Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright 2011 (c) Oracle Corp.
   3
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the
  12 * next paragraph) shall be included in all copies or substantial portions
  13 * of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  24 */
  25
  26/*
  27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
  28 * over the DMA pools:
  29 * - Pool collects resently freed pages for reuse (and hooks up to
  30 *   the shrinker).
  31 * - Tracks currently in use pages
  32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
  33 *   when freed).
  34 */
  35
  36#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
  37#define pr_fmt(fmt) "[TTM] " fmt
  38
  39#include <linux/dma-mapping.h>
  40#include <linux/list.h>
  41#include <linux/seq_file.h> /* for seq_printf */
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/highmem.h>
  45#include <linux/mm_types.h>
  46#include <linux/module.h>
  47#include <linux/mm.h>
  48#include <linux/atomic.h>
  49#include <linux/device.h>
  50#include <linux/kthread.h>
  51#include <drm/ttm/ttm_bo_driver.h>
  52#include <drm/ttm/ttm_page_alloc.h>
  53#ifdef TTM_HAS_AGP
  54#include <asm/agp.h>
  55#endif
  56
  57#define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
  58#define SMALL_ALLOCATION		4
  59#define FREE_ALL_PAGES			(~0U)
  60/* times are in msecs */
  61#define IS_UNDEFINED			(0)
  62#define IS_WC				(1<<1)
  63#define IS_UC				(1<<2)
  64#define IS_CACHED			(1<<3)
  65#define IS_DMA32			(1<<4)
  66
  67enum pool_type {
  68	POOL_IS_UNDEFINED,
  69	POOL_IS_WC = IS_WC,
  70	POOL_IS_UC = IS_UC,
  71	POOL_IS_CACHED = IS_CACHED,
  72	POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
  73	POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
  74	POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
  75};
  76/*
  77 * The pool structure. There are usually six pools:
  78 *  - generic (not restricted to DMA32):
  79 *      - write combined, uncached, cached.
  80 *  - dma32 (up to 2^32 - so up 4GB):
  81 *      - write combined, uncached, cached.
  82 * for each 'struct device'. The 'cached' is for pages that are actively used.
  83 * The other ones can be shrunk by the shrinker API if neccessary.
  84 * @pools: The 'struct device->dma_pools' link.
  85 * @type: Type of the pool
  86 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
  87 * used with irqsave/irqrestore variants because pool allocator maybe called
  88 * from delayed work.
  89 * @inuse_list: Pool of pages that are in use. The order is very important and
  90 *   it is in the order that the TTM pages that are put back are in.
  91 * @free_list: Pool of pages that are free to be used. No order requirements.
  92 * @dev: The device that is associated with these pools.
  93 * @size: Size used during DMA allocation.
  94 * @npages_free: Count of available pages for re-use.
  95 * @npages_in_use: Count of pages that are in use.
  96 * @nfrees: Stats when pool is shrinking.
  97 * @nrefills: Stats when the pool is grown.
  98 * @gfp_flags: Flags to pass for alloc_page.
  99 * @name: Name of the pool.
 100 * @dev_name: Name derieved from dev - similar to how dev_info works.
 101 *   Used during shutdown as the dev_info during release is unavailable.
 102 */
 103struct dma_pool {
 104	struct list_head pools; /* The 'struct device->dma_pools link */
 105	enum pool_type type;
 106	spinlock_t lock;
 107	struct list_head inuse_list;
 108	struct list_head free_list;
 109	struct device *dev;
 110	unsigned size;
 111	unsigned npages_free;
 112	unsigned npages_in_use;
 113	unsigned long nfrees; /* Stats when shrunk. */
 114	unsigned long nrefills; /* Stats when grown. */
 115	gfp_t gfp_flags;
 116	char name[13]; /* "cached dma32" */
 117	char dev_name[64]; /* Constructed from dev */
 118};
 119
 120/*
 121 * The accounting page keeping track of the allocated page along with
 122 * the DMA address.
 123 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
 124 * @vaddr: The virtual address of the page
 125 * @dma: The bus address of the page. If the page is not allocated
 126 *   via the DMA API, it will be -1.
 127 */
 128struct dma_page {
 129	struct list_head page_list;
 130	void *vaddr;
 131	struct page *p;
 132	dma_addr_t dma;
 133};
 134
 135/*
 136 * Limits for the pool. They are handled without locks because only place where
 137 * they may change is in sysfs store. They won't have immediate effect anyway
 138 * so forcing serialization to access them is pointless.
 139 */
 140
 141struct ttm_pool_opts {
 142	unsigned	alloc_size;
 143	unsigned	max_size;
 144	unsigned	small;
 145};
 146
 147/*
 148 * Contains the list of all of the 'struct device' and their corresponding
 149 * DMA pools. Guarded by _mutex->lock.
 150 * @pools: The link to 'struct ttm_pool_manager->pools'
 151 * @dev: The 'struct device' associated with the 'pool'
 152 * @pool: The 'struct dma_pool' associated with the 'dev'
 153 */
 154struct device_pools {
 155	struct list_head pools;
 156	struct device *dev;
 157	struct dma_pool *pool;
 158};
 159
 160/*
 161 * struct ttm_pool_manager - Holds memory pools for fast allocation
 162 *
 163 * @lock: Lock used when adding/removing from pools
 164 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
 165 * @options: Limits for the pool.
 166 * @npools: Total amount of pools in existence.
 167 * @shrinker: The structure used by [un|]register_shrinker
 168 */
 169struct ttm_pool_manager {
 170	struct mutex		lock;
 171	struct list_head	pools;
 172	struct ttm_pool_opts	options;
 173	unsigned		npools;
 174	struct shrinker		mm_shrink;
 175	struct kobject		kobj;
 176};
 177
 178static struct ttm_pool_manager *_manager;
 179
 180static struct attribute ttm_page_pool_max = {
 181	.name = "pool_max_size",
 182	.mode = S_IRUGO | S_IWUSR
 183};
 184static struct attribute ttm_page_pool_small = {
 185	.name = "pool_small_allocation",
 186	.mode = S_IRUGO | S_IWUSR
 187};
 188static struct attribute ttm_page_pool_alloc_size = {
 189	.name = "pool_allocation_size",
 190	.mode = S_IRUGO | S_IWUSR
 191};
 192
 193static struct attribute *ttm_pool_attrs[] = {
 194	&ttm_page_pool_max,
 195	&ttm_page_pool_small,
 196	&ttm_page_pool_alloc_size,
 197	NULL
 198};
 199
 200static void ttm_pool_kobj_release(struct kobject *kobj)
 201{
 202	struct ttm_pool_manager *m =
 203		container_of(kobj, struct ttm_pool_manager, kobj);
 204	kfree(m);
 205}
 206
 207static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
 208			      const char *buffer, size_t size)
 209{
 210	struct ttm_pool_manager *m =
 211		container_of(kobj, struct ttm_pool_manager, kobj);
 212	int chars;
 213	unsigned val;
 214	chars = sscanf(buffer, "%u", &val);
 215	if (chars == 0)
 216		return size;
 217
 218	/* Convert kb to number of pages */
 219	val = val / (PAGE_SIZE >> 10);
 220
 221	if (attr == &ttm_page_pool_max)
 222		m->options.max_size = val;
 223	else if (attr == &ttm_page_pool_small)
 224		m->options.small = val;
 225	else if (attr == &ttm_page_pool_alloc_size) {
 226		if (val > NUM_PAGES_TO_ALLOC*8) {
 227			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
 228			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
 229			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 230			return size;
 231		} else if (val > NUM_PAGES_TO_ALLOC) {
 232			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
 233				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 234		}
 235		m->options.alloc_size = val;
 236	}
 237
 238	return size;
 239}
 240
 241static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
 242			     char *buffer)
 243{
 244	struct ttm_pool_manager *m =
 245		container_of(kobj, struct ttm_pool_manager, kobj);
 246	unsigned val = 0;
 247
 248	if (attr == &ttm_page_pool_max)
 249		val = m->options.max_size;
 250	else if (attr == &ttm_page_pool_small)
 251		val = m->options.small;
 252	else if (attr == &ttm_page_pool_alloc_size)
 253		val = m->options.alloc_size;
 254
 255	val = val * (PAGE_SIZE >> 10);
 256
 257	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
 258}
 259
 260static const struct sysfs_ops ttm_pool_sysfs_ops = {
 261	.show = &ttm_pool_show,
 262	.store = &ttm_pool_store,
 263};
 264
 265static struct kobj_type ttm_pool_kobj_type = {
 266	.release = &ttm_pool_kobj_release,
 267	.sysfs_ops = &ttm_pool_sysfs_ops,
 268	.default_attrs = ttm_pool_attrs,
 269};
 270
 271#ifndef CONFIG_X86
 272static int set_pages_array_wb(struct page **pages, int addrinarray)
 273{
 274#ifdef TTM_HAS_AGP
 275	int i;
 276
 277	for (i = 0; i < addrinarray; i++)
 278		unmap_page_from_agp(pages[i]);
 279#endif
 280	return 0;
 281}
 282
 283static int set_pages_array_wc(struct page **pages, int addrinarray)
 284{
 285#ifdef TTM_HAS_AGP
 286	int i;
 287
 288	for (i = 0; i < addrinarray; i++)
 289		map_page_into_agp(pages[i]);
 290#endif
 291	return 0;
 292}
 293
 294static int set_pages_array_uc(struct page **pages, int addrinarray)
 295{
 296#ifdef TTM_HAS_AGP
 297	int i;
 298
 299	for (i = 0; i < addrinarray; i++)
 300		map_page_into_agp(pages[i]);
 301#endif
 302	return 0;
 303}
 304#endif /* for !CONFIG_X86 */
 305
 306static int ttm_set_pages_caching(struct dma_pool *pool,
 307				 struct page **pages, unsigned cpages)
 308{
 309	int r = 0;
 310	/* Set page caching */
 311	if (pool->type & IS_UC) {
 312		r = set_pages_array_uc(pages, cpages);
 313		if (r)
 314			pr_err("%s: Failed to set %d pages to uc!\n",
 315			       pool->dev_name, cpages);
 316	}
 317	if (pool->type & IS_WC) {
 318		r = set_pages_array_wc(pages, cpages);
 319		if (r)
 320			pr_err("%s: Failed to set %d pages to wc!\n",
 321			       pool->dev_name, cpages);
 322	}
 323	return r;
 324}
 325
 326static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
 327{
 328	dma_addr_t dma = d_page->dma;
 329	dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
 330
 331	kfree(d_page);
 332	d_page = NULL;
 333}
 334static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
 335{
 336	struct dma_page *d_page;
 337
 338	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
 339	if (!d_page)
 340		return NULL;
 341
 342	d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
 343					   &d_page->dma,
 344					   pool->gfp_flags);
 345	if (d_page->vaddr) {
 346		if (is_vmalloc_addr(d_page->vaddr))
 347			d_page->p = vmalloc_to_page(d_page->vaddr);
 348		else
 349			d_page->p = virt_to_page(d_page->vaddr);
 350	} else {
 351		kfree(d_page);
 352		d_page = NULL;
 353	}
 354	return d_page;
 355}
 356static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
 357{
 358	enum pool_type type = IS_UNDEFINED;
 359
 360	if (flags & TTM_PAGE_FLAG_DMA32)
 361		type |= IS_DMA32;
 362	if (cstate == tt_cached)
 363		type |= IS_CACHED;
 364	else if (cstate == tt_uncached)
 365		type |= IS_UC;
 366	else
 367		type |= IS_WC;
 368
 369	return type;
 370}
 371
 372static void ttm_pool_update_free_locked(struct dma_pool *pool,
 373					unsigned freed_pages)
 374{
 375	pool->npages_free -= freed_pages;
 376	pool->nfrees += freed_pages;
 377
 378}
 379
 380/* set memory back to wb and free the pages. */
 381static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
 382			      struct page *pages[], unsigned npages)
 383{
 384	struct dma_page *d_page, *tmp;
 385
 386	/* Don't set WB on WB page pool. */
 387	if (npages && !(pool->type & IS_CACHED) &&
 388	    set_pages_array_wb(pages, npages))
 389		pr_err("%s: Failed to set %d pages to wb!\n",
 390		       pool->dev_name, npages);
 391
 392	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 393		list_del(&d_page->page_list);
 394		__ttm_dma_free_page(pool, d_page);
 395	}
 396}
 397
 398static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
 399{
 400	/* Don't set WB on WB page pool. */
 401	if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
 402		pr_err("%s: Failed to set %d pages to wb!\n",
 403		       pool->dev_name, 1);
 404
 405	list_del(&d_page->page_list);
 406	__ttm_dma_free_page(pool, d_page);
 407}
 408
 409/*
 410 * Free pages from pool.
 411 *
 412 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
 413 * number of pages in one go.
 414 *
 415 * @pool: to free the pages from
 416 * @nr_free: If set to true will free all pages in pool
 417 * @use_static: Safe to use static buffer
 418 **/
 419static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
 420				       bool use_static)
 421{
 422	static struct page *static_buf[NUM_PAGES_TO_ALLOC];
 423	unsigned long irq_flags;
 424	struct dma_page *dma_p, *tmp;
 425	struct page **pages_to_free;
 426	struct list_head d_pages;
 427	unsigned freed_pages = 0,
 428		 npages_to_free = nr_free;
 429
 430	if (NUM_PAGES_TO_ALLOC < nr_free)
 431		npages_to_free = NUM_PAGES_TO_ALLOC;
 432#if 0
 433	if (nr_free > 1) {
 434		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
 435			 pool->dev_name, pool->name, current->pid,
 436			 npages_to_free, nr_free);
 437	}
 438#endif
 439	if (use_static)
 440		pages_to_free = static_buf;
 441	else
 442		pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
 443					GFP_KERNEL);
 444
 445	if (!pages_to_free) {
 446		pr_err("%s: Failed to allocate memory for pool free operation\n",
 447		       pool->dev_name);
 448		return 0;
 449	}
 450	INIT_LIST_HEAD(&d_pages);
 451restart:
 452	spin_lock_irqsave(&pool->lock, irq_flags);
 453
 454	/* We picking the oldest ones off the list */
 455	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
 456					 page_list) {
 457		if (freed_pages >= npages_to_free)
 458			break;
 459
 460		/* Move the dma_page from one list to another. */
 461		list_move(&dma_p->page_list, &d_pages);
 462
 463		pages_to_free[freed_pages++] = dma_p->p;
 464		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
 465		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
 466
 467			ttm_pool_update_free_locked(pool, freed_pages);
 468			/**
 469			 * Because changing page caching is costly
 470			 * we unlock the pool to prevent stalling.
 471			 */
 472			spin_unlock_irqrestore(&pool->lock, irq_flags);
 473
 474			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
 475					  freed_pages);
 476
 477			INIT_LIST_HEAD(&d_pages);
 478
 479			if (likely(nr_free != FREE_ALL_PAGES))
 480				nr_free -= freed_pages;
 481
 482			if (NUM_PAGES_TO_ALLOC >= nr_free)
 483				npages_to_free = nr_free;
 484			else
 485				npages_to_free = NUM_PAGES_TO_ALLOC;
 486
 487			freed_pages = 0;
 488
 489			/* free all so restart the processing */
 490			if (nr_free)
 491				goto restart;
 492
 493			/* Not allowed to fall through or break because
 494			 * following context is inside spinlock while we are
 495			 * outside here.
 496			 */
 497			goto out;
 498
 499		}
 500	}
 501
 502	/* remove range of pages from the pool */
 503	if (freed_pages) {
 504		ttm_pool_update_free_locked(pool, freed_pages);
 505		nr_free -= freed_pages;
 506	}
 507
 508	spin_unlock_irqrestore(&pool->lock, irq_flags);
 509
 510	if (freed_pages)
 511		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
 512out:
 513	if (pages_to_free != static_buf)
 514		kfree(pages_to_free);
 515	return nr_free;
 516}
 517
 518static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
 519{
 520	struct device_pools *p;
 521	struct dma_pool *pool;
 522
 523	if (!dev)
 524		return;
 525
 526	mutex_lock(&_manager->lock);
 527	list_for_each_entry_reverse(p, &_manager->pools, pools) {
 528		if (p->dev != dev)
 529			continue;
 530		pool = p->pool;
 531		if (pool->type != type)
 532			continue;
 533
 534		list_del(&p->pools);
 535		kfree(p);
 536		_manager->npools--;
 537		break;
 538	}
 539	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
 540		if (pool->type != type)
 541			continue;
 542		/* Takes a spinlock.. */
 543		/* OK to use static buffer since global mutex is held. */
 544		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
 545		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
 546		/* This code path is called after _all_ references to the
 547		 * struct device has been dropped - so nobody should be
 548		 * touching it. In case somebody is trying to _add_ we are
 549		 * guarded by the mutex. */
 550		list_del(&pool->pools);
 551		kfree(pool);
 552		break;
 553	}
 554	mutex_unlock(&_manager->lock);
 555}
 556
 557/*
 558 * On free-ing of the 'struct device' this deconstructor is run.
 559 * Albeit the pool might have already been freed earlier.
 560 */
 561static void ttm_dma_pool_release(struct device *dev, void *res)
 562{
 563	struct dma_pool *pool = *(struct dma_pool **)res;
 564
 565	if (pool)
 566		ttm_dma_free_pool(dev, pool->type);
 567}
 568
 569static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
 570{
 571	return *(struct dma_pool **)res == match_data;
 572}
 573
 574static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
 575					  enum pool_type type)
 576{
 577	char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
 578	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
 579	struct device_pools *sec_pool = NULL;
 580	struct dma_pool *pool = NULL, **ptr;
 581	unsigned i;
 582	int ret = -ENODEV;
 583	char *p;
 584
 585	if (!dev)
 586		return NULL;
 587
 588	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
 589	if (!ptr)
 590		return NULL;
 591
 592	ret = -ENOMEM;
 593
 594	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
 595			    dev_to_node(dev));
 596	if (!pool)
 597		goto err_mem;
 598
 599	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
 600				dev_to_node(dev));
 601	if (!sec_pool)
 602		goto err_mem;
 603
 604	INIT_LIST_HEAD(&sec_pool->pools);
 605	sec_pool->dev = dev;
 606	sec_pool->pool =  pool;
 607
 608	INIT_LIST_HEAD(&pool->free_list);
 609	INIT_LIST_HEAD(&pool->inuse_list);
 610	INIT_LIST_HEAD(&pool->pools);
 611	spin_lock_init(&pool->lock);
 612	pool->dev = dev;
 613	pool->npages_free = pool->npages_in_use = 0;
 614	pool->nfrees = 0;
 615	pool->gfp_flags = flags;
 616	pool->size = PAGE_SIZE;
 617	pool->type = type;
 618	pool->nrefills = 0;
 619	p = pool->name;
 620	for (i = 0; i < 5; i++) {
 621		if (type & t[i]) {
 622			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
 623				      "%s", n[i]);
 624		}
 625	}
 626	*p = 0;
 627	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
 628	 * - the kobj->name has already been deallocated.*/
 629	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
 630		 dev_driver_string(dev), dev_name(dev));
 631	mutex_lock(&_manager->lock);
 632	/* You can get the dma_pool from either the global: */
 633	list_add(&sec_pool->pools, &_manager->pools);
 634	_manager->npools++;
 635	/* or from 'struct device': */
 636	list_add(&pool->pools, &dev->dma_pools);
 637	mutex_unlock(&_manager->lock);
 638
 639	*ptr = pool;
 640	devres_add(dev, ptr);
 641
 642	return pool;
 643err_mem:
 644	devres_free(ptr);
 645	kfree(sec_pool);
 646	kfree(pool);
 647	return ERR_PTR(ret);
 648}
 649
 650static struct dma_pool *ttm_dma_find_pool(struct device *dev,
 651					  enum pool_type type)
 652{
 653	struct dma_pool *pool, *tmp, *found = NULL;
 654
 655	if (type == IS_UNDEFINED)
 656		return found;
 657
 658	/* NB: We iterate on the 'struct dev' which has no spinlock, but
 659	 * it does have a kref which we have taken. The kref is taken during
 660	 * graphic driver loading - in the drm_pci_init it calls either
 661	 * pci_dev_get or pci_register_driver which both end up taking a kref
 662	 * on 'struct device'.
 663	 *
 664	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
 665	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
 666	 * thing is at that point of time there are no pages associated with the
 667	 * driver so this function will not be called.
 668	 */
 669	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
 670		if (pool->type != type)
 671			continue;
 672		found = pool;
 673		break;
 674	}
 675	return found;
 676}
 677
 678/*
 679 * Free pages the pages that failed to change the caching state. If there
 680 * are pages that have changed their caching state already put them to the
 681 * pool.
 682 */
 683static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
 684						 struct list_head *d_pages,
 685						 struct page **failed_pages,
 686						 unsigned cpages)
 687{
 688	struct dma_page *d_page, *tmp;
 689	struct page *p;
 690	unsigned i = 0;
 691
 692	p = failed_pages[0];
 693	if (!p)
 694		return;
 695	/* Find the failed page. */
 696	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 697		if (d_page->p != p)
 698			continue;
 699		/* .. and then progress over the full list. */
 700		list_del(&d_page->page_list);
 701		__ttm_dma_free_page(pool, d_page);
 702		if (++i < cpages)
 703			p = failed_pages[i];
 704		else
 705			break;
 706	}
 707
 708}
 709
 710/*
 711 * Allocate 'count' pages, and put 'need' number of them on the
 712 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
 713 * The full list of pages should also be on 'd_pages'.
 714 * We return zero for success, and negative numbers as errors.
 715 */
 716static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
 717					struct list_head *d_pages,
 718					unsigned count)
 719{
 720	struct page **caching_array;
 721	struct dma_page *dma_p;
 722	struct page *p;
 723	int r = 0;
 724	unsigned i, cpages;
 725	unsigned max_cpages = min(count,
 726			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
 727
 728	/* allocate array for page caching change */
 729	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
 730
 731	if (!caching_array) {
 732		pr_err("%s: Unable to allocate table for new pages\n",
 733		       pool->dev_name);
 734		return -ENOMEM;
 735	}
 736
 737	if (count > 1) {
 738		pr_debug("%s: (%s:%d) Getting %d pages\n",
 739			 pool->dev_name, pool->name, current->pid, count);
 740	}
 741
 742	for (i = 0, cpages = 0; i < count; ++i) {
 743		dma_p = __ttm_dma_alloc_page(pool);
 744		if (!dma_p) {
 745			pr_err("%s: Unable to get page %u\n",
 746			       pool->dev_name, i);
 747
 748			/* store already allocated pages in the pool after
 749			 * setting the caching state */
 750			if (cpages) {
 751				r = ttm_set_pages_caching(pool, caching_array,
 752							  cpages);
 753				if (r)
 754					ttm_dma_handle_caching_state_failure(
 755						pool, d_pages, caching_array,
 756						cpages);
 757			}
 758			r = -ENOMEM;
 759			goto out;
 760		}
 761		p = dma_p->p;
 762#ifdef CONFIG_HIGHMEM
 763		/* gfp flags of highmem page should never be dma32 so we
 764		 * we should be fine in such case
 765		 */
 766		if (!PageHighMem(p))
 767#endif
 768		{
 769			caching_array[cpages++] = p;
 770			if (cpages == max_cpages) {
 771				/* Note: Cannot hold the spinlock */
 772				r = ttm_set_pages_caching(pool, caching_array,
 773						 cpages);
 774				if (r) {
 775					ttm_dma_handle_caching_state_failure(
 776						pool, d_pages, caching_array,
 777						cpages);
 778					goto out;
 779				}
 780				cpages = 0;
 781			}
 782		}
 783		list_add(&dma_p->page_list, d_pages);
 784	}
 785
 786	if (cpages) {
 787		r = ttm_set_pages_caching(pool, caching_array, cpages);
 788		if (r)
 789			ttm_dma_handle_caching_state_failure(pool, d_pages,
 790					caching_array, cpages);
 791	}
 792out:
 793	kfree(caching_array);
 794	return r;
 795}
 796
 797/*
 798 * @return count of pages still required to fulfill the request.
 799 */
 800static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
 801					 unsigned long *irq_flags)
 802{
 803	unsigned count = _manager->options.small;
 804	int r = pool->npages_free;
 805
 806	if (count > pool->npages_free) {
 807		struct list_head d_pages;
 808
 809		INIT_LIST_HEAD(&d_pages);
 810
 811		spin_unlock_irqrestore(&pool->lock, *irq_flags);
 812
 813		/* Returns how many more are neccessary to fulfill the
 814		 * request. */
 815		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
 816
 817		spin_lock_irqsave(&pool->lock, *irq_flags);
 818		if (!r) {
 819			/* Add the fresh to the end.. */
 820			list_splice(&d_pages, &pool->free_list);
 821			++pool->nrefills;
 822			pool->npages_free += count;
 823			r = count;
 824		} else {
 825			struct dma_page *d_page;
 826			unsigned cpages = 0;
 827
 828			pr_err("%s: Failed to fill %s pool (r:%d)!\n",
 829			       pool->dev_name, pool->name, r);
 830
 831			list_for_each_entry(d_page, &d_pages, page_list) {
 832				cpages++;
 833			}
 834			list_splice_tail(&d_pages, &pool->free_list);
 835			pool->npages_free += cpages;
 836			r = cpages;
 837		}
 838	}
 839	return r;
 840}
 841
 842/*
 843 * @return count of pages still required to fulfill the request.
 844 * The populate list is actually a stack (not that is matters as TTM
 845 * allocates one page at a time.
 846 */
 847static int ttm_dma_pool_get_pages(struct dma_pool *pool,
 848				  struct ttm_dma_tt *ttm_dma,
 849				  unsigned index)
 850{
 851	struct dma_page *d_page;
 852	struct ttm_tt *ttm = &ttm_dma->ttm;
 853	unsigned long irq_flags;
 854	int count, r = -ENOMEM;
 855
 856	spin_lock_irqsave(&pool->lock, irq_flags);
 857	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
 858	if (count) {
 859		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
 860		ttm->pages[index] = d_page->p;
 861		ttm_dma->cpu_address[index] = d_page->vaddr;
 862		ttm_dma->dma_address[index] = d_page->dma;
 863		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
 864		r = 0;
 865		pool->npages_in_use += 1;
 866		pool->npages_free -= 1;
 867	}
 868	spin_unlock_irqrestore(&pool->lock, irq_flags);
 869	return r;
 870}
 871
 872/*
 873 * On success pages list will hold count number of correctly
 874 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
 875 */
 876int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 877{
 878	struct ttm_tt *ttm = &ttm_dma->ttm;
 879	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
 880	struct dma_pool *pool;
 881	enum pool_type type;
 882	unsigned i;
 883	gfp_t gfp_flags;
 884	int ret;
 885
 886	if (ttm->state != tt_unpopulated)
 887		return 0;
 888
 889	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 890	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 891		gfp_flags = GFP_USER | GFP_DMA32;
 892	else
 893		gfp_flags = GFP_HIGHUSER;
 894	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
 895		gfp_flags |= __GFP_ZERO;
 896
 897	pool = ttm_dma_find_pool(dev, type);
 898	if (!pool) {
 899		pool = ttm_dma_pool_init(dev, gfp_flags, type);
 900		if (IS_ERR_OR_NULL(pool)) {
 901			return -ENOMEM;
 902		}
 903	}
 904
 905	INIT_LIST_HEAD(&ttm_dma->pages_list);
 906	for (i = 0; i < ttm->num_pages; ++i) {
 907		ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 908		if (ret != 0) {
 909			ttm_dma_unpopulate(ttm_dma, dev);
 910			return -ENOMEM;
 911		}
 912
 913		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 914						false, false);
 915		if (unlikely(ret != 0)) {
 916			ttm_dma_unpopulate(ttm_dma, dev);
 917			return -ENOMEM;
 918		}
 919	}
 920
 921	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
 922		ret = ttm_tt_swapin(ttm);
 923		if (unlikely(ret != 0)) {
 924			ttm_dma_unpopulate(ttm_dma, dev);
 925			return ret;
 926		}
 927	}
 928
 929	ttm->state = tt_unbound;
 930	return 0;
 931}
 932EXPORT_SYMBOL_GPL(ttm_dma_populate);
 933
 
 
 
 
 
 
 
 
 
 
 
 
 
 934/* Put all pages in pages list to correct pool to wait for reuse */
 935void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 936{
 937	struct ttm_tt *ttm = &ttm_dma->ttm;
 938	struct dma_pool *pool;
 939	struct dma_page *d_page, *next;
 940	enum pool_type type;
 941	bool is_cached = false;
 942	unsigned count = 0, i, npages = 0;
 943	unsigned long irq_flags;
 944
 945	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 946	pool = ttm_dma_find_pool(dev, type);
 947	if (!pool)
 948		return;
 949
 950	is_cached = (ttm_dma_find_pool(pool->dev,
 951		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
 952
 953	/* make sure pages array match list and count number of pages */
 954	list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
 955		ttm->pages[count] = d_page->p;
 956		count++;
 957	}
 958
 959	spin_lock_irqsave(&pool->lock, irq_flags);
 960	pool->npages_in_use -= count;
 961	if (is_cached) {
 962		pool->nfrees += count;
 963	} else {
 964		pool->npages_free += count;
 965		list_splice(&ttm_dma->pages_list, &pool->free_list);
 966		/*
 967		 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
 968		 * to free in order to minimize calls to set_memory_wb().
 969		 */
 970		if (pool->npages_free >= (_manager->options.max_size +
 971					  NUM_PAGES_TO_ALLOC))
 972			npages = pool->npages_free - _manager->options.max_size;
 
 
 
 
 
 973	}
 974	spin_unlock_irqrestore(&pool->lock, irq_flags);
 975
 976	if (is_cached) {
 977		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
 978			ttm_mem_global_free_page(ttm->glob->mem_glob,
 979						 d_page->p);
 980			ttm_dma_page_put(pool, d_page);
 981		}
 982	} else {
 983		for (i = 0; i < count; i++) {
 984			ttm_mem_global_free_page(ttm->glob->mem_glob,
 985						 ttm->pages[i]);
 986		}
 987	}
 988
 989	INIT_LIST_HEAD(&ttm_dma->pages_list);
 990	for (i = 0; i < ttm->num_pages; i++) {
 991		ttm->pages[i] = NULL;
 992		ttm_dma->cpu_address[i] = 0;
 993		ttm_dma->dma_address[i] = 0;
 994	}
 995
 996	/* shrink pool if necessary (only on !is_cached pools)*/
 997	if (npages)
 998		ttm_dma_page_pool_free(pool, npages, false);
 999	ttm->state = tt_unpopulated;
1000}
1001EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1002
1003/**
1004 * Callback for mm to request pool to reduce number of page held.
1005 *
1006 * XXX: (dchinner) Deadlock warning!
1007 *
1008 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1009 * shrinkers
1010 */
1011static unsigned long
1012ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1013{
1014	static unsigned start_pool;
1015	unsigned idx = 0;
1016	unsigned pool_offset;
1017	unsigned shrink_pages = sc->nr_to_scan;
1018	struct device_pools *p;
1019	unsigned long freed = 0;
1020
1021	if (list_empty(&_manager->pools))
1022		return SHRINK_STOP;
1023
1024	if (!mutex_trylock(&_manager->lock))
1025		return SHRINK_STOP;
1026	if (!_manager->npools)
1027		goto out;
1028	pool_offset = ++start_pool % _manager->npools;
1029	list_for_each_entry(p, &_manager->pools, pools) {
1030		unsigned nr_free;
1031
1032		if (!p->dev)
1033			continue;
1034		if (shrink_pages == 0)
1035			break;
1036		/* Do it in round-robin fashion. */
1037		if (++idx < pool_offset)
1038			continue;
1039		nr_free = shrink_pages;
1040		/* OK to use static buffer since global mutex is held. */
1041		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1042		freed += nr_free - shrink_pages;
1043
1044		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1045			 p->pool->dev_name, p->pool->name, current->pid,
1046			 nr_free, shrink_pages);
1047	}
1048out:
1049	mutex_unlock(&_manager->lock);
1050	return freed;
1051}
1052
1053static unsigned long
1054ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1055{
1056	struct device_pools *p;
1057	unsigned long count = 0;
1058
1059	if (!mutex_trylock(&_manager->lock))
1060		return 0;
1061	list_for_each_entry(p, &_manager->pools, pools)
1062		count += p->pool->npages_free;
1063	mutex_unlock(&_manager->lock);
1064	return count;
1065}
1066
1067static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1068{
1069	manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1070	manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1071	manager->mm_shrink.seeks = 1;
1072	register_shrinker(&manager->mm_shrink);
1073}
1074
1075static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1076{
1077	unregister_shrinker(&manager->mm_shrink);
1078}
1079
1080int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1081{
1082	int ret = -ENOMEM;
1083
1084	WARN_ON(_manager);
1085
1086	pr_info("Initializing DMA pool allocator\n");
1087
1088	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1089	if (!_manager)
1090		goto err;
1091
1092	mutex_init(&_manager->lock);
1093	INIT_LIST_HEAD(&_manager->pools);
1094
1095	_manager->options.max_size = max_pages;
1096	_manager->options.small = SMALL_ALLOCATION;
1097	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1098
1099	/* This takes care of auto-freeing the _manager */
1100	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1101				   &glob->kobj, "dma_pool");
1102	if (unlikely(ret != 0)) {
1103		kobject_put(&_manager->kobj);
1104		goto err;
1105	}
1106	ttm_dma_pool_mm_shrink_init(_manager);
1107	return 0;
 
 
 
1108err:
1109	return ret;
1110}
1111
1112void ttm_dma_page_alloc_fini(void)
1113{
1114	struct device_pools *p, *t;
1115
1116	pr_info("Finalizing DMA pool allocator\n");
1117	ttm_dma_pool_mm_shrink_fini(_manager);
1118
1119	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1120		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1121			current->pid);
1122		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1123			ttm_dma_pool_match, p->pool));
1124		ttm_dma_free_pool(p->dev, p->pool->type);
1125	}
1126	kobject_put(&_manager->kobj);
1127	_manager = NULL;
1128}
1129
1130int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1131{
1132	struct device_pools *p;
1133	struct dma_pool *pool = NULL;
1134	char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1135		     "name", "virt", "busaddr"};
1136
1137	if (!_manager) {
1138		seq_printf(m, "No pool allocator running.\n");
1139		return 0;
1140	}
1141	seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1142		   h[0], h[1], h[2], h[3], h[4], h[5]);
1143	mutex_lock(&_manager->lock);
1144	list_for_each_entry(p, &_manager->pools, pools) {
1145		struct device *dev = p->dev;
1146		if (!dev)
1147			continue;
1148		pool = p->pool;
1149		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1150				pool->name, pool->nrefills,
1151				pool->nfrees, pool->npages_in_use,
1152				pool->npages_free,
1153				pool->dev_name);
1154	}
1155	mutex_unlock(&_manager->lock);
1156	return 0;
1157}
1158EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1159
1160#endif
v3.5.6
   1/*
   2 * Copyright 2011 (c) Oracle Corp.
   3
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the
  12 * next paragraph) shall be included in all copies or substantial portions
  13 * of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  24 */
  25
  26/*
  27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
  28 * over the DMA pools:
  29 * - Pool collects resently freed pages for reuse (and hooks up to
  30 *   the shrinker).
  31 * - Tracks currently in use pages
  32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
  33 *   when freed).
  34 */
  35
 
  36#define pr_fmt(fmt) "[TTM] " fmt
  37
  38#include <linux/dma-mapping.h>
  39#include <linux/list.h>
  40#include <linux/seq_file.h> /* for seq_printf */
  41#include <linux/slab.h>
  42#include <linux/spinlock.h>
  43#include <linux/highmem.h>
  44#include <linux/mm_types.h>
  45#include <linux/module.h>
  46#include <linux/mm.h>
  47#include <linux/atomic.h>
  48#include <linux/device.h>
  49#include <linux/kthread.h>
  50#include "ttm/ttm_bo_driver.h"
  51#include "ttm/ttm_page_alloc.h"
  52#ifdef TTM_HAS_AGP
  53#include <asm/agp.h>
  54#endif
  55
  56#define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
  57#define SMALL_ALLOCATION		4
  58#define FREE_ALL_PAGES			(~0U)
  59/* times are in msecs */
  60#define IS_UNDEFINED			(0)
  61#define IS_WC				(1<<1)
  62#define IS_UC				(1<<2)
  63#define IS_CACHED			(1<<3)
  64#define IS_DMA32			(1<<4)
  65
  66enum pool_type {
  67	POOL_IS_UNDEFINED,
  68	POOL_IS_WC = IS_WC,
  69	POOL_IS_UC = IS_UC,
  70	POOL_IS_CACHED = IS_CACHED,
  71	POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
  72	POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
  73	POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
  74};
  75/*
  76 * The pool structure. There are usually six pools:
  77 *  - generic (not restricted to DMA32):
  78 *      - write combined, uncached, cached.
  79 *  - dma32 (up to 2^32 - so up 4GB):
  80 *      - write combined, uncached, cached.
  81 * for each 'struct device'. The 'cached' is for pages that are actively used.
  82 * The other ones can be shrunk by the shrinker API if neccessary.
  83 * @pools: The 'struct device->dma_pools' link.
  84 * @type: Type of the pool
  85 * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
  86 * used with irqsave/irqrestore variants because pool allocator maybe called
  87 * from delayed work.
  88 * @inuse_list: Pool of pages that are in use. The order is very important and
  89 *   it is in the order that the TTM pages that are put back are in.
  90 * @free_list: Pool of pages that are free to be used. No order requirements.
  91 * @dev: The device that is associated with these pools.
  92 * @size: Size used during DMA allocation.
  93 * @npages_free: Count of available pages for re-use.
  94 * @npages_in_use: Count of pages that are in use.
  95 * @nfrees: Stats when pool is shrinking.
  96 * @nrefills: Stats when the pool is grown.
  97 * @gfp_flags: Flags to pass for alloc_page.
  98 * @name: Name of the pool.
  99 * @dev_name: Name derieved from dev - similar to how dev_info works.
 100 *   Used during shutdown as the dev_info during release is unavailable.
 101 */
 102struct dma_pool {
 103	struct list_head pools; /* The 'struct device->dma_pools link */
 104	enum pool_type type;
 105	spinlock_t lock;
 106	struct list_head inuse_list;
 107	struct list_head free_list;
 108	struct device *dev;
 109	unsigned size;
 110	unsigned npages_free;
 111	unsigned npages_in_use;
 112	unsigned long nfrees; /* Stats when shrunk. */
 113	unsigned long nrefills; /* Stats when grown. */
 114	gfp_t gfp_flags;
 115	char name[13]; /* "cached dma32" */
 116	char dev_name[64]; /* Constructed from dev */
 117};
 118
 119/*
 120 * The accounting page keeping track of the allocated page along with
 121 * the DMA address.
 122 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
 123 * @vaddr: The virtual address of the page
 124 * @dma: The bus address of the page. If the page is not allocated
 125 *   via the DMA API, it will be -1.
 126 */
 127struct dma_page {
 128	struct list_head page_list;
 129	void *vaddr;
 130	struct page *p;
 131	dma_addr_t dma;
 132};
 133
 134/*
 135 * Limits for the pool. They are handled without locks because only place where
 136 * they may change is in sysfs store. They won't have immediate effect anyway
 137 * so forcing serialization to access them is pointless.
 138 */
 139
 140struct ttm_pool_opts {
 141	unsigned	alloc_size;
 142	unsigned	max_size;
 143	unsigned	small;
 144};
 145
 146/*
 147 * Contains the list of all of the 'struct device' and their corresponding
 148 * DMA pools. Guarded by _mutex->lock.
 149 * @pools: The link to 'struct ttm_pool_manager->pools'
 150 * @dev: The 'struct device' associated with the 'pool'
 151 * @pool: The 'struct dma_pool' associated with the 'dev'
 152 */
 153struct device_pools {
 154	struct list_head pools;
 155	struct device *dev;
 156	struct dma_pool *pool;
 157};
 158
 159/*
 160 * struct ttm_pool_manager - Holds memory pools for fast allocation
 161 *
 162 * @lock: Lock used when adding/removing from pools
 163 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
 164 * @options: Limits for the pool.
 165 * @npools: Total amount of pools in existence.
 166 * @shrinker: The structure used by [un|]register_shrinker
 167 */
 168struct ttm_pool_manager {
 169	struct mutex		lock;
 170	struct list_head	pools;
 171	struct ttm_pool_opts	options;
 172	unsigned		npools;
 173	struct shrinker		mm_shrink;
 174	struct kobject		kobj;
 175};
 176
 177static struct ttm_pool_manager *_manager;
 178
 179static struct attribute ttm_page_pool_max = {
 180	.name = "pool_max_size",
 181	.mode = S_IRUGO | S_IWUSR
 182};
 183static struct attribute ttm_page_pool_small = {
 184	.name = "pool_small_allocation",
 185	.mode = S_IRUGO | S_IWUSR
 186};
 187static struct attribute ttm_page_pool_alloc_size = {
 188	.name = "pool_allocation_size",
 189	.mode = S_IRUGO | S_IWUSR
 190};
 191
 192static struct attribute *ttm_pool_attrs[] = {
 193	&ttm_page_pool_max,
 194	&ttm_page_pool_small,
 195	&ttm_page_pool_alloc_size,
 196	NULL
 197};
 198
 199static void ttm_pool_kobj_release(struct kobject *kobj)
 200{
 201	struct ttm_pool_manager *m =
 202		container_of(kobj, struct ttm_pool_manager, kobj);
 203	kfree(m);
 204}
 205
 206static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
 207			      const char *buffer, size_t size)
 208{
 209	struct ttm_pool_manager *m =
 210		container_of(kobj, struct ttm_pool_manager, kobj);
 211	int chars;
 212	unsigned val;
 213	chars = sscanf(buffer, "%u", &val);
 214	if (chars == 0)
 215		return size;
 216
 217	/* Convert kb to number of pages */
 218	val = val / (PAGE_SIZE >> 10);
 219
 220	if (attr == &ttm_page_pool_max)
 221		m->options.max_size = val;
 222	else if (attr == &ttm_page_pool_small)
 223		m->options.small = val;
 224	else if (attr == &ttm_page_pool_alloc_size) {
 225		if (val > NUM_PAGES_TO_ALLOC*8) {
 226			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
 227			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
 228			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 229			return size;
 230		} else if (val > NUM_PAGES_TO_ALLOC) {
 231			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
 232				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
 233		}
 234		m->options.alloc_size = val;
 235	}
 236
 237	return size;
 238}
 239
 240static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
 241			     char *buffer)
 242{
 243	struct ttm_pool_manager *m =
 244		container_of(kobj, struct ttm_pool_manager, kobj);
 245	unsigned val = 0;
 246
 247	if (attr == &ttm_page_pool_max)
 248		val = m->options.max_size;
 249	else if (attr == &ttm_page_pool_small)
 250		val = m->options.small;
 251	else if (attr == &ttm_page_pool_alloc_size)
 252		val = m->options.alloc_size;
 253
 254	val = val * (PAGE_SIZE >> 10);
 255
 256	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
 257}
 258
 259static const struct sysfs_ops ttm_pool_sysfs_ops = {
 260	.show = &ttm_pool_show,
 261	.store = &ttm_pool_store,
 262};
 263
 264static struct kobj_type ttm_pool_kobj_type = {
 265	.release = &ttm_pool_kobj_release,
 266	.sysfs_ops = &ttm_pool_sysfs_ops,
 267	.default_attrs = ttm_pool_attrs,
 268};
 269
 270#ifndef CONFIG_X86
 271static int set_pages_array_wb(struct page **pages, int addrinarray)
 272{
 273#ifdef TTM_HAS_AGP
 274	int i;
 275
 276	for (i = 0; i < addrinarray; i++)
 277		unmap_page_from_agp(pages[i]);
 278#endif
 279	return 0;
 280}
 281
 282static int set_pages_array_wc(struct page **pages, int addrinarray)
 283{
 284#ifdef TTM_HAS_AGP
 285	int i;
 286
 287	for (i = 0; i < addrinarray; i++)
 288		map_page_into_agp(pages[i]);
 289#endif
 290	return 0;
 291}
 292
 293static int set_pages_array_uc(struct page **pages, int addrinarray)
 294{
 295#ifdef TTM_HAS_AGP
 296	int i;
 297
 298	for (i = 0; i < addrinarray; i++)
 299		map_page_into_agp(pages[i]);
 300#endif
 301	return 0;
 302}
 303#endif /* for !CONFIG_X86 */
 304
 305static int ttm_set_pages_caching(struct dma_pool *pool,
 306				 struct page **pages, unsigned cpages)
 307{
 308	int r = 0;
 309	/* Set page caching */
 310	if (pool->type & IS_UC) {
 311		r = set_pages_array_uc(pages, cpages);
 312		if (r)
 313			pr_err("%s: Failed to set %d pages to uc!\n",
 314			       pool->dev_name, cpages);
 315	}
 316	if (pool->type & IS_WC) {
 317		r = set_pages_array_wc(pages, cpages);
 318		if (r)
 319			pr_err("%s: Failed to set %d pages to wc!\n",
 320			       pool->dev_name, cpages);
 321	}
 322	return r;
 323}
 324
 325static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
 326{
 327	dma_addr_t dma = d_page->dma;
 328	dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
 329
 330	kfree(d_page);
 331	d_page = NULL;
 332}
 333static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
 334{
 335	struct dma_page *d_page;
 336
 337	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
 338	if (!d_page)
 339		return NULL;
 340
 341	d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
 342					   &d_page->dma,
 343					   pool->gfp_flags);
 344	if (d_page->vaddr)
 345		d_page->p = virt_to_page(d_page->vaddr);
 346	else {
 
 
 
 347		kfree(d_page);
 348		d_page = NULL;
 349	}
 350	return d_page;
 351}
 352static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
 353{
 354	enum pool_type type = IS_UNDEFINED;
 355
 356	if (flags & TTM_PAGE_FLAG_DMA32)
 357		type |= IS_DMA32;
 358	if (cstate == tt_cached)
 359		type |= IS_CACHED;
 360	else if (cstate == tt_uncached)
 361		type |= IS_UC;
 362	else
 363		type |= IS_WC;
 364
 365	return type;
 366}
 367
 368static void ttm_pool_update_free_locked(struct dma_pool *pool,
 369					unsigned freed_pages)
 370{
 371	pool->npages_free -= freed_pages;
 372	pool->nfrees += freed_pages;
 373
 374}
 375
 376/* set memory back to wb and free the pages. */
 377static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
 378			      struct page *pages[], unsigned npages)
 379{
 380	struct dma_page *d_page, *tmp;
 381
 382	/* Don't set WB on WB page pool. */
 383	if (npages && !(pool->type & IS_CACHED) &&
 384	    set_pages_array_wb(pages, npages))
 385		pr_err("%s: Failed to set %d pages to wb!\n",
 386		       pool->dev_name, npages);
 387
 388	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 389		list_del(&d_page->page_list);
 390		__ttm_dma_free_page(pool, d_page);
 391	}
 392}
 393
 394static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
 395{
 396	/* Don't set WB on WB page pool. */
 397	if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
 398		pr_err("%s: Failed to set %d pages to wb!\n",
 399		       pool->dev_name, 1);
 400
 401	list_del(&d_page->page_list);
 402	__ttm_dma_free_page(pool, d_page);
 403}
 404
 405/*
 406 * Free pages from pool.
 407 *
 408 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
 409 * number of pages in one go.
 410 *
 411 * @pool: to free the pages from
 412 * @nr_free: If set to true will free all pages in pool
 
 413 **/
 414static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
 
 415{
 
 416	unsigned long irq_flags;
 417	struct dma_page *dma_p, *tmp;
 418	struct page **pages_to_free;
 419	struct list_head d_pages;
 420	unsigned freed_pages = 0,
 421		 npages_to_free = nr_free;
 422
 423	if (NUM_PAGES_TO_ALLOC < nr_free)
 424		npages_to_free = NUM_PAGES_TO_ALLOC;
 425#if 0
 426	if (nr_free > 1) {
 427		pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
 428			 pool->dev_name, pool->name, current->pid,
 429			 npages_to_free, nr_free);
 430	}
 431#endif
 432	pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
 433			GFP_KERNEL);
 
 
 
 434
 435	if (!pages_to_free) {
 436		pr_err("%s: Failed to allocate memory for pool free operation\n",
 437		       pool->dev_name);
 438		return 0;
 439	}
 440	INIT_LIST_HEAD(&d_pages);
 441restart:
 442	spin_lock_irqsave(&pool->lock, irq_flags);
 443
 444	/* We picking the oldest ones off the list */
 445	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
 446					 page_list) {
 447		if (freed_pages >= npages_to_free)
 448			break;
 449
 450		/* Move the dma_page from one list to another. */
 451		list_move(&dma_p->page_list, &d_pages);
 452
 453		pages_to_free[freed_pages++] = dma_p->p;
 454		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
 455		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
 456
 457			ttm_pool_update_free_locked(pool, freed_pages);
 458			/**
 459			 * Because changing page caching is costly
 460			 * we unlock the pool to prevent stalling.
 461			 */
 462			spin_unlock_irqrestore(&pool->lock, irq_flags);
 463
 464			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
 465					  freed_pages);
 466
 467			INIT_LIST_HEAD(&d_pages);
 468
 469			if (likely(nr_free != FREE_ALL_PAGES))
 470				nr_free -= freed_pages;
 471
 472			if (NUM_PAGES_TO_ALLOC >= nr_free)
 473				npages_to_free = nr_free;
 474			else
 475				npages_to_free = NUM_PAGES_TO_ALLOC;
 476
 477			freed_pages = 0;
 478
 479			/* free all so restart the processing */
 480			if (nr_free)
 481				goto restart;
 482
 483			/* Not allowed to fall through or break because
 484			 * following context is inside spinlock while we are
 485			 * outside here.
 486			 */
 487			goto out;
 488
 489		}
 490	}
 491
 492	/* remove range of pages from the pool */
 493	if (freed_pages) {
 494		ttm_pool_update_free_locked(pool, freed_pages);
 495		nr_free -= freed_pages;
 496	}
 497
 498	spin_unlock_irqrestore(&pool->lock, irq_flags);
 499
 500	if (freed_pages)
 501		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
 502out:
 503	kfree(pages_to_free);
 
 504	return nr_free;
 505}
 506
 507static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
 508{
 509	struct device_pools *p;
 510	struct dma_pool *pool;
 511
 512	if (!dev)
 513		return;
 514
 515	mutex_lock(&_manager->lock);
 516	list_for_each_entry_reverse(p, &_manager->pools, pools) {
 517		if (p->dev != dev)
 518			continue;
 519		pool = p->pool;
 520		if (pool->type != type)
 521			continue;
 522
 523		list_del(&p->pools);
 524		kfree(p);
 525		_manager->npools--;
 526		break;
 527	}
 528	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
 529		if (pool->type != type)
 530			continue;
 531		/* Takes a spinlock.. */
 532		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
 
 533		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
 534		/* This code path is called after _all_ references to the
 535		 * struct device has been dropped - so nobody should be
 536		 * touching it. In case somebody is trying to _add_ we are
 537		 * guarded by the mutex. */
 538		list_del(&pool->pools);
 539		kfree(pool);
 540		break;
 541	}
 542	mutex_unlock(&_manager->lock);
 543}
 544
 545/*
 546 * On free-ing of the 'struct device' this deconstructor is run.
 547 * Albeit the pool might have already been freed earlier.
 548 */
 549static void ttm_dma_pool_release(struct device *dev, void *res)
 550{
 551	struct dma_pool *pool = *(struct dma_pool **)res;
 552
 553	if (pool)
 554		ttm_dma_free_pool(dev, pool->type);
 555}
 556
 557static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
 558{
 559	return *(struct dma_pool **)res == match_data;
 560}
 561
 562static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
 563					  enum pool_type type)
 564{
 565	char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
 566	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
 567	struct device_pools *sec_pool = NULL;
 568	struct dma_pool *pool = NULL, **ptr;
 569	unsigned i;
 570	int ret = -ENODEV;
 571	char *p;
 572
 573	if (!dev)
 574		return NULL;
 575
 576	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
 577	if (!ptr)
 578		return NULL;
 579
 580	ret = -ENOMEM;
 581
 582	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
 583			    dev_to_node(dev));
 584	if (!pool)
 585		goto err_mem;
 586
 587	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
 588				dev_to_node(dev));
 589	if (!sec_pool)
 590		goto err_mem;
 591
 592	INIT_LIST_HEAD(&sec_pool->pools);
 593	sec_pool->dev = dev;
 594	sec_pool->pool =  pool;
 595
 596	INIT_LIST_HEAD(&pool->free_list);
 597	INIT_LIST_HEAD(&pool->inuse_list);
 598	INIT_LIST_HEAD(&pool->pools);
 599	spin_lock_init(&pool->lock);
 600	pool->dev = dev;
 601	pool->npages_free = pool->npages_in_use = 0;
 602	pool->nfrees = 0;
 603	pool->gfp_flags = flags;
 604	pool->size = PAGE_SIZE;
 605	pool->type = type;
 606	pool->nrefills = 0;
 607	p = pool->name;
 608	for (i = 0; i < 5; i++) {
 609		if (type & t[i]) {
 610			p += snprintf(p, sizeof(pool->name) - (p - pool->name),
 611				      "%s", n[i]);
 612		}
 613	}
 614	*p = 0;
 615	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
 616	 * - the kobj->name has already been deallocated.*/
 617	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
 618		 dev_driver_string(dev), dev_name(dev));
 619	mutex_lock(&_manager->lock);
 620	/* You can get the dma_pool from either the global: */
 621	list_add(&sec_pool->pools, &_manager->pools);
 622	_manager->npools++;
 623	/* or from 'struct device': */
 624	list_add(&pool->pools, &dev->dma_pools);
 625	mutex_unlock(&_manager->lock);
 626
 627	*ptr = pool;
 628	devres_add(dev, ptr);
 629
 630	return pool;
 631err_mem:
 632	devres_free(ptr);
 633	kfree(sec_pool);
 634	kfree(pool);
 635	return ERR_PTR(ret);
 636}
 637
 638static struct dma_pool *ttm_dma_find_pool(struct device *dev,
 639					  enum pool_type type)
 640{
 641	struct dma_pool *pool, *tmp, *found = NULL;
 642
 643	if (type == IS_UNDEFINED)
 644		return found;
 645
 646	/* NB: We iterate on the 'struct dev' which has no spinlock, but
 647	 * it does have a kref which we have taken. The kref is taken during
 648	 * graphic driver loading - in the drm_pci_init it calls either
 649	 * pci_dev_get or pci_register_driver which both end up taking a kref
 650	 * on 'struct device'.
 651	 *
 652	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
 653	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
 654	 * thing is at that point of time there are no pages associated with the
 655	 * driver so this function will not be called.
 656	 */
 657	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
 658		if (pool->type != type)
 659			continue;
 660		found = pool;
 661		break;
 662	}
 663	return found;
 664}
 665
 666/*
 667 * Free pages the pages that failed to change the caching state. If there
 668 * are pages that have changed their caching state already put them to the
 669 * pool.
 670 */
 671static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
 672						 struct list_head *d_pages,
 673						 struct page **failed_pages,
 674						 unsigned cpages)
 675{
 676	struct dma_page *d_page, *tmp;
 677	struct page *p;
 678	unsigned i = 0;
 679
 680	p = failed_pages[0];
 681	if (!p)
 682		return;
 683	/* Find the failed page. */
 684	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
 685		if (d_page->p != p)
 686			continue;
 687		/* .. and then progress over the full list. */
 688		list_del(&d_page->page_list);
 689		__ttm_dma_free_page(pool, d_page);
 690		if (++i < cpages)
 691			p = failed_pages[i];
 692		else
 693			break;
 694	}
 695
 696}
 697
 698/*
 699 * Allocate 'count' pages, and put 'need' number of them on the
 700 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
 701 * The full list of pages should also be on 'd_pages'.
 702 * We return zero for success, and negative numbers as errors.
 703 */
 704static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
 705					struct list_head *d_pages,
 706					unsigned count)
 707{
 708	struct page **caching_array;
 709	struct dma_page *dma_p;
 710	struct page *p;
 711	int r = 0;
 712	unsigned i, cpages;
 713	unsigned max_cpages = min(count,
 714			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
 715
 716	/* allocate array for page caching change */
 717	caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
 718
 719	if (!caching_array) {
 720		pr_err("%s: Unable to allocate table for new pages\n",
 721		       pool->dev_name);
 722		return -ENOMEM;
 723	}
 724
 725	if (count > 1) {
 726		pr_debug("%s: (%s:%d) Getting %d pages\n",
 727			 pool->dev_name, pool->name, current->pid, count);
 728	}
 729
 730	for (i = 0, cpages = 0; i < count; ++i) {
 731		dma_p = __ttm_dma_alloc_page(pool);
 732		if (!dma_p) {
 733			pr_err("%s: Unable to get page %u\n",
 734			       pool->dev_name, i);
 735
 736			/* store already allocated pages in the pool after
 737			 * setting the caching state */
 738			if (cpages) {
 739				r = ttm_set_pages_caching(pool, caching_array,
 740							  cpages);
 741				if (r)
 742					ttm_dma_handle_caching_state_failure(
 743						pool, d_pages, caching_array,
 744						cpages);
 745			}
 746			r = -ENOMEM;
 747			goto out;
 748		}
 749		p = dma_p->p;
 750#ifdef CONFIG_HIGHMEM
 751		/* gfp flags of highmem page should never be dma32 so we
 752		 * we should be fine in such case
 753		 */
 754		if (!PageHighMem(p))
 755#endif
 756		{
 757			caching_array[cpages++] = p;
 758			if (cpages == max_cpages) {
 759				/* Note: Cannot hold the spinlock */
 760				r = ttm_set_pages_caching(pool, caching_array,
 761						 cpages);
 762				if (r) {
 763					ttm_dma_handle_caching_state_failure(
 764						pool, d_pages, caching_array,
 765						cpages);
 766					goto out;
 767				}
 768				cpages = 0;
 769			}
 770		}
 771		list_add(&dma_p->page_list, d_pages);
 772	}
 773
 774	if (cpages) {
 775		r = ttm_set_pages_caching(pool, caching_array, cpages);
 776		if (r)
 777			ttm_dma_handle_caching_state_failure(pool, d_pages,
 778					caching_array, cpages);
 779	}
 780out:
 781	kfree(caching_array);
 782	return r;
 783}
 784
 785/*
 786 * @return count of pages still required to fulfill the request.
 787 */
 788static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
 789					 unsigned long *irq_flags)
 790{
 791	unsigned count = _manager->options.small;
 792	int r = pool->npages_free;
 793
 794	if (count > pool->npages_free) {
 795		struct list_head d_pages;
 796
 797		INIT_LIST_HEAD(&d_pages);
 798
 799		spin_unlock_irqrestore(&pool->lock, *irq_flags);
 800
 801		/* Returns how many more are neccessary to fulfill the
 802		 * request. */
 803		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
 804
 805		spin_lock_irqsave(&pool->lock, *irq_flags);
 806		if (!r) {
 807			/* Add the fresh to the end.. */
 808			list_splice(&d_pages, &pool->free_list);
 809			++pool->nrefills;
 810			pool->npages_free += count;
 811			r = count;
 812		} else {
 813			struct dma_page *d_page;
 814			unsigned cpages = 0;
 815
 816			pr_err("%s: Failed to fill %s pool (r:%d)!\n",
 817			       pool->dev_name, pool->name, r);
 818
 819			list_for_each_entry(d_page, &d_pages, page_list) {
 820				cpages++;
 821			}
 822			list_splice_tail(&d_pages, &pool->free_list);
 823			pool->npages_free += cpages;
 824			r = cpages;
 825		}
 826	}
 827	return r;
 828}
 829
 830/*
 831 * @return count of pages still required to fulfill the request.
 832 * The populate list is actually a stack (not that is matters as TTM
 833 * allocates one page at a time.
 834 */
 835static int ttm_dma_pool_get_pages(struct dma_pool *pool,
 836				  struct ttm_dma_tt *ttm_dma,
 837				  unsigned index)
 838{
 839	struct dma_page *d_page;
 840	struct ttm_tt *ttm = &ttm_dma->ttm;
 841	unsigned long irq_flags;
 842	int count, r = -ENOMEM;
 843
 844	spin_lock_irqsave(&pool->lock, irq_flags);
 845	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
 846	if (count) {
 847		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
 848		ttm->pages[index] = d_page->p;
 
 849		ttm_dma->dma_address[index] = d_page->dma;
 850		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
 851		r = 0;
 852		pool->npages_in_use += 1;
 853		pool->npages_free -= 1;
 854	}
 855	spin_unlock_irqrestore(&pool->lock, irq_flags);
 856	return r;
 857}
 858
 859/*
 860 * On success pages list will hold count number of correctly
 861 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
 862 */
 863int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 864{
 865	struct ttm_tt *ttm = &ttm_dma->ttm;
 866	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
 867	struct dma_pool *pool;
 868	enum pool_type type;
 869	unsigned i;
 870	gfp_t gfp_flags;
 871	int ret;
 872
 873	if (ttm->state != tt_unpopulated)
 874		return 0;
 875
 876	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 877	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
 878		gfp_flags = GFP_USER | GFP_DMA32;
 879	else
 880		gfp_flags = GFP_HIGHUSER;
 881	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
 882		gfp_flags |= __GFP_ZERO;
 883
 884	pool = ttm_dma_find_pool(dev, type);
 885	if (!pool) {
 886		pool = ttm_dma_pool_init(dev, gfp_flags, type);
 887		if (IS_ERR_OR_NULL(pool)) {
 888			return -ENOMEM;
 889		}
 890	}
 891
 892	INIT_LIST_HEAD(&ttm_dma->pages_list);
 893	for (i = 0; i < ttm->num_pages; ++i) {
 894		ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
 895		if (ret != 0) {
 896			ttm_dma_unpopulate(ttm_dma, dev);
 897			return -ENOMEM;
 898		}
 899
 900		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
 901						false, false);
 902		if (unlikely(ret != 0)) {
 903			ttm_dma_unpopulate(ttm_dma, dev);
 904			return -ENOMEM;
 905		}
 906	}
 907
 908	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
 909		ret = ttm_tt_swapin(ttm);
 910		if (unlikely(ret != 0)) {
 911			ttm_dma_unpopulate(ttm_dma, dev);
 912			return ret;
 913		}
 914	}
 915
 916	ttm->state = tt_unbound;
 917	return 0;
 918}
 919EXPORT_SYMBOL_GPL(ttm_dma_populate);
 920
 921/* Get good estimation how many pages are free in pools */
 922static int ttm_dma_pool_get_num_unused_pages(void)
 923{
 924	struct device_pools *p;
 925	unsigned total = 0;
 926
 927	mutex_lock(&_manager->lock);
 928	list_for_each_entry(p, &_manager->pools, pools)
 929		total += p->pool->npages_free;
 930	mutex_unlock(&_manager->lock);
 931	return total;
 932}
 933
 934/* Put all pages in pages list to correct pool to wait for reuse */
 935void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
 936{
 937	struct ttm_tt *ttm = &ttm_dma->ttm;
 938	struct dma_pool *pool;
 939	struct dma_page *d_page, *next;
 940	enum pool_type type;
 941	bool is_cached = false;
 942	unsigned count = 0, i, npages = 0;
 943	unsigned long irq_flags;
 944
 945	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
 946	pool = ttm_dma_find_pool(dev, type);
 947	if (!pool)
 948		return;
 949
 950	is_cached = (ttm_dma_find_pool(pool->dev,
 951		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
 952
 953	/* make sure pages array match list and count number of pages */
 954	list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
 955		ttm->pages[count] = d_page->p;
 956		count++;
 957	}
 958
 959	spin_lock_irqsave(&pool->lock, irq_flags);
 960	pool->npages_in_use -= count;
 961	if (is_cached) {
 962		pool->nfrees += count;
 963	} else {
 964		pool->npages_free += count;
 965		list_splice(&ttm_dma->pages_list, &pool->free_list);
 966		npages = count;
 967		if (pool->npages_free > _manager->options.max_size) {
 
 
 
 
 968			npages = pool->npages_free - _manager->options.max_size;
 969			/* free at least NUM_PAGES_TO_ALLOC number of pages
 970			 * to reduce calls to set_memory_wb */
 971			if (npages < NUM_PAGES_TO_ALLOC)
 972				npages = NUM_PAGES_TO_ALLOC;
 973		}
 974	}
 975	spin_unlock_irqrestore(&pool->lock, irq_flags);
 976
 977	if (is_cached) {
 978		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
 979			ttm_mem_global_free_page(ttm->glob->mem_glob,
 980						 d_page->p);
 981			ttm_dma_page_put(pool, d_page);
 982		}
 983	} else {
 984		for (i = 0; i < count; i++) {
 985			ttm_mem_global_free_page(ttm->glob->mem_glob,
 986						 ttm->pages[i]);
 987		}
 988	}
 989
 990	INIT_LIST_HEAD(&ttm_dma->pages_list);
 991	for (i = 0; i < ttm->num_pages; i++) {
 992		ttm->pages[i] = NULL;
 
 993		ttm_dma->dma_address[i] = 0;
 994	}
 995
 996	/* shrink pool if necessary (only on !is_cached pools)*/
 997	if (npages)
 998		ttm_dma_page_pool_free(pool, npages);
 999	ttm->state = tt_unpopulated;
1000}
1001EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1002
1003/**
1004 * Callback for mm to request pool to reduce number of page held.
 
 
 
 
 
1005 */
1006static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
1007				  struct shrink_control *sc)
1008{
1009	static atomic_t start_pool = ATOMIC_INIT(0);
1010	unsigned idx = 0;
1011	unsigned pool_offset = atomic_add_return(1, &start_pool);
1012	unsigned shrink_pages = sc->nr_to_scan;
1013	struct device_pools *p;
 
1014
1015	if (list_empty(&_manager->pools))
1016		return 0;
1017
1018	mutex_lock(&_manager->lock);
1019	pool_offset = pool_offset % _manager->npools;
 
 
 
1020	list_for_each_entry(p, &_manager->pools, pools) {
1021		unsigned nr_free;
1022
1023		if (!p->dev)
1024			continue;
1025		if (shrink_pages == 0)
1026			break;
1027		/* Do it in round-robin fashion. */
1028		if (++idx < pool_offset)
1029			continue;
1030		nr_free = shrink_pages;
1031		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
 
 
 
1032		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1033			 p->pool->dev_name, p->pool->name, current->pid,
1034			 nr_free, shrink_pages);
1035	}
 
1036	mutex_unlock(&_manager->lock);
1037	/* return estimated number of unused pages in pool */
1038	return ttm_dma_pool_get_num_unused_pages();
 
 
 
 
 
 
 
 
 
 
 
 
 
1039}
1040
1041static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1042{
1043	manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink;
 
1044	manager->mm_shrink.seeks = 1;
1045	register_shrinker(&manager->mm_shrink);
1046}
1047
1048static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1049{
1050	unregister_shrinker(&manager->mm_shrink);
1051}
1052
1053int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1054{
1055	int ret = -ENOMEM;
1056
1057	WARN_ON(_manager);
1058
1059	pr_info("Initializing DMA pool allocator\n");
1060
1061	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1062	if (!_manager)
1063		goto err_manager;
1064
1065	mutex_init(&_manager->lock);
1066	INIT_LIST_HEAD(&_manager->pools);
1067
1068	_manager->options.max_size = max_pages;
1069	_manager->options.small = SMALL_ALLOCATION;
1070	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1071
1072	/* This takes care of auto-freeing the _manager */
1073	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1074				   &glob->kobj, "dma_pool");
1075	if (unlikely(ret != 0)) {
1076		kobject_put(&_manager->kobj);
1077		goto err;
1078	}
1079	ttm_dma_pool_mm_shrink_init(_manager);
1080	return 0;
1081err_manager:
1082	kfree(_manager);
1083	_manager = NULL;
1084err:
1085	return ret;
1086}
1087
1088void ttm_dma_page_alloc_fini(void)
1089{
1090	struct device_pools *p, *t;
1091
1092	pr_info("Finalizing DMA pool allocator\n");
1093	ttm_dma_pool_mm_shrink_fini(_manager);
1094
1095	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1096		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1097			current->pid);
1098		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1099			ttm_dma_pool_match, p->pool));
1100		ttm_dma_free_pool(p->dev, p->pool->type);
1101	}
1102	kobject_put(&_manager->kobj);
1103	_manager = NULL;
1104}
1105
1106int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1107{
1108	struct device_pools *p;
1109	struct dma_pool *pool = NULL;
1110	char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1111		     "name", "virt", "busaddr"};
1112
1113	if (!_manager) {
1114		seq_printf(m, "No pool allocator running.\n");
1115		return 0;
1116	}
1117	seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1118		   h[0], h[1], h[2], h[3], h[4], h[5]);
1119	mutex_lock(&_manager->lock);
1120	list_for_each_entry(p, &_manager->pools, pools) {
1121		struct device *dev = p->dev;
1122		if (!dev)
1123			continue;
1124		pool = p->pool;
1125		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1126				pool->name, pool->nrefills,
1127				pool->nfrees, pool->npages_in_use,
1128				pool->npages_free,
1129				pool->dev_name);
1130	}
1131	mutex_unlock(&_manager->lock);
1132	return 0;
1133}
1134EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);