);		\
 601		       (dsct) = (d_css)->cgroup;			\
 602		       cgroup_is_dead(dsct); }))			\
 603			;						\
 604		else
 605
 606/* walk live descendants in postorder */
 607#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
 608	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
 609		if (({ lockdep_assert_held(&cgroup_mutex);		\
 610		       (dsct) = (d_css)->cgroup;			\
 611		       cgroup_is_dead(dsct); }))			\
 612			;						\
 613		else
 614
 615static void cgroup_release_agent(struct work_struct *work);
 
 616static void check_for_release(struct cgroup *cgrp);
 617
 618/*
 619 * A cgroup can be associated with multiple css_sets as different tasks may
 620 * belong to different cgroups on different hierarchies.  In the other
 621 * direction, a css_set is naturally associated with multiple cgroups.
 622 * This M:N relationship is represented by the following link structure
 623 * which exists for each association and allows traversing the associations
 624 * from both sides.
 625 */
 626struct cgrp_cset_link {
 627	/* the cgroup and css_set this link associates */
 628	struct cgroup		*cgrp;
 629	struct css_set		*cset;
 630
 631	/* list of cgrp_cset_links anchored at cgrp->cset_links */
 632	struct list_head	cset_link;
 633
 634	/* list of cgrp_cset_links anchored at css_set->cgrp_links */
 635	struct list_head	cgrp_link;
 636};
 637
 638/*
 639 * The default css_set - used by init and its children prior to any
 640 * hierarchies being mounted. It contains a pointer to the root state
 641 * for each subsystem. Also used to anchor the list of css_sets. Not
 642 * reference-counted, to improve performance when child cgroups
 643 * haven't been created.
 644 */
 645struct css_set init_css_set = {
 646	.refcount		= ATOMIC_INIT(1),
 647	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
 648	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
 649	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
 650	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
 651	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
 652	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
 653};
 654
 655static int css_set_count	= 1;	/* 1 for init_css_set */
 
 656
 657/**
 658 * css_set_populated - does a css_set contain any tasks?
 659 * @cset: target css_set
 660 */
 661static bool css_set_populated(struct css_set *cset)
 662{
 663	lockdep_assert_held(&css_set_lock);
 664
 665	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 666}
 667
 668/**
 669 * cgroup_update_populated - updated populated count of a cgroup
 670 * @cgrp: the target cgroup
 671 * @populated: inc or dec populated count
 672 *
 673 * One of the css_sets associated with @cgrp is either getting its first
 674 * task or losing the last.  Update @cgrp->populated_cnt accordingly.  The
 675 * count is propagated towards root so that a given cgroup's populated_cnt
 676 * is zero iff the cgroup and all its descendants don't contain any tasks.
 677 *
 678 * @cgrp's interface file "cgroup.populated" is zero if
 679 * @cgrp->populated_cnt is zero and 1 otherwise.  When @cgrp->populated_cnt
 680 * changes from or to zero, userland is notified that the content of the
 681 * interface file has changed.  This can be used to detect when @cgrp and
 682 * its descendants become populated or empty.
 683 */
 684static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 685{
 686	lockdep_assert_held(&css_set_lock);
 687
 688	do {
 689		bool trigger;
 690
 691		if (populated)
 692			trigger = !cgrp->populated_cnt++;
 693		else
 694			trigger = !--cgrp->populated_cnt;
 695
 696		if (!trigger)
 697			break;
 698
 699		check_for_release(cgrp);
 700		cgroup_file_notify(&cgrp->events_file);
 701
 702		cgrp = cgroup_parent(cgrp);
 703	} while (cgrp);
 704}
 705
 706/**
 707 * css_set_update_populated - update populated state of a css_set
 708 * @cset: target css_set
 709 * @populated: whether @cset is populated or depopulated
 710 *
 711 * @cset is either getting the first task or losing the last.  Update the
 712 * ->populated_cnt of all associated cgroups accordingly.
 713 */
 714static void css_set_update_populated(struct css_set *cset, bool populated)
 715{
 716	struct cgrp_cset_link *link;
 717
 718	lockdep_assert_held(&css_set_lock);
 719
 720	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 721		cgroup_update_populated(link->cgrp, populated);
 722}
 723
 724/**
 725 * css_set_move_task - move a task from one css_set to another
 726 * @task: task being moved
 727 * @from_cset: css_set @task currently belongs to (may be NULL)
 728 * @to_cset: new css_set @task is being moved to (may be NULL)
 729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 730 *
 731 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 732 * css_set, @from_cset can be NULL.  If @task is being disassociated
 733 * instead of moved, @to_cset can be NULL.
 734 *
 735 * This function automatically handles populated_cnt updates and
 736 * css_task_iter adjustments but the caller is responsible for managing
 737 * @from_cset and @to_cset's reference counts.
 738 */
 739static void css_set_move_task(struct task_struct *task,
 740			      struct css_set *from_cset, struct css_set *to_cset,
 741			      bool use_mg_tasks)
 742{
 743	lockdep_assert_held(&css_set_lock);
 744
 745	if (to_cset && !css_set_populated(to_cset))
 746		css_set_update_populated(to_cset, true);
 747
 748	if (from_cset) {
 749		struct css_task_iter *it, *pos;
 750
 751		WARN_ON_ONCE(list_empty(&task->cg_list));
 752
 753		/*
 754		 * @task is leaving, advance task iterators which are
 755		 * pointing to it so that they can resume at the next
 756		 * position.  Advancing an iterator might remove it from
 757		 * the list, use safe walk.  See css_task_iter_advance*()
 758		 * for details.
 759		 */
 760		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
 761					 iters_node)
 762			if (it->task_pos == &task->cg_list)
 763				css_task_iter_advance(it);
 764
 765		list_del_init(&task->cg_list);
 766		if (!css_set_populated(from_cset))
 767			css_set_update_populated(from_cset, false);
 768	} else {
 769		WARN_ON_ONCE(!list_empty(&task->cg_list));
 770	}
 771
 772	if (to_cset) {
 773		/*
 774		 * We are synchronized through cgroup_threadgroup_rwsem
 775		 * against PF_EXITING setting such that we can't race
 776		 * against cgroup_exit() changing the css_set to
 777		 * init_css_set and dropping the old one.
 778		 */
 779		WARN_ON_ONCE(task->flags & PF_EXITING);
 780
 781		rcu_assign_pointer(task->cgroups, to_cset);
 782		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 783							     &to_cset->tasks);
 784	}
 785}
 786
 787/*
 788 * hash table for cgroup groups. This improves the performance to find
 789 * an existing css_set. This hash doesn't (currently) take into
 790 * account cgroups in empty hierarchies.
 791 */
 792#define CSS_SET_HASH_BITS	7
 793static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 
 794
 795static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 796{
 797	unsigned long key = 0UL;
 798	struct cgroup_subsys *ss;
 799	int i;
 
 
 800
 801	for_each_subsys(ss, i)
 802		key += (unsigned long)css[i];
 803	key = (key >> 16) ^ key;
 804
 805	return key;
 806}
 807
 808static void put_css_set_locked(struct css_set *cset)
 809{
 810	struct cgrp_cset_link *link, *tmp_link;
 811	struct cgroup_subsys *ss;
 812	int ssid;
 813
 814	lockdep_assert_held(&css_set_lock);
 815
 816	if (!atomic_dec_and_test(&cset->refcount))
 817		return;
 818
 819	/* This css_set is dead. unlink it and release cgroup and css refs */
 820	for_each_subsys(ss, ssid) {
 821		list_del(&cset->e_cset_node[ssid]);
 822		css_put(cset->subsys[ssid]);
 823	}
 824	hash_del(&cset->hlist);
 825	css_set_count--;
 826
 827	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 828		list_del(&link->cset_link);
 829		list_del(&link->cgrp_link);
 830		if (cgroup_parent(link->cgrp))
 831			cgroup_put(link->cgrp);
 832		kfree(link);
 833	}
 834
 835	kfree_rcu(cset, rcu_head);
 836}
 837
 838static void put_css_set(struct css_set *cset)
 
 
 
 
 
 
 839{
 
 
 840	/*
 841	 * Ensure that the refcount doesn't hit zero while any readers
 842	 * can see it. Similar to atomic_dec_and_lock(), but for an
 843	 * rwlock
 844	 */
 845	if (atomic_add_unless(&cset->refcount, -1, 1))
 
 
 
 
 846		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847
 848	spin_lock_bh(&css_set_lock);
 849	put_css_set_locked(cset);
 850	spin_unlock_bh(&css_set_lock);
 
 
 851}
 852
 853/*
 854 * refcounted get/put for css_set objects
 855 */
 856static inline void get_css_set(struct css_set *cset)
 857{
 858	atomic_inc(&cset->refcount);
 859}
 860
 861/**
 
 
 
 
 
 
 
 
 
 
 862 * compare_css_sets - helper function for find_existing_css_set().
 863 * @cset: candidate css_set being tested
 864 * @old_cset: existing css_set for a task
 865 * @new_cgrp: cgroup that's being entered by the task
 866 * @template: desired set of css pointers in css_set (pre-calculated)
 867 *
 868 * Returns true if "cset" matches "old_cset" except for the hierarchy
 869 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 870 */
 871static bool compare_css_sets(struct css_set *cset,
 872			     struct css_set *old_cset,
 873			     struct cgroup *new_cgrp,
 874			     struct cgroup_subsys_state *template[])
 875{
 876	struct list_head *l1, *l2;
 877
 878	/*
 879	 * On the default hierarchy, there can be csets which are
 880	 * associated with the same set of cgroups but different csses.
 881	 * Let's first ensure that csses match.
 882	 */
 883	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
 884		return false;
 
 885
 886	/*
 887	 * Compare cgroup pointers in order to distinguish between
 888	 * different cgroups in hierarchies.  As different cgroups may
 889	 * share the same effective css, this comparison is always
 890	 * necessary.
 
 
 891	 */
 892	l1 = &cset->cgrp_links;
 893	l2 = &old_cset->cgrp_links;
 
 894	while (1) {
 895		struct cgrp_cset_link *link1, *link2;
 896		struct cgroup *cgrp1, *cgrp2;
 897
 898		l1 = l1->next;
 899		l2 = l2->next;
 900		/* See if we reached the end - both lists are equal length. */
 901		if (l1 == &cset->cgrp_links) {
 902			BUG_ON(l2 != &old_cset->cgrp_links);
 903			break;
 904		} else {
 905			BUG_ON(l2 == &old_cset->cgrp_links);
 906		}
 907		/* Locate the cgroups associated with these links. */
 908		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
 909		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
 910		cgrp1 = link1->cgrp;
 911		cgrp2 = link2->cgrp;
 912		/* Hierarchies should be linked in the same order. */
 913		BUG_ON(cgrp1->root != cgrp2->root);
 914
 915		/*
 916		 * If this hierarchy is the hierarchy of the cgroup
 917		 * that's changing, then we need to check that this
 918		 * css_set points to the new cgroup; if it's any other
 919		 * hierarchy, then this css_set should point to the
 920		 * same cgroup as the old css_set.
 921		 */
 922		if (cgrp1->root == new_cgrp->root) {
 923			if (cgrp1 != new_cgrp)
 924				return false;
 925		} else {
 926			if (cgrp1 != cgrp2)
 927				return false;
 928		}
 929	}
 930	return true;
 931}
 932
 933/**
 934 * find_existing_css_set - init css array and find the matching css_set
 935 * @old_cset: the css_set that we're using before the cgroup transition
 936 * @cgrp: the cgroup that we're moving into
 937 * @template: out param for the new set of csses, should be clear on entry
 938 */
 939static struct css_set *find_existing_css_set(struct css_set *old_cset,
 940					struct cgroup *cgrp,
 941					struct cgroup_subsys_state *template[])
 
 
 
 
 
 
 
 
 942{
 943	struct cgroup_root *root = cgrp->root;
 944	struct cgroup_subsys *ss;
 945	struct css_set *cset;
 946	unsigned long key;
 947	int i;
 
 
 
 
 948
 949	/*
 950	 * Build the set of subsystem state objects that we want to see in the
 951	 * new css_set. while subsystems can change globally, the entries here
 952	 * won't change, so no need for locking.
 953	 */
 954	for_each_subsys(ss, i) {
 955		if (root->subsys_mask & (1UL << i)) {
 956			/*
 957			 * @ss is in this hierarchy, so we want the
 958			 * effective css from @cgrp.
 959			 */
 960			template[i] = cgroup_e_css(cgrp, ss);
 961		} else {
 962			/*
 963			 * @ss is not in this hierarchy, so we don't want
 964			 * to change the css.
 965			 */
 966			template[i] = old_cset->subsys[i];
 967		}
 968	}
 969
 970	key = css_set_hash(template);
 971	hash_for_each_possible(css_set_table, cset, hlist, key) {
 972		if (!compare_css_sets(cset, old_cset, cgrp, template))
 973			continue;
 974
 975		/* This css_set matches what we need */
 976		return cset;
 977	}
 978
 979	/* No existing cgroup group matched */
 980	return NULL;
 981}
 982
 983static void free_cgrp_cset_links(struct list_head *links_to_free)
 984{
 985	struct cgrp_cset_link *link, *tmp_link;
 
 986
 987	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
 988		list_del(&link->cset_link);
 989		kfree(link);
 990	}
 991}
 992
 993/**
 994 * allocate_cgrp_cset_links - allocate cgrp_cset_links
 995 * @count: the number of links to allocate
 996 * @tmp_links: list_head the allocated links are put on
 997 *
 998 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
 999 * through ->cset_link.  Returns 0 on success or -errno.
1000 */
1001static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1002{
1003	struct cgrp_cset_link *link;
1004	int i;
1005
1006	INIT_LIST_HEAD(tmp_links);
1007
1008	for (i = 0; i < count; i++) {
1009		link = kzalloc(sizeof(*link), GFP_KERNEL);
1010		if (!link) {
1011			free_cgrp_cset_links(tmp_links);
1012			return -ENOMEM;
1013		}
1014		list_add(&link->cset_link, tmp_links);
1015	}
1016	return 0;
1017}
1018
1019/**
1020 * link_css_set - a helper function to link a css_set to a cgroup
1021 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1022 * @cset: the css_set to be linked
1023 * @cgrp: the destination cgroup
1024 */
1025static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1026			 struct cgroup *cgrp)
1027{
1028	struct cgrp_cset_link *link;
1029
1030	BUG_ON(list_empty(tmp_links));
1031
1032	if (cgroup_on_dfl(cgrp))
1033		cset->dfl_cgrp = cgrp;
1034
1035	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1036	link->cset = cset;
1037	link->cgrp = cgrp;
1038
 
1039	/*
1040	 * Always add links to the tail of the lists so that the lists are
1041	 * in choronological order.
1042	 */
1043	list_move_tail(&link->cset_link, &cgrp->cset_links);
1044	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1045
1046	if (cgroup_parent(cgrp))
1047		cgroup_get(cgrp);
1048}
1049
1050/**
1051 * find_css_set - return a new css_set with one cgroup updated
1052 * @old_cset: the baseline css_set
1053 * @cgrp: the cgroup to be updated
1054 *
1055 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1056 * substituted into the appropriate hierarchy.
1057 */
1058static struct css_set *find_css_set(struct css_set *old_cset,
1059				    struct cgroup *cgrp)
1060{
1061	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1062	struct css_set *cset;
1063	struct list_head tmp_links;
1064	struct cgrp_cset_link *link;
1065	struct cgroup_subsys *ss;
1066	unsigned long key;
1067	int ssid;
1068
1069	lockdep_assert_held(&cgroup_mutex);
 
 
 
1070
1071	/* First see if we already have a cgroup group that matches
1072	 * the desired set */
1073	spin_lock_bh(&css_set_lock);
1074	cset = find_existing_css_set(old_cset, cgrp, template);
1075	if (cset)
1076		get_css_set(cset);
1077	spin_unlock_bh(&css_set_lock);
1078
1079	if (cset)
1080		return cset;
1081
1082	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1083	if (!cset)
1084		return NULL;
1085
1086	/* Allocate all the cgrp_cset_link objects that we'll need */
1087	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1088		kfree(cset);
1089		return NULL;
1090	}
1091
1092	atomic_set(&cset->refcount, 1);
1093	INIT_LIST_HEAD(&cset->cgrp_links);
1094	INIT_LIST_HEAD(&cset->tasks);
1095	INIT_LIST_HEAD(&cset->mg_tasks);
1096	INIT_LIST_HEAD(&cset->mg_preload_node);
1097	INIT_LIST_HEAD(&cset->mg_node);
1098	INIT_LIST_HEAD(&cset->task_iters);
1099	INIT_HLIST_NODE(&cset->hlist);
1100
1101	/* Copy the set of subsystem state objects generated in
1102	 * find_existing_css_set() */
1103	memcpy(cset->subsys, template, sizeof(cset->subsys));
1104
1105	spin_lock_bh(&css_set_lock);
1106	/* Add reference counts and links from the new css_set. */
1107	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1108		struct cgroup *c = link->cgrp;
1109
1110		if (c->root == cgrp->root)
1111			c = cgrp;
1112		link_css_set(&tmp_links, cset, c);
1113	}
1114
1115	BUG_ON(!list_empty(&tmp_links));
1116
1117	css_set_count++;
1118
1119	/* Add @cset to the hash table */
1120	key = css_set_hash(cset->subsys);
1121	hash_add(css_set_table, &cset->hlist, key);
1122
1123	for_each_subsys(ss, ssid) {
1124		struct cgroup_subsys_state *css = cset->subsys[ssid];
1125
1126		list_add_tail(&cset->e_cset_node[ssid],
1127			      &css->cgroup->e_csets[ssid]);
1128		css_get(css);
1129	}
1130
1131	spin_unlock_bh(&css_set_lock);
1132
1133	return cset;
1134}
1135
1136static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1137{
1138	struct cgroup *root_cgrp = kf_root->kn->priv;
1139
1140	return root_cgrp->root;
1141}
1142
1143static int cgroup_init_root_id(struct cgroup_root *root)
1144{
1145	int id;
1146
1147	lockdep_assert_held(&cgroup_mutex);
1148
1149	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1150	if (id < 0)
1151		return id;
1152
1153	root->hierarchy_id = id;
1154	return 0;
1155}
1156
1157static void cgroup_exit_root_id(struct cgroup_root *root)
1158{
1159	lockdep_assert_held(&cgroup_mutex);
1160
1161	if (root->hierarchy_id) {
1162		idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1163		root->hierarchy_id = 0;
1164	}
1165}
1166
1167static void cgroup_free_root(struct cgroup_root *root)
1168{
1169	if (root) {
1170		/* hierarchy ID should already have been released */
1171		WARN_ON_ONCE(root->hierarchy_id);
1172
1173		idr_destroy(&root->cgroup_idr);
1174		kfree(root);
1175	}
1176}
1177
1178static void cgroup_destroy_root(struct cgroup_root *root)
1179{
1180	struct cgroup *cgrp = &root->cgrp;
1181	struct cgrp_cset_link *link, *tmp_link;
1182
1183	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1184
1185	BUG_ON(atomic_read(&root->nr_cgrps));
1186	BUG_ON(!list_empty(&cgrp->self.children));
1187
1188	/* Rebind all subsystems back to the default hierarchy */
1189	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1190
1191	/*
1192	 * Release all the links from cset_links to this hierarchy's
1193	 * root cgroup
1194	 */
1195	spin_lock_bh(&css_set_lock);
1196
1197	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1198		list_del(&link->cset_link);
1199		list_del(&link->cgrp_link);
1200		kfree(link);
1201	}
1202
1203	spin_unlock_bh(&css_set_lock);
1204
1205	if (!list_empty(&root->root_list)) {
1206		list_del(&root->root_list);
1207		cgroup_root_count--;
1208	}
1209
1210	cgroup_exit_root_id(root);
1211
1212	mutex_unlock(&cgroup_mutex);
1213
1214	kernfs_destroy_root(root->kf_root);
1215	cgroup_free_root(root);
1216}
1217
1218/*
1219 * look up cgroup associated with current task's cgroup namespace on the
1220 * specified hierarchy
1221 */
1222static struct cgroup *
1223current_cgns_cgroup_from_root(struct cgroup_root *root)
1224{
1225	struct cgroup *res = NULL;
1226	struct css_set *cset;
1227
1228	lockdep_assert_held(&css_set_lock);
1229
1230	rcu_read_lock();
1231
1232	cset = current->nsproxy->cgroup_ns->root_cset;
1233	if (cset == &init_css_set) {
1234		res = &root->cgrp;
1235	} else {
1236		struct cgrp_cset_link *link;
1237
1238		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1239			struct cgroup *c = link->cgrp;
1240
1241			if (c->root == root) {
1242				res = c;
1243				break;
1244			}
1245		}
1246	}
1247	rcu_read_unlock();
1248
1249	BUG_ON(!res);
1250	return res;
1251}
1252
1253/* look up cgroup associated with given css_set on the specified hierarchy */
1254static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1255					    struct cgroup_root *root)
1256{
 
1257	struct cgroup *res = NULL;
1258
1259	lockdep_assert_held(&cgroup_mutex);
1260	lockdep_assert_held(&css_set_lock);
1261
1262	if (cset == &init_css_set) {
1263		res = &root->cgrp;
 
 
 
 
 
1264	} else {
1265		struct cgrp_cset_link *link;
1266
1267		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1268			struct cgroup *c = link->cgrp;
1269
1270			if (c->root == root) {
1271				res = c;
1272				break;
1273			}
1274		}
1275	}
1276
1277	BUG_ON(!res);
1278	return res;
1279}
1280
1281/*
1282 * Return the cgroup for "task" from the given hierarchy. Must be
1283 * called with cgroup_mutex and css_set_lock held.
1284 */
1285static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1286					    struct cgroup_root *root)
1287{
1288	/*
1289	 * No need to lock the task - since we hold cgroup_mutex the
1290	 * task can't change groups, so the only thing that can happen
1291	 * is that it exits and its css is set back to init_css_set.
1292	 */
1293	return cset_cgroup_from_root(task_css_set(task), root);
1294}
1295
1296/*
1297 * A task must hold cgroup_mutex to modify cgroups.
1298 *
1299 * Any task can increment and decrement the count field without lock.
1300 * So in general, code holding cgroup_mutex can't rely on the count
1301 * field not changing.  However, if the count goes to zero, then only
1302 * cgroup_attach_task() can increment it again.  Because a count of zero
1303 * means that no tasks are currently attached, therefore there is no
1304 * way a task attached to that cgroup can fork (the other way to
1305 * increment the count).  So code holding cgroup_mutex can safely
1306 * assume that if the count is zero, it will stay zero. Similarly, if
1307 * a task holds cgroup_mutex on a cgroup with zero count, it
1308 * knows that the cgroup won't be removed, as cgroup_rmdir()
1309 * needs that mutex.
1310 *
 
 
 
 
 
 
 
 
1311 * A cgroup can only be deleted if both its 'count' of using tasks
1312 * is zero, and its list of 'children' cgroups is empty.  Since all
1313 * tasks in the system use _some_ cgroup, and since there is always at
1314 * least one task in the system (init, pid == 1), therefore, root cgroup
1315 * always has either children cgroups and/or using tasks.  So we don't
1316 * need a special hack to ensure that root cgroup cannot be deleted.
 
 
 
 
 
 
 
 
 
 
 
 
1317 *
1318 * P.S.  One more locking exception.  RCU is used to guard the
1319 * update of a tasks cgroup pointer by cgroup_attach_task()
1320 */
1321
1322static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1323static const struct file_operations proc_cgroupstats_operations;
1324
1325static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1326			      char *buf)
1327{
1328	struct cgroup_subsys *ss = cft->ss;
1329
1330	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1331	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1332		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1333			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1334			 cft->name);
1335	else
1336		strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1337	return buf;
1338}
1339
1340/**
1341 * cgroup_file_mode - deduce file mode of a control file
1342 * @cft: the control file in question
1343 *
1344 * S_IRUGO for read, S_IWUSR for write.
1345 */
1346static umode_t cgroup_file_mode(const struct cftype *cft)
1347{
1348	umode_t mode = 0;
1349
1350	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1351		mode |= S_IRUGO;
1352
1353	if (cft->write_u64 || cft->write_s64 || cft->write) {
1354		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1355			mode |= S_IWUGO;
1356		else
1357			mode |= S_IWUSR;
1358	}
1359
1360	return mode;
1361}
 
1362
1363/**
1364 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1365 * @subtree_control: the new subtree_control mask to consider
1366 * @this_ss_mask: available subsystems
1367 *
1368 * On the default hierarchy, a subsystem may request other subsystems to be
1369 * enabled together through its ->depends_on mask.  In such cases, more
1370 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1371 *
1372 * This function calculates which subsystems need to be enabled if
1373 * @subtree_control is to be applied while restricted to @this_ss_mask.
1374 */
1375static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1376{
1377	u16 cur_ss_mask = subtree_control;
1378	struct cgroup_subsys *ss;
1379	int ssid;
1380
1381	lockdep_assert_held(&cgroup_mutex);
 
 
 
 
 
1382
1383	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
 
 
 
 
 
1384
1385	while (true) {
1386		u16 new_ss_mask = cur_ss_mask;
 
 
1387
1388		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1389			new_ss_mask |= ss->depends_on;
1390		} while_each_subsys_mask();
1391
1392		/*
1393		 * Mask out subsystems which aren't available.  This can
1394		 * happen only if some depended-upon subsystems were bound
1395		 * to non-default hierarchies.
1396		 */
1397		new_ss_mask &= this_ss_mask;
1398
1399		if (new_ss_mask == cur_ss_mask)
1400			break;
1401		cur_ss_mask = new_ss_mask;
 
 
 
 
1402	}
1403
1404	return cur_ss_mask;
1405}
1406
1407/**
1408 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1409 * @kn: the kernfs_node being serviced
1410 *
1411 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1412 * the method finishes if locking succeeded.  Note that once this function
1413 * returns the cgroup returned by cgroup_kn_lock_live() may become
1414 * inaccessible any time.  If the caller intends to continue to access the
1415 * cgroup, it should pin it before invoking this function.
1416 */
1417static void cgroup_kn_unlock(struct kernfs_node *kn)
1418{
1419	struct cgroup *cgrp;
 
1420
1421	if (kernfs_type(kn) == KERNFS_DIR)
1422		cgrp = kn->priv;
1423	else
1424		cgrp = kn->parent->priv;
1425
1426	mutex_unlock(&cgroup_mutex);
 
 
 
 
 
 
1427
1428	kernfs_unbreak_active_protection(kn);
1429	cgroup_put(cgrp);
1430}
1431
1432/**
1433 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1434 * @kn: the kernfs_node being serviced
1435 * @drain_offline: perform offline draining on the cgroup
1436 *
1437 * This helper is to be used by a cgroup kernfs method currently servicing
1438 * @kn.  It breaks the active protection, performs cgroup locking and
1439 * verifies that the associated cgroup is alive.  Returns the cgroup if
1440 * alive; otherwise, %NULL.  A successful return should be undone by a
1441 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1442 * cgroup is drained of offlining csses before return.
1443 *
1444 * Any cgroup kernfs method implementation which requires locking the
1445 * associated cgroup should use this helper.  It avoids nesting cgroup
1446 * locking under kernfs active protection and allows all kernfs operations
1447 * including self-removal.
1448 */
1449static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1450					  bool drain_offline)
1451{
1452	struct cgroup *cgrp;
 
 
 
 
 
 
 
 
 
 
 
1453
1454	if (kernfs_type(kn) == KERNFS_DIR)
1455		cgrp = kn->priv;
1456	else
1457		cgrp = kn->parent->priv;
 
 
1458
1459	/*
1460	 * We're gonna grab cgroup_mutex which nests outside kernfs
1461	 * active_ref.  cgroup liveliness check alone provides enough
1462	 * protection against removal.  Ensure @cgrp stays accessible and
1463	 * break the active_ref protection.
1464	 */
1465	if (!cgroup_tryget(cgrp))
1466		return NULL;
1467	kernfs_break_active_protection(kn);
1468
1469	if (drain_offline)
1470		cgroup_lock_and_drain_offline(cgrp);
1471	else
1472		mutex_lock(&cgroup_mutex);
 
1473
1474	if (!cgroup_is_dead(cgrp))
1475		return cgrp;
 
 
 
1476
1477	cgroup_kn_unlock(kn);
1478	return NULL;
 
 
 
 
 
 
 
 
 
1479}
1480
1481static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1482{
1483	char name[CGROUP_FILE_NAME_MAX];
 
1484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485	lockdep_assert_held(&cgroup_mutex);
1486
1487	if (cft->file_offset) {
1488		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1489		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1490
1491		spin_lock_irq(&cgroup_file_kn_lock);
1492		cfile->kn = NULL;
1493		spin_unlock_irq(&cgroup_file_kn_lock);
1494	}
1495
1496	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
 
 
 
 
 
 
 
 
1497}
1498
1499/**
1500 * css_clear_dir - remove subsys files in a cgroup directory
1501 * @css: taget css
1502 */
1503static void css_clear_dir(struct cgroup_subsys_state *css)
1504{
1505	struct cgroup *cgrp = css->cgroup;
1506	struct cftype *cfts;
1507
1508	if (!(css->flags & CSS_VISIBLE))
1509		return;
1510
1511	css->flags &= ~CSS_VISIBLE;
1512
1513	list_for_each_entry(cfts, &css->ss->cfts, node)
1514		cgroup_addrm_files(css, cgrp, cfts, false);
1515}
1516
1517/**
1518 * css_populate_dir - create subsys files in a cgroup directory
1519 * @css: target css
1520 *
1521 * On failure, no file is added.
1522 */
1523static int css_populate_dir(struct cgroup_subsys_state *css)
1524{
1525	struct cgroup *cgrp = css->cgroup;
1526	struct cftype *cfts, *failed_cfts;
1527	int ret;
1528
1529	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1530		return 0;
1531
1532	if (!css->ss) {
1533		if (cgroup_on_dfl(cgrp))
1534			cfts = cgroup_dfl_base_files;
1535		else
1536			cfts = cgroup_legacy_base_files;
 
 
 
1537
1538		return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1539	}
 
 
 
 
 
 
 
1540
1541	list_for_each_entry(cfts, &css->ss->cfts, node) {
1542		ret = cgroup_addrm_files(css, cgrp, cfts, true);
1543		if (ret < 0) {
1544			failed_cfts = cfts;
1545			goto err;
1546		}
1547	}
1548
1549	css->flags |= CSS_VISIBLE;
 
 
 
1550
1551	return 0;
1552err:
1553	list_for_each_entry(cfts, &css->ss->cfts, node) {
1554		if (cfts == failed_cfts)
1555			break;
1556		cgroup_addrm_files(css, cgrp, cfts, false);
1557	}
1558	return ret;
1559}
1560
1561static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
 
 
 
 
 
 
1562{
1563	struct cgroup *dcgrp = &dst_root->cgrp;
1564	struct cgroup_subsys *ss;
1565	int ssid, i, ret;
1566
1567	lockdep_assert_held(&cgroup_mutex);
 
1568
1569	do_each_subsys_mask(ss, ssid, ss_mask) {
 
 
 
 
 
 
 
1570		/*
1571		 * If @ss has non-root csses attached to it, can't move.
1572		 * If @ss is an implicit controller, it is exempt from this
1573		 * rule and can be stolen.
1574		 */
1575		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1576		    !ss->implicit_on_dfl)
 
1577			return -EBUSY;
 
 
1578
1579		/* can't move between two non-dummy roots either */
1580		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1581			return -EBUSY;
1582	} while_each_subsys_mask();
 
 
1583
1584	do_each_subsys_mask(ss, ssid, ss_mask) {
1585		struct cgroup_root *src_root = ss->root;
1586		struct cgroup *scgrp = &src_root->cgrp;
1587		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1588		struct css_set *cset;
1589
1590		WARN_ON(!css || cgroup_css(dcgrp, ss));
1591
1592		/* disable from the source */
1593		src_root->subsys_mask &= ~(1 << ssid);
1594		WARN_ON(cgroup_apply_control(scgrp));
1595		cgroup_finalize_control(scgrp, 0);
1596
1597		/* rebind */
1598		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1599		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1600		ss->root = dst_root;
1601		css->cgroup = dcgrp;
1602
1603		spin_lock_bh(&css_set_lock);
1604		hash_for_each(css_set_table, i, cset, hlist)
1605			list_move_tail(&cset->e_cset_node[ss->id],
1606				       &dcgrp->e_csets[ss->id]);
1607		spin_unlock_bh(&css_set_lock);
1608
1609		/* default hierarchy doesn't enable controllers by default */
1610		dst_root->subsys_mask |= 1 << ssid;
1611		if (dst_root == &cgrp_dfl_root) {
1612			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1613		} else {
1614			dcgrp->subtree_control |= 1 << ssid;
1615			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1616		}
 
 
 
1617
1618		ret = cgroup_apply_control(dcgrp);
1619		if (ret)
1620			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1621				ss->name, ret);
1622
1623		if (ss->bind)
1624			ss->bind(css);
1625	} while_each_subsys_mask();
1626
1627	kernfs_activate(dcgrp->kn);
1628	return 0;
1629}
1630
1631static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1632			    struct kernfs_root *kf_root)
1633{
1634	int len = 0;
1635	char *buf = NULL;
1636	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1637	struct cgroup *ns_cgroup;
1638
1639	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1640	if (!buf)
1641		return -ENOMEM;
1642
1643	spin_lock_bh(&css_set_lock);
1644	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1645	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1646	spin_unlock_bh(&css_set_lock);
1647
1648	if (len >= PATH_MAX)
1649		len = -ERANGE;
1650	else if (len > 0) {
1651		seq_escape(sf, buf, " \t\n\\");
1652		len = 0;
1653	}
1654	kfree(buf);
1655	return len;
1656}
1657
1658static int cgroup_show_options(struct seq_file *seq,
1659			       struct kernfs_root *kf_root)
1660{
1661	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1662	struct cgroup_subsys *ss;
1663	int ssid;
1664
1665	if (root != &cgrp_dfl_root)
1666		for_each_subsys(ss, ssid)
1667			if (root->subsys_mask & (1 << ssid))
1668				seq_show_option(seq, ss->legacy_name, NULL);
1669	if (root->flags & CGRP_ROOT_NOPREFIX)
1670		seq_puts(seq, ",noprefix");
1671	if (root->flags & CGRP_ROOT_XATTR)
1672		seq_puts(seq, ",xattr");
1673
1674	spin_lock(&release_agent_path_lock);
1675	if (strlen(root->release_agent_path))
1676		seq_show_option(seq, "release_agent",
1677				root->release_agent_path);
1678	spin_unlock(&release_agent_path_lock);
1679
1680	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1681		seq_puts(seq, ",clone_children");
1682	if (strlen(root->name))
1683		seq_show_option(seq, "name", root->name);
 
1684	return 0;
1685}
1686
1687struct cgroup_sb_opts {
1688	u16 subsys_mask;
1689	unsigned int flags;
1690	char *release_agent;
1691	bool cpuset_clone_children;
1692	char *name;
1693	/* User explicitly requested empty subsystem */
1694	bool none;
 
 
 
1695};
1696
 
 
 
 
 
 
1697static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1698{
1699	char *token, *o = data;
1700	bool all_ss = false, one_ss = false;
1701	u16 mask = U16_MAX;
1702	struct cgroup_subsys *ss;
1703	int nr_opts = 0;
1704	int i;
 
 
 
1705
1706#ifdef CONFIG_CPUSETS
1707	mask = ~((u16)1 << cpuset_cgrp_id);
1708#endif
1709
1710	memset(opts, 0, sizeof(*opts));
1711
1712	while ((token = strsep(&o, ",")) != NULL) {
1713		nr_opts++;
1714
1715		if (!*token)
1716			return -EINVAL;
1717		if (!strcmp(token, "none")) {
1718			/* Explicitly have no subsystems */
1719			opts->none = true;
1720			continue;
1721		}
1722		if (!strcmp(token, "all")) {
1723			/* Mutually exclusive option 'all' + subsystem name */
1724			if (one_ss)
1725				return -EINVAL;
1726			all_ss = true;
1727			continue;
1728		}
1729		if (!strcmp(token, "noprefix")) {
1730			opts->flags |= CGRP_ROOT_NOPREFIX;
1731			continue;
1732		}
1733		if (!strcmp(token, "clone_children")) {
1734			opts->cpuset_clone_children = true;
1735			continue;
1736		}
1737		if (!strcmp(token, "xattr")) {
1738			opts->flags |= CGRP_ROOT_XATTR;
1739			continue;
1740		}
1741		if (!strncmp(token, "release_agent=", 14)) {
1742			/* Specifying two release agents is forbidden */
1743			if (opts->release_agent)
1744				return -EINVAL;
1745			opts->release_agent =
1746				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1747			if (!opts->release_agent)
1748				return -ENOMEM;
1749			continue;
1750		}
1751		if (!strncmp(token, "name=", 5)) {
1752			const char *name = token + 5;
1753			/* Can't specify an empty name */
1754			if (!strlen(name))
1755				return -EINVAL;
1756			/* Must match [\w.-]+ */
1757			for (i = 0; i < strlen(name); i++) {
1758				char c = name[i];
1759				if (isalnum(c))
1760					continue;
1761				if ((c == '.') || (c == '-') || (c == '_'))
1762					continue;
1763				return -EINVAL;
1764			}
1765			/* Specifying two names is forbidden */
1766			if (opts->name)
1767				return -EINVAL;
1768			opts->name = kstrndup(name,
1769					      MAX_CGROUP_ROOT_NAMELEN - 1,
1770					      GFP_KERNEL);
1771			if (!opts->name)
1772				return -ENOMEM;
1773
1774			continue;
1775		}
1776
1777		for_each_subsys(ss, i) {
1778			if (strcmp(token, ss->legacy_name))
 
1779				continue;
1780			if (!cgroup_ssid_enabled(i))
1781				continue;
1782			if (cgroup_ssid_no_v1(i))
1783				continue;
1784
1785			/* Mutually exclusive option 'all' + subsystem name */
1786			if (all_ss)
1787				return -EINVAL;
1788			opts->subsys_mask |= (1 << i);
1789			one_ss = true;
1790
1791			break;
1792		}
1793		if (i == CGROUP_SUBSYS_COUNT)
1794			return -ENOENT;
1795	}
1796
1797	/*
1798	 * If the 'all' option was specified select all the subsystems,
1799	 * otherwise if 'none', 'name=' and a subsystem name options were
1800	 * not specified, let's default to 'all'
1801	 */
1802	if (all_ss || (!one_ss && !opts->none && !opts->name))
1803		for_each_subsys(ss, i)
1804			if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1805				opts->subsys_mask |= (1 << i);
 
 
 
 
 
 
1806
1807	/*
1808	 * We either have to specify by name or by subsystems. (So all
1809	 * empty hierarchies must have a name).
1810	 */
1811	if (!opts->subsys_mask && !opts->name)
1812		return -EINVAL;
1813
1814	/*
1815	 * Option noprefix was introduced just for backward compatibility
1816	 * with the old cpuset, so we allow noprefix only if mounting just
1817	 * the cpuset subsystem.
1818	 */
1819	if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
 
1820		return -EINVAL;
1821
 
1822	/* Can't specify "none" and some subsystems */
1823	if (opts->subsys_mask && opts->none)
1824		return -EINVAL;
1825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826	return 0;
1827}
1828
1829static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1830{
1831	int ret = 0;
1832	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1833	struct cgroup_sb_opts opts;
1834	u16 added_mask, removed_mask;
1835
1836	if (root == &cgrp_dfl_root) {
1837		pr_err("remount is not allowed\n");
1838		return -EINVAL;
1839	}
 
1840
1841	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
 
 
 
 
 
 
 
 
 
1842
1843	/* See what subsystems are wanted */
1844	ret = parse_cgroupfs_options(data, &opts);
1845	if (ret)
1846		goto out_unlock;
1847
1848	if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1849		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1850			task_tgid_nr(current), current->comm);
1851
1852	added_mask = opts.subsys_mask & ~root->subsys_mask;
1853	removed_mask = root->subsys_mask & ~opts.subsys_mask;
1854
1855	/* Don't allow flags or name to change at remount */
1856	if ((opts.flags ^ root->flags) ||
1857	    (opts.name && strcmp(opts.name, root->name))) {
1858		pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1859		       opts.flags, opts.name ?: "", root->flags, root->name);
1860		ret = -EINVAL;
 
1861		goto out_unlock;
1862	}
1863
1864	/* remounting is not allowed for populated hierarchies */
1865	if (!list_empty(&root->cgrp.self.children)) {
1866		ret = -EBUSY;
1867		goto out_unlock;
1868	}
1869
1870	ret = rebind_subsystems(root, added_mask);
1871	if (ret)
1872		goto out_unlock;
1873
1874	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1875
1876	if (opts.release_agent) {
1877		spin_lock(&release_agent_path_lock);
1878		strcpy(root->release_agent_path, opts.release_agent);
1879		spin_unlock(&release_agent_path_lock);
1880	}
1881 out_unlock:
1882	kfree(opts.release_agent);
1883	kfree(opts.name);
 
1884	mutex_unlock(&cgroup_mutex);
 
1885	return ret;
1886}
1887
1888/*
1889 * To reduce the fork() overhead for systems that are not actually using
1890 * their cgroups capability, we don't maintain the lists running through
1891 * each css_set to its tasks until we see the list actually used - in other
1892 * words after the first mount.
1893 */
1894static bool use_task_css_set_links __read_mostly;
1895
1896static void cgroup_enable_task_cg_lists(void)
1897{
1898	struct task_struct *p, *g;
1899
1900	spin_lock_bh(&css_set_lock);
 
 
 
 
 
 
 
1901
1902	if (use_task_css_set_links)
1903		goto out_unlock;
 
1904
1905	use_task_css_set_links = true;
 
 
 
 
 
 
 
 
1906
1907	/*
1908	 * We need tasklist_lock because RCU is not safe against
1909	 * while_each_thread(). Besides, a forking task that has passed
1910	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1911	 * is not guaranteed to have its child immediately visible in the
1912	 * tasklist if we walk through it with RCU.
1913	 */
1914	read_lock(&tasklist_lock);
1915	do_each_thread(g, p) {
1916		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1917			     task_css_set(p) != &init_css_set);
1918
1919		/*
1920		 * We should check if the process is exiting, otherwise
1921		 * it will race with cgroup_exit() in that the list
1922		 * entry won't be deleted though the process has exited.
1923		 * Do it while holding siglock so that we don't end up
1924		 * racing against cgroup_exit().
1925		 */
1926		spin_lock_irq(&p->sighand->siglock);
1927		if (!(p->flags & PF_EXITING)) {
1928			struct css_set *cset = task_css_set(p);
1929
1930			if (!css_set_populated(cset))
1931				css_set_update_populated(cset, true);
1932			list_add_tail(&p->cg_list, &cset->tasks);
1933			get_css_set(cset);
1934		}
1935		spin_unlock_irq(&p->sighand->siglock);
1936	} while_each_thread(g, p);
1937	read_unlock(&tasklist_lock);
1938out_unlock:
1939	spin_unlock_bh(&css_set_lock);
1940}
1941
1942static void init_cgroup_housekeeping(struct cgroup *cgrp)
1943{
1944	struct cgroup_subsys *ss;
1945	int ssid;
1946
1947	INIT_LIST_HEAD(&cgrp->self.sibling);
1948	INIT_LIST_HEAD(&cgrp->self.children);
1949	INIT_LIST_HEAD(&cgrp->cset_links);
1950	INIT_LIST_HEAD(&cgrp->pidlists);
1951	mutex_init(&cgrp->pidlist_mutex);
1952	cgrp->self.cgroup = cgrp;
1953	cgrp->self.flags |= CSS_ONLINE;
1954
1955	for_each_subsys(ss, ssid)
1956		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
 
 
 
 
 
1957
1958	init_waitqueue_head(&cgrp->offline_waitq);
1959	INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1960}
1961
1962static void init_cgroup_root(struct cgroup_root *root,
1963			     struct cgroup_sb_opts *opts)
1964{
1965	struct cgroup *cgrp = &root->cgrp;
1966
1967	INIT_LIST_HEAD(&root->root_list);
1968	atomic_set(&root->nr_cgrps, 1);
1969	cgrp->root = root;
1970	init_cgroup_housekeeping(cgrp);
1971	idr_init(&root->cgroup_idr);
1972
 
 
 
 
 
 
 
 
 
 
 
1973	root->flags = opts->flags;
1974	if (opts->release_agent)
1975		strcpy(root->release_agent_path, opts->release_agent);
1976	if (opts->name)
1977		strcpy(root->name, opts->name);
1978	if (opts->cpuset_clone_children)
1979		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
 
1980}
1981
1982static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1983{
1984	LIST_HEAD(tmp_links);
1985	struct cgroup *root_cgrp = &root->cgrp;
1986	struct css_set *cset;
1987	int i, ret;
1988
1989	lockdep_assert_held(&cgroup_mutex);
 
 
 
 
 
1990
1991	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1992	if (ret < 0)
1993		goto out;
1994	root_cgrp->id = ret;
1995	root_cgrp->ancestor_ids[0] = ret;
1996
1997	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1998			      GFP_KERNEL);
1999	if (ret)
2000		goto out;
2001
2002	/*
2003	 * We're accessing css_set_count without locking css_set_lock here,
2004	 * but that's OK - it can only be increased by someone holding
2005	 * cgroup_lock, and that's us.  Later rebinding may disable
2006	 * controllers on the default hierarchy and thus create new csets,
2007	 * which can't be more than the existing ones.  Allocate 2x.
2008	 */
2009	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2010	if (ret)
2011		goto cancel_ref;
2012
2013	ret = cgroup_init_root_id(root);
2014	if (ret)
2015		goto cancel_ref;
2016
2017	root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2018					   KERNFS_ROOT_CREATE_DEACTIVATED,
2019					   root_cgrp);
2020	if (IS_ERR(root->kf_root)) {
2021		ret = PTR_ERR(root->kf_root);
2022		goto exit_root_id;
2023	}
2024	root_cgrp->kn = root->kf_root->kn;
2025
2026	ret = css_populate_dir(&root_cgrp->self);
2027	if (ret)
2028		goto destroy_root;
 
2029
2030	ret = rebind_subsystems(root, ss_mask);
2031	if (ret)
2032		goto destroy_root;
2033
2034	/*
2035	 * There must be no failure case after here, since rebinding takes
2036	 * care of subsystems' refcounts, which are explicitly dropped in
2037	 * the failure exit path.
2038	 */
2039	list_add(&root->root_list, &cgroup_roots);
2040	cgroup_root_count++;
2041
2042	/*
2043	 * Link the root cgroup in this hierarchy into all the css_set
2044	 * objects.
2045	 */
2046	spin_lock_bh(&css_set_lock);
2047	hash_for_each(css_set_table, i, cset, hlist) {
2048		link_css_set(&tmp_links, cset, root_cgrp);
2049		if (css_set_populated(cset))
2050			cgroup_update_populated(root_cgrp, true);
2051	}
2052	spin_unlock_bh(&css_set_lock);
2053
2054	BUG_ON(!list_empty(&root_cgrp->self.children));
2055	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2056
2057	kernfs_activate(root_cgrp->kn);
2058	ret = 0;
2059	goto out;
2060
2061destroy_root:
2062	kernfs_destroy_root(root->kf_root);
2063	root->kf_root = NULL;
2064exit_root_id:
2065	cgroup_exit_root_id(root);
2066cancel_ref:
2067	percpu_ref_exit(&root_cgrp->self.refcnt);
2068out:
2069	free_cgrp_cset_links(&tmp_links);
2070	return ret;
2071}
2072
2073static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2074			 int flags, const char *unused_dev_name,
2075			 void *data)
2076{
2077	bool is_v2 = fs_type == &cgroup2_fs_type;
2078	struct super_block *pinned_sb = NULL;
2079	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2080	struct cgroup_subsys *ss;
2081	struct cgroup_root *root;
2082	struct cgroup_sb_opts opts;
2083	struct dentry *dentry;
2084	int ret;
2085	int i;
2086	bool new_sb;
2087
2088	get_cgroup_ns(ns);
2089
2090	/* Check if the caller has permission to mount. */
2091	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2092		put_cgroup_ns(ns);
2093		return ERR_PTR(-EPERM);
2094	}
2095
2096	/*
2097	 * The first time anyone tries to mount a cgroup, enable the list
2098	 * linking each css_set to its tasks and fix up all existing tasks.
2099	 */
2100	if (!use_task_css_set_links)
2101		cgroup_enable_task_cg_lists();
2102
2103	if (is_v2) {
2104		if (data) {
2105			pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2106			put_cgroup_ns(ns);
2107			return ERR_PTR(-EINVAL);
2108		}
2109		cgrp_dfl_visible = true;
2110		root = &cgrp_dfl_root;
2111		cgroup_get(&root->cgrp);
2112		goto out_mount;
2113	}
2114
2115	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2116
2117	/* First find the desired set of subsystems */
 
2118	ret = parse_cgroupfs_options(data, &opts);
 
2119	if (ret)
2120		goto out_unlock;
2121
2122	/*
2123	 * Destruction of cgroup root is asynchronous, so subsystems may
2124	 * still be dying after the previous unmount.  Let's drain the
2125	 * dying subsystems.  We just need to ensure that the ones
2126	 * unmounted previously finish dying and don't care about new ones
2127	 * starting.  Testing ref liveliness is good enough.
2128	 */
2129	for_each_subsys(ss, i) {
2130		if (!(opts.subsys_mask & (1 << i)) ||
2131		    ss->root == &cgrp_dfl_root)
2132			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133
2134		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2135			mutex_unlock(&cgroup_mutex);
2136			msleep(10);
2137			ret = restart_syscall();
2138			goto out_free;
2139		}
2140		cgroup_put(&ss->root->cgrp);
2141	}
2142
2143	for_each_root(root) {
2144		bool name_match = false;
 
 
2145
2146		if (root == &cgrp_dfl_root)
2147			continue;
 
2148
2149		/*
2150		 * If we asked for a name then it must match.  Also, if
2151		 * name matches but sybsys_mask doesn't, we should fail.
2152		 * Remember whether name matched.
2153		 */
2154		if (opts.name) {
2155			if (strcmp(opts.name, root->name))
2156				continue;
2157			name_match = true;
2158		}
2159
2160		/*
2161		 * If we asked for subsystems (or explicitly for no
2162		 * subsystems) then they must match.
 
 
 
2163		 */
2164		if ((opts.subsys_mask || opts.none) &&
2165		    (opts.subsys_mask != root->subsys_mask)) {
2166			if (!name_match)
2167				continue;
2168			ret = -EBUSY;
2169			goto out_unlock;
2170		}
2171
2172		if (root->flags ^ opts.flags)
2173			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2174
 
 
 
 
 
2175		/*
2176		 * We want to reuse @root whose lifetime is governed by its
2177		 * ->cgrp.  Let's check whether @root is alive and keep it
2178		 * that way.  As cgroup_kill_sb() can happen anytime, we
2179		 * want to block it by pinning the sb so that @root doesn't
2180		 * get killed before mount is complete.
2181		 *
2182		 * With the sb pinned, tryget_live can reliably indicate
2183		 * whether @root can be reused.  If it's being killed,
2184		 * drain it.  We can use wait_queue for the wait but this
2185		 * path is super cold.  Let's just sleep a bit and retry.
2186		 */
2187		pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2188		if (IS_ERR(pinned_sb) ||
2189		    !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2190			mutex_unlock(&cgroup_mutex);
2191			if (!IS_ERR_OR_NULL(pinned_sb))
2192				deactivate_super(pinned_sb);
2193			msleep(10);
2194			ret = restart_syscall();
2195			goto out_free;
2196		}
2197
2198		ret = 0;
2199		goto out_unlock;
2200	}
2201
2202	/*
2203	 * No such thing, create a new one.  name= matching without subsys
2204	 * specification is allowed for already existing hierarchies but we
2205	 * can't create new one without subsys specification.
2206	 */
2207	if (!opts.subsys_mask && !opts.none) {
2208		ret = -EINVAL;
2209		goto out_unlock;
2210	}
2211
2212	/*
2213	 * We know this subsystem has not yet been bound.  Users in a non-init
2214	 * user namespace may only mount hierarchies with no bound subsystems,
2215	 * i.e. 'none,name=user1'
2216	 */
2217	if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2218		ret = -EPERM;
2219		goto out_unlock;
2220	}
2221
2222	root = kzalloc(sizeof(*root), GFP_KERNEL);
2223	if (!root) {
2224		ret = -ENOMEM;
2225		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2226	}
2227
2228	init_cgroup_root(root, &opts);
2229
2230	ret = cgroup_setup_root(root, opts.subsys_mask);
2231	if (ret)
2232		cgroup_free_root(root);
2233
2234out_unlock:
 
2235	mutex_unlock(&cgroup_mutex);
2236out_free:
 
 
 
 
 
2237	kfree(opts.release_agent);
2238	kfree(opts.name);
 
 
2239
2240	if (ret) {
2241		put_cgroup_ns(ns);
2242		return ERR_PTR(ret);
2243	}
2244out_mount:
2245	dentry = kernfs_mount(fs_type, flags, root->kf_root,
2246			      is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2247			      &new_sb);
2248
2249	/*
2250	 * In non-init cgroup namespace, instead of root cgroup's
2251	 * dentry, we return the dentry corresponding to the
2252	 * cgroupns->root_cgrp.
2253	 */
2254	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2255		struct dentry *nsdentry;
2256		struct cgroup *cgrp;
2257
2258		mutex_lock(&cgroup_mutex);
2259		spin_lock_bh(&css_set_lock);
2260
2261		cgrp = cset_cgroup_from_root(ns->root_cset, root);
2262
2263		spin_unlock_bh(&css_set_lock);
2264		mutex_unlock(&cgroup_mutex);
 
2265
2266		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2267		dput(dentry);
2268		dentry = nsdentry;
2269	}
2270
2271	if (IS_ERR(dentry) || !new_sb)
2272		cgroup_put(&root->cgrp);
 
 
2273
2274	/*
2275	 * If @pinned_sb, we're reusing an existing root and holding an
2276	 * extra ref on its sb.  Mount is complete.  Put the extra ref.
2277	 */
2278	if (pinned_sb) {
2279		WARN_ON(new_sb);
2280		deactivate_super(pinned_sb);
2281	}
2282
2283	put_cgroup_ns(ns);
2284	return dentry;
2285}
 
 
 
 
2286
2287static void cgroup_kill_sb(struct super_block *sb)
2288{
2289	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2290	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2291
2292	/*
2293	 * If @root doesn't have any mounts or children, start killing it.
2294	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2295	 * cgroup_mount() may wait for @root's release.
2296	 *
2297	 * And don't kill the default root.
2298	 */
2299	if (!list_empty(&root->cgrp.self.children) ||
2300	    root == &cgrp_dfl_root)
2301		cgroup_put(&root->cgrp);
2302	else
2303		percpu_ref_kill(&root->cgrp.self.refcnt);
2304
2305	kernfs_kill_sb(sb);
 
2306}
2307
2308static struct file_system_type cgroup_fs_type = {
2309	.name = "cgroup",
2310	.mount = cgroup_mount,
2311	.kill_sb = cgroup_kill_sb,
2312	.fs_flags = FS_USERNS_MOUNT,
2313};
2314
2315static struct file_system_type cgroup2_fs_type = {
2316	.name = "cgroup2",
2317	.mount = cgroup_mount,
2318	.kill_sb = cgroup_kill_sb,
2319	.fs_flags = FS_USERNS_MOUNT,
2320};
2321
2322static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2323				   struct cgroup_namespace *ns)
2324{
2325	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2326	int ret;
2327
2328	ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2329	if (ret < 0 || ret >= buflen)
2330		return NULL;
2331	return buf;
2332}
2333
2334char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2335		     struct cgroup_namespace *ns)
2336{
2337	char *ret;
2338
2339	mutex_lock(&cgroup_mutex);
2340	spin_lock_bh(&css_set_lock);
2341
2342	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2343
2344	spin_unlock_bh(&css_set_lock);
2345	mutex_unlock(&cgroup_mutex);
2346
2347	return ret;
2348}
2349EXPORT_SYMBOL_GPL(cgroup_path_ns);
2350
2351/**
2352 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2353 * @task: target task
2354 * @buf: the buffer to write the path into
2355 * @buflen: the length of the buffer
2356 *
2357 * Determine @task's cgroup on the first (the one with the lowest non-zero
2358 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2359 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2360 * cgroup controller callbacks.
2361 *
2362 * Return value is the same as kernfs_path().
2363 */
2364char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2365{
2366	struct cgroup_root *root;
2367	struct cgroup *cgrp;
2368	int hierarchy_id = 1;
2369	char *path = NULL;
2370
2371	mutex_lock(&cgroup_mutex);
2372	spin_lock_bh(&css_set_lock);
2373
2374	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2375
2376	if (root) {
2377		cgrp = task_cgroup_from_root(task, root);
2378		path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2379	} else {
2380		/* if no hierarchy exists, everyone is in "/" */
2381		if (strlcpy(buf, "/", buflen) < buflen)
2382			path = buf;
2383	}
2384
2385	spin_unlock_bh(&css_set_lock);
2386	mutex_unlock(&cgroup_mutex);
2387	return path;
2388}
2389EXPORT_SYMBOL_GPL(task_cgroup_path);
2390
2391/* used to track tasks and other necessary states during migration */
2392struct cgroup_taskset {
2393	/* the src and dst cset list running through cset->mg_node */
2394	struct list_head	src_csets;
2395	struct list_head	dst_csets;
2396
2397	/* the subsys currently being processed */
2398	int			ssid;
2399
2400	/*
2401	 * Fields for cgroup_taskset_*() iteration.
2402	 *
2403	 * Before migration is committed, the target migration tasks are on
2404	 * ->mg_tasks of the csets on ->src_csets.  After, on ->mg_tasks of
2405	 * the csets on ->dst_csets.  ->csets point to either ->src_csets
2406	 * or ->dst_csets depending on whether migration is committed.
2407	 *
2408	 * ->cur_csets and ->cur_task point to the current task position
2409	 * during iteration.
2410	 */
2411	struct list_head	*csets;
2412	struct css_set		*cur_cset;
2413	struct task_struct	*cur_task;
2414};
2415
2416#define CGROUP_TASKSET_INIT(tset)	(struct cgroup_taskset){	\
2417	.src_csets		= LIST_HEAD_INIT(tset.src_csets),	\
2418	.dst_csets		= LIST_HEAD_INIT(tset.dst_csets),	\
2419	.csets			= &tset.src_csets,			\
 
 
 
 
 
 
2420}
 
2421
2422/**
2423 * cgroup_taskset_add - try to add a migration target task to a taskset
2424 * @task: target task
2425 * @tset: target taskset
2426 *
2427 * Add @task, which is a migration target, to @tset.  This function becomes
2428 * noop if @task doesn't need to be migrated.  @task's css_set should have
2429 * been added as a migration source and @task->cg_list will be moved from
2430 * the css_set's tasks list to mg_tasks one.
2431 */
2432static void cgroup_taskset_add(struct task_struct *task,
2433			       struct cgroup_taskset *tset)
2434{
2435	struct css_set *cset;
2436
2437	lockdep_assert_held(&css_set_lock);
2438
2439	/* @task either already exited or can't exit until the end */
2440	if (task->flags & PF_EXITING)
2441		return;
2442
2443	/* leave @task alone if post_fork() hasn't linked it yet */
2444	if (list_empty(&task->cg_list))
2445		return;
2446
2447	cset = task_css_set(task);
2448	if (!cset->mg_src_cgrp)
2449		return;
2450
2451	list_move_tail(&task->cg_list, &cset->mg_tasks);
2452	if (list_empty(&cset->mg_node))
2453		list_add_tail(&cset->mg_node, &tset->src_csets);
2454	if (list_empty(&cset->mg_dst_cset->mg_node))
2455		list_move_tail(&cset->mg_dst_cset->mg_node,
2456			       &tset->dst_csets);
2457}
2458
2459/**
2460 * cgroup_taskset_first - reset taskset and return the first task
2461 * @tset: taskset of interest
2462 * @dst_cssp: output variable for the destination css
2463 *
2464 * @tset iteration is initialized and the first task is returned.
2465 */
2466struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2467					 struct cgroup_subsys_state **dst_cssp)
2468{
2469	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2470	tset->cur_task = NULL;
2471
2472	return cgroup_taskset_next(tset, dst_cssp);
 
 
 
2473}
 
2474
2475/**
2476 * cgroup_taskset_next - iterate to the next task in taskset
2477 * @tset: taskset of interest
2478 * @dst_cssp: output variable for the destination css
2479 *
2480 * Return the next task in @tset.  Iteration must have been initialized
2481 * with cgroup_taskset_first().
2482 */
2483struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2484					struct cgroup_subsys_state **dst_cssp)
2485{
2486	struct css_set *cset = tset->cur_cset;
2487	struct task_struct *task = tset->cur_task;
2488
2489	while (&cset->mg_node != tset->csets) {
2490		if (!task)
2491			task = list_first_entry(&cset->mg_tasks,
2492						struct task_struct, cg_list);
2493		else
2494			task = list_next_entry(task, cg_list);
2495
2496		if (&task->cg_list != &cset->mg_tasks) {
2497			tset->cur_cset = cset;
2498			tset->cur_task = task;
2499
2500			/*
2501			 * This function may be called both before and
2502			 * after cgroup_taskset_migrate().  The two cases
2503			 * can be distinguished by looking at whether @cset
2504			 * has its ->mg_dst_cset set.
2505			 */
2506			if (cset->mg_dst_cset)
2507				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2508			else
2509				*dst_cssp = cset->subsys[tset->ssid];
2510
2511			return task;
2512		}
2513
2514		cset = list_next_entry(cset, mg_node);
2515		task = NULL;
2516	}
 
 
2517
2518	return NULL;
 
 
 
 
 
 
 
 
 
 
2519}
 
2520
2521/**
2522 * cgroup_taskset_migrate - migrate a taskset
2523 * @tset: taget taskset
2524 * @root: cgroup root the migration is taking place on
2525 *
2526 * Migrate tasks in @tset as setup by migration preparation functions.
2527 * This function fails iff one of the ->can_attach callbacks fails and
2528 * guarantees that either all or none of the tasks in @tset are migrated.
2529 * @tset is consumed regardless of success.
2530 */
2531static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2532				  struct cgroup_root *root)
2533{
2534	struct cgroup_subsys *ss;
2535	struct task_struct *task, *tmp_task;
2536	struct css_set *cset, *tmp_cset;
2537	int ssid, failed_ssid, ret;
2538
2539	/* methods shouldn't be called if no task is actually migrating */
2540	if (list_empty(&tset->src_csets))
2541		return 0;
2542
2543	/* check that we can legitimately attach to the cgroup */
2544	do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2545		if (ss->can_attach) {
2546			tset->ssid = ssid;
2547			ret = ss->can_attach(tset);
2548			if (ret) {
2549				failed_ssid = ssid;
2550				goto out_cancel_attach;
2551			}
2552		}
2553	} while_each_subsys_mask();
2554
2555	/*
2556	 * Now that we're guaranteed success, proceed to move all tasks to
2557	 * the new cgroup.  There are no failure cases after here, so this
2558	 * is the commit point.
2559	 */
2560	spin_lock_bh(&css_set_lock);
2561	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2562		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2563			struct css_set *from_cset = task_css_set(task);
2564			struct css_set *to_cset = cset->mg_dst_cset;
2565
2566			get_css_set(to_cset);
2567			css_set_move_task(task, from_cset, to_cset, true);
2568			put_css_set_locked(from_cset);
2569		}
2570	}
2571	spin_unlock_bh(&css_set_lock);
 
 
 
2572
2573	/*
2574	 * Migration is committed, all target tasks are now on dst_csets.
2575	 * Nothing is sensitive to fork() after this point.  Notify
2576	 * controllers that migration is complete.
2577	 */
2578	tset->csets = &tset->dst_csets;
2579
2580	do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2581		if (ss->attach) {
2582			tset->ssid = ssid;
2583			ss->attach(tset);
2584		}
2585	} while_each_subsys_mask();
2586
2587	ret = 0;
2588	goto out_release_tset;
2589
2590out_cancel_attach:
2591	do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2592		if (ssid == failed_ssid)
2593			break;
2594		if (ss->cancel_attach) {
2595			tset->ssid = ssid;
2596			ss->cancel_attach(tset);
2597		}
2598	} while_each_subsys_mask();
2599out_release_tset:
2600	spin_lock_bh(&css_set_lock);
2601	list_splice_init(&tset->dst_csets, &tset->src_csets);
2602	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2603		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2604		list_del_init(&cset->mg_node);
2605	}
2606	spin_unlock_bh(&css_set_lock);
2607	return ret;
2608}
2609
2610/**
2611 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2612 * @dst_cgrp: destination cgroup to test
 
2613 *
2614 * On the default hierarchy, except for the root, subtree_control must be
2615 * zero for migration destination cgroups with tasks so that child cgroups
2616 * don't compete against tasks.
2617 */
2618static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2619{
2620	return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2621		!dst_cgrp->subtree_control;
2622}
 
 
 
 
 
 
 
 
 
 
 
 
2623
2624/**
2625 * cgroup_migrate_finish - cleanup after attach
2626 * @preloaded_csets: list of preloaded css_sets
2627 *
2628 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2629 * those functions for details.
2630 */
2631static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2632{
2633	struct css_set *cset, *tmp_cset;
2634
2635	lockdep_assert_held(&cgroup_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636
2637	spin_lock_bh(&css_set_lock);
2638	list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2639		cset->mg_src_cgrp = NULL;
2640		cset->mg_dst_cgrp = NULL;
2641		cset->mg_dst_cset = NULL;
2642		list_del_init(&cset->mg_preload_node);
2643		put_css_set_locked(cset);
2644	}
2645	spin_unlock_bh(&css_set_lock);
2646}
2647
2648/**
2649 * cgroup_migrate_add_src - add a migration source css_set
2650 * @src_cset: the source css_set to add
2651 * @dst_cgrp: the destination cgroup
2652 * @preloaded_csets: list of preloaded css_sets
2653 *
2654 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2655 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2656 * up by cgroup_migrate_finish().
2657 *
2658 * This function may be called without holding cgroup_threadgroup_rwsem
2659 * even if the target is a process.  Threads may be created and destroyed
2660 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2661 * into play and the preloaded css_sets are guaranteed to cover all
2662 * migrations.
2663 */
2664static void cgroup_migrate_add_src(struct css_set *src_cset,
2665				   struct cgroup *dst_cgrp,
2666				   struct list_head *preloaded_csets)
2667{
2668	struct cgroup *src_cgrp;
2669
2670	lockdep_assert_held(&cgroup_mutex);
2671	lockdep_assert_held(&css_set_lock);
 
 
 
 
2672
2673	/*
2674	 * If ->dead, @src_set is associated with one or more dead cgroups
2675	 * and doesn't contain any migratable tasks.  Ignore it early so
2676	 * that the rest of migration path doesn't get confused by it.
2677	 */
2678	if (src_cset->dead)
2679		return;
2680
2681	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2682
2683	if (!list_empty(&src_cset->mg_preload_node))
2684		return;
2685
2686	WARN_ON(src_cset->mg_src_cgrp);
2687	WARN_ON(src_cset->mg_dst_cgrp);
2688	WARN_ON(!list_empty(&src_cset->mg_tasks));
2689	WARN_ON(!list_empty(&src_cset->mg_node));
2690
2691	src_cset->mg_src_cgrp = src_cgrp;
2692	src_cset->mg_dst_cgrp = dst_cgrp;
2693	get_css_set(src_cset);
2694	list_add(&src_cset->mg_preload_node, preloaded_csets);
2695}
2696
2697/**
2698 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2699 * @preloaded_csets: list of preloaded source css_sets
2700 *
2701 * Tasks are about to be moved and all the source css_sets have been
2702 * preloaded to @preloaded_csets.  This function looks up and pins all
2703 * destination css_sets, links each to its source, and append them to
2704 * @preloaded_csets.
2705 *
2706 * This function must be called after cgroup_migrate_add_src() has been
2707 * called on each migration source css_set.  After migration is performed
2708 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2709 * @preloaded_csets.
2710 */
2711static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2712{
2713	LIST_HEAD(csets);
2714	struct css_set *src_cset, *tmp_cset;
2715
2716	lockdep_assert_held(&cgroup_mutex);
2717
2718	/* look up the dst cset for each src cset and link it to src */
2719	list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2720		struct css_set *dst_cset;
2721
2722		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2723		if (!dst_cset)
2724			goto err;
2725
2726		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2727
2728		/*
2729		 * If src cset equals dst, it's noop.  Drop the src.
2730		 * cgroup_migrate() will skip the cset too.  Note that we
2731		 * can't handle src == dst as some nodes are used by both.
2732		 */
2733		if (src_cset == dst_cset) {
2734			src_cset->mg_src_cgrp = NULL;
2735			src_cset->mg_dst_cgrp = NULL;
2736			list_del_init(&src_cset->mg_preload_node);
2737			put_css_set(src_cset);
2738			put_css_set(dst_cset);
2739			continue;
2740		}
2741
2742		src_cset->mg_dst_cset = dst_cset;
 
 
2743
2744		if (list_empty(&dst_cset->mg_preload_node))
2745			list_add(&dst_cset->mg_preload_node, &csets);
2746		else
2747			put_css_set(dst_cset);
2748	}
 
2749
2750	list_splice_tail(&csets, preloaded_csets);
2751	return 0;
2752err:
2753	cgroup_migrate_finish(&csets);
2754	return -ENOMEM;
2755}
 
2756
2757/**
2758 * cgroup_migrate - migrate a process or task to a cgroup
2759 * @leader: the leader of the process or the task to migrate
2760 * @threadgroup: whether @leader points to the whole process or a single task
2761 * @root: cgroup root migration is taking place on
2762 *
2763 * Migrate a process or task denoted by @leader.  If migrating a process,
2764 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2765 * responsible for invoking cgroup_migrate_add_src() and
2766 * cgroup_migrate_prepare_dst() on the targets before invoking this
2767 * function and following up with cgroup_migrate_finish().
2768 *
2769 * As long as a controller's ->can_attach() doesn't fail, this function is
2770 * guaranteed to succeed.  This means that, excluding ->can_attach()
2771 * failure, when migrating multiple targets, the success or failure can be
2772 * decided for all targets by invoking group_migrate_prepare_dst() before
2773 * actually starting migrating.
2774 */
2775static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2776			  struct cgroup_root *root)
2777{
2778	struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2779	struct task_struct *task;
 
 
 
 
 
 
 
 
 
 
 
 
 
2780
 
 
2781	/*
2782	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2783	 * already PF_EXITING could be freed from underneath us unless we
2784	 * take an rcu_read_lock.
2785	 */
2786	spin_lock_bh(&css_set_lock);
2787	rcu_read_lock();
2788	task = leader;
2789	do {
2790		cgroup_taskset_add(task, &tset);
2791		if (!threadgroup)
2792			break;
2793	} while_each_thread(leader, task);
2794	rcu_read_unlock();
2795	spin_unlock_bh(&css_set_lock);
2796
2797	return cgroup_taskset_migrate(&tset, root);
2798}
2799
2800/**
2801 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2802 * @dst_cgrp: the cgroup to attach to
2803 * @leader: the task or the leader of the threadgroup to be attached
2804 * @threadgroup: attach the whole threadgroup?
2805 *
2806 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2807 */
2808static int cgroup_attach_task(struct cgroup *dst_cgrp,
2809			      struct task_struct *leader, bool threadgroup)
2810{
2811	LIST_HEAD(preloaded_csets);
2812	struct task_struct *task;
2813	int ret;
2814
2815	if (!cgroup_may_migrate_to(dst_cgrp))
2816		return -EBUSY;
2817
2818	/* look up all src csets */
2819	spin_lock_bh(&css_set_lock);
2820	rcu_read_lock();
2821	task = leader;
2822	do {
2823		cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2824				       &preloaded_csets);
2825		if (!threadgroup)
2826			break;
2827	} while_each_thread(leader, task);
 
 
 
 
 
2828	rcu_read_unlock();
2829	spin_unlock_bh(&css_set_lock);
2830
2831	/* prepare dst csets and commit */
2832	ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2833	if (!ret)
2834		ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2835
2836	cgroup_migrate_finish(&preloaded_csets);
2837	return ret;
2838}
2839
2840static int cgroup_procs_write_permission(struct task_struct *task,
2841					 struct cgroup *dst_cgrp,
2842					 struct kernfs_open_file *of)
2843{
2844	const struct cred *cred = current_cred();
2845	const struct cred *tcred = get_task_cred(task);
2846	int ret = 0;
2847
2848	/*
2849	 * even if we're attaching all tasks in the thread group, we only
2850	 * need to check permissions on one of them.
2851	 */
2852	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2853	    !uid_eq(cred->euid, tcred->uid) &&
2854	    !uid_eq(cred->euid, tcred->suid))
2855		ret = -EACCES;
 
 
 
 
 
2856
2857	if (!ret && cgroup_on_dfl(dst_cgrp)) {
2858		struct super_block *sb = of->file->f_path.dentry->d_sb;
2859		struct cgroup *cgrp;
2860		struct inode *inode;
 
 
 
 
 
 
 
 
2861
2862		spin_lock_bh(&css_set_lock);
2863		cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2864		spin_unlock_bh(&css_set_lock);
 
 
 
 
 
 
 
2865
2866		while (!cgroup_is_descendant(dst_cgrp, cgrp))
2867			cgrp = cgroup_parent(cgrp);
 
 
 
 
 
2868
2869		ret = -ENOMEM;
2870		inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2871		if (inode) {
2872			ret = inode_permission(inode, MAY_WRITE);
2873			iput(inode);
 
 
 
 
 
 
 
 
2874		}
2875	}
2876
2877	put_cred(tcred);
2878	return ret;
 
 
 
 
 
 
 
 
 
2879}
2880
2881/*
2882 * Find the task_struct of the task to attach by vpid and pass it along to the
2883 * function to attach either it or all tasks in its threadgroup. Will lock
2884 * cgroup_mutex and threadgroup.
2885 */
2886static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2887				    size_t nbytes, loff_t off, bool threadgroup)
2888{
2889	struct task_struct *tsk;
2890	struct cgroup_subsys *ss;
2891	struct cgroup *cgrp;
2892	pid_t pid;
2893	int ssid, ret;
2894
2895	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2896		return -EINVAL;
2897
2898	cgrp = cgroup_kn_lock_live(of->kn, false);
2899	if (!cgrp)
2900		return -ENODEV;
2901
2902	percpu_down_write(&cgroup_threadgroup_rwsem);
2903	rcu_read_lock();
2904	if (pid) {
2905		tsk = find_task_by_vpid(pid);
2906		if (!tsk) {
2907			ret = -ESRCH;
2908			goto out_unlock_rcu;
 
2909		}
2910	} else {
 
 
 
 
 
 
 
 
 
 
 
 
2911		tsk = current;
2912	}
2913
2914	if (threadgroup)
2915		tsk = tsk->group_leader;
2916
2917	/*
2918	 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2919	 * trapped in a cpuset, or RT worker may be born in a cgroup
2920	 * with no rt_runtime allocated.  Just say no.
2921	 */
2922	if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2923		ret = -EINVAL;
2924		goto out_unlock_rcu;
 
2925	}
2926
2927	get_task_struct(tsk);
2928	rcu_read_unlock();
2929
2930	ret = cgroup_procs_write_permission(tsk, cgrp, of);
2931	if (!ret)
2932		ret = cgroup_attach_task(cgrp, tsk, threadgroup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2933
2934	put_task_struct(tsk);
2935	goto out_unlock_threadgroup;
2936
2937out_unlock_rcu:
2938	rcu_read_unlock();
2939out_unlock_threadgroup:
2940	percpu_up_write(&cgroup_threadgroup_rwsem);
2941	for_each_subsys(ss, ssid)
2942		if (ss->post_attach)
2943			ss->post_attach();
2944	cgroup_kn_unlock(of->kn);
2945	return ret ?: nbytes;
2946}
2947
2948/**
2949 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2950 * @from: attach to all cgroups of a given task
2951 * @tsk: the task to be attached
2952 */
2953int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2954{
2955	struct cgroup_root *root;
2956	int retval = 0;
2957
2958	mutex_lock(&cgroup_mutex);
2959	for_each_root(root) {
2960		struct cgroup *from_cgrp;
2961
2962		if (root == &cgrp_dfl_root)
2963			continue;
2964
2965		spin_lock_bh(&css_set_lock);
2966		from_cgrp = task_cgroup_from_root(from, root);
2967		spin_unlock_bh(&css_set_lock);
2968
2969		retval = cgroup_attach_task(from_cgrp, tsk, false);
2970		if (retval)
2971			break;
2972	}
2973	mutex_unlock(&cgroup_mutex);
2974
2975	return retval;
2976}
2977EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2978
2979static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2980				  char *buf, size_t nbytes, loff_t off)
2981{
2982	return __cgroup_procs_write(of, buf, nbytes, off, false);
2983}
2984
2985static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2986				  char *buf, size_t nbytes, loff_t off)
 
 
 
 
 
 
2987{
2988	return __cgroup_procs_write(of, buf, nbytes, off, true);
 
 
 
 
 
2989}
 
2990
2991static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2992					  char *buf, size_t nbytes, loff_t off)
2993{
2994	struct cgroup *cgrp;
2995
2996	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2997
2998	cgrp = cgroup_kn_lock_live(of->kn, false);
2999	if (!cgrp)
3000		return -ENODEV;
3001	spin_lock(&release_agent_path_lock);
3002	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3003		sizeof(cgrp->root->release_agent_path));
3004	spin_unlock(&release_agent_path_lock);
3005	cgroup_kn_unlock(of->kn);
3006	return nbytes;
3007}
3008
3009static int cgroup_release_agent_show(struct seq_file *seq, void *v)
 
3010{
3011	struct cgroup *cgrp = seq_css(seq)->cgroup;
3012
3013	spin_lock(&release_agent_path_lock);
3014	seq_puts(seq, cgrp->root->release_agent_path);
3015	spin_unlock(&release_agent_path_lock);
3016	seq_putc(seq, '\n');
 
3017	return 0;
3018}
3019
3020static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3021{
3022	seq_puts(seq, "0\n");
3023	return 0;
3024}
3025
3026static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
 
 
 
3027{
3028	struct cgroup_subsys *ss;
3029	bool printed = false;
3030	int ssid;
3031
3032	do_each_subsys_mask(ss, ssid, ss_mask) {
3033		if (printed)
3034			seq_putc(seq, ' ');
3035		seq_printf(seq, "%s", ss->name);
3036		printed = true;
3037	} while_each_subsys_mask();
3038	if (printed)
3039		seq_putc(seq, '\n');
3040}
3041
3042/* show controllers which are enabled from the parent */
3043static int cgroup_controllers_show(struct seq_file *seq, void *v)
3044{
3045	struct cgroup *cgrp = seq_css(seq)->cgroup;
3046
3047	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3048	return 0;
3049}
3050
3051/* show controllers which are enabled for a given cgroup's children */
3052static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3053{
3054	struct cgroup *cgrp = seq_css(seq)->cgroup;
3055
3056	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3057	return 0;
3058}
3059
3060/**
3061 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3062 * @cgrp: root of the subtree to update csses for
3063 *
3064 * @cgrp's control masks have changed and its subtree's css associations
3065 * need to be updated accordingly.  This function looks up all css_sets
3066 * which are attached to the subtree, creates the matching updated css_sets
3067 * and migrates the tasks to the new ones.
3068 */
3069static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3070{
3071	LIST_HEAD(preloaded_csets);
3072	struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3073	struct cgroup_subsys_state *d_css;
3074	struct cgroup *dsct;
3075	struct css_set *src_cset;
3076	int ret;
3077
3078	lockdep_assert_held(&cgroup_mutex);
3079
3080	percpu_down_write(&cgroup_threadgroup_rwsem);
3081
3082	/* look up all csses currently attached to @cgrp's subtree */
3083	spin_lock_bh(&css_set_lock);
3084	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3085		struct cgrp_cset_link *link;
 
 
3086
3087		list_for_each_entry(link, &dsct->cset_links, cset_link)
3088			cgroup_migrate_add_src(link->cset, dsct,
3089					       &preloaded_csets);
 
 
 
 
 
 
 
 
3090	}
3091	spin_unlock_bh(&css_set_lock);
3092
3093	/* NULL dst indicates self on default hierarchy */
3094	ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3095	if (ret)
3096		goto out_finish;
3097
3098	spin_lock_bh(&css_set_lock);
3099	list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3100		struct task_struct *task, *ntask;
3101
3102		/* src_csets precede dst_csets, break on the first dst_cset */
3103		if (!src_cset->mg_src_cgrp)
3104			break;
3105
3106		/* all tasks in src_csets need to be migrated */
3107		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3108			cgroup_taskset_add(task, &tset);
3109	}
3110	spin_unlock_bh(&css_set_lock);
3111
3112	ret = cgroup_taskset_migrate(&tset, cgrp->root);
3113out_finish:
3114	cgroup_migrate_finish(&preloaded_csets);
3115	percpu_up_write(&cgroup_threadgroup_rwsem);
3116	return ret;
3117}
3118
3119/**
3120 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3121 * @cgrp: root of the target subtree
3122 *
3123 * Because css offlining is asynchronous, userland may try to re-enable a
3124 * controller while the previous css is still around.  This function grabs
3125 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3126 */
3127static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3128	__acquires(&cgroup_mutex)
3129{
3130	struct cgroup *dsct;
3131	struct cgroup_subsys_state *d_css;
3132	struct cgroup_subsys *ss;
3133	int ssid;
3134
3135restart:
3136	mutex_lock(&cgroup_mutex);
3137
3138	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3139		for_each_subsys(ss, ssid) {
3140			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3141			DEFINE_WAIT(wait);
3142
3143			if (!css || !percpu_ref_is_dying(&css->refcnt))
3144				continue;
3145
3146			cgroup_get(dsct);
3147			prepare_to_wait(&dsct->offline_waitq, &wait,
3148					TASK_UNINTERRUPTIBLE);
3149
3150			mutex_unlock(&cgroup_mutex);
3151			schedule();
3152			finish_wait(&dsct->offline_waitq, &wait);
3153
3154			cgroup_put(dsct);
3155			goto restart;
3156		}
 
 
 
 
 
 
3157	}
3158}
3159
3160/**
3161 * cgroup_save_control - save control masks of a subtree
3162 * @cgrp: root of the target subtree
3163 *
3164 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3165 * prefixed fields for @cgrp's subtree including @cgrp itself.
3166 */
3167static void cgroup_save_control(struct cgroup *cgrp)
3168{
3169	struct cgroup *dsct;
3170	struct cgroup_subsys_state *d_css;
3171
3172	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3173		dsct->old_subtree_control = dsct->subtree_control;
3174		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3175	}
3176}
3177
3178/**
3179 * cgroup_propagate_control - refresh control masks of a subtree
3180 * @cgrp: root of the target subtree
3181 *
3182 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3183 * ->subtree_control and propagate controller availability through the
3184 * subtree so that descendants don't have unavailable controllers enabled.
3185 */
3186static void cgroup_propagate_control(struct cgroup *cgrp)
3187{
3188	struct cgroup *dsct;
3189	struct cgroup_subsys_state *d_css;
3190
3191	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3192		dsct->subtree_control &= cgroup_control(dsct);
3193		dsct->subtree_ss_mask =
3194			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3195						    cgroup_ss_mask(dsct));
3196	}
3197}
3198
3199/**
3200 * cgroup_restore_control - restore control masks of a subtree
3201 * @cgrp: root of the target subtree
3202 *
3203 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3204 * prefixed fields for @cgrp's subtree including @cgrp itself.
3205 */
3206static void cgroup_restore_control(struct cgroup *cgrp)
3207{
3208	struct cgroup *dsct;
3209	struct cgroup_subsys_state *d_css;
3210
3211	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3212		dsct->subtree_control = dsct->old_subtree_control;
3213		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
 
 
 
 
 
 
 
 
3214	}
 
3215}
3216
3217static bool css_visible(struct cgroup_subsys_state *css)
 
 
 
3218{
3219	struct cgroup_subsys *ss = css->ss;
3220	struct cgroup *cgrp = css->cgroup;
 
3221
3222	if (cgroup_control(cgrp) & (1 << ss->id))
3223		return true;
3224	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3225		return false;
3226	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3227}
3228
3229/**
3230 * cgroup_apply_control_enable - enable or show csses according to control
3231 * @cgrp: root of the target subtree
3232 *
3233 * Walk @cgrp's subtree and create new csses or make the existing ones
3234 * visible.  A css is created invisible if it's being implicitly enabled
3235 * through dependency.  An invisible css is made visible when the userland
3236 * explicitly enables it.
3237 *
3238 * Returns 0 on success, -errno on failure.  On failure, csses which have
3239 * been processed already aren't cleaned up.  The caller is responsible for
3240 * cleaning up with cgroup_apply_control_disble().
3241 */
3242static int cgroup_apply_control_enable(struct cgroup *cgrp)
3243{
3244	struct cgroup *dsct;
3245	struct cgroup_subsys_state *d_css;
3246	struct cgroup_subsys *ss;
3247	int ssid, ret;
3248
3249	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3250		for_each_subsys(ss, ssid) {
3251			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3252
3253			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3254
3255			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3256				continue;
3257
3258			if (!css) {
3259				css = css_create(dsct, ss);
3260				if (IS_ERR(css))
3261					return PTR_ERR(css);
3262			}
3263
3264			if (css_visible(css)) {
3265				ret = css_populate_dir(css);
3266				if (ret)
3267					return ret;
3268			}
3269		}
3270	}
3271
3272	return 0;
3273}
3274
3275/**
3276 * cgroup_apply_control_disable - kill or hide csses according to control
3277 * @cgrp: root of the target subtree
3278 *
3279 * Walk @cgrp's subtree and kill and hide csses so that they match
3280 * cgroup_ss_mask() and cgroup_visible_mask().
3281 *
3282 * A css is hidden when the userland requests it to be disabled while other
3283 * subsystems are still depending on it.  The css must not actively control
3284 * resources and be in the vanilla state if it's made visible again later.
3285 * Controllers which may be depended upon should provide ->css_reset() for
3286 * this purpose.
3287 */
3288static void cgroup_apply_control_disable(struct cgroup *cgrp)
3289{
3290	struct cgroup *dsct;
3291	struct cgroup_subsys_state *d_css;
3292	struct cgroup_subsys *ss;
3293	int ssid;
3294
3295	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3296		for_each_subsys(ss, ssid) {
3297			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3298
3299			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3300
3301			if (!css)
3302				continue;
3303
3304			if (css->parent &&
3305			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3306				kill_css(css);
3307			} else if (!css_visible(css)) {
3308				css_clear_dir(css);
3309				if (ss->css_reset)
3310					ss->css_reset(css);
3311			}
3312		}
3313	}
3314}
3315
3316/**
3317 * cgroup_apply_control - apply control mask updates to the subtree
3318 * @cgrp: root of the target subtree
3319 *
3320 * subsystems can be enabled and disabled in a subtree using the following
3321 * steps.
3322 *
3323 * 1. Call cgroup_save_control() to stash the current state.
3324 * 2. Update ->subtree_control masks in the subtree as desired.
3325 * 3. Call cgroup_apply_control() to apply the changes.
3326 * 4. Optionally perform other related operations.
3327 * 5. Call cgroup_finalize_control() to finish up.
3328 *
3329 * This function implements step 3 and propagates the mask changes
3330 * throughout @cgrp's subtree, updates csses accordingly and perform
3331 * process migrations.
3332 */
3333static int cgroup_apply_control(struct cgroup *cgrp)
3334{
3335	int ret;
3336
3337	cgroup_propagate_control(cgrp);
3338
3339	ret = cgroup_apply_control_enable(cgrp);
3340	if (ret)
3341		return ret;
3342
3343	/*
3344	 * At this point, cgroup_e_css() results reflect the new csses
3345	 * making the following cgroup_update_dfl_csses() properly update
3346	 * css associations of all tasks in the subtree.
3347	 */
3348	ret = cgroup_update_dfl_csses(cgrp);
3349	if (ret)
3350		return ret;
3351
3352	return 0;
 
 
 
3353}
3354
3355/**
3356 * cgroup_finalize_control - finalize control mask update
3357 * @cgrp: root of the target subtree
3358 * @ret: the result of the update
3359 *
3360 * Finalize control mask update.  See cgroup_apply_control() for more info.
3361 */
3362static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3363{
3364	if (ret) {
3365		cgroup_restore_control(cgrp);
3366		cgroup_propagate_control(cgrp);
 
 
 
 
 
3367	}
3368
3369	cgroup_apply_control_disable(cgrp);
3370}
3371
3372/* change the enabled child controllers for a cgroup in the default hierarchy */
3373static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3374					    char *buf, size_t nbytes,
3375					    loff_t off)
3376{
3377	u16 enable = 0, disable = 0;
3378	struct cgroup *cgrp, *child;
3379	struct cgroup_subsys *ss;
3380	char *tok;
3381	int ssid, ret;
3382
3383	/*
3384	 * Parse input - space separated list of subsystem names prefixed
3385	 * with either + or -.
3386	 */
3387	buf = strstrip(buf);
3388	while ((tok = strsep(&buf, " "))) {
3389		if (tok[0] == '\0')
3390			continue;
3391		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3392			if (!cgroup_ssid_enabled(ssid) ||
3393			    strcmp(tok + 1, ss->name))
3394				continue;
3395
3396			if (*tok == '+') {
3397				enable |= 1 << ssid;
3398				disable &= ~(1 << ssid);
3399			} else if (*tok == '-') {
3400				disable |= 1 << ssid;
3401				enable &= ~(1 << ssid);
3402			} else {
3403				return -EINVAL;
3404			}
3405			break;
3406		} while_each_subsys_mask();
3407		if (ssid == CGROUP_SUBSYS_COUNT)
3408			return -EINVAL;
3409	}
3410
3411	cgrp = cgroup_kn_lock_live(of->kn, true);
3412	if (!cgrp)
3413		return -ENODEV;
3414
3415	for_each_subsys(ss, ssid) {
3416		if (enable & (1 << ssid)) {
3417			if (cgrp->subtree_control & (1 << ssid)) {
3418				enable &= ~(1 << ssid);
3419				continue;
3420			}
3421
3422			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3423				ret = -ENOENT;
3424				goto out_unlock;
3425			}
3426		} else if (disable & (1 << ssid)) {
3427			if (!(cgrp->subtree_control & (1 << ssid))) {
3428				disable &= ~(1 << ssid);
3429				continue;
3430			}
3431
3432			/* a child has it enabled? */
3433			cgroup_for_each_live_child(child, cgrp) {
3434				if (child->subtree_control & (1 << ssid)) {
3435					ret = -EBUSY;
3436					goto out_unlock;
3437				}
3438			}
3439		}
3440	}
3441
3442	if (!enable && !disable) {
3443		ret = 0;
3444		goto out_unlock;
3445	}
3446
3447	/*
3448	 * Except for the root, subtree_control must be zero for a cgroup
3449	 * with tasks so that child cgroups don't compete against tasks.
3450	 */
3451	if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3452		ret = -EBUSY;
3453		goto out_unlock;
3454	}
3455
3456	/* save and update control masks and prepare csses */
3457	cgroup_save_control(cgrp);
 
 
 
 
3458
3459	cgrp->subtree_control |= enable;
3460	cgrp->subtree_control &= ~disable;
 
 
3461
3462	ret = cgroup_apply_control(cgrp);
 
 
 
3463
3464	cgroup_finalize_control(cgrp, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3465
3466	kernfs_activate(cgrp->kn);
3467	ret = 0;
3468out_unlock:
3469	cgroup_kn_unlock(of->kn);
3470	return ret ?: nbytes;
3471}
3472
3473static int cgroup_events_show(struct seq_file *seq, void *v)
3474{
3475	seq_printf(seq, "populated %d\n",
3476		   cgroup_is_populated(seq_css(seq)->cgroup));
 
3477	return 0;
3478}
3479
3480static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3481				 size_t nbytes, loff_t off)
 
 
 
3482{
3483	struct cgroup *cgrp = of->kn->parent->priv;
3484	struct cftype *cft = of->kn->priv;
3485	struct cgroup_subsys_state *css;
3486	int ret;
3487
3488	if (cft->write)
3489		return cft->write(of, buf, nbytes, off);
3490
3491	/*
3492	 * kernfs guarantees that a file isn't deleted with operations in
3493	 * flight, which means that the matching css is and stays alive and
3494	 * doesn't need to be pinned.  The RCU locking is not necessary
3495	 * either.  It's just for the convenience of using cgroup_css().
3496	 */
3497	rcu_read_lock();
3498	css = cgroup_css(cgrp, cft->ss);
3499	rcu_read_unlock();
3500
3501	if (cft->write_u64) {
3502		unsigned long long v;
3503		ret = kstrtoull(buf, 0, &v);
3504		if (!ret)
3505			ret = cft->write_u64(css, cft, v);
3506	} else if (cft->write_s64) {
3507		long long v;
3508		ret = kstrtoll(buf, 0, &v);
3509		if (!ret)
3510			ret = cft->write_s64(css, cft, v);
3511	} else {
3512		ret = -EINVAL;
3513	}
3514
3515	return ret ?: nbytes;
3516}
 
 
 
 
3517
3518static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3519{
3520	return seq_cft(seq)->seq_start(seq, ppos);
 
 
 
3521}
3522
3523static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
 
 
 
3524{
3525	return seq_cft(seq)->seq_next(seq, v, ppos);
 
 
3526}
3527
3528static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
 
3529{
3530	seq_cft(seq)->seq_stop(seq, v);
3531}
3532
3533static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3534{
3535	struct cftype *cft = seq_cft(m);
3536	struct cgroup_subsys_state *css = seq_css(m);
3537
3538	if (cft->seq_show)
3539		return cft->seq_show(m, arg);
 
3540
3541	if (cft->read_u64)
3542		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3543	else if (cft->read_s64)
3544		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3545	else
3546		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
3547	return 0;
3548}
3549
3550static struct kernfs_ops cgroup_kf_single_ops = {
3551	.atomic_write_len	= PAGE_SIZE,
3552	.write			= cgroup_file_write,
3553	.seq_show		= cgroup_seqfile_show,
3554};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3555
3556static struct kernfs_ops cgroup_kf_ops = {
3557	.atomic_write_len	= PAGE_SIZE,
3558	.write			= cgroup_file_write,
3559	.seq_start		= cgroup_seqfile_start,
3560	.seq_next		= cgroup_seqfile_next,
3561	.seq_stop		= cgroup_seqfile_stop,
3562	.seq_show		= cgroup_seqfile_show,
3563};
3564
3565/*
3566 * cgroup_rename - Only allow simple rename of directories in place.
 
 
 
 
 
 
3567 */
3568static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3569			 const char *new_name_str)
3570{
3571	struct cgroup *cgrp = kn->priv;
3572	int ret;
3573
3574	if (kernfs_type(kn) != KERNFS_DIR)
3575		return -ENOTDIR;
3576	if (kn->parent != new_parent)
3577		return -EIO;
3578
3579	/*
3580	 * This isn't a proper migration and its usefulness is very
3581	 * limited.  Disallow on the default hierarchy.
3582	 */
3583	if (cgroup_on_dfl(cgrp))
3584		return -EPERM;
3585
3586	/*
3587	 * We're gonna grab cgroup_mutex which nests outside kernfs
3588	 * active_ref.  kernfs_rename() doesn't require active_ref
3589	 * protection.  Break them before grabbing cgroup_mutex.
3590	 */
3591	kernfs_break_active_protection(new_parent);
3592	kernfs_break_active_protection(kn);
3593
3594	mutex_lock(&cgroup_mutex);
 
3595
3596	ret = kernfs_rename(kn, new_parent, new_name_str);
 
 
3597
3598	mutex_unlock(&cgroup_mutex);
 
 
3599
3600	kernfs_unbreak_active_protection(kn);
3601	kernfs_unbreak_active_protection(new_parent);
3602	return ret;
3603}
3604
3605/* set uid and gid of cgroup dirs and files to that of the creator */
3606static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3607{
3608	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3609			       .ia_uid = current_fsuid(),
3610			       .ia_gid = current_fsgid(), };
 
 
 
 
3611
3612	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3613	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
 
 
3614		return 0;
3615
3616	return kernfs_setattr(kn, &iattr);
3617}
 
 
 
3618
3619static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3620			   struct cftype *cft)
3621{
3622	char name[CGROUP_FILE_NAME_MAX];
3623	struct kernfs_node *kn;
3624	struct lock_class_key *key = NULL;
3625	int ret;
3626
3627#ifdef CONFIG_DEBUG_LOCK_ALLOC
3628	key = &cft->lockdep_key;
3629#endif
3630	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3631				  cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3632				  NULL, key);
3633	if (IS_ERR(kn))
3634		return PTR_ERR(kn);
3635
3636	ret = cgroup_kn_set_ugid(kn);
3637	if (ret) {
3638		kernfs_remove(kn);
3639		return ret;
3640	}
3641
3642	if (cft->file_offset) {
3643		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3644
3645		spin_lock_irq(&cgroup_file_kn_lock);
3646		cfile->kn = kn;
3647		spin_unlock_irq(&cgroup_file_kn_lock);
 
 
3648	}
3649
3650	return 0;
 
 
3651}
3652
3653/**
3654 * cgroup_addrm_files - add or remove files to a cgroup directory
3655 * @css: the target css
3656 * @cgrp: the target cgroup (usually css->cgroup)
3657 * @cfts: array of cftypes to be added
3658 * @is_add: whether to add or remove
3659 *
3660 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3661 * For removals, this function never fails.
3662 */
3663static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3664			      struct cgroup *cgrp, struct cftype cfts[],
3665			      bool is_add)
3666{
3667	struct cftype *cft, *cft_end = NULL;
3668	int ret = 0;
3669
3670	lockdep_assert_held(&cgroup_mutex);
3671
3672restart:
3673	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3674		/* does cft->flags tell us to skip this file on @cgrp? */
3675		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3676			continue;
3677		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3678			continue;
3679		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3680			continue;
3681		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3682			continue;
3683
3684		if (is_add) {
3685			ret = cgroup_add_file(css, cgrp, cft);
3686			if (ret) {
3687				pr_warn("%s: failed to add %s, err=%d\n",
3688					__func__, cft->name, ret);
3689				cft_end = cft;
3690				is_add = false;
3691				goto restart;
3692			}
3693		} else {
3694			cgroup_rm_file(cgrp, cft);
3695		}
3696	}
3697	return ret;
3698}
3699
3700static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3701{
3702	LIST_HEAD(pending);
3703	struct cgroup_subsys *ss = cfts[0].ss;
3704	struct cgroup *root = &ss->root->cgrp;
3705	struct cgroup_subsys_state *css;
3706	int ret = 0;
3707
3708	lockdep_assert_held(&cgroup_mutex);
3709
3710	/* add/rm files for all cgroups created before */
3711	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3712		struct cgroup *cgrp = css->cgroup;
3713
3714		if (!(css->flags & CSS_VISIBLE))
3715			continue;
3716
3717		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3718		if (ret)
3719			break;
3720	}
3721
3722	if (is_add && !ret)
3723		kernfs_activate(root->kn);
3724	return ret;
3725}
3726
3727static void cgroup_exit_cftypes(struct cftype *cfts)
3728{
3729	struct cftype *cft;
3730
3731	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3732		/* free copy for custom atomic_write_len, see init_cftypes() */
3733		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3734			kfree(cft->kf_ops);
3735		cft->kf_ops = NULL;
3736		cft->ss = NULL;
3737
3738		/* revert flags set by cgroup core while adding @cfts */
3739		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3740	}
3741}
3742
3743static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
 
 
3744{
3745	struct cftype *cft;
3746
3747	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3748		struct kernfs_ops *kf_ops;
3749
3750		WARN_ON(cft->ss || cft->kf_ops);
3751
3752		if (cft->seq_start)
3753			kf_ops = &cgroup_kf_ops;
3754		else
3755			kf_ops = &cgroup_kf_single_ops;
3756
3757		/*
3758		 * Ugh... if @cft wants a custom max_write_len, we need to
3759		 * make a copy of kf_ops to set its atomic_write_len.
3760		 */
3761		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3762			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3763			if (!kf_ops) {
3764				cgroup_exit_cftypes(cfts);
3765				return -ENOMEM;
3766			}
3767			kf_ops->atomic_write_len = cft->max_write_len;
3768		}
3769
3770		cft->kf_ops = kf_ops;
3771		cft->ss = ss;
3772	}
3773
3774	return 0;
3775}
3776
3777static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3778{
3779	lockdep_assert_held(&cgroup_mutex);
3780
3781	if (!cfts || !cfts[0].ss)
3782		return -ENOENT;
 
 
 
 
3783
3784	list_del(&cfts->node);
3785	cgroup_apply_cftypes(cfts, false);
3786	cgroup_exit_cftypes(cfts);
3787	return 0;
3788}
 
3789
3790/**
3791 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3792 * @cfts: zero-length name terminated array of cftypes
3793 *
3794 * Unregister @cfts.  Files described by @cfts are removed from all
3795 * existing cgroups and all future cgroups won't have them either.  This
3796 * function can be called anytime whether @cfts' subsys is attached or not.
3797 *
3798 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3799 * registered.
3800 */
3801int cgroup_rm_cftypes(struct cftype *cfts)
3802{
3803	int ret;
3804
3805	mutex_lock(&cgroup_mutex);
3806	ret = cgroup_rm_cftypes_locked(cfts);
3807	mutex_unlock(&cgroup_mutex);
3808	return ret;
3809}
3810
3811/**
3812 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3813 * @ss: target cgroup subsystem
3814 * @cfts: zero-length name terminated array of cftypes
3815 *
3816 * Register @cfts to @ss.  Files described by @cfts are created for all
3817 * existing cgroups to which @ss is attached and all future cgroups will
3818 * have them too.  This function can be called anytime whether @ss is
3819 * attached or not.
3820 *
3821 * Returns 0 on successful registration, -errno on failure.  Note that this
3822 * function currently returns 0 as long as @cfts registration is successful
3823 * even if some file creation attempts on existing cgroups fail.
3824 */
3825static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3826{
3827	int ret;
3828
3829	if (!cgroup_ssid_enabled(ss->id))
3830		return 0;
3831
3832	if (!cfts || cfts[0].name[0] == '\0')
3833		return 0;
3834
3835	ret = cgroup_init_cftypes(ss, cfts);
3836	if (ret)
3837		return ret;
3838
3839	mutex_lock(&cgroup_mutex);
3840
3841	list_add_tail(&cfts->node, &ss->cfts);
3842	ret = cgroup_apply_cftypes(cfts, true);
3843	if (ret)
3844		cgroup_rm_cftypes_locked(cfts);
3845
3846	mutex_unlock(&cgroup_mutex);
3847	return ret;
3848}
 
3849
3850/**
3851 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3852 * @ss: target cgroup subsystem
3853 * @cfts: zero-length name terminated array of cftypes
3854 *
3855 * Similar to cgroup_add_cftypes() but the added files are only used for
3856 * the default hierarchy.
3857 */
3858int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3859{
3860	struct cftype *cft;
3861
3862	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3863		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3864	return cgroup_add_cftypes(ss, cfts);
3865}
3866
3867/**
3868 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3869 * @ss: target cgroup subsystem
3870 * @cfts: zero-length name terminated array of cftypes
3871 *
3872 * Similar to cgroup_add_cftypes() but the added files are only used for
3873 * the legacy hierarchies.
3874 */
3875int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3876{
3877	struct cftype *cft;
3878
3879	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3880		cft->flags |= __CFTYPE_NOT_ON_DFL;
3881	return cgroup_add_cftypes(ss, cfts);
3882}
3883
3884/**
3885 * cgroup_file_notify - generate a file modified event for a cgroup_file
3886 * @cfile: target cgroup_file
3887 *
3888 * @cfile must have been obtained by setting cftype->file_offset.
3889 */
3890void cgroup_file_notify(struct cgroup_file *cfile)
3891{
3892	unsigned long flags;
3893
3894	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3895	if (cfile->kn)
3896		kernfs_notify(cfile->kn);
3897	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3898}
3899
3900/**
3901 * cgroup_task_count - count the number of tasks in a cgroup.
3902 * @cgrp: the cgroup in question
3903 *
3904 * Return the number of tasks in the cgroup.
3905 */
3906static int cgroup_task_count(const struct cgroup *cgrp)
3907{
3908	int count = 0;
3909	struct cgrp_cset_link *link;
3910
3911	spin_lock_bh(&css_set_lock);
3912	list_for_each_entry(link, &cgrp->cset_links, cset_link)
3913		count += atomic_read(&link->cset->refcount);
3914	spin_unlock_bh(&css_set_lock);
3915	return count;
3916}
3917
3918/**
3919 * css_next_child - find the next child of a given css
3920 * @pos: the current position (%NULL to initiate traversal)
3921 * @parent: css whose children to walk
3922 *
3923 * This function returns the next child of @parent and should be called
3924 * under either cgroup_mutex or RCU read lock.  The only requirement is
3925 * that @parent and @pos are accessible.  The next sibling is guaranteed to
3926 * be returned regardless of their states.
3927 *
3928 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3929 * css which finished ->css_online() is guaranteed to be visible in the
3930 * future iterations and will stay visible until the last reference is put.
3931 * A css which hasn't finished ->css_online() or already finished
3932 * ->css_offline() may show up during traversal.  It's each subsystem's
3933 * responsibility to synchronize against on/offlining.
3934 */
3935struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3936					   struct cgroup_subsys_state *parent)
3937{
3938	struct cgroup_subsys_state *next;
3939
3940	cgroup_assert_mutex_or_rcu_locked();
3941
3942	/*
3943	 * @pos could already have been unlinked from the sibling list.
3944	 * Once a cgroup is removed, its ->sibling.next is no longer
3945	 * updated when its next sibling changes.  CSS_RELEASED is set when
3946	 * @pos is taken off list, at which time its next pointer is valid,
3947	 * and, as releases are serialized, the one pointed to by the next
3948	 * pointer is guaranteed to not have started release yet.  This
3949	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3950	 * critical section, the one pointed to by its next pointer is
3951	 * guaranteed to not have finished its RCU grace period even if we
3952	 * have dropped rcu_read_lock() inbetween iterations.
3953	 *
3954	 * If @pos has CSS_RELEASED set, its next pointer can't be
3955	 * dereferenced; however, as each css is given a monotonically
3956	 * increasing unique serial number and always appended to the
3957	 * sibling list, the next one can be found by walking the parent's
3958	 * children until the first css with higher serial number than
3959	 * @pos's.  While this path can be slower, it happens iff iteration
3960	 * races against release and the race window is very small.
3961	 */
3962	if (!pos) {
3963		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3964	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3965		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3966	} else {
3967		list_for_each_entry_rcu(next, &parent->children, sibling)
3968			if (next->serial_nr > pos->serial_nr)
3969				break;
3970	}
3971
3972	/*
3973	 * @next, if not pointing to the head, can be dereferenced and is
3974	 * the next sibling.
3975	 */
3976	if (&next->sibling != &parent->children)
3977		return next;
3978	return NULL;
3979}
3980
3981/**
3982 * css_next_descendant_pre - find the next descendant for pre-order walk
3983 * @pos: the current position (%NULL to initiate traversal)
3984 * @root: css whose descendants to walk
3985 *
3986 * To be used by css_for_each_descendant_pre().  Find the next descendant
3987 * to visit for pre-order traversal of @root's descendants.  @root is
3988 * included in the iteration and the first node to be visited.
3989 *
3990 * While this function requires cgroup_mutex or RCU read locking, it
3991 * doesn't require the whole traversal to be contained in a single critical
3992 * section.  This function will return the correct next descendant as long
3993 * as both @pos and @root are accessible and @pos is a descendant of @root.
3994 *
3995 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3996 * css which finished ->css_online() is guaranteed to be visible in the
3997 * future iterations and will stay visible until the last reference is put.
3998 * A css which hasn't finished ->css_online() or already finished
3999 * ->css_offline() may show up during traversal.  It's each subsystem's
4000 * responsibility to synchronize against on/offlining.
4001 */
4002struct cgroup_subsys_state *
4003css_next_descendant_pre(struct cgroup_subsys_state *pos,
4004			struct cgroup_subsys_state *root)
4005{
4006	struct cgroup_subsys_state *next;
4007
4008	cgroup_assert_mutex_or_rcu_locked();
4009
4010	/* if first iteration, visit @root */
4011	if (!pos)
4012		return root;
4013
4014	/* visit the first child if exists */
4015	next = css_next_child(NULL, pos);
4016	if (next)
4017		return next;
4018
4019	/* no child, visit my or the closest ancestor's next sibling */
4020	while (pos != root) {
4021		next = css_next_child(pos, pos->parent);
4022		if (next)
4023			return next;
4024		pos = pos->parent;
4025	}
4026
4027	return NULL;
4028}
4029
4030/**
4031 * css_rightmost_descendant - return the rightmost descendant of a css
4032 * @pos: css of interest
4033 *
4034 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4035 * is returned.  This can be used during pre-order traversal to skip
4036 * subtree of @pos.
4037 *
4038 * While this function requires cgroup_mutex or RCU read locking, it
4039 * doesn't require the whole traversal to be contained in a single critical
4040 * section.  This function will return the correct rightmost descendant as
4041 * long as @pos is accessible.
4042 */
4043struct cgroup_subsys_state *
4044css_rightmost_descendant(struct cgroup_subsys_state *pos)
4045{
4046	struct cgroup_subsys_state *last, *tmp;
4047
4048	cgroup_assert_mutex_or_rcu_locked();
4049
4050	do {
4051		last = pos;
4052		/* ->prev isn't RCU safe, walk ->next till the end */
4053		pos = NULL;
4054		css_for_each_child(tmp, last)
4055			pos = tmp;
4056	} while (pos);
4057
4058	return last;
4059}
4060
4061static struct cgroup_subsys_state *
4062css_leftmost_descendant(struct cgroup_subsys_state *pos)
4063{
4064	struct cgroup_subsys_state *last;
4065
4066	do {
4067		last = pos;
4068		pos = css_next_child(NULL, pos);
4069	} while (pos);
4070
4071	return last;
4072}
4073
4074/**
4075 * css_next_descendant_post - find the next descendant for post-order walk
4076 * @pos: the current position (%NULL to initiate traversal)
4077 * @root: css whose descendants to walk
4078 *
4079 * To be used by css_for_each_descendant_post().  Find the next descendant
4080 * to visit for post-order traversal of @root's descendants.  @root is
4081 * included in the iteration and the last node to be visited.
4082 *
4083 * While this function requires cgroup_mutex or RCU read locking, it
4084 * doesn't require the whole traversal to be contained in a single critical
4085 * section.  This function will return the correct next descendant as long
4086 * as both @pos and @cgroup are accessible and @pos is a descendant of
4087 * @cgroup.
4088 *
4089 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4090 * css which finished ->css_online() is guaranteed to be visible in the
4091 * future iterations and will stay visible until the last reference is put.
4092 * A css which hasn't finished ->css_online() or already finished
4093 * ->css_offline() may show up during traversal.  It's each subsystem's
4094 * responsibility to synchronize against on/offlining.
4095 */
4096struct cgroup_subsys_state *
4097css_next_descendant_post(struct cgroup_subsys_state *pos,
4098			 struct cgroup_subsys_state *root)
4099{
4100	struct cgroup_subsys_state *next;
4101
4102	cgroup_assert_mutex_or_rcu_locked();
4103
4104	/* if first iteration, visit leftmost descendant which may be @root */
4105	if (!pos)
4106		return css_leftmost_descendant(root);
4107
4108	/* if we visited @root, we're done */
4109	if (pos == root)
4110		return NULL;
4111
4112	/* if there's an unvisited sibling, visit its leftmost descendant */
4113	next = css_next_child(pos, pos->parent);
4114	if (next)
4115		return css_leftmost_descendant(next);
4116
4117	/* no sibling left, visit parent */
4118	return pos->parent;
4119}
4120
4121/**
4122 * css_has_online_children - does a css have online children
4123 * @css: the target css
4124 *
4125 * Returns %true if @css has any online children; otherwise, %false.  This
4126 * function can be called from any context but the caller is responsible
4127 * for synchronizing against on/offlining as necessary.
4128 */
4129bool css_has_online_children(struct cgroup_subsys_state *css)
4130{
4131	struct cgroup_subsys_state *child;
4132	bool ret = false;
4133
4134	rcu_read_lock();
4135	css_for_each_child(child, css) {
4136		if (child->flags & CSS_ONLINE) {
4137			ret = true;
4138			break;
4139		}
4140	}
4141	rcu_read_unlock();
4142	return ret;
4143}
4144
4145/**
4146 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4147 * @it: the iterator to advance
4148 *
4149 * Advance @it to the next css_set to walk.
4150 */
4151static void css_task_iter_advance_css_set(struct css_task_iter *it)
 
4152{
4153	struct list_head *l = it->cset_pos;
4154	struct cgrp_cset_link *link;
4155	struct css_set *cset;
4156
4157	lockdep_assert_held(&css_set_lock);
4158
4159	/* Advance to the next non-empty css_set */
4160	do {
4161		l = l->next;
4162		if (l == it->cset_head) {
4163			it->cset_pos = NULL;
4164			it->task_pos = NULL;
4165			return;
4166		}
 
 
 
 
 
 
4167
4168		if (it->ss) {
4169			cset = container_of(l, struct css_set,
4170					    e_cset_node[it->ss->id]);
4171		} else {
4172			link = list_entry(l, struct cgrp_cset_link, cset_link);
4173			cset = link->cset;
4174		}
4175	} while (!css_set_populated(cset));
4176
4177	it->cset_pos = l;
4178
4179	if (!list_empty(&cset->tasks))
4180		it->task_pos = cset->tasks.next;
4181	else
4182		it->task_pos = cset->mg_tasks.next;
4183
4184	it->tasks_head = &cset->tasks;
4185	it->mg_tasks_head = &cset->mg_tasks;
4186
4187	/*
4188	 * We don't keep css_sets locked across iteration steps and thus
4189	 * need to take steps to ensure that iteration can be resumed after
4190	 * the lock is re-acquired.  Iteration is performed at two levels -
4191	 * css_sets and tasks in them.
4192	 *
4193	 * Once created, a css_set never leaves its cgroup lists, so a
4194	 * pinned css_set is guaranteed to stay put and we can resume
4195	 * iteration afterwards.
4196	 *
4197	 * Tasks may leave @cset across iteration steps.  This is resolved
4198	 * by registering each iterator with the css_set currently being
4199	 * walked and making css_set_move_task() advance iterators whose
4200	 * next task is leaving.
4201	 */
4202	if (it->cur_cset) {
4203		list_del(&it->iters_node);
4204		put_css_set_locked(it->cur_cset);
4205	}
4206	get_css_set(cset);
4207	it->cur_cset = cset;
4208	list_add(&it->iters_node, &cset->task_iters);
 
 
 
 
 
 
 
4209}
4210
4211static void css_task_iter_advance(struct css_task_iter *it)
 
4212{
4213	struct list_head *l = it->task_pos;
4214
4215	lockdep_assert_held(&css_set_lock);
4216	WARN_ON_ONCE(!l);
4217
4218	/*
4219	 * Advance iterator to find next entry.  cset->tasks is consumed
4220	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4221	 * next cset.
4222	 */
4223	l = l->next;
4224
4225	if (l == it->tasks_head)
4226		l = it->mg_tasks_head->next;
4227
4228	if (l == it->mg_tasks_head)
4229		css_task_iter_advance_css_set(it);
4230	else
4231		it->task_pos = l;
4232}
4233
4234/**
4235 * css_task_iter_start - initiate task iteration
4236 * @css: the css to walk tasks of
4237 * @it: the task iterator to use
4238 *
4239 * Initiate iteration through the tasks of @css.  The caller can call
4240 * css_task_iter_next() to walk through the tasks until the function
4241 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4242 * called.
4243 */
4244void css_task_iter_start(struct cgroup_subsys_state *css,
4245			 struct css_task_iter *it)
4246{
4247	/* no one should try to iterate before mounting cgroups */
4248	WARN_ON_ONCE(!use_task_css_set_links);
 
4249
4250	memset(it, 0, sizeof(*it));
4251
4252	spin_lock_bh(&css_set_lock);
4253
4254	it->ss = css->ss;
4255
4256	if (it->ss)
4257		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4258	else
4259		it->cset_pos = &css->cgroup->cset_links;
4260
4261	it->cset_head = it->cset_pos;
4262
4263	css_task_iter_advance_css_set(it);
4264
4265	spin_unlock_bh(&css_set_lock);
4266}
4267
4268/**
4269 * css_task_iter_next - return the next task for the iterator
4270 * @it: the task iterator being iterated
4271 *
4272 * The "next" function for task iteration.  @it should have been
4273 * initialized via css_task_iter_start().  Returns NULL when the iteration
4274 * reaches the end.
4275 */
4276struct task_struct *css_task_iter_next(struct css_task_iter *it)
4277{
4278	if (it->cur_task) {
4279		put_task_struct(it->cur_task);
4280		it->cur_task = NULL;
4281	}
4282
4283	spin_lock_bh(&css_set_lock);
4284
4285	if (it->task_pos) {
4286		it->cur_task = list_entry(it->task_pos, struct task_struct,
4287					  cg_list);
4288		get_task_struct(it->cur_task);
4289		css_task_iter_advance(it);
4290	}
4291
4292	spin_unlock_bh(&css_set_lock);
4293
4294	return it->cur_task;
4295}
4296
4297/**
4298 * css_task_iter_end - finish task iteration
4299 * @it: the task iterator to finish
4300 *
4301 * Finish task iteration started by css_task_iter_start().
4302 */
4303void css_task_iter_end(struct css_task_iter *it)
4304{
4305	if (it->cur_cset) {
4306		spin_lock_bh(&css_set_lock);
4307		list_del(&it->iters_node);
4308		put_css_set_locked(it->cur_cset);
4309		spin_unlock_bh(&css_set_lock);
 
 
 
 
 
 
 
 
 
 
4310	}
 
4311
4312	if (it->cur_task)
4313		put_task_struct(it->cur_task);
 
 
 
 
 
 
 
 
4314}
4315
4316/**
4317 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4318 * @to: cgroup to which the tasks will be moved
4319 * @from: cgroup in which the tasks currently reside
4320 *
4321 * Locking rules between cgroup_post_fork() and the migration path
4322 * guarantee that, if a task is forking while being migrated, the new child
4323 * is guaranteed to be either visible in the source cgroup after the
4324 * parent's migration is complete or put into the target cgroup.  No task
4325 * can slip out of migration through forking.
4326 */
4327int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4328{
4329	LIST_HEAD(preloaded_csets);
4330	struct cgrp_cset_link *link;
4331	struct css_task_iter it;
4332	struct task_struct *task;
4333	int ret;
4334
4335	if (!cgroup_may_migrate_to(to))
4336		return -EBUSY;
4337
4338	mutex_lock(&cgroup_mutex);
4339
4340	/* all tasks in @from are being moved, all csets are source */
4341	spin_lock_bh(&css_set_lock);
4342	list_for_each_entry(link, &from->cset_links, cset_link)
4343		cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4344	spin_unlock_bh(&css_set_lock);
4345
4346	ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4347	if (ret)
4348		goto out_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4349
 
4350	/*
4351	 * Migrate tasks one-by-one until @from is empty.  This fails iff
4352	 * ->can_attach() fails.
4353	 */
4354	do {
4355		css_task_iter_start(&from->self, &it);
4356		task = css_task_iter_next(&it);
4357		if (task)
4358			get_task_struct(task);
4359		css_task_iter_end(&it);
4360
4361		if (task) {
4362			ret = cgroup_migrate(task, false, to->root);
4363			put_task_struct(task);
4364		}
4365	} while (task && !ret);
4366out_err:
4367	cgroup_migrate_finish(&preloaded_csets);
4368	mutex_unlock(&cgroup_mutex);
4369	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4370}
4371
4372/*
4373 * Stuff for reading the 'tasks'/'procs' files.
4374 *
4375 * Reading this file can return large amounts of data if a cgroup has
4376 * *lots* of attached tasks. So it may need several calls to read(),
4377 * but we cannot guarantee that the information we produce is correct
4378 * unless we produce it entirely atomically.
4379 *
4380 */
4381
4382/* which pidlist file are we talking about? */
4383enum cgroup_filetype {
4384	CGROUP_FILE_PROCS,
4385	CGROUP_FILE_TASKS,
4386};
4387
4388/*
4389 * A pidlist is a list of pids that virtually represents the contents of one
4390 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4391 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4392 * to the cgroup.
4393 */
4394struct cgroup_pidlist {
4395	/*
4396	 * used to find which pidlist is wanted. doesn't change as long as
4397	 * this particular list stays in the list.
4398	*/
4399	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4400	/* array of xids */
4401	pid_t *list;
4402	/* how many elements the above list has */
4403	int length;
 
 
4404	/* each of these stored in a list by its cgroup */
4405	struct list_head links;
4406	/* pointer to the cgroup we belong to, for list removal purposes */
4407	struct cgroup *owner;
4408	/* for delayed destruction */
4409	struct delayed_work destroy_dwork;
4410};
4411
4412/*
4413 * The following two functions "fix" the issue where there are more pids
4414 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4415 * TODO: replace with a kernel-wide solution to this problem
4416 */
4417#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4418static void *pidlist_allocate(int count)
4419{
4420	if (PIDLIST_TOO_LARGE(count))
4421		return vmalloc(count * sizeof(pid_t));
4422	else
4423		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4424}
4425
4426static void pidlist_free(void *p)
4427{
4428	kvfree(p);
4429}
4430
4431/*
4432 * Used to destroy all pidlists lingering waiting for destroy timer.  None
4433 * should be left afterwards.
4434 */
4435static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4436{
4437	struct cgroup_pidlist *l, *tmp_l;
4438
4439	mutex_lock(&cgrp->pidlist_mutex);
4440	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4441		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4442	mutex_unlock(&cgrp->pidlist_mutex);
4443
4444	flush_workqueue(cgroup_pidlist_destroy_wq);
4445	BUG_ON(!list_empty(&cgrp->pidlists));
4446}
4447
4448static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4449{
4450	struct delayed_work *dwork = to_delayed_work(work);
4451	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4452						destroy_dwork);
4453	struct cgroup_pidlist *tofree = NULL;
4454
4455	mutex_lock(&l->owner->pidlist_mutex);
4456
4457	/*
4458	 * Destroy iff we didn't get queued again.  The state won't change
4459	 * as destroy_dwork can only be queued while locked.
4460	 */
4461	if (!delayed_work_pending(dwork)) {
4462		list_del(&l->links);
4463		pidlist_free(l->list);
4464		put_pid_ns(l->key.ns);
4465		tofree = l;
4466	}
4467
4468	mutex_unlock(&l->owner->pidlist_mutex);
4469	kfree(tofree);
4470}
4471
4472/*
4473 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4474 * Returns the number of unique elements.
4475 */
4476static int pidlist_uniq(pid_t *list, int length)
 
 
 
 
4477{
4478	int src, dest = 1;
 
 
4479
4480	/*
4481	 * we presume the 0th element is unique, so i starts at 1. trivial
4482	 * edge cases first; no work needs to be done for either
4483	 */
4484	if (length == 0 || length == 1)
4485		return length;
4486	/* src and dest walk down the list; dest counts unique elements */
4487	for (src = 1; src < length; src++) {
4488		/* find next unique element */
4489		while (list[src] == list[src-1]) {
4490			src++;
4491			if (src == length)
4492				goto after;
4493		}
4494		/* dest always points to where the next unique element goes */
4495		list[dest] = list[src];
4496		dest++;
4497	}
4498after:
 
 
 
 
 
 
 
 
 
 
4499	return dest;
4500}
4501
4502/*
4503 * The two pid files - task and cgroup.procs - guaranteed that the result
4504 * is sorted, which forced this whole pidlist fiasco.  As pid order is
4505 * different per namespace, each namespace needs differently sorted list,
4506 * making it impossible to use, for example, single rbtree of member tasks
4507 * sorted by task pointer.  As pidlists can be fairly large, allocating one
4508 * per open file is dangerous, so cgroup had to implement shared pool of
4509 * pidlists keyed by cgroup and namespace.
4510 *
4511 * All this extra complexity was caused by the original implementation
4512 * committing to an entirely unnecessary property.  In the long term, we
4513 * want to do away with it.  Explicitly scramble sort order if on the
4514 * default hierarchy so that no such expectation exists in the new
4515 * interface.
4516 *
4517 * Scrambling is done by swapping every two consecutive bits, which is
4518 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4519 */
4520static pid_t pid_fry(pid_t pid)
4521{
4522	unsigned a = pid & 0x55555555;
4523	unsigned b = pid & 0xAAAAAAAA;
4524
4525	return (a << 1) | (b >> 1);
4526}
4527
4528static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4529{
4530	if (cgroup_on_dfl(cgrp))
4531		return pid_fry(pid);
4532	else
4533		return pid;
4534}
4535
4536static int cmppid(const void *a, const void *b)
4537{
4538	return *(pid_t *)a - *(pid_t *)b;
4539}
4540
4541static int fried_cmppid(const void *a, const void *b)
4542{
4543	return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4544}
4545
4546static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4547						  enum cgroup_filetype type)
4548{
4549	struct cgroup_pidlist *l;
4550	/* don't need task_nsproxy() if we're looking at ourself */
4551	struct pid_namespace *ns = task_active_pid_ns(current);
4552
4553	lockdep_assert_held(&cgrp->pidlist_mutex);
4554
4555	list_for_each_entry(l, &cgrp->pidlists, links)
4556		if (l->key.type == type && l->key.ns == ns)
4557			return l;
4558	return NULL;
4559}
4560
4561/*
4562 * find the appropriate pidlist for our purpose (given procs vs tasks)
4563 * returns with the lock on that pidlist already held, and takes care
4564 * of the use count, or returns NULL with no locks held if we're out of
4565 * memory.
4566 */
4567static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4568						enum cgroup_filetype type)
4569{
4570	struct cgroup_pidlist *l;
 
 
4571
4572	lockdep_assert_held(&cgrp->pidlist_mutex);
4573
4574	l = cgroup_pidlist_find(cgrp, type);
4575	if (l)
4576		return l;
4577
 
 
 
 
 
 
 
 
 
4578	/* entry not found; create a new one */
4579	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4580	if (!l)
 
4581		return l;
4582
4583	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
 
4584	l->key.type = type;
4585	/* don't need task_nsproxy() if we're looking at ourself */
4586	l->key.ns = get_pid_ns(task_active_pid_ns(current));
 
4587	l->owner = cgrp;
4588	list_add(&l->links, &cgrp->pidlists);
 
4589	return l;
4590}
4591
4592/*
4593 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4594 */
4595static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4596			      struct cgroup_pidlist **lp)
4597{
4598	pid_t *array;
4599	int length;
4600	int pid, n = 0; /* used for populating the array */
4601	struct css_task_iter it;
4602	struct task_struct *tsk;
4603	struct cgroup_pidlist *l;
4604
4605	lockdep_assert_held(&cgrp->pidlist_mutex);
4606
4607	/*
4608	 * If cgroup gets more users after we read count, we won't have
4609	 * enough space - tough.  This race is indistinguishable to the
4610	 * caller from the case that the additional cgroup users didn't
4611	 * show up until sometime later on.
4612	 */
4613	length = cgroup_task_count(cgrp);
4614	array = pidlist_allocate(length);
4615	if (!array)
4616		return -ENOMEM;
4617	/* now, populate the array */
4618	css_task_iter_start(&cgrp->self, &it);
4619	while ((tsk = css_task_iter_next(&it))) {
4620		if (unlikely(n == length))
4621			break;
4622		/* get tgid or pid for procs or tasks file respectively */
4623		if (type == CGROUP_FILE_PROCS)
4624			pid = task_tgid_vnr(tsk);
4625		else
4626			pid = task_pid_vnr(tsk);
4627		if (pid > 0) /* make sure to only use valid results */
4628			array[n++] = pid;
4629	}
4630	css_task_iter_end(&it);
4631	length = n;
4632	/* now sort & (if procs) strip out duplicates */
4633	if (cgroup_on_dfl(cgrp))
4634		sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4635	else
4636		sort(array, length, sizeof(pid_t), cmppid, NULL);
4637	if (type == CGROUP_FILE_PROCS)
4638		length = pidlist_uniq(array, length);
4639
4640	l = cgroup_pidlist_find_create(cgrp, type);
4641	if (!l) {
4642		pidlist_free(array);
4643		return -ENOMEM;
4644	}
4645
4646	/* store array, freeing old if necessary */
4647	pidlist_free(l->list);
4648	l->list = array;
4649	l->length = length;
 
 
4650	*lp = l;
4651	return 0;
4652}
4653
4654/**
4655 * cgroupstats_build - build and fill cgroupstats
4656 * @stats: cgroupstats to fill information into
4657 * @dentry: A dentry entry belonging to the cgroup for which stats have
4658 * been requested.
4659 *
4660 * Build and fill cgroupstats so that taskstats can export it to user
4661 * space.
4662 */
4663int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4664{
4665	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4666	struct cgroup *cgrp;
4667	struct css_task_iter it;
4668	struct task_struct *tsk;
4669
4670	/* it should be kernfs_node belonging to cgroupfs and is a directory */
4671	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4672	    kernfs_type(kn) != KERNFS_DIR)
4673		return -EINVAL;
4674
4675	mutex_lock(&cgroup_mutex);
4676
4677	/*
4678	 * We aren't being called from kernfs and there's no guarantee on
4679	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
4680	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
4681	 */
4682	rcu_read_lock();
4683	cgrp = rcu_dereference(kn->priv);
4684	if (!cgrp || cgroup_is_dead(cgrp)) {
4685		rcu_read_unlock();
4686		mutex_unlock(&cgroup_mutex);
4687		return -ENOENT;
4688	}
4689	rcu_read_unlock();
4690
4691	css_task_iter_start(&cgrp->self, &it);
4692	while ((tsk = css_task_iter_next(&it))) {
 
 
 
4693		switch (tsk->state) {
4694		case TASK_RUNNING:
4695			stats->nr_running++;
4696			break;
4697		case TASK_INTERRUPTIBLE:
4698			stats->nr_sleeping++;
4699			break;
4700		case TASK_UNINTERRUPTIBLE:
4701			stats->nr_uninterruptible++;
4702			break;
4703		case TASK_STOPPED:
4704			stats->nr_stopped++;
4705			break;
4706		default:
4707			if (delayacct_is_task_waiting_on_io(tsk))
4708				stats->nr_io_wait++;
4709			break;
4710		}
4711	}
4712	css_task_iter_end(&it);
4713
4714	mutex_unlock(&cgroup_mutex);
4715	return 0;
4716}
4717
4718
4719/*
4720 * seq_file methods for the tasks/procs files. The seq_file position is the
4721 * next pid to display; the seq_file iterator is a pointer to the pid
4722 * in the cgroup->l->list array.
4723 */
4724
4725static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4726{
4727	/*
4728	 * Initially we receive a position value that corresponds to
4729	 * one more than the last pid shown (or 0 on the first call or
4730	 * after a seek to the start). Use a binary-search to find the
4731	 * next pid to display, if any
4732	 */
4733	struct kernfs_open_file *of = s->private;
4734	struct cgroup *cgrp = seq_css(s)->cgroup;
4735	struct cgroup_pidlist *l;
4736	enum cgroup_filetype type = seq_cft(s)->private;
4737	int index = 0, pid = *pos;
4738	int *iter, ret;
4739
4740	mutex_lock(&cgrp->pidlist_mutex);
4741
4742	/*
4743	 * !NULL @of->priv indicates that this isn't the first start()
4744	 * after open.  If the matching pidlist is around, we can use that.
4745	 * Look for it.  Note that @of->priv can't be used directly.  It
4746	 * could already have been destroyed.
4747	 */
4748	if (of->priv)
4749		of->priv = cgroup_pidlist_find(cgrp, type);
4750
4751	/*
4752	 * Either this is the first start() after open or the matching
4753	 * pidlist has been destroyed inbetween.  Create a new one.
4754	 */
4755	if (!of->priv) {
4756		ret = pidlist_array_load(cgrp, type,
4757					 (struct cgroup_pidlist **)&of->priv);
4758		if (ret)
4759			return ERR_PTR(ret);
4760	}
4761	l = of->priv;
4762
 
4763	if (pid) {
4764		int end = l->length;
4765
4766		while (index < end) {
4767			int mid = (index + end) / 2;
4768			if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4769				index = mid;
4770				break;
4771			} else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4772				index = mid + 1;
4773			else
4774				end = mid;
4775		}
4776	}
4777	/* If we're off the end of the array, we're done */
4778	if (index >= l->length)
4779		return NULL;
4780	/* Update the abstract position to be the actual pid that we found */
4781	iter = l->list + index;
4782	*pos = cgroup_pid_fry(cgrp, *iter);
4783	return iter;
4784}
4785
4786static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4787{
4788	struct kernfs_open_file *of = s->private;
4789	struct cgroup_pidlist *l = of->priv;
4790
4791	if (l)
4792		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4793				 CGROUP_PIDLIST_DESTROY_DELAY);
4794	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4795}
4796
4797static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4798{
4799	struct kernfs_open_file *of = s->private;
4800	struct cgroup_pidlist *l = of->priv;
4801	pid_t *p = v;
4802	pid_t *end = l->list + l->length;
4803	/*
4804	 * Advance to the next pid in the array. If this goes off the
4805	 * end, we're done
4806	 */
4807	p++;
4808	if (p >= end) {
4809		return NULL;
4810	} else {
4811		*pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4812		return p;
4813	}
4814}
4815
4816static int cgroup_pidlist_show(struct seq_file *s, void *v)
4817{
4818	seq_printf(s, "%d\n", *(int *)v);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4820	return 0;
4821}
 
 
 
 
 
 
 
 
4822
4823static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4824					 struct cftype *cft)
4825{
4826	return notify_on_release(css->cgroup);
4827}
4828
4829static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4830					  struct cftype *cft, u64 val)
 
4831{
 
4832	if (val)
4833		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4834	else
4835		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4836	return 0;
4837}
4838
4839static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4840				      struct cftype *cft)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4841{
4842	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4843}
4844
4845static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4846				       struct cftype *cft, u64 val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4847{
4848	if (val)
4849		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4850	else
4851		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4852	return 0;
4853}
4854
4855/* cgroup core interface files for the default hierarchy */
4856static struct cftype cgroup_dfl_base_files[] = {
4857	{
4858		.name = "cgroup.procs",
4859		.file_offset = offsetof(struct cgroup, procs_file),
4860		.seq_start = cgroup_pidlist_start,
4861		.seq_next = cgroup_pidlist_next,
4862		.seq_stop = cgroup_pidlist_stop,
4863		.seq_show = cgroup_pidlist_show,
4864		.private = CGROUP_FILE_PROCS,
4865		.write = cgroup_procs_write,
4866	},
4867	{
4868		.name = "cgroup.controllers",
4869		.seq_show = cgroup_controllers_show,
 
 
 
4870	},
4871	{
4872		.name = "cgroup.subtree_control",
4873		.seq_show = cgroup_subtree_control_show,
4874		.write = cgroup_subtree_control_write,
 
 
4875	},
4876	{
4877		.name = "cgroup.events",
4878		.flags = CFTYPE_NOT_ON_ROOT,
4879		.file_offset = offsetof(struct cgroup, events_file),
4880		.seq_show = cgroup_events_show,
4881	},
4882	{ }	/* terminate */
4883};
4884
4885/* cgroup core interface files for the legacy hierarchies */
4886static struct cftype cgroup_legacy_base_files[] = {
4887	{
4888		.name = "cgroup.procs",
4889		.seq_start = cgroup_pidlist_start,
4890		.seq_next = cgroup_pidlist_next,
4891		.seq_stop = cgroup_pidlist_stop,
4892		.seq_show = cgroup_pidlist_show,
4893		.private = CGROUP_FILE_PROCS,
4894		.write = cgroup_procs_write,
4895	},
4896	{
4897		.name = "cgroup.clone_children",
4898		.read_u64 = cgroup_clone_children_read,
4899		.write_u64 = cgroup_clone_children_write,
4900	},
4901	{
4902		.name = "cgroup.sane_behavior",
4903		.flags = CFTYPE_ONLY_ON_ROOT,
4904		.seq_show = cgroup_sane_behavior_show,
4905	},
4906	{
4907		.name = "tasks",
4908		.seq_start = cgroup_pidlist_start,
4909		.seq_next = cgroup_pidlist_next,
4910		.seq_stop = cgroup_pidlist_stop,
4911		.seq_show = cgroup_pidlist_show,
4912		.private = CGROUP_FILE_TASKS,
4913		.write = cgroup_tasks_write,
4914	},
4915	{
4916		.name = "notify_on_release",
4917		.read_u64 = cgroup_read_notify_on_release,
4918		.write_u64 = cgroup_write_notify_on_release,
4919	},
4920	{
4921		.name = "release_agent",
4922		.flags = CFTYPE_ONLY_ON_ROOT,
4923		.seq_show = cgroup_release_agent_show,
4924		.write = cgroup_release_agent_write,
4925		.max_write_len = PATH_MAX - 1,
4926	},
4927	{ }	/* terminate */
4928};
4929
4930/*
4931 * css destruction is four-stage process.
4932 *
4933 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4934 *    Implemented in kill_css().
4935 *
4936 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4937 *    and thus css_tryget_online() is guaranteed to fail, the css can be
4938 *    offlined by invoking offline_css().  After offlining, the base ref is
4939 *    put.  Implemented in css_killed_work_fn().
4940 *
4941 * 3. When the percpu_ref reaches zero, the only possible remaining
4942 *    accessors are inside RCU read sections.  css_release() schedules the
4943 *    RCU callback.
4944 *
4945 * 4. After the grace period, the css can be freed.  Implemented in
4946 *    css_free_work_fn().
4947 *
4948 * It is actually hairier because both step 2 and 4 require process context
4949 * and thus involve punting to css->destroy_work adding two additional
4950 * steps to the already complex sequence.
4951 */
4952static void css_free_work_fn(struct work_struct *work)
4953{
4954	struct cgroup_subsys_state *css =
4955		container_of(work, struct cgroup_subsys_state, destroy_work);
4956	struct cgroup_subsys *ss = css->ss;
4957	struct cgroup *cgrp = css->cgroup;
4958
4959	percpu_ref_exit(&css->refcnt);
4960
4961	if (ss) {
4962		/* css free path */
4963		struct cgroup_subsys_state *parent = css->parent;
4964		int id = css->id;
4965
4966		ss->css_free(css);
4967		cgroup_idr_remove(&ss->css_idr, id);
4968		cgroup_put(cgrp);
4969
4970		if (parent)
4971			css_put(parent);
4972	} else {
4973		/* cgroup free path */
4974		atomic_dec(&cgrp->root->nr_cgrps);
4975		cgroup_pidlist_destroy_all(cgrp);
4976		cancel_work_sync(&cgrp->release_agent_work);
4977
4978		if (cgroup_parent(cgrp)) {
4979			/*
4980			 * We get a ref to the parent, and put the ref when
4981			 * this cgroup is being freed, so it's guaranteed
4982			 * that the parent won't be destroyed before its
4983			 * children.
4984			 */
4985			cgroup_put(cgroup_parent(cgrp));
4986			kernfs_put(cgrp->kn);
4987			kfree(cgrp);
4988		} else {
4989			/*
4990			 * This is root cgroup's refcnt reaching zero,
4991			 * which indicates that the root should be
4992			 * released.
4993			 */
4994			cgroup_destroy_root(cgrp->root);
4995		}
4996	}
4997}
4998
4999static void css_free_rcu_fn(struct rcu_head *rcu_head)
5000{
5001	struct cgroup_subsys_state *css =
5002		container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5003
5004	INIT_WORK(&css->destroy_work, css_free_work_fn);
5005	queue_work(cgroup_destroy_wq, &css->destroy_work);
5006}
5007
5008static void css_release_work_fn(struct work_struct *work)
5009{
5010	struct cgroup_subsys_state *css =
5011		container_of(work, struct cgroup_subsys_state, destroy_work);
5012	struct cgroup_subsys *ss = css->ss;
5013	struct cgroup *cgrp = css->cgroup;
5014
5015	mutex_lock(&cgroup_mutex);
5016
5017	css->flags |= CSS_RELEASED;
5018	list_del_rcu(&css->sibling);
5019
5020	if (ss) {
5021		/* css release path */
5022		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5023		if (ss->css_released)
5024			ss->css_released(css);
5025	} else {
5026		/* cgroup release path */
5027		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5028		cgrp->id = -1;
5029
 
 
 
5030		/*
5031		 * There are two control paths which try to determine
5032		 * cgroup from dentry without going through kernfs -
5033		 * cgroupstats_build() and css_tryget_online_from_dir().
5034		 * Those are supported by RCU protecting clearing of
5035		 * cgrp->kn->priv backpointer.
5036		 */
5037		if (cgrp->kn)
5038			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5039					 NULL);
5040	}
5041
5042	mutex_unlock(&cgroup_mutex);
5043
5044	call_rcu(&css->rcu_head, css_free_rcu_fn);
5045}
5046
5047static void css_release(struct percpu_ref *ref)
5048{
5049	struct cgroup_subsys_state *css =
5050		container_of(ref, struct cgroup_subsys_state, refcnt);
5051
5052	INIT_WORK(&css->destroy_work, css_release_work_fn);
5053	queue_work(cgroup_destroy_wq, &css->destroy_work);
 
 
 
5054}
5055
5056static void init_and_link_css(struct cgroup_subsys_state *css,
5057			      struct cgroup_subsys *ss, struct cgroup *cgrp)
 
5058{
5059	lockdep_assert_held(&cgroup_mutex);
5060
5061	cgroup_get(cgrp);
5062
5063	memset(css, 0, sizeof(*css));
5064	css->cgroup = cgrp;
5065	css->ss = ss;
5066	INIT_LIST_HEAD(&css->sibling);
5067	INIT_LIST_HEAD(&css->children);
5068	css->serial_nr = css_serial_nr_next++;
5069	atomic_set(&css->online_cnt, 0);
5070
5071	if (cgroup_parent(cgrp)) {
5072		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5073		css_get(css->parent);
5074	}
5075
5076	BUG_ON(cgroup_css(cgrp, ss));
 
 
 
 
 
 
 
 
5077}
5078
5079/* invoke ->css_online() on a new CSS and mark it online if successful */
5080static int online_css(struct cgroup_subsys_state *css)
5081{
5082	struct cgroup_subsys *ss = css->ss;
5083	int ret = 0;
5084
5085	lockdep_assert_held(&cgroup_mutex);
5086
5087	if (ss->css_online)
5088		ret = ss->css_online(css);
5089	if (!ret) {
5090		css->flags |= CSS_ONLINE;
5091		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5092
5093		atomic_inc(&css->online_cnt);
5094		if (css->parent)
5095			atomic_inc(&css->parent->online_cnt);
 
5096	}
5097	return ret;
5098}
5099
5100/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5101static void offline_css(struct cgroup_subsys_state *css)
5102{
5103	struct cgroup_subsys *ss = css->ss;
5104
5105	lockdep_assert_held(&cgroup_mutex);
5106
5107	if (!(css->flags & CSS_ONLINE))
5108		return;
5109
5110	if (ss->css_reset)
5111		ss->css_reset(css);
5112
5113	if (ss->css_offline)
5114		ss->css_offline(css);
5115
5116	css->flags &= ~CSS_ONLINE;
5117	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5118
5119	wake_up_all(&css->cgroup->offline_waitq);
 
 
 
 
 
 
5120}
5121
5122/**
5123 * css_create - create a cgroup_subsys_state
5124 * @cgrp: the cgroup new css will be associated with
5125 * @ss: the subsys of new css
5126 *
5127 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5128 * css is online and installed in @cgrp.  This function doesn't create the
5129 * interface files.  Returns 0 on success, -errno on failure.
5130 */
5131static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5132					      struct cgroup_subsys *ss)
5133{
5134	struct cgroup *parent = cgroup_parent(cgrp);
5135	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5136	struct cgroup_subsys_state *css;
5137	int err;
 
5138
5139	lockdep_assert_held(&cgroup_mutex);
 
 
5140
5141	css = ss->css_alloc(parent_css);
5142	if (IS_ERR(css))
5143		return css;
 
 
 
5144
5145	init_and_link_css(css, ss, cgrp);
5146
5147	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5148	if (err)
5149		goto err_free_css;
5150
5151	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5152	if (err < 0)
5153		goto err_free_percpu_ref;
5154	css->id = err;
5155
5156	/* @css is ready to be brought online now, make it visible */
5157	list_add_tail_rcu(&css->sibling, &parent_css->children);
5158	cgroup_idr_replace(&ss->css_idr, css, css->id);
5159
5160	err = online_css(css);
5161	if (err)
5162		goto err_list_del;
5163
5164	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5165	    cgroup_parent(parent)) {
5166		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5167			current->comm, current->pid, ss->name);
5168		if (!strcmp(ss->name, "memory"))
5169			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5170		ss->warned_broken_hierarchy = true;
 
 
 
 
 
 
 
 
 
5171	}
5172
5173	return css;
 
 
 
5174
5175err_list_del:
5176	list_del_rcu(&css->sibling);
5177	cgroup_idr_remove(&ss->css_idr, css->id);
5178err_free_percpu_ref:
5179	percpu_ref_exit(&css->refcnt);
5180err_free_css:
5181	call_rcu(&css->rcu_head, css_free_rcu_fn);
5182	return ERR_PTR(err);
5183}
5184
5185static struct cgroup *cgroup_create(struct cgroup *parent)
5186{
5187	struct cgroup_root *root = parent->root;
5188	struct cgroup *cgrp, *tcgrp;
5189	int level = parent->level + 1;
5190	int ret;
5191
5192	/* allocate the cgroup and its ID, 0 is reserved for the root */
5193	cgrp = kzalloc(sizeof(*cgrp) +
5194		       sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5195	if (!cgrp)
5196		return ERR_PTR(-ENOMEM);
5197
5198	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5199	if (ret)
5200		goto out_free_cgrp;
5201
5202	/*
5203	 * Temporarily set the pointer to NULL, so idr_find() won't return
5204	 * a half-baked cgroup.
5205	 */
5206	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5207	if (cgrp->id < 0) {
5208		ret = -ENOMEM;
5209		goto out_cancel_ref;
5210	}
5211
5212	init_cgroup_housekeeping(cgrp);
 
5213
5214	cgrp->self.parent = &parent->self;
5215	cgrp->root = root;
5216	cgrp->level = level;
5217
5218	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5219		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5220
5221	if (notify_on_release(parent))
5222		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 
 
 
 
 
 
 
 
 
5223
5224	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5225		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5226
5227	cgrp->self.serial_nr = css_serial_nr_next++;
 
5228
5229	/* allocation complete, commit to creation */
5230	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5231	atomic_inc(&root->nr_cgrps);
5232	cgroup_get(parent);
5233
5234	/*
5235	 * @cgrp is now fully operational.  If something fails after this
5236	 * point, it'll be released via the normal destruction path.
5237	 */
5238	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5239
5240	/*
5241	 * On the default hierarchy, a child doesn't automatically inherit
5242	 * subtree_control from the parent.  Each is configured manually.
5243	 */
5244	if (!cgroup_on_dfl(cgrp))
5245		cgrp->subtree_control = cgroup_control(cgrp);
5246
5247	cgroup_propagate_control(cgrp);
 
 
 
 
 
 
 
 
 
 
 
5248
5249	/* @cgrp doesn't have dir yet so the following will only create csses */
5250	ret = cgroup_apply_control_enable(cgrp);
5251	if (ret)
5252		goto out_destroy;
 
 
 
 
5253
5254	return cgrp;
 
 
5255
5256out_cancel_ref:
5257	percpu_ref_exit(&cgrp->self.refcnt);
5258out_free_cgrp:
5259	kfree(cgrp);
5260	return ERR_PTR(ret);
5261out_destroy:
5262	cgroup_destroy_locked(cgrp);
5263	return ERR_PTR(ret);
 
 
 
 
 
5264}
5265
5266static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5267			umode_t mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5268{
5269	struct cgroup *parent, *cgrp;
5270	struct kernfs_node *kn;
5271	int ret;
5272
5273	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5274	if (strchr(name, '\n'))
5275		return -EINVAL;
5276
5277	parent = cgroup_kn_lock_live(parent_kn, false);
5278	if (!parent)
5279		return -ENODEV;
 
 
 
 
5280
5281	cgrp = cgroup_create(parent);
5282	if (IS_ERR(cgrp)) {
5283		ret = PTR_ERR(cgrp);
5284		goto out_unlock;
5285	}
5286
5287	/* create the directory */
5288	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5289	if (IS_ERR(kn)) {
5290		ret = PTR_ERR(kn);
5291		goto out_destroy;
5292	}
5293	cgrp->kn = kn;
5294
5295	/*
5296	 * This extra ref will be put in cgroup_free_fn() and guarantees
5297	 * that @cgrp->kn is always accessible.
 
5298	 */
5299	kernfs_get(kn);
5300
5301	ret = cgroup_kn_set_ugid(kn);
5302	if (ret)
5303		goto out_destroy;
5304
5305	ret = css_populate_dir(&cgrp->self);
5306	if (ret)
5307		goto out_destroy;
5308
5309	ret = cgroup_apply_control_enable(cgrp);
5310	if (ret)
5311		goto out_destroy;
5312
5313	/* let's create and online css's */
5314	kernfs_activate(kn);
5315
5316	ret = 0;
5317	goto out_unlock;
 
 
 
 
 
5318
5319out_destroy:
5320	cgroup_destroy_locked(cgrp);
5321out_unlock:
5322	cgroup_kn_unlock(parent_kn);
5323	return ret;
5324}
5325
5326/*
5327 * This is called when the refcnt of a css is confirmed to be killed.
5328 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5329 * initate destruction and put the css ref from kill_css().
5330 */
5331static void css_killed_work_fn(struct work_struct *work)
5332{
5333	struct cgroup_subsys_state *css =
5334		container_of(work, struct cgroup_subsys_state, destroy_work);
 
 
 
 
5335
 
 
5336	mutex_lock(&cgroup_mutex);
 
 
 
 
 
 
 
 
 
5337
5338	do {
5339		offline_css(css);
5340		css_put(css);
5341		/* @css can't go away while we're holding cgroup_mutex */
5342		css = css->parent;
5343	} while (css && atomic_dec_and_test(&css->online_cnt));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5344
5345	mutex_unlock(&cgroup_mutex);
 
5346}
5347
5348/* css kill confirmation processing requires process context, bounce */
5349static void css_killed_ref_fn(struct percpu_ref *ref)
5350{
5351	struct cgroup_subsys_state *css =
5352		container_of(ref, struct cgroup_subsys_state, refcnt);
5353
5354	if (atomic_dec_and_test(&css->online_cnt)) {
5355		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5356		queue_work(cgroup_destroy_wq, &css->destroy_work);
 
 
 
 
5357	}
5358}
5359
5360/**
5361 * kill_css - destroy a css
5362 * @css: css to destroy
5363 *
5364 * This function initiates destruction of @css by removing cgroup interface
5365 * files and putting its base reference.  ->css_offline() will be invoked
5366 * asynchronously once css_tryget_online() is guaranteed to fail and when
5367 * the reference count reaches zero, @css will be released.
5368 */
5369static void kill_css(struct cgroup_subsys_state *css)
5370{
5371	lockdep_assert_held(&cgroup_mutex);
5372
5373	/*
5374	 * This must happen before css is disassociated with its cgroup.
5375	 * See seq_css() for details.
5376	 */
5377	css_clear_dir(css);
5378
5379	/*
5380	 * Killing would put the base ref, but we need to keep it alive
5381	 * until after ->css_offline().
5382	 */
5383	css_get(css);
5384
5385	/*
5386	 * cgroup core guarantees that, by the time ->css_offline() is
5387	 * invoked, no new css reference will be given out via
5388	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5389	 * proceed to offlining css's because percpu_ref_kill() doesn't
5390	 * guarantee that the ref is seen as killed on all CPUs on return.
5391	 *
5392	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5393	 * css is confirmed to be seen as killed on all CPUs.
5394	 */
5395	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5396}
5397
5398/**
5399 * cgroup_destroy_locked - the first stage of cgroup destruction
5400 * @cgrp: cgroup to be destroyed
5401 *
5402 * css's make use of percpu refcnts whose killing latency shouldn't be
5403 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5404 * guarantee that css_tryget_online() won't succeed by the time
5405 * ->css_offline() is invoked.  To satisfy all the requirements,
5406 * destruction is implemented in the following two steps.
5407 *
5408 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5409 *     userland visible parts and start killing the percpu refcnts of
5410 *     css's.  Set up so that the next stage will be kicked off once all
5411 *     the percpu refcnts are confirmed to be killed.
5412 *
5413 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5414 *     rest of destruction.  Once all cgroup references are gone, the
5415 *     cgroup is RCU-freed.
5416 *
5417 * This function implements s1.  After this step, @cgrp is gone as far as
5418 * the userland is concerned and a new cgroup with the same name may be
5419 * created.  As cgroup doesn't care about the names internally, this
5420 * doesn't cause any problem.
5421 */
5422static int cgroup_destroy_locked(struct cgroup *cgrp)
5423	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5424{
 
5425	struct cgroup_subsys_state *css;
5426	struct cgrp_cset_link *link;
5427	int ssid;
5428
5429	lockdep_assert_held(&cgroup_mutex);
 
 
 
5430
5431	/*
5432	 * Only migration can raise populated from zero and we're already
5433	 * holding cgroup_mutex.
 
 
5434	 */
5435	if (cgroup_is_populated(cgrp))
5436		return -EBUSY;
5437
5438	/*
5439	 * Make sure there's no live children.  We can't test emptiness of
5440	 * ->self.children as dead children linger on it while being
5441	 * drained; otherwise, "rmdir parent/child parent" may fail.
5442	 */
5443	if (css_has_online_children(&cgrp->self))
5444		return -EBUSY;
 
 
 
 
 
 
 
5445
5446	/*
5447	 * Mark @cgrp and the associated csets dead.  The former prevents
5448	 * further task migration and child creation by disabling
5449	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5450	 * the migration path.
5451	 */
5452	cgrp->self.flags &= ~CSS_ONLINE;
 
 
 
 
 
 
 
 
 
 
 
 
 
5453
5454	spin_lock_bh(&css_set_lock);
5455	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5456		link->cset->dead = true;
5457	spin_unlock_bh(&css_set_lock);
 
 
 
 
 
 
 
5458
5459	/* initiate massacre of all css's */
5460	for_each_css(css, ssid, cgrp)
5461		kill_css(css);
 
 
 
 
 
 
 
 
 
 
 
 
 
5462
5463	/*
5464	 * Remove @cgrp directory along with the base files.  @cgrp has an
5465	 * extra ref on its kn.
 
 
 
 
5466	 */
5467	kernfs_remove(cgrp->kn);
5468
5469	check_for_release(cgroup_parent(cgrp));
 
 
5470
5471	/* put the base reference */
5472	percpu_ref_kill(&cgrp->self.refcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5473
 
 
5474	return 0;
5475};
5476
5477static int cgroup_rmdir(struct kernfs_node *kn)
5478{
5479	struct cgroup *cgrp;
5480	int ret = 0;
5481
5482	cgrp = cgroup_kn_lock_live(kn, false);
5483	if (!cgrp)
5484		return 0;
5485
5486	ret = cgroup_destroy_locked(cgrp);
5487
5488	cgroup_kn_unlock(kn);
5489	return ret;
5490}
 
5491
5492static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5493	.remount_fs		= cgroup_remount,
5494	.show_options		= cgroup_show_options,
5495	.mkdir			= cgroup_mkdir,
5496	.rmdir			= cgroup_rmdir,
5497	.rename			= cgroup_rename,
5498	.show_path		= cgroup_show_path,
5499};
5500
5501static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5502{
5503	struct cgroup_subsys_state *css;
 
5504
5505	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5506
5507	mutex_lock(&cgroup_mutex);
 
 
 
 
 
5508
5509	idr_init(&ss->css_idr);
5510	INIT_LIST_HEAD(&ss->cfts);
 
 
5511
5512	/* Create the root cgroup state for this subsystem */
5513	ss->root = &cgrp_dfl_root;
5514	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5515	/* We don't handle early failures gracefully */
5516	BUG_ON(IS_ERR(css));
5517	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5518
5519	/*
5520	 * Root csses are never destroyed and we can't initialize
5521	 * percpu_ref during early init.  Disable refcnting.
5522	 */
5523	css->flags |= CSS_NO_REF;
 
 
5524
5525	if (early) {
5526		/* allocation can't be done safely during early init */
5527		css->id = 1;
5528	} else {
5529		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5530		BUG_ON(css->id < 0);
5531	}
 
5532
5533	/* Update the init_css_set to contain a subsys
5534	 * pointer to this state - since the subsystem is
5535	 * newly registered, all tasks and hence the
5536	 * init_css_set is in the subsystem's root cgroup. */
5537	init_css_set.subsys[ss->id] = css;
5538
5539	have_fork_callback |= (bool)ss->fork << ss->id;
5540	have_exit_callback |= (bool)ss->exit << ss->id;
5541	have_free_callback |= (bool)ss->free << ss->id;
5542	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5543
5544	/* At system boot, before all subsystems have been
5545	 * registered, no tasks have been forked, so we don't
5546	 * need to invoke fork callbacks here. */
5547	BUG_ON(!list_empty(&init_task.tasks));
5548
5549	BUG_ON(online_css(css));
5550
5551	mutex_unlock(&cgroup_mutex);
5552}
 
5553
5554/**
5555 * cgroup_init_early - cgroup initialization at system boot
5556 *
5557 * Initialize cgroups at system boot, and initialize any
5558 * subsystems that request early init.
5559 */
5560int __init cgroup_init_early(void)
5561{
5562	static struct cgroup_sb_opts __initdata opts;
5563	struct cgroup_subsys *ss;
5564	int i;
5565
5566	init_cgroup_root(&cgrp_dfl_root, &opts);
5567	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5568
5569	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5570
5571	for_each_subsys(ss, i) {
5572		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5573		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5574		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5575		     ss->id, ss->name);
5576		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5577		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5578
5579		ss->id = i;
5580		ss->name = cgroup_subsys_name[i];
5581		if (!ss->legacy_name)
5582			ss->legacy_name = cgroup_subsys_name[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5583
5584		if (ss->early_init)
5585			cgroup_init_subsys(ss, true);
5586	}
5587	return 0;
5588}
5589
5590static u16 cgroup_disable_mask __initdata;
5591
5592/**
5593 * cgroup_init - cgroup initialization
5594 *
5595 * Register cgroup filesystem and /proc file, and initialize
5596 * any subsystems that didn't request early init.
5597 */
5598int __init cgroup_init(void)
5599{
5600	struct cgroup_subsys *ss;
5601	int ssid;
5602
5603	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5604	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5605	BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5606	BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5607
5608	get_user_ns(init_cgroup_ns.user_ns);
5609
5610	mutex_lock(&cgroup_mutex);
5611
5612	/*
5613	 * Add init_css_set to the hash table so that dfl_root can link to
5614	 * it during init.
5615	 */
5616	hash_add(css_set_table, &init_css_set.hlist,
5617		 css_set_hash(init_css_set.subsys));
5618
5619	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5620
5621	mutex_unlock(&cgroup_mutex);
5622
5623	for_each_subsys(ss, ssid) {
5624		if (ss->early_init) {
5625			struct cgroup_subsys_state *css =
5626				init_css_set.subsys[ss->id];
5627
5628			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5629						   GFP_KERNEL);
5630			BUG_ON(css->id < 0);
5631		} else {
5632			cgroup_init_subsys(ss, false);
5633		}
5634
5635		list_add_tail(&init_css_set.e_cset_node[ssid],
5636			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5637
5638		/*
5639		 * Setting dfl_root subsys_mask needs to consider the
5640		 * disabled flag and cftype registration needs kmalloc,
5641		 * both of which aren't available during early_init.
5642		 */
5643		if (cgroup_disable_mask & (1 << ssid)) {
5644			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5645			printk(KERN_INFO "Disabling %s control group subsystem\n",
5646			       ss->name);
5647			continue;
5648		}
5649
5650		if (cgroup_ssid_no_v1(ssid))
5651			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5652			       ss->name);
5653
5654		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5655
5656		if (ss->implicit_on_dfl)
5657			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5658		else if (!ss->dfl_cftypes)
5659			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5660
5661		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5662			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5663		} else {
5664			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5665			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5666		}
5667
5668		if (ss->bind)
5669			ss->bind(init_css_set.subsys[ssid]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5670	}
5671
5672	/* init_css_set.subsys[] has been updated, re-hash */
5673	hash_del(&init_css_set.hlist);
5674	hash_add(css_set_table, &init_css_set.hlist,
5675		 css_set_hash(init_css_set.subsys));
5676
5677	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5678	WARN_ON(register_filesystem(&cgroup_fs_type));
5679	WARN_ON(register_filesystem(&cgroup2_fs_type));
5680	WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5681
5682	return 0;
5683}
5684
5685static int __init cgroup_wq_init(void)
5686{
5687	/*
5688	 * There isn't much point in executing destruction path in
5689	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5690	 * Use 1 for @max_active.
5691	 *
5692	 * We would prefer to do this in cgroup_init() above, but that
5693	 * is called before init_workqueues(): so leave this until after.
5694	 */
5695	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5696	BUG_ON(!cgroup_destroy_wq);
5697
5698	/*
5699	 * Used to destroy pidlists and separate to serve as flush domain.
5700	 * Cap @max_active to 1 too.
5701	 */
5702	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5703						    0, 1);
5704	BUG_ON(!cgroup_pidlist_destroy_wq);
5705
5706	return 0;
5707}
5708core_initcall(cgroup_wq_init);
5709
5710/*
5711 * proc_cgroup_show()
5712 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5713 *  - Used for /proc/<pid>/cgroup.
 
 
 
 
 
 
5714 */
5715int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5716		     struct pid *pid, struct task_struct *tsk)
 
5717{
5718	char *buf, *path;
 
 
5719	int retval;
5720	struct cgroup_root *root;
5721
5722	retval = -ENOMEM;
5723	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5724	if (!buf)
5725		goto out;
5726
 
 
 
 
 
 
 
 
5727	mutex_lock(&cgroup_mutex);
5728	spin_lock_bh(&css_set_lock);
5729
5730	for_each_root(root) {
5731		struct cgroup_subsys *ss;
5732		struct cgroup *cgrp;
5733		int ssid, count = 0;
5734
5735		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5736			continue;
5737
5738		seq_printf(m, "%d:", root->hierarchy_id);
5739		if (root != &cgrp_dfl_root)
5740			for_each_subsys(ss, ssid)
5741				if (root->subsys_mask & (1 << ssid))
5742					seq_printf(m, "%s%s", count++ ? "," : "",
5743						   ss->legacy_name);
5744		if (strlen(root->name))
5745			seq_printf(m, "%sname=%s", count ? "," : "",
5746				   root->name);
5747		seq_putc(m, ':');
5748
5749		cgrp = task_cgroup_from_root(tsk, root);
5750
5751		/*
5752		 * On traditional hierarchies, all zombie tasks show up as
5753		 * belonging to the root cgroup.  On the default hierarchy,
5754		 * while a zombie doesn't show up in "cgroup.procs" and
5755		 * thus can't be migrated, its /proc/PID/cgroup keeps
5756		 * reporting the cgroup it belonged to before exiting.  If
5757		 * the cgroup is removed before the zombie is reaped,
5758		 * " (deleted)" is appended to the cgroup path.
5759		 */
5760		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5761			path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5762						current->nsproxy->cgroup_ns);
5763			if (!path) {
5764				retval = -ENAMETOOLONG;
5765				goto out_unlock;
5766			}
5767		} else {
5768			path = "/";
5769		}
5770
5771		seq_puts(m, path);
5772
5773		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5774			seq_puts(m, " (deleted)\n");
5775		else
5776			seq_putc(m, '\n');
5777	}
5778
5779	retval = 0;
5780out_unlock:
5781	spin_unlock_bh(&css_set_lock);
5782	mutex_unlock(&cgroup_mutex);
 
 
5783	kfree(buf);
5784out:
5785	return retval;
5786}
5787
 
 
 
 
 
 
 
 
 
 
 
 
 
5788/* Display information about each subsystem and each hierarchy */
5789static int proc_cgroupstats_show(struct seq_file *m, void *v)
5790{
5791	struct cgroup_subsys *ss;
5792	int i;
5793
5794	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5795	/*
5796	 * ideally we don't want subsystems moving around while we do this.
5797	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5798	 * subsys/hierarchy state.
5799	 */
5800	mutex_lock(&cgroup_mutex);
5801
5802	for_each_subsys(ss, i)
 
 
5803		seq_printf(m, "%s\t%d\t%d\t%d\n",
5804			   ss->legacy_name, ss->root->hierarchy_id,
5805			   atomic_read(&ss->root->nr_cgrps),
5806			   cgroup_ssid_enabled(i));
5807
5808	mutex_unlock(&cgroup_mutex);
5809	return 0;
5810}
5811
5812static int cgroupstats_open(struct inode *inode, struct file *file)
5813{
5814	return single_open(file, proc_cgroupstats_show, NULL);
5815}
5816
5817static const struct file_operations proc_cgroupstats_operations = {
5818	.open = cgroupstats_open,
5819	.read = seq_read,
5820	.llseek = seq_lseek,
5821	.release = single_release,
5822};
5823
5824/**
5825 * cgroup_fork - initialize cgroup related fields during copy_process()
5826 * @child: pointer to task_struct of forking parent process.
5827 *
5828 * A task is associated with the init_css_set until cgroup_post_fork()
5829 * attaches it to the parent's css_set.  Empty cg_list indicates that
5830 * @child isn't holding reference to its css_set.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5831 */
5832void cgroup_fork(struct task_struct *child)
5833{
5834	RCU_INIT_POINTER(child->cgroups, &init_css_set);
 
 
 
 
 
 
 
5835	INIT_LIST_HEAD(&child->cg_list);
5836}
5837
5838/**
5839 * cgroup_can_fork - called on a new task before the process is exposed
5840 * @child: the task in question.
5841 *
5842 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5843 * returns an error, the fork aborts with that error code. This allows for
5844 * a cgroup subsystem to conditionally allow or deny new forks.
5845 */
5846int cgroup_can_fork(struct task_struct *child)
5847{
5848	struct cgroup_subsys *ss;
5849	int i, j, ret;
5850
5851	do_each_subsys_mask(ss, i, have_canfork_callback) {
5852		ret = ss->can_fork(child);
5853		if (ret)
5854			goto out_revert;
5855	} while_each_subsys_mask();
5856
5857	return 0;
5858
5859out_revert:
5860	for_each_subsys(ss, j) {
5861		if (j >= i)
5862			break;
5863		if (ss->cancel_fork)
5864			ss->cancel_fork(child);
5865	}
5866
5867	return ret;
5868}
5869
5870/**
5871 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5872 * @child: the task in question
5873 *
5874 * This calls the cancel_fork() callbacks if a fork failed *after*
5875 * cgroup_can_fork() succeded.
5876 */
5877void cgroup_cancel_fork(struct task_struct *child)
5878{
5879	struct cgroup_subsys *ss;
5880	int i;
5881
5882	for_each_subsys(ss, i)
5883		if (ss->cancel_fork)
5884			ss->cancel_fork(child);
5885}
5886
5887/**
5888 * cgroup_post_fork - called on a new task after adding it to the task list
5889 * @child: the task in question
5890 *
5891 * Adds the task to the list running through its css_set if necessary and
5892 * call the subsystem fork() callbacks.  Has to be after the task is
5893 * visible on the task list in case we race with the first call to
5894 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5895 * list.
5896 */
5897void cgroup_post_fork(struct task_struct *child)
5898{
5899	struct cgroup_subsys *ss;
5900	int i;
5901
5902	/*
5903	 * This may race against cgroup_enable_task_cg_lists().  As that
5904	 * function sets use_task_css_set_links before grabbing
5905	 * tasklist_lock and we just went through tasklist_lock to add
5906	 * @child, it's guaranteed that either we see the set
5907	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5908	 * @child during its iteration.
5909	 *
5910	 * If we won the race, @child is associated with %current's
5911	 * css_set.  Grabbing css_set_lock guarantees both that the
5912	 * association is stable, and, on completion of the parent's
5913	 * migration, @child is visible in the source of migration or
5914	 * already in the destination cgroup.  This guarantee is necessary
5915	 * when implementing operations which need to migrate all tasks of
5916	 * a cgroup to another.
5917	 *
5918	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5919	 * will remain in init_css_set.  This is safe because all tasks are
5920	 * in the init_css_set before cg_links is enabled and there's no
5921	 * operation which transfers all tasks out of init_css_set.
5922	 */
5923	if (use_task_css_set_links) {
5924		struct css_set *cset;
5925
5926		spin_lock_bh(&css_set_lock);
5927		cset = task_css_set(current);
5928		if (list_empty(&child->cg_list)) {
5929			get_css_set(cset);
5930			css_set_move_task(child, NULL, cset, false);
 
 
 
 
 
 
 
 
 
5931		}
5932		spin_unlock_bh(&css_set_lock);
5933	}
5934
5935	/*
5936	 * Call ss->fork().  This must happen after @child is linked on
5937	 * css_set; otherwise, @child might change state between ->fork()
5938	 * and addition to css_set.
5939	 */
5940	do_each_subsys_mask(ss, i, have_fork_callback) {
5941		ss->fork(child);
5942	} while_each_subsys_mask();
5943}
5944
5945/**
5946 * cgroup_exit - detach cgroup from exiting task
5947 * @tsk: pointer to task_struct of exiting process
 
5948 *
5949 * Description: Detach cgroup from @tsk and release it.
5950 *
5951 * Note that cgroups marked notify_on_release force every task in
5952 * them to take the global cgroup_mutex mutex when exiting.
5953 * This could impact scaling on very large systems.  Be reluctant to
5954 * use notify_on_release cgroups where very high task exit scaling
5955 * is required on large systems.
5956 *
5957 * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5958 * call cgroup_exit() while the task is still competent to handle
5959 * notify_on_release(), then leave the task attached to the root cgroup in
5960 * each hierarchy for the remainder of its exit.  No need to bother with
5961 * init_css_set refcnting.  init_css_set never goes away and we can't race
5962 * with migration path - PF_EXITING is visible to migration path.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5963 */
5964void cgroup_exit(struct task_struct *tsk)
5965{
5966	struct cgroup_subsys *ss;
5967	struct css_set *cset;
5968	int i;
5969
5970	/*
5971	 * Unlink from @tsk from its css_set.  As migration path can't race
5972	 * with us, we can check css_set and cg_list without synchronization.
 
5973	 */
5974	cset = task_css_set(tsk);
5975
5976	if (!list_empty(&tsk->cg_list)) {
5977		spin_lock_bh(&css_set_lock);
5978		css_set_move_task(tsk, cset, NULL, false);
5979		spin_unlock_bh(&css_set_lock);
5980	} else {
5981		get_css_set(cset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5982	}
 
5983
5984	/* see cgroup_post_fork() for details */
5985	do_each_subsys_mask(ss, i, have_exit_callback) {
5986		ss->exit(tsk);
5987	} while_each_subsys_mask();
5988}
5989
5990void cgroup_free(struct task_struct *task)
 
 
 
 
 
 
 
 
 
 
 
 
 
5991{
5992	struct css_set *cset = task_css_set(task);
5993	struct cgroup_subsys *ss;
5994	int ssid;
5995
5996	do_each_subsys_mask(ss, ssid, have_free_callback) {
5997		ss->free(task);
5998	} while_each_subsys_mask();
5999
6000	put_css_set(cset);
 
 
 
 
6001}
6002
6003static void check_for_release(struct cgroup *cgrp)
6004{
6005	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6006	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6007		schedule_work(&cgrp->release_agent_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6008}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6009
6010/*
6011 * Notify userspace when a cgroup is released, by running the
6012 * configured release agent with the name of the cgroup (path
6013 * relative to the root of cgroup file system) as the argument.
6014 *
6015 * Most likely, this user command will try to rmdir this cgroup.
6016 *
6017 * This races with the possibility that some other task will be
6018 * attached to this cgroup before it is removed, or that some other
6019 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
6020 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6021 * unused, and this cgroup will be reprieved from its death sentence,
6022 * to continue to serve a useful existence.  Next time it's released,
6023 * we will get notified again, if it still has 'notify_on_release' set.
6024 *
6025 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6026 * means only wait until the task is successfully execve()'d.  The
6027 * separate release agent task is forked by call_usermodehelper(),
6028 * then control in this thread returns here, without waiting for the
6029 * release agent task.  We don't bother to wait because the caller of
6030 * this routine has no use for the exit status of the release agent
6031 * task, so no sense holding our caller up for that.
6032 */
6033static void cgroup_release_agent(struct work_struct *work)
6034{
6035	struct cgroup *cgrp =
6036		container_of(work, struct cgroup, release_agent_work);
6037	char *pathbuf = NULL, *agentbuf = NULL, *path;
6038	char *argv[3], *envp[3];
6039
6040	mutex_lock(&cgroup_mutex);
6041
6042	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6043	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6044	if (!pathbuf || !agentbuf)
6045		goto out;
6046
6047	spin_lock_bh(&css_set_lock);
6048	path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6049	spin_unlock_bh(&css_set_lock);
6050	if (!path)
6051		goto out;
6052
6053	argv[0] = agentbuf;
6054	argv[1] = path;
6055	argv[2] = NULL;
6056
6057	/* minimal command environment */
6058	envp[0] = "HOME=/";
6059	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6060	envp[2] = NULL;
6061
6062	mutex_unlock(&cgroup_mutex);
6063	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6064	goto out_free;
6065out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6066	mutex_unlock(&cgroup_mutex);
6067out_free:
6068	kfree(agentbuf);
6069	kfree(pathbuf);
6070}
6071
6072static int __init cgroup_disable(char *str)
6073{
6074	struct cgroup_subsys *ss;
6075	char *token;
6076	int i;
 
6077
6078	while ((token = strsep(&str, ",")) != NULL) {
6079		if (!*token)
6080			continue;
 
 
 
 
 
 
6081
6082		for_each_subsys(ss, i) {
6083			if (strcmp(token, ss->name) &&
6084			    strcmp(token, ss->legacy_name))
6085				continue;
6086			cgroup_disable_mask |= 1 << i;
 
6087		}
6088	}
6089	return 1;
6090}
6091__setup("cgroup_disable=", cgroup_disable);
6092
6093static int __init cgroup_no_v1(char *str)
6094{
6095	struct cgroup_subsys *ss;
6096	char *token;
6097	int i;
6098
6099	while ((token = strsep(&str, ",")) != NULL) {
6100		if (!*token)
6101			continue;
6102
6103		if (!strcmp(token, "all")) {
6104			cgroup_no_v1_mask = U16_MAX;
6105			break;
6106		}
 
 
6107
6108		for_each_subsys(ss, i) {
6109			if (strcmp(token, ss->name) &&
6110			    strcmp(token, ss->legacy_name))
6111				continue;
 
 
6112
6113			cgroup_no_v1_mask |= 1 << i;
6114		}
6115	}
6116	return 1;
6117}
6118__setup("cgroup_no_v1=", cgroup_no_v1);
6119
6120/**
6121 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6122 * @dentry: directory dentry of interest
6123 * @ss: subsystem of interest
6124 *
6125 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6126 * to get the corresponding css and return it.  If such css doesn't exist
6127 * or can't be pinned, an ERR_PTR value is returned.
6128 */
6129struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6130						       struct cgroup_subsys *ss)
6131{
6132	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6133	struct file_system_type *s_type = dentry->d_sb->s_type;
6134	struct cgroup_subsys_state *css = NULL;
6135	struct cgroup *cgrp;
6136
6137	/* is @dentry a cgroup dir? */
6138	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6139	    !kn || kernfs_type(kn) != KERNFS_DIR)
6140		return ERR_PTR(-EBADF);
6141
6142	rcu_read_lock();
6143
6144	/*
6145	 * This path doesn't originate from kernfs and @kn could already
6146	 * have been or be removed at any point.  @kn->priv is RCU
6147	 * protected for this access.  See css_release_work_fn() for details.
6148	 */
6149	cgrp = rcu_dereference(kn->priv);
6150	if (cgrp)
6151		css = cgroup_css(cgrp, ss);
6152
6153	if (!css || !css_tryget_online(css))
6154		css = ERR_PTR(-ENOENT);
6155
6156	rcu_read_unlock();
6157	return css;
 
6158}
 
6159
6160/**
6161 * css_from_id - lookup css by id
6162 * @id: the cgroup id
6163 * @ss: cgroup subsys to be looked into
6164 *
6165 * Returns the css if there's valid one with @id, otherwise returns NULL.
6166 * Should be called under rcu_read_lock().
 
 
 
 
6167 */
6168struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6169{
6170	WARN_ON_ONCE(!rcu_read_lock_held());
6171	return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
6172}
6173
6174/**
6175 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6176 * @path: path on the default hierarchy
6177 *
6178 * Find the cgroup at @path on the default hierarchy, increment its
6179 * reference count and return it.  Returns pointer to the found cgroup on
6180 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6181 * if @path points to a non-directory.
6182 */
6183struct cgroup *cgroup_get_from_path(const char *path)
6184{
6185	struct kernfs_node *kn;
6186	struct cgroup *cgrp;
6187
6188	mutex_lock(&cgroup_mutex);
6189
6190	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6191	if (kn) {
6192		if (kernfs_type(kn) == KERNFS_DIR) {
6193			cgrp = kn->priv;
6194			cgroup_get(cgrp);
6195		} else {
6196			cgrp = ERR_PTR(-ENOTDIR);
6197		}
6198		kernfs_put(kn);
6199	} else {
6200		cgrp = ERR_PTR(-ENOENT);
6201	}
6202
6203	mutex_unlock(&cgroup_mutex);
6204	return cgrp;
6205}
6206EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6207
6208/*
6209 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6210 * definition in cgroup-defs.h.
6211 */
6212#ifdef CONFIG_SOCK_CGROUP_DATA
6213
6214#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6215
6216DEFINE_SPINLOCK(cgroup_sk_update_lock);
6217static bool cgroup_sk_alloc_disabled __read_mostly;
6218
6219void cgroup_sk_alloc_disable(void)
6220{
6221	if (cgroup_sk_alloc_disabled)
 
 
6222		return;
6223	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6224	cgroup_sk_alloc_disabled = true;
6225}
6226
6227#else
6228
6229#define cgroup_sk_alloc_disabled	false
 
 
 
 
 
 
 
6230
6231#endif
 
 
 
6232
6233void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6234{
6235	if (cgroup_sk_alloc_disabled)
6236		return;
6237
6238	rcu_read_lock();
6239
6240	while (true) {
6241		struct css_set *cset;
6242
6243		cset = task_css_set(current);
6244		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6245			skcd->val = (unsigned long)cset->dfl_cgrp;
6246			break;
6247		}
6248		cpu_relax();
6249	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6250
6251	rcu_read_unlock();
6252}
6253
6254void cgroup_sk_free(struct sock_cgroup_data *skcd)
6255{
6256	cgroup_put(sock_cgroup_ptr(skcd));
 
 
 
 
 
 
 
 
 
 
 
 
 
6257}
6258
6259#endif	/* CONFIG_SOCK_CGROUP_DATA */
6260
6261/* cgroup namespaces */
6262
6263static struct cgroup_namespace *alloc_cgroup_ns(void)
6264{
6265	struct cgroup_namespace *new_ns;
6266	int ret;
6267
6268	new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6269	if (!new_ns)
6270		return ERR_PTR(-ENOMEM);
6271	ret = ns_alloc_inum(&new_ns->ns);
6272	if (ret) {
6273		kfree(new_ns);
6274		return ERR_PTR(ret);
6275	}
6276	atomic_set(&new_ns->count, 1);
6277	new_ns->ns.ops = &cgroupns_operations;
6278	return new_ns;
6279}
 
 
 
 
 
 
 
6280
6281void free_cgroup_ns(struct cgroup_namespace *ns)
6282{
6283	put_css_set(ns->root_cset);
6284	put_user_ns(ns->user_ns);
6285	ns_free_inum(&ns->ns);
6286	kfree(ns);
6287}
6288EXPORT_SYMBOL(free_cgroup_ns);
6289
6290struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6291					struct user_namespace *user_ns,
6292					struct cgroup_namespace *old_ns)
 
 
 
 
 
 
6293{
6294	struct cgroup_namespace *new_ns;
6295	struct css_set *cset;
6296
6297	BUG_ON(!old_ns);
6298
6299	if (!(flags & CLONE_NEWCGROUP)) {
6300		get_cgroup_ns(old_ns);
6301		return old_ns;
6302	}
6303
6304	/* Allow only sysadmin to create cgroup namespace. */
6305	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6306		return ERR_PTR(-EPERM);
6307
6308	mutex_lock(&cgroup_mutex);
6309	spin_lock_bh(&css_set_lock);
6310
6311	cset = task_css_set(current);
6312	get_css_set(cset);
6313
6314	spin_unlock_bh(&css_set_lock);
6315	mutex_unlock(&cgroup_mutex);
6316
6317	new_ns = alloc_cgroup_ns();
6318	if (IS_ERR(new_ns)) {
6319		put_css_set(cset);
6320		return new_ns;
6321	}
6322
6323	new_ns->user_ns = get_user_ns(user_ns);
6324	new_ns->root_cset = cset;
6325
6326	return new_ns;
6327}
 
6328
6329static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6330{
6331	return container_of(ns, struct cgroup_namespace, ns);
6332}
6333
6334static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
 
 
 
 
 
 
 
6335{
6336	struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6337
6338	if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6339	    !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6340		return -EPERM;
6341
6342	/* Don't need to do anything if we are attaching to our own cgroupns. */
6343	if (cgroup_ns == nsproxy->cgroup_ns)
6344		return 0;
6345
6346	get_cgroup_ns(cgroup_ns);
6347	put_cgroup_ns(nsproxy->cgroup_ns);
6348	nsproxy->cgroup_ns = cgroup_ns;
6349
6350	return 0;
6351}
6352
6353static struct ns_common *cgroupns_get(struct task_struct *task)
6354{
6355	struct cgroup_namespace *ns = NULL;
6356	struct nsproxy *nsproxy;
6357
6358	task_lock(task);
6359	nsproxy = task->nsproxy;
6360	if (nsproxy) {
6361		ns = nsproxy->cgroup_ns;
6362		get_cgroup_ns(ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6363	}
6364	task_unlock(task);
6365
6366	return ns ? &ns->ns : NULL;
6367}
6368
6369static void cgroupns_put(struct ns_common *ns)
 
 
 
6370{
6371	put_cgroup_ns(to_cg_ns(ns));
6372}
 
6373
6374const struct proc_ns_operations cgroupns_operations = {
6375	.name		= "cgroup",
6376	.type		= CLONE_NEWCGROUP,
6377	.get		= cgroupns_get,
6378	.put		= cgroupns_put,
6379	.install	= cgroupns_install,
6380};
6381
6382static __init int cgroup_namespaces_init(void)
6383{
6384	return 0;
 
 
 
 
6385}
6386subsys_initcall(cgroup_namespaces_init);
6387
6388#ifdef CONFIG_CGROUP_DEBUG
6389static struct cgroup_subsys_state *
6390debug_css_alloc(struct cgroup_subsys_state *parent_css)
6391{
6392	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6393
6394	if (!css)
6395		return ERR_PTR(-ENOMEM);
6396
6397	return css;
6398}
6399
6400static void debug_css_free(struct cgroup_subsys_state *css)
6401{
6402	kfree(css);
6403}
6404
6405static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6406				struct cftype *cft)
6407{
6408	return cgroup_task_count(css->cgroup);
6409}
6410
6411static u64 current_css_set_read(struct cgroup_subsys_state *css,
6412				struct cftype *cft)
 
 
 
 
6413{
6414	return (u64)(unsigned long)current->cgroups;
6415}
6416
6417static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6418					 struct cftype *cft)
6419{
6420	u64 count;
6421
6422	rcu_read_lock();
6423	count = atomic_read(&task_css_set(current)->refcount);
6424	rcu_read_unlock();
6425	return count;
6426}
6427
6428static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
 
 
6429{
6430	struct cgrp_cset_link *link;
6431	struct css_set *cset;
6432	char *name_buf;
6433
6434	name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6435	if (!name_buf)
6436		return -ENOMEM;
6437
6438	spin_lock_bh(&css_set_lock);
6439	rcu_read_lock();
6440	cset = rcu_dereference(current->cgroups);
6441	list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6442		struct cgroup *c = link->cgrp;
 
6443
6444		cgroup_name(c, name_buf, NAME_MAX + 1);
 
 
 
6445		seq_printf(seq, "Root %d group %s\n",
6446			   c->root->hierarchy_id, name_buf);
6447	}
6448	rcu_read_unlock();
6449	spin_unlock_bh(&css_set_lock);
6450	kfree(name_buf);
6451	return 0;
6452}
6453
6454#define MAX_TASKS_SHOWN_PER_CSS 25
6455static int cgroup_css_links_read(struct seq_file *seq, void *v)
6456{
6457	struct cgroup_subsys_state *css = seq_css(seq);
6458	struct cgrp_cset_link *link;
6459
6460	spin_lock_bh(&css_set_lock);
6461	list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6462		struct css_set *cset = link->cset;
 
6463		struct task_struct *task;
6464		int count = 0;
6465
6466		seq_printf(seq, "css_set %p\n", cset);
6467
6468		list_for_each_entry(task, &cset->tasks, cg_list) {
6469			if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6470				goto overflow;
6471			seq_printf(seq, "  task %d\n", task_pid_vnr(task));
6472		}
6473
6474		list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6475			if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6476				goto overflow;
6477			seq_printf(seq, "  task %d\n", task_pid_vnr(task));
6478		}
6479		continue;
6480	overflow:
6481		seq_puts(seq, "  ...\n");
6482	}
6483	spin_unlock_bh(&css_set_lock);
6484	return 0;
6485}
6486
6487static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6488{
6489	return (!cgroup_is_populated(css->cgroup) &&
6490		!css_has_online_children(&css->cgroup->self));
6491}
6492
6493static struct cftype debug_files[] =  {
6494	{
 
 
 
 
6495		.name = "taskcount",
6496		.read_u64 = debug_taskcount_read,
6497	},
6498
6499	{
6500		.name = "current_css_set",
6501		.read_u64 = current_css_set_read,
6502	},
6503
6504	{
6505		.name = "current_css_set_refcount",
6506		.read_u64 = current_css_set_refcount_read,
6507	},
6508
6509	{
6510		.name = "current_css_set_cg_links",
6511		.seq_show = current_css_set_cg_links_read,
6512	},
6513
6514	{
6515		.name = "cgroup_css_links",
6516		.seq_show = cgroup_css_links_read,
6517	},
6518
6519	{
6520		.name = "releasable",
6521		.read_u64 = releasable_read,
6522	},
6523
6524	{ }	/* terminate */
6525};
6526
6527struct cgroup_subsys debug_cgrp_subsys = {
6528	.css_alloc = debug_css_alloc,
6529	.css_free = debug_css_free,
6530	.legacy_cftypes = debug_files,
 
 
6531};
6532#endif /* CONFIG_CGROUP_DEBUG */
v3.5.6
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
 
 
  29#include <linux/cgroup.h>
  30#include <linux/cred.h>
  31#include <linux/ctype.h>
  32#include <linux/errno.h>
  33#include <linux/fs.h>
  34#include <linux/init_task.h>
  35#include <linux/kernel.h>
  36#include <linux/list.h>
 
  37#include <linux/mm.h>
  38#include <linux/mutex.h>
  39#include <linux/mount.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/rcupdate.h>
  43#include <linux/sched.h>
  44#include <linux/backing-dev.h>
  45#include <linux/seq_file.h>
  46#include <linux/slab.h>
  47#include <linux/magic.h>
  48#include <linux/spinlock.h>
 
  49#include <linux/string.h>
  50#include <linux/sort.h>
  51#include <linux/kmod.h>
  52#include <linux/module.h>
  53#include <linux/delayacct.h>
  54#include <linux/cgroupstats.h>
  55#include <linux/hash.h>
  56#include <linux/namei.h>
  57#include <linux/pid_namespace.h>
  58#include <linux/idr.h>
  59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  60#include <linux/eventfd.h>
  61#include <linux/poll.h>
  62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
  63#include <linux/kthread.h>
  64
  65#include <linux/atomic.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
  66
  67/* css deactivation bias, makes css->refcnt negative to deny new trygets */
  68#define CSS_DEACT_BIAS		INT_MIN
  69
  70/*
  71 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  72 * hierarchy must be performed while holding it.
  73 *
  74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
  75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
  76 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
  77 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
  78 * break the following locking order cycle.
  79 *
  80 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
  81 *  B. namespace_sem -> cgroup_mutex
  82 *
  83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
  84 * breaks it.
  85 */
 
 
 
 
 
 
  86static DEFINE_MUTEX(cgroup_mutex);
  87static DEFINE_MUTEX(cgroup_root_mutex);
 
  88
  89/*
  90 * Generate an array of cgroup subsystem pointers. At boot time, this is
  91 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
  92 * registered after that. The mutable section of this array is protected by
  93 * cgroup_mutex.
  94 */
  95#define SUBSYS(_x) &_x ## _subsys,
  96static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
  97#include <linux/cgroup_subsys.h>
  98};
  99
 100#define MAX_CGROUP_ROOT_NAMELEN 64
 
 
 
 
 101
 102/*
 103 * A cgroupfs_root represents the root of a cgroup hierarchy,
 104 * and may be associated with a superblock to form an active
 105 * hierarchy
 106 */
 107struct cgroupfs_root {
 108	struct super_block *sb;
 109
 110	/*
 111	 * The bitmask of subsystems intended to be attached to this
 112	 * hierarchy
 113	 */
 114	unsigned long subsys_bits;
 115
 116	/* Unique id for this hierarchy. */
 117	int hierarchy_id;
 
 
 118
 119	/* The bitmask of subsystems currently attached to this hierarchy */
 120	unsigned long actual_subsys_bits;
 
 
 
 
 
 121
 122	/* A list running through the attached subsystems */
 123	struct list_head subsys_list;
 
 
 
 124
 125	/* The root cgroup for this hierarchy */
 126	struct cgroup top_cgroup;
 
 
 
 
 127
 128	/* Tracks how many cgroups are currently defined in hierarchy.*/
 129	int number_of_cgroups;
 
 
 
 
 130
 131	/* A list running through the active hierarchies */
 132	struct list_head root_list;
 
 
 
 
 
 
 133
 134	/* All cgroups on this root, cgroup_mutex protected */
 135	struct list_head allcg_list;
 
 
 
 136
 137	/* Hierarchy-specific flags */
 138	unsigned long flags;
 139
 140	/* The path to use for release notifications. */
 141	char release_agent_path[PATH_MAX];
 142
 143	/* The name for this hierarchy - may be empty */
 144	char name[MAX_CGROUP_ROOT_NAMELEN];
 145};
 
 146
 147/*
 148 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 149 * subsystems that are otherwise unattached - it never has more than a
 150 * single cgroup, and all tasks are part of that cgroup.
 151 */
 152static struct cgroupfs_root rootnode;
 
 153
 154/*
 155 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
 
 156 */
 157struct cfent {
 158	struct list_head		node;
 159	struct dentry			*dentry;
 160	struct cftype			*type;
 161};
 
 
 
 
 
 
 
 
 
 
 
 
 
 162
 163/*
 164 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 165 * cgroup_subsys->use_id != 0.
 
 
 
 166 */
 167#define CSS_ID_MAX	(65535)
 168struct css_id {
 169	/*
 170	 * The css to which this ID points. This pointer is set to valid value
 171	 * after cgroup is populated. If cgroup is removed, this will be NULL.
 172	 * This pointer is expected to be RCU-safe because destroy()
 173	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
 174	 * css_tryget() should be used for avoiding race.
 175	 */
 176	struct cgroup_subsys_state __rcu *css;
 177	/*
 178	 * ID of this css.
 179	 */
 180	unsigned short id;
 181	/*
 182	 * Depth in hierarchy which this ID belongs to.
 183	 */
 184	unsigned short depth;
 185	/*
 186	 * ID is freed by RCU. (and lookup routine is RCU safe.)
 187	 */
 188	struct rcu_head rcu_head;
 189	/*
 190	 * Hierarchy of CSS ID belongs to.
 191	 */
 192	unsigned short stack[0]; /* Array of Length (depth+1) */
 193};
 194
 195/*
 196 * cgroup_event represents events which userspace want to receive.
 
 
 197 */
 198struct cgroup_event {
 199	/*
 200	 * Cgroup which the event belongs to.
 201	 */
 202	struct cgroup *cgrp;
 203	/*
 204	 * Control file which the event associated.
 205	 */
 206	struct cftype *cft;
 207	/*
 208	 * eventfd to signal userspace about the event.
 209	 */
 210	struct eventfd_ctx *eventfd;
 211	/*
 212	 * Each of these stored in a list by the cgroup.
 213	 */
 214	struct list_head list;
 215	/*
 216	 * All fields below needed to unregister event when
 217	 * userspace closes eventfd.
 218	 */
 219	poll_table pt;
 220	wait_queue_head_t *wqh;
 221	wait_queue_t wait;
 222	struct work_struct remove;
 223};
 224
 225/* The list of hierarchy roots */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226
 227static LIST_HEAD(roots);
 228static int root_count;
 
 
 
 
 
 
 
 
 
 
 229
 230static DEFINE_IDA(hierarchy_ida);
 231static int next_hierarchy_id;
 232static DEFINE_SPINLOCK(hierarchy_id_lock);
 233
 234/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
 235#define dummytop (&rootnode.top_cgroup)
 
 
 236
 237/* This flag indicates whether tasks in the fork and exit paths should
 238 * check for fork/exit handlers to call. This avoids us having to do
 239 * extra work in the fork/exit path if none of the subsystems need to
 240 * be called.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241 */
 242static int need_forkexit_callback __read_mostly;
 
 
 
 243
 244#ifdef CONFIG_PROVE_LOCKING
 245int cgroup_lock_is_held(void)
 
 246{
 247	return lockdep_is_held(&cgroup_mutex);
 
 
 
 
 
 
 
 248}
 249#else /* #ifdef CONFIG_PROVE_LOCKING */
 250int cgroup_lock_is_held(void)
 251{
 252	return mutex_is_locked(&cgroup_mutex);
 
 
 
 
 
 253}
 254#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
 255
 256EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
 
 
 
 
 
 257
 258static int css_unbias_refcnt(int refcnt)
 259{
 260	return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
 
 
 
 
 261}
 262
 263/* the current nr of refs, always >= 0 whether @css is deactivated or not */
 264static int css_refcnt(struct cgroup_subsys_state *css)
 265{
 266	int v = atomic_read(&css->refcnt);
 
 
 
 
 267
 268	return css_unbias_refcnt(v);
 
 
 
 269}
 270
 271/* convenient tests for these bits */
 272inline int cgroup_is_removed(const struct cgroup *cgrp)
 273{
 274	return test_bit(CGRP_REMOVED, &cgrp->flags);
 
 
 
 
 
 275}
 276
 277/* bits in struct cgroupfs_root flags field */
 278enum {
 279	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
 280};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281
 282static int cgroup_is_releasable(const struct cgroup *cgrp)
 
 
 
 
 
 
 
 
 
 
 
 283{
 284	const int bits =
 285		(1 << CGRP_RELEASABLE) |
 286		(1 << CGRP_NOTIFY_ON_RELEASE);
 287	return (cgrp->flags & bits) == bits;
 
 
 
 
 
 
 
 
 
 
 
 
 288}
 289
 290static int notify_on_release(const struct cgroup *cgrp)
 
 
 
 
 
 
 
 
 
 
 
 
 291{
 292	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293}
 294
 295static int clone_children(const struct cgroup *cgrp)
 
 296{
 297	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
 298}
 299
 300/*
 301 * for_each_subsys() allows you to iterate on each subsystem attached to
 302 * an active hierarchy
 303 */
 304#define for_each_subsys(_root, _ss) \
 305list_for_each_entry(_ss, &_root->subsys_list, sibling)
 306
 307/* for_each_active_root() allows you to iterate across the active hierarchies */
 308#define for_each_active_root(_root) \
 309list_for_each_entry(_root, &roots, root_list)
 310
 311static inline struct cgroup *__d_cgrp(struct dentry *dentry)
 312{
 313	return dentry->d_fsdata;
 314}
 315
 316static inline struct cfent *__d_cfe(struct dentry *dentry)
 317{
 318	return dentry->d_fsdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319}
 
 320
 321static inline struct cftype *__d_cft(struct dentry *dentry)
 322{
 323	return __d_cfe(dentry)->type;
 324}
 325
 326/* the list of cgroups eligible for automatic release. Protected by
 327 * release_list_lock */
 328static LIST_HEAD(release_list);
 329static DEFINE_RAW_SPINLOCK(release_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330static void cgroup_release_agent(struct work_struct *work);
 331static DECLARE_WORK(release_agent_work, cgroup_release_agent);
 332static void check_for_release(struct cgroup *cgrp);
 333
 334/* Link structure for associating css_set objects with cgroups */
 335struct cg_cgroup_link {
 336	/*
 337	 * List running through cg_cgroup_links associated with a
 338	 * cgroup, anchored on cgroup->css_sets
 339	 */
 340	struct list_head cgrp_link_list;
 341	struct cgroup *cgrp;
 342	/*
 343	 * List running through cg_cgroup_links pointing at a
 344	 * single css_set object, anchored on css_set->cg_links
 345	 */
 346	struct list_head cg_link_list;
 347	struct css_set *cg;
 
 
 
 
 348};
 349
 350/* The default css_set - used by init and its children prior to any
 
 351 * hierarchies being mounted. It contains a pointer to the root state
 352 * for each subsystem. Also used to anchor the list of css_sets. Not
 353 * reference-counted, to improve performance when child cgroups
 354 * haven't been created.
 355 */
 
 
 
 
 
 
 
 
 
 356
 357static struct css_set init_css_set;
 358static struct cg_cgroup_link init_css_set_link;
 359
 360static int cgroup_init_idr(struct cgroup_subsys *ss,
 361			   struct cgroup_subsys_state *css);
 
 
 
 
 
 
 
 
 362
 363/* css_set_lock protects the list of css_set objects, and the
 364 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 365 * due to cgroup_iter_start() */
 366static DEFINE_RWLOCK(css_set_lock);
 367static int css_set_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368
 369/*
 370 * hash table for cgroup groups. This improves the performance to find
 371 * an existing css_set. This hash doesn't (currently) take into
 372 * account cgroups in empty hierarchies.
 373 */
 374#define CSS_SET_HASH_BITS	7
 375#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
 376static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
 377
 378static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
 379{
 
 
 380	int i;
 381	int index;
 382	unsigned long tmp = 0UL;
 383
 384	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
 385		tmp += (unsigned long)css[i];
 386	tmp = (tmp >> 16) ^ tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387
 388	index = hash_long(tmp, CSS_SET_HASH_BITS);
 
 
 
 
 
 
 389
 390	return &css_set_table[index];
 391}
 392
 393/* We don't maintain the lists running through each css_set to its
 394 * task until after the first call to cgroup_iter_start(). This
 395 * reduces the fork()/exit() overhead for people who have cgroups
 396 * compiled into their kernel but not actually in use */
 397static int use_task_css_set_links __read_mostly;
 398
 399static void __put_css_set(struct css_set *cg, int taskexit)
 400{
 401	struct cg_cgroup_link *link;
 402	struct cg_cgroup_link *saved_link;
 403	/*
 404	 * Ensure that the refcount doesn't hit zero while any readers
 405	 * can see it. Similar to atomic_dec_and_lock(), but for an
 406	 * rwlock
 407	 */
 408	if (atomic_add_unless(&cg->refcount, -1, 1))
 409		return;
 410	write_lock(&css_set_lock);
 411	if (!atomic_dec_and_test(&cg->refcount)) {
 412		write_unlock(&css_set_lock);
 413		return;
 414	}
 415
 416	/* This css_set is dead. unlink it and release cgroup refcounts */
 417	hlist_del(&cg->hlist);
 418	css_set_count--;
 419
 420	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
 421				 cg_link_list) {
 422		struct cgroup *cgrp = link->cgrp;
 423		list_del(&link->cg_link_list);
 424		list_del(&link->cgrp_link_list);
 425		if (atomic_dec_and_test(&cgrp->count) &&
 426		    notify_on_release(cgrp)) {
 427			if (taskexit)
 428				set_bit(CGRP_RELEASABLE, &cgrp->flags);
 429			check_for_release(cgrp);
 430		}
 431
 432		kfree(link);
 433	}
 434
 435	write_unlock(&css_set_lock);
 436	kfree_rcu(cg, rcu_head);
 437}
 438
 439/*
 440 * refcounted get/put for css_set objects
 441 */
 442static inline void get_css_set(struct css_set *cg)
 443{
 444	atomic_inc(&cg->refcount);
 445}
 446
 447static inline void put_css_set(struct css_set *cg)
 448{
 449	__put_css_set(cg, 0);
 450}
 451
 452static inline void put_css_set_taskexit(struct css_set *cg)
 453{
 454	__put_css_set(cg, 1);
 455}
 456
 457/*
 458 * compare_css_sets - helper function for find_existing_css_set().
 459 * @cg: candidate css_set being tested
 460 * @old_cg: existing css_set for a task
 461 * @new_cgrp: cgroup that's being entered by the task
 462 * @template: desired set of css pointers in css_set (pre-calculated)
 463 *
 464 * Returns true if "cg" matches "old_cg" except for the hierarchy
 465 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 466 */
 467static bool compare_css_sets(struct css_set *cg,
 468			     struct css_set *old_cg,
 469			     struct cgroup *new_cgrp,
 470			     struct cgroup_subsys_state *template[])
 471{
 472	struct list_head *l1, *l2;
 473
 474	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
 475		/* Not all subsystems matched */
 
 
 
 
 476		return false;
 477	}
 478
 479	/*
 480	 * Compare cgroup pointers in order to distinguish between
 481	 * different cgroups in heirarchies with no subsystems. We
 482	 * could get by with just this check alone (and skip the
 483	 * memcmp above) but on most setups the memcmp check will
 484	 * avoid the need for this more expensive check on almost all
 485	 * candidates.
 486	 */
 487
 488	l1 = &cg->cg_links;
 489	l2 = &old_cg->cg_links;
 490	while (1) {
 491		struct cg_cgroup_link *cgl1, *cgl2;
 492		struct cgroup *cg1, *cg2;
 493
 494		l1 = l1->next;
 495		l2 = l2->next;
 496		/* See if we reached the end - both lists are equal length. */
 497		if (l1 == &cg->cg_links) {
 498			BUG_ON(l2 != &old_cg->cg_links);
 499			break;
 500		} else {
 501			BUG_ON(l2 == &old_cg->cg_links);
 502		}
 503		/* Locate the cgroups associated with these links. */
 504		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
 505		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
 506		cg1 = cgl1->cgrp;
 507		cg2 = cgl2->cgrp;
 508		/* Hierarchies should be linked in the same order. */
 509		BUG_ON(cg1->root != cg2->root);
 510
 511		/*
 512		 * If this hierarchy is the hierarchy of the cgroup
 513		 * that's changing, then we need to check that this
 514		 * css_set points to the new cgroup; if it's any other
 515		 * hierarchy, then this css_set should point to the
 516		 * same cgroup as the old css_set.
 517		 */
 518		if (cg1->root == new_cgrp->root) {
 519			if (cg1 != new_cgrp)
 520				return false;
 521		} else {
 522			if (cg1 != cg2)
 523				return false;
 524		}
 525	}
 526	return true;
 527}
 528
 529/*
 530 * find_existing_css_set() is a helper for
 531 * find_css_set(), and checks to see whether an existing
 532 * css_set is suitable.
 533 *
 534 * oldcg: the cgroup group that we're using before the cgroup
 535 * transition
 536 *
 537 * cgrp: the cgroup that we're moving into
 538 *
 539 * template: location in which to build the desired set of subsystem
 540 * state objects for the new cgroup group
 541 */
 542static struct css_set *find_existing_css_set(
 543	struct css_set *oldcg,
 544	struct cgroup *cgrp,
 545	struct cgroup_subsys_state *template[])
 546{
 
 
 
 
 547	int i;
 548	struct cgroupfs_root *root = cgrp->root;
 549	struct hlist_head *hhead;
 550	struct hlist_node *node;
 551	struct css_set *cg;
 552
 553	/*
 554	 * Build the set of subsystem state objects that we want to see in the
 555	 * new css_set. while subsystems can change globally, the entries here
 556	 * won't change, so no need for locking.
 557	 */
 558	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 559		if (root->subsys_bits & (1UL << i)) {
 560			/* Subsystem is in this hierarchy. So we want
 561			 * the subsystem state from the new
 562			 * cgroup */
 563			template[i] = cgrp->subsys[i];
 
 564		} else {
 565			/* Subsystem is not in this hierarchy, so we
 566			 * don't want to change the subsystem state */
 567			template[i] = oldcg->subsys[i];
 
 
 568		}
 569	}
 570
 571	hhead = css_set_hash(template);
 572	hlist_for_each_entry(cg, node, hhead, hlist) {
 573		if (!compare_css_sets(cg, oldcg, cgrp, template))
 574			continue;
 575
 576		/* This css_set matches what we need */
 577		return cg;
 578	}
 579
 580	/* No existing cgroup group matched */
 581	return NULL;
 582}
 583
 584static void free_cg_links(struct list_head *tmp)
 585{
 586	struct cg_cgroup_link *link;
 587	struct cg_cgroup_link *saved_link;
 588
 589	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
 590		list_del(&link->cgrp_link_list);
 591		kfree(link);
 592	}
 593}
 594
 595/*
 596 * allocate_cg_links() allocates "count" cg_cgroup_link structures
 597 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
 598 * success or a negative error
 
 
 
 599 */
 600static int allocate_cg_links(int count, struct list_head *tmp)
 601{
 602	struct cg_cgroup_link *link;
 603	int i;
 604	INIT_LIST_HEAD(tmp);
 
 
 605	for (i = 0; i < count; i++) {
 606		link = kmalloc(sizeof(*link), GFP_KERNEL);
 607		if (!link) {
 608			free_cg_links(tmp);
 609			return -ENOMEM;
 610		}
 611		list_add(&link->cgrp_link_list, tmp);
 612	}
 613	return 0;
 614}
 615
 616/**
 617 * link_css_set - a helper function to link a css_set to a cgroup
 618 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 619 * @cg: the css_set to be linked
 620 * @cgrp: the destination cgroup
 621 */
 622static void link_css_set(struct list_head *tmp_cg_links,
 623			 struct css_set *cg, struct cgroup *cgrp)
 624{
 625	struct cg_cgroup_link *link;
 
 
 626
 627	BUG_ON(list_empty(tmp_cg_links));
 628	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
 629				cgrp_link_list);
 630	link->cg = cg;
 
 631	link->cgrp = cgrp;
 632	atomic_inc(&cgrp->count);
 633	list_move(&link->cgrp_link_list, &cgrp->css_sets);
 634	/*
 635	 * Always add links to the tail of the list so that the list
 636	 * is sorted by order of hierarchy creation
 637	 */
 638	list_add_tail(&link->cg_link_list, &cg->cg_links);
 
 
 
 
 639}
 640
 641/*
 642 * find_css_set() takes an existing cgroup group and a
 643 * cgroup object, and returns a css_set object that's
 644 * equivalent to the old group, but with the given cgroup
 645 * substituted into the appropriate hierarchy. Must be called with
 646 * cgroup_mutex held
 647 */
 648static struct css_set *find_css_set(
 649	struct css_set *oldcg, struct cgroup *cgrp)
 650{
 651	struct css_set *res;
 652	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
 
 
 
 
 
 
 653
 654	struct list_head tmp_cg_links;
 655
 656	struct hlist_head *hhead;
 657	struct cg_cgroup_link *link;
 658
 659	/* First see if we already have a cgroup group that matches
 660	 * the desired set */
 661	read_lock(&css_set_lock);
 662	res = find_existing_css_set(oldcg, cgrp, template);
 663	if (res)
 664		get_css_set(res);
 665	read_unlock(&css_set_lock);
 666
 667	if (res)
 668		return res;
 669
 670	res = kmalloc(sizeof(*res), GFP_KERNEL);
 671	if (!res)
 672		return NULL;
 673
 674	/* Allocate all the cg_cgroup_link objects that we'll need */
 675	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
 676		kfree(res);
 677		return NULL;
 678	}
 679
 680	atomic_set(&res->refcount, 1);
 681	INIT_LIST_HEAD(&res->cg_links);
 682	INIT_LIST_HEAD(&res->tasks);
 683	INIT_HLIST_NODE(&res->hlist);
 
 
 
 
 684
 685	/* Copy the set of subsystem state objects generated in
 686	 * find_existing_css_set() */
 687	memcpy(res->subsys, template, sizeof(res->subsys));
 688
 689	write_lock(&css_set_lock);
 690	/* Add reference counts and links from the new css_set. */
 691	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
 692		struct cgroup *c = link->cgrp;
 
 693		if (c->root == cgrp->root)
 694			c = cgrp;
 695		link_css_set(&tmp_cg_links, res, c);
 696	}
 697
 698	BUG_ON(!list_empty(&tmp_cg_links));
 699
 700	css_set_count++;
 701
 702	/* Add this cgroup group to the hash table */
 703	hhead = css_set_hash(res->subsys);
 704	hlist_add_head(&res->hlist, hhead);
 705
 706	write_unlock(&css_set_lock);
 
 707
 708	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709}
 710
 711/*
 712 * Return the cgroup for "task" from the given hierarchy. Must be
 713 * called with cgroup_mutex held.
 714 */
 715static struct cgroup *task_cgroup_from_root(struct task_struct *task,
 716					    struct cgroupfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717{
 718	struct css_set *css;
 719	struct cgroup *res = NULL;
 720
 721	BUG_ON(!mutex_is_locked(&cgroup_mutex));
 722	read_lock(&css_set_lock);
 723	/*
 724	 * No need to lock the task - since we hold cgroup_mutex the
 725	 * task can't change groups, so the only thing that can happen
 726	 * is that it exits and its css is set back to init_css_set.
 727	 */
 728	css = task->cgroups;
 729	if (css == &init_css_set) {
 730		res = &root->top_cgroup;
 731	} else {
 732		struct cg_cgroup_link *link;
 733		list_for_each_entry(link, &css->cg_links, cg_link_list) {
 
 734			struct cgroup *c = link->cgrp;
 
 735			if (c->root == root) {
 736				res = c;
 737				break;
 738			}
 739		}
 740	}
 741	read_unlock(&css_set_lock);
 742	BUG_ON(!res);
 743	return res;
 744}
 745
 746/*
 747 * There is one global cgroup mutex. We also require taking
 748 * task_lock() when dereferencing a task's cgroup subsys pointers.
 749 * See "The task_lock() exception", at the end of this comment.
 750 *
 
 
 
 
 
 
 
 
 
 
 
 751 * A task must hold cgroup_mutex to modify cgroups.
 752 *
 753 * Any task can increment and decrement the count field without lock.
 754 * So in general, code holding cgroup_mutex can't rely on the count
 755 * field not changing.  However, if the count goes to zero, then only
 756 * cgroup_attach_task() can increment it again.  Because a count of zero
 757 * means that no tasks are currently attached, therefore there is no
 758 * way a task attached to that cgroup can fork (the other way to
 759 * increment the count).  So code holding cgroup_mutex can safely
 760 * assume that if the count is zero, it will stay zero. Similarly, if
 761 * a task holds cgroup_mutex on a cgroup with zero count, it
 762 * knows that the cgroup won't be removed, as cgroup_rmdir()
 763 * needs that mutex.
 764 *
 765 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 766 * (usually) take cgroup_mutex.  These are the two most performance
 767 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 768 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 769 * is taken, and if the cgroup count is zero, a usermode call made
 770 * to the release agent with the name of the cgroup (path relative to
 771 * the root of cgroup file system) as the argument.
 772 *
 773 * A cgroup can only be deleted if both its 'count' of using tasks
 774 * is zero, and its list of 'children' cgroups is empty.  Since all
 775 * tasks in the system use _some_ cgroup, and since there is always at
 776 * least one task in the system (init, pid == 1), therefore, top_cgroup
 777 * always has either children cgroups and/or using tasks.  So we don't
 778 * need a special hack to ensure that top_cgroup cannot be deleted.
 779 *
 780 *	The task_lock() exception
 781 *
 782 * The need for this exception arises from the action of
 783 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
 784 * another.  It does so using cgroup_mutex, however there are
 785 * several performance critical places that need to reference
 786 * task->cgroup without the expense of grabbing a system global
 787 * mutex.  Therefore except as noted below, when dereferencing or, as
 788 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
 789 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 790 * the task_struct routinely used for such matters.
 791 *
 792 * P.S.  One more locking exception.  RCU is used to guard the
 793 * update of a tasks cgroup pointer by cgroup_attach_task()
 794 */
 795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796/**
 797 * cgroup_lock - lock out any changes to cgroup structures
 
 798 *
 
 799 */
 800void cgroup_lock(void)
 801{
 802	mutex_lock(&cgroup_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 803}
 804EXPORT_SYMBOL_GPL(cgroup_lock);
 805
 806/**
 807 * cgroup_unlock - release lock on cgroup changes
 
 
 
 
 
 
 808 *
 809 * Undo the lock taken in a previous cgroup_lock() call.
 
 810 */
 811void cgroup_unlock(void)
 812{
 813	mutex_unlock(&cgroup_mutex);
 814}
 815EXPORT_SYMBOL_GPL(cgroup_unlock);
 816
 817/*
 818 * A couple of forward declarations required, due to cyclic reference loop:
 819 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 820 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 821 * -> cgroup_mkdir.
 822 */
 823
 824static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
 825static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
 826static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
 827static int cgroup_populate_dir(struct cgroup *cgrp);
 828static const struct inode_operations cgroup_dir_inode_operations;
 829static const struct file_operations proc_cgroupstats_operations;
 830
 831static struct backing_dev_info cgroup_backing_dev_info = {
 832	.name		= "cgroup",
 833	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
 834};
 835
 836static int alloc_css_id(struct cgroup_subsys *ss,
 837			struct cgroup *parent, struct cgroup *child);
 
 838
 839static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
 840{
 841	struct inode *inode = new_inode(sb);
 
 
 
 842
 843	if (inode) {
 844		inode->i_ino = get_next_ino();
 845		inode->i_mode = mode;
 846		inode->i_uid = current_fsuid();
 847		inode->i_gid = current_fsgid();
 848		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 849		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
 850	}
 851	return inode;
 
 852}
 853
 854/*
 855 * Call subsys's pre_destroy handler.
 856 * This is called before css refcnt check.
 
 
 
 
 
 
 857 */
 858static int cgroup_call_pre_destroy(struct cgroup *cgrp)
 859{
 860	struct cgroup_subsys *ss;
 861	int ret = 0;
 862
 863	for_each_subsys(cgrp->root, ss) {
 864		if (!ss->pre_destroy)
 865			continue;
 
 866
 867		ret = ss->pre_destroy(cgrp);
 868		if (ret) {
 869			/* ->pre_destroy() failure is being deprecated */
 870			WARN_ON_ONCE(!ss->__DEPRECATED_clear_css_refs);
 871			break;
 872		}
 873	}
 874
 875	return ret;
 
 876}
 877
 878static void cgroup_diput(struct dentry *dentry, struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879{
 880	/* is dentry a directory ? if so, kfree() associated cgroup */
 881	if (S_ISDIR(inode->i_mode)) {
 882		struct cgroup *cgrp = dentry->d_fsdata;
 883		struct cgroup_subsys *ss;
 884		BUG_ON(!(cgroup_is_removed(cgrp)));
 885		/* It's possible for external users to be holding css
 886		 * reference counts on a cgroup; css_put() needs to
 887		 * be able to access the cgroup after decrementing
 888		 * the reference count in order to know if it needs to
 889		 * queue the cgroup to be handled by the release
 890		 * agent */
 891		synchronize_rcu();
 892
 893		mutex_lock(&cgroup_mutex);
 894		/*
 895		 * Release the subsystem state objects.
 896		 */
 897		for_each_subsys(cgrp->root, ss)
 898			ss->destroy(cgrp);
 899
 900		cgrp->root->number_of_cgroups--;
 901		mutex_unlock(&cgroup_mutex);
 
 
 
 
 
 
 
 902
 903		/*
 904		 * Drop the active superblock reference that we took when we
 905		 * created the cgroup
 906		 */
 907		deactivate_super(cgrp->root->sb);
 908
 909		/*
 910		 * if we're getting rid of the cgroup, refcount should ensure
 911		 * that there are no pidlists left.
 912		 */
 913		BUG_ON(!list_empty(&cgrp->pidlists));
 914
 915		kfree_rcu(cgrp, rcu_head);
 916	} else {
 917		struct cfent *cfe = __d_cfe(dentry);
 918		struct cgroup *cgrp = dentry->d_parent->d_fsdata;
 919
 920		WARN_ONCE(!list_empty(&cfe->node) &&
 921			  cgrp != &cgrp->root->top_cgroup,
 922			  "cfe still linked for %s\n", cfe->type->name);
 923		kfree(cfe);
 924	}
 925	iput(inode);
 926}
 927
 928static int cgroup_delete(const struct dentry *d)
 929{
 930	return 1;
 931}
 932
 933static void remove_dir(struct dentry *d)
 934{
 935	struct dentry *parent = dget(d->d_parent);
 936
 937	d_delete(d);
 938	simple_rmdir(parent->d_inode, d);
 939	dput(parent);
 940}
 941
 942static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
 943{
 944	struct cfent *cfe;
 945
 946	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
 947	lockdep_assert_held(&cgroup_mutex);
 948
 949	list_for_each_entry(cfe, &cgrp->files, node) {
 950		struct dentry *d = cfe->dentry;
 
 951
 952		if (cft && cfe->type != cft)
 953			continue;
 
 
 954
 955		dget(d);
 956		d_delete(d);
 957		simple_unlink(cgrp->dentry->d_inode, d);
 958		list_del_init(&cfe->node);
 959		dput(d);
 960
 961		return 0;
 962	}
 963	return -ENOENT;
 964}
 965
 966static void cgroup_clear_directory(struct dentry *dir)
 
 
 
 
 967{
 968	struct cgroup *cgrp = __d_cgrp(dir);
 
 969
 970	while (!list_empty(&cgrp->files))
 971		cgroup_rm_file(cgrp, NULL);
 
 
 
 
 
 972}
 973
 974/*
 975 * NOTE : the dentry must have been dget()'ed
 
 
 
 976 */
 977static void cgroup_d_remove_dir(struct dentry *dentry)
 978{
 979	struct dentry *parent;
 
 
 980
 981	cgroup_clear_directory(dentry);
 
 982
 983	parent = dentry->d_parent;
 984	spin_lock(&parent->d_lock);
 985	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 986	list_del_init(&dentry->d_u.d_child);
 987	spin_unlock(&dentry->d_lock);
 988	spin_unlock(&parent->d_lock);
 989	remove_dir(dentry);
 990}
 991
 992/*
 993 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 994 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 995 * reference to css->refcnt. In general, this refcnt is expected to goes down
 996 * to zero, soon.
 997 *
 998 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
 999 */
1000static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
1001
1002static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
1003{
1004	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
1005		wake_up_all(&cgroup_rmdir_waitq);
1006}
 
 
1007
1008void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
1009{
1010	css_get(css);
1011}
1012
1013void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
1014{
1015	cgroup_wakeup_rmdir_waiter(css->cgroup);
1016	css_put(css);
 
 
 
 
1017}
1018
1019/*
1020 * Call with cgroup_mutex held. Drops reference counts on modules, including
1021 * any duplicate ones that parse_cgroupfs_options took. If this function
1022 * returns an error, no reference counts are touched.
1023 */
1024static int rebind_subsystems(struct cgroupfs_root *root,
1025			      unsigned long final_bits)
1026{
1027	unsigned long added_bits, removed_bits;
1028	struct cgroup *cgrp = &root->top_cgroup;
1029	int i;
1030
1031	BUG_ON(!mutex_is_locked(&cgroup_mutex));
1032	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1033
1034	removed_bits = root->actual_subsys_bits & ~final_bits;
1035	added_bits = final_bits & ~root->actual_subsys_bits;
1036	/* Check that any added subsystems are currently free */
1037	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1038		unsigned long bit = 1UL << i;
1039		struct cgroup_subsys *ss = subsys[i];
1040		if (!(bit & added_bits))
1041			continue;
1042		/*
1043		 * Nobody should tell us to do a subsys that doesn't exist:
1044		 * parse_cgroupfs_options should catch that case and refcounts
1045		 * ensure that subsystems won't disappear once selected.
1046		 */
1047		BUG_ON(ss == NULL);
1048		if (ss->root != &rootnode) {
1049			/* Subsystem isn't free */
1050			return -EBUSY;
1051		}
1052	}
1053
1054	/* Currently we don't handle adding/removing subsystems when
1055	 * any child cgroups exist. This is theoretically supportable
1056	 * but involves complex error handling, so it's being left until
1057	 * later */
1058	if (root->number_of_cgroups > 1)
1059		return -EBUSY;
1060
1061	/* Process each subsystem */
1062	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1063		struct cgroup_subsys *ss = subsys[i];
1064		unsigned long bit = 1UL << i;
1065		if (bit & added_bits) {
1066			/* We're binding this subsystem to this hierarchy */
1067			BUG_ON(ss == NULL);
1068			BUG_ON(cgrp->subsys[i]);
1069			BUG_ON(!dummytop->subsys[i]);
1070			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1071			mutex_lock(&ss->hierarchy_mutex);
1072			cgrp->subsys[i] = dummytop->subsys[i];
1073			cgrp->subsys[i]->cgroup = cgrp;
1074			list_move(&ss->sibling, &root->subsys_list);
1075			ss->root = root;
1076			if (ss->bind)
1077				ss->bind(cgrp);
1078			mutex_unlock(&ss->hierarchy_mutex);
1079			/* refcount was already taken, and we're keeping it */
1080		} else if (bit & removed_bits) {
1081			/* We're removing this subsystem */
1082			BUG_ON(ss == NULL);
1083			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1084			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1085			mutex_lock(&ss->hierarchy_mutex);
1086			if (ss->bind)
1087				ss->bind(dummytop);
1088			dummytop->subsys[i]->cgroup = dummytop;
1089			cgrp->subsys[i] = NULL;
1090			subsys[i]->root = &rootnode;
1091			list_move(&ss->sibling, &rootnode.subsys_list);
1092			mutex_unlock(&ss->hierarchy_mutex);
1093			/* subsystem is now free - drop reference on module */
1094			module_put(ss->module);
1095		} else if (bit & final_bits) {
1096			/* Subsystem state should already exist */
1097			BUG_ON(ss == NULL);
1098			BUG_ON(!cgrp->subsys[i]);
1099			/*
1100			 * a refcount was taken, but we already had one, so
1101			 * drop the extra reference.
1102			 */
1103			module_put(ss->module);
1104#ifdef CONFIG_MODULE_UNLOAD
1105			BUG_ON(ss->module && !module_refcount(ss->module));
1106#endif
1107		} else {
1108			/* Subsystem state shouldn't exist */
1109			BUG_ON(cgrp->subsys[i]);
1110		}
1111	}
1112	root->subsys_bits = root->actual_subsys_bits = final_bits;
1113	synchronize_rcu();
1114
 
 
 
 
 
 
 
 
 
 
1115	return 0;
1116}
1117
1118static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119{
1120	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1121	struct cgroup_subsys *ss;
 
1122
1123	mutex_lock(&cgroup_root_mutex);
1124	for_each_subsys(root, ss)
1125		seq_printf(seq, ",%s", ss->name);
1126	if (test_bit(ROOT_NOPREFIX, &root->flags))
 
1127		seq_puts(seq, ",noprefix");
 
 
 
 
1128	if (strlen(root->release_agent_path))
1129		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1130	if (clone_children(&root->top_cgroup))
 
 
 
1131		seq_puts(seq, ",clone_children");
1132	if (strlen(root->name))
1133		seq_printf(seq, ",name=%s", root->name);
1134	mutex_unlock(&cgroup_root_mutex);
1135	return 0;
1136}
1137
1138struct cgroup_sb_opts {
1139	unsigned long subsys_bits;
1140	unsigned long flags;
1141	char *release_agent;
1142	bool clone_children;
1143	char *name;
1144	/* User explicitly requested empty subsystem */
1145	bool none;
1146
1147	struct cgroupfs_root *new_root;
1148
1149};
1150
1151/*
1152 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1153 * with cgroup_mutex held to protect the subsys[] array. This function takes
1154 * refcounts on subsystems to be used, unless it returns error, in which case
1155 * no refcounts are taken.
1156 */
1157static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1158{
1159	char *token, *o = data;
1160	bool all_ss = false, one_ss = false;
1161	unsigned long mask = (unsigned long)-1;
 
 
1162	int i;
1163	bool module_pin_failed = false;
1164
1165	BUG_ON(!mutex_is_locked(&cgroup_mutex));
1166
1167#ifdef CONFIG_CPUSETS
1168	mask = ~(1UL << cpuset_subsys_id);
1169#endif
1170
1171	memset(opts, 0, sizeof(*opts));
1172
1173	while ((token = strsep(&o, ",")) != NULL) {
 
 
1174		if (!*token)
1175			return -EINVAL;
1176		if (!strcmp(token, "none")) {
1177			/* Explicitly have no subsystems */
1178			opts->none = true;
1179			continue;
1180		}
1181		if (!strcmp(token, "all")) {
1182			/* Mutually exclusive option 'all' + subsystem name */
1183			if (one_ss)
1184				return -EINVAL;
1185			all_ss = true;
1186			continue;
1187		}
1188		if (!strcmp(token, "noprefix")) {
1189			set_bit(ROOT_NOPREFIX, &opts->flags);
1190			continue;
1191		}
1192		if (!strcmp(token, "clone_children")) {
1193			opts->clone_children = true;
 
 
 
 
1194			continue;
1195		}
1196		if (!strncmp(token, "release_agent=", 14)) {
1197			/* Specifying two release agents is forbidden */
1198			if (opts->release_agent)
1199				return -EINVAL;
1200			opts->release_agent =
1201				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1202			if (!opts->release_agent)
1203				return -ENOMEM;
1204			continue;
1205		}
1206		if (!strncmp(token, "name=", 5)) {
1207			const char *name = token + 5;
1208			/* Can't specify an empty name */
1209			if (!strlen(name))
1210				return -EINVAL;
1211			/* Must match [\w.-]+ */
1212			for (i = 0; i < strlen(name); i++) {
1213				char c = name[i];
1214				if (isalnum(c))
1215					continue;
1216				if ((c == '.') || (c == '-') || (c == '_'))
1217					continue;
1218				return -EINVAL;
1219			}
1220			/* Specifying two names is forbidden */
1221			if (opts->name)
1222				return -EINVAL;
1223			opts->name = kstrndup(name,
1224					      MAX_CGROUP_ROOT_NAMELEN - 1,
1225					      GFP_KERNEL);
1226			if (!opts->name)
1227				return -ENOMEM;
1228
1229			continue;
1230		}
1231
1232		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1233			struct cgroup_subsys *ss = subsys[i];
1234			if (ss == NULL)
1235				continue;
1236			if (strcmp(token, ss->name))
1237				continue;
1238			if (ss->disabled)
1239				continue;
1240
1241			/* Mutually exclusive option 'all' + subsystem name */
1242			if (all_ss)
1243				return -EINVAL;
1244			set_bit(i, &opts->subsys_bits);
1245			one_ss = true;
1246
1247			break;
1248		}
1249		if (i == CGROUP_SUBSYS_COUNT)
1250			return -ENOENT;
1251	}
1252
1253	/*
1254	 * If the 'all' option was specified select all the subsystems,
1255	 * otherwise if 'none', 'name=' and a subsystem name options
1256	 * were not specified, let's default to 'all'
1257	 */
1258	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1259		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1260			struct cgroup_subsys *ss = subsys[i];
1261			if (ss == NULL)
1262				continue;
1263			if (ss->disabled)
1264				continue;
1265			set_bit(i, &opts->subsys_bits);
1266		}
1267	}
1268
1269	/* Consistency checks */
 
 
 
 
 
1270
1271	/*
1272	 * Option noprefix was introduced just for backward compatibility
1273	 * with the old cpuset, so we allow noprefix only if mounting just
1274	 * the cpuset subsystem.
1275	 */
1276	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1277	    (opts->subsys_bits & mask))
1278		return -EINVAL;
1279
1280
1281	/* Can't specify "none" and some subsystems */
1282	if (opts->subsys_bits && opts->none)
1283		return -EINVAL;
1284
1285	/*
1286	 * We either have to specify by name or by subsystems. (So all
1287	 * empty hierarchies must have a name).
1288	 */
1289	if (!opts->subsys_bits && !opts->name)
1290		return -EINVAL;
1291
1292	/*
1293	 * Grab references on all the modules we'll need, so the subsystems
1294	 * don't dance around before rebind_subsystems attaches them. This may
1295	 * take duplicate reference counts on a subsystem that's already used,
1296	 * but rebind_subsystems handles this case.
1297	 */
1298	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1299		unsigned long bit = 1UL << i;
1300
1301		if (!(bit & opts->subsys_bits))
1302			continue;
1303		if (!try_module_get(subsys[i]->module)) {
1304			module_pin_failed = true;
1305			break;
1306		}
1307	}
1308	if (module_pin_failed) {
1309		/*
1310		 * oops, one of the modules was going away. this means that we
1311		 * raced with a module_delete call, and to the user this is
1312		 * essentially a "subsystem doesn't exist" case.
1313		 */
1314		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1315			/* drop refcounts only on the ones we took */
1316			unsigned long bit = 1UL << i;
1317
1318			if (!(bit & opts->subsys_bits))
1319				continue;
1320			module_put(subsys[i]->module);
1321		}
1322		return -ENOENT;
1323	}
1324
1325	return 0;
1326}
1327
1328static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1329{
1330	int i;
1331	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1332		unsigned long bit = 1UL << i;
 
1333
1334		if (!(bit & subsys_bits))
1335			continue;
1336		module_put(subsys[i]->module);
1337	}
1338}
1339
1340static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1341{
1342	int ret = 0;
1343	struct cgroupfs_root *root = sb->s_fs_info;
1344	struct cgroup *cgrp = &root->top_cgroup;
1345	struct cgroup_sb_opts opts;
1346
1347	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1348	mutex_lock(&cgroup_mutex);
1349	mutex_lock(&cgroup_root_mutex);
1350
1351	/* See what subsystems are wanted */
1352	ret = parse_cgroupfs_options(data, &opts);
1353	if (ret)
1354		goto out_unlock;
1355
1356	/* See feature-removal-schedule.txt */
1357	if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1358		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1359			   task_tgid_nr(current), current->comm);
 
 
1360
1361	/* Don't allow flags or name to change at remount */
1362	if (opts.flags != root->flags ||
1363	    (opts.name && strcmp(opts.name, root->name))) {
 
 
1364		ret = -EINVAL;
1365		drop_parsed_module_refcounts(opts.subsys_bits);
1366		goto out_unlock;
1367	}
1368
1369	ret = rebind_subsystems(root, opts.subsys_bits);
1370	if (ret) {
1371		drop_parsed_module_refcounts(opts.subsys_bits);
1372		goto out_unlock;
1373	}
1374
1375	/* clear out any existing files and repopulate subsystem files */
1376	cgroup_clear_directory(cgrp->dentry);
1377	cgroup_populate_dir(cgrp);
1378
1379	if (opts.release_agent)
 
 
 
1380		strcpy(root->release_agent_path, opts.release_agent);
 
 
1381 out_unlock:
1382	kfree(opts.release_agent);
1383	kfree(opts.name);
1384	mutex_unlock(&cgroup_root_mutex);
1385	mutex_unlock(&cgroup_mutex);
1386	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1387	return ret;
1388}
1389
1390static const struct super_operations cgroup_ops = {
1391	.statfs = simple_statfs,
1392	.drop_inode = generic_delete_inode,
1393	.show_options = cgroup_show_options,
1394	.remount_fs = cgroup_remount,
1395};
 
1396
1397static void init_cgroup_housekeeping(struct cgroup *cgrp)
1398{
1399	INIT_LIST_HEAD(&cgrp->sibling);
1400	INIT_LIST_HEAD(&cgrp->children);
1401	INIT_LIST_HEAD(&cgrp->files);
1402	INIT_LIST_HEAD(&cgrp->css_sets);
1403	INIT_LIST_HEAD(&cgrp->release_list);
1404	INIT_LIST_HEAD(&cgrp->pidlists);
1405	mutex_init(&cgrp->pidlist_mutex);
1406	INIT_LIST_HEAD(&cgrp->event_list);
1407	spin_lock_init(&cgrp->event_list_lock);
1408}
1409
1410static void init_cgroup_root(struct cgroupfs_root *root)
1411{
1412	struct cgroup *cgrp = &root->top_cgroup;
1413
1414	INIT_LIST_HEAD(&root->subsys_list);
1415	INIT_LIST_HEAD(&root->root_list);
1416	INIT_LIST_HEAD(&root->allcg_list);
1417	root->number_of_cgroups = 1;
1418	cgrp->root = root;
1419	cgrp->top_cgroup = cgrp;
1420	list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1421	init_cgroup_housekeeping(cgrp);
1422}
1423
1424static bool init_root_id(struct cgroupfs_root *root)
1425{
1426	int ret = 0;
 
 
 
 
 
 
 
 
1427
1428	do {
1429		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1430			return false;
1431		spin_lock(&hierarchy_id_lock);
1432		/* Try to allocate the next unused ID */
1433		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1434					&root->hierarchy_id);
1435		if (ret == -ENOSPC)
1436			/* Try again starting from 0 */
1437			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1438		if (!ret) {
1439			next_hierarchy_id = root->hierarchy_id + 1;
1440		} else if (ret != -EAGAIN) {
1441			/* Can only get here if the 31-bit IDR is full ... */
1442			BUG_ON(ret);
1443		}
1444		spin_unlock(&hierarchy_id_lock);
1445	} while (ret);
1446	return true;
 
 
1447}
1448
1449static int cgroup_test_super(struct super_block *sb, void *data)
1450{
1451	struct cgroup_sb_opts *opts = data;
1452	struct cgroupfs_root *root = sb->s_fs_info;
1453
1454	/* If we asked for a name then it must match */
1455	if (opts->name && strcmp(opts->name, root->name))
1456		return 0;
 
 
 
 
1457
1458	/*
1459	 * If we asked for subsystems (or explicitly for no
1460	 * subsystems) then they must match
1461	 */
1462	if ((opts->subsys_bits || opts->none)
1463	    && (opts->subsys_bits != root->subsys_bits))
1464		return 0;
1465
1466	return 1;
 
1467}
1468
1469static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
 
1470{
1471	struct cgroupfs_root *root;
1472
1473	if (!opts->subsys_bits && !opts->none)
1474		return NULL;
 
 
 
1475
1476	root = kzalloc(sizeof(*root), GFP_KERNEL);
1477	if (!root)
1478		return ERR_PTR(-ENOMEM);
1479
1480	if (!init_root_id(root)) {
1481		kfree(root);
1482		return ERR_PTR(-ENOMEM);
1483	}
1484	init_cgroup_root(root);
1485
1486	root->subsys_bits = opts->subsys_bits;
1487	root->flags = opts->flags;
1488	if (opts->release_agent)
1489		strcpy(root->release_agent_path, opts->release_agent);
1490	if (opts->name)
1491		strcpy(root->name, opts->name);
1492	if (opts->clone_children)
1493		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1494	return root;
1495}
1496
1497static void cgroup_drop_root(struct cgroupfs_root *root)
1498{
1499	if (!root)
1500		return;
 
 
1501
1502	BUG_ON(!root->hierarchy_id);
1503	spin_lock(&hierarchy_id_lock);
1504	ida_remove(&hierarchy_ida, root->hierarchy_id);
1505	spin_unlock(&hierarchy_id_lock);
1506	kfree(root);
1507}
1508
1509static int cgroup_set_super(struct super_block *sb, void *data)
1510{
1511	int ret;
1512	struct cgroup_sb_opts *opts = data;
 
1513
1514	/* If we don't have a new root, we can't set up a new sb */
1515	if (!opts->new_root)
1516		return -EINVAL;
 
1517
1518	BUG_ON(!opts->subsys_bits && !opts->none);
 
 
 
 
 
 
 
 
 
1519
1520	ret = set_anon_super(sb, NULL);
1521	if (ret)
1522		return ret;
1523
1524	sb->s_fs_info = opts->new_root;
1525	opts->new_root->sb = sb;
 
 
 
 
 
 
1526
1527	sb->s_blocksize = PAGE_CACHE_SIZE;
1528	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1529	sb->s_magic = CGROUP_SUPER_MAGIC;
1530	sb->s_op = &cgroup_ops;
1531
1532	return 0;
1533}
 
 
 
 
 
 
 
 
 
1534
1535static int cgroup_get_rootdir(struct super_block *sb)
1536{
1537	static const struct dentry_operations cgroup_dops = {
1538		.d_iput = cgroup_diput,
1539		.d_delete = cgroup_delete,
1540	};
 
 
 
 
 
1541
1542	struct inode *inode =
1543		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1544
1545	if (!inode)
1546		return -ENOMEM;
 
1547
1548	inode->i_fop = &simple_dir_operations;
1549	inode->i_op = &cgroup_dir_inode_operations;
1550	/* directories start off with i_nlink == 2 (for "." entry) */
1551	inc_nlink(inode);
1552	sb->s_root = d_make_root(inode);
1553	if (!sb->s_root)
1554		return -ENOMEM;
1555	/* for everything else we want ->d_op set */
1556	sb->s_d_op = &cgroup_dops;
1557	return 0;
1558}
1559
1560static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1561			 int flags, const char *unused_dev_name,
1562			 void *data)
1563{
 
 
 
 
 
1564	struct cgroup_sb_opts opts;
1565	struct cgroupfs_root *root;
1566	int ret = 0;
1567	struct super_block *sb;
1568	struct cgroupfs_root *new_root;
1569	struct inode *inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570
1571	/* First find the desired set of subsystems */
1572	mutex_lock(&cgroup_mutex);
1573	ret = parse_cgroupfs_options(data, &opts);
1574	mutex_unlock(&cgroup_mutex);
1575	if (ret)
1576		goto out_err;
1577
1578	/*
1579	 * Allocate a new cgroup root. We may not need it if we're
1580	 * reusing an existing hierarchy.
1581	 */
1582	new_root = cgroup_root_from_opts(&opts);
1583	if (IS_ERR(new_root)) {
1584		ret = PTR_ERR(new_root);
1585		goto drop_modules;
1586	}
1587	opts.new_root = new_root;
1588
1589	/* Locate an existing or new sb for this hierarchy */
1590	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1591	if (IS_ERR(sb)) {
1592		ret = PTR_ERR(sb);
1593		cgroup_drop_root(opts.new_root);
1594		goto drop_modules;
1595	}
1596
1597	root = sb->s_fs_info;
1598	BUG_ON(!root);
1599	if (root == opts.new_root) {
1600		/* We used the new root structure, so this is a new hierarchy */
1601		struct list_head tmp_cg_links;
1602		struct cgroup *root_cgrp = &root->top_cgroup;
1603		struct cgroupfs_root *existing_root;
1604		const struct cred *cred;
1605		int i;
1606
1607		BUG_ON(sb->s_root != NULL);
 
 
 
 
 
 
 
1608
1609		ret = cgroup_get_rootdir(sb);
1610		if (ret)
1611			goto drop_new_super;
1612		inode = sb->s_root->d_inode;
1613
1614		mutex_lock(&inode->i_mutex);
1615		mutex_lock(&cgroup_mutex);
1616		mutex_lock(&cgroup_root_mutex);
1617
1618		/* Check for name clashes with existing mounts */
1619		ret = -EBUSY;
1620		if (strlen(root->name))
1621			for_each_active_root(existing_root)
1622				if (!strcmp(existing_root->name, root->name))
1623					goto unlock_drop;
 
 
 
 
1624
1625		/*
1626		 * We're accessing css_set_count without locking
1627		 * css_set_lock here, but that's OK - it can only be
1628		 * increased by someone holding cgroup_lock, and
1629		 * that's us. The worst that can happen is that we
1630		 * have some link structures left over
1631		 */
1632		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1633		if (ret)
1634			goto unlock_drop;
 
 
 
 
 
 
 
1635
1636		ret = rebind_subsystems(root, root->subsys_bits);
1637		if (ret == -EBUSY) {
1638			free_cg_links(&tmp_cg_links);
1639			goto unlock_drop;
1640		}
1641		/*
1642		 * There must be no failure case after here, since rebinding
1643		 * takes care of subsystems' refcounts, which are explicitly
1644		 * dropped in the failure exit path.
 
 
 
 
 
 
 
1645		 */
 
 
 
 
 
 
 
 
 
 
1646
1647		/* EBUSY should be the only error here */
1648		BUG_ON(ret);
 
1649
1650		list_add(&root->root_list, &roots);
1651		root_count++;
 
 
 
 
 
 
 
1652
1653		sb->s_root->d_fsdata = root_cgrp;
1654		root->top_cgroup.dentry = sb->s_root;
 
 
 
 
 
 
 
1655
1656		/* Link the top cgroup in this hierarchy into all
1657		 * the css_set objects */
1658		write_lock(&css_set_lock);
1659		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1660			struct hlist_head *hhead = &css_set_table[i];
1661			struct hlist_node *node;
1662			struct css_set *cg;
1663
1664			hlist_for_each_entry(cg, node, hhead, hlist)
1665				link_css_set(&tmp_cg_links, cg, root_cgrp);
1666		}
1667		write_unlock(&css_set_lock);
1668
1669		free_cg_links(&tmp_cg_links);
1670
1671		BUG_ON(!list_empty(&root_cgrp->sibling));
1672		BUG_ON(!list_empty(&root_cgrp->children));
1673		BUG_ON(root->number_of_cgroups != 1);
1674
1675		cred = override_creds(&init_cred);
1676		cgroup_populate_dir(root_cgrp);
1677		revert_creds(cred);
1678		mutex_unlock(&cgroup_root_mutex);
1679		mutex_unlock(&cgroup_mutex);
1680		mutex_unlock(&inode->i_mutex);
1681	} else {
1682		/*
1683		 * We re-used an existing hierarchy - the new root (if
1684		 * any) is not needed
1685		 */
1686		cgroup_drop_root(opts.new_root);
1687		/* no subsys rebinding, so refcounts don't change */
1688		drop_parsed_module_refcounts(opts.subsys_bits);
1689	}
1690
1691	kfree(opts.release_agent);
1692	kfree(opts.name);
1693	return dget(sb->s_root);
 
 
1694
1695 unlock_drop:
1696	mutex_unlock(&cgroup_root_mutex);
1697	mutex_unlock(&cgroup_mutex);
1698	mutex_unlock(&inode->i_mutex);
1699 drop_new_super:
1700	deactivate_locked_super(sb);
1701 drop_modules:
1702	drop_parsed_module_refcounts(opts.subsys_bits);
1703 out_err:
1704	kfree(opts.release_agent);
1705	kfree(opts.name);
1706	return ERR_PTR(ret);
1707}
1708
1709static void cgroup_kill_sb(struct super_block *sb) {
1710	struct cgroupfs_root *root = sb->s_fs_info;
1711	struct cgroup *cgrp = &root->top_cgroup;
1712	int ret;
1713	struct cg_cgroup_link *link;
1714	struct cg_cgroup_link *saved_link;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715
1716	BUG_ON(!root);
1717
1718	BUG_ON(root->number_of_cgroups != 1);
1719	BUG_ON(!list_empty(&cgrp->children));
1720	BUG_ON(!list_empty(&cgrp->sibling));
1721
1722	mutex_lock(&cgroup_mutex);
1723	mutex_lock(&cgroup_root_mutex);
 
 
1724
1725	/* Rebind all subsystems back to the default hierarchy */
1726	ret = rebind_subsystems(root, 0);
1727	/* Shouldn't be able to fail ... */
1728	BUG_ON(ret);
1729
1730	/*
1731	 * Release all the links from css_sets to this hierarchy's
1732	 * root cgroup
1733	 */
1734	write_lock(&css_set_lock);
 
 
 
1735
1736	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1737				 cgrp_link_list) {
1738		list_del(&link->cg_link_list);
1739		list_del(&link->cgrp_link_list);
1740		kfree(link);
1741	}
1742	write_unlock(&css_set_lock);
1743
1744	if (!list_empty(&root->root_list)) {
1745		list_del(&root->root_list);
1746		root_count--;
1747	}
1748
1749	mutex_unlock(&cgroup_root_mutex);
1750	mutex_unlock(&cgroup_mutex);
 
 
 
 
 
 
 
 
 
 
1751
1752	kill_litter_super(sb);
1753	cgroup_drop_root(root);
1754}
1755
1756static struct file_system_type cgroup_fs_type = {
1757	.name = "cgroup",
1758	.mount = cgroup_mount,
1759	.kill_sb = cgroup_kill_sb,
 
1760};
1761
1762static struct kobject *cgroup_kobj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1763
1764/**
1765 * cgroup_path - generate the path of a cgroup
1766 * @cgrp: the cgroup in question
1767 * @buf: the buffer to write the path into
1768 * @buflen: the length of the buffer
1769 *
1770 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1771 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
1772 * -errno on error.
 
 
 
1773 */
1774int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1775{
1776	char *start;
1777	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1778						      cgroup_lock_is_held());
 
 
 
 
 
 
1779
1780	if (!dentry || cgrp == dummytop) {
1781		/*
1782		 * Inactive subsystems have no dentry for their root
1783		 * cgroup
1784		 */
1785		strcpy(buf, "/");
1786		return 0;
1787	}
1788
1789	start = buf + buflen;
 
 
 
 
1790
1791	*--start = '\0';
1792	for (;;) {
1793		int len = dentry->d_name.len;
1794
1795		if ((start -= len) < buf)
1796			return -ENAMETOOLONG;
1797		memcpy(start, dentry->d_name.name, len);
1798		cgrp = cgrp->parent;
1799		if (!cgrp)
1800			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1801
1802		dentry = rcu_dereference_check(cgrp->dentry,
1803					       cgroup_lock_is_held());
1804		if (!cgrp->parent)
1805			continue;
1806		if (--start < buf)
1807			return -ENAMETOOLONG;
1808		*start = '/';
1809	}
1810	memmove(buf, start, buf + buflen - start);
1811	return 0;
1812}
1813EXPORT_SYMBOL_GPL(cgroup_path);
1814
1815/*
1816 * Control Group taskset
 
 
 
 
 
 
 
1817 */
1818struct task_and_cgroup {
1819	struct task_struct	*task;
1820	struct cgroup		*cgrp;
1821	struct css_set		*cg;
1822};
 
 
 
 
 
 
 
 
 
 
 
 
 
1823
1824struct cgroup_taskset {
1825	struct task_and_cgroup	single;
1826	struct flex_array	*tc_array;
1827	int			tc_array_len;
1828	int			idx;
1829	struct cgroup		*cur_cgrp;
1830};
1831
1832/**
1833 * cgroup_taskset_first - reset taskset and return the first task
1834 * @tset: taskset of interest
 
1835 *
1836 * @tset iteration is initialized and the first task is returned.
1837 */
1838struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
 
1839{
1840	if (tset->tc_array) {
1841		tset->idx = 0;
1842		return cgroup_taskset_next(tset);
1843	} else {
1844		tset->cur_cgrp = tset->single.cgrp;
1845		return tset->single.task;
1846	}
1847}
1848EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1849
1850/**
1851 * cgroup_taskset_next - iterate to the next task in taskset
1852 * @tset: taskset of interest
 
1853 *
1854 * Return the next task in @tset.  Iteration must have been initialized
1855 * with cgroup_taskset_first().
1856 */
1857struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
 
1858{
1859	struct task_and_cgroup *tc;
 
1860
1861	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1862		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1863
1864	tc = flex_array_get(tset->tc_array, tset->idx++);
1865	tset->cur_cgrp = tc->cgrp;
1866	return tc->task;
1867}
1868EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1869
1870/**
1871 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1872 * @tset: taskset of interest
1873 *
1874 * Return the cgroup for the current (last returned) task of @tset.  This
1875 * function must be preceded by either cgroup_taskset_first() or
1876 * cgroup_taskset_next().
1877 */
1878struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1879{
1880	return tset->cur_cgrp;
1881}
1882EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1883
1884/**
1885 * cgroup_taskset_size - return the number of tasks in taskset
1886 * @tset: taskset of interest
 
 
 
 
 
 
1887 */
1888int cgroup_taskset_size(struct cgroup_taskset *tset)
 
1889{
1890	return tset->tc_array ? tset->tc_array_len : 1;
1891}
1892EXPORT_SYMBOL_GPL(cgroup_taskset_size);
 
1893
 
 
 
1894
1895/*
1896 * cgroup_task_migrate - move a task from one cgroup to another.
1897 *
1898 * 'guarantee' is set if the caller promises that a new css_set for the task
1899 * will already exist. If not set, this function might sleep, and can fail with
1900 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1901 */
1902static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1903				struct task_struct *tsk, struct css_set *newcg)
1904{
1905	struct css_set *oldcg;
1906
1907	/*
1908	 * We are synchronized through threadgroup_lock() against PF_EXITING
1909	 * setting such that we can't race against cgroup_exit() changing the
1910	 * css_set to init_css_set and dropping the old one.
1911	 */
1912	WARN_ON_ONCE(tsk->flags & PF_EXITING);
1913	oldcg = tsk->cgroups;
 
 
 
1914
1915	task_lock(tsk);
1916	rcu_assign_pointer(tsk->cgroups, newcg);
1917	task_unlock(tsk);
1918
1919	/* Update the css_set linked lists if we're using them */
1920	write_lock(&css_set_lock);
1921	if (!list_empty(&tsk->cg_list))
1922		list_move(&tsk->cg_list, &newcg->tasks);
1923	write_unlock(&css_set_lock);
1924
1925	/*
1926	 * We just gained a reference on oldcg by taking it from the task. As
1927	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1928	 * it here; it will be freed under RCU.
1929	 */
1930	put_css_set(oldcg);
 
 
 
 
 
 
 
 
 
 
1931
1932	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1933}
1934
1935/**
1936 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1937 * @cgrp: the cgroup the task is attaching to
1938 * @tsk: the task to be attached
1939 *
1940 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1941 * @tsk during call.
 
1942 */
1943int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1944{
1945	int retval = 0;
1946	struct cgroup_subsys *ss, *failed_ss = NULL;
1947	struct cgroup *oldcgrp;
1948	struct cgroupfs_root *root = cgrp->root;
1949	struct cgroup_taskset tset = { };
1950	struct css_set *newcg;
1951
1952	/* @tsk either already exited or can't exit until the end */
1953	if (tsk->flags & PF_EXITING)
1954		return -ESRCH;
1955
1956	/* Nothing to do if the task is already in that cgroup */
1957	oldcgrp = task_cgroup_from_root(tsk, root);
1958	if (cgrp == oldcgrp)
1959		return 0;
1960
1961	tset.single.task = tsk;
1962	tset.single.cgrp = oldcgrp;
 
 
 
 
 
 
 
 
1963
1964	for_each_subsys(root, ss) {
1965		if (ss->can_attach) {
1966			retval = ss->can_attach(cgrp, &tset);
1967			if (retval) {
1968				/*
1969				 * Remember on which subsystem the can_attach()
1970				 * failed, so that we only call cancel_attach()
1971				 * against the subsystems whose can_attach()
1972				 * succeeded. (See below)
1973				 */
1974				failed_ss = ss;
1975				goto out;
1976			}
1977		}
1978	}
1979
1980	newcg = find_css_set(tsk->cgroups, cgrp);
1981	if (!newcg) {
1982		retval = -ENOMEM;
1983		goto out;
 
 
 
1984	}
 
 
1985
1986	cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987
1988	for_each_subsys(root, ss) {
1989		if (ss->attach)
1990			ss->attach(cgrp, &tset);
1991	}
1992
1993	synchronize_rcu();
1994
1995	/*
1996	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1997	 * is no longer empty.
 
1998	 */
1999	cgroup_wakeup_rmdir_waiter(cgrp);
2000out:
2001	if (retval) {
2002		for_each_subsys(root, ss) {
2003			if (ss == failed_ss)
2004				/*
2005				 * This subsystem was the one that failed the
2006				 * can_attach() check earlier, so we don't need
2007				 * to call cancel_attach() against it or any
2008				 * remaining subsystems.
2009				 */
2010				break;
2011			if (ss->cancel_attach)
2012				ss->cancel_attach(cgrp, &tset);
2013		}
2014	}
2015	return retval;
2016}
2017
2018/**
2019 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2020 * @from: attach to all cgroups of a given task
2021 * @tsk: the task to be attached
 
 
 
 
 
 
 
 
 
2022 */
2023int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2024{
2025	struct cgroupfs_root *root;
2026	int retval = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2027
2028	cgroup_lock();
2029	for_each_active_root(root) {
2030		struct cgroup *from_cg = task_cgroup_from_root(from, root);
2031
2032		retval = cgroup_attach_task(from_cg, tsk);
2033		if (retval)
2034			break;
 
2035	}
2036	cgroup_unlock();
2037
2038	return retval;
 
 
 
 
2039}
2040EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2041
2042/**
2043 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2044 * @cgrp: the cgroup to attach to
2045 * @leader: the threadgroup leader task_struct of the group to be attached
2046 *
2047 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2048 * task_lock of each thread in leader's threadgroup individually in turn.
2049 */
2050static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2051{
2052	int retval, i, group_size;
2053	struct cgroup_subsys *ss, *failed_ss = NULL;
2054	/* guaranteed to be initialized later, but the compiler needs this */
2055	struct cgroupfs_root *root = cgrp->root;
2056	/* threadgroup list cursor and array */
2057	struct task_struct *tsk;
2058	struct task_and_cgroup *tc;
2059	struct flex_array *group;
2060	struct cgroup_taskset tset = { };
2061
2062	/*
2063	 * step 0: in order to do expensive, possibly blocking operations for
2064	 * every thread, we cannot iterate the thread group list, since it needs
2065	 * rcu or tasklist locked. instead, build an array of all threads in the
2066	 * group - group_rwsem prevents new threads from appearing, and if
2067	 * threads exit, this will just be an over-estimate.
2068	 */
2069	group_size = get_nr_threads(leader);
2070	/* flex_array supports very large thread-groups better than kmalloc. */
2071	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2072	if (!group)
2073		return -ENOMEM;
2074	/* pre-allocate to guarantee space while iterating in rcu read-side. */
2075	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2076	if (retval)
2077		goto out_free_group_list;
2078
2079	tsk = leader;
2080	i = 0;
2081	/*
2082	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2083	 * already PF_EXITING could be freed from underneath us unless we
2084	 * take an rcu_read_lock.
2085	 */
 
2086	rcu_read_lock();
 
2087	do {
2088		struct task_and_cgroup ent;
 
 
 
 
 
 
 
 
2089
2090		/* @tsk either already exited or can't exit until the end */
2091		if (tsk->flags & PF_EXITING)
2092			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2093
2094		/* as per above, nr_threads may decrease, but not increase. */
2095		BUG_ON(i >= group_size);
2096		ent.task = tsk;
2097		ent.cgrp = task_cgroup_from_root(tsk, root);
2098		/* nothing to do if this task is already in the cgroup */
2099		if (ent.cgrp == cgrp)
2100			continue;
2101		/*
2102		 * saying GFP_ATOMIC has no effect here because we did prealloc
2103		 * earlier, but it's good form to communicate our expectations.
2104		 */
2105		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2106		BUG_ON(retval != 0);
2107		i++;
2108	} while_each_thread(leader, tsk);
2109	rcu_read_unlock();
2110	/* remember the number of threads in the array for later. */
2111	group_size = i;
2112	tset.tc_array = group;
2113	tset.tc_array_len = group_size;
 
 
 
 
 
 
2114
2115	/* methods shouldn't be called if no task is actually migrating */
2116	retval = 0;
2117	if (!group_size)
2118		goto out_free_group_list;
 
 
 
2119
2120	/*
2121	 * step 1: check that we can legitimately attach to the cgroup.
 
2122	 */
2123	for_each_subsys(root, ss) {
2124		if (ss->can_attach) {
2125			retval = ss->can_attach(cgrp, &tset);
2126			if (retval) {
2127				failed_ss = ss;
2128				goto out_cancel_attach;
2129			}
2130		}
2131	}
2132
2133	/*
2134	 * step 2: make sure css_sets exist for all threads to be migrated.
2135	 * we use find_css_set, which allocates a new one if necessary.
2136	 */
2137	for (i = 0; i < group_size; i++) {
2138		tc = flex_array_get(group, i);
2139		tc->cg = find_css_set(tc->task->cgroups, cgrp);
2140		if (!tc->cg) {
2141			retval = -ENOMEM;
2142			goto out_put_css_set_refs;
2143		}
2144	}
2145
2146	/*
2147	 * step 3: now that we're guaranteed success wrt the css_sets,
2148	 * proceed to move all tasks to the new cgroup.  There are no
2149	 * failure cases after here, so this is the commit point.
2150	 */
2151	for (i = 0; i < group_size; i++) {
2152		tc = flex_array_get(group, i);
2153		cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2154	}
2155	/* nothing is sensitive to fork() after this point. */
2156
2157	/*
2158	 * step 4: do subsystem attach callbacks.
2159	 */
2160	for_each_subsys(root, ss) {
2161		if (ss->attach)
2162			ss->attach(cgrp, &tset);
2163	}
2164
2165	/*
2166	 * step 5: success! and cleanup
2167	 */
2168	synchronize_rcu();
2169	cgroup_wakeup_rmdir_waiter(cgrp);
2170	retval = 0;
2171out_put_css_set_refs:
2172	if (retval) {
2173		for (i = 0; i < group_size; i++) {
2174			tc = flex_array_get(group, i);
2175			if (!tc->cg)
2176				break;
2177			put_css_set(tc->cg);
2178		}
2179	}
2180out_cancel_attach:
2181	if (retval) {
2182		for_each_subsys(root, ss) {
2183			if (ss == failed_ss)
2184				break;
2185			if (ss->cancel_attach)
2186				ss->cancel_attach(cgrp, &tset);
2187		}
2188	}
2189out_free_group_list:
2190	flex_array_free(group);
2191	return retval;
2192}
2193
2194/*
2195 * Find the task_struct of the task to attach by vpid and pass it along to the
2196 * function to attach either it or all tasks in its threadgroup. Will lock
2197 * cgroup_mutex and threadgroup; may take task_lock of task.
2198 */
2199static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
 
2200{
2201	struct task_struct *tsk;
2202	const struct cred *cred = current_cred(), *tcred;
2203	int ret;
 
 
 
 
 
2204
2205	if (!cgroup_lock_live_group(cgrp))
 
2206		return -ENODEV;
2207
2208retry_find_task:
2209	rcu_read_lock();
2210	if (pid) {
2211		tsk = find_task_by_vpid(pid);
2212		if (!tsk) {
2213			rcu_read_unlock();
2214			ret= -ESRCH;
2215			goto out_unlock_cgroup;
2216		}
2217		/*
2218		 * even if we're attaching all tasks in the thread group, we
2219		 * only need to check permissions on one of them.
2220		 */
2221		tcred = __task_cred(tsk);
2222		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2223		    !uid_eq(cred->euid, tcred->uid) &&
2224		    !uid_eq(cred->euid, tcred->suid)) {
2225			rcu_read_unlock();
2226			ret = -EACCES;
2227			goto out_unlock_cgroup;
2228		}
2229	} else
2230		tsk = current;
 
2231
2232	if (threadgroup)
2233		tsk = tsk->group_leader;
2234
2235	/*
2236	 * Workqueue threads may acquire PF_THREAD_BOUND and become
2237	 * trapped in a cpuset, or RT worker may be born in a cgroup
2238	 * with no rt_runtime allocated.  Just say no.
2239	 */
2240	if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2241		ret = -EINVAL;
2242		rcu_read_unlock();
2243		goto out_unlock_cgroup;
2244	}
2245
2246	get_task_struct(tsk);
2247	rcu_read_unlock();
2248
2249	threadgroup_lock(tsk);
2250	if (threadgroup) {
2251		if (!thread_group_leader(tsk)) {
2252			/*
2253			 * a race with de_thread from another thread's exec()
2254			 * may strip us of our leadership, if this happens,
2255			 * there is no choice but to throw this task away and
2256			 * try again; this is
2257			 * "double-double-toil-and-trouble-check locking".
2258			 */
2259			threadgroup_unlock(tsk);
2260			put_task_struct(tsk);
2261			goto retry_find_task;
2262		}
2263		ret = cgroup_attach_proc(cgrp, tsk);
2264	} else
2265		ret = cgroup_attach_task(cgrp, tsk);
2266	threadgroup_unlock(tsk);
2267
2268	put_task_struct(tsk);
2269out_unlock_cgroup:
2270	cgroup_unlock();
2271	return ret;
 
 
 
 
 
 
 
 
2272}
2273
2274static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
 
 
 
 
 
2275{
2276	return attach_task_by_pid(cgrp, pid, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277}
 
2278
2279static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
 
2280{
2281	return attach_task_by_pid(cgrp, tgid, true);
2282}
2283
2284/**
2285 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2286 * @cgrp: the cgroup to be checked for liveness
2287 *
2288 * On success, returns true; the lock should be later released with
2289 * cgroup_unlock(). On failure returns false with no lock held.
2290 */
2291bool cgroup_lock_live_group(struct cgroup *cgrp)
2292{
2293	mutex_lock(&cgroup_mutex);
2294	if (cgroup_is_removed(cgrp)) {
2295		mutex_unlock(&cgroup_mutex);
2296		return false;
2297	}
2298	return true;
2299}
2300EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2301
2302static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2303				      const char *buffer)
2304{
 
 
2305	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2306	if (strlen(buffer) >= PATH_MAX)
2307		return -EINVAL;
2308	if (!cgroup_lock_live_group(cgrp))
2309		return -ENODEV;
2310	mutex_lock(&cgroup_root_mutex);
2311	strcpy(cgrp->root->release_agent_path, buffer);
2312	mutex_unlock(&cgroup_root_mutex);
2313	cgroup_unlock();
2314	return 0;
 
2315}
2316
2317static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2318				     struct seq_file *seq)
2319{
2320	if (!cgroup_lock_live_group(cgrp))
2321		return -ENODEV;
 
2322	seq_puts(seq, cgrp->root->release_agent_path);
 
2323	seq_putc(seq, '\n');
2324	cgroup_unlock();
2325	return 0;
2326}
2327
2328/* A buffer size big enough for numbers or short strings */
2329#define CGROUP_LOCAL_BUFFER_SIZE 64
 
 
 
2330
2331static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2332				struct file *file,
2333				const char __user *userbuf,
2334				size_t nbytes, loff_t *unused_ppos)
2335{
2336	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2337	int retval = 0;
2338	char *end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339
2340	if (!nbytes)
2341		return -EINVAL;
2342	if (nbytes >= sizeof(buffer))
2343		return -E2BIG;
2344	if (copy_from_user(buffer, userbuf, nbytes))
2345		return -EFAULT;
2346
2347	buffer[nbytes] = 0;     /* nul-terminate */
2348	if (cft->write_u64) {
2349		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2350		if (*end)
2351			return -EINVAL;
2352		retval = cft->write_u64(cgrp, cft, val);
2353	} else {
2354		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2355		if (*end)
2356			return -EINVAL;
2357		retval = cft->write_s64(cgrp, cft, val);
2358	}
2359	if (!retval)
2360		retval = nbytes;
2361	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2362}
2363
2364static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2365				   struct file *file,
2366				   const char __user *userbuf,
2367				   size_t nbytes, loff_t *unused_ppos)
 
 
 
 
 
 
2368{
2369	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2370	int retval = 0;
2371	size_t max_bytes = cft->max_write_len;
2372	char *buffer = local_buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2373
2374	if (!max_bytes)
2375		max_bytes = sizeof(local_buffer) - 1;
2376	if (nbytes >= max_bytes)
2377		return -E2BIG;
2378	/* Allocate a dynamic buffer if we need one */
2379	if (nbytes >= sizeof(local_buffer)) {
2380		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2381		if (buffer == NULL)
2382			return -ENOMEM;
2383	}
2384	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2385		retval = -EFAULT;
2386		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2387	}
 
2388
2389	buffer[nbytes] = 0;     /* nul-terminate */
2390	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2391	if (!retval)
2392		retval = nbytes;
2393out:
2394	if (buffer != local_buffer)
2395		kfree(buffer);
2396	return retval;
 
 
 
 
 
 
 
 
 
 
 
2397}
2398
2399static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2400						size_t nbytes, loff_t *ppos)
 
 
 
 
 
 
2401{
2402	struct cftype *cft = __d_cft(file->f_dentry);
2403	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2404
2405	if (cgroup_is_removed(cgrp))
2406		return -ENODEV;
2407	if (cft->write)
2408		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2409	if (cft->write_u64 || cft->write_s64)
2410		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2411	if (cft->write_string)
2412		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2413	if (cft->trigger) {
2414		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2415		return ret ? ret : nbytes;
2416	}
2417	return -EINVAL;
2418}
2419
2420static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2421			       struct file *file,
2422			       char __user *buf, size_t nbytes,
2423			       loff_t *ppos)
2424{
2425	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2426	u64 val = cft->read_u64(cgrp, cft);
2427	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2428
2429	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
 
 
 
 
2430}
2431
2432static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2433			       struct file *file,
2434			       char __user *buf, size_t nbytes,
2435			       loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
2436{
2437	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2438	s64 val = cft->read_s64(cgrp, cft);
2439	int len = sprintf(tmp, "%lld\n", (long long) val);
 
 
 
 
 
 
 
2440
2441	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2442}
2443
2444static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2445				   size_t nbytes, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
2446{
2447	struct cftype *cft = __d_cft(file->f_dentry);
2448	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
 
 
2449
2450	if (cgroup_is_removed(cgrp))
2451		return -ENODEV;
 
 
 
 
 
 
2452
2453	if (cft->read)
2454		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2455	if (cft->read_u64)
2456		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2457	if (cft->read_s64)
2458		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2459	return -EINVAL;
 
 
 
2460}
2461
2462/*
2463 * seqfile ops/methods for returning structured data. Currently just
2464 * supports string->u64 maps, but can be extended in future.
 
 
 
 
 
 
 
 
 
 
 
 
 
2465 */
 
 
 
2466
2467struct cgroup_seqfile_state {
2468	struct cftype *cft;
2469	struct cgroup *cgroup;
2470};
 
 
 
 
 
 
 
 
 
 
2471
2472static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2473{
2474	struct seq_file *sf = cb->state;
2475	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2476}
2477
2478static int cgroup_seqfile_show(struct seq_file *m, void *arg)
 
 
 
 
 
 
 
2479{
2480	struct cgroup_seqfile_state *state = m->private;
2481	struct cftype *cft = state->cft;
2482	if (cft->read_map) {
2483		struct cgroup_map_cb cb = {
2484			.fill = cgroup_map_add,
2485			.state = m,
2486		};
2487		return cft->read_map(state->cgroup, cft, &cb);
2488	}
2489	return cft->read_seq_string(state->cgroup, cft, m);
 
2490}
2491
2492static int cgroup_seqfile_release(struct inode *inode, struct file *file)
 
 
 
2493{
2494	struct seq_file *seq = file->private_data;
2495	kfree(seq->private);
2496	return single_release(inode, file);
2497}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498
2499static const struct file_operations cgroup_seqfile_operations = {
2500	.read = seq_read,
2501	.write = cgroup_file_write,
2502	.llseek = seq_lseek,
2503	.release = cgroup_seqfile_release,
2504};
2505
2506static int cgroup_file_open(struct inode *inode, struct file *file)
2507{
2508	int err;
2509	struct cftype *cft;
2510
2511	err = generic_file_open(inode, file);
2512	if (err)
2513		return err;
2514	cft = __d_cft(file->f_dentry);
2515
2516	if (cft->read_map || cft->read_seq_string) {
2517		struct cgroup_seqfile_state *state =
2518			kzalloc(sizeof(*state), GFP_USER);
2519		if (!state)
2520			return -ENOMEM;
2521		state->cft = cft;
2522		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2523		file->f_op = &cgroup_seqfile_operations;
2524		err = single_open(file, cgroup_seqfile_show, state);
2525		if (err < 0)
2526			kfree(state);
2527	} else if (cft->open)
2528		err = cft->open(inode, file);
2529	else
2530		err = 0;
2531
2532	return err;
 
 
 
 
2533}
2534
2535static int cgroup_file_release(struct inode *inode, struct file *file)
2536{
2537	struct cftype *cft = __d_cft(file->f_dentry);
2538	if (cft->release)
2539		return cft->release(inode, file);
2540	return 0;
2541}
2542
2543/*
2544 * cgroup_rename - Only allow simple rename of directories in place.
2545 */
2546static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2547			    struct inode *new_dir, struct dentry *new_dentry)
2548{
2549	if (!S_ISDIR(old_dentry->d_inode->i_mode))
2550		return -ENOTDIR;
2551	if (new_dentry->d_inode)
2552		return -EEXIST;
2553	if (old_dir != new_dir)
2554		return -EIO;
2555	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2556}
 
 
 
 
 
 
 
 
 
2557
2558static const struct file_operations cgroup_file_operations = {
2559	.read = cgroup_file_read,
2560	.write = cgroup_file_write,
2561	.llseek = generic_file_llseek,
2562	.open = cgroup_file_open,
2563	.release = cgroup_file_release,
2564};
 
 
 
 
 
 
2565
2566static const struct inode_operations cgroup_dir_inode_operations = {
2567	.lookup = cgroup_lookup,
2568	.mkdir = cgroup_mkdir,
2569	.rmdir = cgroup_rmdir,
2570	.rename = cgroup_rename,
2571};
2572
2573static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2574{
2575	if (dentry->d_name.len > NAME_MAX)
2576		return ERR_PTR(-ENAMETOOLONG);
2577	d_add(dentry, NULL);
2578	return NULL;
2579}
2580
2581/*
2582 * Check if a file is a control file
2583 */
2584static inline struct cftype *__file_cft(struct file *file)
2585{
2586	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2587		return ERR_PTR(-EINVAL);
2588	return __d_cft(file->f_dentry);
2589}
2590
2591static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2592				struct super_block *sb)
2593{
2594	struct inode *inode;
 
2595
2596	if (!dentry)
2597		return -ENOENT;
2598	if (dentry->d_inode)
2599		return -EEXIST;
2600
2601	inode = cgroup_new_inode(mode, sb);
2602	if (!inode)
2603		return -ENOMEM;
2604
2605	if (S_ISDIR(mode)) {
2606		inode->i_op = &cgroup_dir_inode_operations;
2607		inode->i_fop = &simple_dir_operations;
2608
2609		/* start off with i_nlink == 2 (for "." entry) */
2610		inc_nlink(inode);
2611
2612		/* start with the directory inode held, so that we can
2613		 * populate it without racing with another mkdir */
2614		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2615	} else if (S_ISREG(mode)) {
2616		inode->i_size = 0;
2617		inode->i_fop = &cgroup_file_operations;
2618	}
2619	d_instantiate(dentry, inode);
2620	dget(dentry);	/* Extra count - pin the dentry in core */
2621	return 0;
2622}
2623
2624/*
2625 * cgroup_create_dir - create a directory for an object.
2626 * @cgrp: the cgroup we create the directory for. It must have a valid
2627 *        ->parent field. And we are going to fill its ->dentry field.
2628 * @dentry: dentry of the new cgroup
2629 * @mode: mode to set on new directory.
2630 */
2631static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2632				umode_t mode)
2633{
2634	struct dentry *parent;
2635	int error = 0;
2636
2637	parent = cgrp->parent->dentry;
2638	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2639	if (!error) {
2640		dentry->d_fsdata = cgrp;
2641		inc_nlink(parent->d_inode);
2642		rcu_assign_pointer(cgrp->dentry, dentry);
2643		dget(dentry);
2644	}
2645	dput(dentry);
2646
2647	return error;
2648}
 
 
 
 
 
 
2649
2650/**
2651 * cgroup_file_mode - deduce file mode of a control file
2652 * @cft: the control file in question
2653 *
2654 * returns cft->mode if ->mode is not 0
2655 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2656 * returns S_IRUGO if it has only a read handler
2657 * returns S_IWUSR if it has only a write hander
2658 */
2659static umode_t cgroup_file_mode(const struct cftype *cft)
 
2660{
2661	umode_t mode = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662
2663	if (cft->mode)
2664		return cft->mode;
2665
2666	if (cft->read || cft->read_u64 || cft->read_s64 ||
2667	    cft->read_map || cft->read_seq_string)
2668		mode |= S_IRUGO;
2669
2670	if (cft->write || cft->write_u64 || cft->write_s64 ||
2671	    cft->write_string || cft->trigger)
2672		mode |= S_IWUSR;
2673
2674	return mode;
 
 
2675}
2676
2677static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2678			   const struct cftype *cft)
2679{
2680	struct dentry *dir = cgrp->dentry;
2681	struct cgroup *parent = __d_cgrp(dir);
2682	struct dentry *dentry;
2683	struct cfent *cfe;
2684	int error;
2685	umode_t mode;
2686	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2687
2688	/* does @cft->flags tell us to skip creation on @cgrp? */
2689	if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2690		return 0;
2691	if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2692		return 0;
2693
2694	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2695		strcpy(name, subsys->name);
2696		strcat(name, ".");
2697	}
2698	strcat(name, cft->name);
2699
2700	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
 
 
 
 
 
 
2701
2702	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2703	if (!cfe)
2704		return -ENOMEM;
 
 
 
 
 
2705
2706	dentry = lookup_one_len(name, dir, strlen(name));
2707	if (IS_ERR(dentry)) {
2708		error = PTR_ERR(dentry);
2709		goto out;
2710	}
2711
2712	mode = cgroup_file_mode(cft);
2713	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2714	if (!error) {
2715		cfe->type = (void *)cft;
2716		cfe->dentry = dentry;
2717		dentry->d_fsdata = cfe;
2718		list_add_tail(&cfe->node, &parent->files);
2719		cfe = NULL;
2720	}
2721	dput(dentry);
2722out:
2723	kfree(cfe);
2724	return error;
2725}
2726
2727static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2728			      const struct cftype cfts[], bool is_add)
 
 
 
 
 
 
 
 
 
 
 
2729{
2730	const struct cftype *cft;
2731	int err, ret = 0;
2732
2733	for (cft = cfts; cft->name[0] != '\0'; cft++) {
2734		if (is_add)
2735			err = cgroup_add_file(cgrp, subsys, cft);
2736		else
2737			err = cgroup_rm_file(cgrp, cft);
2738		if (err) {
2739			pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2740				   is_add ? "add" : "remove", cft->name, err);
2741			ret = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2742		}
2743	}
2744	return ret;
2745}
2746
2747static DEFINE_MUTEX(cgroup_cft_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
2748
2749static void cgroup_cfts_prepare(void)
2750	__acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
 
 
 
 
 
 
 
 
 
 
 
 
2751{
2752	/*
2753	 * Thanks to the entanglement with vfs inode locking, we can't walk
2754	 * the existing cgroups under cgroup_mutex and create files.
2755	 * Instead, we increment reference on all cgroups and build list of
2756	 * them using @cgrp->cft_q_node.  Grab cgroup_cft_mutex to ensure
2757	 * exclusive access to the field.
2758	 */
2759	mutex_lock(&cgroup_cft_mutex);
2760	mutex_lock(&cgroup_mutex);
 
 
 
2761}
2762
2763static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2764			       const struct cftype *cfts, bool is_add)
2765	__releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2766{
2767	LIST_HEAD(pending);
2768	struct cgroup *cgrp, *n;
 
 
 
 
 
 
 
 
 
2769
2770	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2771	if (cfts && ss->root != &rootnode) {
2772		list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2773			dget(cgrp->dentry);
2774			list_add_tail(&cgrp->cft_q_node, &pending);
 
 
 
 
 
 
2775		}
 
 
 
2776	}
2777
2778	mutex_unlock(&cgroup_mutex);
 
 
 
 
 
2779
2780	/*
2781	 * All new cgroups will see @cfts update on @ss->cftsets.  Add/rm
2782	 * files for all cgroups which were created before.
2783	 */
2784	list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2785		struct inode *inode = cgrp->dentry->d_inode;
2786
2787		mutex_lock(&inode->i_mutex);
2788		mutex_lock(&cgroup_mutex);
2789		if (!cgroup_is_removed(cgrp))
2790			cgroup_addrm_files(cgrp, ss, cfts, is_add);
2791		mutex_unlock(&cgroup_mutex);
2792		mutex_unlock(&inode->i_mutex);
2793
2794		list_del_init(&cgrp->cft_q_node);
2795		dput(cgrp->dentry);
2796	}
 
 
 
 
 
 
 
 
 
 
 
2797
2798	mutex_unlock(&cgroup_cft_mutex);
 
 
 
2799}
2800
2801/**
2802 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2803 * @ss: target cgroup subsystem
2804 * @cfts: zero-length name terminated array of cftypes
2805 *
2806 * Register @cfts to @ss.  Files described by @cfts are created for all
2807 * existing cgroups to which @ss is attached and all future cgroups will
2808 * have them too.  This function can be called anytime whether @ss is
2809 * attached or not.
2810 *
2811 * Returns 0 on successful registration, -errno on failure.  Note that this
2812 * function currently returns 0 as long as @cfts registration is successful
2813 * even if some file creation attempts on existing cgroups fail.
2814 */
2815int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2816{
2817	struct cftype_set *set;
2818
2819	set = kzalloc(sizeof(*set), GFP_KERNEL);
2820	if (!set)
2821		return -ENOMEM;
 
 
 
 
 
 
 
 
2822
2823	cgroup_cfts_prepare();
2824	set->cfts = cfts;
2825	list_add_tail(&set->node, &ss->cftsets);
2826	cgroup_cfts_commit(ss, cfts, true);
2827
2828	return 0;
 
2829}
2830EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2831
2832/**
2833 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2834 * @ss: target cgroup subsystem
2835 * @cfts: zero-length name terminated array of cftypes
2836 *
2837 * Unregister @cfts from @ss.  Files described by @cfts are removed from
2838 * all existing cgroups to which @ss is attached and all future cgroups
2839 * won't have them either.  This function can be called anytime whether @ss
2840 * is attached or not.
 
 
 
 
 
 
 
 
 
 
 
 
2841 *
2842 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2843 * registered with @ss.
2844 */
2845int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2846{
2847	struct cftype_set *set;
2848
2849	cgroup_cfts_prepare();
 
 
 
2850
2851	list_for_each_entry(set, &ss->cftsets, node) {
2852		if (set->cfts == cfts) {
2853			list_del_init(&set->node);
2854			cgroup_cfts_commit(ss, cfts, false);
2855			return 0;
2856		}
2857	}
 
 
2858
2859	cgroup_cfts_commit(ss, NULL, false);
2860	return -ENOENT;
 
 
2861}
2862
2863/**
2864 * cgroup_task_count - count the number of tasks in a cgroup.
2865 * @cgrp: the cgroup in question
2866 *
2867 * Return the number of tasks in the cgroup.
2868 */
2869int cgroup_task_count(const struct cgroup *cgrp)
2870{
2871	int count = 0;
2872	struct cg_cgroup_link *link;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2873
2874	read_lock(&css_set_lock);
2875	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2876		count += atomic_read(&link->cg->refcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877	}
2878	read_unlock(&css_set_lock);
2879	return count;
2880}
2881
2882/*
2883 * Advance a list_head iterator.  The iterator should be positioned at
2884 * the start of a css_set
 
 
2885 */
2886static void cgroup_advance_iter(struct cgroup *cgrp,
2887				struct cgroup_iter *it)
2888{
2889	struct list_head *l = it->cg_link;
2890	struct cg_cgroup_link *link;
2891	struct css_set *cg;
 
 
2892
2893	/* Advance to the next non-empty css_set */
2894	do {
2895		l = l->next;
2896		if (l == &cgrp->css_sets) {
2897			it->cg_link = NULL;
 
2898			return;
2899		}
2900		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2901		cg = link->cg;
2902	} while (list_empty(&cg->tasks));
2903	it->cg_link = l;
2904	it->task = cg->tasks.next;
2905}
2906
2907/*
2908 * To reduce the fork() overhead for systems that are not actually
2909 * using their cgroups capability, we don't maintain the lists running
2910 * through each css_set to its tasks until we see the list actually
2911 * used - in other words after the first call to cgroup_iter_start().
2912 */
2913static void cgroup_enable_task_cg_lists(void)
2914{
2915	struct task_struct *p, *g;
2916	write_lock(&css_set_lock);
2917	use_task_css_set_links = 1;
 
 
 
 
 
 
 
 
2918	/*
2919	 * We need tasklist_lock because RCU is not safe against
2920	 * while_each_thread(). Besides, a forking task that has passed
2921	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2922	 * is not guaranteed to have its child immediately visible in the
2923	 * tasklist if we walk through it with RCU.
 
 
 
 
 
 
 
 
2924	 */
2925	read_lock(&tasklist_lock);
2926	do_each_thread(g, p) {
2927		task_lock(p);
2928		/*
2929		 * We should check if the process is exiting, otherwise
2930		 * it will race with cgroup_exit() in that the list
2931		 * entry won't be deleted though the process has exited.
2932		 */
2933		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2934			list_add(&p->cg_list, &p->cgroups->tasks);
2935		task_unlock(p);
2936	} while_each_thread(g, p);
2937	read_unlock(&tasklist_lock);
2938	write_unlock(&css_set_lock);
2939}
2940
2941void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2942	__acquires(css_set_lock)
2943{
 
 
 
 
 
2944	/*
2945	 * The first time anyone tries to iterate across a cgroup,
2946	 * we need to enable the list linking each css_set to its
2947	 * tasks, and fix up all existing tasks.
2948	 */
2949	if (!use_task_css_set_links)
2950		cgroup_enable_task_cg_lists();
 
 
2951
2952	read_lock(&css_set_lock);
2953	it->cg_link = &cgrp->css_sets;
2954	cgroup_advance_iter(cgrp, it);
 
2955}
2956
2957struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2958					struct cgroup_iter *it)
 
 
 
 
 
 
 
 
 
 
2959{
2960	struct task_struct *res;
2961	struct list_head *l = it->task;
2962	struct cg_cgroup_link *link;
2963
2964	/* If the iterator cg is NULL, we have no tasks */
2965	if (!it->cg_link)
2966		return NULL;
2967	res = list_entry(l, struct task_struct, cg_list);
2968	/* Advance iterator to find next entry */
2969	l = l->next;
2970	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2971	if (l == &link->cg->tasks) {
2972		/* We reached the end of this task list - move on to
2973		 * the next cg_cgroup_link */
2974		cgroup_advance_iter(cgrp, it);
2975	} else {
2976		it->task = l;
2977	}
2978	return res;
 
2979}
2980
2981void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2982	__releases(css_set_lock)
 
 
 
 
 
 
 
2983{
2984	read_unlock(&css_set_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2985}
2986
2987static inline int started_after_time(struct task_struct *t1,
2988				     struct timespec *time,
2989				     struct task_struct *t2)
 
 
 
 
2990{
2991	int start_diff = timespec_compare(&t1->start_time, time);
2992	if (start_diff > 0) {
2993		return 1;
2994	} else if (start_diff < 0) {
2995		return 0;
2996	} else {
2997		/*
2998		 * Arbitrarily, if two processes started at the same
2999		 * time, we'll say that the lower pointer value
3000		 * started first. Note that t2 may have exited by now
3001		 * so this may not be a valid pointer any longer, but
3002		 * that's fine - it still serves to distinguish
3003		 * between two tasks started (effectively) simultaneously.
3004		 */
3005		return t1 > t2;
3006	}
3007}
3008
3009/*
3010 * This function is a callback from heap_insert() and is used to order
3011 * the heap.
3012 * In this case we order the heap in descending task start time.
3013 */
3014static inline int started_after(void *p1, void *p2)
3015{
3016	struct task_struct *t1 = p1;
3017	struct task_struct *t2 = p2;
3018	return started_after_time(t1, &t2->start_time, t2);
3019}
3020
3021/**
3022 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3023 * @scan: struct cgroup_scanner containing arguments for the scan
3024 *
3025 * Arguments include pointers to callback functions test_task() and
3026 * process_task().
3027 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3028 * and if it returns true, call process_task() for it also.
3029 * The test_task pointer may be NULL, meaning always true (select all tasks).
3030 * Effectively duplicates cgroup_iter_{start,next,end}()
3031 * but does not lock css_set_lock for the call to process_task().
3032 * The struct cgroup_scanner may be embedded in any structure of the caller's
3033 * creation.
3034 * It is guaranteed that process_task() will act on every task that
3035 * is a member of the cgroup for the duration of this call. This
3036 * function may or may not call process_task() for tasks that exit
3037 * or move to a different cgroup during the call, or are forked or
3038 * move into the cgroup during the call.
3039 *
3040 * Note that test_task() may be called with locks held, and may in some
3041 * situations be called multiple times for the same task, so it should
3042 * be cheap.
3043 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3044 * pre-allocated and will be used for heap operations (and its "gt" member will
3045 * be overwritten), else a temporary heap will be used (allocation of which
3046 * may cause this function to fail).
3047 */
3048int cgroup_scan_tasks(struct cgroup_scanner *scan)
3049{
3050	int retval, i;
3051	struct cgroup_iter it;
3052	struct task_struct *p, *dropped;
3053	/* Never dereference latest_task, since it's not refcounted */
3054	struct task_struct *latest_task = NULL;
3055	struct ptr_heap tmp_heap;
3056	struct ptr_heap *heap;
3057	struct timespec latest_time = { 0, 0 };
3058
3059	if (scan->heap) {
3060		/* The caller supplied our heap and pre-allocated its memory */
3061		heap = scan->heap;
3062		heap->gt = &started_after;
3063	} else {
3064		/* We need to allocate our own heap memory */
3065		heap = &tmp_heap;
3066		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3067		if (retval)
3068			/* cannot allocate the heap */
3069			return retval;
3070	}
3071
3072 again:
3073	/*
3074	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3075	 * to determine which are of interest, and using the scanner's
3076	 * "process_task" callback to process any of them that need an update.
3077	 * Since we don't want to hold any locks during the task updates,
3078	 * gather tasks to be processed in a heap structure.
3079	 * The heap is sorted by descending task start time.
3080	 * If the statically-sized heap fills up, we overflow tasks that
3081	 * started later, and in future iterations only consider tasks that
3082	 * started after the latest task in the previous pass. This
3083	 * guarantees forward progress and that we don't miss any tasks.
3084	 */
3085	heap->size = 0;
3086	cgroup_iter_start(scan->cg, &it);
3087	while ((p = cgroup_iter_next(scan->cg, &it))) {
3088		/*
3089		 * Only affect tasks that qualify per the caller's callback,
3090		 * if he provided one
3091		 */
3092		if (scan->test_task && !scan->test_task(p, scan))
3093			continue;
3094		/*
3095		 * Only process tasks that started after the last task
3096		 * we processed
3097		 */
3098		if (!started_after_time(p, &latest_time, latest_task))
3099			continue;
3100		dropped = heap_insert(heap, p);
3101		if (dropped == NULL) {
3102			/*
3103			 * The new task was inserted; the heap wasn't
3104			 * previously full
3105			 */
3106			get_task_struct(p);
3107		} else if (dropped != p) {
3108			/*
3109			 * The new task was inserted, and pushed out a
3110			 * different task
3111			 */
3112			get_task_struct(p);
3113			put_task_struct(dropped);
3114		}
3115		/*
3116		 * Else the new task was newer than anything already in
3117		 * the heap and wasn't inserted
3118		 */
3119	}
3120	cgroup_iter_end(scan->cg, &it);
3121
3122	if (heap->size) {
3123		for (i = 0; i < heap->size; i++) {
3124			struct task_struct *q = heap->ptrs[i];
3125			if (i == 0) {
3126				latest_time = q->start_time;
3127				latest_task = q;
3128			}
3129			/* Process the task per the caller's callback */
3130			scan->process_task(q, scan);
3131			put_task_struct(q);
3132		}
3133		/*
3134		 * If we had to process any tasks at all, scan again
3135		 * in case some of them were in the middle of forking
3136		 * children that didn't get processed.
3137		 * Not the most efficient way to do it, but it avoids
3138		 * having to take callback_mutex in the fork path
3139		 */
3140		goto again;
3141	}
3142	if (heap == &tmp_heap)
3143		heap_free(&tmp_heap);
3144	return 0;
3145}
3146
3147/*
3148 * Stuff for reading the 'tasks'/'procs' files.
3149 *
3150 * Reading this file can return large amounts of data if a cgroup has
3151 * *lots* of attached tasks. So it may need several calls to read(),
3152 * but we cannot guarantee that the information we produce is correct
3153 * unless we produce it entirely atomically.
3154 *
3155 */
3156
3157/* which pidlist file are we talking about? */
3158enum cgroup_filetype {
3159	CGROUP_FILE_PROCS,
3160	CGROUP_FILE_TASKS,
3161};
3162
3163/*
3164 * A pidlist is a list of pids that virtually represents the contents of one
3165 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3166 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3167 * to the cgroup.
3168 */
3169struct cgroup_pidlist {
3170	/*
3171	 * used to find which pidlist is wanted. doesn't change as long as
3172	 * this particular list stays in the list.
3173	*/
3174	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3175	/* array of xids */
3176	pid_t *list;
3177	/* how many elements the above list has */
3178	int length;
3179	/* how many files are using the current array */
3180	int use_count;
3181	/* each of these stored in a list by its cgroup */
3182	struct list_head links;
3183	/* pointer to the cgroup we belong to, for list removal purposes */
3184	struct cgroup *owner;
3185	/* protects the other fields */
3186	struct rw_semaphore mutex;
3187};
3188
3189/*
3190 * The following two functions "fix" the issue where there are more pids
3191 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3192 * TODO: replace with a kernel-wide solution to this problem
3193 */
3194#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3195static void *pidlist_allocate(int count)
3196{
3197	if (PIDLIST_TOO_LARGE(count))
3198		return vmalloc(count * sizeof(pid_t));
3199	else
3200		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3201}
 
3202static void pidlist_free(void *p)
3203{
3204	if (is_vmalloc_addr(p))
3205		vfree(p);
3206	else
3207		kfree(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3208}
3209static void *pidlist_resize(void *p, int newcount)
 
3210{
3211	void *newlist;
3212	/* note: if new alloc fails, old p will still be valid either way */
3213	if (is_vmalloc_addr(p)) {
3214		newlist = vmalloc(newcount * sizeof(pid_t));
3215		if (!newlist)
3216			return NULL;
3217		memcpy(newlist, p, newcount * sizeof(pid_t));
3218		vfree(p);
3219	} else {
3220		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
 
 
 
 
 
 
3221	}
3222	return newlist;
 
 
3223}
3224
3225/*
3226 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3227 * If the new stripped list is sufficiently smaller and there's enough memory
3228 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3229 * number of unique elements.
3230 */
3231/* is the size difference enough that we should re-allocate the array? */
3232#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3233static int pidlist_uniq(pid_t **p, int length)
3234{
3235	int src, dest = 1;
3236	pid_t *list = *p;
3237	pid_t *newlist;
3238
3239	/*
3240	 * we presume the 0th element is unique, so i starts at 1. trivial
3241	 * edge cases first; no work needs to be done for either
3242	 */
3243	if (length == 0 || length == 1)
3244		return length;
3245	/* src and dest walk down the list; dest counts unique elements */
3246	for (src = 1; src < length; src++) {
3247		/* find next unique element */
3248		while (list[src] == list[src-1]) {
3249			src++;
3250			if (src == length)
3251				goto after;
3252		}
3253		/* dest always points to where the next unique element goes */
3254		list[dest] = list[src];
3255		dest++;
3256	}
3257after:
3258	/*
3259	 * if the length difference is large enough, we want to allocate a
3260	 * smaller buffer to save memory. if this fails due to out of memory,
3261	 * we'll just stay with what we've got.
3262	 */
3263	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3264		newlist = pidlist_resize(list, dest);
3265		if (newlist)
3266			*p = newlist;
3267	}
3268	return dest;
3269}
3270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271static int cmppid(const void *a, const void *b)
3272{
3273	return *(pid_t *)a - *(pid_t *)b;
3274}
3275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3276/*
3277 * find the appropriate pidlist for our purpose (given procs vs tasks)
3278 * returns with the lock on that pidlist already held, and takes care
3279 * of the use count, or returns NULL with no locks held if we're out of
3280 * memory.
3281 */
3282static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3283						  enum cgroup_filetype type)
3284{
3285	struct cgroup_pidlist *l;
3286	/* don't need task_nsproxy() if we're looking at ourself */
3287	struct pid_namespace *ns = current->nsproxy->pid_ns;
3288
3289	/*
3290	 * We can't drop the pidlist_mutex before taking the l->mutex in case
3291	 * the last ref-holder is trying to remove l from the list at the same
3292	 * time. Holding the pidlist_mutex precludes somebody taking whichever
3293	 * list we find out from under us - compare release_pid_array().
3294	 */
3295	mutex_lock(&cgrp->pidlist_mutex);
3296	list_for_each_entry(l, &cgrp->pidlists, links) {
3297		if (l->key.type == type && l->key.ns == ns) {
3298			/* make sure l doesn't vanish out from under us */
3299			down_write(&l->mutex);
3300			mutex_unlock(&cgrp->pidlist_mutex);
3301			return l;
3302		}
3303	}
3304	/* entry not found; create a new one */
3305	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3306	if (!l) {
3307		mutex_unlock(&cgrp->pidlist_mutex);
3308		return l;
3309	}
3310	init_rwsem(&l->mutex);
3311	down_write(&l->mutex);
3312	l->key.type = type;
3313	l->key.ns = get_pid_ns(ns);
3314	l->use_count = 0; /* don't increment here */
3315	l->list = NULL;
3316	l->owner = cgrp;
3317	list_add(&l->links, &cgrp->pidlists);
3318	mutex_unlock(&cgrp->pidlist_mutex);
3319	return l;
3320}
3321
3322/*
3323 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3324 */
3325static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3326			      struct cgroup_pidlist **lp)
3327{
3328	pid_t *array;
3329	int length;
3330	int pid, n = 0; /* used for populating the array */
3331	struct cgroup_iter it;
3332	struct task_struct *tsk;
3333	struct cgroup_pidlist *l;
3334
 
 
3335	/*
3336	 * If cgroup gets more users after we read count, we won't have
3337	 * enough space - tough.  This race is indistinguishable to the
3338	 * caller from the case that the additional cgroup users didn't
3339	 * show up until sometime later on.
3340	 */
3341	length = cgroup_task_count(cgrp);
3342	array = pidlist_allocate(length);
3343	if (!array)
3344		return -ENOMEM;
3345	/* now, populate the array */
3346	cgroup_iter_start(cgrp, &it);
3347	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3348		if (unlikely(n == length))
3349			break;
3350		/* get tgid or pid for procs or tasks file respectively */
3351		if (type == CGROUP_FILE_PROCS)
3352			pid = task_tgid_vnr(tsk);
3353		else
3354			pid = task_pid_vnr(tsk);
3355		if (pid > 0) /* make sure to only use valid results */
3356			array[n++] = pid;
3357	}
3358	cgroup_iter_end(cgrp, &it);
3359	length = n;
3360	/* now sort & (if procs) strip out duplicates */
3361	sort(array, length, sizeof(pid_t), cmppid, NULL);
 
 
 
3362	if (type == CGROUP_FILE_PROCS)
3363		length = pidlist_uniq(&array, length);
3364	l = cgroup_pidlist_find(cgrp, type);
 
3365	if (!l) {
3366		pidlist_free(array);
3367		return -ENOMEM;
3368	}
3369	/* store array, freeing old if necessary - lock already held */
 
3370	pidlist_free(l->list);
3371	l->list = array;
3372	l->length = length;
3373	l->use_count++;
3374	up_write(&l->mutex);
3375	*lp = l;
3376	return 0;
3377}
3378
3379/**
3380 * cgroupstats_build - build and fill cgroupstats
3381 * @stats: cgroupstats to fill information into
3382 * @dentry: A dentry entry belonging to the cgroup for which stats have
3383 * been requested.
3384 *
3385 * Build and fill cgroupstats so that taskstats can export it to user
3386 * space.
3387 */
3388int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3389{
3390	int ret = -EINVAL;
3391	struct cgroup *cgrp;
3392	struct cgroup_iter it;
3393	struct task_struct *tsk;
3394
 
 
 
 
 
 
 
3395	/*
3396	 * Validate dentry by checking the superblock operations,
3397	 * and make sure it's a directory.
 
3398	 */
3399	if (dentry->d_sb->s_op != &cgroup_ops ||
3400	    !S_ISDIR(dentry->d_inode->i_mode))
3401		 goto err;
 
 
 
 
 
3402
3403	ret = 0;
3404	cgrp = dentry->d_fsdata;
3405
3406	cgroup_iter_start(cgrp, &it);
3407	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3408		switch (tsk->state) {
3409		case TASK_RUNNING:
3410			stats->nr_running++;
3411			break;
3412		case TASK_INTERRUPTIBLE:
3413			stats->nr_sleeping++;
3414			break;
3415		case TASK_UNINTERRUPTIBLE:
3416			stats->nr_uninterruptible++;
3417			break;
3418		case TASK_STOPPED:
3419			stats->nr_stopped++;
3420			break;
3421		default:
3422			if (delayacct_is_task_waiting_on_io(tsk))
3423				stats->nr_io_wait++;
3424			break;
3425		}
3426	}
3427	cgroup_iter_end(cgrp, &it);
3428
3429err:
3430	return ret;
3431}
3432
3433
3434/*
3435 * seq_file methods for the tasks/procs files. The seq_file position is the
3436 * next pid to display; the seq_file iterator is a pointer to the pid
3437 * in the cgroup->l->list array.
3438 */
3439
3440static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3441{
3442	/*
3443	 * Initially we receive a position value that corresponds to
3444	 * one more than the last pid shown (or 0 on the first call or
3445	 * after a seek to the start). Use a binary-search to find the
3446	 * next pid to display, if any
3447	 */
3448	struct cgroup_pidlist *l = s->private;
 
 
 
3449	int index = 0, pid = *pos;
3450	int *iter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3451
3452	down_read(&l->mutex);
3453	if (pid) {
3454		int end = l->length;
3455
3456		while (index < end) {
3457			int mid = (index + end) / 2;
3458			if (l->list[mid] == pid) {
3459				index = mid;
3460				break;
3461			} else if (l->list[mid] <= pid)
3462				index = mid + 1;
3463			else
3464				end = mid;
3465		}
3466	}
3467	/* If we're off the end of the array, we're done */
3468	if (index >= l->length)
3469		return NULL;
3470	/* Update the abstract position to be the actual pid that we found */
3471	iter = l->list + index;
3472	*pos = *iter;
3473	return iter;
3474}
3475
3476static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3477{
3478	struct cgroup_pidlist *l = s->private;
3479	up_read(&l->mutex);
 
 
 
 
 
3480}
3481
3482static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3483{
3484	struct cgroup_pidlist *l = s->private;
 
3485	pid_t *p = v;
3486	pid_t *end = l->list + l->length;
3487	/*
3488	 * Advance to the next pid in the array. If this goes off the
3489	 * end, we're done
3490	 */
3491	p++;
3492	if (p >= end) {
3493		return NULL;
3494	} else {
3495		*pos = *p;
3496		return p;
3497	}
3498}
3499
3500static int cgroup_pidlist_show(struct seq_file *s, void *v)
3501{
3502	return seq_printf(s, "%d\n", *(int *)v);
3503}
3504
3505/*
3506 * seq_operations functions for iterating on pidlists through seq_file -
3507 * independent of whether it's tasks or procs
3508 */
3509static const struct seq_operations cgroup_pidlist_seq_operations = {
3510	.start = cgroup_pidlist_start,
3511	.stop = cgroup_pidlist_stop,
3512	.next = cgroup_pidlist_next,
3513	.show = cgroup_pidlist_show,
3514};
3515
3516static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3517{
3518	/*
3519	 * the case where we're the last user of this particular pidlist will
3520	 * have us remove it from the cgroup's list, which entails taking the
3521	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3522	 * pidlist_mutex, we have to take pidlist_mutex first.
3523	 */
3524	mutex_lock(&l->owner->pidlist_mutex);
3525	down_write(&l->mutex);
3526	BUG_ON(!l->use_count);
3527	if (!--l->use_count) {
3528		/* we're the last user if refcount is 0; remove and free */
3529		list_del(&l->links);
3530		mutex_unlock(&l->owner->pidlist_mutex);
3531		pidlist_free(l->list);
3532		put_pid_ns(l->key.ns);
3533		up_write(&l->mutex);
3534		kfree(l);
3535		return;
3536	}
3537	mutex_unlock(&l->owner->pidlist_mutex);
3538	up_write(&l->mutex);
3539}
3540
3541static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3542{
3543	struct cgroup_pidlist *l;
3544	if (!(file->f_mode & FMODE_READ))
3545		return 0;
3546	/*
3547	 * the seq_file will only be initialized if the file was opened for
3548	 * reading; hence we check if it's not null only in that case.
3549	 */
3550	l = ((struct seq_file *)file->private_data)->private;
3551	cgroup_release_pid_array(l);
3552	return seq_release(inode, file);
3553}
3554
3555static const struct file_operations cgroup_pidlist_operations = {
3556	.read = seq_read,
3557	.llseek = seq_lseek,
3558	.write = cgroup_file_write,
3559	.release = cgroup_pidlist_release,
3560};
3561
3562/*
3563 * The following functions handle opens on a file that displays a pidlist
3564 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3565 * in the cgroup.
3566 */
3567/* helper function for the two below it */
3568static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3569{
3570	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3571	struct cgroup_pidlist *l;
3572	int retval;
3573
3574	/* Nothing to do for write-only files */
3575	if (!(file->f_mode & FMODE_READ))
3576		return 0;
3577
3578	/* have the array populated */
3579	retval = pidlist_array_load(cgrp, type, &l);
3580	if (retval)
3581		return retval;
3582	/* configure file information */
3583	file->f_op = &cgroup_pidlist_operations;
3584
3585	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3586	if (retval) {
3587		cgroup_release_pid_array(l);
3588		return retval;
3589	}
3590	((struct seq_file *)file->private_data)->private = l;
3591	return 0;
3592}
3593static int cgroup_tasks_open(struct inode *unused, struct file *file)
3594{
3595	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3596}
3597static int cgroup_procs_open(struct inode *unused, struct file *file)
3598{
3599	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3600}
3601
3602static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3603					    struct cftype *cft)
3604{
3605	return notify_on_release(cgrp);
3606}
3607
3608static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3609					  struct cftype *cft,
3610					  u64 val)
3611{
3612	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3613	if (val)
3614		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3615	else
3616		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3617	return 0;
3618}
3619
3620/*
3621 * Unregister event and free resources.
3622 *
3623 * Gets called from workqueue.
3624 */
3625static void cgroup_event_remove(struct work_struct *work)
3626{
3627	struct cgroup_event *event = container_of(work, struct cgroup_event,
3628			remove);
3629	struct cgroup *cgrp = event->cgrp;
3630
3631	event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3632
3633	eventfd_ctx_put(event->eventfd);
3634	kfree(event);
3635	dput(cgrp->dentry);
3636}
3637
3638/*
3639 * Gets called on POLLHUP on eventfd when user closes it.
3640 *
3641 * Called with wqh->lock held and interrupts disabled.
3642 */
3643static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3644		int sync, void *key)
3645{
3646	struct cgroup_event *event = container_of(wait,
3647			struct cgroup_event, wait);
3648	struct cgroup *cgrp = event->cgrp;
3649	unsigned long flags = (unsigned long)key;
3650
3651	if (flags & POLLHUP) {
3652		__remove_wait_queue(event->wqh, &event->wait);
3653		spin_lock(&cgrp->event_list_lock);
3654		list_del(&event->list);
3655		spin_unlock(&cgrp->event_list_lock);
3656		/*
3657		 * We are in atomic context, but cgroup_event_remove() may
3658		 * sleep, so we have to call it in workqueue.
3659		 */
3660		schedule_work(&event->remove);
3661	}
3662
3663	return 0;
3664}
3665
3666static void cgroup_event_ptable_queue_proc(struct file *file,
3667		wait_queue_head_t *wqh, poll_table *pt)
3668{
3669	struct cgroup_event *event = container_of(pt,
3670			struct cgroup_event, pt);
3671
3672	event->wqh = wqh;
3673	add_wait_queue(wqh, &event->wait);
3674}
3675
3676/*
3677 * Parse input and register new cgroup event handler.
3678 *
3679 * Input must be in format '<event_fd> <control_fd> <args>'.
3680 * Interpretation of args is defined by control file implementation.
3681 */
3682static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3683				      const char *buffer)
3684{
3685	struct cgroup_event *event = NULL;
3686	unsigned int efd, cfd;
3687	struct file *efile = NULL;
3688	struct file *cfile = NULL;
3689	char *endp;
3690	int ret;
3691
3692	efd = simple_strtoul(buffer, &endp, 10);
3693	if (*endp != ' ')
3694		return -EINVAL;
3695	buffer = endp + 1;
3696
3697	cfd = simple_strtoul(buffer, &endp, 10);
3698	if ((*endp != ' ') && (*endp != '\0'))
3699		return -EINVAL;
3700	buffer = endp + 1;
3701
3702	event = kzalloc(sizeof(*event), GFP_KERNEL);
3703	if (!event)
3704		return -ENOMEM;
3705	event->cgrp = cgrp;
3706	INIT_LIST_HEAD(&event->list);
3707	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3708	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3709	INIT_WORK(&event->remove, cgroup_event_remove);
3710
3711	efile = eventfd_fget(efd);
3712	if (IS_ERR(efile)) {
3713		ret = PTR_ERR(efile);
3714		goto fail;
3715	}
3716
3717	event->eventfd = eventfd_ctx_fileget(efile);
3718	if (IS_ERR(event->eventfd)) {
3719		ret = PTR_ERR(event->eventfd);
3720		goto fail;
3721	}
3722
3723	cfile = fget(cfd);
3724	if (!cfile) {
3725		ret = -EBADF;
3726		goto fail;
3727	}
3728
3729	/* the process need read permission on control file */
3730	/* AV: shouldn't we check that it's been opened for read instead? */
3731	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3732	if (ret < 0)
3733		goto fail;
3734
3735	event->cft = __file_cft(cfile);
3736	if (IS_ERR(event->cft)) {
3737		ret = PTR_ERR(event->cft);
3738		goto fail;
3739	}
3740
3741	if (!event->cft->register_event || !event->cft->unregister_event) {
3742		ret = -EINVAL;
3743		goto fail;
3744	}
3745
3746	ret = event->cft->register_event(cgrp, event->cft,
3747			event->eventfd, buffer);
3748	if (ret)
3749		goto fail;
3750
3751	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3752		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3753		ret = 0;
3754		goto fail;
3755	}
3756
3757	/*
3758	 * Events should be removed after rmdir of cgroup directory, but before
3759	 * destroying subsystem state objects. Let's take reference to cgroup
3760	 * directory dentry to do that.
3761	 */
3762	dget(cgrp->dentry);
3763
3764	spin_lock(&cgrp->event_list_lock);
3765	list_add(&event->list, &cgrp->event_list);
3766	spin_unlock(&cgrp->event_list_lock);
3767
3768	fput(cfile);
3769	fput(efile);
3770
3771	return 0;
3772
3773fail:
3774	if (cfile)
3775		fput(cfile);
3776
3777	if (event && event->eventfd && !IS_ERR(event->eventfd))
3778		eventfd_ctx_put(event->eventfd);
3779
3780	if (!IS_ERR_OR_NULL(efile))
3781		fput(efile);
3782
3783	kfree(event);
3784
3785	return ret;
3786}
3787
3788static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3789				    struct cftype *cft)
3790{
3791	return clone_children(cgrp);
3792}
3793
3794static int cgroup_clone_children_write(struct cgroup *cgrp,
3795				     struct cftype *cft,
3796				     u64 val)
3797{
3798	if (val)
3799		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3800	else
3801		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3802	return 0;
3803}
3804
3805/*
3806 * for the common functions, 'private' gives the type of file
3807 */
3808/* for hysterical raisins, we can't put this on the older files */
3809#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3810static struct cftype files[] = {
 
 
 
 
 
 
3811	{
3812		.name = "tasks",
3813		.open = cgroup_tasks_open,
3814		.write_u64 = cgroup_tasks_write,
3815		.release = cgroup_pidlist_release,
3816		.mode = S_IRUGO | S_IWUSR,
3817	},
3818	{
3819		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
3820		.open = cgroup_procs_open,
3821		.write_u64 = cgroup_procs_write,
3822		.release = cgroup_pidlist_release,
3823		.mode = S_IRUGO | S_IWUSR,
3824	},
3825	{
3826		.name = "notify_on_release",
3827		.read_u64 = cgroup_read_notify_on_release,
3828		.write_u64 = cgroup_write_notify_on_release,
 
3829	},
 
 
 
 
 
3830	{
3831		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3832		.write_string = cgroup_write_event_control,
3833		.mode = S_IWUGO,
 
 
 
 
3834	},
3835	{
3836		.name = "cgroup.clone_children",
3837		.read_u64 = cgroup_clone_children_read,
3838		.write_u64 = cgroup_clone_children_write,
3839	},
3840	{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3841		.name = "release_agent",
3842		.flags = CFTYPE_ONLY_ON_ROOT,
3843		.read_seq_string = cgroup_release_agent_show,
3844		.write_string = cgroup_release_agent_write,
3845		.max_write_len = PATH_MAX,
3846	},
3847	{ }	/* terminate */
3848};
3849
3850static int cgroup_populate_dir(struct cgroup *cgrp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3851{
3852	int err;
3853	struct cgroup_subsys *ss;
 
 
 
 
3854
3855	err = cgroup_addrm_files(cgrp, NULL, files, true);
3856	if (err < 0)
3857		return err;
 
 
 
 
 
3858
3859	/* process cftsets of each subsystem */
3860	for_each_subsys(cgrp->root, ss) {
3861		struct cftype_set *set;
 
 
 
 
3862
3863		list_for_each_entry(set, &ss->cftsets, node)
3864			cgroup_addrm_files(cgrp, ss, set->cfts, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3865	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3866
3867	/* This cgroup is ready now */
3868	for_each_subsys(cgrp->root, ss) {
3869		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3870		/*
3871		 * Update id->css pointer and make this css visible from
3872		 * CSS ID functions. This pointer will be dereferened
3873		 * from RCU-read-side without locks.
 
 
3874		 */
3875		if (css->id)
3876			rcu_assign_pointer(css->id->css, css);
 
3877	}
3878
3879	return 0;
 
 
3880}
3881
3882static void css_dput_fn(struct work_struct *work)
3883{
3884	struct cgroup_subsys_state *css =
3885		container_of(work, struct cgroup_subsys_state, dput_work);
3886	struct dentry *dentry = css->cgroup->dentry;
3887	struct super_block *sb = dentry->d_sb;
3888
3889	atomic_inc(&sb->s_active);
3890	dput(dentry);
3891	deactivate_super(sb);
3892}
3893
3894static void init_cgroup_css(struct cgroup_subsys_state *css,
3895			       struct cgroup_subsys *ss,
3896			       struct cgroup *cgrp)
3897{
 
 
 
 
 
3898	css->cgroup = cgrp;
3899	atomic_set(&css->refcnt, 1);
3900	css->flags = 0;
3901	css->id = NULL;
3902	if (cgrp == dummytop)
3903		set_bit(CSS_ROOT, &css->flags);
3904	BUG_ON(cgrp->subsys[ss->subsys_id]);
3905	cgrp->subsys[ss->subsys_id] = css;
 
 
 
3906
3907	/*
3908	 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
3909	 * which is put on the last css_put().  dput() requires process
3910	 * context, which css_put() may be called without.  @css->dput_work
3911	 * will be used to invoke dput() asynchronously from css_put().
3912	 */
3913	INIT_WORK(&css->dput_work, css_dput_fn);
3914	if (ss->__DEPRECATED_clear_css_refs)
3915		set_bit(CSS_CLEAR_CSS_REFS, &css->flags);
3916}
3917
3918static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
 
3919{
3920	/* We need to take each hierarchy_mutex in a consistent order */
3921	int i;
 
 
3922
3923	/*
3924	 * No worry about a race with rebind_subsystems that might mess up the
3925	 * locking order, since both parties are under cgroup_mutex.
3926	 */
3927	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3928		struct cgroup_subsys *ss = subsys[i];
3929		if (ss == NULL)
3930			continue;
3931		if (ss->root == root)
3932			mutex_lock(&ss->hierarchy_mutex);
3933	}
 
3934}
3935
3936static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
 
3937{
3938	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3939
3940	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3941		struct cgroup_subsys *ss = subsys[i];
3942		if (ss == NULL)
3943			continue;
3944		if (ss->root == root)
3945			mutex_unlock(&ss->hierarchy_mutex);
3946	}
3947}
3948
3949/*
3950 * cgroup_create - create a cgroup
3951 * @parent: cgroup that will be parent of the new cgroup
3952 * @dentry: dentry of the new cgroup
3953 * @mode: mode to set on new inode
3954 *
3955 * Must be called with the mutex on the parent inode held
 
3956 */
3957static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3958			     umode_t mode)
3959{
3960	struct cgroup *cgrp;
3961	struct cgroupfs_root *root = parent->root;
3962	int err = 0;
3963	struct cgroup_subsys *ss;
3964	struct super_block *sb = root->sb;
3965
3966	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3967	if (!cgrp)
3968		return -ENOMEM;
3969
3970	/* Grab a reference on the superblock so the hierarchy doesn't
3971	 * get deleted on unmount if there are child cgroups.  This
3972	 * can be done outside cgroup_mutex, since the sb can't
3973	 * disappear while someone has an open control file on the
3974	 * fs */
3975	atomic_inc(&sb->s_active);
3976
3977	mutex_lock(&cgroup_mutex);
3978
3979	init_cgroup_housekeeping(cgrp);
 
 
3980
3981	cgrp->parent = parent;
3982	cgrp->root = parent->root;
3983	cgrp->top_cgroup = parent->top_cgroup;
 
3984
3985	if (notify_on_release(parent))
3986		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 
3987
3988	if (clone_children(parent))
3989		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
 
3990
3991	for_each_subsys(root, ss) {
3992		struct cgroup_subsys_state *css = ss->create(cgrp);
3993
3994		if (IS_ERR(css)) {
3995			err = PTR_ERR(css);
3996			goto err_destroy;
3997		}
3998		init_cgroup_css(css, ss, cgrp);
3999		if (ss->use_id) {
4000			err = alloc_css_id(ss, parent, cgrp);
4001			if (err)
4002				goto err_destroy;
4003		}
4004		/* At error, ->destroy() callback has to free assigned ID. */
4005		if (clone_children(parent) && ss->post_clone)
4006			ss->post_clone(cgrp);
4007	}
4008
4009	cgroup_lock_hierarchy(root);
4010	list_add(&cgrp->sibling, &cgrp->parent->children);
4011	cgroup_unlock_hierarchy(root);
4012	root->number_of_cgroups++;
4013
4014	err = cgroup_create_dir(cgrp, dentry, mode);
4015	if (err < 0)
4016		goto err_remove;
 
 
 
 
 
 
4017
4018	/* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
4019	for_each_subsys(root, ss)
4020		if (!ss->__DEPRECATED_clear_css_refs)
4021			dget(dentry);
 
 
4022
4023	/* The cgroup directory was pre-locked for us */
4024	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
 
 
 
4025
4026	list_add_tail(&cgrp->allcg_node, &root->allcg_list);
 
 
4027
4028	err = cgroup_populate_dir(cgrp);
4029	/* If err < 0, we have a half-filled directory - oh well ;) */
 
 
 
 
 
 
 
4030
4031	mutex_unlock(&cgroup_mutex);
4032	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4033
4034	return 0;
 
 
4035
4036 err_remove:
 
4037
4038	cgroup_lock_hierarchy(root);
4039	list_del(&cgrp->sibling);
4040	cgroup_unlock_hierarchy(root);
4041	root->number_of_cgroups--;
4042
4043 err_destroy:
4044
4045	for_each_subsys(root, ss) {
4046		if (cgrp->subsys[ss->subsys_id])
4047			ss->destroy(cgrp);
4048	}
4049
4050	mutex_unlock(&cgroup_mutex);
 
4051
4052	/* Release the reference count that we took on the superblock */
4053	deactivate_super(sb);
4054
4055	kfree(cgrp);
4056	return err;
4057}
 
4058
4059static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4060{
4061	struct cgroup *c_parent = dentry->d_parent->d_fsdata;
 
 
4062
4063	/* the vfs holds inode->i_mutex already */
4064	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4065}
 
 
 
4066
4067/*
4068 * Check the reference count on each subsystem. Since we already
4069 * established that there are no tasks in the cgroup, if the css refcount
4070 * is also 1, then there should be no outstanding references, so the
4071 * subsystem is safe to destroy. We scan across all subsystems rather than
4072 * using the per-hierarchy linked list of mounted subsystems since we can
4073 * be called via check_for_release() with no synchronization other than
4074 * RCU, and the subsystem linked list isn't RCU-safe.
4075 */
4076static int cgroup_has_css_refs(struct cgroup *cgrp)
4077{
4078	int i;
4079
4080	/*
4081	 * We won't need to lock the subsys array, because the subsystems
4082	 * we're concerned about aren't going anywhere since our cgroup root
4083	 * has a reference on them.
4084	 */
4085	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4086		struct cgroup_subsys *ss = subsys[i];
4087		struct cgroup_subsys_state *css;
4088
4089		/* Skip subsystems not present or not in this hierarchy */
4090		if (ss == NULL || ss->root != cgrp->root)
4091			continue;
4092
4093		css = cgrp->subsys[ss->subsys_id];
4094		/*
4095		 * When called from check_for_release() it's possible
4096		 * that by this point the cgroup has been removed
4097		 * and the css deleted. But a false-positive doesn't
4098		 * matter, since it can only happen if the cgroup
4099		 * has been deleted and hence no longer needs the
4100		 * release agent to be called anyway.
4101		 */
4102		if (css && css_refcnt(css) > 1)
4103			return 1;
4104	}
4105	return 0;
4106}
4107
4108/*
4109 * Atomically mark all (or else none) of the cgroup's CSS objects as
4110 * CSS_REMOVED. Return true on success, or false if the cgroup has
4111 * busy subsystems. Call with cgroup_mutex held
4112 *
4113 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
4114 * not, cgroup removal behaves differently.
4115 *
4116 * If clear is set, css refcnt for the subsystem should be zero before
4117 * cgroup removal can be committed.  This is implemented by
4118 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
4119 * called multiple times until all css refcnts reach zero and is allowed to
4120 * veto removal on any invocation.  This behavior is deprecated and will be
4121 * removed as soon as the existing user (memcg) is updated.
4122 *
4123 * If clear is not set, each css holds an extra reference to the cgroup's
4124 * dentry and cgroup removal proceeds regardless of css refs.
4125 * ->pre_destroy() will be called at least once and is not allowed to fail.
4126 * On the last put of each css, whenever that may be, the extra dentry ref
4127 * is put so that dentry destruction happens only after all css's are
4128 * released.
4129 */
4130static int cgroup_clear_css_refs(struct cgroup *cgrp)
4131{
4132	struct cgroup_subsys *ss;
4133	unsigned long flags;
4134	bool failed = false;
4135
4136	local_irq_save(flags);
 
 
4137
4138	/*
4139	 * Block new css_tryget() by deactivating refcnt.  If all refcnts
4140	 * for subsystems w/ clear_css_refs set were 1 at the moment of
4141	 * deactivation, we succeeded.
4142	 */
4143	for_each_subsys(cgrp->root, ss) {
4144		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4145
4146		WARN_ON(atomic_read(&css->refcnt) < 0);
4147		atomic_add(CSS_DEACT_BIAS, &css->refcnt);
 
 
 
4148
4149		if (ss->__DEPRECATED_clear_css_refs)
4150			failed |= css_refcnt(css) != 1;
 
 
 
4151	}
 
4152
4153	/*
4154	 * If succeeded, set REMOVED and put all the base refs; otherwise,
4155	 * restore refcnts to positive values.  Either way, all in-progress
4156	 * css_tryget() will be released.
4157	 */
4158	for_each_subsys(cgrp->root, ss) {
4159		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4160
4161		if (!failed) {
4162			set_bit(CSS_REMOVED, &css->flags);
4163			css_put(css);
4164		} else {
4165			atomic_sub(CSS_DEACT_BIAS, &css->refcnt);
4166		}
4167	}
4168
4169	local_irq_restore(flags);
4170	return !failed;
 
 
 
4171}
4172
4173static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
 
 
 
 
 
4174{
4175	struct cgroup *cgrp = dentry->d_fsdata;
4176	struct dentry *d;
4177	struct cgroup *parent;
4178	DEFINE_WAIT(wait);
4179	struct cgroup_event *event, *tmp;
4180	int ret;
4181
4182	/* the vfs holds both inode->i_mutex already */
4183again:
4184	mutex_lock(&cgroup_mutex);
4185	if (atomic_read(&cgrp->count) != 0) {
4186		mutex_unlock(&cgroup_mutex);
4187		return -EBUSY;
4188	}
4189	if (!list_empty(&cgrp->children)) {
4190		mutex_unlock(&cgroup_mutex);
4191		return -EBUSY;
4192	}
4193	mutex_unlock(&cgroup_mutex);
4194
4195	/*
4196	 * In general, subsystem has no css->refcnt after pre_destroy(). But
4197	 * in racy cases, subsystem may have to get css->refcnt after
4198	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4199	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4200	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4201	 * and subsystem's reference count handling. Please see css_get/put
4202	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4203	 */
4204	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4205
4206	/*
4207	 * Call pre_destroy handlers of subsys. Notify subsystems
4208	 * that rmdir() request comes.
4209	 */
4210	ret = cgroup_call_pre_destroy(cgrp);
4211	if (ret) {
4212		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4213		return ret;
4214	}
4215
4216	mutex_lock(&cgroup_mutex);
4217	parent = cgrp->parent;
4218	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4219		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4220		mutex_unlock(&cgroup_mutex);
4221		return -EBUSY;
4222	}
4223	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4224	if (!cgroup_clear_css_refs(cgrp)) {
4225		mutex_unlock(&cgroup_mutex);
4226		/*
4227		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4228		 * prepare_to_wait(), we need to check this flag.
4229		 */
4230		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4231			schedule();
4232		finish_wait(&cgroup_rmdir_waitq, &wait);
4233		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4234		if (signal_pending(current))
4235			return -EINTR;
4236		goto again;
4237	}
4238	/* NO css_tryget() can success after here. */
4239	finish_wait(&cgroup_rmdir_waitq, &wait);
4240	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4241
4242	raw_spin_lock(&release_list_lock);
4243	set_bit(CGRP_REMOVED, &cgrp->flags);
4244	if (!list_empty(&cgrp->release_list))
4245		list_del_init(&cgrp->release_list);
4246	raw_spin_unlock(&release_list_lock);
4247
4248	cgroup_lock_hierarchy(cgrp->root);
4249	/* delete this cgroup from parent->children */
4250	list_del_init(&cgrp->sibling);
4251	cgroup_unlock_hierarchy(cgrp->root);
4252
4253	list_del_init(&cgrp->allcg_node);
4254
4255	d = dget(cgrp->dentry);
4256
4257	cgroup_d_remove_dir(d);
4258	dput(d);
4259
4260	set_bit(CGRP_RELEASABLE, &parent->flags);
4261	check_for_release(parent);
4262
4263	/*
4264	 * Unregister events and notify userspace.
4265	 * Notify userspace about cgroup removing only after rmdir of cgroup
4266	 * directory to avoid race between userspace and kernelspace
4267	 */
4268	spin_lock(&cgrp->event_list_lock);
4269	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4270		list_del(&event->list);
4271		remove_wait_queue(event->wqh, &event->wait);
4272		eventfd_signal(event->eventfd, 1);
4273		schedule_work(&event->remove);
4274	}
4275	spin_unlock(&cgrp->event_list_lock);
4276
4277	mutex_unlock(&cgroup_mutex);
4278	return 0;
4279}
4280
4281static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
 
4282{
4283	INIT_LIST_HEAD(&ss->cftsets);
 
4284
4285	/*
4286	 * base_cftset is embedded in subsys itself, no need to worry about
4287	 * deregistration.
4288	 */
4289	if (ss->base_cftypes) {
4290		ss->base_cftset.cfts = ss->base_cftypes;
4291		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4292	}
4293}
4294
4295static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
 
 
 
 
 
 
 
 
 
4296{
4297	struct cgroup_subsys_state *css;
4298
4299	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
 
 
 
 
4300
4301	/* init base cftset */
4302	cgroup_init_cftsets(ss);
 
 
 
4303
4304	/* Create the top cgroup state for this subsystem */
4305	list_add(&ss->sibling, &rootnode.subsys_list);
4306	ss->root = &rootnode;
4307	css = ss->create(dummytop);
4308	/* We don't handle early failures gracefully */
4309	BUG_ON(IS_ERR(css));
4310	init_cgroup_css(css, ss, dummytop);
4311
4312	/* Update the init_css_set to contain a subsys
4313	 * pointer to this state - since the subsystem is
4314	 * newly registered, all tasks and hence the
4315	 * init_css_set is in the subsystem's top cgroup. */
4316	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4317
4318	need_forkexit_callback |= ss->fork || ss->exit;
4319
4320	/* At system boot, before all subsystems have been
4321	 * registered, no tasks have been forked, so we don't
4322	 * need to invoke fork callbacks here. */
4323	BUG_ON(!list_empty(&init_task.tasks));
4324
4325	mutex_init(&ss->hierarchy_mutex);
4326	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4327	ss->active = 1;
4328
4329	/* this function shouldn't be used with modular subsystems, since they
4330	 * need to register a subsys_id, among other things */
4331	BUG_ON(ss->module);
4332}
4333
4334/**
4335 * cgroup_load_subsys: load and register a modular subsystem at runtime
4336 * @ss: the subsystem to load
4337 *
4338 * This function should be called in a modular subsystem's initcall. If the
4339 * subsystem is built as a module, it will be assigned a new subsys_id and set
4340 * up for use. If the subsystem is built-in anyway, work is delegated to the
4341 * simpler cgroup_init_subsys.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4342 */
4343int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
 
4344{
4345	int i;
4346	struct cgroup_subsys_state *css;
 
 
4347
4348	/* check name and function validity */
4349	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4350	    ss->create == NULL || ss->destroy == NULL)
4351		return -EINVAL;
4352
4353	/*
4354	 * we don't support callbacks in modular subsystems. this check is
4355	 * before the ss->module check for consistency; a subsystem that could
4356	 * be a module should still have no callbacks even if the user isn't
4357	 * compiling it as one.
4358	 */
4359	if (ss->fork || ss->exit)
4360		return -EINVAL;
4361
4362	/*
4363	 * an optionally modular subsystem is built-in: we want to do nothing,
4364	 * since cgroup_init_subsys will have already taken care of it.
 
4365	 */
4366	if (ss->module == NULL) {
4367		/* a few sanity checks */
4368		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4369		BUG_ON(subsys[ss->subsys_id] != ss);
4370		return 0;
4371	}
4372
4373	/* init base cftset */
4374	cgroup_init_cftsets(ss);
4375
4376	/*
4377	 * need to register a subsys id before anything else - for example,
4378	 * init_cgroup_css needs it.
 
 
4379	 */
4380	mutex_lock(&cgroup_mutex);
4381	/* find the first empty slot in the array */
4382	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4383		if (subsys[i] == NULL)
4384			break;
4385	}
4386	if (i == CGROUP_SUBSYS_COUNT) {
4387		/* maximum number of subsystems already registered! */
4388		mutex_unlock(&cgroup_mutex);
4389		return -EBUSY;
4390	}
4391	/* assign ourselves the subsys_id */
4392	ss->subsys_id = i;
4393	subsys[i] = ss;
4394
4395	/*
4396	 * no ss->create seems to need anything important in the ss struct, so
4397	 * this can happen first (i.e. before the rootnode attachment).
4398	 */
4399	css = ss->create(dummytop);
4400	if (IS_ERR(css)) {
4401		/* failure case - need to deassign the subsys[] slot. */
4402		subsys[i] = NULL;
4403		mutex_unlock(&cgroup_mutex);
4404		return PTR_ERR(css);
4405	}
4406
4407	list_add(&ss->sibling, &rootnode.subsys_list);
4408	ss->root = &rootnode;
4409
4410	/* our new subsystem will be attached to the dummy hierarchy. */
4411	init_cgroup_css(css, ss, dummytop);
4412	/* init_idr must be after init_cgroup_css because it sets css->id. */
4413	if (ss->use_id) {
4414		int ret = cgroup_init_idr(ss, css);
4415		if (ret) {
4416			dummytop->subsys[ss->subsys_id] = NULL;
4417			ss->destroy(dummytop);
4418			subsys[i] = NULL;
4419			mutex_unlock(&cgroup_mutex);
4420			return ret;
4421		}
4422	}
4423
4424	/*
4425	 * Now we need to entangle the css into the existing css_sets. unlike
4426	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4427	 * will need a new pointer to it; done by iterating the css_set_table.
4428	 * furthermore, modifying the existing css_sets will corrupt the hash
4429	 * table state, so each changed css_set will need its hash recomputed.
4430	 * this is all done under the css_set_lock.
4431	 */
4432	write_lock(&css_set_lock);
4433	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4434		struct css_set *cg;
4435		struct hlist_node *node, *tmp;
4436		struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4437
4438		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4439			/* skip entries that we already rehashed */
4440			if (cg->subsys[ss->subsys_id])
4441				continue;
4442			/* remove existing entry */
4443			hlist_del(&cg->hlist);
4444			/* set new value */
4445			cg->subsys[ss->subsys_id] = css;
4446			/* recompute hash and restore entry */
4447			new_bucket = css_set_hash(cg->subsys);
4448			hlist_add_head(&cg->hlist, new_bucket);
4449		}
4450	}
4451	write_unlock(&css_set_lock);
4452
4453	mutex_init(&ss->hierarchy_mutex);
4454	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4455	ss->active = 1;
4456
4457	/* success! */
4458	mutex_unlock(&cgroup_mutex);
4459	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4460}
4461EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4462
4463/**
4464 * cgroup_unload_subsys: unload a modular subsystem
4465 * @ss: the subsystem to unload
4466 *
4467 * This function should be called in a modular subsystem's exitcall. When this
4468 * function is invoked, the refcount on the subsystem's module will be 0, so
4469 * the subsystem will not be attached to any hierarchy.
4470 */
4471void cgroup_unload_subsys(struct cgroup_subsys *ss)
 
4472{
4473	struct cg_cgroup_link *link;
4474	struct hlist_head *hhead;
4475
4476	BUG_ON(ss->module == NULL);
4477
4478	/*
4479	 * we shouldn't be called if the subsystem is in use, and the use of
4480	 * try_module_get in parse_cgroupfs_options should ensure that it
4481	 * doesn't start being used while we're killing it off.
4482	 */
4483	BUG_ON(ss->root != &rootnode);
4484
4485	mutex_lock(&cgroup_mutex);
4486	/* deassign the subsys_id */
4487	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4488	subsys[ss->subsys_id] = NULL;
4489
4490	/* remove subsystem from rootnode's list of subsystems */
4491	list_del_init(&ss->sibling);
 
 
 
 
4492
4493	/*
4494	 * disentangle the css from all css_sets attached to the dummytop. as
4495	 * in loading, we need to pay our respects to the hashtable gods.
4496	 */
4497	write_lock(&css_set_lock);
4498	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4499		struct css_set *cg = link->cg;
4500
4501		hlist_del(&cg->hlist);
4502		BUG_ON(!cg->subsys[ss->subsys_id]);
4503		cg->subsys[ss->subsys_id] = NULL;
4504		hhead = css_set_hash(cg->subsys);
4505		hlist_add_head(&cg->hlist, hhead);
 
4506	}
4507	write_unlock(&css_set_lock);
4508
4509	/*
4510	 * remove subsystem's css from the dummytop and free it - need to free
4511	 * before marking as null because ss->destroy needs the cgrp->subsys
4512	 * pointer to find their state. note that this also takes care of
4513	 * freeing the css_id.
4514	 */
4515	ss->destroy(dummytop);
4516	dummytop->subsys[ss->subsys_id] = NULL;
 
 
 
 
 
 
 
 
 
4517
4518	mutex_unlock(&cgroup_mutex);
4519}
4520EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4521
4522/**
4523 * cgroup_init_early - cgroup initialization at system boot
4524 *
4525 * Initialize cgroups at system boot, and initialize any
4526 * subsystems that request early init.
4527 */
4528int __init cgroup_init_early(void)
4529{
 
 
4530	int i;
4531	atomic_set(&init_css_set.refcount, 1);
4532	INIT_LIST_HEAD(&init_css_set.cg_links);
4533	INIT_LIST_HEAD(&init_css_set.tasks);
4534	INIT_HLIST_NODE(&init_css_set.hlist);
4535	css_set_count = 1;
4536	init_cgroup_root(&rootnode);
4537	root_count = 1;
4538	init_task.cgroups = &init_css_set;
4539
4540	init_css_set_link.cg = &init_css_set;
4541	init_css_set_link.cgrp = dummytop;
4542	list_add(&init_css_set_link.cgrp_link_list,
4543		 &rootnode.top_cgroup.css_sets);
4544	list_add(&init_css_set_link.cg_link_list,
4545		 &init_css_set.cg_links);
4546
4547	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4548		INIT_HLIST_HEAD(&css_set_table[i]);
4549
4550	/* at bootup time, we don't worry about modular subsystems */
4551	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4552		struct cgroup_subsys *ss = subsys[i];
4553
4554		BUG_ON(!ss->name);
4555		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4556		BUG_ON(!ss->create);
4557		BUG_ON(!ss->destroy);
4558		if (ss->subsys_id != i) {
4559			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4560			       ss->name, ss->subsys_id);
4561			BUG();
4562		}
4563
4564		if (ss->early_init)
4565			cgroup_init_subsys(ss);
4566	}
4567	return 0;
4568}
4569
 
 
4570/**
4571 * cgroup_init - cgroup initialization
4572 *
4573 * Register cgroup filesystem and /proc file, and initialize
4574 * any subsystems that didn't request early init.
4575 */
4576int __init cgroup_init(void)
4577{
4578	int err;
4579	int i;
4580	struct hlist_head *hhead;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4581
4582	err = bdi_init(&cgroup_backing_dev_info);
4583	if (err)
4584		return err;
 
 
 
4585
4586	/* at bootup time, we don't worry about modular subsystems */
4587	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4588		struct cgroup_subsys *ss = subsys[i];
4589		if (!ss->early_init)
4590			cgroup_init_subsys(ss);
4591		if (ss->use_id)
4592			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4593	}
4594
4595	/* Add init_css_set to the hash table */
4596	hhead = css_set_hash(init_css_set.subsys);
4597	hlist_add_head(&init_css_set.hlist, hhead);
4598	BUG_ON(!init_root_id(&rootnode));
4599
4600	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4601	if (!cgroup_kobj) {
4602		err = -ENOMEM;
4603		goto out;
4604	}
4605
4606	err = register_filesystem(&cgroup_fs_type);
4607	if (err < 0) {
4608		kobject_put(cgroup_kobj);
4609		goto out;
4610	}
 
 
 
 
4611
4612	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
 
4613
4614out:
4615	if (err)
4616		bdi_destroy(&cgroup_backing_dev_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4617
4618	return err;
4619}
 
4620
4621/*
4622 * proc_cgroup_show()
4623 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
4624 *  - Used for /proc/<pid>/cgroup.
4625 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4626 *    doesn't really matter if tsk->cgroup changes after we read it,
4627 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4628 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
4629 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4630 *    cgroup to top_cgroup.
4631 */
4632
4633/* TODO: Use a proper seq_file iterator */
4634static int proc_cgroup_show(struct seq_file *m, void *v)
4635{
4636	struct pid *pid;
4637	struct task_struct *tsk;
4638	char *buf;
4639	int retval;
4640	struct cgroupfs_root *root;
4641
4642	retval = -ENOMEM;
4643	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4644	if (!buf)
4645		goto out;
4646
4647	retval = -ESRCH;
4648	pid = m->private;
4649	tsk = get_pid_task(pid, PIDTYPE_PID);
4650	if (!tsk)
4651		goto out_free;
4652
4653	retval = 0;
4654
4655	mutex_lock(&cgroup_mutex);
 
4656
4657	for_each_active_root(root) {
4658		struct cgroup_subsys *ss;
4659		struct cgroup *cgrp;
4660		int count = 0;
 
 
 
4661
4662		seq_printf(m, "%d:", root->hierarchy_id);
4663		for_each_subsys(root, ss)
4664			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
 
 
 
4665		if (strlen(root->name))
4666			seq_printf(m, "%sname=%s", count ? "," : "",
4667				   root->name);
4668		seq_putc(m, ':');
 
4669		cgrp = task_cgroup_from_root(tsk, root);
4670		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4671		if (retval < 0)
4672			goto out_unlock;
4673		seq_puts(m, buf);
4674		seq_putc(m, '\n');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4675	}
4676
 
4677out_unlock:
 
4678	mutex_unlock(&cgroup_mutex);
4679	put_task_struct(tsk);
4680out_free:
4681	kfree(buf);
4682out:
4683	return retval;
4684}
4685
4686static int cgroup_open(struct inode *inode, struct file *file)
4687{
4688	struct pid *pid = PROC_I(inode)->pid;
4689	return single_open(file, proc_cgroup_show, pid);
4690}
4691
4692const struct file_operations proc_cgroup_operations = {
4693	.open		= cgroup_open,
4694	.read		= seq_read,
4695	.llseek		= seq_lseek,
4696	.release	= single_release,
4697};
4698
4699/* Display information about each subsystem and each hierarchy */
4700static int proc_cgroupstats_show(struct seq_file *m, void *v)
4701{
 
4702	int i;
4703
4704	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4705	/*
4706	 * ideally we don't want subsystems moving around while we do this.
4707	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4708	 * subsys/hierarchy state.
4709	 */
4710	mutex_lock(&cgroup_mutex);
4711	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4712		struct cgroup_subsys *ss = subsys[i];
4713		if (ss == NULL)
4714			continue;
4715		seq_printf(m, "%s\t%d\t%d\t%d\n",
4716			   ss->name, ss->root->hierarchy_id,
4717			   ss->root->number_of_cgroups, !ss->disabled);
4718	}
 
4719	mutex_unlock(&cgroup_mutex);
4720	return 0;
4721}
4722
4723static int cgroupstats_open(struct inode *inode, struct file *file)
4724{
4725	return single_open(file, proc_cgroupstats_show, NULL);
4726}
4727
4728static const struct file_operations proc_cgroupstats_operations = {
4729	.open = cgroupstats_open,
4730	.read = seq_read,
4731	.llseek = seq_lseek,
4732	.release = single_release,
4733};
4734
4735/**
4736 * cgroup_fork - attach newly forked task to its parents cgroup.
4737 * @child: pointer to task_struct of forking parent process.
4738 *
4739 * Description: A task inherits its parent's cgroup at fork().
4740 *
4741 * A pointer to the shared css_set was automatically copied in
4742 * fork.c by dup_task_struct().  However, we ignore that copy, since
4743 * it was not made under the protection of RCU, cgroup_mutex or
4744 * threadgroup_change_begin(), so it might no longer be a valid
4745 * cgroup pointer.  cgroup_attach_task() might have already changed
4746 * current->cgroups, allowing the previously referenced cgroup
4747 * group to be removed and freed.
4748 *
4749 * Outside the pointer validity we also need to process the css_set
4750 * inheritance between threadgoup_change_begin() and
4751 * threadgoup_change_end(), this way there is no leak in any process
4752 * wide migration performed by cgroup_attach_proc() that could otherwise
4753 * miss a thread because it is too early or too late in the fork stage.
4754 *
4755 * At the point that cgroup_fork() is called, 'current' is the parent
4756 * task, and the passed argument 'child' points to the child task.
4757 */
4758void cgroup_fork(struct task_struct *child)
4759{
4760	/*
4761	 * We don't need to task_lock() current because current->cgroups
4762	 * can't be changed concurrently here. The parent obviously hasn't
4763	 * exited and called cgroup_exit(), and we are synchronized against
4764	 * cgroup migration through threadgroup_change_begin().
4765	 */
4766	child->cgroups = current->cgroups;
4767	get_css_set(child->cgroups);
4768	INIT_LIST_HEAD(&child->cg_list);
4769}
4770
4771/**
4772 * cgroup_fork_callbacks - run fork callbacks
4773 * @child: the new task
4774 *
4775 * Called on a new task very soon before adding it to the
4776 * tasklist. No need to take any locks since no-one can
4777 * be operating on this task.
4778 */
4779void cgroup_fork_callbacks(struct task_struct *child)
4780{
4781	if (need_forkexit_callback) {
4782		int i;
4783		/*
4784		 * forkexit callbacks are only supported for builtin
4785		 * subsystems, and the builtin section of the subsys array is
4786		 * immutable, so we don't need to lock the subsys array here.
4787		 */
4788		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4789			struct cgroup_subsys *ss = subsys[i];
4790			if (ss->fork)
4791				ss->fork(child);
4792		}
 
 
 
 
 
4793	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4794}
4795
4796/**
4797 * cgroup_post_fork - called on a new task after adding it to the task list
4798 * @child: the task in question
4799 *
4800 * Adds the task to the list running through its css_set if necessary.
4801 * Has to be after the task is visible on the task list in case we race
4802 * with the first call to cgroup_iter_start() - to guarantee that the
4803 * new task ends up on its list.
 
4804 */
4805void cgroup_post_fork(struct task_struct *child)
4806{
 
 
 
4807	/*
4808	 * use_task_css_set_links is set to 1 before we walk the tasklist
4809	 * under the tasklist_lock and we read it here after we added the child
4810	 * to the tasklist under the tasklist_lock as well. If the child wasn't
4811	 * yet in the tasklist when we walked through it from
4812	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4813	 * should be visible now due to the paired locking and barriers implied
4814	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4815	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4816	 * lock on fork.
 
 
 
 
 
 
 
 
 
 
4817	 */
4818	if (use_task_css_set_links) {
4819		write_lock(&css_set_lock);
 
 
 
4820		if (list_empty(&child->cg_list)) {
4821			/*
4822			 * It's safe to use child->cgroups without task_lock()
4823			 * here because we are protected through
4824			 * threadgroup_change_begin() against concurrent
4825			 * css_set change in cgroup_task_migrate(). Also
4826			 * the task can't exit at that point until
4827			 * wake_up_new_task() is called, so we are protected
4828			 * against cgroup_exit() setting child->cgroup to
4829			 * init_css_set.
4830			 */
4831			list_add(&child->cg_list, &child->cgroups->tasks);
4832		}
4833		write_unlock(&css_set_lock);
4834	}
 
 
 
 
 
 
 
 
 
4835}
 
4836/**
4837 * cgroup_exit - detach cgroup from exiting task
4838 * @tsk: pointer to task_struct of exiting process
4839 * @run_callback: run exit callbacks?
4840 *
4841 * Description: Detach cgroup from @tsk and release it.
4842 *
4843 * Note that cgroups marked notify_on_release force every task in
4844 * them to take the global cgroup_mutex mutex when exiting.
4845 * This could impact scaling on very large systems.  Be reluctant to
4846 * use notify_on_release cgroups where very high task exit scaling
4847 * is required on large systems.
4848 *
4849 * the_top_cgroup_hack:
4850 *
4851 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4852 *
4853 *    We call cgroup_exit() while the task is still competent to
4854 *    handle notify_on_release(), then leave the task attached to the
4855 *    root cgroup in each hierarchy for the remainder of its exit.
4856 *
4857 *    To do this properly, we would increment the reference count on
4858 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
4859 *    code we would add a second cgroup function call, to drop that
4860 *    reference.  This would just create an unnecessary hot spot on
4861 *    the top_cgroup reference count, to no avail.
4862 *
4863 *    Normally, holding a reference to a cgroup without bumping its
4864 *    count is unsafe.   The cgroup could go away, or someone could
4865 *    attach us to a different cgroup, decrementing the count on
4866 *    the first cgroup that we never incremented.  But in this case,
4867 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4868 *    which wards off any cgroup_attach_task() attempts, or task is a failed
4869 *    fork, never visible to cgroup_attach_task.
4870 */
4871void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4872{
4873	struct css_set *cg;
 
4874	int i;
4875
4876	/*
4877	 * Unlink from the css_set task list if necessary.
4878	 * Optimistically check cg_list before taking
4879	 * css_set_lock
4880	 */
 
 
4881	if (!list_empty(&tsk->cg_list)) {
4882		write_lock(&css_set_lock);
4883		if (!list_empty(&tsk->cg_list))
4884			list_del_init(&tsk->cg_list);
4885		write_unlock(&css_set_lock);
4886	}
4887
4888	/* Reassign the task to the init_css_set. */
4889	task_lock(tsk);
4890	cg = tsk->cgroups;
4891	tsk->cgroups = &init_css_set;
4892
4893	if (run_callbacks && need_forkexit_callback) {
4894		/*
4895		 * modular subsystems can't use callbacks, so no need to lock
4896		 * the subsys array
4897		 */
4898		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4899			struct cgroup_subsys *ss = subsys[i];
4900			if (ss->exit) {
4901				struct cgroup *old_cgrp =
4902					rcu_dereference_raw(cg->subsys[i])->cgroup;
4903				struct cgroup *cgrp = task_cgroup(tsk, i);
4904				ss->exit(cgrp, old_cgrp, tsk);
4905			}
4906		}
4907	}
4908	task_unlock(tsk);
4909
4910	if (cg)
4911		put_css_set_taskexit(cg);
 
 
4912}
4913
4914/**
4915 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4916 * @cgrp: the cgroup in question
4917 * @task: the task in question
4918 *
4919 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4920 * hierarchy.
4921 *
4922 * If we are sending in dummytop, then presumably we are creating
4923 * the top cgroup in the subsystem.
4924 *
4925 * Called only by the ns (nsproxy) cgroup.
4926 */
4927int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4928{
4929	int ret;
4930	struct cgroup *target;
 
4931
4932	if (cgrp == dummytop)
4933		return 1;
 
4934
4935	target = task_cgroup_from_root(task, cgrp->root);
4936	while (cgrp != target && cgrp!= cgrp->top_cgroup)
4937		cgrp = cgrp->parent;
4938	ret = (cgrp == target);
4939	return ret;
4940}
4941
4942static void check_for_release(struct cgroup *cgrp)
4943{
4944	/* All of these checks rely on RCU to keep the cgroup
4945	 * structure alive */
4946	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4947	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4948		/* Control Group is currently removeable. If it's not
4949		 * already queued for a userspace notification, queue
4950		 * it now */
4951		int need_schedule_work = 0;
4952		raw_spin_lock(&release_list_lock);
4953		if (!cgroup_is_removed(cgrp) &&
4954		    list_empty(&cgrp->release_list)) {
4955			list_add(&cgrp->release_list, &release_list);
4956			need_schedule_work = 1;
4957		}
4958		raw_spin_unlock(&release_list_lock);
4959		if (need_schedule_work)
4960			schedule_work(&release_agent_work);
4961	}
4962}
4963
4964/* Caller must verify that the css is not for root cgroup */
4965bool __css_tryget(struct cgroup_subsys_state *css)
4966{
4967	do {
4968		int v = css_refcnt(css);
4969
4970		if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
4971			return true;
4972		cpu_relax();
4973	} while (!test_bit(CSS_REMOVED, &css->flags));
4974
4975	return false;
4976}
4977EXPORT_SYMBOL_GPL(__css_tryget);
4978
4979/* Caller must verify that the css is not for root cgroup */
4980void __css_put(struct cgroup_subsys_state *css)
4981{
4982	struct cgroup *cgrp = css->cgroup;
4983	int v;
4984
4985	rcu_read_lock();
4986	v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
4987
4988	switch (v) {
4989	case 1:
4990		if (notify_on_release(cgrp)) {
4991			set_bit(CGRP_RELEASABLE, &cgrp->flags);
4992			check_for_release(cgrp);
4993		}
4994		cgroup_wakeup_rmdir_waiter(cgrp);
4995		break;
4996	case 0:
4997		if (!test_bit(CSS_CLEAR_CSS_REFS, &css->flags))
4998			schedule_work(&css->dput_work);
4999		break;
5000	}
5001	rcu_read_unlock();
5002}
5003EXPORT_SYMBOL_GPL(__css_put);
5004
5005/*
5006 * Notify userspace when a cgroup is released, by running the
5007 * configured release agent with the name of the cgroup (path
5008 * relative to the root of cgroup file system) as the argument.
5009 *
5010 * Most likely, this user command will try to rmdir this cgroup.
5011 *
5012 * This races with the possibility that some other task will be
5013 * attached to this cgroup before it is removed, or that some other
5014 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
5015 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5016 * unused, and this cgroup will be reprieved from its death sentence,
5017 * to continue to serve a useful existence.  Next time it's released,
5018 * we will get notified again, if it still has 'notify_on_release' set.
5019 *
5020 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5021 * means only wait until the task is successfully execve()'d.  The
5022 * separate release agent task is forked by call_usermodehelper(),
5023 * then control in this thread returns here, without waiting for the
5024 * release agent task.  We don't bother to wait because the caller of
5025 * this routine has no use for the exit status of the release agent
5026 * task, so no sense holding our caller up for that.
5027 */
5028static void cgroup_release_agent(struct work_struct *work)
5029{
5030	BUG_ON(work != &release_agent_work);
 
 
 
 
5031	mutex_lock(&cgroup_mutex);
5032	raw_spin_lock(&release_list_lock);
5033	while (!list_empty(&release_list)) {
5034		char *argv[3], *envp[3];
5035		int i;
5036		char *pathbuf = NULL, *agentbuf = NULL;
5037		struct cgroup *cgrp = list_entry(release_list.next,
5038						    struct cgroup,
5039						    release_list);
5040		list_del_init(&cgrp->release_list);
5041		raw_spin_unlock(&release_list_lock);
5042		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5043		if (!pathbuf)
5044			goto continue_free;
5045		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5046			goto continue_free;
5047		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5048		if (!agentbuf)
5049			goto continue_free;
5050
5051		i = 0;
5052		argv[i++] = agentbuf;
5053		argv[i++] = pathbuf;
5054		argv[i] = NULL;
5055
5056		i = 0;
5057		/* minimal command environment */
5058		envp[i++] = "HOME=/";
5059		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5060		envp[i] = NULL;
5061
5062		/* Drop the lock while we invoke the usermode helper,
5063		 * since the exec could involve hitting disk and hence
5064		 * be a slow process */
5065		mutex_unlock(&cgroup_mutex);
5066		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5067		mutex_lock(&cgroup_mutex);
5068 continue_free:
5069		kfree(pathbuf);
5070		kfree(agentbuf);
5071		raw_spin_lock(&release_list_lock);
5072	}
5073	raw_spin_unlock(&release_list_lock);
5074	mutex_unlock(&cgroup_mutex);
 
 
 
5075}
5076
5077static int __init cgroup_disable(char *str)
5078{
 
 
5079	int i;
5080	char *token;
5081
5082	while ((token = strsep(&str, ",")) != NULL) {
5083		if (!*token)
5084			continue;
5085		/*
5086		 * cgroup_disable, being at boot time, can't know about module
5087		 * subsystems, so we don't worry about them.
5088		 */
5089		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5090			struct cgroup_subsys *ss = subsys[i];
5091
5092			if (!strcmp(token, ss->name)) {
5093				ss->disabled = 1;
5094				printk(KERN_INFO "Disabling %s control group"
5095					" subsystem\n", ss->name);
5096				break;
5097			}
5098		}
5099	}
5100	return 1;
5101}
5102__setup("cgroup_disable=", cgroup_disable);
5103
5104/*
5105 * Functons for CSS ID.
5106 */
 
 
 
 
 
 
5107
5108/*
5109 *To get ID other than 0, this should be called when !cgroup_is_removed().
5110 */
5111unsigned short css_id(struct cgroup_subsys_state *css)
5112{
5113	struct css_id *cssid;
5114
5115	/*
5116	 * This css_id() can return correct value when somone has refcnt
5117	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5118	 * it's unchanged until freed.
5119	 */
5120	cssid = rcu_dereference_check(css->id, css_refcnt(css));
5121
5122	if (cssid)
5123		return cssid->id;
5124	return 0;
 
5125}
5126EXPORT_SYMBOL_GPL(css_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5127
5128unsigned short css_depth(struct cgroup_subsys_state *css)
5129{
5130	struct css_id *cssid;
 
 
 
 
 
 
 
 
 
 
 
 
5131
5132	cssid = rcu_dereference_check(css->id, css_refcnt(css));
 
5133
5134	if (cssid)
5135		return cssid->depth;
5136	return 0;
5137}
5138EXPORT_SYMBOL_GPL(css_depth);
5139
5140/**
5141 *  css_is_ancestor - test "root" css is an ancestor of "child"
5142 * @child: the css to be tested.
5143 * @root: the css supporsed to be an ancestor of the child.
5144 *
5145 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5146 * this function reads css->id, the caller must hold rcu_read_lock().
5147 * But, considering usual usage, the csses should be valid objects after test.
5148 * Assuming that the caller will do some action to the child if this returns
5149 * returns true, the caller must take "child";s reference count.
5150 * If "child" is valid object and this returns true, "root" is valid, too.
5151 */
 
 
 
 
 
5152
5153bool css_is_ancestor(struct cgroup_subsys_state *child,
5154		    const struct cgroup_subsys_state *root)
 
 
 
 
 
 
 
 
5155{
5156	struct css_id *child_id;
5157	struct css_id *root_id;
 
 
5158
5159	child_id  = rcu_dereference(child->id);
5160	if (!child_id)
5161		return false;
5162	root_id = rcu_dereference(root->id);
5163	if (!root_id)
5164		return false;
5165	if (child_id->depth < root_id->depth)
5166		return false;
5167	if (child_id->stack[root_id->depth] != root_id->id)
5168		return false;
5169	return true;
 
 
 
 
5170}
 
5171
5172void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
 
 
 
 
 
 
 
 
 
 
 
5173{
5174	struct css_id *id = css->id;
5175	/* When this is called before css_id initialization, id can be NULL */
5176	if (!id)
5177		return;
 
 
 
5178
5179	BUG_ON(!ss->use_id);
5180
5181	rcu_assign_pointer(id->css, NULL);
5182	rcu_assign_pointer(css->id, NULL);
5183	spin_lock(&ss->id_lock);
5184	idr_remove(&ss->idr, id->id);
5185	spin_unlock(&ss->id_lock);
5186	kfree_rcu(id, rcu_head);
5187}
5188EXPORT_SYMBOL_GPL(free_css_id);
5189
5190/*
5191 * This is called by init or create(). Then, calls to this function are
5192 * always serialized (By cgroup_mutex() at create()).
5193 */
5194
5195static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5196{
5197	struct css_id *newid;
5198	int myid, error, size;
5199
5200	BUG_ON(!ss->use_id);
5201
5202	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5203	newid = kzalloc(size, GFP_KERNEL);
5204	if (!newid)
5205		return ERR_PTR(-ENOMEM);
5206	/* get id */
5207	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5208		error = -ENOMEM;
5209		goto err_out;
5210	}
5211	spin_lock(&ss->id_lock);
5212	/* Don't use 0. allocates an ID of 1-65535 */
5213	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5214	spin_unlock(&ss->id_lock);
5215
5216	/* Returns error when there are no free spaces for new ID.*/
5217	if (error) {
5218		error = -ENOSPC;
5219		goto err_out;
5220	}
5221	if (myid > CSS_ID_MAX)
5222		goto remove_idr;
5223
5224	newid->id = myid;
5225	newid->depth = depth;
5226	return newid;
5227remove_idr:
5228	error = -ENOSPC;
5229	spin_lock(&ss->id_lock);
5230	idr_remove(&ss->idr, myid);
5231	spin_unlock(&ss->id_lock);
5232err_out:
5233	kfree(newid);
5234	return ERR_PTR(error);
5235
 
5236}
5237
5238static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5239					    struct cgroup_subsys_state *rootcss)
5240{
5241	struct css_id *newid;
5242
5243	spin_lock_init(&ss->id_lock);
5244	idr_init(&ss->idr);
5245
5246	newid = get_new_cssid(ss, 0);
5247	if (IS_ERR(newid))
5248		return PTR_ERR(newid);
5249
5250	newid->stack[0] = newid->id;
5251	newid->css = rootcss;
5252	rootcss->id = newid;
5253	return 0;
5254}
5255
5256static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5257			struct cgroup *child)
 
 
 
5258{
5259	int subsys_id, i, depth = 0;
5260	struct cgroup_subsys_state *parent_css, *child_css;
5261	struct css_id *child_id, *parent_id;
5262
5263	subsys_id = ss->subsys_id;
5264	parent_css = parent->subsys[subsys_id];
5265	child_css = child->subsys[subsys_id];
5266	parent_id = parent_css->id;
5267	depth = parent_id->depth + 1;
5268
5269	child_id = get_new_cssid(ss, depth);
5270	if (IS_ERR(child_id))
5271		return PTR_ERR(child_id);
5272
5273	for (i = 0; i < depth; i++)
5274		child_id->stack[i] = parent_id->stack[i];
5275	child_id->stack[depth] = child_id->id;
5276	/*
5277	 * child_id->css pointer will be set after this cgroup is available
5278	 * see cgroup_populate_dir()
5279	 */
5280	rcu_assign_pointer(child_css->id, child_id);
5281
5282	return 0;
 
 
 
 
 
5283}
 
5284
5285/**
5286 * css_lookup - lookup css by id
5287 * @ss: cgroup subsys to be looked into.
5288 * @id: the id
5289 *
5290 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5291 * NULL if not. Should be called under rcu_read_lock()
5292 */
5293struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5294{
5295	struct css_id *cssid = NULL;
 
 
 
5296
5297	BUG_ON(!ss->use_id);
5298	cssid = idr_find(&ss->idr, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5299
5300	if (unlikely(!cssid))
5301		return NULL;
5302
5303	return rcu_dereference(cssid->css);
5304}
5305EXPORT_SYMBOL_GPL(css_lookup);
5306
5307/**
5308 * css_get_next - lookup next cgroup under specified hierarchy.
5309 * @ss: pointer to subsystem
5310 * @id: current position of iteration.
5311 * @root: pointer to css. search tree under this.
5312 * @foundid: position of found object.
5313 *
5314 * Search next css under the specified hierarchy of rootid. Calling under
5315 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5316 */
5317struct cgroup_subsys_state *
5318css_get_next(struct cgroup_subsys *ss, int id,
5319	     struct cgroup_subsys_state *root, int *foundid)
5320{
5321	struct cgroup_subsys_state *ret = NULL;
5322	struct css_id *tmp;
5323	int tmpid;
5324	int rootid = css_id(root);
5325	int depth = css_depth(root);
5326
5327	if (!rootid)
5328		return NULL;
 
 
 
 
 
 
 
 
5329
5330	BUG_ON(!ss->use_id);
5331	WARN_ON_ONCE(!rcu_read_lock_held());
 
 
5332
5333	/* fill start point for scan */
5334	tmpid = id;
5335	while (1) {
5336		/*
5337		 * scan next entry from bitmap(tree), tmpid is updated after
5338		 * idr_get_next().
5339		 */
5340		tmp = idr_get_next(&ss->idr, &tmpid);
5341		if (!tmp)
5342			break;
5343		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5344			ret = rcu_dereference(tmp->css);
5345			if (ret) {
5346				*foundid = tmpid;
5347				break;
5348			}
5349		}
5350		/* continue to scan from next id */
5351		tmpid = tmpid + 1;
5352	}
5353	return ret;
 
 
5354}
5355
5356/*
5357 * get corresponding css from file open on cgroupfs directory
5358 */
5359struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5360{
5361	struct cgroup *cgrp;
5362	struct inode *inode;
5363	struct cgroup_subsys_state *css;
5364
5365	inode = f->f_dentry->d_inode;
5366	/* check in cgroup filesystem dir */
5367	if (inode->i_op != &cgroup_dir_inode_operations)
5368		return ERR_PTR(-EBADF);
 
 
 
5369
5370	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5371		return ERR_PTR(-EINVAL);
5372
5373	/* get cgroup */
5374	cgrp = __d_cgrp(f->f_dentry);
5375	css = cgrp->subsys[id];
5376	return css ? css : ERR_PTR(-ENOENT);
5377}
 
5378
5379#ifdef CONFIG_CGROUP_DEBUG
5380static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
 
5381{
5382	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5383
5384	if (!css)
5385		return ERR_PTR(-ENOMEM);
5386
5387	return css;
5388}
5389
5390static void debug_destroy(struct cgroup *cont)
5391{
5392	kfree(cont->subsys[debug_subsys_id]);
5393}
5394
5395static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
 
5396{
5397	return atomic_read(&cont->count);
5398}
5399
5400static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5401{
5402	return cgroup_task_count(cont);
5403}
5404
5405static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5406{
5407	return (u64)(unsigned long)current->cgroups;
5408}
5409
5410static u64 current_css_set_refcount_read(struct cgroup *cont,
5411					   struct cftype *cft)
5412{
5413	u64 count;
5414
5415	rcu_read_lock();
5416	count = atomic_read(&current->cgroups->refcount);
5417	rcu_read_unlock();
5418	return count;
5419}
5420
5421static int current_css_set_cg_links_read(struct cgroup *cont,
5422					 struct cftype *cft,
5423					 struct seq_file *seq)
5424{
5425	struct cg_cgroup_link *link;
5426	struct css_set *cg;
 
5427
5428	read_lock(&css_set_lock);
 
 
 
 
5429	rcu_read_lock();
5430	cg = rcu_dereference(current->cgroups);
5431	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5432		struct cgroup *c = link->cgrp;
5433		const char *name;
5434
5435		if (c->dentry)
5436			name = c->dentry->d_name.name;
5437		else
5438			name = "?";
5439		seq_printf(seq, "Root %d group %s\n",
5440			   c->root->hierarchy_id, name);
5441	}
5442	rcu_read_unlock();
5443	read_unlock(&css_set_lock);
 
5444	return 0;
5445}
5446
5447#define MAX_TASKS_SHOWN_PER_CSS 25
5448static int cgroup_css_links_read(struct cgroup *cont,
5449				 struct cftype *cft,
5450				 struct seq_file *seq)
5451{
5452	struct cg_cgroup_link *link;
5453
5454	read_lock(&css_set_lock);
5455	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5456		struct css_set *cg = link->cg;
5457		struct task_struct *task;
5458		int count = 0;
5459		seq_printf(seq, "css_set %p\n", cg);
5460		list_for_each_entry(task, &cg->tasks, cg_list) {
5461			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5462				seq_puts(seq, "  ...\n");
5463				break;
5464			} else {
5465				seq_printf(seq, "  task %d\n",
5466					   task_pid_vnr(task));
5467			}
 
 
 
 
5468		}
 
 
 
5469	}
5470	read_unlock(&css_set_lock);
5471	return 0;
5472}
5473
5474static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5475{
5476	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
 
5477}
5478
5479static struct cftype debug_files[] =  {
5480	{
5481		.name = "cgroup_refcount",
5482		.read_u64 = cgroup_refcount_read,
5483	},
5484	{
5485		.name = "taskcount",
5486		.read_u64 = debug_taskcount_read,
5487	},
5488
5489	{
5490		.name = "current_css_set",
5491		.read_u64 = current_css_set_read,
5492	},
5493
5494	{
5495		.name = "current_css_set_refcount",
5496		.read_u64 = current_css_set_refcount_read,
5497	},
5498
5499	{
5500		.name = "current_css_set_cg_links",
5501		.read_seq_string = current_css_set_cg_links_read,
5502	},
5503
5504	{
5505		.name = "cgroup_css_links",
5506		.read_seq_string = cgroup_css_links_read,
5507	},
5508
5509	{
5510		.name = "releasable",
5511		.read_u64 = releasable_read,
5512	},
5513
5514	{ }	/* terminate */
5515};
5516
5517struct cgroup_subsys debug_subsys = {
5518	.name = "debug",
5519	.create = debug_create,
5520	.destroy = debug_destroy,
5521	.subsys_id = debug_subsys_id,
5522	.base_cftypes = debug_files,
5523};
5524#endif /* CONFIG_CGROUP_DEBUG */