Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
 
  26#include "xfs_sb.h"
 
  27#include "xfs_mount.h"
  28#include "xfs_inode.h"
  29#include "xfs_da_format.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_dir2.h"
  32#include "xfs_attr_sf.h"
  33#include "xfs_attr.h"
  34#include "xfs_trans_space.h"
  35#include "xfs_trans.h"
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
 
 
  38#include "xfs_ialloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_bmap_util.h"
  41#include "xfs_error.h"
 
  42#include "xfs_quota.h"
  43#include "xfs_filestream.h"
  44#include "xfs_cksum.h"
  45#include "xfs_trace.h"
  46#include "xfs_icache.h"
  47#include "xfs_symlink.h"
  48#include "xfs_trans_priv.h"
  49#include "xfs_log.h"
  50#include "xfs_bmap_btree.h"
  51
 
  52kmem_zone_t *xfs_inode_zone;
  53
  54/*
  55 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  56 * freed from a file in a single transaction.
  57 */
  58#define	XFS_ITRUNC_MAX_EXTENTS	2
  59
  60STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  61STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  62STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
 
  63
  64/*
  65 * helper function to extract extent size hint from inode
  66 */
  67xfs_extlen_t
  68xfs_get_extsz_hint(
  69	struct xfs_inode	*ip)
  70{
  71	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  72		return ip->i_d.di_extsize;
  73	if (XFS_IS_REALTIME_INODE(ip))
  74		return ip->i_mount->m_sb.sb_rextsize;
  75	return 0;
  76}
  77
 
  78/*
  79 * These two are wrapper routines around the xfs_ilock() routine used to
  80 * centralize some grungy code.  They are used in places that wish to lock the
  81 * inode solely for reading the extents.  The reason these places can't just
  82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  83 * bringing in of the extents from disk for a file in b-tree format.  If the
  84 * inode is in b-tree format, then we need to lock the inode exclusively until
  85 * the extents are read in.  Locking it exclusively all the time would limit
  86 * our parallelism unnecessarily, though.  What we do instead is check to see
  87 * if the extents have been read in yet, and only lock the inode exclusively
  88 * if they have not.
  89 *
  90 * The functions return a value which should be given to the corresponding
  91 * xfs_iunlock() call.
  92 */
  93uint
  94xfs_ilock_data_map_shared(
  95	struct xfs_inode	*ip)
  96{
  97	uint			lock_mode = XFS_ILOCK_SHARED;
  98
  99	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 100	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 101		lock_mode = XFS_ILOCK_EXCL;
 102	xfs_ilock(ip, lock_mode);
 103	return lock_mode;
 104}
 105
 106uint
 107xfs_ilock_attr_map_shared(
 108	struct xfs_inode	*ip)
 109{
 110	uint			lock_mode = XFS_ILOCK_SHARED;
 
 
 111
 112	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 113	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 114		lock_mode = XFS_ILOCK_EXCL;
 115	xfs_ilock(ip, lock_mode);
 116	return lock_mode;
 
 
 
 117}
 
 
 
 118
 119/*
 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
 121 * the i_lock.  This routine allows various combinations of the locks to be
 122 * obtained.
 123 *
 124 * The 3 locks should always be ordered so that the IO lock is obtained first,
 125 * the mmap lock second and the ilock last in order to prevent deadlock.
 126 *
 127 * Basic locking order:
 128 *
 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
 130 *
 131 * mmap_sem locking order:
 132 *
 133 * i_iolock -> page lock -> mmap_sem
 134 * mmap_sem -> i_mmap_lock -> page_lock
 135 *
 136 * The difference in mmap_sem locking order mean that we cannot hold the
 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 139 * in get_user_pages() to map the user pages into the kernel address space for
 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
 141 * page faults already hold the mmap_sem.
 142 *
 143 * Hence to serialise fully against both syscall and mmap based IO, we need to
 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
 145 * taken in places where we need to invalidate the page cache in a race
 146 * free manner (e.g. truncate, hole punch and other extent manipulation
 147 * functions).
 148 */
 
 149void
 150xfs_ilock(
 151	xfs_inode_t		*ip,
 152	uint			lock_flags)
 153{
 154	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 
 
 155
 156	/*
 157	 * You can't set both SHARED and EXCL for the same lock,
 158	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 159	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 160	 */
 161	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 162	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 163	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 164	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 165	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 166	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 167	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 168
 169	if (lock_flags & XFS_IOLOCK_EXCL)
 170		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 171	else if (lock_flags & XFS_IOLOCK_SHARED)
 172		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 173
 174	if (lock_flags & XFS_MMAPLOCK_EXCL)
 175		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 176	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 177		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 178
 179	if (lock_flags & XFS_ILOCK_EXCL)
 180		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 181	else if (lock_flags & XFS_ILOCK_SHARED)
 182		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 183}
 
 184
 185/*
 186 * This is just like xfs_ilock(), except that the caller
 187 * is guaranteed not to sleep.  It returns 1 if it gets
 188 * the requested locks and 0 otherwise.  If the IO lock is
 189 * obtained but the inode lock cannot be, then the IO lock
 190 * is dropped before returning.
 191 *
 192 * ip -- the inode being locked
 193 * lock_flags -- this parameter indicates the inode's locks to be
 194 *       to be locked.  See the comment for xfs_ilock() for a list
 195 *	 of valid values.
 196 */
 197int
 198xfs_ilock_nowait(
 199	xfs_inode_t		*ip,
 200	uint			lock_flags)
 
 
 
 
 201{
 202	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203
 204	/*
 205	 * You can't set both SHARED and EXCL for the same lock,
 206	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 207	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 208	 */
 209	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 210	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 211	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 212	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 213	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 214	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 215	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 216
 217	if (lock_flags & XFS_IOLOCK_EXCL) {
 218		if (!mrtryupdate(&ip->i_iolock))
 219			goto out;
 220	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 221		if (!mrtryaccess(&ip->i_iolock))
 222			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223	}
 224
 225	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 226		if (!mrtryupdate(&ip->i_mmaplock))
 227			goto out_undo_iolock;
 228	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 229		if (!mrtryaccess(&ip->i_mmaplock))
 230			goto out_undo_iolock;
 231	}
 232
 233	if (lock_flags & XFS_ILOCK_EXCL) {
 234		if (!mrtryupdate(&ip->i_lock))
 235			goto out_undo_mmaplock;
 236	} else if (lock_flags & XFS_ILOCK_SHARED) {
 237		if (!mrtryaccess(&ip->i_lock))
 238			goto out_undo_mmaplock;
 239	}
 240	return 1;
 241
 242out_undo_mmaplock:
 243	if (lock_flags & XFS_MMAPLOCK_EXCL)
 244		mrunlock_excl(&ip->i_mmaplock);
 245	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 246		mrunlock_shared(&ip->i_mmaplock);
 247out_undo_iolock:
 248	if (lock_flags & XFS_IOLOCK_EXCL)
 249		mrunlock_excl(&ip->i_iolock);
 250	else if (lock_flags & XFS_IOLOCK_SHARED)
 251		mrunlock_shared(&ip->i_iolock);
 252out:
 253	return 0;
 254}
 255
 256/*
 257 * xfs_iunlock() is used to drop the inode locks acquired with
 258 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 260 * that we know which locks to drop.
 
 261 *
 262 * ip -- the inode being unlocked
 263 * lock_flags -- this parameter indicates the inode's locks to be
 264 *       to be unlocked.  See the comment for xfs_ilock() for a list
 265 *	 of valid values for this parameter.
 266 *
 
 
 267 */
 268void
 269xfs_iunlock(
 270	xfs_inode_t		*ip,
 271	uint			lock_flags)
 272{
 273	/*
 274	 * You can't set both SHARED and EXCL for the same lock,
 275	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 276	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 277	 */
 278	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 279	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 280	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 281	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 282	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 283	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 284	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 285	ASSERT(lock_flags != 0);
 286
 287	if (lock_flags & XFS_IOLOCK_EXCL)
 288		mrunlock_excl(&ip->i_iolock);
 289	else if (lock_flags & XFS_IOLOCK_SHARED)
 290		mrunlock_shared(&ip->i_iolock);
 291
 292	if (lock_flags & XFS_MMAPLOCK_EXCL)
 293		mrunlock_excl(&ip->i_mmaplock);
 294	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 295		mrunlock_shared(&ip->i_mmaplock);
 296
 297	if (lock_flags & XFS_ILOCK_EXCL)
 298		mrunlock_excl(&ip->i_lock);
 299	else if (lock_flags & XFS_ILOCK_SHARED)
 300		mrunlock_shared(&ip->i_lock);
 301
 302	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 303}
 304
 305/*
 306 * give up write locks.  the i/o lock cannot be held nested
 307 * if it is being demoted.
 308 */
 309void
 310xfs_ilock_demote(
 311	xfs_inode_t		*ip,
 312	uint			lock_flags)
 313{
 314	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 315	ASSERT((lock_flags &
 316		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 317
 318	if (lock_flags & XFS_ILOCK_EXCL)
 319		mrdemote(&ip->i_lock);
 320	if (lock_flags & XFS_MMAPLOCK_EXCL)
 321		mrdemote(&ip->i_mmaplock);
 322	if (lock_flags & XFS_IOLOCK_EXCL)
 323		mrdemote(&ip->i_iolock);
 324
 325	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 326}
 327
 328#if defined(DEBUG) || defined(XFS_WARN)
 329int
 330xfs_isilocked(
 331	xfs_inode_t		*ip,
 332	uint			lock_flags)
 
 
 
 
 
 333{
 334	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 335		if (!(lock_flags & XFS_ILOCK_SHARED))
 336			return !!ip->i_lock.mr_writer;
 337		return rwsem_is_locked(&ip->i_lock.mr_lock);
 338	}
 339
 340	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 341		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 342			return !!ip->i_mmaplock.mr_writer;
 343		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 344	}
 345
 346	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 347		if (!(lock_flags & XFS_IOLOCK_SHARED))
 348			return !!ip->i_iolock.mr_writer;
 349		return rwsem_is_locked(&ip->i_iolock.mr_lock);
 350	}
 351
 352	ASSERT(0);
 
 
 353	return 0;
 354}
 355#endif
 356
 357#ifdef DEBUG
 358int xfs_locked_n;
 359int xfs_small_retries;
 360int xfs_middle_retries;
 361int xfs_lots_retries;
 362int xfs_lock_delays;
 363#endif
 364
 365/*
 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 369 * errors and warnings.
 370 */
 371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 372static bool
 373xfs_lockdep_subclass_ok(
 374	int subclass)
 375{
 376	return subclass < MAX_LOCKDEP_SUBCLASSES;
 377}
 378#else
 379#define xfs_lockdep_subclass_ok(subclass)	(true)
 380#endif
 381
 382/*
 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 384 * value. This can be called for any type of inode lock combination, including
 385 * parent locking. Care must be taken to ensure we don't overrun the subclass
 386 * storage fields in the class mask we build.
 387 */
 388static inline int
 389xfs_lock_inumorder(int lock_mode, int subclass)
 
 
 
 
 
 
 390{
 391	int	class = 0;
 392
 393	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 394			      XFS_ILOCK_RTSUM)));
 395	ASSERT(xfs_lockdep_subclass_ok(subclass));
 396
 397	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 398		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 399		ASSERT(xfs_lockdep_subclass_ok(subclass +
 400						XFS_IOLOCK_PARENT_VAL));
 401		class += subclass << XFS_IOLOCK_SHIFT;
 402		if (lock_mode & XFS_IOLOCK_PARENT)
 403			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
 404	}
 405
 406	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 407		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 408		class += subclass << XFS_MMAPLOCK_SHIFT;
 409	}
 410
 411	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 412		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 413		class += subclass << XFS_ILOCK_SHIFT;
 
 
 414	}
 415
 416	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 
 
 417}
 418
 419/*
 420 * The following routine will lock n inodes in exclusive mode.  We assume the
 421 * caller calls us with the inodes in i_ino order.
 422 *
 423 * We need to detect deadlock where an inode that we lock is in the AIL and we
 424 * start waiting for another inode that is locked by a thread in a long running
 425 * transaction (such as truncate). This can result in deadlock since the long
 426 * running trans might need to wait for the inode we just locked in order to
 427 * push the tail and free space in the log.
 428 *
 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 431 * lock more than one at a time, lockdep will report false positives saying we
 432 * have violated locking orders.
 433 */
 434void
 435xfs_lock_inodes(
 436	xfs_inode_t	**ips,
 437	int		inodes,
 438	uint		lock_mode)
 439{
 440	int		attempts = 0, i, j, try_lock;
 441	xfs_log_item_t	*lp;
 442
 443	/*
 444	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 445	 * support an arbitrary depth of locking here, but absolute limits on
 446	 * inodes depend on the the type of locking and the limits placed by
 447	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 448	 * the asserts.
 449	 */
 450	ASSERT(ips && inodes >= 2 && inodes <= 5);
 451	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 452			    XFS_ILOCK_EXCL));
 453	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 454			      XFS_ILOCK_SHARED)));
 455	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
 456		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
 457	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462	if (lock_mode & XFS_IOLOCK_EXCL) {
 463		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466
 467	try_lock = 0;
 468	i = 0;
 469again:
 470	for (; i < inodes; i++) {
 471		ASSERT(ips[i]);
 
 
 
 
 
 
 
 
 472
 473		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 474			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475
 476		/*
 477		 * If try_lock is not set yet, make sure all locked inodes are
 478		 * not in the AIL.  If any are, set try_lock to be used later.
 479		 */
 480		if (!try_lock) {
 481			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482				lp = (xfs_log_item_t *)ips[j]->i_itemp;
 483				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 484					try_lock++;
 
 485			}
 486		}
 487
 488		/*
 489		 * If any of the previous locks we have locked is in the AIL,
 490		 * we must TRY to get the second and subsequent locks. If
 491		 * we can't get any, we must release all we have
 492		 * and try again.
 493		 */
 494		if (!try_lock) {
 495			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496			continue;
 
 
 
 
 497		}
 
 498
 499		/* try_lock means we have an inode locked that is in the AIL. */
 500		ASSERT(i != 0);
 501		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502			continue;
 
 
 
 
 
 503
 504		/*
 505		 * Unlock all previous guys and try again.  xfs_iunlock will try
 506		 * to push the tail if the inode is in the AIL.
 507		 */
 508		attempts++;
 509		for (j = i - 1; j >= 0; j--) {
 510			/*
 511			 * Check to see if we've already unlocked this one.  Not
 512			 * the first one going back, and the inode ptr is the
 513			 * same.
 514			 */
 515			if (j != (i - 1) && ips[j] == ips[j + 1])
 516				continue;
 517
 518			xfs_iunlock(ips[j], lock_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 519		}
 520
 521		if ((attempts % 5) == 0) {
 522			delay(1); /* Don't just spin the CPU */
 523#ifdef DEBUG
 524			xfs_lock_delays++;
 525#endif
 526		}
 527		i = 0;
 528		try_lock = 0;
 529		goto again;
 
 
 530	}
 531
 532#ifdef DEBUG
 533	if (attempts) {
 534		if (attempts < 5) xfs_small_retries++;
 535		else if (attempts < 100) xfs_middle_retries++;
 536		else xfs_lots_retries++;
 537	} else {
 538		xfs_locked_n++;
 539	}
 540#endif
 541}
 542
 543/*
 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 546 * lock more than one at a time, lockdep will report false positives saying we
 547 * have violated locking orders.
 548 */
 549void
 550xfs_lock_two_inodes(
 551	xfs_inode_t		*ip0,
 552	xfs_inode_t		*ip1,
 553	uint			lock_mode)
 554{
 555	xfs_inode_t		*temp;
 556	int			attempts = 0;
 557	xfs_log_item_t		*lp;
 558
 559	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 560		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 561		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
 563		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564
 565	ASSERT(ip0->i_ino != ip1->i_ino);
 566
 567	if (ip0->i_ino > ip1->i_ino) {
 568		temp = ip0;
 569		ip0 = ip1;
 570		ip1 = temp;
 571	}
 572
 573 again:
 574	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 575
 576	/*
 577	 * If the first lock we have locked is in the AIL, we must TRY to get
 578	 * the second lock. If we can't get it, we must release the first one
 579	 * and try again.
 580	 */
 581	lp = (xfs_log_item_t *)ip0->i_itemp;
 582	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 583		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 584			xfs_iunlock(ip0, lock_mode);
 585			if ((++attempts % 5) == 0)
 586				delay(1); /* Don't just spin the CPU */
 587			goto again;
 588		}
 589	} else {
 590		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 591	}
 
 
 592}
 593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595void
 596__xfs_iflock(
 597	struct xfs_inode	*ip)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598{
 599	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601
 602	do {
 603		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 604		if (xfs_isiflocked(ip))
 605			io_schedule();
 606	} while (!xfs_iflock_nowait(ip));
 607
 608	finish_wait(wq, &wait.wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613	__uint16_t		di_flags,
 614	uint64_t		di_flags2,
 615	bool			has_attr)
 616{
 617	uint			flags = 0;
 618
 619	if (di_flags & XFS_DIFLAG_ANY) {
 620		if (di_flags & XFS_DIFLAG_REALTIME)
 621			flags |= FS_XFLAG_REALTIME;
 622		if (di_flags & XFS_DIFLAG_PREALLOC)
 623			flags |= FS_XFLAG_PREALLOC;
 624		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 625			flags |= FS_XFLAG_IMMUTABLE;
 626		if (di_flags & XFS_DIFLAG_APPEND)
 627			flags |= FS_XFLAG_APPEND;
 628		if (di_flags & XFS_DIFLAG_SYNC)
 629			flags |= FS_XFLAG_SYNC;
 630		if (di_flags & XFS_DIFLAG_NOATIME)
 631			flags |= FS_XFLAG_NOATIME;
 632		if (di_flags & XFS_DIFLAG_NODUMP)
 633			flags |= FS_XFLAG_NODUMP;
 634		if (di_flags & XFS_DIFLAG_RTINHERIT)
 635			flags |= FS_XFLAG_RTINHERIT;
 636		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 637			flags |= FS_XFLAG_PROJINHERIT;
 638		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 639			flags |= FS_XFLAG_NOSYMLINKS;
 640		if (di_flags & XFS_DIFLAG_EXTSIZE)
 641			flags |= FS_XFLAG_EXTSIZE;
 642		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 643			flags |= FS_XFLAG_EXTSZINHERIT;
 644		if (di_flags & XFS_DIFLAG_NODEFRAG)
 645			flags |= FS_XFLAG_NODEFRAG;
 646		if (di_flags & XFS_DIFLAG_FILESTREAM)
 647			flags |= FS_XFLAG_FILESTREAM;
 648	}
 649
 650	if (di_flags2 & XFS_DIFLAG2_ANY) {
 651		if (di_flags2 & XFS_DIFLAG2_DAX)
 652			flags |= FS_XFLAG_DAX;
 653	}
 654
 655	if (has_attr)
 656		flags |= FS_XFLAG_HASATTR;
 657
 658	return flags;
 659}
 660
 661uint
 662xfs_ip2xflags(
 663	struct xfs_inode	*ip)
 664{
 665	struct xfs_icdinode	*dic = &ip->i_d;
 666
 667	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 
 668}
 669
 670uint
 671xfs_dic2xflags(
 672	struct xfs_dinode	*dip)
 673{
 674	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
 675				be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
 676}
 677
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686	xfs_inode_t		*dp,
 687	struct xfs_name		*name,
 688	xfs_inode_t		**ipp,
 689	struct xfs_name		*ci_name)
 690{
 691	xfs_ino_t		inum;
 692	int			error;
 693
 694	trace_xfs_lookup(dp, name);
 695
 696	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697		return -EIO;
 698
 699	xfs_ilock(dp, XFS_IOLOCK_SHARED);
 700	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 
 
 701	if (error)
 702		goto out_unlock;
 703
 704	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 
 
 
 705	if (error)
 706		goto out_free_name;
 
 707
 708	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 709	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710
 711out_free_name:
 712	if (ci_name)
 713		kmem_free(ci_name->name);
 714out_unlock:
 715	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 716	*ipp = NULL;
 
 
 
 
 
 
 
 
 
 717	return error;
 718}
 719
 720/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721 * Allocate an inode on disk and return a copy of its in-core version.
 722 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 723 * appropriately within the inode.  The uid and gid for the inode are
 724 * set according to the contents of the given cred structure.
 725 *
 726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 727 * has a free inode available, call xfs_iget() to obtain the in-core
 728 * version of the allocated inode.  Finally, fill in the inode and
 729 * log its initial contents.  In this case, ialloc_context would be
 730 * set to NULL.
 731 *
 732 * If xfs_dialloc() does not have an available inode, it will replenish
 733 * its supply by doing an allocation. Since we can only do one
 734 * allocation within a transaction without deadlocks, we must commit
 735 * the current transaction before returning the inode itself.
 736 * In this case, therefore, we will set ialloc_context and return.
 737 * The caller should then commit the current transaction, start a new
 738 * transaction, and call xfs_ialloc() again to actually get the inode.
 739 *
 740 * To ensure that some other process does not grab the inode that
 741 * was allocated during the first call to xfs_ialloc(), this routine
 742 * also returns the [locked] bp pointing to the head of the freelist
 743 * as ialloc_context.  The caller should hold this buffer across
 744 * the commit and pass it back into this routine on the second call.
 745 *
 746 * If we are allocating quota inodes, we do not have a parent inode
 747 * to attach to or associate with (i.e. pip == NULL) because they
 748 * are not linked into the directory structure - they are attached
 749 * directly to the superblock - and so have no parent.
 750 */
 751int
 752xfs_ialloc(
 753	xfs_trans_t	*tp,
 754	xfs_inode_t	*pip,
 755	umode_t		mode,
 756	xfs_nlink_t	nlink,
 757	xfs_dev_t	rdev,
 758	prid_t		prid,
 759	int		okalloc,
 760	xfs_buf_t	**ialloc_context,
 
 761	xfs_inode_t	**ipp)
 762{
 763	struct xfs_mount *mp = tp->t_mountp;
 764	xfs_ino_t	ino;
 765	xfs_inode_t	*ip;
 766	uint		flags;
 767	int		error;
 768	struct timespec	tv;
 769	struct inode	*inode;
 770
 771	/*
 772	 * Call the space management code to pick
 773	 * the on-disk inode to be allocated.
 774	 */
 775	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 776			    ialloc_context, &ino);
 777	if (error)
 778		return error;
 779	if (*ialloc_context || ino == NULLFSINO) {
 780		*ipp = NULL;
 781		return 0;
 782	}
 783	ASSERT(*ialloc_context == NULL);
 784
 785	/*
 786	 * Get the in-core inode with the lock held exclusively.
 787	 * This is because we're setting fields here we need
 788	 * to prevent others from looking at until we're done.
 789	 */
 790	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 791			 XFS_ILOCK_EXCL, &ip);
 792	if (error)
 793		return error;
 794	ASSERT(ip != NULL);
 795	inode = VFS_I(ip);
 
 
 
 
 
 
 
 
 796
 797	/*
 798	 * We always convert v1 inodes to v2 now - we only support filesystems
 799	 * with >= v2 inode capability, so there is no reason for ever leaving
 800	 * an inode in v1 format.
 
 801	 */
 802	if (ip->i_d.di_version == 1)
 
 803		ip->i_d.di_version = 2;
 
 
 
 
 
 804
 805	inode->i_mode = mode;
 806	set_nlink(inode, nlink);
 807	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 808	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 809	xfs_set_projid(ip, prid);
 810
 811	if (pip && XFS_INHERIT_GID(pip)) {
 812		ip->i_d.di_gid = pip->i_d.di_gid;
 813		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 814			inode->i_mode |= S_ISGID;
 
 815	}
 816
 817	/*
 818	 * If the group ID of the new file does not match the effective group
 819	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 820	 * (and only if the irix_sgid_inherit compatibility variable is set).
 821	 */
 822	if ((irix_sgid_inherit) &&
 823	    (inode->i_mode & S_ISGID) &&
 824	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 825		inode->i_mode &= ~S_ISGID;
 
 826
 827	ip->i_d.di_size = 0;
 828	ip->i_d.di_nextents = 0;
 829	ASSERT(ip->i_d.di_nblocks == 0);
 830
 831	tv = current_fs_time(mp->m_super);
 832	inode->i_mtime = tv;
 833	inode->i_atime = tv;
 834	inode->i_ctime = tv;
 
 835
 
 
 
 836	ip->i_d.di_extsize = 0;
 837	ip->i_d.di_dmevmask = 0;
 838	ip->i_d.di_dmstate = 0;
 839	ip->i_d.di_flags = 0;
 840
 841	if (ip->i_d.di_version == 3) {
 842		inode->i_version = 1;
 843		ip->i_d.di_flags2 = 0;
 844		ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
 845		ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
 846	}
 847
 848
 849	flags = XFS_ILOG_CORE;
 850	switch (mode & S_IFMT) {
 851	case S_IFIFO:
 852	case S_IFCHR:
 853	case S_IFBLK:
 854	case S_IFSOCK:
 855		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 856		ip->i_df.if_u2.if_rdev = rdev;
 857		ip->i_df.if_flags = 0;
 858		flags |= XFS_ILOG_DEV;
 859		break;
 860	case S_IFREG:
 
 
 
 
 
 
 
 861	case S_IFDIR:
 862		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 863			uint64_t	di_flags2 = 0;
 864			uint		di_flags = 0;
 865
 866			if (S_ISDIR(mode)) {
 867				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 868					di_flags |= XFS_DIFLAG_RTINHERIT;
 869				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 870					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 871					ip->i_d.di_extsize = pip->i_d.di_extsize;
 872				}
 873				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 874					di_flags |= XFS_DIFLAG_PROJINHERIT;
 875			} else if (S_ISREG(mode)) {
 876				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 877					di_flags |= XFS_DIFLAG_REALTIME;
 878				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 879					di_flags |= XFS_DIFLAG_EXTSIZE;
 880					ip->i_d.di_extsize = pip->i_d.di_extsize;
 881				}
 882			}
 883			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 884			    xfs_inherit_noatime)
 885				di_flags |= XFS_DIFLAG_NOATIME;
 886			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 887			    xfs_inherit_nodump)
 888				di_flags |= XFS_DIFLAG_NODUMP;
 889			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 890			    xfs_inherit_sync)
 891				di_flags |= XFS_DIFLAG_SYNC;
 892			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 893			    xfs_inherit_nosymlinks)
 894				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 
 
 895			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 896			    xfs_inherit_nodefrag)
 897				di_flags |= XFS_DIFLAG_NODEFRAG;
 898			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 899				di_flags |= XFS_DIFLAG_FILESTREAM;
 900			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 901				di_flags2 |= XFS_DIFLAG2_DAX;
 902
 903			ip->i_d.di_flags |= di_flags;
 904			ip->i_d.di_flags2 |= di_flags2;
 905		}
 906		/* FALLTHROUGH */
 907	case S_IFLNK:
 908		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 909		ip->i_df.if_flags = XFS_IFEXTENTS;
 910		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 911		ip->i_df.if_u1.if_extents = NULL;
 912		break;
 913	default:
 914		ASSERT(0);
 915	}
 916	/*
 917	 * Attribute fork settings for new inode.
 918	 */
 919	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 920	ip->i_d.di_anextents = 0;
 921
 922	/*
 923	 * Log the new values stuffed into the inode.
 924	 */
 925	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 926	xfs_trans_log_inode(tp, ip, flags);
 927
 928	/* now that we have an i_mode we can setup the inode structure */
 929	xfs_setup_inode(ip);
 930
 931	*ipp = ip;
 932	return 0;
 933}
 934
 935/*
 936 * Allocates a new inode from disk and return a pointer to the
 937 * incore copy. This routine will internally commit the current
 938 * transaction and allocate a new one if the Space Manager needed
 939 * to do an allocation to replenish the inode free-list.
 940 *
 941 * This routine is designed to be called from xfs_create and
 942 * xfs_create_dir.
 943 *
 944 */
 945int
 946xfs_dir_ialloc(
 947	xfs_trans_t	**tpp,		/* input: current transaction;
 948					   output: may be a new transaction. */
 949	xfs_inode_t	*dp,		/* directory within whose allocate
 950					   the inode. */
 951	umode_t		mode,
 952	xfs_nlink_t	nlink,
 953	xfs_dev_t	rdev,
 954	prid_t		prid,		/* project id */
 955	int		okalloc,	/* ok to allocate new space */
 956	xfs_inode_t	**ipp,		/* pointer to inode; it will be
 957					   locked. */
 958	int		*committed)
 959
 960{
 961	xfs_trans_t	*tp;
 962	xfs_inode_t	*ip;
 963	xfs_buf_t	*ialloc_context = NULL;
 964	int		code;
 965	void		*dqinfo;
 966	uint		tflags;
 967
 968	tp = *tpp;
 969	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 970
 971	/*
 972	 * xfs_ialloc will return a pointer to an incore inode if
 973	 * the Space Manager has an available inode on the free
 974	 * list. Otherwise, it will do an allocation and replenish
 975	 * the freelist.  Since we can only do one allocation per
 976	 * transaction without deadlocks, we will need to commit the
 977	 * current transaction and start a new one.  We will then
 978	 * need to call xfs_ialloc again to get the inode.
 979	 *
 980	 * If xfs_ialloc did an allocation to replenish the freelist,
 981	 * it returns the bp containing the head of the freelist as
 982	 * ialloc_context. We will hold a lock on it across the
 983	 * transaction commit so that no other process can steal
 984	 * the inode(s) that we've just allocated.
 985	 */
 986	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 987			  &ialloc_context, &ip);
 988
 989	/*
 990	 * Return an error if we were unable to allocate a new inode.
 991	 * This should only happen if we run out of space on disk or
 992	 * encounter a disk error.
 993	 */
 994	if (code) {
 995		*ipp = NULL;
 996		return code;
 997	}
 998	if (!ialloc_context && !ip) {
 999		*ipp = NULL;
1000		return -ENOSPC;
1001	}
1002
1003	/*
1004	 * If the AGI buffer is non-NULL, then we were unable to get an
1005	 * inode in one operation.  We need to commit the current
1006	 * transaction and call xfs_ialloc() again.  It is guaranteed
1007	 * to succeed the second time.
1008	 */
1009	if (ialloc_context) {
1010		/*
1011		 * Normally, xfs_trans_commit releases all the locks.
1012		 * We call bhold to hang on to the ialloc_context across
1013		 * the commit.  Holding this buffer prevents any other
1014		 * processes from doing any allocations in this
1015		 * allocation group.
1016		 */
1017		xfs_trans_bhold(tp, ialloc_context);
1018
1019		/*
1020		 * We want the quota changes to be associated with the next
1021		 * transaction, NOT this one. So, detach the dqinfo from this
1022		 * and attach it to the next transaction.
1023		 */
1024		dqinfo = NULL;
1025		tflags = 0;
1026		if (tp->t_dqinfo) {
1027			dqinfo = (void *)tp->t_dqinfo;
1028			tp->t_dqinfo = NULL;
1029			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1031		}
1032
1033		code = xfs_trans_roll(&tp, 0);
1034		if (committed != NULL)
1035			*committed = 1;
1036
1037		/*
1038		 * Re-attach the quota info that we detached from prev trx.
1039		 */
1040		if (dqinfo) {
1041			tp->t_dqinfo = dqinfo;
1042			tp->t_flags |= tflags;
1043		}
1044
1045		if (code) {
1046			xfs_buf_relse(ialloc_context);
1047			*tpp = tp;
1048			*ipp = NULL;
1049			return code;
1050		}
1051		xfs_trans_bjoin(tp, ialloc_context);
1052
1053		/*
1054		 * Call ialloc again. Since we've locked out all
1055		 * other allocations in this allocation group,
1056		 * this call should always succeed.
1057		 */
1058		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059				  okalloc, &ialloc_context, &ip);
1060
1061		/*
1062		 * If we get an error at this point, return to the caller
1063		 * so that the current transaction can be aborted.
1064		 */
1065		if (code) {
1066			*tpp = tp;
1067			*ipp = NULL;
1068			return code;
1069		}
1070		ASSERT(!ialloc_context && ip);
1071
1072	} else {
1073		if (committed != NULL)
1074			*committed = 0;
1075	}
1076
1077	*ipp = ip;
1078	*tpp = tp;
1079
1080	return 0;
1081}
1082
1083/*
1084 * Decrement the link count on an inode & log the change.  If this causes the
1085 * link count to go to zero, move the inode to AGI unlinked list so that it can
1086 * be freed when the last active reference goes away via xfs_inactive().
1087 */
1088int				/* error */
1089xfs_droplink(
1090	xfs_trans_t *tp,
1091	xfs_inode_t *ip)
1092{
1093	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1094
1095	drop_nlink(VFS_I(ip));
1096	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097
1098	if (VFS_I(ip)->i_nlink)
1099		return 0;
1100
1101	return xfs_iunlink(tp, ip);
1102}
1103
1104/*
1105 * Increment the link count on an inode & log the change.
1106 */
1107int
1108xfs_bumplink(
1109	xfs_trans_t *tp,
1110	xfs_inode_t *ip)
1111{
1112	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1113
1114	ASSERT(ip->i_d.di_version > 1);
1115	inc_nlink(VFS_I(ip));
1116	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117	return 0;
1118}
1119
1120int
1121xfs_create(
1122	xfs_inode_t		*dp,
1123	struct xfs_name		*name,
1124	umode_t			mode,
1125	xfs_dev_t		rdev,
1126	xfs_inode_t		**ipp)
1127{
1128	int			is_dir = S_ISDIR(mode);
1129	struct xfs_mount	*mp = dp->i_mount;
1130	struct xfs_inode	*ip = NULL;
1131	struct xfs_trans	*tp = NULL;
1132	int			error;
1133	xfs_bmap_free_t		free_list;
1134	xfs_fsblock_t		first_block;
1135	bool                    unlock_dp_on_error = false;
1136	prid_t			prid;
1137	struct xfs_dquot	*udqp = NULL;
1138	struct xfs_dquot	*gdqp = NULL;
1139	struct xfs_dquot	*pdqp = NULL;
1140	struct xfs_trans_res	*tres;
1141	uint			resblks;
1142
1143	trace_xfs_create(dp, name);
1144
1145	if (XFS_FORCED_SHUTDOWN(mp))
1146		return -EIO;
1147
1148	prid = xfs_get_initial_prid(dp);
1149
1150	/*
1151	 * Make sure that we have allocated dquot(s) on disk.
1152	 */
1153	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154					xfs_kgid_to_gid(current_fsgid()), prid,
1155					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156					&udqp, &gdqp, &pdqp);
1157	if (error)
1158		return error;
1159
1160	if (is_dir) {
1161		rdev = 0;
1162		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163		tres = &M_RES(mp)->tr_mkdir;
1164		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1165	} else {
1166		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1167		tres = &M_RES(mp)->tr_create;
1168		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1169	}
1170
1171	/*
1172	 * Initially assume that the file does not exist and
1173	 * reserve the resources for that case.  If that is not
1174	 * the case we'll drop the one we have and get a more
1175	 * appropriate transaction later.
1176	 */
1177	error = xfs_trans_reserve(tp, tres, resblks, 0);
1178	if (error == -ENOSPC) {
1179		/* flush outstanding delalloc blocks and retry */
1180		xfs_flush_inodes(mp);
1181		error = xfs_trans_reserve(tp, tres, resblks, 0);
1182	}
1183	if (error == -ENOSPC) {
1184		/* No space at all so try a "no-allocation" reservation */
1185		resblks = 0;
1186		error = xfs_trans_reserve(tp, tres, 0, 0);
1187	}
1188	if (error)
1189		goto out_trans_cancel;
1190
1191
1192	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1193		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1194	unlock_dp_on_error = true;
1195
1196	xfs_bmap_init(&free_list, &first_block);
1197
1198	/*
1199	 * Reserve disk quota and the inode.
1200	 */
1201	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1202						pdqp, resblks, 1, 0);
1203	if (error)
1204		goto out_trans_cancel;
1205
1206	if (!resblks) {
1207		error = xfs_dir_canenter(tp, dp, name);
1208		if (error)
1209			goto out_trans_cancel;
1210	}
1211
1212	/*
1213	 * A newly created regular or special file just has one directory
1214	 * entry pointing to them, but a directory also the "." entry
1215	 * pointing to itself.
1216	 */
1217	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1218			       prid, resblks > 0, &ip, NULL);
1219	if (error)
1220		goto out_trans_cancel;
1221
1222	/*
1223	 * Now we join the directory inode to the transaction.  We do not do it
1224	 * earlier because xfs_dir_ialloc might commit the previous transaction
1225	 * (and release all the locks).  An error from here on will result in
1226	 * the transaction cancel unlocking dp so don't do it explicitly in the
1227	 * error path.
1228	 */
1229	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1230	unlock_dp_on_error = false;
1231
1232	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1233					&first_block, &free_list, resblks ?
1234					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1235	if (error) {
1236		ASSERT(error != -ENOSPC);
1237		goto out_trans_cancel;
1238	}
1239	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1240	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1241
1242	if (is_dir) {
1243		error = xfs_dir_init(tp, ip, dp);
1244		if (error)
1245			goto out_bmap_cancel;
1246
1247		error = xfs_bumplink(tp, dp);
1248		if (error)
1249			goto out_bmap_cancel;
1250	}
1251
1252	/*
1253	 * If this is a synchronous mount, make sure that the
1254	 * create transaction goes to disk before returning to
1255	 * the user.
1256	 */
1257	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1258		xfs_trans_set_sync(tp);
1259
1260	/*
1261	 * Attach the dquot(s) to the inodes and modify them incore.
1262	 * These ids of the inode couldn't have changed since the new
1263	 * inode has been locked ever since it was created.
1264	 */
1265	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1266
1267	error = xfs_bmap_finish(&tp, &free_list, NULL);
1268	if (error)
1269		goto out_bmap_cancel;
1270
1271	error = xfs_trans_commit(tp);
1272	if (error)
1273		goto out_release_inode;
1274
1275	xfs_qm_dqrele(udqp);
1276	xfs_qm_dqrele(gdqp);
1277	xfs_qm_dqrele(pdqp);
1278
1279	*ipp = ip;
1280	return 0;
1281
1282 out_bmap_cancel:
1283	xfs_bmap_cancel(&free_list);
1284 out_trans_cancel:
1285	xfs_trans_cancel(tp);
1286 out_release_inode:
1287	/*
1288	 * Wait until after the current transaction is aborted to finish the
1289	 * setup of the inode and release the inode.  This prevents recursive
1290	 * transactions and deadlocks from xfs_inactive.
1291	 */
1292	if (ip) {
1293		xfs_finish_inode_setup(ip);
1294		IRELE(ip);
1295	}
1296
1297	xfs_qm_dqrele(udqp);
1298	xfs_qm_dqrele(gdqp);
1299	xfs_qm_dqrele(pdqp);
1300
1301	if (unlock_dp_on_error)
1302		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1303	return error;
1304}
1305
1306int
1307xfs_create_tmpfile(
1308	struct xfs_inode	*dp,
1309	struct dentry		*dentry,
1310	umode_t			mode,
1311	struct xfs_inode	**ipp)
1312{
1313	struct xfs_mount	*mp = dp->i_mount;
1314	struct xfs_inode	*ip = NULL;
1315	struct xfs_trans	*tp = NULL;
1316	int			error;
1317	prid_t                  prid;
1318	struct xfs_dquot	*udqp = NULL;
1319	struct xfs_dquot	*gdqp = NULL;
1320	struct xfs_dquot	*pdqp = NULL;
1321	struct xfs_trans_res	*tres;
1322	uint			resblks;
1323
1324	if (XFS_FORCED_SHUTDOWN(mp))
1325		return -EIO;
1326
1327	prid = xfs_get_initial_prid(dp);
1328
1329	/*
1330	 * Make sure that we have allocated dquot(s) on disk.
1331	 */
1332	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1333				xfs_kgid_to_gid(current_fsgid()), prid,
1334				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1335				&udqp, &gdqp, &pdqp);
1336	if (error)
1337		return error;
1338
1339	resblks = XFS_IALLOC_SPACE_RES(mp);
1340	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1341
1342	tres = &M_RES(mp)->tr_create_tmpfile;
1343	error = xfs_trans_reserve(tp, tres, resblks, 0);
1344	if (error == -ENOSPC) {
1345		/* No space at all so try a "no-allocation" reservation */
1346		resblks = 0;
1347		error = xfs_trans_reserve(tp, tres, 0, 0);
1348	}
1349	if (error)
1350		goto out_trans_cancel;
1351
1352	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1353						pdqp, resblks, 1, 0);
1354	if (error)
1355		goto out_trans_cancel;
1356
1357	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1358				prid, resblks > 0, &ip, NULL);
1359	if (error)
1360		goto out_trans_cancel;
1361
1362	if (mp->m_flags & XFS_MOUNT_WSYNC)
1363		xfs_trans_set_sync(tp);
1364
1365	/*
1366	 * Attach the dquot(s) to the inodes and modify them incore.
1367	 * These ids of the inode couldn't have changed since the new
1368	 * inode has been locked ever since it was created.
1369	 */
1370	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1371
1372	error = xfs_iunlink(tp, ip);
1373	if (error)
1374		goto out_trans_cancel;
1375
1376	error = xfs_trans_commit(tp);
1377	if (error)
1378		goto out_release_inode;
1379
1380	xfs_qm_dqrele(udqp);
1381	xfs_qm_dqrele(gdqp);
1382	xfs_qm_dqrele(pdqp);
1383
1384	*ipp = ip;
1385	return 0;
1386
1387 out_trans_cancel:
1388	xfs_trans_cancel(tp);
1389 out_release_inode:
1390	/*
1391	 * Wait until after the current transaction is aborted to finish the
1392	 * setup of the inode and release the inode.  This prevents recursive
1393	 * transactions and deadlocks from xfs_inactive.
1394	 */
1395	if (ip) {
1396		xfs_finish_inode_setup(ip);
1397		IRELE(ip);
1398	}
1399
1400	xfs_qm_dqrele(udqp);
1401	xfs_qm_dqrele(gdqp);
1402	xfs_qm_dqrele(pdqp);
1403
1404	return error;
1405}
1406
1407int
1408xfs_link(
1409	xfs_inode_t		*tdp,
1410	xfs_inode_t		*sip,
1411	struct xfs_name		*target_name)
1412{
1413	xfs_mount_t		*mp = tdp->i_mount;
1414	xfs_trans_t		*tp;
1415	int			error;
1416	xfs_bmap_free_t         free_list;
1417	xfs_fsblock_t           first_block;
1418	int			resblks;
1419
1420	trace_xfs_link(tdp, target_name);
1421
1422	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1423
1424	if (XFS_FORCED_SHUTDOWN(mp))
1425		return -EIO;
1426
1427	error = xfs_qm_dqattach(sip, 0);
1428	if (error)
1429		goto std_return;
1430
1431	error = xfs_qm_dqattach(tdp, 0);
1432	if (error)
1433		goto std_return;
1434
1435	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1436	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1437	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1438	if (error == -ENOSPC) {
1439		resblks = 0;
1440		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1441	}
1442	if (error)
1443		goto error_return;
1444
1445	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1446	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1447
1448	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1449	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1450
1451	/*
1452	 * If we are using project inheritance, we only allow hard link
1453	 * creation in our tree when the project IDs are the same; else
1454	 * the tree quota mechanism could be circumvented.
1455	 */
1456	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1457		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1458		error = -EXDEV;
1459		goto error_return;
1460	}
1461
1462	if (!resblks) {
1463		error = xfs_dir_canenter(tp, tdp, target_name);
1464		if (error)
1465			goto error_return;
1466	}
1467
1468	xfs_bmap_init(&free_list, &first_block);
1469
1470	/*
1471	 * Handle initial link state of O_TMPFILE inode
1472	 */
1473	if (VFS_I(sip)->i_nlink == 0) {
1474		error = xfs_iunlink_remove(tp, sip);
1475		if (error)
1476			goto error_return;
1477	}
1478
1479	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1480					&first_block, &free_list, resblks);
1481	if (error)
1482		goto error_return;
1483	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1484	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1485
1486	error = xfs_bumplink(tp, sip);
1487	if (error)
1488		goto error_return;
1489
1490	/*
1491	 * If this is a synchronous mount, make sure that the
1492	 * link transaction goes to disk before returning to
1493	 * the user.
1494	 */
1495	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1496		xfs_trans_set_sync(tp);
1497
1498	error = xfs_bmap_finish(&tp, &free_list, NULL);
1499	if (error) {
1500		xfs_bmap_cancel(&free_list);
1501		goto error_return;
1502	}
1503
1504	return xfs_trans_commit(tp);
1505
1506 error_return:
1507	xfs_trans_cancel(tp);
1508 std_return:
1509	return error;
1510}
1511
1512/*
1513 * Free up the underlying blocks past new_size.  The new size must be smaller
1514 * than the current size.  This routine can be used both for the attribute and
1515 * data fork, and does not modify the inode size, which is left to the caller.
1516 *
1517 * The transaction passed to this routine must have made a permanent log
1518 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1519 * given transaction and start new ones, so make sure everything involved in
1520 * the transaction is tidy before calling here.  Some transaction will be
1521 * returned to the caller to be committed.  The incoming transaction must
1522 * already include the inode, and both inode locks must be held exclusively.
1523 * The inode must also be "held" within the transaction.  On return the inode
1524 * will be "held" within the returned transaction.  This routine does NOT
1525 * require any disk space to be reserved for it within the transaction.
1526 *
1527 * If we get an error, we must return with the inode locked and linked into the
1528 * current transaction. This keeps things simple for the higher level code,
1529 * because it always knows that the inode is locked and held in the transaction
1530 * that returns to it whether errors occur or not.  We don't mark the inode
1531 * dirty on error so that transactions can be easily aborted if possible.
1532 */
1533int
1534xfs_itruncate_extents(
1535	struct xfs_trans	**tpp,
1536	struct xfs_inode	*ip,
1537	int			whichfork,
1538	xfs_fsize_t		new_size)
1539{
1540	struct xfs_mount	*mp = ip->i_mount;
1541	struct xfs_trans	*tp = *tpp;
 
1542	xfs_bmap_free_t		free_list;
1543	xfs_fsblock_t		first_block;
1544	xfs_fileoff_t		first_unmap_block;
1545	xfs_fileoff_t		last_block;
1546	xfs_filblks_t		unmap_len;
 
1547	int			error = 0;
1548	int			done = 0;
1549
1550	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1551	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1552	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1553	ASSERT(new_size <= XFS_ISIZE(ip));
1554	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1555	ASSERT(ip->i_itemp != NULL);
1556	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1557	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1558
1559	trace_xfs_itruncate_extents_start(ip, new_size);
1560
1561	/*
1562	 * Since it is possible for space to become allocated beyond
1563	 * the end of the file (in a crash where the space is allocated
1564	 * but the inode size is not yet updated), simply remove any
1565	 * blocks which show up between the new EOF and the maximum
1566	 * possible file size.  If the first block to be removed is
1567	 * beyond the maximum file size (ie it is the same as last_block),
1568	 * then there is nothing to do.
1569	 */
1570	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1571	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1572	if (first_unmap_block == last_block)
1573		return 0;
1574
1575	ASSERT(first_unmap_block < last_block);
1576	unmap_len = last_block - first_unmap_block + 1;
1577	while (!done) {
1578		xfs_bmap_init(&free_list, &first_block);
1579		error = xfs_bunmapi(tp, ip,
1580				    first_unmap_block, unmap_len,
1581				    xfs_bmapi_aflag(whichfork),
1582				    XFS_ITRUNC_MAX_EXTENTS,
1583				    &first_block, &free_list,
1584				    &done);
1585		if (error)
1586			goto out_bmap_cancel;
1587
1588		/*
1589		 * Duplicate the transaction that has the permanent
1590		 * reservation and commit the old transaction.
1591		 */
1592		error = xfs_bmap_finish(&tp, &free_list, ip);
 
 
1593		if (error)
1594			goto out_bmap_cancel;
1595
1596		error = xfs_trans_roll(&tp, ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597		if (error)
1598			goto out;
1599	}
1600
1601	/*
1602	 * Always re-log the inode so that our permanent transaction can keep
1603	 * on rolling it forward in the log.
1604	 */
1605	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1606
1607	trace_xfs_itruncate_extents_end(ip, new_size);
1608
1609out:
1610	*tpp = tp;
1611	return error;
1612out_bmap_cancel:
1613	/*
1614	 * If the bunmapi call encounters an error, return to the caller where
1615	 * the transaction can be properly aborted.  We just need to make sure
1616	 * we're not holding any resources that we were not when we came in.
1617	 */
1618	xfs_bmap_cancel(&free_list);
1619	goto out;
1620}
1621
1622int
1623xfs_release(
1624	xfs_inode_t	*ip)
1625{
1626	xfs_mount_t	*mp = ip->i_mount;
1627	int		error;
1628
1629	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1630		return 0;
1631
1632	/* If this is a read-only mount, don't do this (would generate I/O) */
1633	if (mp->m_flags & XFS_MOUNT_RDONLY)
1634		return 0;
1635
1636	if (!XFS_FORCED_SHUTDOWN(mp)) {
1637		int truncated;
1638
1639		/*
1640		 * If we previously truncated this file and removed old data
1641		 * in the process, we want to initiate "early" writeout on
1642		 * the last close.  This is an attempt to combat the notorious
1643		 * NULL files problem which is particularly noticeable from a
1644		 * truncate down, buffered (re-)write (delalloc), followed by
1645		 * a crash.  What we are effectively doing here is
1646		 * significantly reducing the time window where we'd otherwise
1647		 * be exposed to that problem.
1648		 */
1649		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1650		if (truncated) {
1651			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1652			if (ip->i_delayed_blks > 0) {
1653				error = filemap_flush(VFS_I(ip)->i_mapping);
1654				if (error)
1655					return error;
1656			}
1657		}
1658	}
1659
1660	if (VFS_I(ip)->i_nlink == 0)
1661		return 0;
1662
1663	if (xfs_can_free_eofblocks(ip, false)) {
1664
1665		/*
1666		 * If we can't get the iolock just skip truncating the blocks
1667		 * past EOF because we could deadlock with the mmap_sem
1668		 * otherwise.  We'll get another chance to drop them once the
1669		 * last reference to the inode is dropped, so we'll never leak
1670		 * blocks permanently.
1671		 *
1672		 * Further, check if the inode is being opened, written and
1673		 * closed frequently and we have delayed allocation blocks
1674		 * outstanding (e.g. streaming writes from the NFS server),
1675		 * truncating the blocks past EOF will cause fragmentation to
1676		 * occur.
1677		 *
1678		 * In this case don't do the truncation, either, but we have to
1679		 * be careful how we detect this case. Blocks beyond EOF show
1680		 * up as i_delayed_blks even when the inode is clean, so we
1681		 * need to truncate them away first before checking for a dirty
1682		 * release. Hence on the first dirty close we will still remove
1683		 * the speculative allocation, but after that we will leave it
1684		 * in place.
1685		 */
1686		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1687			return 0;
1688
1689		error = xfs_free_eofblocks(mp, ip, true);
1690		if (error && error != -EAGAIN)
1691			return error;
1692
1693		/* delalloc blocks after truncation means it really is dirty */
1694		if (ip->i_delayed_blks)
1695			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1696	}
1697	return 0;
1698}
1699
1700/*
1701 * xfs_inactive_truncate
1702 *
1703 * Called to perform a truncate when an inode becomes unlinked.
1704 */
1705STATIC int
1706xfs_inactive_truncate(
1707	struct xfs_inode *ip)
1708{
1709	struct xfs_mount	*mp = ip->i_mount;
1710	struct xfs_trans	*tp;
1711	int			error;
1712
1713	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1714	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1715	if (error) {
1716		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1717		xfs_trans_cancel(tp);
1718		return error;
1719	}
1720
1721	xfs_ilock(ip, XFS_ILOCK_EXCL);
1722	xfs_trans_ijoin(tp, ip, 0);
1723
1724	/*
1725	 * Log the inode size first to prevent stale data exposure in the event
1726	 * of a system crash before the truncate completes. See the related
1727	 * comment in xfs_setattr_size() for details.
1728	 */
1729	ip->i_d.di_size = 0;
1730	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1731
1732	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1733	if (error)
1734		goto error_trans_cancel;
1735
1736	ASSERT(ip->i_d.di_nextents == 0);
1737
1738	error = xfs_trans_commit(tp);
1739	if (error)
1740		goto error_unlock;
1741
1742	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1743	return 0;
1744
1745error_trans_cancel:
1746	xfs_trans_cancel(tp);
1747error_unlock:
1748	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1749	return error;
1750}
1751
1752/*
1753 * xfs_inactive_ifree()
1754 *
1755 * Perform the inode free when an inode is unlinked.
1756 */
1757STATIC int
1758xfs_inactive_ifree(
1759	struct xfs_inode *ip)
1760{
1761	xfs_bmap_free_t		free_list;
1762	xfs_fsblock_t		first_block;
1763	struct xfs_mount	*mp = ip->i_mount;
1764	struct xfs_trans	*tp;
1765	int			error;
1766
1767	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1768
1769	/*
1770	 * The ifree transaction might need to allocate blocks for record
1771	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1772	 * allow ifree to dip into the reserved block pool if necessary.
1773	 *
1774	 * Freeing large sets of inodes generally means freeing inode chunks,
1775	 * directory and file data blocks, so this should be relatively safe.
1776	 * Only under severe circumstances should it be possible to free enough
1777	 * inodes to exhaust the reserve block pool via finobt expansion while
1778	 * at the same time not creating free space in the filesystem.
1779	 *
1780	 * Send a warning if the reservation does happen to fail, as the inode
1781	 * now remains allocated and sits on the unlinked list until the fs is
1782	 * repaired.
1783	 */
1784	tp->t_flags |= XFS_TRANS_RESERVE;
1785	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1786				  XFS_IFREE_SPACE_RES(mp), 0);
1787	if (error) {
1788		if (error == -ENOSPC) {
1789			xfs_warn_ratelimited(mp,
1790			"Failed to remove inode(s) from unlinked list. "
1791			"Please free space, unmount and run xfs_repair.");
1792		} else {
1793			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1794		}
1795		xfs_trans_cancel(tp);
1796		return error;
1797	}
1798
1799	xfs_ilock(ip, XFS_ILOCK_EXCL);
1800	xfs_trans_ijoin(tp, ip, 0);
1801
1802	xfs_bmap_init(&free_list, &first_block);
1803	error = xfs_ifree(tp, ip, &free_list);
1804	if (error) {
1805		/*
1806		 * If we fail to free the inode, shut down.  The cancel
1807		 * might do that, we need to make sure.  Otherwise the
1808		 * inode might be lost for a long time or forever.
1809		 */
1810		if (!XFS_FORCED_SHUTDOWN(mp)) {
1811			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1812				__func__, error);
1813			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1814		}
1815		xfs_trans_cancel(tp);
1816		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1817		return error;
1818	}
1819
1820	/*
1821	 * Credit the quota account(s). The inode is gone.
1822	 */
1823	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1824
1825	/*
1826	 * Just ignore errors at this point.  There is nothing we can do except
1827	 * to try to keep going. Make sure it's not a silent error.
1828	 */
1829	error = xfs_bmap_finish(&tp, &free_list, NULL);
1830	if (error) {
1831		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1832			__func__, error);
1833		xfs_bmap_cancel(&free_list);
1834	}
1835	error = xfs_trans_commit(tp);
1836	if (error)
1837		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1838			__func__, error);
1839
1840	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1841	return 0;
1842}
1843
1844/*
1845 * xfs_inactive
1846 *
1847 * This is called when the vnode reference count for the vnode
1848 * goes to zero.  If the file has been unlinked, then it must
1849 * now be truncated.  Also, we clear all of the read-ahead state
1850 * kept for the inode here since the file is now closed.
1851 */
1852void
1853xfs_inactive(
1854	xfs_inode_t	*ip)
1855{
1856	struct xfs_mount	*mp;
1857	int			error;
1858	int			truncate = 0;
1859
1860	/*
1861	 * If the inode is already free, then there can be nothing
1862	 * to clean up here.
1863	 */
1864	if (VFS_I(ip)->i_mode == 0) {
1865		ASSERT(ip->i_df.if_real_bytes == 0);
1866		ASSERT(ip->i_df.if_broot_bytes == 0);
1867		return;
1868	}
1869
1870	mp = ip->i_mount;
1871
1872	/* If this is a read-only mount, don't do this (would generate I/O) */
1873	if (mp->m_flags & XFS_MOUNT_RDONLY)
1874		return;
1875
1876	if (VFS_I(ip)->i_nlink != 0) {
1877		/*
1878		 * force is true because we are evicting an inode from the
1879		 * cache. Post-eof blocks must be freed, lest we end up with
1880		 * broken free space accounting.
1881		 */
1882		if (xfs_can_free_eofblocks(ip, true))
1883			xfs_free_eofblocks(mp, ip, false);
1884
1885		return;
1886	}
1887
1888	if (S_ISREG(VFS_I(ip)->i_mode) &&
1889	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1890	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1891		truncate = 1;
1892
1893	error = xfs_qm_dqattach(ip, 0);
1894	if (error)
1895		return;
1896
1897	if (S_ISLNK(VFS_I(ip)->i_mode))
1898		error = xfs_inactive_symlink(ip);
1899	else if (truncate)
1900		error = xfs_inactive_truncate(ip);
1901	if (error)
1902		return;
1903
1904	/*
1905	 * If there are attributes associated with the file then blow them away
1906	 * now.  The code calls a routine that recursively deconstructs the
1907	 * attribute fork. If also blows away the in-core attribute fork.
1908	 */
1909	if (XFS_IFORK_Q(ip)) {
1910		error = xfs_attr_inactive(ip);
1911		if (error)
1912			return;
1913	}
1914
1915	ASSERT(!ip->i_afp);
1916	ASSERT(ip->i_d.di_anextents == 0);
1917	ASSERT(ip->i_d.di_forkoff == 0);
1918
1919	/*
1920	 * Free the inode.
1921	 */
1922	error = xfs_inactive_ifree(ip);
1923	if (error)
1924		return;
1925
1926	/*
1927	 * Release the dquots held by inode, if any.
1928	 */
1929	xfs_qm_dqdetach(ip);
1930}
1931
1932/*
1933 * This is called when the inode's link count goes to 0 or we are creating a
1934 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1935 * set to true as the link count is dropped to zero by the VFS after we've
1936 * created the file successfully, so we have to add it to the unlinked list
1937 * while the link count is non-zero.
1938 *
1939 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1940 * list when the inode is freed.
1941 */
1942STATIC int
1943xfs_iunlink(
1944	struct xfs_trans *tp,
1945	struct xfs_inode *ip)
1946{
1947	xfs_mount_t	*mp = tp->t_mountp;
1948	xfs_agi_t	*agi;
1949	xfs_dinode_t	*dip;
1950	xfs_buf_t	*agibp;
1951	xfs_buf_t	*ibp;
1952	xfs_agino_t	agino;
1953	short		bucket_index;
1954	int		offset;
1955	int		error;
1956
1957	ASSERT(VFS_I(ip)->i_mode != 0);
 
 
 
1958
1959	/*
1960	 * Get the agi buffer first.  It ensures lock ordering
1961	 * on the list.
1962	 */
1963	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1964	if (error)
1965		return error;
1966	agi = XFS_BUF_TO_AGI(agibp);
1967
1968	/*
1969	 * Get the index into the agi hash table for the
1970	 * list this inode will go on.
1971	 */
1972	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1973	ASSERT(agino != 0);
1974	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1975	ASSERT(agi->agi_unlinked[bucket_index]);
1976	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1977
1978	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1979		/*
1980		 * There is already another inode in the bucket we need
1981		 * to add ourselves to.  Add us at the front of the list.
1982		 * Here we put the head pointer into our next pointer,
1983		 * and then we fall through to point the head at us.
1984		 */
1985		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1986				       0, 0);
1987		if (error)
1988			return error;
1989
1990		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1991		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1992		offset = ip->i_imap.im_boffset +
1993			offsetof(xfs_dinode_t, di_next_unlinked);
1994
1995		/* need to recalc the inode CRC if appropriate */
1996		xfs_dinode_calc_crc(mp, dip);
1997
1998		xfs_trans_inode_buf(tp, ibp);
1999		xfs_trans_log_buf(tp, ibp, offset,
2000				  (offset + sizeof(xfs_agino_t) - 1));
2001		xfs_inobp_check(mp, ibp);
2002	}
2003
2004	/*
2005	 * Point the bucket head pointer at the inode being inserted.
2006	 */
2007	ASSERT(agino != 0);
2008	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2009	offset = offsetof(xfs_agi_t, agi_unlinked) +
2010		(sizeof(xfs_agino_t) * bucket_index);
2011	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2012	xfs_trans_log_buf(tp, agibp, offset,
2013			  (offset + sizeof(xfs_agino_t) - 1));
2014	return 0;
2015}
2016
2017/*
2018 * Pull the on-disk inode from the AGI unlinked list.
2019 */
2020STATIC int
2021xfs_iunlink_remove(
2022	xfs_trans_t	*tp,
2023	xfs_inode_t	*ip)
2024{
2025	xfs_ino_t	next_ino;
2026	xfs_mount_t	*mp;
2027	xfs_agi_t	*agi;
2028	xfs_dinode_t	*dip;
2029	xfs_buf_t	*agibp;
2030	xfs_buf_t	*ibp;
2031	xfs_agnumber_t	agno;
2032	xfs_agino_t	agino;
2033	xfs_agino_t	next_agino;
2034	xfs_buf_t	*last_ibp;
2035	xfs_dinode_t	*last_dip = NULL;
2036	short		bucket_index;
2037	int		offset, last_offset = 0;
2038	int		error;
2039
2040	mp = tp->t_mountp;
2041	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2042
2043	/*
2044	 * Get the agi buffer first.  It ensures lock ordering
2045	 * on the list.
2046	 */
2047	error = xfs_read_agi(mp, tp, agno, &agibp);
2048	if (error)
2049		return error;
2050
2051	agi = XFS_BUF_TO_AGI(agibp);
2052
2053	/*
2054	 * Get the index into the agi hash table for the
2055	 * list this inode will go on.
2056	 */
2057	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058	ASSERT(agino != 0);
2059	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2060	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2061	ASSERT(agi->agi_unlinked[bucket_index]);
2062
2063	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2064		/*
2065		 * We're at the head of the list.  Get the inode's on-disk
2066		 * buffer to see if there is anyone after us on the list.
2067		 * Only modify our next pointer if it is not already NULLAGINO.
2068		 * This saves us the overhead of dealing with the buffer when
2069		 * there is no need to change it.
 
2070		 */
2071		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2072				       0, 0);
2073		if (error) {
2074			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2075				__func__, error);
2076			return error;
2077		}
2078		next_agino = be32_to_cpu(dip->di_next_unlinked);
2079		ASSERT(next_agino != 0);
2080		if (next_agino != NULLAGINO) {
2081			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2082			offset = ip->i_imap.im_boffset +
2083				offsetof(xfs_dinode_t, di_next_unlinked);
2084
2085			/* need to recalc the inode CRC if appropriate */
2086			xfs_dinode_calc_crc(mp, dip);
2087
2088			xfs_trans_inode_buf(tp, ibp);
2089			xfs_trans_log_buf(tp, ibp, offset,
2090					  (offset + sizeof(xfs_agino_t) - 1));
2091			xfs_inobp_check(mp, ibp);
2092		} else {
2093			xfs_trans_brelse(tp, ibp);
2094		}
2095		/*
2096		 * Point the bucket head pointer at the next inode.
2097		 */
2098		ASSERT(next_agino != 0);
2099		ASSERT(next_agino != agino);
2100		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2101		offset = offsetof(xfs_agi_t, agi_unlinked) +
2102			(sizeof(xfs_agino_t) * bucket_index);
2103		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2104		xfs_trans_log_buf(tp, agibp, offset,
2105				  (offset + sizeof(xfs_agino_t) - 1));
2106	} else {
2107		/*
2108		 * We need to search the list for the inode being freed.
2109		 */
2110		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2111		last_ibp = NULL;
2112		while (next_agino != agino) {
2113			struct xfs_imap	imap;
2114
2115			if (last_ibp)
 
 
 
2116				xfs_trans_brelse(tp, last_ibp);
2117
2118			imap.im_blkno = 0;
2119			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2120
2121			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2122			if (error) {
2123				xfs_warn(mp,
2124	"%s: xfs_imap returned error %d.",
2125					 __func__, error);
2126				return error;
2127			}
2128
2129			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2130					       &last_ibp, 0, 0);
2131			if (error) {
2132				xfs_warn(mp,
2133	"%s: xfs_imap_to_bp returned error %d.",
2134					__func__, error);
2135				return error;
2136			}
2137
2138			last_offset = imap.im_boffset;
2139			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2140			ASSERT(next_agino != NULLAGINO);
2141			ASSERT(next_agino != 0);
2142		}
2143
2144		/*
2145		 * Now last_ibp points to the buffer previous to us on the
2146		 * unlinked list.  Pull us from the list.
2147		 */
2148		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2149				       0, 0);
2150		if (error) {
2151			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2152				__func__, error);
2153			return error;
2154		}
2155		next_agino = be32_to_cpu(dip->di_next_unlinked);
2156		ASSERT(next_agino != 0);
2157		ASSERT(next_agino != agino);
2158		if (next_agino != NULLAGINO) {
2159			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2160			offset = ip->i_imap.im_boffset +
2161				offsetof(xfs_dinode_t, di_next_unlinked);
2162
2163			/* need to recalc the inode CRC if appropriate */
2164			xfs_dinode_calc_crc(mp, dip);
2165
2166			xfs_trans_inode_buf(tp, ibp);
2167			xfs_trans_log_buf(tp, ibp, offset,
2168					  (offset + sizeof(xfs_agino_t) - 1));
2169			xfs_inobp_check(mp, ibp);
2170		} else {
2171			xfs_trans_brelse(tp, ibp);
2172		}
2173		/*
2174		 * Point the previous inode on the list to the next inode.
2175		 */
2176		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2177		ASSERT(next_agino != 0);
2178		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2179
2180		/* need to recalc the inode CRC if appropriate */
2181		xfs_dinode_calc_crc(mp, last_dip);
2182
2183		xfs_trans_inode_buf(tp, last_ibp);
2184		xfs_trans_log_buf(tp, last_ibp, offset,
2185				  (offset + sizeof(xfs_agino_t) - 1));
2186		xfs_inobp_check(mp, last_ibp);
2187	}
2188	return 0;
2189}
2190
2191/*
2192 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2193 * inodes that are in memory - they all must be marked stale and attached to
2194 * the cluster buffer.
2195 */
2196STATIC int
2197xfs_ifree_cluster(
2198	xfs_inode_t		*free_ip,
2199	xfs_trans_t		*tp,
2200	struct xfs_icluster	*xic)
2201{
2202	xfs_mount_t		*mp = free_ip->i_mount;
2203	int			blks_per_cluster;
2204	int			inodes_per_cluster;
2205	int			nbufs;
 
2206	int			i, j;
2207	int			ioffset;
2208	xfs_daddr_t		blkno;
2209	xfs_buf_t		*bp;
2210	xfs_inode_t		*ip;
2211	xfs_inode_log_item_t	*iip;
2212	xfs_log_item_t		*lip;
2213	struct xfs_perag	*pag;
2214	xfs_ino_t		inum;
2215
2216	inum = xic->first_ino;
2217	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2218	blks_per_cluster = xfs_icluster_size_fsb(mp);
2219	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2220	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2221
2222	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2223		/*
2224		 * The allocation bitmap tells us which inodes of the chunk were
2225		 * physically allocated. Skip the cluster if an inode falls into
2226		 * a sparse region.
2227		 */
2228		ioffset = inum - xic->first_ino;
2229		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2230			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2231			continue;
2232		}
2233
 
2234		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2235					 XFS_INO_TO_AGBNO(mp, inum));
2236
2237		/*
2238		 * We obtain and lock the backing buffer first in the process
2239		 * here, as we have to ensure that any dirty inode that we
2240		 * can't get the flush lock on is attached to the buffer.
2241		 * If we scan the in-memory inodes first, then buffer IO can
2242		 * complete before we get a lock on it, and hence we may fail
2243		 * to mark all the active inodes on the buffer stale.
2244		 */
2245		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246					mp->m_bsize * blks_per_cluster,
2247					XBF_UNMAPPED);
2248
2249		if (!bp)
2250			return -ENOMEM;
2251
2252		/*
2253		 * This buffer may not have been correctly initialised as we
2254		 * didn't read it from disk. That's not important because we are
2255		 * only using to mark the buffer as stale in the log, and to
2256		 * attach stale cached inodes on it. That means it will never be
2257		 * dispatched for IO. If it is, we want to know about it, and we
2258		 * want it to fail. We can acheive this by adding a write
2259		 * verifier to the buffer.
2260		 */
2261		 bp->b_ops = &xfs_inode_buf_ops;
2262
2263		/*
2264		 * Walk the inodes already attached to the buffer and mark them
2265		 * stale. These will all have the flush locks held, so an
2266		 * in-memory inode walk can't lock them. By marking them all
2267		 * stale first, we will not attempt to lock them in the loop
2268		 * below as the XFS_ISTALE flag will be set.
2269		 */
2270		lip = bp->b_fspriv;
2271		while (lip) {
2272			if (lip->li_type == XFS_LI_INODE) {
2273				iip = (xfs_inode_log_item_t *)lip;
2274				ASSERT(iip->ili_logged == 1);
2275				lip->li_cb = xfs_istale_done;
2276				xfs_trans_ail_copy_lsn(mp->m_ail,
2277							&iip->ili_flush_lsn,
2278							&iip->ili_item.li_lsn);
2279				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2280			}
2281			lip = lip->li_bio_list;
2282		}
2283
2284
2285		/*
2286		 * For each inode in memory attempt to add it to the inode
2287		 * buffer and set it up for being staled on buffer IO
2288		 * completion.  This is safe as we've locked out tail pushing
2289		 * and flushing by locking the buffer.
2290		 *
2291		 * We have already marked every inode that was part of a
2292		 * transaction stale above, which means there is no point in
2293		 * even trying to lock them.
2294		 */
2295		for (i = 0; i < inodes_per_cluster; i++) {
2296retry:
2297			rcu_read_lock();
2298			ip = radix_tree_lookup(&pag->pag_ici_root,
2299					XFS_INO_TO_AGINO(mp, (inum + i)));
2300
2301			/* Inode not in memory, nothing to do */
2302			if (!ip) {
2303				rcu_read_unlock();
2304				continue;
2305			}
2306
2307			/*
2308			 * because this is an RCU protected lookup, we could
2309			 * find a recently freed or even reallocated inode
2310			 * during the lookup. We need to check under the
2311			 * i_flags_lock for a valid inode here. Skip it if it
2312			 * is not valid, the wrong inode or stale.
2313			 */
2314			spin_lock(&ip->i_flags_lock);
2315			if (ip->i_ino != inum + i ||
2316			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2317				spin_unlock(&ip->i_flags_lock);
2318				rcu_read_unlock();
2319				continue;
2320			}
2321			spin_unlock(&ip->i_flags_lock);
2322
2323			/*
2324			 * Don't try to lock/unlock the current inode, but we
2325			 * _cannot_ skip the other inodes that we did not find
2326			 * in the list attached to the buffer and are not
2327			 * already marked stale. If we can't lock it, back off
2328			 * and retry.
2329			 */
2330			if (ip != free_ip &&
2331			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2332				rcu_read_unlock();
2333				delay(1);
2334				goto retry;
2335			}
2336			rcu_read_unlock();
2337
2338			xfs_iflock(ip);
2339			xfs_iflags_set(ip, XFS_ISTALE);
2340
2341			/*
2342			 * we don't need to attach clean inodes or those only
2343			 * with unlogged changes (which we throw away, anyway).
2344			 */
2345			iip = ip->i_itemp;
2346			if (!iip || xfs_inode_clean(ip)) {
2347				ASSERT(ip != free_ip);
2348				xfs_ifunlock(ip);
2349				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2350				continue;
2351			}
2352
2353			iip->ili_last_fields = iip->ili_fields;
2354			iip->ili_fields = 0;
2355			iip->ili_fsync_fields = 0;
2356			iip->ili_logged = 1;
2357			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2358						&iip->ili_item.li_lsn);
2359
2360			xfs_buf_attach_iodone(bp, xfs_istale_done,
2361						  &iip->ili_item);
2362
2363			if (ip != free_ip)
2364				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365		}
2366
2367		xfs_trans_stale_inode_buf(tp, bp);
2368		xfs_trans_binval(tp, bp);
2369	}
2370
2371	xfs_perag_put(pag);
2372	return 0;
2373}
2374
2375/*
2376 * This is called to return an inode to the inode free list.
2377 * The inode should already be truncated to 0 length and have
2378 * no pages associated with it.  This routine also assumes that
2379 * the inode is already a part of the transaction.
2380 *
2381 * The on-disk copy of the inode will have been added to the list
2382 * of unlinked inodes in the AGI. We need to remove the inode from
2383 * that list atomically with respect to freeing it here.
2384 */
2385int
2386xfs_ifree(
2387	xfs_trans_t	*tp,
2388	xfs_inode_t	*ip,
2389	xfs_bmap_free_t	*flist)
2390{
2391	int			error;
2392	struct xfs_icluster	xic = { 0 };
 
 
 
2393
2394	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2395	ASSERT(VFS_I(ip)->i_nlink == 0);
2396	ASSERT(ip->i_d.di_nextents == 0);
2397	ASSERT(ip->i_d.di_anextents == 0);
2398	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2399	ASSERT(ip->i_d.di_nblocks == 0);
2400
2401	/*
2402	 * Pull the on-disk inode from the AGI unlinked list.
2403	 */
2404	error = xfs_iunlink_remove(tp, ip);
2405	if (error)
2406		return error;
 
2407
2408	error = xfs_difree(tp, ip->i_ino, flist, &xic);
2409	if (error)
2410		return error;
2411
2412	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2413	ip->i_d.di_flags = 0;
2414	ip->i_d.di_dmevmask = 0;
2415	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2416	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2417	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2418	/*
2419	 * Bump the generation count so no one will be confused
2420	 * by reincarnations of this inode.
2421	 */
2422	VFS_I(ip)->i_generation++;
 
2423	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2424
2425	if (xic.deleted)
2426		error = xfs_ifree_cluster(ip, tp, &xic);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2427
2428	return error;
2429}
2430
2431/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432 * This is called to unpin an inode.  The caller must have the inode locked
2433 * in at least shared mode so that the buffer cannot be subsequently pinned
2434 * once someone is waiting for it to be unpinned.
2435 */
2436static void
2437xfs_iunpin(
2438	struct xfs_inode	*ip)
2439{
2440	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2441
2442	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2443
2444	/* Give the log a push to start the unpinning I/O */
2445	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2446
2447}
2448
2449static void
2450__xfs_iunpin_wait(
2451	struct xfs_inode	*ip)
2452{
2453	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2454	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2455
2456	xfs_iunpin(ip);
2457
2458	do {
2459		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2460		if (xfs_ipincount(ip))
2461			io_schedule();
2462	} while (xfs_ipincount(ip));
2463	finish_wait(wq, &wait.wait);
2464}
2465
2466void
2467xfs_iunpin_wait(
2468	struct xfs_inode	*ip)
2469{
2470	if (xfs_ipincount(ip))
2471		__xfs_iunpin_wait(ip);
2472}
2473
2474/*
2475 * Removing an inode from the namespace involves removing the directory entry
2476 * and dropping the link count on the inode. Removing the directory entry can
2477 * result in locking an AGF (directory blocks were freed) and removing a link
2478 * count can result in placing the inode on an unlinked list which results in
2479 * locking an AGI.
2480 *
2481 * The big problem here is that we have an ordering constraint on AGF and AGI
2482 * locking - inode allocation locks the AGI, then can allocate a new extent for
2483 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2484 * removes the inode from the unlinked list, requiring that we lock the AGI
2485 * first, and then freeing the inode can result in an inode chunk being freed
2486 * and hence freeing disk space requiring that we lock an AGF.
2487 *
2488 * Hence the ordering that is imposed by other parts of the code is AGI before
2489 * AGF. This means we cannot remove the directory entry before we drop the inode
2490 * reference count and put it on the unlinked list as this results in a lock
2491 * order of AGF then AGI, and this can deadlock against inode allocation and
2492 * freeing. Therefore we must drop the link counts before we remove the
2493 * directory entry.
2494 *
2495 * This is still safe from a transactional point of view - it is not until we
2496 * get to xfs_bmap_finish() that we have the possibility of multiple
2497 * transactions in this operation. Hence as long as we remove the directory
2498 * entry and drop the link count in the first transaction of the remove
2499 * operation, there are no transactional constraints on the ordering here.
2500 */
2501int
2502xfs_remove(
2503	xfs_inode_t             *dp,
2504	struct xfs_name		*name,
2505	xfs_inode_t		*ip)
2506{
2507	xfs_mount_t		*mp = dp->i_mount;
2508	xfs_trans_t             *tp = NULL;
2509	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2510	int                     error = 0;
2511	xfs_bmap_free_t         free_list;
2512	xfs_fsblock_t           first_block;
2513	uint			resblks;
2514
2515	trace_xfs_remove(dp, name);
2516
2517	if (XFS_FORCED_SHUTDOWN(mp))
2518		return -EIO;
2519
2520	error = xfs_qm_dqattach(dp, 0);
2521	if (error)
2522		goto std_return;
2523
2524	error = xfs_qm_dqattach(ip, 0);
2525	if (error)
2526		goto std_return;
2527
2528	if (is_dir)
2529		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2530	else
2531		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2532
2533	/*
2534	 * We try to get the real space reservation first,
2535	 * allowing for directory btree deletion(s) implying
2536	 * possible bmap insert(s).  If we can't get the space
2537	 * reservation then we use 0 instead, and avoid the bmap
2538	 * btree insert(s) in the directory code by, if the bmap
2539	 * insert tries to happen, instead trimming the LAST
2540	 * block from the directory.
2541	 */
2542	resblks = XFS_REMOVE_SPACE_RES(mp);
2543	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2544	if (error == -ENOSPC) {
2545		resblks = 0;
2546		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2547	}
2548	if (error) {
2549		ASSERT(error != -ENOSPC);
2550		goto out_trans_cancel;
2551	}
2552
2553	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2554	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2555
2556	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2557	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 
2558
2559	/*
2560	 * If we're removing a directory perform some additional validation.
2561	 */
2562	if (is_dir) {
2563		ASSERT(VFS_I(ip)->i_nlink >= 2);
2564		if (VFS_I(ip)->i_nlink != 2) {
2565			error = -ENOTEMPTY;
2566			goto out_trans_cancel;
2567		}
2568		if (!xfs_dir_isempty(ip)) {
2569			error = -ENOTEMPTY;
2570			goto out_trans_cancel;
 
 
 
 
 
 
 
2571		}
2572
2573		/* Drop the link from ip's "..".  */
2574		error = xfs_droplink(tp, dp);
2575		if (error)
2576			goto out_trans_cancel;
2577
2578		/* Drop the "." link from ip to self.  */
2579		error = xfs_droplink(tp, ip);
2580		if (error)
2581			goto out_trans_cancel;
2582	} else {
2583		/*
2584		 * When removing a non-directory we need to log the parent
2585		 * inode here.  For a directory this is done implicitly
2586		 * by the xfs_droplink call for the ".." entry.
2587		 */
2588		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2589	}
2590	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2591
2592	/* Drop the link from dp to ip. */
2593	error = xfs_droplink(tp, ip);
2594	if (error)
2595		goto out_trans_cancel;
2596
2597	xfs_bmap_init(&free_list, &first_block);
2598	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2599					&first_block, &free_list, resblks);
2600	if (error) {
2601		ASSERT(error != -ENOENT);
2602		goto out_bmap_cancel;
2603	}
2604
2605	/*
2606	 * If this is a synchronous mount, make sure that the
2607	 * remove transaction goes to disk before returning to
2608	 * the user.
2609	 */
2610	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2611		xfs_trans_set_sync(tp);
2612
2613	error = xfs_bmap_finish(&tp, &free_list, NULL);
2614	if (error)
2615		goto out_bmap_cancel;
2616
2617	error = xfs_trans_commit(tp);
2618	if (error)
2619		goto std_return;
2620
2621	if (is_dir && xfs_inode_is_filestream(ip))
2622		xfs_filestream_deassociate(ip);
2623
2624	return 0;
2625
2626 out_bmap_cancel:
2627	xfs_bmap_cancel(&free_list);
2628 out_trans_cancel:
2629	xfs_trans_cancel(tp);
2630 std_return:
2631	return error;
2632}
2633
2634/*
2635 * Enter all inodes for a rename transaction into a sorted array.
 
 
 
 
 
 
 
2636 */
2637#define __XFS_SORT_INODES	5
2638STATIC void
2639xfs_sort_for_rename(
2640	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2641	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2642	struct xfs_inode	*ip1,	/* in: inode of old entry */
2643	struct xfs_inode	*ip2,	/* in: inode of new entry */
2644	struct xfs_inode	*wip,	/* in: whiteout inode */
2645	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2646	int			*num_inodes)  /* in/out: inodes in array */
2647{
2648	int			i, j;
2649
2650	ASSERT(*num_inodes == __XFS_SORT_INODES);
2651	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2652
2653	/*
2654	 * i_tab contains a list of pointers to inodes.  We initialize
2655	 * the table here & we'll sort it.  We will then use it to
2656	 * order the acquisition of the inode locks.
2657	 *
2658	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2659	 */
2660	i = 0;
2661	i_tab[i++] = dp1;
2662	i_tab[i++] = dp2;
2663	i_tab[i++] = ip1;
2664	if (ip2)
2665		i_tab[i++] = ip2;
2666	if (wip)
2667		i_tab[i++] = wip;
2668	*num_inodes = i;
2669
2670	/*
2671	 * Sort the elements via bubble sort.  (Remember, there are at
2672	 * most 5 elements to sort, so this is adequate.)
2673	 */
2674	for (i = 0; i < *num_inodes; i++) {
2675		for (j = 1; j < *num_inodes; j++) {
2676			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2677				struct xfs_inode *temp = i_tab[j];
2678				i_tab[j] = i_tab[j-1];
2679				i_tab[j-1] = temp;
2680			}
2681		}
2682	}
2683}
2684
2685static int
2686xfs_finish_rename(
2687	struct xfs_trans	*tp,
2688	struct xfs_bmap_free	*free_list)
2689{
2690	int			error;
 
 
 
 
 
 
 
 
 
 
 
2691
 
 
 
2692	/*
2693	 * If this is a synchronous mount, make sure that the rename transaction
2694	 * goes to disk before returning to the user.
2695	 */
2696	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2697		xfs_trans_set_sync(tp);
2698
2699	error = xfs_bmap_finish(&tp, free_list, NULL);
2700	if (error) {
2701		xfs_bmap_cancel(free_list);
2702		xfs_trans_cancel(tp);
2703		return error;
2704	}
2705
2706	return xfs_trans_commit(tp);
2707}
2708
2709/*
2710 * xfs_cross_rename()
2711 *
2712 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2713 */
2714STATIC int
2715xfs_cross_rename(
2716	struct xfs_trans	*tp,
2717	struct xfs_inode	*dp1,
2718	struct xfs_name		*name1,
2719	struct xfs_inode	*ip1,
2720	struct xfs_inode	*dp2,
2721	struct xfs_name		*name2,
2722	struct xfs_inode	*ip2,
2723	struct xfs_bmap_free	*free_list,
2724	xfs_fsblock_t		*first_block,
2725	int			spaceres)
2726{
2727	int		error = 0;
2728	int		ip1_flags = 0;
2729	int		ip2_flags = 0;
2730	int		dp2_flags = 0;
2731
2732	/* Swap inode number for dirent in first parent */
2733	error = xfs_dir_replace(tp, dp1, name1,
2734				ip2->i_ino,
2735				first_block, free_list, spaceres);
2736	if (error)
2737		goto out_trans_abort;
2738
2739	/* Swap inode number for dirent in second parent */
2740	error = xfs_dir_replace(tp, dp2, name2,
2741				ip1->i_ino,
2742				first_block, free_list, spaceres);
2743	if (error)
2744		goto out_trans_abort;
2745
2746	/*
2747	 * If we're renaming one or more directories across different parents,
2748	 * update the respective ".." entries (and link counts) to match the new
2749	 * parents.
2750	 */
2751	if (dp1 != dp2) {
2752		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2753
2754		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2755			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2756						dp1->i_ino, first_block,
2757						free_list, spaceres);
2758			if (error)
2759				goto out_trans_abort;
2760
2761			/* transfer ip2 ".." reference to dp1 */
2762			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2763				error = xfs_droplink(tp, dp2);
2764				if (error)
2765					goto out_trans_abort;
2766				error = xfs_bumplink(tp, dp1);
2767				if (error)
2768					goto out_trans_abort;
2769			}
2770
2771			/*
2772			 * Although ip1 isn't changed here, userspace needs
2773			 * to be warned about the change, so that applications
2774			 * relying on it (like backup ones), will properly
2775			 * notify the change
2776			 */
2777			ip1_flags |= XFS_ICHGTIME_CHG;
2778			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2779		}
 
2780
2781		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2782			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2783						dp2->i_ino, first_block,
2784						free_list, spaceres);
2785			if (error)
2786				goto out_trans_abort;
2787
2788			/* transfer ip1 ".." reference to dp2 */
2789			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2790				error = xfs_droplink(tp, dp1);
2791				if (error)
2792					goto out_trans_abort;
2793				error = xfs_bumplink(tp, dp2);
2794				if (error)
2795					goto out_trans_abort;
2796			}
2797
2798			/*
2799			 * Although ip2 isn't changed here, userspace needs
2800			 * to be warned about the change, so that applications
2801			 * relying on it (like backup ones), will properly
2802			 * notify the change
2803			 */
2804			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805			ip2_flags |= XFS_ICHGTIME_CHG;
2806		}
2807	}
2808
2809	if (ip1_flags) {
2810		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2811		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2812	}
2813	if (ip2_flags) {
2814		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2815		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2816	}
2817	if (dp2_flags) {
2818		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2819		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2820	}
2821	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2822	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2823	return xfs_finish_rename(tp, free_list);
2824
2825out_trans_abort:
2826	xfs_bmap_cancel(free_list);
2827	xfs_trans_cancel(tp);
2828	return error;
2829}
2830
2831/*
2832 * xfs_rename_alloc_whiteout()
2833 *
2834 * Return a referenced, unlinked, unlocked inode that that can be used as a
2835 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2836 * crash between allocating the inode and linking it into the rename transaction
2837 * recovery will free the inode and we won't leak it.
2838 */
2839static int
2840xfs_rename_alloc_whiteout(
2841	struct xfs_inode	*dp,
2842	struct xfs_inode	**wip)
2843{
2844	struct xfs_inode	*tmpfile;
2845	int			error;
2846
2847	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2848	if (error)
2849		return error;
2850
2851	/*
2852	 * Prepare the tmpfile inode as if it were created through the VFS.
2853	 * Otherwise, the link increment paths will complain about nlink 0->1.
2854	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2855	 * and flag it as linkable.
2856	 */
2857	drop_nlink(VFS_I(tmpfile));
2858	xfs_finish_inode_setup(tmpfile);
2859	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2860
2861	*wip = tmpfile;
2862	return 0;
2863}
2864
2865/*
2866 * xfs_rename
2867 */
2868int
2869xfs_rename(
2870	struct xfs_inode	*src_dp,
2871	struct xfs_name		*src_name,
2872	struct xfs_inode	*src_ip,
2873	struct xfs_inode	*target_dp,
2874	struct xfs_name		*target_name,
2875	struct xfs_inode	*target_ip,
2876	unsigned int		flags)
2877{
2878	struct xfs_mount	*mp = src_dp->i_mount;
2879	struct xfs_trans	*tp;
2880	struct xfs_bmap_free	free_list;
2881	xfs_fsblock_t		first_block;
2882	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2883	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2884	int			num_inodes = __XFS_SORT_INODES;
2885	bool			new_parent = (src_dp != target_dp);
2886	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2887	int			spaceres;
2888	int			error;
2889
2890	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2891
2892	if ((flags & RENAME_EXCHANGE) && !target_ip)
2893		return -EINVAL;
2894
2895	/*
2896	 * If we are doing a whiteout operation, allocate the whiteout inode
2897	 * we will be placing at the target and ensure the type is set
2898	 * appropriately.
2899	 */
2900	if (flags & RENAME_WHITEOUT) {
2901		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2902		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2903		if (error)
2904			return error;
2905
2906		/* setup target dirent info as whiteout */
2907		src_name->type = XFS_DIR3_FT_CHRDEV;
2908	}
2909
2910	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2911				inodes, &num_inodes);
2912
2913	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2914	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2915	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2916	if (error == -ENOSPC) {
2917		spaceres = 0;
2918		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2919	}
2920	if (error)
2921		goto out_trans_cancel;
2922
2923	/*
2924	 * Attach the dquots to the inodes
2925	 */
2926	error = xfs_qm_vop_rename_dqattach(inodes);
2927	if (error)
2928		goto out_trans_cancel;
2929
2930	/*
2931	 * Lock all the participating inodes. Depending upon whether
2932	 * the target_name exists in the target directory, and
2933	 * whether the target directory is the same as the source
2934	 * directory, we can lock from 2 to 4 inodes.
2935	 */
2936	if (!new_parent)
2937		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2938	else
2939		xfs_lock_two_inodes(src_dp, target_dp,
2940				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2941
2942	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2943
2944	/*
2945	 * Join all the inodes to the transaction. From this point on,
2946	 * we can rely on either trans_commit or trans_cancel to unlock
2947	 * them.
2948	 */
2949	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2950	if (new_parent)
2951		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2952	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2953	if (target_ip)
2954		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2955	if (wip)
2956		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2957
2958	/*
2959	 * If we are using project inheritance, we only allow renames
2960	 * into our tree when the project IDs are the same; else the
2961	 * tree quota mechanism would be circumvented.
2962	 */
2963	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2964		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2965		error = -EXDEV;
2966		goto out_trans_cancel;
2967	}
2968
2969	xfs_bmap_init(&free_list, &first_block);
2970
2971	/* RENAME_EXCHANGE is unique from here on. */
2972	if (flags & RENAME_EXCHANGE)
2973		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2974					target_dp, target_name, target_ip,
2975					&free_list, &first_block, spaceres);
2976
2977	/*
2978	 * Set up the target.
2979	 */
2980	if (target_ip == NULL) {
2981		/*
2982		 * If there's no space reservation, check the entry will
2983		 * fit before actually inserting it.
2984		 */
2985		if (!spaceres) {
2986			error = xfs_dir_canenter(tp, target_dp, target_name);
2987			if (error)
2988				goto out_trans_cancel;
2989		}
2990		/*
2991		 * If target does not exist and the rename crosses
2992		 * directories, adjust the target directory link count
2993		 * to account for the ".." reference from the new entry.
2994		 */
2995		error = xfs_dir_createname(tp, target_dp, target_name,
2996						src_ip->i_ino, &first_block,
2997						&free_list, spaceres);
2998		if (error)
2999			goto out_bmap_cancel;
3000
3001		xfs_trans_ichgtime(tp, target_dp,
3002					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3003
3004		if (new_parent && src_is_directory) {
3005			error = xfs_bumplink(tp, target_dp);
3006			if (error)
3007				goto out_bmap_cancel;
3008		}
3009	} else { /* target_ip != NULL */
3010		/*
3011		 * If target exists and it's a directory, check that both
3012		 * target and source are directories and that target can be
3013		 * destroyed, or that neither is a directory.
3014		 */
3015		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3016			/*
3017			 * Make sure target dir is empty.
3018			 */
3019			if (!(xfs_dir_isempty(target_ip)) ||
3020			    (VFS_I(target_ip)->i_nlink > 2)) {
3021				error = -EEXIST;
3022				goto out_trans_cancel;
3023			}
3024		}
 
3025
3026		/*
3027		 * Link the source inode under the target name.
3028		 * If the source inode is a directory and we are moving
3029		 * it across directories, its ".." entry will be
3030		 * inconsistent until we replace that down below.
3031		 *
3032		 * In case there is already an entry with the same
3033		 * name at the destination directory, remove it first.
3034		 */
3035		error = xfs_dir_replace(tp, target_dp, target_name,
3036					src_ip->i_ino,
3037					&first_block, &free_list, spaceres);
3038		if (error)
3039			goto out_bmap_cancel;
3040
3041		xfs_trans_ichgtime(tp, target_dp,
3042					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3043
3044		/*
3045		 * Decrement the link count on the target since the target
3046		 * dir no longer points to it.
3047		 */
3048		error = xfs_droplink(tp, target_ip);
3049		if (error)
3050			goto out_bmap_cancel;
3051
3052		if (src_is_directory) {
3053			/*
3054			 * Drop the link from the old "." entry.
3055			 */
3056			error = xfs_droplink(tp, target_ip);
3057			if (error)
3058				goto out_bmap_cancel;
3059		}
3060	} /* target_ip != NULL */
3061
3062	/*
3063	 * Remove the source.
3064	 */
3065	if (new_parent && src_is_directory) {
3066		/*
3067		 * Rewrite the ".." entry to point to the new
3068		 * directory.
3069		 */
3070		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3071					target_dp->i_ino,
3072					&first_block, &free_list, spaceres);
3073		ASSERT(error != -EEXIST);
3074		if (error)
3075			goto out_bmap_cancel;
3076	}
3077
3078	/*
3079	 * We always want to hit the ctime on the source inode.
3080	 *
3081	 * This isn't strictly required by the standards since the source
3082	 * inode isn't really being changed, but old unix file systems did
3083	 * it and some incremental backup programs won't work without it.
3084	 */
3085	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3086	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3087
3088	/*
3089	 * Adjust the link count on src_dp.  This is necessary when
3090	 * renaming a directory, either within one parent when
3091	 * the target existed, or across two parent directories.
3092	 */
3093	if (src_is_directory && (new_parent || target_ip != NULL)) {
3094
3095		/*
3096		 * Decrement link count on src_directory since the
3097		 * entry that's moved no longer points to it.
3098		 */
3099		error = xfs_droplink(tp, src_dp);
3100		if (error)
3101			goto out_bmap_cancel;
3102	}
3103
3104	/*
3105	 * For whiteouts, we only need to update the source dirent with the
3106	 * inode number of the whiteout inode rather than removing it
3107	 * altogether.
3108	 */
3109	if (wip) {
3110		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3111					&first_block, &free_list, spaceres);
3112	} else
3113		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3114					   &first_block, &free_list, spaceres);
3115	if (error)
3116		goto out_bmap_cancel;
3117
3118	/*
3119	 * For whiteouts, we need to bump the link count on the whiteout inode.
3120	 * This means that failures all the way up to this point leave the inode
3121	 * on the unlinked list and so cleanup is a simple matter of dropping
3122	 * the remaining reference to it. If we fail here after bumping the link
3123	 * count, we're shutting down the filesystem so we'll never see the
3124	 * intermediate state on disk.
3125	 */
3126	if (wip) {
3127		ASSERT(VFS_I(wip)->i_nlink == 0);
3128		error = xfs_bumplink(tp, wip);
3129		if (error)
3130			goto out_bmap_cancel;
3131		error = xfs_iunlink_remove(tp, wip);
3132		if (error)
3133			goto out_bmap_cancel;
3134		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3135
3136		/*
3137		 * Now we have a real link, clear the "I'm a tmpfile" state
3138		 * flag from the inode so it doesn't accidentally get misused in
3139		 * future.
3140		 */
3141		VFS_I(wip)->i_state &= ~I_LINKABLE;
3142	}
3143
3144	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3145	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3146	if (new_parent)
3147		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3148
3149	error = xfs_finish_rename(tp, &free_list);
3150	if (wip)
3151		IRELE(wip);
3152	return error;
3153
3154out_bmap_cancel:
3155	xfs_bmap_cancel(&free_list);
3156out_trans_cancel:
3157	xfs_trans_cancel(tp);
3158	if (wip)
3159		IRELE(wip);
3160	return error;
3161}
3162
3163STATIC int
3164xfs_iflush_cluster(
3165	xfs_inode_t	*ip,
3166	xfs_buf_t	*bp)
3167{
3168	xfs_mount_t		*mp = ip->i_mount;
3169	struct xfs_perag	*pag;
3170	unsigned long		first_index, mask;
3171	unsigned long		inodes_per_cluster;
3172	int			ilist_size;
3173	xfs_inode_t		**ilist;
3174	xfs_inode_t		*iq;
3175	int			nr_found;
3176	int			clcount = 0;
3177	int			bufwasdelwri;
3178	int			i;
3179
3180	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3181
3182	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3183	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3184	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3185	if (!ilist)
3186		goto out_put;
3187
3188	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3189	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3190	rcu_read_lock();
3191	/* really need a gang lookup range call here */
3192	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3193					first_index, inodes_per_cluster);
3194	if (nr_found == 0)
3195		goto out_free;
3196
3197	for (i = 0; i < nr_found; i++) {
3198		iq = ilist[i];
3199		if (iq == ip)
3200			continue;
3201
3202		/*
3203		 * because this is an RCU protected lookup, we could find a
3204		 * recently freed or even reallocated inode during the lookup.
3205		 * We need to check under the i_flags_lock for a valid inode
3206		 * here. Skip it if it is not valid or the wrong inode.
3207		 */
3208		spin_lock(&ip->i_flags_lock);
3209		if (!ip->i_ino ||
3210		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3211			spin_unlock(&ip->i_flags_lock);
3212			continue;
3213		}
3214		spin_unlock(&ip->i_flags_lock);
3215
3216		/*
3217		 * Do an un-protected check to see if the inode is dirty and
3218		 * is a candidate for flushing.  These checks will be repeated
3219		 * later after the appropriate locks are acquired.
3220		 */
3221		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3222			continue;
3223
3224		/*
3225		 * Try to get locks.  If any are unavailable or it is pinned,
3226		 * then this inode cannot be flushed and is skipped.
3227		 */
3228
3229		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3230			continue;
3231		if (!xfs_iflock_nowait(iq)) {
3232			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3233			continue;
3234		}
3235		if (xfs_ipincount(iq)) {
3236			xfs_ifunlock(iq);
3237			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3238			continue;
3239		}
3240
3241		/*
3242		 * arriving here means that this inode can be flushed.  First
3243		 * re-check that it's dirty before flushing.
3244		 */
3245		if (!xfs_inode_clean(iq)) {
3246			int	error;
3247			error = xfs_iflush_int(iq, bp);
3248			if (error) {
3249				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3250				goto cluster_corrupt_out;
3251			}
3252			clcount++;
3253		} else {
3254			xfs_ifunlock(iq);
3255		}
3256		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3257	}
3258
3259	if (clcount) {
3260		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3261		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3262	}
3263
3264out_free:
3265	rcu_read_unlock();
3266	kmem_free(ilist);
3267out_put:
3268	xfs_perag_put(pag);
3269	return 0;
3270
3271
3272cluster_corrupt_out:
3273	/*
3274	 * Corruption detected in the clustering loop.  Invalidate the
3275	 * inode buffer and shut down the filesystem.
3276	 */
3277	rcu_read_unlock();
3278	/*
3279	 * Clean up the buffer.  If it was delwri, just release it --
3280	 * brelse can handle it with no problems.  If not, shut down the
3281	 * filesystem before releasing the buffer.
3282	 */
3283	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3284	if (bufwasdelwri)
3285		xfs_buf_relse(bp);
3286
3287	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3288
3289	if (!bufwasdelwri) {
3290		/*
3291		 * Just like incore_relse: if we have b_iodone functions,
3292		 * mark the buffer as an error and call them.  Otherwise
3293		 * mark it as stale and brelse.
3294		 */
3295		if (bp->b_iodone) {
3296			bp->b_flags &= ~XBF_DONE;
3297			xfs_buf_stale(bp);
3298			xfs_buf_ioerror(bp, -EIO);
3299			xfs_buf_ioend(bp);
3300		} else {
3301			xfs_buf_stale(bp);
3302			xfs_buf_relse(bp);
3303		}
3304	}
3305
3306	/*
3307	 * Unlocks the flush lock
3308	 */
3309	xfs_iflush_abort(iq, false);
3310	kmem_free(ilist);
3311	xfs_perag_put(pag);
3312	return -EFSCORRUPTED;
3313}
3314
3315/*
3316 * Flush dirty inode metadata into the backing buffer.
3317 *
3318 * The caller must have the inode lock and the inode flush lock held.  The
3319 * inode lock will still be held upon return to the caller, and the inode
3320 * flush lock will be released after the inode has reached the disk.
3321 *
3322 * The caller must write out the buffer returned in *bpp and release it.
3323 */
3324int
3325xfs_iflush(
3326	struct xfs_inode	*ip,
3327	struct xfs_buf		**bpp)
3328{
3329	struct xfs_mount	*mp = ip->i_mount;
3330	struct xfs_buf		*bp;
3331	struct xfs_dinode	*dip;
3332	int			error;
3333
3334	XFS_STATS_INC(mp, xs_iflush_count);
3335
3336	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3337	ASSERT(xfs_isiflocked(ip));
3338	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3339	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3340
3341	*bpp = NULL;
3342
3343	xfs_iunpin_wait(ip);
3344
3345	/*
3346	 * For stale inodes we cannot rely on the backing buffer remaining
3347	 * stale in cache for the remaining life of the stale inode and so
3348	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3349	 * inodes below. We have to check this after ensuring the inode is
3350	 * unpinned so that it is safe to reclaim the stale inode after the
3351	 * flush call.
3352	 */
3353	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3354		xfs_ifunlock(ip);
3355		return 0;
3356	}
3357
3358	/*
3359	 * This may have been unpinned because the filesystem is shutting
3360	 * down forcibly. If that's the case we must not write this inode
3361	 * to disk, because the log record didn't make it to disk.
3362	 *
3363	 * We also have to remove the log item from the AIL in this case,
3364	 * as we wait for an empty AIL as part of the unmount process.
3365	 */
3366	if (XFS_FORCED_SHUTDOWN(mp)) {
3367		error = -EIO;
3368		goto abort_out;
3369	}
3370
3371	/*
3372	 * Get the buffer containing the on-disk inode.
3373	 */
3374	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3375			       0);
3376	if (error || !bp) {
3377		xfs_ifunlock(ip);
3378		return error;
3379	}
3380
3381	/*
3382	 * First flush out the inode that xfs_iflush was called with.
3383	 */
3384	error = xfs_iflush_int(ip, bp);
3385	if (error)
3386		goto corrupt_out;
3387
3388	/*
3389	 * If the buffer is pinned then push on the log now so we won't
3390	 * get stuck waiting in the write for too long.
3391	 */
3392	if (xfs_buf_ispinned(bp))
3393		xfs_log_force(mp, 0);
3394
3395	/*
3396	 * inode clustering:
3397	 * see if other inodes can be gathered into this write
3398	 */
3399	error = xfs_iflush_cluster(ip, bp);
3400	if (error)
3401		goto cluster_corrupt_out;
3402
3403	*bpp = bp;
3404	return 0;
3405
3406corrupt_out:
3407	xfs_buf_relse(bp);
3408	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3409cluster_corrupt_out:
3410	error = -EFSCORRUPTED;
3411abort_out:
3412	/*
3413	 * Unlocks the flush lock
3414	 */
3415	xfs_iflush_abort(ip, false);
3416	return error;
3417}
3418
 
3419STATIC int
3420xfs_iflush_int(
3421	struct xfs_inode	*ip,
3422	struct xfs_buf		*bp)
3423{
3424	struct xfs_inode_log_item *iip = ip->i_itemp;
3425	struct xfs_dinode	*dip;
3426	struct xfs_mount	*mp = ip->i_mount;
 
 
 
3427
3428	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3429	ASSERT(xfs_isiflocked(ip));
3430	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3431	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3432	ASSERT(iip != NULL && iip->ili_fields != 0);
3433	ASSERT(ip->i_d.di_version > 1);
 
3434
3435	/* set *dip = inode's place in the buffer */
3436	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3437
3438	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3439			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3440		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3441			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3442			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3443		goto corrupt_out;
3444	}
3445	if (S_ISREG(VFS_I(ip)->i_mode)) {
 
 
 
 
 
 
 
3446		if (XFS_TEST_ERROR(
3447		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3448		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3449		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3450			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3451				"%s: Bad regular inode %Lu, ptr 0x%p",
3452				__func__, ip->i_ino, ip);
3453			goto corrupt_out;
3454		}
3455	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3456		if (XFS_TEST_ERROR(
3457		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3458		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3459		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3460		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3461			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462				"%s: Bad directory inode %Lu, ptr 0x%p",
3463				__func__, ip->i_ino, ip);
3464			goto corrupt_out;
3465		}
3466	}
3467	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3468				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3469				XFS_RANDOM_IFLUSH_5)) {
3470		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3471			"%s: detected corrupt incore inode %Lu, "
3472			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3473			__func__, ip->i_ino,
3474			ip->i_d.di_nextents + ip->i_d.di_anextents,
3475			ip->i_d.di_nblocks, ip);
3476		goto corrupt_out;
3477	}
3478	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3479				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3480		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3482			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3483		goto corrupt_out;
3484	}
 
 
 
 
 
 
3485
3486	/*
3487	 * Inode item log recovery for v2 inodes are dependent on the
3488	 * di_flushiter count for correct sequencing. We bump the flush
3489	 * iteration count so we can detect flushes which postdate a log record
3490	 * during recovery. This is redundant as we now log every change and
3491	 * hence this can't happen but we need to still do it to ensure
3492	 * backwards compatibility with old kernels that predate logging all
3493	 * inode changes.
3494	 */
3495	if (ip->i_d.di_version < 3)
3496		ip->i_d.di_flushiter++;
3497
3498	/*
3499	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3500	 * copy out the core of the inode, because if the inode is dirty at all
3501	 * the core must be.
3502	 */
3503	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3504
3505	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3506	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3507		ip->i_d.di_flushiter = 0;
3508
3509	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3510	if (XFS_IFORK_Q(ip))
3511		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3512	xfs_inobp_check(mp, bp);
3513
3514	/*
3515	 * We've recorded everything logged in the inode, so we'd like to clear
3516	 * the ili_fields bits so we don't log and flush things unnecessarily.
3517	 * However, we can't stop logging all this information until the data
3518	 * we've copied into the disk buffer is written to disk.  If we did we
3519	 * might overwrite the copy of the inode in the log with all the data
3520	 * after re-logging only part of it, and in the face of a crash we
3521	 * wouldn't have all the data we need to recover.
3522	 *
3523	 * What we do is move the bits to the ili_last_fields field.  When
3524	 * logging the inode, these bits are moved back to the ili_fields field.
3525	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3526	 * know that the information those bits represent is permanently on
3527	 * disk.  As long as the flush completes before the inode is logged
3528	 * again, then both ili_fields and ili_last_fields will be cleared.
3529	 *
3530	 * We can play with the ili_fields bits here, because the inode lock
3531	 * must be held exclusively in order to set bits there and the flush
3532	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3533	 * done routine can tell whether or not to look in the AIL.  Also, store
3534	 * the current LSN of the inode so that we can tell whether the item has
3535	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3536	 * need the AIL lock, because it is a 64 bit value that cannot be read
3537	 * atomically.
3538	 */
3539	iip->ili_last_fields = iip->ili_fields;
3540	iip->ili_fields = 0;
3541	iip->ili_fsync_fields = 0;
3542	iip->ili_logged = 1;
3543
3544	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3545				&iip->ili_item.li_lsn);
3546
3547	/*
3548	 * Attach the function xfs_iflush_done to the inode's
3549	 * buffer.  This will remove the inode from the AIL
3550	 * and unlock the inode's flush lock when the inode is
3551	 * completely written to disk.
3552	 */
3553	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3554
3555	/* generate the checksum. */
3556	xfs_dinode_calc_crc(mp, dip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3557
3558	ASSERT(bp->b_fspriv != NULL);
3559	ASSERT(bp->b_iodone != NULL);
3560	return 0;
3561
3562corrupt_out:
3563	return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3564}
v3.5.6
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_types.h"
  23#include "xfs_log.h"
  24#include "xfs_inum.h"
  25#include "xfs_trans.h"
  26#include "xfs_trans_priv.h"
  27#include "xfs_sb.h"
  28#include "xfs_ag.h"
  29#include "xfs_mount.h"
  30#include "xfs_bmap_btree.h"
  31#include "xfs_alloc_btree.h"
  32#include "xfs_ialloc_btree.h"
 
  33#include "xfs_attr_sf.h"
  34#include "xfs_dinode.h"
  35#include "xfs_inode.h"
 
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
  38#include "xfs_btree.h"
  39#include "xfs_alloc.h"
  40#include "xfs_ialloc.h"
  41#include "xfs_bmap.h"
 
  42#include "xfs_error.h"
  43#include "xfs_utils.h"
  44#include "xfs_quota.h"
  45#include "xfs_filestream.h"
  46#include "xfs_vnodeops.h"
  47#include "xfs_trace.h"
 
 
 
 
 
  48
  49kmem_zone_t *xfs_ifork_zone;
  50kmem_zone_t *xfs_inode_zone;
  51
  52/*
  53 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  54 * freed from a file in a single transaction.
  55 */
  56#define	XFS_ITRUNC_MAX_EXTENTS	2
  57
  58STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  59STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  60STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  61STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  62
  63/*
  64 * helper function to extract extent size hint from inode
  65 */
  66xfs_extlen_t
  67xfs_get_extsz_hint(
  68	struct xfs_inode	*ip)
  69{
  70	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  71		return ip->i_d.di_extsize;
  72	if (XFS_IS_REALTIME_INODE(ip))
  73		return ip->i_mount->m_sb.sb_rextsize;
  74	return 0;
  75}
  76
  77#ifdef DEBUG
  78/*
  79 * Make sure that the extents in the given memory buffer
  80 * are valid.
 
 
 
 
 
 
 
 
 
 
 
  81 */
  82STATIC void
  83xfs_validate_extents(
  84	xfs_ifork_t		*ifp,
  85	int			nrecs,
  86	xfs_exntfmt_t		fmt)
 
 
 
 
 
 
 
 
 
 
 
  87{
  88	xfs_bmbt_irec_t		irec;
  89	xfs_bmbt_rec_host_t	rec;
  90	int			i;
  91
  92	for (i = 0; i < nrecs; i++) {
  93		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  94		rec.l0 = get_unaligned(&ep->l0);
  95		rec.l1 = get_unaligned(&ep->l1);
  96		xfs_bmbt_get_all(&rec, &irec);
  97		if (fmt == XFS_EXTFMT_NOSTATE)
  98			ASSERT(irec.br_state == XFS_EXT_NORM);
  99	}
 100}
 101#else /* DEBUG */
 102#define xfs_validate_extents(ifp, nrecs, fmt)
 103#endif /* DEBUG */
 104
 105/*
 106 * Check that none of the inode's in the buffer have a next
 107 * unlinked field of 0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108 */
 109#if defined(DEBUG)
 110void
 111xfs_inobp_check(
 112	xfs_mount_t	*mp,
 113	xfs_buf_t	*bp)
 114{
 115	int		i;
 116	int		j;
 117	xfs_dinode_t	*dip;
 118
 119	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
 120
 121	for (i = 0; i < j; i++) {
 122		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 123					i * mp->m_sb.sb_inodesize);
 124		if (!dip->di_next_unlinked)  {
 125			xfs_alert(mp,
 126	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
 127				bp);
 128			ASSERT(dip->di_next_unlinked);
 129		}
 130	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131}
 132#endif
 133
 134/*
 135 * Find the buffer associated with the given inode map
 136 * We do basic validation checks on the buffer once it has been
 137 * retrieved from disk.
 
 
 
 
 
 
 
 138 */
 139STATIC int
 140xfs_imap_to_bp(
 141	xfs_mount_t	*mp,
 142	xfs_trans_t	*tp,
 143	struct xfs_imap	*imap,
 144	xfs_buf_t	**bpp,
 145	uint		buf_flags,
 146	uint		iget_flags)
 147{
 148	int		error;
 149	int		i;
 150	int		ni;
 151	xfs_buf_t	*bp;
 152
 153	buf_flags |= XBF_UNMAPPED;
 154	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
 155				   (int)imap->im_len, buf_flags, &bp);
 156	if (error) {
 157		if (error != EAGAIN) {
 158			xfs_warn(mp,
 159				"%s: xfs_trans_read_buf() returned error %d.",
 160				__func__, error);
 161		} else {
 162			ASSERT(buf_flags & XBF_TRYLOCK);
 163		}
 164		return error;
 165	}
 166
 167	/*
 168	 * Validate the magic number and version of every inode in the buffer
 169	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
 
 170	 */
 171#ifdef DEBUG
 172	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
 173#else	/* usual case */
 174	ni = 1;
 175#endif
 
 
 176
 177	for (i = 0; i < ni; i++) {
 178		int		di_ok;
 179		xfs_dinode_t	*dip;
 180
 181		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 182					(i << mp->m_sb.sb_inodelog));
 183		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
 184			    XFS_DINODE_GOOD_VERSION(dip->di_version);
 185		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
 186						XFS_ERRTAG_ITOBP_INOTOBP,
 187						XFS_RANDOM_ITOBP_INOTOBP))) {
 188			if (iget_flags & XFS_IGET_UNTRUSTED) {
 189				xfs_trans_brelse(tp, bp);
 190				return XFS_ERROR(EINVAL);
 191			}
 192			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
 193						XFS_ERRLEVEL_HIGH, mp, dip);
 194#ifdef DEBUG
 195			xfs_emerg(mp,
 196				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
 197				(unsigned long long)imap->im_blkno, i,
 198				be16_to_cpu(dip->di_magic));
 199			ASSERT(0);
 200#endif
 201			xfs_trans_brelse(tp, bp);
 202			return XFS_ERROR(EFSCORRUPTED);
 203		}
 204	}
 205
 206	xfs_inobp_check(mp, bp);
 207	*bpp = bp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208	return 0;
 209}
 210
 211/*
 212 * This routine is called to map an inode number within a file
 213 * system to the buffer containing the on-disk version of the
 214 * inode.  It returns a pointer to the buffer containing the
 215 * on-disk inode in the bpp parameter, and in the dip parameter
 216 * it returns a pointer to the on-disk inode within that buffer.
 217 *
 218 * If a non-zero error is returned, then the contents of bpp and
 219 * dipp are undefined.
 
 
 220 *
 221 * Use xfs_imap() to determine the size and location of the
 222 * buffer to read from disk.
 223 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224int
 225xfs_inotobp(
 226	xfs_mount_t	*mp,
 227	xfs_trans_t	*tp,
 228	xfs_ino_t	ino,
 229	xfs_dinode_t	**dipp,
 230	xfs_buf_t	**bpp,
 231	int		*offset,
 232	uint		imap_flags)
 233{
 234	struct xfs_imap	imap;
 235	xfs_buf_t	*bp;
 236	int		error;
 
 
 237
 238	imap.im_blkno = 0;
 239	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
 240	if (error)
 241		return error;
 
 242
 243	error = xfs_imap_to_bp(mp, tp, &imap, &bp, 0, imap_flags);
 244	if (error)
 245		return error;
 
 
 246
 247	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
 248	*bpp = bp;
 249	*offset = imap.im_boffset;
 250	return 0;
 251}
 
 252
 
 
 
 
 
 
 
 253
 254/*
 255 * This routine is called to map an inode to the buffer containing
 256 * the on-disk version of the inode.  It returns a pointer to the
 257 * buffer containing the on-disk inode in the bpp parameter, and in
 258 * the dip parameter it returns a pointer to the on-disk inode within
 259 * that buffer.
 260 *
 261 * If a non-zero error is returned, then the contents of bpp and
 262 * dipp are undefined.
 263 *
 264 * The inode is expected to already been mapped to its buffer and read
 265 * in once, thus we can use the mapping information stored in the inode
 266 * rather than calling xfs_imap().  This allows us to avoid the overhead
 267 * of looking at the inode btree for small block file systems
 268 * (see xfs_imap()).
 
 
 
 
 
 
 
 269 */
 270int
 271xfs_itobp(
 272	xfs_mount_t	*mp,
 273	xfs_trans_t	*tp,
 274	xfs_inode_t	*ip,
 275	xfs_dinode_t	**dipp,
 276	xfs_buf_t	**bpp,
 277	uint		buf_flags)
 278{
 279	xfs_buf_t	*bp;
 280	int		error;
 
 
 
 281
 282	ASSERT(ip->i_imap.im_blkno != 0);
 
 
 
 
 
 
 
 283
 284	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
 285	if (error)
 286		return error;
 
 287
 288	if (!bp) {
 289		ASSERT(buf_flags & XBF_TRYLOCK);
 290		ASSERT(tp == NULL);
 291		*bpp = NULL;
 292		return EAGAIN;
 293	}
 294
 295	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 296	*bpp = bp;
 297	return 0;
 298}
 299
 300/*
 301 * Move inode type and inode format specific information from the
 302 * on-disk inode to the in-core inode.  For fifos, devs, and sockets
 303 * this means set if_rdev to the proper value.  For files, directories,
 304 * and symlinks this means to bring in the in-line data or extent
 305 * pointers.  For a file in B-tree format, only the root is immediately
 306 * brought in-core.  The rest will be in-lined in if_extents when it
 307 * is first referenced (see xfs_iread_extents()).
 
 
 
 
 
 
 308 */
 309STATIC int
 310xfs_iformat(
 311	xfs_inode_t		*ip,
 312	xfs_dinode_t		*dip)
 
 313{
 314	xfs_attr_shortform_t	*atp;
 315	int			size;
 316	int			error = 0;
 317	xfs_fsize_t             di_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319	if (unlikely(be32_to_cpu(dip->di_nextents) +
 320		     be16_to_cpu(dip->di_anextents) >
 321		     be64_to_cpu(dip->di_nblocks))) {
 322		xfs_warn(ip->i_mount,
 323			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
 324			(unsigned long long)ip->i_ino,
 325			(int)(be32_to_cpu(dip->di_nextents) +
 326			      be16_to_cpu(dip->di_anextents)),
 327			(unsigned long long)
 328				be64_to_cpu(dip->di_nblocks));
 329		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
 330				     ip->i_mount, dip);
 331		return XFS_ERROR(EFSCORRUPTED);
 332	}
 333
 334	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
 335		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
 336			(unsigned long long)ip->i_ino,
 337			dip->di_forkoff);
 338		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
 339				     ip->i_mount, dip);
 340		return XFS_ERROR(EFSCORRUPTED);
 341	}
 342
 343	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
 344		     !ip->i_mount->m_rtdev_targp)) {
 345		xfs_warn(ip->i_mount,
 346			"corrupt dinode %Lu, has realtime flag set.",
 347			ip->i_ino);
 348		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
 349				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
 350		return XFS_ERROR(EFSCORRUPTED);
 351	}
 352
 353	switch (ip->i_d.di_mode & S_IFMT) {
 354	case S_IFIFO:
 355	case S_IFCHR:
 356	case S_IFBLK:
 357	case S_IFSOCK:
 358		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
 359			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
 360					      ip->i_mount, dip);
 361			return XFS_ERROR(EFSCORRUPTED);
 362		}
 363		ip->i_d.di_size = 0;
 364		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
 365		break;
 366
 367	case S_IFREG:
 368	case S_IFLNK:
 369	case S_IFDIR:
 370		switch (dip->di_format) {
 371		case XFS_DINODE_FMT_LOCAL:
 372			/*
 373			 * no local regular files yet
 374			 */
 375			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
 376				xfs_warn(ip->i_mount,
 377			"corrupt inode %Lu (local format for regular file).",
 378					(unsigned long long) ip->i_ino);
 379				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
 380						     XFS_ERRLEVEL_LOW,
 381						     ip->i_mount, dip);
 382				return XFS_ERROR(EFSCORRUPTED);
 383			}
 384
 385			di_size = be64_to_cpu(dip->di_size);
 386			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
 387				xfs_warn(ip->i_mount,
 388			"corrupt inode %Lu (bad size %Ld for local inode).",
 389					(unsigned long long) ip->i_ino,
 390					(long long) di_size);
 391				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
 392						     XFS_ERRLEVEL_LOW,
 393						     ip->i_mount, dip);
 394				return XFS_ERROR(EFSCORRUPTED);
 395			}
 
 396
 397			size = (int)di_size;
 398			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
 399			break;
 400		case XFS_DINODE_FMT_EXTENTS:
 401			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
 402			break;
 403		case XFS_DINODE_FMT_BTREE:
 404			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
 405			break;
 406		default:
 407			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
 408					 ip->i_mount);
 409			return XFS_ERROR(EFSCORRUPTED);
 410		}
 411		break;
 412
 413	default:
 414		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
 415		return XFS_ERROR(EFSCORRUPTED);
 416	}
 417	if (error) {
 418		return error;
 419	}
 420	if (!XFS_DFORK_Q(dip))
 421		return 0;
 422
 423	ASSERT(ip->i_afp == NULL);
 424	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 425
 426	switch (dip->di_aformat) {
 427	case XFS_DINODE_FMT_LOCAL:
 428		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
 429		size = be16_to_cpu(atp->hdr.totsize);
 430
 431		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
 432			xfs_warn(ip->i_mount,
 433				"corrupt inode %Lu (bad attr fork size %Ld).",
 434				(unsigned long long) ip->i_ino,
 435				(long long) size);
 436			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
 437					     XFS_ERRLEVEL_LOW,
 438					     ip->i_mount, dip);
 439			return XFS_ERROR(EFSCORRUPTED);
 440		}
 441
 442		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
 443		break;
 444	case XFS_DINODE_FMT_EXTENTS:
 445		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
 446		break;
 447	case XFS_DINODE_FMT_BTREE:
 448		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
 449		break;
 450	default:
 451		error = XFS_ERROR(EFSCORRUPTED);
 452		break;
 453	}
 454	if (error) {
 455		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
 456		ip->i_afp = NULL;
 457		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 
 
 
 
 458	}
 459	return error;
 460}
 461
 462/*
 463 * The file is in-lined in the on-disk inode.
 464 * If it fits into if_inline_data, then copy
 465 * it there, otherwise allocate a buffer for it
 466 * and copy the data there.  Either way, set
 467 * if_data to point at the data.
 468 * If we allocate a buffer for the data, make
 469 * sure that its size is a multiple of 4 and
 470 * record the real size in i_real_bytes.
 471 */
 472STATIC int
 473xfs_iformat_local(
 474	xfs_inode_t	*ip,
 475	xfs_dinode_t	*dip,
 476	int		whichfork,
 477	int		size)
 478{
 479	xfs_ifork_t	*ifp;
 480	int		real_size;
 481
 482	/*
 483	 * If the size is unreasonable, then something
 484	 * is wrong and we just bail out rather than crash in
 485	 * kmem_alloc() or memcpy() below.
 486	 */
 487	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 488		xfs_warn(ip->i_mount,
 489	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
 490			(unsigned long long) ip->i_ino, size,
 491			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 492		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
 493				     ip->i_mount, dip);
 494		return XFS_ERROR(EFSCORRUPTED);
 495	}
 496	ifp = XFS_IFORK_PTR(ip, whichfork);
 497	real_size = 0;
 498	if (size == 0)
 499		ifp->if_u1.if_data = NULL;
 500	else if (size <= sizeof(ifp->if_u2.if_inline_data))
 501		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
 502	else {
 503		real_size = roundup(size, 4);
 504		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
 505	}
 506	ifp->if_bytes = size;
 507	ifp->if_real_bytes = real_size;
 508	if (size)
 509		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
 510	ifp->if_flags &= ~XFS_IFEXTENTS;
 511	ifp->if_flags |= XFS_IFINLINE;
 512	return 0;
 513}
 514
 515/*
 516 * The file consists of a set of extents all
 517 * of which fit into the on-disk inode.
 518 * If there are few enough extents to fit into
 519 * the if_inline_ext, then copy them there.
 520 * Otherwise allocate a buffer for them and copy
 521 * them into it.  Either way, set if_extents
 522 * to point at the extents.
 523 */
 524STATIC int
 525xfs_iformat_extents(
 526	xfs_inode_t	*ip,
 527	xfs_dinode_t	*dip,
 528	int		whichfork)
 529{
 530	xfs_bmbt_rec_t	*dp;
 531	xfs_ifork_t	*ifp;
 532	int		nex;
 533	int		size;
 534	int		i;
 535
 536	ifp = XFS_IFORK_PTR(ip, whichfork);
 537	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
 538	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
 539
 540	/*
 541	 * If the number of extents is unreasonable, then something
 542	 * is wrong and we just bail out rather than crash in
 543	 * kmem_alloc() or memcpy() below.
 544	 */
 545	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 546		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
 547			(unsigned long long) ip->i_ino, nex);
 548		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
 549				     ip->i_mount, dip);
 550		return XFS_ERROR(EFSCORRUPTED);
 551	}
 552
 553	ifp->if_real_bytes = 0;
 554	if (nex == 0)
 555		ifp->if_u1.if_extents = NULL;
 556	else if (nex <= XFS_INLINE_EXTS)
 557		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
 558	else
 559		xfs_iext_add(ifp, 0, nex);
 560
 561	ifp->if_bytes = size;
 562	if (size) {
 563		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
 564		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
 565		for (i = 0; i < nex; i++, dp++) {
 566			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
 567			ep->l0 = get_unaligned_be64(&dp->l0);
 568			ep->l1 = get_unaligned_be64(&dp->l1);
 569		}
 570		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
 571		if (whichfork != XFS_DATA_FORK ||
 572			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
 573				if (unlikely(xfs_check_nostate_extents(
 574				    ifp, 0, nex))) {
 575					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
 576							 XFS_ERRLEVEL_LOW,
 577							 ip->i_mount);
 578					return XFS_ERROR(EFSCORRUPTED);
 579				}
 580	}
 581	ifp->if_flags |= XFS_IFEXTENTS;
 582	return 0;
 583}
 584
 585/*
 586 * The file has too many extents to fit into
 587 * the inode, so they are in B-tree format.
 588 * Allocate a buffer for the root of the B-tree
 589 * and copy the root into it.  The i_extents
 590 * field will remain NULL until all of the
 591 * extents are read in (when they are needed).
 592 */
 593STATIC int
 594xfs_iformat_btree(
 595	xfs_inode_t		*ip,
 596	xfs_dinode_t		*dip,
 597	int			whichfork)
 598{
 599	xfs_bmdr_block_t	*dfp;
 600	xfs_ifork_t		*ifp;
 601	/* REFERENCED */
 602	int			nrecs;
 603	int			size;
 604
 605	ifp = XFS_IFORK_PTR(ip, whichfork);
 606	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
 607	size = XFS_BMAP_BROOT_SPACE(dfp);
 608	nrecs = be16_to_cpu(dfp->bb_numrecs);
 609
 610	/*
 611	 * blow out if -- fork has less extents than can fit in
 612	 * fork (fork shouldn't be a btree format), root btree
 613	 * block has more records than can fit into the fork,
 614	 * or the number of extents is greater than the number of
 615	 * blocks.
 616	 */
 617	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
 618			XFS_IFORK_MAXEXT(ip, whichfork) ||
 619		     XFS_BMDR_SPACE_CALC(nrecs) >
 620			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
 621		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
 622		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
 623			(unsigned long long) ip->i_ino);
 624		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
 625				 ip->i_mount, dip);
 626		return XFS_ERROR(EFSCORRUPTED);
 627	}
 628
 629	ifp->if_broot_bytes = size;
 630	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
 631	ASSERT(ifp->if_broot != NULL);
 632	/*
 633	 * Copy and convert from the on-disk structure
 634	 * to the in-memory structure.
 635	 */
 636	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
 637			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
 638			 ifp->if_broot, size);
 639	ifp->if_flags &= ~XFS_IFEXTENTS;
 640	ifp->if_flags |= XFS_IFBROOT;
 641
 642	return 0;
 643}
 
 
 
 644
 645STATIC void
 646xfs_dinode_from_disk(
 647	xfs_icdinode_t		*to,
 648	xfs_dinode_t		*from)
 649{
 650	to->di_magic = be16_to_cpu(from->di_magic);
 651	to->di_mode = be16_to_cpu(from->di_mode);
 652	to->di_version = from ->di_version;
 653	to->di_format = from->di_format;
 654	to->di_onlink = be16_to_cpu(from->di_onlink);
 655	to->di_uid = be32_to_cpu(from->di_uid);
 656	to->di_gid = be32_to_cpu(from->di_gid);
 657	to->di_nlink = be32_to_cpu(from->di_nlink);
 658	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
 659	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
 660	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 661	to->di_flushiter = be16_to_cpu(from->di_flushiter);
 662	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
 663	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
 664	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
 665	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
 666	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
 667	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
 668	to->di_size = be64_to_cpu(from->di_size);
 669	to->di_nblocks = be64_to_cpu(from->di_nblocks);
 670	to->di_extsize = be32_to_cpu(from->di_extsize);
 671	to->di_nextents = be32_to_cpu(from->di_nextents);
 672	to->di_anextents = be16_to_cpu(from->di_anextents);
 673	to->di_forkoff = from->di_forkoff;
 674	to->di_aformat	= from->di_aformat;
 675	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
 676	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
 677	to->di_flags	= be16_to_cpu(from->di_flags);
 678	to->di_gen	= be32_to_cpu(from->di_gen);
 679}
 680
 681void
 682xfs_dinode_to_disk(
 683	xfs_dinode_t		*to,
 684	xfs_icdinode_t		*from)
 685{
 686	to->di_magic = cpu_to_be16(from->di_magic);
 687	to->di_mode = cpu_to_be16(from->di_mode);
 688	to->di_version = from ->di_version;
 689	to->di_format = from->di_format;
 690	to->di_onlink = cpu_to_be16(from->di_onlink);
 691	to->di_uid = cpu_to_be32(from->di_uid);
 692	to->di_gid = cpu_to_be32(from->di_gid);
 693	to->di_nlink = cpu_to_be32(from->di_nlink);
 694	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
 695	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
 696	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 697	to->di_flushiter = cpu_to_be16(from->di_flushiter);
 698	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
 699	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
 700	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
 701	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
 702	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
 703	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
 704	to->di_size = cpu_to_be64(from->di_size);
 705	to->di_nblocks = cpu_to_be64(from->di_nblocks);
 706	to->di_extsize = cpu_to_be32(from->di_extsize);
 707	to->di_nextents = cpu_to_be32(from->di_nextents);
 708	to->di_anextents = cpu_to_be16(from->di_anextents);
 709	to->di_forkoff = from->di_forkoff;
 710	to->di_aformat = from->di_aformat;
 711	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
 712	to->di_dmstate = cpu_to_be16(from->di_dmstate);
 713	to->di_flags = cpu_to_be16(from->di_flags);
 714	to->di_gen = cpu_to_be32(from->di_gen);
 715}
 716
 717STATIC uint
 718_xfs_dic2xflags(
 719	__uint16_t		di_flags)
 
 
 720{
 721	uint			flags = 0;
 722
 723	if (di_flags & XFS_DIFLAG_ANY) {
 724		if (di_flags & XFS_DIFLAG_REALTIME)
 725			flags |= XFS_XFLAG_REALTIME;
 726		if (di_flags & XFS_DIFLAG_PREALLOC)
 727			flags |= XFS_XFLAG_PREALLOC;
 728		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 729			flags |= XFS_XFLAG_IMMUTABLE;
 730		if (di_flags & XFS_DIFLAG_APPEND)
 731			flags |= XFS_XFLAG_APPEND;
 732		if (di_flags & XFS_DIFLAG_SYNC)
 733			flags |= XFS_XFLAG_SYNC;
 734		if (di_flags & XFS_DIFLAG_NOATIME)
 735			flags |= XFS_XFLAG_NOATIME;
 736		if (di_flags & XFS_DIFLAG_NODUMP)
 737			flags |= XFS_XFLAG_NODUMP;
 738		if (di_flags & XFS_DIFLAG_RTINHERIT)
 739			flags |= XFS_XFLAG_RTINHERIT;
 740		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 741			flags |= XFS_XFLAG_PROJINHERIT;
 742		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 743			flags |= XFS_XFLAG_NOSYMLINKS;
 744		if (di_flags & XFS_DIFLAG_EXTSIZE)
 745			flags |= XFS_XFLAG_EXTSIZE;
 746		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 747			flags |= XFS_XFLAG_EXTSZINHERIT;
 748		if (di_flags & XFS_DIFLAG_NODEFRAG)
 749			flags |= XFS_XFLAG_NODEFRAG;
 750		if (di_flags & XFS_DIFLAG_FILESTREAM)
 751			flags |= XFS_XFLAG_FILESTREAM;
 752	}
 753
 
 
 
 
 
 
 
 
 754	return flags;
 755}
 756
 757uint
 758xfs_ip2xflags(
 759	xfs_inode_t		*ip)
 760{
 761	xfs_icdinode_t		*dic = &ip->i_d;
 762
 763	return _xfs_dic2xflags(dic->di_flags) |
 764				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 765}
 766
 767uint
 768xfs_dic2xflags(
 769	xfs_dinode_t		*dip)
 770{
 771	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 772				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 773}
 774
 775/*
 776 * Read the disk inode attributes into the in-core inode structure.
 
 
 
 777 */
 778int
 779xfs_iread(
 780	xfs_mount_t	*mp,
 781	xfs_trans_t	*tp,
 782	xfs_inode_t	*ip,
 783	uint		iget_flags)
 784{
 785	xfs_buf_t	*bp;
 786	xfs_dinode_t	*dip;
 787	int		error;
 
 
 
 
 788
 789	/*
 790	 * Fill in the location information in the in-core inode.
 791	 */
 792	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
 793	if (error)
 794		return error;
 795
 796	/*
 797	 * Get pointers to the on-disk inode and the buffer containing it.
 798	 */
 799	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 0, iget_flags);
 800	if (error)
 801		return error;
 802	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 803
 804	/*
 805	 * If we got something that isn't an inode it means someone
 806	 * (nfs or dmi) has a stale handle.
 807	 */
 808	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
 809#ifdef DEBUG
 810		xfs_alert(mp,
 811			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
 812			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
 813#endif /* DEBUG */
 814		error = XFS_ERROR(EINVAL);
 815		goto out_brelse;
 816	}
 817
 818	/*
 819	 * If the on-disk inode is already linked to a directory
 820	 * entry, copy all of the inode into the in-core inode.
 821	 * xfs_iformat() handles copying in the inode format
 822	 * specific information.
 823	 * Otherwise, just get the truly permanent information.
 824	 */
 825	if (dip->di_mode) {
 826		xfs_dinode_from_disk(&ip->i_d, dip);
 827		error = xfs_iformat(ip, dip);
 828		if (error)  {
 829#ifdef DEBUG
 830			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
 831				__func__, error);
 832#endif /* DEBUG */
 833			goto out_brelse;
 834		}
 835	} else {
 836		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
 837		ip->i_d.di_version = dip->di_version;
 838		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
 839		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
 840		/*
 841		 * Make sure to pull in the mode here as well in
 842		 * case the inode is released without being used.
 843		 * This ensures that xfs_inactive() will see that
 844		 * the inode is already free and not try to mess
 845		 * with the uninitialized part of it.
 846		 */
 847		ip->i_d.di_mode = 0;
 848	}
 849
 850	/*
 851	 * The inode format changed when we moved the link count and
 852	 * made it 32 bits long.  If this is an old format inode,
 853	 * convert it in memory to look like a new one.  If it gets
 854	 * flushed to disk we will convert back before flushing or
 855	 * logging it.  We zero out the new projid field and the old link
 856	 * count field.  We'll handle clearing the pad field (the remains
 857	 * of the old uuid field) when we actually convert the inode to
 858	 * the new format. We don't change the version number so that we
 859	 * can distinguish this from a real new format inode.
 860	 */
 861	if (ip->i_d.di_version == 1) {
 862		ip->i_d.di_nlink = ip->i_d.di_onlink;
 863		ip->i_d.di_onlink = 0;
 864		xfs_set_projid(ip, 0);
 865	}
 866
 867	ip->i_delayed_blks = 0;
 868
 869	/*
 870	 * Mark the buffer containing the inode as something to keep
 871	 * around for a while.  This helps to keep recently accessed
 872	 * meta-data in-core longer.
 873	 */
 874	xfs_buf_set_ref(bp, XFS_INO_REF);
 875
 876	/*
 877	 * Use xfs_trans_brelse() to release the buffer containing the
 878	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
 879	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
 880	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
 881	 * will only release the buffer if it is not dirty within the
 882	 * transaction.  It will be OK to release the buffer in this case,
 883	 * because inodes on disk are never destroyed and we will be
 884	 * locking the new in-core inode before putting it in the hash
 885	 * table where other processes can find it.  Thus we don't have
 886	 * to worry about the inode being changed just because we released
 887	 * the buffer.
 888	 */
 889 out_brelse:
 890	xfs_trans_brelse(tp, bp);
 891	return error;
 892}
 893
 894/*
 895 * Read in extents from a btree-format inode.
 896 * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
 897 */
 898int
 899xfs_iread_extents(
 900	xfs_trans_t	*tp,
 901	xfs_inode_t	*ip,
 902	int		whichfork)
 903{
 904	int		error;
 905	xfs_ifork_t	*ifp;
 906	xfs_extnum_t	nextents;
 907
 908	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
 909		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
 910				 ip->i_mount);
 911		return XFS_ERROR(EFSCORRUPTED);
 912	}
 913	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
 914	ifp = XFS_IFORK_PTR(ip, whichfork);
 915
 916	/*
 917	 * We know that the size is valid (it's checked in iformat_btree)
 918	 */
 919	ifp->if_bytes = ifp->if_real_bytes = 0;
 920	ifp->if_flags |= XFS_IFEXTENTS;
 921	xfs_iext_add(ifp, 0, nextents);
 922	error = xfs_bmap_read_extents(tp, ip, whichfork);
 923	if (error) {
 924		xfs_iext_destroy(ifp);
 925		ifp->if_flags &= ~XFS_IFEXTENTS;
 926		return error;
 927	}
 928	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
 929	return 0;
 930}
 931
 932/*
 933 * Allocate an inode on disk and return a copy of its in-core version.
 934 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 935 * appropriately within the inode.  The uid and gid for the inode are
 936 * set according to the contents of the given cred structure.
 937 *
 938 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 939 * has a free inode available, call xfs_iget()
 940 * to obtain the in-core version of the allocated inode.  Finally,
 941 * fill in the inode and log its initial contents.  In this case,
 942 * ialloc_context would be set to NULL and call_again set to false.
 943 *
 944 * If xfs_dialloc() does not have an available inode,
 945 * it will replenish its supply by doing an allocation. Since we can
 946 * only do one allocation within a transaction without deadlocks, we
 947 * must commit the current transaction before returning the inode itself.
 948 * In this case, therefore, we will set call_again to true and return.
 949 * The caller should then commit the current transaction, start a new
 950 * transaction, and call xfs_ialloc() again to actually get the inode.
 951 *
 952 * To ensure that some other process does not grab the inode that
 953 * was allocated during the first call to xfs_ialloc(), this routine
 954 * also returns the [locked] bp pointing to the head of the freelist
 955 * as ialloc_context.  The caller should hold this buffer across
 956 * the commit and pass it back into this routine on the second call.
 957 *
 958 * If we are allocating quota inodes, we do not have a parent inode
 959 * to attach to or associate with (i.e. pip == NULL) because they
 960 * are not linked into the directory structure - they are attached
 961 * directly to the superblock - and so have no parent.
 962 */
 963int
 964xfs_ialloc(
 965	xfs_trans_t	*tp,
 966	xfs_inode_t	*pip,
 967	umode_t		mode,
 968	xfs_nlink_t	nlink,
 969	xfs_dev_t	rdev,
 970	prid_t		prid,
 971	int		okalloc,
 972	xfs_buf_t	**ialloc_context,
 973	boolean_t	*call_again,
 974	xfs_inode_t	**ipp)
 975{
 
 976	xfs_ino_t	ino;
 977	xfs_inode_t	*ip;
 978	uint		flags;
 979	int		error;
 980	timespec_t	tv;
 981	int		filestreams = 0;
 982
 983	/*
 984	 * Call the space management code to pick
 985	 * the on-disk inode to be allocated.
 986	 */
 987	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 988			    ialloc_context, call_again, &ino);
 989	if (error)
 990		return error;
 991	if (*call_again || ino == NULLFSINO) {
 992		*ipp = NULL;
 993		return 0;
 994	}
 995	ASSERT(*ialloc_context == NULL);
 996
 997	/*
 998	 * Get the in-core inode with the lock held exclusively.
 999	 * This is because we're setting fields here we need
1000	 * to prevent others from looking at until we're done.
1001	 */
1002	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1003			 XFS_ILOCK_EXCL, &ip);
1004	if (error)
1005		return error;
1006	ASSERT(ip != NULL);
1007
1008	ip->i_d.di_mode = mode;
1009	ip->i_d.di_onlink = 0;
1010	ip->i_d.di_nlink = nlink;
1011	ASSERT(ip->i_d.di_nlink == nlink);
1012	ip->i_d.di_uid = current_fsuid();
1013	ip->i_d.di_gid = current_fsgid();
1014	xfs_set_projid(ip, prid);
1015	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1016
1017	/*
1018	 * If the superblock version is up to where we support new format
1019	 * inodes and this is currently an old format inode, then change
1020	 * the inode version number now.  This way we only do the conversion
1021	 * here rather than here and in the flush/logging code.
1022	 */
1023	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1024	    ip->i_d.di_version == 1) {
1025		ip->i_d.di_version = 2;
1026		/*
1027		 * We've already zeroed the old link count, the projid field,
1028		 * and the pad field.
1029		 */
1030	}
1031
1032	/*
1033	 * Project ids won't be stored on disk if we are using a version 1 inode.
1034	 */
1035	if ((prid != 0) && (ip->i_d.di_version == 1))
1036		xfs_bump_ino_vers2(tp, ip);
1037
1038	if (pip && XFS_INHERIT_GID(pip)) {
1039		ip->i_d.di_gid = pip->i_d.di_gid;
1040		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1041			ip->i_d.di_mode |= S_ISGID;
1042		}
1043	}
1044
1045	/*
1046	 * If the group ID of the new file does not match the effective group
1047	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1048	 * (and only if the irix_sgid_inherit compatibility variable is set).
1049	 */
1050	if ((irix_sgid_inherit) &&
1051	    (ip->i_d.di_mode & S_ISGID) &&
1052	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1053		ip->i_d.di_mode &= ~S_ISGID;
1054	}
1055
1056	ip->i_d.di_size = 0;
1057	ip->i_d.di_nextents = 0;
1058	ASSERT(ip->i_d.di_nblocks == 0);
1059
1060	nanotime(&tv);
1061	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1062	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1063	ip->i_d.di_atime = ip->i_d.di_mtime;
1064	ip->i_d.di_ctime = ip->i_d.di_mtime;
1065
1066	/*
1067	 * di_gen will have been taken care of in xfs_iread.
1068	 */
1069	ip->i_d.di_extsize = 0;
1070	ip->i_d.di_dmevmask = 0;
1071	ip->i_d.di_dmstate = 0;
1072	ip->i_d.di_flags = 0;
 
 
 
 
 
 
 
 
 
1073	flags = XFS_ILOG_CORE;
1074	switch (mode & S_IFMT) {
1075	case S_IFIFO:
1076	case S_IFCHR:
1077	case S_IFBLK:
1078	case S_IFSOCK:
1079		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1080		ip->i_df.if_u2.if_rdev = rdev;
1081		ip->i_df.if_flags = 0;
1082		flags |= XFS_ILOG_DEV;
1083		break;
1084	case S_IFREG:
1085		/*
1086		 * we can't set up filestreams until after the VFS inode
1087		 * is set up properly.
1088		 */
1089		if (pip && xfs_inode_is_filestream(pip))
1090			filestreams = 1;
1091		/* fall through */
1092	case S_IFDIR:
1093		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1094			uint	di_flags = 0;
 
1095
1096			if (S_ISDIR(mode)) {
1097				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1098					di_flags |= XFS_DIFLAG_RTINHERIT;
1099				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1100					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1101					ip->i_d.di_extsize = pip->i_d.di_extsize;
1102				}
 
 
1103			} else if (S_ISREG(mode)) {
1104				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1105					di_flags |= XFS_DIFLAG_REALTIME;
1106				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1107					di_flags |= XFS_DIFLAG_EXTSIZE;
1108					ip->i_d.di_extsize = pip->i_d.di_extsize;
1109				}
1110			}
1111			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1112			    xfs_inherit_noatime)
1113				di_flags |= XFS_DIFLAG_NOATIME;
1114			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1115			    xfs_inherit_nodump)
1116				di_flags |= XFS_DIFLAG_NODUMP;
1117			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1118			    xfs_inherit_sync)
1119				di_flags |= XFS_DIFLAG_SYNC;
1120			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1121			    xfs_inherit_nosymlinks)
1122				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1123			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1124				di_flags |= XFS_DIFLAG_PROJINHERIT;
1125			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1126			    xfs_inherit_nodefrag)
1127				di_flags |= XFS_DIFLAG_NODEFRAG;
1128			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1129				di_flags |= XFS_DIFLAG_FILESTREAM;
 
 
 
1130			ip->i_d.di_flags |= di_flags;
 
1131		}
1132		/* FALLTHROUGH */
1133	case S_IFLNK:
1134		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1135		ip->i_df.if_flags = XFS_IFEXTENTS;
1136		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1137		ip->i_df.if_u1.if_extents = NULL;
1138		break;
1139	default:
1140		ASSERT(0);
1141	}
1142	/*
1143	 * Attribute fork settings for new inode.
1144	 */
1145	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1146	ip->i_d.di_anextents = 0;
1147
1148	/*
1149	 * Log the new values stuffed into the inode.
1150	 */
1151	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1152	xfs_trans_log_inode(tp, ip, flags);
1153
1154	/* now that we have an i_mode we can setup inode ops and unlock */
1155	xfs_setup_inode(ip);
1156
1157	/* now we have set up the vfs inode we can associate the filestream */
1158	if (filestreams) {
1159		error = xfs_filestream_associate(pip, ip);
1160		if (error < 0)
1161			return -error;
1162		if (!error)
1163			xfs_iflags_set(ip, XFS_IFILESTREAM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164	}
1165
1166	*ipp = ip;
 
 
1167	return 0;
1168}
1169
1170/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171 * Free up the underlying blocks past new_size.  The new size must be smaller
1172 * than the current size.  This routine can be used both for the attribute and
1173 * data fork, and does not modify the inode size, which is left to the caller.
1174 *
1175 * The transaction passed to this routine must have made a permanent log
1176 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1177 * given transaction and start new ones, so make sure everything involved in
1178 * the transaction is tidy before calling here.  Some transaction will be
1179 * returned to the caller to be committed.  The incoming transaction must
1180 * already include the inode, and both inode locks must be held exclusively.
1181 * The inode must also be "held" within the transaction.  On return the inode
1182 * will be "held" within the returned transaction.  This routine does NOT
1183 * require any disk space to be reserved for it within the transaction.
1184 *
1185 * If we get an error, we must return with the inode locked and linked into the
1186 * current transaction. This keeps things simple for the higher level code,
1187 * because it always knows that the inode is locked and held in the transaction
1188 * that returns to it whether errors occur or not.  We don't mark the inode
1189 * dirty on error so that transactions can be easily aborted if possible.
1190 */
1191int
1192xfs_itruncate_extents(
1193	struct xfs_trans	**tpp,
1194	struct xfs_inode	*ip,
1195	int			whichfork,
1196	xfs_fsize_t		new_size)
1197{
1198	struct xfs_mount	*mp = ip->i_mount;
1199	struct xfs_trans	*tp = *tpp;
1200	struct xfs_trans	*ntp;
1201	xfs_bmap_free_t		free_list;
1202	xfs_fsblock_t		first_block;
1203	xfs_fileoff_t		first_unmap_block;
1204	xfs_fileoff_t		last_block;
1205	xfs_filblks_t		unmap_len;
1206	int			committed;
1207	int			error = 0;
1208	int			done = 0;
1209
1210	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 
 
1211	ASSERT(new_size <= XFS_ISIZE(ip));
1212	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1213	ASSERT(ip->i_itemp != NULL);
1214	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1215	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1216
1217	trace_xfs_itruncate_extents_start(ip, new_size);
1218
1219	/*
1220	 * Since it is possible for space to become allocated beyond
1221	 * the end of the file (in a crash where the space is allocated
1222	 * but the inode size is not yet updated), simply remove any
1223	 * blocks which show up between the new EOF and the maximum
1224	 * possible file size.  If the first block to be removed is
1225	 * beyond the maximum file size (ie it is the same as last_block),
1226	 * then there is nothing to do.
1227	 */
1228	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1229	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1230	if (first_unmap_block == last_block)
1231		return 0;
1232
1233	ASSERT(first_unmap_block < last_block);
1234	unmap_len = last_block - first_unmap_block + 1;
1235	while (!done) {
1236		xfs_bmap_init(&free_list, &first_block);
1237		error = xfs_bunmapi(tp, ip,
1238				    first_unmap_block, unmap_len,
1239				    xfs_bmapi_aflag(whichfork),
1240				    XFS_ITRUNC_MAX_EXTENTS,
1241				    &first_block, &free_list,
1242				    &done);
1243		if (error)
1244			goto out_bmap_cancel;
1245
1246		/*
1247		 * Duplicate the transaction that has the permanent
1248		 * reservation and commit the old transaction.
1249		 */
1250		error = xfs_bmap_finish(&tp, &free_list, &committed);
1251		if (committed)
1252			xfs_trans_ijoin(tp, ip, 0);
1253		if (error)
1254			goto out_bmap_cancel;
1255
1256		if (committed) {
1257			/*
1258			 * Mark the inode dirty so it will be logged and
1259			 * moved forward in the log as part of every commit.
1260			 */
1261			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1262		}
1263
1264		ntp = xfs_trans_dup(tp);
1265		error = xfs_trans_commit(tp, 0);
1266		tp = ntp;
1267
1268		xfs_trans_ijoin(tp, ip, 0);
1269
1270		if (error)
1271			goto out;
1272
1273		/*
1274		 * Transaction commit worked ok so we can drop the extra ticket
1275		 * reference that we gained in xfs_trans_dup()
1276		 */
1277		xfs_log_ticket_put(tp->t_ticket);
1278		error = xfs_trans_reserve(tp, 0,
1279					XFS_ITRUNCATE_LOG_RES(mp), 0,
1280					XFS_TRANS_PERM_LOG_RES,
1281					XFS_ITRUNCATE_LOG_COUNT);
1282		if (error)
1283			goto out;
1284	}
1285
1286	/*
1287	 * Always re-log the inode so that our permanent transaction can keep
1288	 * on rolling it forward in the log.
1289	 */
1290	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1291
1292	trace_xfs_itruncate_extents_end(ip, new_size);
1293
1294out:
1295	*tpp = tp;
1296	return error;
1297out_bmap_cancel:
1298	/*
1299	 * If the bunmapi call encounters an error, return to the caller where
1300	 * the transaction can be properly aborted.  We just need to make sure
1301	 * we're not holding any resources that we were not when we came in.
1302	 */
1303	xfs_bmap_cancel(&free_list);
1304	goto out;
1305}
1306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307/*
1308 * This is called when the inode's link count goes to 0.
1309 * We place the on-disk inode on a list in the AGI.  It
1310 * will be pulled from this list when the inode is freed.
1311 */
1312int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1313xfs_iunlink(
1314	xfs_trans_t	*tp,
1315	xfs_inode_t	*ip)
1316{
1317	xfs_mount_t	*mp;
1318	xfs_agi_t	*agi;
1319	xfs_dinode_t	*dip;
1320	xfs_buf_t	*agibp;
1321	xfs_buf_t	*ibp;
1322	xfs_agino_t	agino;
1323	short		bucket_index;
1324	int		offset;
1325	int		error;
1326
1327	ASSERT(ip->i_d.di_nlink == 0);
1328	ASSERT(ip->i_d.di_mode != 0);
1329
1330	mp = tp->t_mountp;
1331
1332	/*
1333	 * Get the agi buffer first.  It ensures lock ordering
1334	 * on the list.
1335	 */
1336	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1337	if (error)
1338		return error;
1339	agi = XFS_BUF_TO_AGI(agibp);
1340
1341	/*
1342	 * Get the index into the agi hash table for the
1343	 * list this inode will go on.
1344	 */
1345	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1346	ASSERT(agino != 0);
1347	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1348	ASSERT(agi->agi_unlinked[bucket_index]);
1349	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1350
1351	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1352		/*
1353		 * There is already another inode in the bucket we need
1354		 * to add ourselves to.  Add us at the front of the list.
1355		 * Here we put the head pointer into our next pointer,
1356		 * and then we fall through to point the head at us.
1357		 */
1358		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
 
1359		if (error)
1360			return error;
1361
1362		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1363		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1364		offset = ip->i_imap.im_boffset +
1365			offsetof(xfs_dinode_t, di_next_unlinked);
 
 
 
 
1366		xfs_trans_inode_buf(tp, ibp);
1367		xfs_trans_log_buf(tp, ibp, offset,
1368				  (offset + sizeof(xfs_agino_t) - 1));
1369		xfs_inobp_check(mp, ibp);
1370	}
1371
1372	/*
1373	 * Point the bucket head pointer at the inode being inserted.
1374	 */
1375	ASSERT(agino != 0);
1376	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1377	offset = offsetof(xfs_agi_t, agi_unlinked) +
1378		(sizeof(xfs_agino_t) * bucket_index);
 
1379	xfs_trans_log_buf(tp, agibp, offset,
1380			  (offset + sizeof(xfs_agino_t) - 1));
1381	return 0;
1382}
1383
1384/*
1385 * Pull the on-disk inode from the AGI unlinked list.
1386 */
1387STATIC int
1388xfs_iunlink_remove(
1389	xfs_trans_t	*tp,
1390	xfs_inode_t	*ip)
1391{
1392	xfs_ino_t	next_ino;
1393	xfs_mount_t	*mp;
1394	xfs_agi_t	*agi;
1395	xfs_dinode_t	*dip;
1396	xfs_buf_t	*agibp;
1397	xfs_buf_t	*ibp;
1398	xfs_agnumber_t	agno;
1399	xfs_agino_t	agino;
1400	xfs_agino_t	next_agino;
1401	xfs_buf_t	*last_ibp;
1402	xfs_dinode_t	*last_dip = NULL;
1403	short		bucket_index;
1404	int		offset, last_offset = 0;
1405	int		error;
1406
1407	mp = tp->t_mountp;
1408	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1409
1410	/*
1411	 * Get the agi buffer first.  It ensures lock ordering
1412	 * on the list.
1413	 */
1414	error = xfs_read_agi(mp, tp, agno, &agibp);
1415	if (error)
1416		return error;
1417
1418	agi = XFS_BUF_TO_AGI(agibp);
1419
1420	/*
1421	 * Get the index into the agi hash table for the
1422	 * list this inode will go on.
1423	 */
1424	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1425	ASSERT(agino != 0);
1426	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1427	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1428	ASSERT(agi->agi_unlinked[bucket_index]);
1429
1430	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1431		/*
1432		 * We're at the head of the list.  Get the inode's
1433		 * on-disk buffer to see if there is anyone after us
1434		 * on the list.  Only modify our next pointer if it
1435		 * is not already NULLAGINO.  This saves us the overhead
1436		 * of dealing with the buffer when there is no need to
1437		 * change it.
1438		 */
1439		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
 
1440		if (error) {
1441			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1442				__func__, error);
1443			return error;
1444		}
1445		next_agino = be32_to_cpu(dip->di_next_unlinked);
1446		ASSERT(next_agino != 0);
1447		if (next_agino != NULLAGINO) {
1448			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1449			offset = ip->i_imap.im_boffset +
1450				offsetof(xfs_dinode_t, di_next_unlinked);
 
 
 
 
1451			xfs_trans_inode_buf(tp, ibp);
1452			xfs_trans_log_buf(tp, ibp, offset,
1453					  (offset + sizeof(xfs_agino_t) - 1));
1454			xfs_inobp_check(mp, ibp);
1455		} else {
1456			xfs_trans_brelse(tp, ibp);
1457		}
1458		/*
1459		 * Point the bucket head pointer at the next inode.
1460		 */
1461		ASSERT(next_agino != 0);
1462		ASSERT(next_agino != agino);
1463		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1464		offset = offsetof(xfs_agi_t, agi_unlinked) +
1465			(sizeof(xfs_agino_t) * bucket_index);
 
1466		xfs_trans_log_buf(tp, agibp, offset,
1467				  (offset + sizeof(xfs_agino_t) - 1));
1468	} else {
1469		/*
1470		 * We need to search the list for the inode being freed.
1471		 */
1472		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1473		last_ibp = NULL;
1474		while (next_agino != agino) {
1475			/*
1476			 * If the last inode wasn't the one pointing to
1477			 * us, then release its buffer since we're not
1478			 * going to do anything with it.
1479			 */
1480			if (last_ibp != NULL) {
1481				xfs_trans_brelse(tp, last_ibp);
 
 
 
 
 
 
 
 
 
 
1482			}
1483			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1484			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1485					    &last_ibp, &last_offset, 0);
1486			if (error) {
1487				xfs_warn(mp,
1488					"%s: xfs_inotobp() returned error %d.",
1489					__func__, error);
1490				return error;
1491			}
 
 
1492			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1493			ASSERT(next_agino != NULLAGINO);
1494			ASSERT(next_agino != 0);
1495		}
 
1496		/*
1497		 * Now last_ibp points to the buffer previous to us on
1498		 * the unlinked list.  Pull us from the list.
1499		 */
1500		error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
 
1501		if (error) {
1502			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1503				__func__, error);
1504			return error;
1505		}
1506		next_agino = be32_to_cpu(dip->di_next_unlinked);
1507		ASSERT(next_agino != 0);
1508		ASSERT(next_agino != agino);
1509		if (next_agino != NULLAGINO) {
1510			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1511			offset = ip->i_imap.im_boffset +
1512				offsetof(xfs_dinode_t, di_next_unlinked);
 
 
 
 
1513			xfs_trans_inode_buf(tp, ibp);
1514			xfs_trans_log_buf(tp, ibp, offset,
1515					  (offset + sizeof(xfs_agino_t) - 1));
1516			xfs_inobp_check(mp, ibp);
1517		} else {
1518			xfs_trans_brelse(tp, ibp);
1519		}
1520		/*
1521		 * Point the previous inode on the list to the next inode.
1522		 */
1523		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1524		ASSERT(next_agino != 0);
1525		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
 
 
 
 
1526		xfs_trans_inode_buf(tp, last_ibp);
1527		xfs_trans_log_buf(tp, last_ibp, offset,
1528				  (offset + sizeof(xfs_agino_t) - 1));
1529		xfs_inobp_check(mp, last_ibp);
1530	}
1531	return 0;
1532}
1533
1534/*
1535 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1536 * inodes that are in memory - they all must be marked stale and attached to
1537 * the cluster buffer.
1538 */
1539STATIC int
1540xfs_ifree_cluster(
1541	xfs_inode_t	*free_ip,
1542	xfs_trans_t	*tp,
1543	xfs_ino_t	inum)
1544{
1545	xfs_mount_t		*mp = free_ip->i_mount;
1546	int			blks_per_cluster;
 
1547	int			nbufs;
1548	int			ninodes;
1549	int			i, j;
 
1550	xfs_daddr_t		blkno;
1551	xfs_buf_t		*bp;
1552	xfs_inode_t		*ip;
1553	xfs_inode_log_item_t	*iip;
1554	xfs_log_item_t		*lip;
1555	struct xfs_perag	*pag;
 
1556
 
1557	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1558	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1559		blks_per_cluster = 1;
1560		ninodes = mp->m_sb.sb_inopblock;
1561		nbufs = XFS_IALLOC_BLOCKS(mp);
1562	} else {
1563		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1564					mp->m_sb.sb_blocksize;
1565		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1566		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1567	}
 
 
 
 
 
1568
1569	for (j = 0; j < nbufs; j++, inum += ninodes) {
1570		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1571					 XFS_INO_TO_AGBNO(mp, inum));
1572
1573		/*
1574		 * We obtain and lock the backing buffer first in the process
1575		 * here, as we have to ensure that any dirty inode that we
1576		 * can't get the flush lock on is attached to the buffer.
1577		 * If we scan the in-memory inodes first, then buffer IO can
1578		 * complete before we get a lock on it, and hence we may fail
1579		 * to mark all the active inodes on the buffer stale.
1580		 */
1581		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1582					mp->m_bsize * blks_per_cluster, 0);
 
1583
1584		if (!bp)
1585			return ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
1586		/*
1587		 * Walk the inodes already attached to the buffer and mark them
1588		 * stale. These will all have the flush locks held, so an
1589		 * in-memory inode walk can't lock them. By marking them all
1590		 * stale first, we will not attempt to lock them in the loop
1591		 * below as the XFS_ISTALE flag will be set.
1592		 */
1593		lip = bp->b_fspriv;
1594		while (lip) {
1595			if (lip->li_type == XFS_LI_INODE) {
1596				iip = (xfs_inode_log_item_t *)lip;
1597				ASSERT(iip->ili_logged == 1);
1598				lip->li_cb = xfs_istale_done;
1599				xfs_trans_ail_copy_lsn(mp->m_ail,
1600							&iip->ili_flush_lsn,
1601							&iip->ili_item.li_lsn);
1602				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1603			}
1604			lip = lip->li_bio_list;
1605		}
1606
1607
1608		/*
1609		 * For each inode in memory attempt to add it to the inode
1610		 * buffer and set it up for being staled on buffer IO
1611		 * completion.  This is safe as we've locked out tail pushing
1612		 * and flushing by locking the buffer.
1613		 *
1614		 * We have already marked every inode that was part of a
1615		 * transaction stale above, which means there is no point in
1616		 * even trying to lock them.
1617		 */
1618		for (i = 0; i < ninodes; i++) {
1619retry:
1620			rcu_read_lock();
1621			ip = radix_tree_lookup(&pag->pag_ici_root,
1622					XFS_INO_TO_AGINO(mp, (inum + i)));
1623
1624			/* Inode not in memory, nothing to do */
1625			if (!ip) {
1626				rcu_read_unlock();
1627				continue;
1628			}
1629
1630			/*
1631			 * because this is an RCU protected lookup, we could
1632			 * find a recently freed or even reallocated inode
1633			 * during the lookup. We need to check under the
1634			 * i_flags_lock for a valid inode here. Skip it if it
1635			 * is not valid, the wrong inode or stale.
1636			 */
1637			spin_lock(&ip->i_flags_lock);
1638			if (ip->i_ino != inum + i ||
1639			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1640				spin_unlock(&ip->i_flags_lock);
1641				rcu_read_unlock();
1642				continue;
1643			}
1644			spin_unlock(&ip->i_flags_lock);
1645
1646			/*
1647			 * Don't try to lock/unlock the current inode, but we
1648			 * _cannot_ skip the other inodes that we did not find
1649			 * in the list attached to the buffer and are not
1650			 * already marked stale. If we can't lock it, back off
1651			 * and retry.
1652			 */
1653			if (ip != free_ip &&
1654			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1655				rcu_read_unlock();
1656				delay(1);
1657				goto retry;
1658			}
1659			rcu_read_unlock();
1660
1661			xfs_iflock(ip);
1662			xfs_iflags_set(ip, XFS_ISTALE);
1663
1664			/*
1665			 * we don't need to attach clean inodes or those only
1666			 * with unlogged changes (which we throw away, anyway).
1667			 */
1668			iip = ip->i_itemp;
1669			if (!iip || xfs_inode_clean(ip)) {
1670				ASSERT(ip != free_ip);
1671				xfs_ifunlock(ip);
1672				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1673				continue;
1674			}
1675
1676			iip->ili_last_fields = iip->ili_fields;
1677			iip->ili_fields = 0;
 
1678			iip->ili_logged = 1;
1679			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1680						&iip->ili_item.li_lsn);
1681
1682			xfs_buf_attach_iodone(bp, xfs_istale_done,
1683						  &iip->ili_item);
1684
1685			if (ip != free_ip)
1686				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1687		}
1688
1689		xfs_trans_stale_inode_buf(tp, bp);
1690		xfs_trans_binval(tp, bp);
1691	}
1692
1693	xfs_perag_put(pag);
1694	return 0;
1695}
1696
1697/*
1698 * This is called to return an inode to the inode free list.
1699 * The inode should already be truncated to 0 length and have
1700 * no pages associated with it.  This routine also assumes that
1701 * the inode is already a part of the transaction.
1702 *
1703 * The on-disk copy of the inode will have been added to the list
1704 * of unlinked inodes in the AGI. We need to remove the inode from
1705 * that list atomically with respect to freeing it here.
1706 */
1707int
1708xfs_ifree(
1709	xfs_trans_t	*tp,
1710	xfs_inode_t	*ip,
1711	xfs_bmap_free_t	*flist)
1712{
1713	int			error;
1714	int			delete;
1715	xfs_ino_t		first_ino;
1716	xfs_dinode_t    	*dip;
1717	xfs_buf_t       	*ibp;
1718
1719	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1720	ASSERT(ip->i_d.di_nlink == 0);
1721	ASSERT(ip->i_d.di_nextents == 0);
1722	ASSERT(ip->i_d.di_anextents == 0);
1723	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1724	ASSERT(ip->i_d.di_nblocks == 0);
1725
1726	/*
1727	 * Pull the on-disk inode from the AGI unlinked list.
1728	 */
1729	error = xfs_iunlink_remove(tp, ip);
1730	if (error != 0) {
1731		return error;
1732	}
1733
1734	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1735	if (error != 0) {
1736		return error;
1737	}
1738	ip->i_d.di_mode = 0;		/* mark incore inode as free */
1739	ip->i_d.di_flags = 0;
1740	ip->i_d.di_dmevmask = 0;
1741	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
1742	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1743	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1744	/*
1745	 * Bump the generation count so no one will be confused
1746	 * by reincarnations of this inode.
1747	 */
1748	ip->i_d.di_gen++;
1749
1750	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1751
1752	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0);
1753	if (error)
1754		return error;
1755
1756        /*
1757	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1758	* from picking up this inode when it is reclaimed (its incore state
1759	* initialzed but not flushed to disk yet). The in-core di_mode is
1760	* already cleared  and a corresponding transaction logged.
1761	* The hack here just synchronizes the in-core to on-disk
1762	* di_mode value in advance before the actual inode sync to disk.
1763	* This is OK because the inode is already unlinked and would never
1764	* change its di_mode again for this inode generation.
1765	* This is a temporary hack that would require a proper fix
1766	* in the future.
1767	*/
1768	dip->di_mode = 0;
1769
1770	if (delete) {
1771		error = xfs_ifree_cluster(ip, tp, first_ino);
1772	}
1773
1774	return error;
1775}
1776
1777/*
1778 * Reallocate the space for if_broot based on the number of records
1779 * being added or deleted as indicated in rec_diff.  Move the records
1780 * and pointers in if_broot to fit the new size.  When shrinking this
1781 * will eliminate holes between the records and pointers created by
1782 * the caller.  When growing this will create holes to be filled in
1783 * by the caller.
1784 *
1785 * The caller must not request to add more records than would fit in
1786 * the on-disk inode root.  If the if_broot is currently NULL, then
1787 * if we adding records one will be allocated.  The caller must also
1788 * not request that the number of records go below zero, although
1789 * it can go to zero.
1790 *
1791 * ip -- the inode whose if_broot area is changing
1792 * ext_diff -- the change in the number of records, positive or negative,
1793 *	 requested for the if_broot array.
1794 */
1795void
1796xfs_iroot_realloc(
1797	xfs_inode_t		*ip,
1798	int			rec_diff,
1799	int			whichfork)
1800{
1801	struct xfs_mount	*mp = ip->i_mount;
1802	int			cur_max;
1803	xfs_ifork_t		*ifp;
1804	struct xfs_btree_block	*new_broot;
1805	int			new_max;
1806	size_t			new_size;
1807	char			*np;
1808	char			*op;
1809
1810	/*
1811	 * Handle the degenerate case quietly.
1812	 */
1813	if (rec_diff == 0) {
1814		return;
1815	}
1816
1817	ifp = XFS_IFORK_PTR(ip, whichfork);
1818	if (rec_diff > 0) {
1819		/*
1820		 * If there wasn't any memory allocated before, just
1821		 * allocate it now and get out.
1822		 */
1823		if (ifp->if_broot_bytes == 0) {
1824			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1825			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1826			ifp->if_broot_bytes = (int)new_size;
1827			return;
1828		}
1829
1830		/*
1831		 * If there is already an existing if_broot, then we need
1832		 * to realloc() it and shift the pointers to their new
1833		 * location.  The records don't change location because
1834		 * they are kept butted up against the btree block header.
1835		 */
1836		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1837		new_max = cur_max + rec_diff;
1838		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1839		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1840				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1841				KM_SLEEP | KM_NOFS);
1842		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1843						     ifp->if_broot_bytes);
1844		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1845						     (int)new_size);
1846		ifp->if_broot_bytes = (int)new_size;
1847		ASSERT(ifp->if_broot_bytes <=
1848			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1849		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1850		return;
1851	}
1852
1853	/*
1854	 * rec_diff is less than 0.  In this case, we are shrinking the
1855	 * if_broot buffer.  It must already exist.  If we go to zero
1856	 * records, just get rid of the root and clear the status bit.
1857	 */
1858	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1859	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1860	new_max = cur_max + rec_diff;
1861	ASSERT(new_max >= 0);
1862	if (new_max > 0)
1863		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1864	else
1865		new_size = 0;
1866	if (new_size > 0) {
1867		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1868		/*
1869		 * First copy over the btree block header.
1870		 */
1871		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1872	} else {
1873		new_broot = NULL;
1874		ifp->if_flags &= ~XFS_IFBROOT;
1875	}
1876
1877	/*
1878	 * Only copy the records and pointers if there are any.
1879	 */
1880	if (new_max > 0) {
1881		/*
1882		 * First copy the records.
1883		 */
1884		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1885		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1886		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1887
1888		/*
1889		 * Then copy the pointers.
1890		 */
1891		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1892						     ifp->if_broot_bytes);
1893		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1894						     (int)new_size);
1895		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1896	}
1897	kmem_free(ifp->if_broot);
1898	ifp->if_broot = new_broot;
1899	ifp->if_broot_bytes = (int)new_size;
1900	ASSERT(ifp->if_broot_bytes <=
1901		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1902	return;
1903}
1904
1905
1906/*
1907 * This is called when the amount of space needed for if_data
1908 * is increased or decreased.  The change in size is indicated by
1909 * the number of bytes that need to be added or deleted in the
1910 * byte_diff parameter.
1911 *
1912 * If the amount of space needed has decreased below the size of the
1913 * inline buffer, then switch to using the inline buffer.  Otherwise,
1914 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1915 * to what is needed.
1916 *
1917 * ip -- the inode whose if_data area is changing
1918 * byte_diff -- the change in the number of bytes, positive or negative,
1919 *	 requested for the if_data array.
1920 */
1921void
1922xfs_idata_realloc(
1923	xfs_inode_t	*ip,
1924	int		byte_diff,
1925	int		whichfork)
1926{
1927	xfs_ifork_t	*ifp;
1928	int		new_size;
1929	int		real_size;
1930
1931	if (byte_diff == 0) {
1932		return;
1933	}
1934
1935	ifp = XFS_IFORK_PTR(ip, whichfork);
1936	new_size = (int)ifp->if_bytes + byte_diff;
1937	ASSERT(new_size >= 0);
1938
1939	if (new_size == 0) {
1940		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1941			kmem_free(ifp->if_u1.if_data);
1942		}
1943		ifp->if_u1.if_data = NULL;
1944		real_size = 0;
1945	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1946		/*
1947		 * If the valid extents/data can fit in if_inline_ext/data,
1948		 * copy them from the malloc'd vector and free it.
1949		 */
1950		if (ifp->if_u1.if_data == NULL) {
1951			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1952		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1953			ASSERT(ifp->if_real_bytes != 0);
1954			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1955			      new_size);
1956			kmem_free(ifp->if_u1.if_data);
1957			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1958		}
1959		real_size = 0;
1960	} else {
1961		/*
1962		 * Stuck with malloc/realloc.
1963		 * For inline data, the underlying buffer must be
1964		 * a multiple of 4 bytes in size so that it can be
1965		 * logged and stay on word boundaries.  We enforce
1966		 * that here.
1967		 */
1968		real_size = roundup(new_size, 4);
1969		if (ifp->if_u1.if_data == NULL) {
1970			ASSERT(ifp->if_real_bytes == 0);
1971			ifp->if_u1.if_data = kmem_alloc(real_size,
1972							KM_SLEEP | KM_NOFS);
1973		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1974			/*
1975			 * Only do the realloc if the underlying size
1976			 * is really changing.
1977			 */
1978			if (ifp->if_real_bytes != real_size) {
1979				ifp->if_u1.if_data =
1980					kmem_realloc(ifp->if_u1.if_data,
1981							real_size,
1982							ifp->if_real_bytes,
1983							KM_SLEEP | KM_NOFS);
1984			}
1985		} else {
1986			ASSERT(ifp->if_real_bytes == 0);
1987			ifp->if_u1.if_data = kmem_alloc(real_size,
1988							KM_SLEEP | KM_NOFS);
1989			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1990				ifp->if_bytes);
1991		}
1992	}
1993	ifp->if_real_bytes = real_size;
1994	ifp->if_bytes = new_size;
1995	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1996}
1997
1998void
1999xfs_idestroy_fork(
2000	xfs_inode_t	*ip,
2001	int		whichfork)
2002{
2003	xfs_ifork_t	*ifp;
2004
2005	ifp = XFS_IFORK_PTR(ip, whichfork);
2006	if (ifp->if_broot != NULL) {
2007		kmem_free(ifp->if_broot);
2008		ifp->if_broot = NULL;
2009	}
2010
2011	/*
2012	 * If the format is local, then we can't have an extents
2013	 * array so just look for an inline data array.  If we're
2014	 * not local then we may or may not have an extents list,
2015	 * so check and free it up if we do.
2016	 */
2017	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2018		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2019		    (ifp->if_u1.if_data != NULL)) {
2020			ASSERT(ifp->if_real_bytes != 0);
2021			kmem_free(ifp->if_u1.if_data);
2022			ifp->if_u1.if_data = NULL;
2023			ifp->if_real_bytes = 0;
2024		}
2025	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2026		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2027		    ((ifp->if_u1.if_extents != NULL) &&
2028		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2029		ASSERT(ifp->if_real_bytes != 0);
2030		xfs_iext_destroy(ifp);
2031	}
2032	ASSERT(ifp->if_u1.if_extents == NULL ||
2033	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2034	ASSERT(ifp->if_real_bytes == 0);
2035	if (whichfork == XFS_ATTR_FORK) {
2036		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2037		ip->i_afp = NULL;
2038	}
2039}
2040
2041/*
2042 * This is called to unpin an inode.  The caller must have the inode locked
2043 * in at least shared mode so that the buffer cannot be subsequently pinned
2044 * once someone is waiting for it to be unpinned.
2045 */
2046static void
2047xfs_iunpin(
2048	struct xfs_inode	*ip)
2049{
2050	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2051
2052	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2053
2054	/* Give the log a push to start the unpinning I/O */
2055	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2056
2057}
2058
2059static void
2060__xfs_iunpin_wait(
2061	struct xfs_inode	*ip)
2062{
2063	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2064	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2065
2066	xfs_iunpin(ip);
2067
2068	do {
2069		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2070		if (xfs_ipincount(ip))
2071			io_schedule();
2072	} while (xfs_ipincount(ip));
2073	finish_wait(wq, &wait.wait);
2074}
2075
2076void
2077xfs_iunpin_wait(
2078	struct xfs_inode	*ip)
2079{
2080	if (xfs_ipincount(ip))
2081		__xfs_iunpin_wait(ip);
2082}
2083
2084/*
2085 * xfs_iextents_copy()
2086 *
2087 * This is called to copy the REAL extents (as opposed to the delayed
2088 * allocation extents) from the inode into the given buffer.  It
2089 * returns the number of bytes copied into the buffer.
2090 *
2091 * If there are no delayed allocation extents, then we can just
2092 * memcpy() the extents into the buffer.  Otherwise, we need to
2093 * examine each extent in turn and skip those which are delayed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094 */
2095int
2096xfs_iextents_copy(
2097	xfs_inode_t		*ip,
2098	xfs_bmbt_rec_t		*dp,
2099	int			whichfork)
2100{
2101	int			copied;
2102	int			i;
2103	xfs_ifork_t		*ifp;
2104	int			nrecs;
2105	xfs_fsblock_t		start_block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106
2107	ifp = XFS_IFORK_PTR(ip, whichfork);
2108	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2109	ASSERT(ifp->if_bytes > 0);
2110
2111	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2112	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2113	ASSERT(nrecs > 0);
2114
2115	/*
2116	 * There are some delayed allocation extents in the
2117	 * inode, so copy the extents one at a time and skip
2118	 * the delayed ones.  There must be at least one
2119	 * non-delayed extent.
2120	 */
2121	copied = 0;
2122	for (i = 0; i < nrecs; i++) {
2123		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2124		start_block = xfs_bmbt_get_startblock(ep);
2125		if (isnullstartblock(start_block)) {
2126			/*
2127			 * It's a delayed allocation extent, so skip it.
2128			 */
2129			continue;
2130		}
2131
2132		/* Translate to on disk format */
2133		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2134		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2135		dp++;
2136		copied++;
 
 
 
 
 
 
 
 
 
 
 
2137	}
2138	ASSERT(copied != 0);
2139	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140
2141	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
 
 
 
 
 
2142}
2143
2144/*
2145 * Each of the following cases stores data into the same region
2146 * of the on-disk inode, so only one of them can be valid at
2147 * any given time. While it is possible to have conflicting formats
2148 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2149 * in EXTENTS format, this can only happen when the fork has
2150 * changed formats after being modified but before being flushed.
2151 * In these cases, the format always takes precedence, because the
2152 * format indicates the current state of the fork.
2153 */
2154/*ARGSUSED*/
2155STATIC void
2156xfs_iflush_fork(
2157	xfs_inode_t		*ip,
2158	xfs_dinode_t		*dip,
2159	xfs_inode_log_item_t	*iip,
2160	int			whichfork,
2161	xfs_buf_t		*bp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162{
2163	char			*cp;
2164	xfs_ifork_t		*ifp;
2165	xfs_mount_t		*mp;
2166#ifdef XFS_TRANS_DEBUG
2167	int			first;
2168#endif
2169	static const short	brootflag[2] =
2170		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2171	static const short	dataflag[2] =
2172		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2173	static const short	extflag[2] =
2174		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2175
2176	if (!iip)
2177		return;
2178	ifp = XFS_IFORK_PTR(ip, whichfork);
2179	/*
2180	 * This can happen if we gave up in iformat in an error path,
2181	 * for the attribute fork.
2182	 */
2183	if (!ifp) {
2184		ASSERT(whichfork == XFS_ATTR_FORK);
2185		return;
 
 
 
 
 
2186	}
2187	cp = XFS_DFORK_PTR(dip, whichfork);
2188	mp = ip->i_mount;
2189	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2190	case XFS_DINODE_FMT_LOCAL:
2191		if ((iip->ili_fields & dataflag[whichfork]) &&
2192		    (ifp->if_bytes > 0)) {
2193			ASSERT(ifp->if_u1.if_data != NULL);
2194			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2195			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196		}
2197		break;
2198
2199	case XFS_DINODE_FMT_EXTENTS:
2200		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2201		       !(iip->ili_fields & extflag[whichfork]));
2202		if ((iip->ili_fields & extflag[whichfork]) &&
2203		    (ifp->if_bytes > 0)) {
2204			ASSERT(xfs_iext_get_ext(ifp, 0));
2205			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2206			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2207				whichfork);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208		}
2209		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2210
2211	case XFS_DINODE_FMT_BTREE:
2212		if ((iip->ili_fields & brootflag[whichfork]) &&
2213		    (ifp->if_broot_bytes > 0)) {
2214			ASSERT(ifp->if_broot != NULL);
2215			ASSERT(ifp->if_broot_bytes <=
2216			       (XFS_IFORK_SIZE(ip, whichfork) +
2217				XFS_BROOT_SIZE_ADJ));
2218			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2219				(xfs_bmdr_block_t *)cp,
2220				XFS_DFORK_SIZE(dip, mp, whichfork));
 
 
2221		}
2222		break;
 
 
 
 
 
 
 
 
 
 
 
 
2223
2224	case XFS_DINODE_FMT_DEV:
2225		if (iip->ili_fields & XFS_ILOG_DEV) {
2226			ASSERT(whichfork == XFS_DATA_FORK);
2227			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228		}
2229		break;
2230
2231	case XFS_DINODE_FMT_UUID:
2232		if (iip->ili_fields & XFS_ILOG_UUID) {
2233			ASSERT(whichfork == XFS_DATA_FORK);
2234			memcpy(XFS_DFORK_DPTR(dip),
2235			       &ip->i_df.if_u2.if_uuid,
2236			       sizeof(uuid_t));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2237		}
2238		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239
2240	default:
2241		ASSERT(0);
2242		break;
 
 
 
2243	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2244}
2245
2246STATIC int
2247xfs_iflush_cluster(
2248	xfs_inode_t	*ip,
2249	xfs_buf_t	*bp)
2250{
2251	xfs_mount_t		*mp = ip->i_mount;
2252	struct xfs_perag	*pag;
2253	unsigned long		first_index, mask;
2254	unsigned long		inodes_per_cluster;
2255	int			ilist_size;
2256	xfs_inode_t		**ilist;
2257	xfs_inode_t		*iq;
2258	int			nr_found;
2259	int			clcount = 0;
2260	int			bufwasdelwri;
2261	int			i;
2262
2263	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2264
2265	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2266	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2267	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2268	if (!ilist)
2269		goto out_put;
2270
2271	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2272	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2273	rcu_read_lock();
2274	/* really need a gang lookup range call here */
2275	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2276					first_index, inodes_per_cluster);
2277	if (nr_found == 0)
2278		goto out_free;
2279
2280	for (i = 0; i < nr_found; i++) {
2281		iq = ilist[i];
2282		if (iq == ip)
2283			continue;
2284
2285		/*
2286		 * because this is an RCU protected lookup, we could find a
2287		 * recently freed or even reallocated inode during the lookup.
2288		 * We need to check under the i_flags_lock for a valid inode
2289		 * here. Skip it if it is not valid or the wrong inode.
2290		 */
2291		spin_lock(&ip->i_flags_lock);
2292		if (!ip->i_ino ||
2293		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2294			spin_unlock(&ip->i_flags_lock);
2295			continue;
2296		}
2297		spin_unlock(&ip->i_flags_lock);
2298
2299		/*
2300		 * Do an un-protected check to see if the inode is dirty and
2301		 * is a candidate for flushing.  These checks will be repeated
2302		 * later after the appropriate locks are acquired.
2303		 */
2304		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2305			continue;
2306
2307		/*
2308		 * Try to get locks.  If any are unavailable or it is pinned,
2309		 * then this inode cannot be flushed and is skipped.
2310		 */
2311
2312		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2313			continue;
2314		if (!xfs_iflock_nowait(iq)) {
2315			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2316			continue;
2317		}
2318		if (xfs_ipincount(iq)) {
2319			xfs_ifunlock(iq);
2320			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2321			continue;
2322		}
2323
2324		/*
2325		 * arriving here means that this inode can be flushed.  First
2326		 * re-check that it's dirty before flushing.
2327		 */
2328		if (!xfs_inode_clean(iq)) {
2329			int	error;
2330			error = xfs_iflush_int(iq, bp);
2331			if (error) {
2332				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2333				goto cluster_corrupt_out;
2334			}
2335			clcount++;
2336		} else {
2337			xfs_ifunlock(iq);
2338		}
2339		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2340	}
2341
2342	if (clcount) {
2343		XFS_STATS_INC(xs_icluster_flushcnt);
2344		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2345	}
2346
2347out_free:
2348	rcu_read_unlock();
2349	kmem_free(ilist);
2350out_put:
2351	xfs_perag_put(pag);
2352	return 0;
2353
2354
2355cluster_corrupt_out:
2356	/*
2357	 * Corruption detected in the clustering loop.  Invalidate the
2358	 * inode buffer and shut down the filesystem.
2359	 */
2360	rcu_read_unlock();
2361	/*
2362	 * Clean up the buffer.  If it was delwri, just release it --
2363	 * brelse can handle it with no problems.  If not, shut down the
2364	 * filesystem before releasing the buffer.
2365	 */
2366	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2367	if (bufwasdelwri)
2368		xfs_buf_relse(bp);
2369
2370	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2371
2372	if (!bufwasdelwri) {
2373		/*
2374		 * Just like incore_relse: if we have b_iodone functions,
2375		 * mark the buffer as an error and call them.  Otherwise
2376		 * mark it as stale and brelse.
2377		 */
2378		if (bp->b_iodone) {
2379			XFS_BUF_UNDONE(bp);
2380			xfs_buf_stale(bp);
2381			xfs_buf_ioerror(bp, EIO);
2382			xfs_buf_ioend(bp, 0);
2383		} else {
2384			xfs_buf_stale(bp);
2385			xfs_buf_relse(bp);
2386		}
2387	}
2388
2389	/*
2390	 * Unlocks the flush lock
2391	 */
2392	xfs_iflush_abort(iq, false);
2393	kmem_free(ilist);
2394	xfs_perag_put(pag);
2395	return XFS_ERROR(EFSCORRUPTED);
2396}
2397
2398/*
2399 * Flush dirty inode metadata into the backing buffer.
2400 *
2401 * The caller must have the inode lock and the inode flush lock held.  The
2402 * inode lock will still be held upon return to the caller, and the inode
2403 * flush lock will be released after the inode has reached the disk.
2404 *
2405 * The caller must write out the buffer returned in *bpp and release it.
2406 */
2407int
2408xfs_iflush(
2409	struct xfs_inode	*ip,
2410	struct xfs_buf		**bpp)
2411{
2412	struct xfs_mount	*mp = ip->i_mount;
2413	struct xfs_buf		*bp;
2414	struct xfs_dinode	*dip;
2415	int			error;
2416
2417	XFS_STATS_INC(xs_iflush_count);
2418
2419	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2420	ASSERT(xfs_isiflocked(ip));
2421	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2422	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2423
2424	*bpp = NULL;
2425
2426	xfs_iunpin_wait(ip);
2427
2428	/*
2429	 * For stale inodes we cannot rely on the backing buffer remaining
2430	 * stale in cache for the remaining life of the stale inode and so
2431	 * xfs_itobp() below may give us a buffer that no longer contains
2432	 * inodes below. We have to check this after ensuring the inode is
2433	 * unpinned so that it is safe to reclaim the stale inode after the
2434	 * flush call.
2435	 */
2436	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2437		xfs_ifunlock(ip);
2438		return 0;
2439	}
2440
2441	/*
2442	 * This may have been unpinned because the filesystem is shutting
2443	 * down forcibly. If that's the case we must not write this inode
2444	 * to disk, because the log record didn't make it to disk.
2445	 *
2446	 * We also have to remove the log item from the AIL in this case,
2447	 * as we wait for an empty AIL as part of the unmount process.
2448	 */
2449	if (XFS_FORCED_SHUTDOWN(mp)) {
2450		error = XFS_ERROR(EIO);
2451		goto abort_out;
2452	}
2453
2454	/*
2455	 * Get the buffer containing the on-disk inode.
2456	 */
2457	error = xfs_itobp(mp, NULL, ip, &dip, &bp, XBF_TRYLOCK);
 
2458	if (error || !bp) {
2459		xfs_ifunlock(ip);
2460		return error;
2461	}
2462
2463	/*
2464	 * First flush out the inode that xfs_iflush was called with.
2465	 */
2466	error = xfs_iflush_int(ip, bp);
2467	if (error)
2468		goto corrupt_out;
2469
2470	/*
2471	 * If the buffer is pinned then push on the log now so we won't
2472	 * get stuck waiting in the write for too long.
2473	 */
2474	if (xfs_buf_ispinned(bp))
2475		xfs_log_force(mp, 0);
2476
2477	/*
2478	 * inode clustering:
2479	 * see if other inodes can be gathered into this write
2480	 */
2481	error = xfs_iflush_cluster(ip, bp);
2482	if (error)
2483		goto cluster_corrupt_out;
2484
2485	*bpp = bp;
2486	return 0;
2487
2488corrupt_out:
2489	xfs_buf_relse(bp);
2490	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2491cluster_corrupt_out:
2492	error = XFS_ERROR(EFSCORRUPTED);
2493abort_out:
2494	/*
2495	 * Unlocks the flush lock
2496	 */
2497	xfs_iflush_abort(ip, false);
2498	return error;
2499}
2500
2501
2502STATIC int
2503xfs_iflush_int(
2504	xfs_inode_t		*ip,
2505	xfs_buf_t		*bp)
2506{
2507	xfs_inode_log_item_t	*iip;
2508	xfs_dinode_t		*dip;
2509	xfs_mount_t		*mp;
2510#ifdef XFS_TRANS_DEBUG
2511	int			first;
2512#endif
2513
2514	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2515	ASSERT(xfs_isiflocked(ip));
2516	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2517	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2518
2519	iip = ip->i_itemp;
2520	mp = ip->i_mount;
2521
2522	/* set *dip = inode's place in the buffer */
2523	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2524
2525	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2526			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2527		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2528			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2529			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2530		goto corrupt_out;
2531	}
2532	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2533				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2534		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2535			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2536			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2537		goto corrupt_out;
2538	}
2539	if (S_ISREG(ip->i_d.di_mode)) {
2540		if (XFS_TEST_ERROR(
2541		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2542		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2543		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2544			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2545				"%s: Bad regular inode %Lu, ptr 0x%p",
2546				__func__, ip->i_ino, ip);
2547			goto corrupt_out;
2548		}
2549	} else if (S_ISDIR(ip->i_d.di_mode)) {
2550		if (XFS_TEST_ERROR(
2551		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2552		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2553		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2554		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2555			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2556				"%s: Bad directory inode %Lu, ptr 0x%p",
2557				__func__, ip->i_ino, ip);
2558			goto corrupt_out;
2559		}
2560	}
2561	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2562				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2563				XFS_RANDOM_IFLUSH_5)) {
2564		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2565			"%s: detected corrupt incore inode %Lu, "
2566			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2567			__func__, ip->i_ino,
2568			ip->i_d.di_nextents + ip->i_d.di_anextents,
2569			ip->i_d.di_nblocks, ip);
2570		goto corrupt_out;
2571	}
2572	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2573				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2574		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2575			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2576			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2577		goto corrupt_out;
2578	}
2579	/*
2580	 * bump the flush iteration count, used to detect flushes which
2581	 * postdate a log record during recovery.
2582	 */
2583
2584	ip->i_d.di_flushiter++;
2585
2586	/*
2587	 * Copy the dirty parts of the inode into the on-disk
2588	 * inode.  We always copy out the core of the inode,
2589	 * because if the inode is dirty at all the core must
2590	 * be.
 
 
 
 
 
 
 
 
 
 
 
2591	 */
2592	xfs_dinode_to_disk(dip, &ip->i_d);
2593
2594	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2595	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2596		ip->i_d.di_flushiter = 0;
2597
2598	/*
2599	 * If this is really an old format inode and the superblock version
2600	 * has not been updated to support only new format inodes, then
2601	 * convert back to the old inode format.  If the superblock version
2602	 * has been updated, then make the conversion permanent.
2603	 */
2604	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2605	if (ip->i_d.di_version == 1) {
2606		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2607			/*
2608			 * Convert it back.
2609			 */
2610			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2611			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2612		} else {
2613			/*
2614			 * The superblock version has already been bumped,
2615			 * so just make the conversion to the new inode
2616			 * format permanent.
2617			 */
2618			ip->i_d.di_version = 2;
2619			dip->di_version = 2;
2620			ip->i_d.di_onlink = 0;
2621			dip->di_onlink = 0;
2622			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2623			memset(&(dip->di_pad[0]), 0,
2624			      sizeof(dip->di_pad));
2625			ASSERT(xfs_get_projid(ip) == 0);
2626		}
2627	}
2628
2629	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2630	if (XFS_IFORK_Q(ip))
2631		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2632	xfs_inobp_check(mp, bp);
2633
2634	/*
2635	 * We've recorded everything logged in the inode, so we'd like to clear
2636	 * the ili_fields bits so we don't log and flush things unnecessarily.
2637	 * However, we can't stop logging all this information until the data
2638	 * we've copied into the disk buffer is written to disk.  If we did we
2639	 * might overwrite the copy of the inode in the log with all the data
2640	 * after re-logging only part of it, and in the face of a crash we
2641	 * wouldn't have all the data we need to recover.
2642	 *
2643	 * What we do is move the bits to the ili_last_fields field.  When
2644	 * logging the inode, these bits are moved back to the ili_fields field.
2645	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2646	 * know that the information those bits represent is permanently on
2647	 * disk.  As long as the flush completes before the inode is logged
2648	 * again, then both ili_fields and ili_last_fields will be cleared.
2649	 *
2650	 * We can play with the ili_fields bits here, because the inode lock
2651	 * must be held exclusively in order to set bits there and the flush
2652	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
2653	 * done routine can tell whether or not to look in the AIL.  Also, store
2654	 * the current LSN of the inode so that we can tell whether the item has
2655	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
2656	 * need the AIL lock, because it is a 64 bit value that cannot be read
2657	 * atomically.
2658	 */
2659	if (iip != NULL && iip->ili_fields != 0) {
2660		iip->ili_last_fields = iip->ili_fields;
2661		iip->ili_fields = 0;
2662		iip->ili_logged = 1;
2663
2664		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2665					&iip->ili_item.li_lsn);
2666
2667		/*
2668		 * Attach the function xfs_iflush_done to the inode's
2669		 * buffer.  This will remove the inode from the AIL
2670		 * and unlock the inode's flush lock when the inode is
2671		 * completely written to disk.
2672		 */
2673		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2674
2675		ASSERT(bp->b_fspriv != NULL);
2676		ASSERT(bp->b_iodone != NULL);
2677	} else {
2678		/*
2679		 * We're flushing an inode which is not in the AIL and has
2680		 * not been logged.  For this case we can immediately drop
2681		 * the inode flush lock because we can avoid the whole
2682		 * AIL state thing.  It's OK to drop the flush lock now,
2683		 * because we've already locked the buffer and to do anything
2684		 * you really need both.
2685		 */
2686		if (iip != NULL) {
2687			ASSERT(iip->ili_logged == 0);
2688			ASSERT(iip->ili_last_fields == 0);
2689			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2690		}
2691		xfs_ifunlock(ip);
2692	}
2693
 
 
2694	return 0;
2695
2696corrupt_out:
2697	return XFS_ERROR(EFSCORRUPTED);
2698}
2699
2700/*
2701 * Return a pointer to the extent record at file index idx.
2702 */
2703xfs_bmbt_rec_host_t *
2704xfs_iext_get_ext(
2705	xfs_ifork_t	*ifp,		/* inode fork pointer */
2706	xfs_extnum_t	idx)		/* index of target extent */
2707{
2708	ASSERT(idx >= 0);
2709	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2710
2711	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2712		return ifp->if_u1.if_ext_irec->er_extbuf;
2713	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2714		xfs_ext_irec_t	*erp;		/* irec pointer */
2715		int		erp_idx = 0;	/* irec index */
2716		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
2717
2718		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2719		return &erp->er_extbuf[page_idx];
2720	} else if (ifp->if_bytes) {
2721		return &ifp->if_u1.if_extents[idx];
2722	} else {
2723		return NULL;
2724	}
2725}
2726
2727/*
2728 * Insert new item(s) into the extent records for incore inode
2729 * fork 'ifp'.  'count' new items are inserted at index 'idx'.
2730 */
2731void
2732xfs_iext_insert(
2733	xfs_inode_t	*ip,		/* incore inode pointer */
2734	xfs_extnum_t	idx,		/* starting index of new items */
2735	xfs_extnum_t	count,		/* number of inserted items */
2736	xfs_bmbt_irec_t	*new,		/* items to insert */
2737	int		state)		/* type of extent conversion */
2738{
2739	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2740	xfs_extnum_t	i;		/* extent record index */
2741
2742	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2743
2744	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2745	xfs_iext_add(ifp, idx, count);
2746	for (i = idx; i < idx + count; i++, new++)
2747		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2748}
2749
2750/*
2751 * This is called when the amount of space required for incore file
2752 * extents needs to be increased. The ext_diff parameter stores the
2753 * number of new extents being added and the idx parameter contains
2754 * the extent index where the new extents will be added. If the new
2755 * extents are being appended, then we just need to (re)allocate and
2756 * initialize the space. Otherwise, if the new extents are being
2757 * inserted into the middle of the existing entries, a bit more work
2758 * is required to make room for the new extents to be inserted. The
2759 * caller is responsible for filling in the new extent entries upon
2760 * return.
2761 */
2762void
2763xfs_iext_add(
2764	xfs_ifork_t	*ifp,		/* inode fork pointer */
2765	xfs_extnum_t	idx,		/* index to begin adding exts */
2766	int		ext_diff)	/* number of extents to add */
2767{
2768	int		byte_diff;	/* new bytes being added */
2769	int		new_size;	/* size of extents after adding */
2770	xfs_extnum_t	nextents;	/* number of extents in file */
2771
2772	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2773	ASSERT((idx >= 0) && (idx <= nextents));
2774	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2775	new_size = ifp->if_bytes + byte_diff;
2776	/*
2777	 * If the new number of extents (nextents + ext_diff)
2778	 * fits inside the inode, then continue to use the inline
2779	 * extent buffer.
2780	 */
2781	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2782		if (idx < nextents) {
2783			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2784				&ifp->if_u2.if_inline_ext[idx],
2785				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2786			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2787		}
2788		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2789		ifp->if_real_bytes = 0;
2790	}
2791	/*
2792	 * Otherwise use a linear (direct) extent list.
2793	 * If the extents are currently inside the inode,
2794	 * xfs_iext_realloc_direct will switch us from
2795	 * inline to direct extent allocation mode.
2796	 */
2797	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2798		xfs_iext_realloc_direct(ifp, new_size);
2799		if (idx < nextents) {
2800			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2801				&ifp->if_u1.if_extents[idx],
2802				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2803			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2804		}
2805	}
2806	/* Indirection array */
2807	else {
2808		xfs_ext_irec_t	*erp;
2809		int		erp_idx = 0;
2810		int		page_idx = idx;
2811
2812		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2813		if (ifp->if_flags & XFS_IFEXTIREC) {
2814			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2815		} else {
2816			xfs_iext_irec_init(ifp);
2817			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2818			erp = ifp->if_u1.if_ext_irec;
2819		}
2820		/* Extents fit in target extent page */
2821		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2822			if (page_idx < erp->er_extcount) {
2823				memmove(&erp->er_extbuf[page_idx + ext_diff],
2824					&erp->er_extbuf[page_idx],
2825					(erp->er_extcount - page_idx) *
2826					sizeof(xfs_bmbt_rec_t));
2827				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2828			}
2829			erp->er_extcount += ext_diff;
2830			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2831		}
2832		/* Insert a new extent page */
2833		else if (erp) {
2834			xfs_iext_add_indirect_multi(ifp,
2835				erp_idx, page_idx, ext_diff);
2836		}
2837		/*
2838		 * If extent(s) are being appended to the last page in
2839		 * the indirection array and the new extent(s) don't fit
2840		 * in the page, then erp is NULL and erp_idx is set to
2841		 * the next index needed in the indirection array.
2842		 */
2843		else {
2844			int	count = ext_diff;
2845
2846			while (count) {
2847				erp = xfs_iext_irec_new(ifp, erp_idx);
2848				erp->er_extcount = count;
2849				count -= MIN(count, (int)XFS_LINEAR_EXTS);
2850				if (count) {
2851					erp_idx++;
2852				}
2853			}
2854		}
2855	}
2856	ifp->if_bytes = new_size;
2857}
2858
2859/*
2860 * This is called when incore extents are being added to the indirection
2861 * array and the new extents do not fit in the target extent list. The
2862 * erp_idx parameter contains the irec index for the target extent list
2863 * in the indirection array, and the idx parameter contains the extent
2864 * index within the list. The number of extents being added is stored
2865 * in the count parameter.
2866 *
2867 *    |-------|   |-------|
2868 *    |       |   |       |    idx - number of extents before idx
2869 *    |  idx  |   | count |
2870 *    |       |   |       |    count - number of extents being inserted at idx
2871 *    |-------|   |-------|
2872 *    | count |   | nex2  |    nex2 - number of extents after idx + count
2873 *    |-------|   |-------|
2874 */
2875void
2876xfs_iext_add_indirect_multi(
2877	xfs_ifork_t	*ifp,			/* inode fork pointer */
2878	int		erp_idx,		/* target extent irec index */
2879	xfs_extnum_t	idx,			/* index within target list */
2880	int		count)			/* new extents being added */
2881{
2882	int		byte_diff;		/* new bytes being added */
2883	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
2884	xfs_extnum_t	ext_diff;		/* number of extents to add */
2885	xfs_extnum_t	ext_cnt;		/* new extents still needed */
2886	xfs_extnum_t	nex2;			/* extents after idx + count */
2887	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
2888	int		nlists;			/* number of irec's (lists) */
2889
2890	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2891	erp = &ifp->if_u1.if_ext_irec[erp_idx];
2892	nex2 = erp->er_extcount - idx;
2893	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2894
2895	/*
2896	 * Save second part of target extent list
2897	 * (all extents past */
2898	if (nex2) {
2899		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2900		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
2901		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2902		erp->er_extcount -= nex2;
2903		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2904		memset(&erp->er_extbuf[idx], 0, byte_diff);
2905	}
2906
2907	/*
2908	 * Add the new extents to the end of the target
2909	 * list, then allocate new irec record(s) and
2910	 * extent buffer(s) as needed to store the rest
2911	 * of the new extents.
2912	 */
2913	ext_cnt = count;
2914	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2915	if (ext_diff) {
2916		erp->er_extcount += ext_diff;
2917		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2918		ext_cnt -= ext_diff;
2919	}
2920	while (ext_cnt) {
2921		erp_idx++;
2922		erp = xfs_iext_irec_new(ifp, erp_idx);
2923		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2924		erp->er_extcount = ext_diff;
2925		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2926		ext_cnt -= ext_diff;
2927	}
2928
2929	/* Add nex2 extents back to indirection array */
2930	if (nex2) {
2931		xfs_extnum_t	ext_avail;
2932		int		i;
2933
2934		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2935		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2936		i = 0;
2937		/*
2938		 * If nex2 extents fit in the current page, append
2939		 * nex2_ep after the new extents.
2940		 */
2941		if (nex2 <= ext_avail) {
2942			i = erp->er_extcount;
2943		}
2944		/*
2945		 * Otherwise, check if space is available in the
2946		 * next page.
2947		 */
2948		else if ((erp_idx < nlists - 1) &&
2949			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2950			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2951			erp_idx++;
2952			erp++;
2953			/* Create a hole for nex2 extents */
2954			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
2955				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
2956		}
2957		/*
2958		 * Final choice, create a new extent page for
2959		 * nex2 extents.
2960		 */
2961		else {
2962			erp_idx++;
2963			erp = xfs_iext_irec_new(ifp, erp_idx);
2964		}
2965		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
2966		kmem_free(nex2_ep);
2967		erp->er_extcount += nex2;
2968		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
2969	}
2970}
2971
2972/*
2973 * This is called when the amount of space required for incore file
2974 * extents needs to be decreased. The ext_diff parameter stores the
2975 * number of extents to be removed and the idx parameter contains
2976 * the extent index where the extents will be removed from.
2977 *
2978 * If the amount of space needed has decreased below the linear
2979 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
2980 * extent array.  Otherwise, use kmem_realloc() to adjust the
2981 * size to what is needed.
2982 */
2983void
2984xfs_iext_remove(
2985	xfs_inode_t	*ip,		/* incore inode pointer */
2986	xfs_extnum_t	idx,		/* index to begin removing exts */
2987	int		ext_diff,	/* number of extents to remove */
2988	int		state)		/* type of extent conversion */
2989{
2990	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2991	xfs_extnum_t	nextents;	/* number of extents in file */
2992	int		new_size;	/* size of extents after removal */
2993
2994	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
2995
2996	ASSERT(ext_diff > 0);
2997	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2998	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
2999
3000	if (new_size == 0) {
3001		xfs_iext_destroy(ifp);
3002	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3003		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3004	} else if (ifp->if_real_bytes) {
3005		xfs_iext_remove_direct(ifp, idx, ext_diff);
3006	} else {
3007		xfs_iext_remove_inline(ifp, idx, ext_diff);
3008	}
3009	ifp->if_bytes = new_size;
3010}
3011
3012/*
3013 * This removes ext_diff extents from the inline buffer, beginning
3014 * at extent index idx.
3015 */
3016void
3017xfs_iext_remove_inline(
3018	xfs_ifork_t	*ifp,		/* inode fork pointer */
3019	xfs_extnum_t	idx,		/* index to begin removing exts */
3020	int		ext_diff)	/* number of extents to remove */
3021{
3022	int		nextents;	/* number of extents in file */
3023
3024	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3025	ASSERT(idx < XFS_INLINE_EXTS);
3026	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3027	ASSERT(((nextents - ext_diff) > 0) &&
3028		(nextents - ext_diff) < XFS_INLINE_EXTS);
3029
3030	if (idx + ext_diff < nextents) {
3031		memmove(&ifp->if_u2.if_inline_ext[idx],
3032			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3033			(nextents - (idx + ext_diff)) *
3034			 sizeof(xfs_bmbt_rec_t));
3035		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3036			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3037	} else {
3038		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3039			ext_diff * sizeof(xfs_bmbt_rec_t));
3040	}
3041}
3042
3043/*
3044 * This removes ext_diff extents from a linear (direct) extent list,
3045 * beginning at extent index idx. If the extents are being removed
3046 * from the end of the list (ie. truncate) then we just need to re-
3047 * allocate the list to remove the extra space. Otherwise, if the
3048 * extents are being removed from the middle of the existing extent
3049 * entries, then we first need to move the extent records beginning
3050 * at idx + ext_diff up in the list to overwrite the records being
3051 * removed, then remove the extra space via kmem_realloc.
3052 */
3053void
3054xfs_iext_remove_direct(
3055	xfs_ifork_t	*ifp,		/* inode fork pointer */
3056	xfs_extnum_t	idx,		/* index to begin removing exts */
3057	int		ext_diff)	/* number of extents to remove */
3058{
3059	xfs_extnum_t	nextents;	/* number of extents in file */
3060	int		new_size;	/* size of extents after removal */
3061
3062	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3063	new_size = ifp->if_bytes -
3064		(ext_diff * sizeof(xfs_bmbt_rec_t));
3065	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3066
3067	if (new_size == 0) {
3068		xfs_iext_destroy(ifp);
3069		return;
3070	}
3071	/* Move extents up in the list (if needed) */
3072	if (idx + ext_diff < nextents) {
3073		memmove(&ifp->if_u1.if_extents[idx],
3074			&ifp->if_u1.if_extents[idx + ext_diff],
3075			(nextents - (idx + ext_diff)) *
3076			 sizeof(xfs_bmbt_rec_t));
3077	}
3078	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3079		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3080	/*
3081	 * Reallocate the direct extent list. If the extents
3082	 * will fit inside the inode then xfs_iext_realloc_direct
3083	 * will switch from direct to inline extent allocation
3084	 * mode for us.
3085	 */
3086	xfs_iext_realloc_direct(ifp, new_size);
3087	ifp->if_bytes = new_size;
3088}
3089
3090/*
3091 * This is called when incore extents are being removed from the
3092 * indirection array and the extents being removed span multiple extent
3093 * buffers. The idx parameter contains the file extent index where we
3094 * want to begin removing extents, and the count parameter contains
3095 * how many extents need to be removed.
3096 *
3097 *    |-------|   |-------|
3098 *    | nex1  |   |       |    nex1 - number of extents before idx
3099 *    |-------|   | count |
3100 *    |       |   |       |    count - number of extents being removed at idx
3101 *    | count |   |-------|
3102 *    |       |   | nex2  |    nex2 - number of extents after idx + count
3103 *    |-------|   |-------|
3104 */
3105void
3106xfs_iext_remove_indirect(
3107	xfs_ifork_t	*ifp,		/* inode fork pointer */
3108	xfs_extnum_t	idx,		/* index to begin removing extents */
3109	int		count)		/* number of extents to remove */
3110{
3111	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3112	int		erp_idx = 0;	/* indirection array index */
3113	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3114	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3115	xfs_extnum_t	nex1;		/* number of extents before idx */
3116	xfs_extnum_t	nex2;		/* extents after idx + count */
3117	int		page_idx = idx;	/* index in target extent list */
3118
3119	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3120	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3121	ASSERT(erp != NULL);
3122	nex1 = page_idx;
3123	ext_cnt = count;
3124	while (ext_cnt) {
3125		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3126		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3127		/*
3128		 * Check for deletion of entire list;
3129		 * xfs_iext_irec_remove() updates extent offsets.
3130		 */
3131		if (ext_diff == erp->er_extcount) {
3132			xfs_iext_irec_remove(ifp, erp_idx);
3133			ext_cnt -= ext_diff;
3134			nex1 = 0;
3135			if (ext_cnt) {
3136				ASSERT(erp_idx < ifp->if_real_bytes /
3137					XFS_IEXT_BUFSZ);
3138				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3139				nex1 = 0;
3140				continue;
3141			} else {
3142				break;
3143			}
3144		}
3145		/* Move extents up (if needed) */
3146		if (nex2) {
3147			memmove(&erp->er_extbuf[nex1],
3148				&erp->er_extbuf[nex1 + ext_diff],
3149				nex2 * sizeof(xfs_bmbt_rec_t));
3150		}
3151		/* Zero out rest of page */
3152		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3153			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3154		/* Update remaining counters */
3155		erp->er_extcount -= ext_diff;
3156		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3157		ext_cnt -= ext_diff;
3158		nex1 = 0;
3159		erp_idx++;
3160		erp++;
3161	}
3162	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3163	xfs_iext_irec_compact(ifp);
3164}
3165
3166/*
3167 * Create, destroy, or resize a linear (direct) block of extents.
3168 */
3169void
3170xfs_iext_realloc_direct(
3171	xfs_ifork_t	*ifp,		/* inode fork pointer */
3172	int		new_size)	/* new size of extents */
3173{
3174	int		rnew_size;	/* real new size of extents */
3175
3176	rnew_size = new_size;
3177
3178	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3179		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3180		 (new_size != ifp->if_real_bytes)));
3181
3182	/* Free extent records */
3183	if (new_size == 0) {
3184		xfs_iext_destroy(ifp);
3185	}
3186	/* Resize direct extent list and zero any new bytes */
3187	else if (ifp->if_real_bytes) {
3188		/* Check if extents will fit inside the inode */
3189		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3190			xfs_iext_direct_to_inline(ifp, new_size /
3191				(uint)sizeof(xfs_bmbt_rec_t));
3192			ifp->if_bytes = new_size;
3193			return;
3194		}
3195		if (!is_power_of_2(new_size)){
3196			rnew_size = roundup_pow_of_two(new_size);
3197		}
3198		if (rnew_size != ifp->if_real_bytes) {
3199			ifp->if_u1.if_extents =
3200				kmem_realloc(ifp->if_u1.if_extents,
3201						rnew_size,
3202						ifp->if_real_bytes, KM_NOFS);
3203		}
3204		if (rnew_size > ifp->if_real_bytes) {
3205			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3206				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3207				rnew_size - ifp->if_real_bytes);
3208		}
3209	}
3210	/*
3211	 * Switch from the inline extent buffer to a direct
3212	 * extent list. Be sure to include the inline extent
3213	 * bytes in new_size.
3214	 */
3215	else {
3216		new_size += ifp->if_bytes;
3217		if (!is_power_of_2(new_size)) {
3218			rnew_size = roundup_pow_of_two(new_size);
3219		}
3220		xfs_iext_inline_to_direct(ifp, rnew_size);
3221	}
3222	ifp->if_real_bytes = rnew_size;
3223	ifp->if_bytes = new_size;
3224}
3225
3226/*
3227 * Switch from linear (direct) extent records to inline buffer.
3228 */
3229void
3230xfs_iext_direct_to_inline(
3231	xfs_ifork_t	*ifp,		/* inode fork pointer */
3232	xfs_extnum_t	nextents)	/* number of extents in file */
3233{
3234	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3235	ASSERT(nextents <= XFS_INLINE_EXTS);
3236	/*
3237	 * The inline buffer was zeroed when we switched
3238	 * from inline to direct extent allocation mode,
3239	 * so we don't need to clear it here.
3240	 */
3241	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3242		nextents * sizeof(xfs_bmbt_rec_t));
3243	kmem_free(ifp->if_u1.if_extents);
3244	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3245	ifp->if_real_bytes = 0;
3246}
3247
3248/*
3249 * Switch from inline buffer to linear (direct) extent records.
3250 * new_size should already be rounded up to the next power of 2
3251 * by the caller (when appropriate), so use new_size as it is.
3252 * However, since new_size may be rounded up, we can't update
3253 * if_bytes here. It is the caller's responsibility to update
3254 * if_bytes upon return.
3255 */
3256void
3257xfs_iext_inline_to_direct(
3258	xfs_ifork_t	*ifp,		/* inode fork pointer */
3259	int		new_size)	/* number of extents in file */
3260{
3261	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3262	memset(ifp->if_u1.if_extents, 0, new_size);
3263	if (ifp->if_bytes) {
3264		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3265			ifp->if_bytes);
3266		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3267			sizeof(xfs_bmbt_rec_t));
3268	}
3269	ifp->if_real_bytes = new_size;
3270}
3271
3272/*
3273 * Resize an extent indirection array to new_size bytes.
3274 */
3275STATIC void
3276xfs_iext_realloc_indirect(
3277	xfs_ifork_t	*ifp,		/* inode fork pointer */
3278	int		new_size)	/* new indirection array size */
3279{
3280	int		nlists;		/* number of irec's (ex lists) */
3281	int		size;		/* current indirection array size */
3282
3283	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3284	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3285	size = nlists * sizeof(xfs_ext_irec_t);
3286	ASSERT(ifp->if_real_bytes);
3287	ASSERT((new_size >= 0) && (new_size != size));
3288	if (new_size == 0) {
3289		xfs_iext_destroy(ifp);
3290	} else {
3291		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3292			kmem_realloc(ifp->if_u1.if_ext_irec,
3293				new_size, size, KM_NOFS);
3294	}
3295}
3296
3297/*
3298 * Switch from indirection array to linear (direct) extent allocations.
3299 */
3300STATIC void
3301xfs_iext_indirect_to_direct(
3302	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3303{
3304	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3305	xfs_extnum_t	nextents;	/* number of extents in file */
3306	int		size;		/* size of file extents */
3307
3308	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3309	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3310	ASSERT(nextents <= XFS_LINEAR_EXTS);
3311	size = nextents * sizeof(xfs_bmbt_rec_t);
3312
3313	xfs_iext_irec_compact_pages(ifp);
3314	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3315
3316	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3317	kmem_free(ifp->if_u1.if_ext_irec);
3318	ifp->if_flags &= ~XFS_IFEXTIREC;
3319	ifp->if_u1.if_extents = ep;
3320	ifp->if_bytes = size;
3321	if (nextents < XFS_LINEAR_EXTS) {
3322		xfs_iext_realloc_direct(ifp, size);
3323	}
3324}
3325
3326/*
3327 * Free incore file extents.
3328 */
3329void
3330xfs_iext_destroy(
3331	xfs_ifork_t	*ifp)		/* inode fork pointer */
3332{
3333	if (ifp->if_flags & XFS_IFEXTIREC) {
3334		int	erp_idx;
3335		int	nlists;
3336
3337		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3338		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3339			xfs_iext_irec_remove(ifp, erp_idx);
3340		}
3341		ifp->if_flags &= ~XFS_IFEXTIREC;
3342	} else if (ifp->if_real_bytes) {
3343		kmem_free(ifp->if_u1.if_extents);
3344	} else if (ifp->if_bytes) {
3345		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3346			sizeof(xfs_bmbt_rec_t));
3347	}
3348	ifp->if_u1.if_extents = NULL;
3349	ifp->if_real_bytes = 0;
3350	ifp->if_bytes = 0;
3351}
3352
3353/*
3354 * Return a pointer to the extent record for file system block bno.
3355 */
3356xfs_bmbt_rec_host_t *			/* pointer to found extent record */
3357xfs_iext_bno_to_ext(
3358	xfs_ifork_t	*ifp,		/* inode fork pointer */
3359	xfs_fileoff_t	bno,		/* block number to search for */
3360	xfs_extnum_t	*idxp)		/* index of target extent */
3361{
3362	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3363	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3364	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3365	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3366	int		high;		/* upper boundary in search */
3367	xfs_extnum_t	idx = 0;	/* index of target extent */
3368	int		low;		/* lower boundary in search */
3369	xfs_extnum_t	nextents;	/* number of file extents */
3370	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3371
3372	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3373	if (nextents == 0) {
3374		*idxp = 0;
3375		return NULL;
3376	}
3377	low = 0;
3378	if (ifp->if_flags & XFS_IFEXTIREC) {
3379		/* Find target extent list */
3380		int	erp_idx = 0;
3381		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3382		base = erp->er_extbuf;
3383		high = erp->er_extcount - 1;
3384	} else {
3385		base = ifp->if_u1.if_extents;
3386		high = nextents - 1;
3387	}
3388	/* Binary search extent records */
3389	while (low <= high) {
3390		idx = (low + high) >> 1;
3391		ep = base + idx;
3392		startoff = xfs_bmbt_get_startoff(ep);
3393		blockcount = xfs_bmbt_get_blockcount(ep);
3394		if (bno < startoff) {
3395			high = idx - 1;
3396		} else if (bno >= startoff + blockcount) {
3397			low = idx + 1;
3398		} else {
3399			/* Convert back to file-based extent index */
3400			if (ifp->if_flags & XFS_IFEXTIREC) {
3401				idx += erp->er_extoff;
3402			}
3403			*idxp = idx;
3404			return ep;
3405		}
3406	}
3407	/* Convert back to file-based extent index */
3408	if (ifp->if_flags & XFS_IFEXTIREC) {
3409		idx += erp->er_extoff;
3410	}
3411	if (bno >= startoff + blockcount) {
3412		if (++idx == nextents) {
3413			ep = NULL;
3414		} else {
3415			ep = xfs_iext_get_ext(ifp, idx);
3416		}
3417	}
3418	*idxp = idx;
3419	return ep;
3420}
3421
3422/*
3423 * Return a pointer to the indirection array entry containing the
3424 * extent record for filesystem block bno. Store the index of the
3425 * target irec in *erp_idxp.
3426 */
3427xfs_ext_irec_t *			/* pointer to found extent record */
3428xfs_iext_bno_to_irec(
3429	xfs_ifork_t	*ifp,		/* inode fork pointer */
3430	xfs_fileoff_t	bno,		/* block number to search for */
3431	int		*erp_idxp)	/* irec index of target ext list */
3432{
3433	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3434	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3435	int		erp_idx;	/* indirection array index */
3436	int		nlists;		/* number of extent irec's (lists) */
3437	int		high;		/* binary search upper limit */
3438	int		low;		/* binary search lower limit */
3439
3440	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3441	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3442	erp_idx = 0;
3443	low = 0;
3444	high = nlists - 1;
3445	while (low <= high) {
3446		erp_idx = (low + high) >> 1;
3447		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3448		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3449		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3450			high = erp_idx - 1;
3451		} else if (erp_next && bno >=
3452			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3453			low = erp_idx + 1;
3454		} else {
3455			break;
3456		}
3457	}
3458	*erp_idxp = erp_idx;
3459	return erp;
3460}
3461
3462/*
3463 * Return a pointer to the indirection array entry containing the
3464 * extent record at file extent index *idxp. Store the index of the
3465 * target irec in *erp_idxp and store the page index of the target
3466 * extent record in *idxp.
3467 */
3468xfs_ext_irec_t *
3469xfs_iext_idx_to_irec(
3470	xfs_ifork_t	*ifp,		/* inode fork pointer */
3471	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3472	int		*erp_idxp,	/* pointer to target irec */
3473	int		realloc)	/* new bytes were just added */
3474{
3475	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3476	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3477	int		erp_idx;	/* indirection array index */
3478	int		nlists;		/* number of irec's (ex lists) */
3479	int		high;		/* binary search upper limit */
3480	int		low;		/* binary search lower limit */
3481	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3482
3483	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3484	ASSERT(page_idx >= 0);
3485	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3486	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3487
3488	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3489	erp_idx = 0;
3490	low = 0;
3491	high = nlists - 1;
3492
3493	/* Binary search extent irec's */
3494	while (low <= high) {
3495		erp_idx = (low + high) >> 1;
3496		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3497		prev = erp_idx > 0 ? erp - 1 : NULL;
3498		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3499		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3500			high = erp_idx - 1;
3501		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3502			   (page_idx == erp->er_extoff + erp->er_extcount &&
3503			    !realloc)) {
3504			low = erp_idx + 1;
3505		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3506			   erp->er_extcount == XFS_LINEAR_EXTS) {
3507			ASSERT(realloc);
3508			page_idx = 0;
3509			erp_idx++;
3510			erp = erp_idx < nlists ? erp + 1 : NULL;
3511			break;
3512		} else {
3513			page_idx -= erp->er_extoff;
3514			break;
3515		}
3516	}
3517	*idxp = page_idx;
3518	*erp_idxp = erp_idx;
3519	return(erp);
3520}
3521
3522/*
3523 * Allocate and initialize an indirection array once the space needed
3524 * for incore extents increases above XFS_IEXT_BUFSZ.
3525 */
3526void
3527xfs_iext_irec_init(
3528	xfs_ifork_t	*ifp)		/* inode fork pointer */
3529{
3530	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3531	xfs_extnum_t	nextents;	/* number of extents in file */
3532
3533	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3534	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3535	ASSERT(nextents <= XFS_LINEAR_EXTS);
3536
3537	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3538
3539	if (nextents == 0) {
3540		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3541	} else if (!ifp->if_real_bytes) {
3542		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3543	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3544		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3545	}
3546	erp->er_extbuf = ifp->if_u1.if_extents;
3547	erp->er_extcount = nextents;
3548	erp->er_extoff = 0;
3549
3550	ifp->if_flags |= XFS_IFEXTIREC;
3551	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3552	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3553	ifp->if_u1.if_ext_irec = erp;
3554
3555	return;
3556}
3557
3558/*
3559 * Allocate and initialize a new entry in the indirection array.
3560 */
3561xfs_ext_irec_t *
3562xfs_iext_irec_new(
3563	xfs_ifork_t	*ifp,		/* inode fork pointer */
3564	int		erp_idx)	/* index for new irec */
3565{
3566	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3567	int		i;		/* loop counter */
3568	int		nlists;		/* number of irec's (ex lists) */
3569
3570	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3571	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3572
3573	/* Resize indirection array */
3574	xfs_iext_realloc_indirect(ifp, ++nlists *
3575				  sizeof(xfs_ext_irec_t));
3576	/*
3577	 * Move records down in the array so the
3578	 * new page can use erp_idx.
3579	 */
3580	erp = ifp->if_u1.if_ext_irec;
3581	for (i = nlists - 1; i > erp_idx; i--) {
3582		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3583	}
3584	ASSERT(i == erp_idx);
3585
3586	/* Initialize new extent record */
3587	erp = ifp->if_u1.if_ext_irec;
3588	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3589	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3590	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3591	erp[erp_idx].er_extcount = 0;
3592	erp[erp_idx].er_extoff = erp_idx > 0 ?
3593		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3594	return (&erp[erp_idx]);
3595}
3596
3597/*
3598 * Remove a record from the indirection array.
3599 */
3600void
3601xfs_iext_irec_remove(
3602	xfs_ifork_t	*ifp,		/* inode fork pointer */
3603	int		erp_idx)	/* irec index to remove */
3604{
3605	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3606	int		i;		/* loop counter */
3607	int		nlists;		/* number of irec's (ex lists) */
3608
3609	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3610	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3611	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3612	if (erp->er_extbuf) {
3613		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3614			-erp->er_extcount);
3615		kmem_free(erp->er_extbuf);
3616	}
3617	/* Compact extent records */
3618	erp = ifp->if_u1.if_ext_irec;
3619	for (i = erp_idx; i < nlists - 1; i++) {
3620		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3621	}
3622	/*
3623	 * Manually free the last extent record from the indirection
3624	 * array.  A call to xfs_iext_realloc_indirect() with a size
3625	 * of zero would result in a call to xfs_iext_destroy() which
3626	 * would in turn call this function again, creating a nasty
3627	 * infinite loop.
3628	 */
3629	if (--nlists) {
3630		xfs_iext_realloc_indirect(ifp,
3631			nlists * sizeof(xfs_ext_irec_t));
3632	} else {
3633		kmem_free(ifp->if_u1.if_ext_irec);
3634	}
3635	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3636}
3637
3638/*
3639 * This is called to clean up large amounts of unused memory allocated
3640 * by the indirection array.  Before compacting anything though, verify
3641 * that the indirection array is still needed and switch back to the
3642 * linear extent list (or even the inline buffer) if possible.  The
3643 * compaction policy is as follows:
3644 *
3645 *    Full Compaction: Extents fit into a single page (or inline buffer)
3646 * Partial Compaction: Extents occupy less than 50% of allocated space
3647 *      No Compaction: Extents occupy at least 50% of allocated space
3648 */
3649void
3650xfs_iext_irec_compact(
3651	xfs_ifork_t	*ifp)		/* inode fork pointer */
3652{
3653	xfs_extnum_t	nextents;	/* number of extents in file */
3654	int		nlists;		/* number of irec's (ex lists) */
3655
3656	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3657	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3658	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3659
3660	if (nextents == 0) {
3661		xfs_iext_destroy(ifp);
3662	} else if (nextents <= XFS_INLINE_EXTS) {
3663		xfs_iext_indirect_to_direct(ifp);
3664		xfs_iext_direct_to_inline(ifp, nextents);
3665	} else if (nextents <= XFS_LINEAR_EXTS) {
3666		xfs_iext_indirect_to_direct(ifp);
3667	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3668		xfs_iext_irec_compact_pages(ifp);
3669	}
3670}
3671
3672/*
3673 * Combine extents from neighboring extent pages.
3674 */
3675void
3676xfs_iext_irec_compact_pages(
3677	xfs_ifork_t	*ifp)		/* inode fork pointer */
3678{
3679	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3680	int		erp_idx = 0;	/* indirection array index */
3681	int		nlists;		/* number of irec's (ex lists) */
3682
3683	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3684	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3685	while (erp_idx < nlists - 1) {
3686		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3687		erp_next = erp + 1;
3688		if (erp_next->er_extcount <=
3689		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3690			memcpy(&erp->er_extbuf[erp->er_extcount],
3691				erp_next->er_extbuf, erp_next->er_extcount *
3692				sizeof(xfs_bmbt_rec_t));
3693			erp->er_extcount += erp_next->er_extcount;
3694			/*
3695			 * Free page before removing extent record
3696			 * so er_extoffs don't get modified in
3697			 * xfs_iext_irec_remove.
3698			 */
3699			kmem_free(erp_next->er_extbuf);
3700			erp_next->er_extbuf = NULL;
3701			xfs_iext_irec_remove(ifp, erp_idx + 1);
3702			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3703		} else {
3704			erp_idx++;
3705		}
3706	}
3707}
3708
3709/*
3710 * This is called to update the er_extoff field in the indirection
3711 * array when extents have been added or removed from one of the
3712 * extent lists. erp_idx contains the irec index to begin updating
3713 * at and ext_diff contains the number of extents that were added
3714 * or removed.
3715 */
3716void
3717xfs_iext_irec_update_extoffs(
3718	xfs_ifork_t	*ifp,		/* inode fork pointer */
3719	int		erp_idx,	/* irec index to update */
3720	int		ext_diff)	/* number of new extents */
3721{
3722	int		i;		/* loop counter */
3723	int		nlists;		/* number of irec's (ex lists */
3724
3725	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3726	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3727	for (i = erp_idx; i < nlists; i++) {
3728		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3729	}
3730}