Linux Audio

Check our new training course

Loading...
v4.6
  1/*P:200 This contains all the /dev/lguest code, whereby the userspace
  2 * launcher controls and communicates with the Guest.  For example,
  3 * the first write will tell us the Guest's memory layout and entry
  4 * point.  A read will run the Guest until something happens, such as
  5 * a signal or the Guest accessing a device.
 
 
  6:*/
  7#include <linux/uaccess.h>
  8#include <linux/miscdevice.h>
  9#include <linux/fs.h>
 10#include <linux/sched.h>
 
 11#include <linux/file.h>
 12#include <linux/slab.h>
 13#include <linux/export.h>
 14#include "lg.h"
 15
 16/*L:052
 17  The Launcher can get the registers, and also set some of them.
 18*/
 19static int getreg_setup(struct lg_cpu *cpu, const unsigned long __user *input)
 
 
 
 
 
 20{
 21	unsigned long which;
 
 22
 23	/* We re-use the ptrace structure to specify which register to read. */
 24	if (get_user(which, input) != 0)
 25		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26
 27	/*
 28	 * We set up the cpu register pointer, and their next read will
 29	 * actually get the value (instead of running the guest).
 
 
 30	 *
 31	 * The last argument 'true' says we can access any register.
 
 32	 */
 33	cpu->reg_read = lguest_arch_regptr(cpu, which, true);
 34	if (!cpu->reg_read)
 35		return -ENOENT;
 36
 37	/* And because this is a write() call, we return the length used. */
 38	return sizeof(unsigned long) * 2;
 
 
 
 
 
 
 39}
 40
 41static int setreg(struct lg_cpu *cpu, const unsigned long __user *input)
 
 
 
 
 
 
 
 
 42{
 43	unsigned long which, value, *reg;
 
 44
 45	/* We re-use the ptrace structure to specify which register to read. */
 46	if (get_user(which, input) != 0)
 47		return -EFAULT;
 48	input++;
 49	if (get_user(value, input) != 0)
 50		return -EFAULT;
 51
 52	/* The last argument 'false' means we can't access all registers. */
 53	reg = lguest_arch_regptr(cpu, which, false);
 54	if (!reg)
 55		return -ENOENT;
 56
 57	*reg = value;
 
 
 58
 59	/* And because this is a write() call, we return the length used. */
 60	return sizeof(unsigned long) * 3;
 61}
 62
 63/*L:050
 64 * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
 65 * number to /dev/lguest.
 66 */
 67static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
 68{
 69	unsigned long irq;
 70
 71	if (get_user(irq, input) != 0)
 72		return -EFAULT;
 73	if (irq >= LGUEST_IRQS)
 74		return -EINVAL;
 75
 76	/*
 77	 * Next time the Guest runs, the core code will see if it can deliver
 78	 * this interrupt.
 79	 */
 80	set_interrupt(cpu, irq);
 81	return 0;
 82}
 83
 84/*L:053
 85 * Deliver a trap: this is used by the Launcher if it can't emulate
 86 * an instruction.
 87 */
 88static int trap(struct lg_cpu *cpu, const unsigned long __user *input)
 89{
 90	unsigned long trapnum;
 91
 92	if (get_user(trapnum, input) != 0)
 93		return -EFAULT;
 94
 95	if (!deliver_trap(cpu, trapnum))
 96		return -EINVAL;
 97
 98	return 0;
 99}
100
101/*L:040
102 * Once our Guest is initialized, the Launcher makes it run by reading
103 * from /dev/lguest.
104 */
105static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
106{
107	struct lguest *lg = file->private_data;
108	struct lg_cpu *cpu;
109	unsigned int cpu_id = *o;
110
111	/* You must write LHREQ_INITIALIZE first! */
112	if (!lg)
113		return -EINVAL;
114
115	/* Watch out for arbitrary vcpu indexes! */
116	if (cpu_id >= lg->nr_cpus)
117		return -EINVAL;
118
119	cpu = &lg->cpus[cpu_id];
120
121	/* If you're not the task which owns the Guest, go away. */
122	if (current != cpu->tsk)
123		return -EPERM;
124
125	/* If the Guest is already dead, we indicate why */
126	if (lg->dead) {
127		size_t len;
128
129		/* lg->dead either contains an error code, or a string. */
130		if (IS_ERR(lg->dead))
131			return PTR_ERR(lg->dead);
132
133		/* We can only return as much as the buffer they read with. */
134		len = min(size, strlen(lg->dead)+1);
135		if (copy_to_user(user, lg->dead, len) != 0)
136			return -EFAULT;
137		return len;
138	}
139
140	/*
141	 * If we returned from read() last time because the Guest sent I/O,
142	 * clear the flag.
143	 */
144	if (cpu->pending.trap)
145		cpu->pending.trap = 0;
146
147	/* Run the Guest until something interesting happens. */
148	return run_guest(cpu, (unsigned long __user *)user);
149}
150
151/*L:025
152 * This actually initializes a CPU.  For the moment, a Guest is only
153 * uniprocessor, so "id" is always 0.
154 */
155static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
156{
157	/* We have a limited number of CPUs in the lguest struct. */
158	if (id >= ARRAY_SIZE(cpu->lg->cpus))
159		return -EINVAL;
160
161	/* Set up this CPU's id, and pointer back to the lguest struct. */
162	cpu->id = id;
163	cpu->lg = container_of(cpu, struct lguest, cpus[id]);
164	cpu->lg->nr_cpus++;
165
166	/* Each CPU has a timer it can set. */
167	init_clockdev(cpu);
168
169	/*
170	 * We need a complete page for the Guest registers: they are accessible
171	 * to the Guest and we can only grant it access to whole pages.
172	 */
173	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
174	if (!cpu->regs_page)
175		return -ENOMEM;
176
177	/* We actually put the registers at the end of the page. */
178	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
179
180	/*
181	 * Now we initialize the Guest's registers, handing it the start
182	 * address.
183	 */
184	lguest_arch_setup_regs(cpu, start_ip);
185
186	/*
187	 * We keep a pointer to the Launcher task (ie. current task) for when
188	 * other Guests want to wake this one (eg. console input).
189	 */
190	cpu->tsk = current;
191
192	/*
193	 * We need to keep a pointer to the Launcher's memory map, because if
194	 * the Launcher dies we need to clean it up.  If we don't keep a
195	 * reference, it is destroyed before close() is called.
196	 */
197	cpu->mm = get_task_mm(cpu->tsk);
198
199	/*
200	 * We remember which CPU's pages this Guest used last, for optimization
201	 * when the same Guest runs on the same CPU twice.
202	 */
203	cpu->last_pages = NULL;
204
205	/* No error == success. */
206	return 0;
207}
208
209/*L:020
210 * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
211 * addition to the LHREQ_INITIALIZE value).  These are:
212 *
213 * base: The start of the Guest-physical memory inside the Launcher memory.
214 *
215 * pfnlimit: The highest (Guest-physical) page number the Guest should be
216 * allowed to access.  The Guest memory lives inside the Launcher, so it sets
217 * this to ensure the Guest can only reach its own memory.
218 *
219 * start: The first instruction to execute ("eip" in x86-speak).
220 */
221static int initialize(struct file *file, const unsigned long __user *input)
222{
223	/* "struct lguest" contains all we (the Host) know about a Guest. */
224	struct lguest *lg;
225	int err;
226	unsigned long args[4];
227
228	/*
229	 * We grab the Big Lguest lock, which protects against multiple
230	 * simultaneous initializations.
231	 */
232	mutex_lock(&lguest_lock);
233	/* You can't initialize twice!  Close the device and start again... */
234	if (file->private_data) {
235		err = -EBUSY;
236		goto unlock;
237	}
238
239	if (copy_from_user(args, input, sizeof(args)) != 0) {
240		err = -EFAULT;
241		goto unlock;
242	}
243
244	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
245	if (!lg) {
246		err = -ENOMEM;
247		goto unlock;
248	}
249
 
 
 
 
 
 
 
250	/* Populate the easy fields of our "struct lguest" */
251	lg->mem_base = (void __user *)args[0];
252	lg->pfn_limit = args[1];
253	lg->device_limit = args[3];
254
255	/* This is the first cpu (cpu 0) and it will start booting at args[2] */
256	err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
257	if (err)
258		goto free_lg;
259
260	/*
261	 * Initialize the Guest's shadow page tables.  This allocates
262	 * memory, so can fail.
263	 */
264	err = init_guest_pagetable(lg);
265	if (err)
266		goto free_regs;
267
268	/* We keep our "struct lguest" in the file's private_data. */
269	file->private_data = lg;
270
271	mutex_unlock(&lguest_lock);
272
273	/* And because this is a write() call, we return the length used. */
274	return sizeof(args);
275
276free_regs:
277	/* FIXME: This should be in free_vcpu */
278	free_page(lg->cpus[0].regs_page);
 
 
279free_lg:
280	kfree(lg);
281unlock:
282	mutex_unlock(&lguest_lock);
283	return err;
284}
285
286/*L:010
287 * The first operation the Launcher does must be a write.  All writes
288 * start with an unsigned long number: for the first write this must be
289 * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
290 * writes of other values to send interrupts or set up receipt of notifications.
291 *
292 * Note that we overload the "offset" in the /dev/lguest file to indicate what
293 * CPU number we're dealing with.  Currently this is always 0 since we only
294 * support uniprocessor Guests, but you can see the beginnings of SMP support
295 * here.
296 */
297static ssize_t write(struct file *file, const char __user *in,
298		     size_t size, loff_t *off)
299{
300	/*
301	 * Once the Guest is initialized, we hold the "struct lguest" in the
302	 * file private data.
303	 */
304	struct lguest *lg = file->private_data;
305	const unsigned long __user *input = (const unsigned long __user *)in;
306	unsigned long req;
307	struct lg_cpu *uninitialized_var(cpu);
308	unsigned int cpu_id = *off;
309
310	/* The first value tells us what this request is. */
311	if (get_user(req, input) != 0)
312		return -EFAULT;
313	input++;
314
315	/* If you haven't initialized, you must do that first. */
316	if (req != LHREQ_INITIALIZE) {
317		if (!lg || (cpu_id >= lg->nr_cpus))
318			return -EINVAL;
319		cpu = &lg->cpus[cpu_id];
320
321		/* Once the Guest is dead, you can only read() why it died. */
322		if (lg->dead)
323			return -ENOENT;
324	}
325
326	switch (req) {
327	case LHREQ_INITIALIZE:
328		return initialize(file, input);
329	case LHREQ_IRQ:
330		return user_send_irq(cpu, input);
331	case LHREQ_GETREG:
332		return getreg_setup(cpu, input);
333	case LHREQ_SETREG:
334		return setreg(cpu, input);
335	case LHREQ_TRAP:
336		return trap(cpu, input);
337	default:
338		return -EINVAL;
339	}
340}
341
342static int open(struct inode *inode, struct file *file)
343{
344	file->private_data = NULL;
345
346	return 0;
347}
348
349/*L:060
350 * The final piece of interface code is the close() routine.  It reverses
351 * everything done in initialize().  This is usually called because the
352 * Launcher exited.
353 *
354 * Note that the close routine returns 0 or a negative error number: it can't
355 * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
356 * letting them do it.
357:*/
358static int close(struct inode *inode, struct file *file)
359{
360	struct lguest *lg = file->private_data;
361	unsigned int i;
362
363	/* If we never successfully initialized, there's nothing to clean up */
364	if (!lg)
365		return 0;
366
367	/*
368	 * We need the big lock, to protect from inter-guest I/O and other
369	 * Launchers initializing guests.
370	 */
371	mutex_lock(&lguest_lock);
372
373	/* Free up the shadow page tables for the Guest. */
374	free_guest_pagetable(lg);
375
376	for (i = 0; i < lg->nr_cpus; i++) {
377		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
378		hrtimer_cancel(&lg->cpus[i].hrt);
379		/* We can free up the register page we allocated. */
380		free_page(lg->cpus[i].regs_page);
381		/*
382		 * Now all the memory cleanups are done, it's safe to release
383		 * the Launcher's memory management structure.
384		 */
385		mmput(lg->cpus[i].mm);
386	}
387
 
 
 
 
 
388	/*
389	 * If lg->dead doesn't contain an error code it will be NULL or a
390	 * kmalloc()ed string, either of which is ok to hand to kfree().
391	 */
392	if (!IS_ERR(lg->dead))
393		kfree(lg->dead);
394	/* Free the memory allocated to the lguest_struct */
395	kfree(lg);
396	/* Release lock and exit. */
397	mutex_unlock(&lguest_lock);
398
399	return 0;
400}
401
402/*L:000
403 * Welcome to our journey through the Launcher!
404 *
405 * The Launcher is the Host userspace program which sets up, runs and services
406 * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
407 * doing things are inaccurate: the Launcher does all the device handling for
408 * the Guest, but the Guest can't know that.
409 *
410 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
411 * shall see more of that later.
412 *
413 * We begin our understanding with the Host kernel interface which the Launcher
414 * uses: reading and writing a character device called /dev/lguest.  All the
415 * work happens in the read(), write() and close() routines:
416 */
417static const struct file_operations lguest_fops = {
418	.owner	 = THIS_MODULE,
419	.open	 = open,
420	.release = close,
421	.write	 = write,
422	.read	 = read,
423	.llseek  = default_llseek,
424};
425/*:*/
426
427/*
428 * This is a textbook example of a "misc" character device.  Populate a "struct
429 * miscdevice" and register it with misc_register().
430 */
431static struct miscdevice lguest_dev = {
432	.minor	= MISC_DYNAMIC_MINOR,
433	.name	= "lguest",
434	.fops	= &lguest_fops,
435};
436
437int __init lguest_device_init(void)
438{
439	return misc_register(&lguest_dev);
440}
441
442void __exit lguest_device_remove(void)
443{
444	misc_deregister(&lguest_dev);
445}
v3.5.6
  1/*P:200 This contains all the /dev/lguest code, whereby the userspace
  2 * launcher controls and communicates with the Guest.  For example,
  3 * the first write will tell us the Guest's memory layout and entry
  4 * point.  A read will run the Guest until something happens, such as
  5 * a signal or the Guest doing a NOTIFY out to the Launcher.  There is
  6 * also a way for the Launcher to attach eventfds to particular NOTIFY
  7 * values instead of returning from the read() call.
  8:*/
  9#include <linux/uaccess.h>
 10#include <linux/miscdevice.h>
 11#include <linux/fs.h>
 12#include <linux/sched.h>
 13#include <linux/eventfd.h>
 14#include <linux/file.h>
 15#include <linux/slab.h>
 16#include <linux/export.h>
 17#include "lg.h"
 18
 19/*L:056
 20 * Before we move on, let's jump ahead and look at what the kernel does when
 21 * it needs to look up the eventfds.  That will complete our picture of how we
 22 * use RCU.
 23 *
 24 * The notification value is in cpu->pending_notify: we return true if it went
 25 * to an eventfd.
 26 */
 27bool send_notify_to_eventfd(struct lg_cpu *cpu)
 28{
 29	unsigned int i;
 30	struct lg_eventfd_map *map;
 31
 32	/*
 33	 * This "rcu_read_lock()" helps track when someone is still looking at
 34	 * the (RCU-using) eventfds array.  It's not actually a lock at all;
 35	 * indeed it's a noop in many configurations.  (You didn't expect me to
 36	 * explain all the RCU secrets here, did you?)
 37	 */
 38	rcu_read_lock();
 39	/*
 40	 * rcu_dereference is the counter-side of rcu_assign_pointer(); it
 41	 * makes sure we don't access the memory pointed to by
 42	 * cpu->lg->eventfds before cpu->lg->eventfds is set.  Sounds crazy,
 43	 * but Alpha allows this!  Paul McKenney points out that a really
 44	 * aggressive compiler could have the same effect:
 45	 *   http://lists.ozlabs.org/pipermail/lguest/2009-July/001560.html
 46	 *
 47	 * So play safe, use rcu_dereference to get the rcu-protected pointer:
 48	 */
 49	map = rcu_dereference(cpu->lg->eventfds);
 50	/*
 51	 * Simple array search: even if they add an eventfd while we do this,
 52	 * we'll continue to use the old array and just won't see the new one.
 53	 */
 54	for (i = 0; i < map->num; i++) {
 55		if (map->map[i].addr == cpu->pending_notify) {
 56			eventfd_signal(map->map[i].event, 1);
 57			cpu->pending_notify = 0;
 58			break;
 59		}
 60	}
 61	/* We're done with the rcu-protected variable cpu->lg->eventfds. */
 62	rcu_read_unlock();
 63
 64	/* If we cleared the notification, it's because we found a match. */
 65	return cpu->pending_notify == 0;
 66}
 67
 68/*L:055
 69 * One of the more tricksy tricks in the Linux Kernel is a technique called
 70 * Read Copy Update.  Since one point of lguest is to teach lguest journeyers
 71 * about kernel coding, I use it here.  (In case you're curious, other purposes
 72 * include learning about virtualization and instilling a deep appreciation for
 73 * simplicity and puppies).
 74 *
 75 * We keep a simple array which maps LHCALL_NOTIFY values to eventfds, but we
 76 * add new eventfds without ever blocking readers from accessing the array.
 77 * The current Launcher only does this during boot, so that never happens.  But
 78 * Read Copy Update is cool, and adding a lock risks damaging even more puppies
 79 * than this code does.
 80 *
 81 * We allocate a brand new one-larger array, copy the old one and add our new
 82 * element.  Then we make the lg eventfd pointer point to the new array.
 83 * That's the easy part: now we need to free the old one, but we need to make
 84 * sure no slow CPU somewhere is still looking at it.  That's what
 85 * synchronize_rcu does for us: waits until every CPU has indicated that it has
 86 * moved on to know it's no longer using the old one.
 87 *
 88 * If that's unclear, see http://en.wikipedia.org/wiki/Read-copy-update.
 89 */
 90static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
 91{
 92	struct lg_eventfd_map *new, *old = lg->eventfds;
 93
 94	/*
 95	 * We don't allow notifications on value 0 anyway (pending_notify of
 96	 * 0 means "nothing pending").
 97	 */
 98	if (!addr)
 99		return -EINVAL;
100
101	/*
102	 * Replace the old array with the new one, carefully: others can
103	 * be accessing it at the same time.
104	 */
105	new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
106		      GFP_KERNEL);
107	if (!new)
108		return -ENOMEM;
109
110	/* First make identical copy. */
111	memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
112	new->num = old->num;
113
114	/* Now append new entry. */
115	new->map[new->num].addr = addr;
116	new->map[new->num].event = eventfd_ctx_fdget(fd);
117	if (IS_ERR(new->map[new->num].event)) {
118		int err =  PTR_ERR(new->map[new->num].event);
119		kfree(new);
120		return err;
121	}
122	new->num++;
123
124	/*
125	 * Now put new one in place: rcu_assign_pointer() is a fancy way of
126	 * doing "lg->eventfds = new", but it uses memory barriers to make
127	 * absolutely sure that the contents of "new" written above is nailed
128	 * down before we actually do the assignment.
129	 *
130	 * We have to think about these kinds of things when we're operating on
131	 * live data without locks.
132	 */
133	rcu_assign_pointer(lg->eventfds, new);
 
 
134
135	/*
136	 * We're not in a big hurry.  Wait until no one's looking at old
137	 * version, then free it.
138	 */
139	synchronize_rcu();
140	kfree(old);
141
142	return 0;
143}
144
145/*L:052
146 * Receiving notifications from the Guest is usually done by attaching a
147 * particular LHCALL_NOTIFY value to an event filedescriptor.  The eventfd will
148 * become readable when the Guest does an LHCALL_NOTIFY with that value.
149 *
150 * This is really convenient for processing each virtqueue in a separate
151 * thread.
152 */
153static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
154{
155	unsigned long addr, fd;
156	int err;
157
158	if (get_user(addr, input) != 0)
 
159		return -EFAULT;
160	input++;
161	if (get_user(fd, input) != 0)
162		return -EFAULT;
163
164	/*
165	 * Just make sure two callers don't add eventfds at once.  We really
166	 * only need to lock against callers adding to the same Guest, so using
167	 * the Big Lguest Lock is overkill.  But this is setup, not a fast path.
168	 */
169	mutex_lock(&lguest_lock);
170	err = add_eventfd(lg, addr, fd);
171	mutex_unlock(&lguest_lock);
172
173	return err;
 
174}
175
176/*L:050
177 * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
178 * number to /dev/lguest.
179 */
180static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
181{
182	unsigned long irq;
183
184	if (get_user(irq, input) != 0)
185		return -EFAULT;
186	if (irq >= LGUEST_IRQS)
187		return -EINVAL;
188
189	/*
190	 * Next time the Guest runs, the core code will see if it can deliver
191	 * this interrupt.
192	 */
193	set_interrupt(cpu, irq);
194	return 0;
195}
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197/*L:040
198 * Once our Guest is initialized, the Launcher makes it run by reading
199 * from /dev/lguest.
200 */
201static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
202{
203	struct lguest *lg = file->private_data;
204	struct lg_cpu *cpu;
205	unsigned int cpu_id = *o;
206
207	/* You must write LHREQ_INITIALIZE first! */
208	if (!lg)
209		return -EINVAL;
210
211	/* Watch out for arbitrary vcpu indexes! */
212	if (cpu_id >= lg->nr_cpus)
213		return -EINVAL;
214
215	cpu = &lg->cpus[cpu_id];
216
217	/* If you're not the task which owns the Guest, go away. */
218	if (current != cpu->tsk)
219		return -EPERM;
220
221	/* If the Guest is already dead, we indicate why */
222	if (lg->dead) {
223		size_t len;
224
225		/* lg->dead either contains an error code, or a string. */
226		if (IS_ERR(lg->dead))
227			return PTR_ERR(lg->dead);
228
229		/* We can only return as much as the buffer they read with. */
230		len = min(size, strlen(lg->dead)+1);
231		if (copy_to_user(user, lg->dead, len) != 0)
232			return -EFAULT;
233		return len;
234	}
235
236	/*
237	 * If we returned from read() last time because the Guest sent I/O,
238	 * clear the flag.
239	 */
240	if (cpu->pending_notify)
241		cpu->pending_notify = 0;
242
243	/* Run the Guest until something interesting happens. */
244	return run_guest(cpu, (unsigned long __user *)user);
245}
246
247/*L:025
248 * This actually initializes a CPU.  For the moment, a Guest is only
249 * uniprocessor, so "id" is always 0.
250 */
251static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
252{
253	/* We have a limited number the number of CPUs in the lguest struct. */
254	if (id >= ARRAY_SIZE(cpu->lg->cpus))
255		return -EINVAL;
256
257	/* Set up this CPU's id, and pointer back to the lguest struct. */
258	cpu->id = id;
259	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
260	cpu->lg->nr_cpus++;
261
262	/* Each CPU has a timer it can set. */
263	init_clockdev(cpu);
264
265	/*
266	 * We need a complete page for the Guest registers: they are accessible
267	 * to the Guest and we can only grant it access to whole pages.
268	 */
269	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
270	if (!cpu->regs_page)
271		return -ENOMEM;
272
273	/* We actually put the registers at the bottom of the page. */
274	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
275
276	/*
277	 * Now we initialize the Guest's registers, handing it the start
278	 * address.
279	 */
280	lguest_arch_setup_regs(cpu, start_ip);
281
282	/*
283	 * We keep a pointer to the Launcher task (ie. current task) for when
284	 * other Guests want to wake this one (eg. console input).
285	 */
286	cpu->tsk = current;
287
288	/*
289	 * We need to keep a pointer to the Launcher's memory map, because if
290	 * the Launcher dies we need to clean it up.  If we don't keep a
291	 * reference, it is destroyed before close() is called.
292	 */
293	cpu->mm = get_task_mm(cpu->tsk);
294
295	/*
296	 * We remember which CPU's pages this Guest used last, for optimization
297	 * when the same Guest runs on the same CPU twice.
298	 */
299	cpu->last_pages = NULL;
300
301	/* No error == success. */
302	return 0;
303}
304
305/*L:020
306 * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
307 * addition to the LHREQ_INITIALIZE value).  These are:
308 *
309 * base: The start of the Guest-physical memory inside the Launcher memory.
310 *
311 * pfnlimit: The highest (Guest-physical) page number the Guest should be
312 * allowed to access.  The Guest memory lives inside the Launcher, so it sets
313 * this to ensure the Guest can only reach its own memory.
314 *
315 * start: The first instruction to execute ("eip" in x86-speak).
316 */
317static int initialize(struct file *file, const unsigned long __user *input)
318{
319	/* "struct lguest" contains all we (the Host) know about a Guest. */
320	struct lguest *lg;
321	int err;
322	unsigned long args[3];
323
324	/*
325	 * We grab the Big Lguest lock, which protects against multiple
326	 * simultaneous initializations.
327	 */
328	mutex_lock(&lguest_lock);
329	/* You can't initialize twice!  Close the device and start again... */
330	if (file->private_data) {
331		err = -EBUSY;
332		goto unlock;
333	}
334
335	if (copy_from_user(args, input, sizeof(args)) != 0) {
336		err = -EFAULT;
337		goto unlock;
338	}
339
340	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
341	if (!lg) {
342		err = -ENOMEM;
343		goto unlock;
344	}
345
346	lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
347	if (!lg->eventfds) {
348		err = -ENOMEM;
349		goto free_lg;
350	}
351	lg->eventfds->num = 0;
352
353	/* Populate the easy fields of our "struct lguest" */
354	lg->mem_base = (void __user *)args[0];
355	lg->pfn_limit = args[1];
 
356
357	/* This is the first cpu (cpu 0) and it will start booting at args[2] */
358	err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
359	if (err)
360		goto free_eventfds;
361
362	/*
363	 * Initialize the Guest's shadow page tables.  This allocates
364	 * memory, so can fail.
365	 */
366	err = init_guest_pagetable(lg);
367	if (err)
368		goto free_regs;
369
370	/* We keep our "struct lguest" in the file's private_data. */
371	file->private_data = lg;
372
373	mutex_unlock(&lguest_lock);
374
375	/* And because this is a write() call, we return the length used. */
376	return sizeof(args);
377
378free_regs:
379	/* FIXME: This should be in free_vcpu */
380	free_page(lg->cpus[0].regs_page);
381free_eventfds:
382	kfree(lg->eventfds);
383free_lg:
384	kfree(lg);
385unlock:
386	mutex_unlock(&lguest_lock);
387	return err;
388}
389
390/*L:010
391 * The first operation the Launcher does must be a write.  All writes
392 * start with an unsigned long number: for the first write this must be
393 * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
394 * writes of other values to send interrupts or set up receipt of notifications.
395 *
396 * Note that we overload the "offset" in the /dev/lguest file to indicate what
397 * CPU number we're dealing with.  Currently this is always 0 since we only
398 * support uniprocessor Guests, but you can see the beginnings of SMP support
399 * here.
400 */
401static ssize_t write(struct file *file, const char __user *in,
402		     size_t size, loff_t *off)
403{
404	/*
405	 * Once the Guest is initialized, we hold the "struct lguest" in the
406	 * file private data.
407	 */
408	struct lguest *lg = file->private_data;
409	const unsigned long __user *input = (const unsigned long __user *)in;
410	unsigned long req;
411	struct lg_cpu *uninitialized_var(cpu);
412	unsigned int cpu_id = *off;
413
414	/* The first value tells us what this request is. */
415	if (get_user(req, input) != 0)
416		return -EFAULT;
417	input++;
418
419	/* If you haven't initialized, you must do that first. */
420	if (req != LHREQ_INITIALIZE) {
421		if (!lg || (cpu_id >= lg->nr_cpus))
422			return -EINVAL;
423		cpu = &lg->cpus[cpu_id];
424
425		/* Once the Guest is dead, you can only read() why it died. */
426		if (lg->dead)
427			return -ENOENT;
428	}
429
430	switch (req) {
431	case LHREQ_INITIALIZE:
432		return initialize(file, input);
433	case LHREQ_IRQ:
434		return user_send_irq(cpu, input);
435	case LHREQ_EVENTFD:
436		return attach_eventfd(lg, input);
 
 
 
 
437	default:
438		return -EINVAL;
439	}
440}
441
 
 
 
 
 
 
 
442/*L:060
443 * The final piece of interface code is the close() routine.  It reverses
444 * everything done in initialize().  This is usually called because the
445 * Launcher exited.
446 *
447 * Note that the close routine returns 0 or a negative error number: it can't
448 * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
449 * letting them do it.
450:*/
451static int close(struct inode *inode, struct file *file)
452{
453	struct lguest *lg = file->private_data;
454	unsigned int i;
455
456	/* If we never successfully initialized, there's nothing to clean up */
457	if (!lg)
458		return 0;
459
460	/*
461	 * We need the big lock, to protect from inter-guest I/O and other
462	 * Launchers initializing guests.
463	 */
464	mutex_lock(&lguest_lock);
465
466	/* Free up the shadow page tables for the Guest. */
467	free_guest_pagetable(lg);
468
469	for (i = 0; i < lg->nr_cpus; i++) {
470		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
471		hrtimer_cancel(&lg->cpus[i].hrt);
472		/* We can free up the register page we allocated. */
473		free_page(lg->cpus[i].regs_page);
474		/*
475		 * Now all the memory cleanups are done, it's safe to release
476		 * the Launcher's memory management structure.
477		 */
478		mmput(lg->cpus[i].mm);
479	}
480
481	/* Release any eventfds they registered. */
482	for (i = 0; i < lg->eventfds->num; i++)
483		eventfd_ctx_put(lg->eventfds->map[i].event);
484	kfree(lg->eventfds);
485
486	/*
487	 * If lg->dead doesn't contain an error code it will be NULL or a
488	 * kmalloc()ed string, either of which is ok to hand to kfree().
489	 */
490	if (!IS_ERR(lg->dead))
491		kfree(lg->dead);
492	/* Free the memory allocated to the lguest_struct */
493	kfree(lg);
494	/* Release lock and exit. */
495	mutex_unlock(&lguest_lock);
496
497	return 0;
498}
499
500/*L:000
501 * Welcome to our journey through the Launcher!
502 *
503 * The Launcher is the Host userspace program which sets up, runs and services
504 * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
505 * doing things are inaccurate: the Launcher does all the device handling for
506 * the Guest, but the Guest can't know that.
507 *
508 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
509 * shall see more of that later.
510 *
511 * We begin our understanding with the Host kernel interface which the Launcher
512 * uses: reading and writing a character device called /dev/lguest.  All the
513 * work happens in the read(), write() and close() routines:
514 */
515static const struct file_operations lguest_fops = {
516	.owner	 = THIS_MODULE,
 
517	.release = close,
518	.write	 = write,
519	.read	 = read,
520	.llseek  = default_llseek,
521};
522/*:*/
523
524/*
525 * This is a textbook example of a "misc" character device.  Populate a "struct
526 * miscdevice" and register it with misc_register().
527 */
528static struct miscdevice lguest_dev = {
529	.minor	= MISC_DYNAMIC_MINOR,
530	.name	= "lguest",
531	.fops	= &lguest_fops,
532};
533
534int __init lguest_device_init(void)
535{
536	return misc_register(&lguest_dev);
537}
538
539void __exit lguest_device_remove(void)
540{
541	misc_deregister(&lguest_dev);
542}