Loading...
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/evlist.h"
6#include "util/cache.h"
7#include "util/evsel.h"
8#include "util/symbol.h"
9#include "util/thread.h"
10#include "util/header.h"
11#include "util/session.h"
12#include "util/tool.h"
13#include "util/cloexec.h"
14
15#include <subcmd/parse-options.h>
16#include "util/trace-event.h"
17
18#include "util/debug.h"
19
20#include <sys/prctl.h>
21#include <sys/resource.h>
22
23#include <semaphore.h>
24#include <pthread.h>
25#include <math.h>
26#include <api/fs/fs.h>
27
28#define PR_SET_NAME 15 /* Set process name */
29#define MAX_CPUS 4096
30#define COMM_LEN 20
31#define SYM_LEN 129
32#define MAX_PID 1024000
33
34struct sched_atom;
35
36struct task_desc {
37 unsigned long nr;
38 unsigned long pid;
39 char comm[COMM_LEN];
40
41 unsigned long nr_events;
42 unsigned long curr_event;
43 struct sched_atom **atoms;
44
45 pthread_t thread;
46 sem_t sleep_sem;
47
48 sem_t ready_for_work;
49 sem_t work_done_sem;
50
51 u64 cpu_usage;
52};
53
54enum sched_event_type {
55 SCHED_EVENT_RUN,
56 SCHED_EVENT_SLEEP,
57 SCHED_EVENT_WAKEUP,
58 SCHED_EVENT_MIGRATION,
59};
60
61struct sched_atom {
62 enum sched_event_type type;
63 int specific_wait;
64 u64 timestamp;
65 u64 duration;
66 unsigned long nr;
67 sem_t *wait_sem;
68 struct task_desc *wakee;
69};
70
71#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
72
73enum thread_state {
74 THREAD_SLEEPING = 0,
75 THREAD_WAIT_CPU,
76 THREAD_SCHED_IN,
77 THREAD_IGNORE
78};
79
80struct work_atom {
81 struct list_head list;
82 enum thread_state state;
83 u64 sched_out_time;
84 u64 wake_up_time;
85 u64 sched_in_time;
86 u64 runtime;
87};
88
89struct work_atoms {
90 struct list_head work_list;
91 struct thread *thread;
92 struct rb_node node;
93 u64 max_lat;
94 u64 max_lat_at;
95 u64 total_lat;
96 u64 nb_atoms;
97 u64 total_runtime;
98 int num_merged;
99};
100
101typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
102
103struct perf_sched;
104
105struct trace_sched_handler {
106 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
108
109 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
111
112 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113 struct perf_sample *sample, struct machine *machine);
114
115 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
116 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
117 struct machine *machine);
118
119 int (*migrate_task_event)(struct perf_sched *sched,
120 struct perf_evsel *evsel,
121 struct perf_sample *sample,
122 struct machine *machine);
123};
124
125struct perf_sched {
126 struct perf_tool tool;
127 const char *sort_order;
128 unsigned long nr_tasks;
129 struct task_desc **pid_to_task;
130 struct task_desc **tasks;
131 const struct trace_sched_handler *tp_handler;
132 pthread_mutex_t start_work_mutex;
133 pthread_mutex_t work_done_wait_mutex;
134 int profile_cpu;
135/*
136 * Track the current task - that way we can know whether there's any
137 * weird events, such as a task being switched away that is not current.
138 */
139 int max_cpu;
140 u32 curr_pid[MAX_CPUS];
141 struct thread *curr_thread[MAX_CPUS];
142 char next_shortname1;
143 char next_shortname2;
144 unsigned int replay_repeat;
145 unsigned long nr_run_events;
146 unsigned long nr_sleep_events;
147 unsigned long nr_wakeup_events;
148 unsigned long nr_sleep_corrections;
149 unsigned long nr_run_events_optimized;
150 unsigned long targetless_wakeups;
151 unsigned long multitarget_wakeups;
152 unsigned long nr_runs;
153 unsigned long nr_timestamps;
154 unsigned long nr_unordered_timestamps;
155 unsigned long nr_context_switch_bugs;
156 unsigned long nr_events;
157 unsigned long nr_lost_chunks;
158 unsigned long nr_lost_events;
159 u64 run_measurement_overhead;
160 u64 sleep_measurement_overhead;
161 u64 start_time;
162 u64 cpu_usage;
163 u64 runavg_cpu_usage;
164 u64 parent_cpu_usage;
165 u64 runavg_parent_cpu_usage;
166 u64 sum_runtime;
167 u64 sum_fluct;
168 u64 run_avg;
169 u64 all_runtime;
170 u64 all_count;
171 u64 cpu_last_switched[MAX_CPUS];
172 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
173 struct list_head sort_list, cmp_pid;
174 bool force;
175 bool skip_merge;
176};
177
178static u64 get_nsecs(void)
179{
180 struct timespec ts;
181
182 clock_gettime(CLOCK_MONOTONIC, &ts);
183
184 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
185}
186
187static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
188{
189 u64 T0 = get_nsecs(), T1;
190
191 do {
192 T1 = get_nsecs();
193 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
194}
195
196static void sleep_nsecs(u64 nsecs)
197{
198 struct timespec ts;
199
200 ts.tv_nsec = nsecs % 999999999;
201 ts.tv_sec = nsecs / 999999999;
202
203 nanosleep(&ts, NULL);
204}
205
206static void calibrate_run_measurement_overhead(struct perf_sched *sched)
207{
208 u64 T0, T1, delta, min_delta = 1000000000ULL;
209 int i;
210
211 for (i = 0; i < 10; i++) {
212 T0 = get_nsecs();
213 burn_nsecs(sched, 0);
214 T1 = get_nsecs();
215 delta = T1-T0;
216 min_delta = min(min_delta, delta);
217 }
218 sched->run_measurement_overhead = min_delta;
219
220 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
221}
222
223static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
224{
225 u64 T0, T1, delta, min_delta = 1000000000ULL;
226 int i;
227
228 for (i = 0; i < 10; i++) {
229 T0 = get_nsecs();
230 sleep_nsecs(10000);
231 T1 = get_nsecs();
232 delta = T1-T0;
233 min_delta = min(min_delta, delta);
234 }
235 min_delta -= 10000;
236 sched->sleep_measurement_overhead = min_delta;
237
238 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
239}
240
241static struct sched_atom *
242get_new_event(struct task_desc *task, u64 timestamp)
243{
244 struct sched_atom *event = zalloc(sizeof(*event));
245 unsigned long idx = task->nr_events;
246 size_t size;
247
248 event->timestamp = timestamp;
249 event->nr = idx;
250
251 task->nr_events++;
252 size = sizeof(struct sched_atom *) * task->nr_events;
253 task->atoms = realloc(task->atoms, size);
254 BUG_ON(!task->atoms);
255
256 task->atoms[idx] = event;
257
258 return event;
259}
260
261static struct sched_atom *last_event(struct task_desc *task)
262{
263 if (!task->nr_events)
264 return NULL;
265
266 return task->atoms[task->nr_events - 1];
267}
268
269static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
270 u64 timestamp, u64 duration)
271{
272 struct sched_atom *event, *curr_event = last_event(task);
273
274 /*
275 * optimize an existing RUN event by merging this one
276 * to it:
277 */
278 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
279 sched->nr_run_events_optimized++;
280 curr_event->duration += duration;
281 return;
282 }
283
284 event = get_new_event(task, timestamp);
285
286 event->type = SCHED_EVENT_RUN;
287 event->duration = duration;
288
289 sched->nr_run_events++;
290}
291
292static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
293 u64 timestamp, struct task_desc *wakee)
294{
295 struct sched_atom *event, *wakee_event;
296
297 event = get_new_event(task, timestamp);
298 event->type = SCHED_EVENT_WAKEUP;
299 event->wakee = wakee;
300
301 wakee_event = last_event(wakee);
302 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
303 sched->targetless_wakeups++;
304 return;
305 }
306 if (wakee_event->wait_sem) {
307 sched->multitarget_wakeups++;
308 return;
309 }
310
311 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
312 sem_init(wakee_event->wait_sem, 0, 0);
313 wakee_event->specific_wait = 1;
314 event->wait_sem = wakee_event->wait_sem;
315
316 sched->nr_wakeup_events++;
317}
318
319static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
320 u64 timestamp, u64 task_state __maybe_unused)
321{
322 struct sched_atom *event = get_new_event(task, timestamp);
323
324 event->type = SCHED_EVENT_SLEEP;
325
326 sched->nr_sleep_events++;
327}
328
329static struct task_desc *register_pid(struct perf_sched *sched,
330 unsigned long pid, const char *comm)
331{
332 struct task_desc *task;
333 static int pid_max;
334
335 if (sched->pid_to_task == NULL) {
336 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
337 pid_max = MAX_PID;
338 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
339 }
340 if (pid >= (unsigned long)pid_max) {
341 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
342 sizeof(struct task_desc *))) == NULL);
343 while (pid >= (unsigned long)pid_max)
344 sched->pid_to_task[pid_max++] = NULL;
345 }
346
347 task = sched->pid_to_task[pid];
348
349 if (task)
350 return task;
351
352 task = zalloc(sizeof(*task));
353 task->pid = pid;
354 task->nr = sched->nr_tasks;
355 strcpy(task->comm, comm);
356 /*
357 * every task starts in sleeping state - this gets ignored
358 * if there's no wakeup pointing to this sleep state:
359 */
360 add_sched_event_sleep(sched, task, 0, 0);
361
362 sched->pid_to_task[pid] = task;
363 sched->nr_tasks++;
364 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
365 BUG_ON(!sched->tasks);
366 sched->tasks[task->nr] = task;
367
368 if (verbose)
369 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
370
371 return task;
372}
373
374
375static void print_task_traces(struct perf_sched *sched)
376{
377 struct task_desc *task;
378 unsigned long i;
379
380 for (i = 0; i < sched->nr_tasks; i++) {
381 task = sched->tasks[i];
382 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
383 task->nr, task->comm, task->pid, task->nr_events);
384 }
385}
386
387static void add_cross_task_wakeups(struct perf_sched *sched)
388{
389 struct task_desc *task1, *task2;
390 unsigned long i, j;
391
392 for (i = 0; i < sched->nr_tasks; i++) {
393 task1 = sched->tasks[i];
394 j = i + 1;
395 if (j == sched->nr_tasks)
396 j = 0;
397 task2 = sched->tasks[j];
398 add_sched_event_wakeup(sched, task1, 0, task2);
399 }
400}
401
402static void perf_sched__process_event(struct perf_sched *sched,
403 struct sched_atom *atom)
404{
405 int ret = 0;
406
407 switch (atom->type) {
408 case SCHED_EVENT_RUN:
409 burn_nsecs(sched, atom->duration);
410 break;
411 case SCHED_EVENT_SLEEP:
412 if (atom->wait_sem)
413 ret = sem_wait(atom->wait_sem);
414 BUG_ON(ret);
415 break;
416 case SCHED_EVENT_WAKEUP:
417 if (atom->wait_sem)
418 ret = sem_post(atom->wait_sem);
419 BUG_ON(ret);
420 break;
421 case SCHED_EVENT_MIGRATION:
422 break;
423 default:
424 BUG_ON(1);
425 }
426}
427
428static u64 get_cpu_usage_nsec_parent(void)
429{
430 struct rusage ru;
431 u64 sum;
432 int err;
433
434 err = getrusage(RUSAGE_SELF, &ru);
435 BUG_ON(err);
436
437 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
438 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
439
440 return sum;
441}
442
443static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
444{
445 struct perf_event_attr attr;
446 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
447 int fd;
448 struct rlimit limit;
449 bool need_privilege = false;
450
451 memset(&attr, 0, sizeof(attr));
452
453 attr.type = PERF_TYPE_SOFTWARE;
454 attr.config = PERF_COUNT_SW_TASK_CLOCK;
455
456force_again:
457 fd = sys_perf_event_open(&attr, 0, -1, -1,
458 perf_event_open_cloexec_flag());
459
460 if (fd < 0) {
461 if (errno == EMFILE) {
462 if (sched->force) {
463 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
464 limit.rlim_cur += sched->nr_tasks - cur_task;
465 if (limit.rlim_cur > limit.rlim_max) {
466 limit.rlim_max = limit.rlim_cur;
467 need_privilege = true;
468 }
469 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
470 if (need_privilege && errno == EPERM)
471 strcpy(info, "Need privilege\n");
472 } else
473 goto force_again;
474 } else
475 strcpy(info, "Have a try with -f option\n");
476 }
477 pr_err("Error: sys_perf_event_open() syscall returned "
478 "with %d (%s)\n%s", fd,
479 strerror_r(errno, sbuf, sizeof(sbuf)), info);
480 exit(EXIT_FAILURE);
481 }
482 return fd;
483}
484
485static u64 get_cpu_usage_nsec_self(int fd)
486{
487 u64 runtime;
488 int ret;
489
490 ret = read(fd, &runtime, sizeof(runtime));
491 BUG_ON(ret != sizeof(runtime));
492
493 return runtime;
494}
495
496struct sched_thread_parms {
497 struct task_desc *task;
498 struct perf_sched *sched;
499 int fd;
500};
501
502static void *thread_func(void *ctx)
503{
504 struct sched_thread_parms *parms = ctx;
505 struct task_desc *this_task = parms->task;
506 struct perf_sched *sched = parms->sched;
507 u64 cpu_usage_0, cpu_usage_1;
508 unsigned long i, ret;
509 char comm2[22];
510 int fd = parms->fd;
511
512 zfree(&parms);
513
514 sprintf(comm2, ":%s", this_task->comm);
515 prctl(PR_SET_NAME, comm2);
516 if (fd < 0)
517 return NULL;
518again:
519 ret = sem_post(&this_task->ready_for_work);
520 BUG_ON(ret);
521 ret = pthread_mutex_lock(&sched->start_work_mutex);
522 BUG_ON(ret);
523 ret = pthread_mutex_unlock(&sched->start_work_mutex);
524 BUG_ON(ret);
525
526 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
527
528 for (i = 0; i < this_task->nr_events; i++) {
529 this_task->curr_event = i;
530 perf_sched__process_event(sched, this_task->atoms[i]);
531 }
532
533 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
534 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
535 ret = sem_post(&this_task->work_done_sem);
536 BUG_ON(ret);
537
538 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
539 BUG_ON(ret);
540 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
541 BUG_ON(ret);
542
543 goto again;
544}
545
546static void create_tasks(struct perf_sched *sched)
547{
548 struct task_desc *task;
549 pthread_attr_t attr;
550 unsigned long i;
551 int err;
552
553 err = pthread_attr_init(&attr);
554 BUG_ON(err);
555 err = pthread_attr_setstacksize(&attr,
556 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
557 BUG_ON(err);
558 err = pthread_mutex_lock(&sched->start_work_mutex);
559 BUG_ON(err);
560 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
561 BUG_ON(err);
562 for (i = 0; i < sched->nr_tasks; i++) {
563 struct sched_thread_parms *parms = malloc(sizeof(*parms));
564 BUG_ON(parms == NULL);
565 parms->task = task = sched->tasks[i];
566 parms->sched = sched;
567 parms->fd = self_open_counters(sched, i);
568 sem_init(&task->sleep_sem, 0, 0);
569 sem_init(&task->ready_for_work, 0, 0);
570 sem_init(&task->work_done_sem, 0, 0);
571 task->curr_event = 0;
572 err = pthread_create(&task->thread, &attr, thread_func, parms);
573 BUG_ON(err);
574 }
575}
576
577static void wait_for_tasks(struct perf_sched *sched)
578{
579 u64 cpu_usage_0, cpu_usage_1;
580 struct task_desc *task;
581 unsigned long i, ret;
582
583 sched->start_time = get_nsecs();
584 sched->cpu_usage = 0;
585 pthread_mutex_unlock(&sched->work_done_wait_mutex);
586
587 for (i = 0; i < sched->nr_tasks; i++) {
588 task = sched->tasks[i];
589 ret = sem_wait(&task->ready_for_work);
590 BUG_ON(ret);
591 sem_init(&task->ready_for_work, 0, 0);
592 }
593 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
594 BUG_ON(ret);
595
596 cpu_usage_0 = get_cpu_usage_nsec_parent();
597
598 pthread_mutex_unlock(&sched->start_work_mutex);
599
600 for (i = 0; i < sched->nr_tasks; i++) {
601 task = sched->tasks[i];
602 ret = sem_wait(&task->work_done_sem);
603 BUG_ON(ret);
604 sem_init(&task->work_done_sem, 0, 0);
605 sched->cpu_usage += task->cpu_usage;
606 task->cpu_usage = 0;
607 }
608
609 cpu_usage_1 = get_cpu_usage_nsec_parent();
610 if (!sched->runavg_cpu_usage)
611 sched->runavg_cpu_usage = sched->cpu_usage;
612 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
613
614 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
615 if (!sched->runavg_parent_cpu_usage)
616 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
617 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
618 sched->parent_cpu_usage)/sched->replay_repeat;
619
620 ret = pthread_mutex_lock(&sched->start_work_mutex);
621 BUG_ON(ret);
622
623 for (i = 0; i < sched->nr_tasks; i++) {
624 task = sched->tasks[i];
625 sem_init(&task->sleep_sem, 0, 0);
626 task->curr_event = 0;
627 }
628}
629
630static void run_one_test(struct perf_sched *sched)
631{
632 u64 T0, T1, delta, avg_delta, fluct;
633
634 T0 = get_nsecs();
635 wait_for_tasks(sched);
636 T1 = get_nsecs();
637
638 delta = T1 - T0;
639 sched->sum_runtime += delta;
640 sched->nr_runs++;
641
642 avg_delta = sched->sum_runtime / sched->nr_runs;
643 if (delta < avg_delta)
644 fluct = avg_delta - delta;
645 else
646 fluct = delta - avg_delta;
647 sched->sum_fluct += fluct;
648 if (!sched->run_avg)
649 sched->run_avg = delta;
650 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
651
652 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
653
654 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
655
656 printf("cpu: %0.2f / %0.2f",
657 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
658
659#if 0
660 /*
661 * rusage statistics done by the parent, these are less
662 * accurate than the sched->sum_exec_runtime based statistics:
663 */
664 printf(" [%0.2f / %0.2f]",
665 (double)sched->parent_cpu_usage/1e6,
666 (double)sched->runavg_parent_cpu_usage/1e6);
667#endif
668
669 printf("\n");
670
671 if (sched->nr_sleep_corrections)
672 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
673 sched->nr_sleep_corrections = 0;
674}
675
676static void test_calibrations(struct perf_sched *sched)
677{
678 u64 T0, T1;
679
680 T0 = get_nsecs();
681 burn_nsecs(sched, 1e6);
682 T1 = get_nsecs();
683
684 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
685
686 T0 = get_nsecs();
687 sleep_nsecs(1e6);
688 T1 = get_nsecs();
689
690 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
691}
692
693static int
694replay_wakeup_event(struct perf_sched *sched,
695 struct perf_evsel *evsel, struct perf_sample *sample,
696 struct machine *machine __maybe_unused)
697{
698 const char *comm = perf_evsel__strval(evsel, sample, "comm");
699 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
700 struct task_desc *waker, *wakee;
701
702 if (verbose) {
703 printf("sched_wakeup event %p\n", evsel);
704
705 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
706 }
707
708 waker = register_pid(sched, sample->tid, "<unknown>");
709 wakee = register_pid(sched, pid, comm);
710
711 add_sched_event_wakeup(sched, waker, sample->time, wakee);
712 return 0;
713}
714
715static int replay_switch_event(struct perf_sched *sched,
716 struct perf_evsel *evsel,
717 struct perf_sample *sample,
718 struct machine *machine __maybe_unused)
719{
720 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
721 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
722 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
723 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
724 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
725 struct task_desc *prev, __maybe_unused *next;
726 u64 timestamp0, timestamp = sample->time;
727 int cpu = sample->cpu;
728 s64 delta;
729
730 if (verbose)
731 printf("sched_switch event %p\n", evsel);
732
733 if (cpu >= MAX_CPUS || cpu < 0)
734 return 0;
735
736 timestamp0 = sched->cpu_last_switched[cpu];
737 if (timestamp0)
738 delta = timestamp - timestamp0;
739 else
740 delta = 0;
741
742 if (delta < 0) {
743 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
744 return -1;
745 }
746
747 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
748 prev_comm, prev_pid, next_comm, next_pid, delta);
749
750 prev = register_pid(sched, prev_pid, prev_comm);
751 next = register_pid(sched, next_pid, next_comm);
752
753 sched->cpu_last_switched[cpu] = timestamp;
754
755 add_sched_event_run(sched, prev, timestamp, delta);
756 add_sched_event_sleep(sched, prev, timestamp, prev_state);
757
758 return 0;
759}
760
761static int replay_fork_event(struct perf_sched *sched,
762 union perf_event *event,
763 struct machine *machine)
764{
765 struct thread *child, *parent;
766
767 child = machine__findnew_thread(machine, event->fork.pid,
768 event->fork.tid);
769 parent = machine__findnew_thread(machine, event->fork.ppid,
770 event->fork.ptid);
771
772 if (child == NULL || parent == NULL) {
773 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
774 child, parent);
775 goto out_put;
776 }
777
778 if (verbose) {
779 printf("fork event\n");
780 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
781 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
782 }
783
784 register_pid(sched, parent->tid, thread__comm_str(parent));
785 register_pid(sched, child->tid, thread__comm_str(child));
786out_put:
787 thread__put(child);
788 thread__put(parent);
789 return 0;
790}
791
792struct sort_dimension {
793 const char *name;
794 sort_fn_t cmp;
795 struct list_head list;
796};
797
798static int
799thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
800{
801 struct sort_dimension *sort;
802 int ret = 0;
803
804 BUG_ON(list_empty(list));
805
806 list_for_each_entry(sort, list, list) {
807 ret = sort->cmp(l, r);
808 if (ret)
809 return ret;
810 }
811
812 return ret;
813}
814
815static struct work_atoms *
816thread_atoms_search(struct rb_root *root, struct thread *thread,
817 struct list_head *sort_list)
818{
819 struct rb_node *node = root->rb_node;
820 struct work_atoms key = { .thread = thread };
821
822 while (node) {
823 struct work_atoms *atoms;
824 int cmp;
825
826 atoms = container_of(node, struct work_atoms, node);
827
828 cmp = thread_lat_cmp(sort_list, &key, atoms);
829 if (cmp > 0)
830 node = node->rb_left;
831 else if (cmp < 0)
832 node = node->rb_right;
833 else {
834 BUG_ON(thread != atoms->thread);
835 return atoms;
836 }
837 }
838 return NULL;
839}
840
841static void
842__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
843 struct list_head *sort_list)
844{
845 struct rb_node **new = &(root->rb_node), *parent = NULL;
846
847 while (*new) {
848 struct work_atoms *this;
849 int cmp;
850
851 this = container_of(*new, struct work_atoms, node);
852 parent = *new;
853
854 cmp = thread_lat_cmp(sort_list, data, this);
855
856 if (cmp > 0)
857 new = &((*new)->rb_left);
858 else
859 new = &((*new)->rb_right);
860 }
861
862 rb_link_node(&data->node, parent, new);
863 rb_insert_color(&data->node, root);
864}
865
866static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
867{
868 struct work_atoms *atoms = zalloc(sizeof(*atoms));
869 if (!atoms) {
870 pr_err("No memory at %s\n", __func__);
871 return -1;
872 }
873
874 atoms->thread = thread__get(thread);
875 INIT_LIST_HEAD(&atoms->work_list);
876 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
877 return 0;
878}
879
880static char sched_out_state(u64 prev_state)
881{
882 const char *str = TASK_STATE_TO_CHAR_STR;
883
884 return str[prev_state];
885}
886
887static int
888add_sched_out_event(struct work_atoms *atoms,
889 char run_state,
890 u64 timestamp)
891{
892 struct work_atom *atom = zalloc(sizeof(*atom));
893 if (!atom) {
894 pr_err("Non memory at %s", __func__);
895 return -1;
896 }
897
898 atom->sched_out_time = timestamp;
899
900 if (run_state == 'R') {
901 atom->state = THREAD_WAIT_CPU;
902 atom->wake_up_time = atom->sched_out_time;
903 }
904
905 list_add_tail(&atom->list, &atoms->work_list);
906 return 0;
907}
908
909static void
910add_runtime_event(struct work_atoms *atoms, u64 delta,
911 u64 timestamp __maybe_unused)
912{
913 struct work_atom *atom;
914
915 BUG_ON(list_empty(&atoms->work_list));
916
917 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
918
919 atom->runtime += delta;
920 atoms->total_runtime += delta;
921}
922
923static void
924add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
925{
926 struct work_atom *atom;
927 u64 delta;
928
929 if (list_empty(&atoms->work_list))
930 return;
931
932 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
933
934 if (atom->state != THREAD_WAIT_CPU)
935 return;
936
937 if (timestamp < atom->wake_up_time) {
938 atom->state = THREAD_IGNORE;
939 return;
940 }
941
942 atom->state = THREAD_SCHED_IN;
943 atom->sched_in_time = timestamp;
944
945 delta = atom->sched_in_time - atom->wake_up_time;
946 atoms->total_lat += delta;
947 if (delta > atoms->max_lat) {
948 atoms->max_lat = delta;
949 atoms->max_lat_at = timestamp;
950 }
951 atoms->nb_atoms++;
952}
953
954static int latency_switch_event(struct perf_sched *sched,
955 struct perf_evsel *evsel,
956 struct perf_sample *sample,
957 struct machine *machine)
958{
959 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
960 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
961 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
962 struct work_atoms *out_events, *in_events;
963 struct thread *sched_out, *sched_in;
964 u64 timestamp0, timestamp = sample->time;
965 int cpu = sample->cpu, err = -1;
966 s64 delta;
967
968 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
969
970 timestamp0 = sched->cpu_last_switched[cpu];
971 sched->cpu_last_switched[cpu] = timestamp;
972 if (timestamp0)
973 delta = timestamp - timestamp0;
974 else
975 delta = 0;
976
977 if (delta < 0) {
978 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
979 return -1;
980 }
981
982 sched_out = machine__findnew_thread(machine, -1, prev_pid);
983 sched_in = machine__findnew_thread(machine, -1, next_pid);
984 if (sched_out == NULL || sched_in == NULL)
985 goto out_put;
986
987 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
988 if (!out_events) {
989 if (thread_atoms_insert(sched, sched_out))
990 goto out_put;
991 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
992 if (!out_events) {
993 pr_err("out-event: Internal tree error");
994 goto out_put;
995 }
996 }
997 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
998 return -1;
999
1000 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1001 if (!in_events) {
1002 if (thread_atoms_insert(sched, sched_in))
1003 goto out_put;
1004 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1005 if (!in_events) {
1006 pr_err("in-event: Internal tree error");
1007 goto out_put;
1008 }
1009 /*
1010 * Take came in we have not heard about yet,
1011 * add in an initial atom in runnable state:
1012 */
1013 if (add_sched_out_event(in_events, 'R', timestamp))
1014 goto out_put;
1015 }
1016 add_sched_in_event(in_events, timestamp);
1017 err = 0;
1018out_put:
1019 thread__put(sched_out);
1020 thread__put(sched_in);
1021 return err;
1022}
1023
1024static int latency_runtime_event(struct perf_sched *sched,
1025 struct perf_evsel *evsel,
1026 struct perf_sample *sample,
1027 struct machine *machine)
1028{
1029 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1030 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1031 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1032 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1033 u64 timestamp = sample->time;
1034 int cpu = sample->cpu, err = -1;
1035
1036 if (thread == NULL)
1037 return -1;
1038
1039 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040 if (!atoms) {
1041 if (thread_atoms_insert(sched, thread))
1042 goto out_put;
1043 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1044 if (!atoms) {
1045 pr_err("in-event: Internal tree error");
1046 goto out_put;
1047 }
1048 if (add_sched_out_event(atoms, 'R', timestamp))
1049 goto out_put;
1050 }
1051
1052 add_runtime_event(atoms, runtime, timestamp);
1053 err = 0;
1054out_put:
1055 thread__put(thread);
1056 return err;
1057}
1058
1059static int latency_wakeup_event(struct perf_sched *sched,
1060 struct perf_evsel *evsel,
1061 struct perf_sample *sample,
1062 struct machine *machine)
1063{
1064 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1065 struct work_atoms *atoms;
1066 struct work_atom *atom;
1067 struct thread *wakee;
1068 u64 timestamp = sample->time;
1069 int err = -1;
1070
1071 wakee = machine__findnew_thread(machine, -1, pid);
1072 if (wakee == NULL)
1073 return -1;
1074 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1075 if (!atoms) {
1076 if (thread_atoms_insert(sched, wakee))
1077 goto out_put;
1078 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1079 if (!atoms) {
1080 pr_err("wakeup-event: Internal tree error");
1081 goto out_put;
1082 }
1083 if (add_sched_out_event(atoms, 'S', timestamp))
1084 goto out_put;
1085 }
1086
1087 BUG_ON(list_empty(&atoms->work_list));
1088
1089 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1090
1091 /*
1092 * As we do not guarantee the wakeup event happens when
1093 * task is out of run queue, also may happen when task is
1094 * on run queue and wakeup only change ->state to TASK_RUNNING,
1095 * then we should not set the ->wake_up_time when wake up a
1096 * task which is on run queue.
1097 *
1098 * You WILL be missing events if you've recorded only
1099 * one CPU, or are only looking at only one, so don't
1100 * skip in this case.
1101 */
1102 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1103 goto out_ok;
1104
1105 sched->nr_timestamps++;
1106 if (atom->sched_out_time > timestamp) {
1107 sched->nr_unordered_timestamps++;
1108 goto out_ok;
1109 }
1110
1111 atom->state = THREAD_WAIT_CPU;
1112 atom->wake_up_time = timestamp;
1113out_ok:
1114 err = 0;
1115out_put:
1116 thread__put(wakee);
1117 return err;
1118}
1119
1120static int latency_migrate_task_event(struct perf_sched *sched,
1121 struct perf_evsel *evsel,
1122 struct perf_sample *sample,
1123 struct machine *machine)
1124{
1125 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1126 u64 timestamp = sample->time;
1127 struct work_atoms *atoms;
1128 struct work_atom *atom;
1129 struct thread *migrant;
1130 int err = -1;
1131
1132 /*
1133 * Only need to worry about migration when profiling one CPU.
1134 */
1135 if (sched->profile_cpu == -1)
1136 return 0;
1137
1138 migrant = machine__findnew_thread(machine, -1, pid);
1139 if (migrant == NULL)
1140 return -1;
1141 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1142 if (!atoms) {
1143 if (thread_atoms_insert(sched, migrant))
1144 goto out_put;
1145 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1146 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1147 if (!atoms) {
1148 pr_err("migration-event: Internal tree error");
1149 goto out_put;
1150 }
1151 if (add_sched_out_event(atoms, 'R', timestamp))
1152 goto out_put;
1153 }
1154
1155 BUG_ON(list_empty(&atoms->work_list));
1156
1157 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1158 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1159
1160 sched->nr_timestamps++;
1161
1162 if (atom->sched_out_time > timestamp)
1163 sched->nr_unordered_timestamps++;
1164 err = 0;
1165out_put:
1166 thread__put(migrant);
1167 return err;
1168}
1169
1170static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1171{
1172 int i;
1173 int ret;
1174 u64 avg;
1175
1176 if (!work_list->nb_atoms)
1177 return;
1178 /*
1179 * Ignore idle threads:
1180 */
1181 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1182 return;
1183
1184 sched->all_runtime += work_list->total_runtime;
1185 sched->all_count += work_list->nb_atoms;
1186
1187 if (work_list->num_merged > 1)
1188 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1189 else
1190 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1191
1192 for (i = 0; i < 24 - ret; i++)
1193 printf(" ");
1194
1195 avg = work_list->total_lat / work_list->nb_atoms;
1196
1197 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1198 (double)work_list->total_runtime / 1e6,
1199 work_list->nb_atoms, (double)avg / 1e6,
1200 (double)work_list->max_lat / 1e6,
1201 (double)work_list->max_lat_at / 1e9);
1202}
1203
1204static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1205{
1206 if (l->thread == r->thread)
1207 return 0;
1208 if (l->thread->tid < r->thread->tid)
1209 return -1;
1210 if (l->thread->tid > r->thread->tid)
1211 return 1;
1212 return (int)(l->thread - r->thread);
1213}
1214
1215static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1216{
1217 u64 avgl, avgr;
1218
1219 if (!l->nb_atoms)
1220 return -1;
1221
1222 if (!r->nb_atoms)
1223 return 1;
1224
1225 avgl = l->total_lat / l->nb_atoms;
1226 avgr = r->total_lat / r->nb_atoms;
1227
1228 if (avgl < avgr)
1229 return -1;
1230 if (avgl > avgr)
1231 return 1;
1232
1233 return 0;
1234}
1235
1236static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1237{
1238 if (l->max_lat < r->max_lat)
1239 return -1;
1240 if (l->max_lat > r->max_lat)
1241 return 1;
1242
1243 return 0;
1244}
1245
1246static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1247{
1248 if (l->nb_atoms < r->nb_atoms)
1249 return -1;
1250 if (l->nb_atoms > r->nb_atoms)
1251 return 1;
1252
1253 return 0;
1254}
1255
1256static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1257{
1258 if (l->total_runtime < r->total_runtime)
1259 return -1;
1260 if (l->total_runtime > r->total_runtime)
1261 return 1;
1262
1263 return 0;
1264}
1265
1266static int sort_dimension__add(const char *tok, struct list_head *list)
1267{
1268 size_t i;
1269 static struct sort_dimension avg_sort_dimension = {
1270 .name = "avg",
1271 .cmp = avg_cmp,
1272 };
1273 static struct sort_dimension max_sort_dimension = {
1274 .name = "max",
1275 .cmp = max_cmp,
1276 };
1277 static struct sort_dimension pid_sort_dimension = {
1278 .name = "pid",
1279 .cmp = pid_cmp,
1280 };
1281 static struct sort_dimension runtime_sort_dimension = {
1282 .name = "runtime",
1283 .cmp = runtime_cmp,
1284 };
1285 static struct sort_dimension switch_sort_dimension = {
1286 .name = "switch",
1287 .cmp = switch_cmp,
1288 };
1289 struct sort_dimension *available_sorts[] = {
1290 &pid_sort_dimension,
1291 &avg_sort_dimension,
1292 &max_sort_dimension,
1293 &switch_sort_dimension,
1294 &runtime_sort_dimension,
1295 };
1296
1297 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1298 if (!strcmp(available_sorts[i]->name, tok)) {
1299 list_add_tail(&available_sorts[i]->list, list);
1300
1301 return 0;
1302 }
1303 }
1304
1305 return -1;
1306}
1307
1308static void perf_sched__sort_lat(struct perf_sched *sched)
1309{
1310 struct rb_node *node;
1311 struct rb_root *root = &sched->atom_root;
1312again:
1313 for (;;) {
1314 struct work_atoms *data;
1315 node = rb_first(root);
1316 if (!node)
1317 break;
1318
1319 rb_erase(node, root);
1320 data = rb_entry(node, struct work_atoms, node);
1321 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1322 }
1323 if (root == &sched->atom_root) {
1324 root = &sched->merged_atom_root;
1325 goto again;
1326 }
1327}
1328
1329static int process_sched_wakeup_event(struct perf_tool *tool,
1330 struct perf_evsel *evsel,
1331 struct perf_sample *sample,
1332 struct machine *machine)
1333{
1334 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1335
1336 if (sched->tp_handler->wakeup_event)
1337 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1338
1339 return 0;
1340}
1341
1342static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1343 struct perf_sample *sample, struct machine *machine)
1344{
1345 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1346 struct thread *sched_in;
1347 int new_shortname;
1348 u64 timestamp0, timestamp = sample->time;
1349 s64 delta;
1350 int cpu, this_cpu = sample->cpu;
1351
1352 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1353
1354 if (this_cpu > sched->max_cpu)
1355 sched->max_cpu = this_cpu;
1356
1357 timestamp0 = sched->cpu_last_switched[this_cpu];
1358 sched->cpu_last_switched[this_cpu] = timestamp;
1359 if (timestamp0)
1360 delta = timestamp - timestamp0;
1361 else
1362 delta = 0;
1363
1364 if (delta < 0) {
1365 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1366 return -1;
1367 }
1368
1369 sched_in = machine__findnew_thread(machine, -1, next_pid);
1370 if (sched_in == NULL)
1371 return -1;
1372
1373 sched->curr_thread[this_cpu] = thread__get(sched_in);
1374
1375 printf(" ");
1376
1377 new_shortname = 0;
1378 if (!sched_in->shortname[0]) {
1379 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1380 /*
1381 * Don't allocate a letter-number for swapper:0
1382 * as a shortname. Instead, we use '.' for it.
1383 */
1384 sched_in->shortname[0] = '.';
1385 sched_in->shortname[1] = ' ';
1386 } else {
1387 sched_in->shortname[0] = sched->next_shortname1;
1388 sched_in->shortname[1] = sched->next_shortname2;
1389
1390 if (sched->next_shortname1 < 'Z') {
1391 sched->next_shortname1++;
1392 } else {
1393 sched->next_shortname1 = 'A';
1394 if (sched->next_shortname2 < '9')
1395 sched->next_shortname2++;
1396 else
1397 sched->next_shortname2 = '0';
1398 }
1399 }
1400 new_shortname = 1;
1401 }
1402
1403 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1404 if (cpu != this_cpu)
1405 printf(" ");
1406 else
1407 printf("*");
1408
1409 if (sched->curr_thread[cpu])
1410 printf("%2s ", sched->curr_thread[cpu]->shortname);
1411 else
1412 printf(" ");
1413 }
1414
1415 printf(" %12.6f secs ", (double)timestamp/1e9);
1416 if (new_shortname) {
1417 printf("%s => %s:%d\n",
1418 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1419 } else {
1420 printf("\n");
1421 }
1422
1423 thread__put(sched_in);
1424
1425 return 0;
1426}
1427
1428static int process_sched_switch_event(struct perf_tool *tool,
1429 struct perf_evsel *evsel,
1430 struct perf_sample *sample,
1431 struct machine *machine)
1432{
1433 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1434 int this_cpu = sample->cpu, err = 0;
1435 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1436 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1437
1438 if (sched->curr_pid[this_cpu] != (u32)-1) {
1439 /*
1440 * Are we trying to switch away a PID that is
1441 * not current?
1442 */
1443 if (sched->curr_pid[this_cpu] != prev_pid)
1444 sched->nr_context_switch_bugs++;
1445 }
1446
1447 if (sched->tp_handler->switch_event)
1448 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1449
1450 sched->curr_pid[this_cpu] = next_pid;
1451 return err;
1452}
1453
1454static int process_sched_runtime_event(struct perf_tool *tool,
1455 struct perf_evsel *evsel,
1456 struct perf_sample *sample,
1457 struct machine *machine)
1458{
1459 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1460
1461 if (sched->tp_handler->runtime_event)
1462 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1463
1464 return 0;
1465}
1466
1467static int perf_sched__process_fork_event(struct perf_tool *tool,
1468 union perf_event *event,
1469 struct perf_sample *sample,
1470 struct machine *machine)
1471{
1472 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1473
1474 /* run the fork event through the perf machineruy */
1475 perf_event__process_fork(tool, event, sample, machine);
1476
1477 /* and then run additional processing needed for this command */
1478 if (sched->tp_handler->fork_event)
1479 return sched->tp_handler->fork_event(sched, event, machine);
1480
1481 return 0;
1482}
1483
1484static int process_sched_migrate_task_event(struct perf_tool *tool,
1485 struct perf_evsel *evsel,
1486 struct perf_sample *sample,
1487 struct machine *machine)
1488{
1489 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1490
1491 if (sched->tp_handler->migrate_task_event)
1492 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1493
1494 return 0;
1495}
1496
1497typedef int (*tracepoint_handler)(struct perf_tool *tool,
1498 struct perf_evsel *evsel,
1499 struct perf_sample *sample,
1500 struct machine *machine);
1501
1502static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1503 union perf_event *event __maybe_unused,
1504 struct perf_sample *sample,
1505 struct perf_evsel *evsel,
1506 struct machine *machine)
1507{
1508 int err = 0;
1509
1510 if (evsel->handler != NULL) {
1511 tracepoint_handler f = evsel->handler;
1512 err = f(tool, evsel, sample, machine);
1513 }
1514
1515 return err;
1516}
1517
1518static int perf_sched__read_events(struct perf_sched *sched)
1519{
1520 const struct perf_evsel_str_handler handlers[] = {
1521 { "sched:sched_switch", process_sched_switch_event, },
1522 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1523 { "sched:sched_wakeup", process_sched_wakeup_event, },
1524 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1525 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1526 };
1527 struct perf_session *session;
1528 struct perf_data_file file = {
1529 .path = input_name,
1530 .mode = PERF_DATA_MODE_READ,
1531 .force = sched->force,
1532 };
1533 int rc = -1;
1534
1535 session = perf_session__new(&file, false, &sched->tool);
1536 if (session == NULL) {
1537 pr_debug("No Memory for session\n");
1538 return -1;
1539 }
1540
1541 symbol__init(&session->header.env);
1542
1543 if (perf_session__set_tracepoints_handlers(session, handlers))
1544 goto out_delete;
1545
1546 if (perf_session__has_traces(session, "record -R")) {
1547 int err = perf_session__process_events(session);
1548 if (err) {
1549 pr_err("Failed to process events, error %d", err);
1550 goto out_delete;
1551 }
1552
1553 sched->nr_events = session->evlist->stats.nr_events[0];
1554 sched->nr_lost_events = session->evlist->stats.total_lost;
1555 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1556 }
1557
1558 rc = 0;
1559out_delete:
1560 perf_session__delete(session);
1561 return rc;
1562}
1563
1564static void print_bad_events(struct perf_sched *sched)
1565{
1566 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1567 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1568 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1569 sched->nr_unordered_timestamps, sched->nr_timestamps);
1570 }
1571 if (sched->nr_lost_events && sched->nr_events) {
1572 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1573 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1574 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1575 }
1576 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1577 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1578 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1579 sched->nr_context_switch_bugs, sched->nr_timestamps);
1580 if (sched->nr_lost_events)
1581 printf(" (due to lost events?)");
1582 printf("\n");
1583 }
1584}
1585
1586static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1587{
1588 struct rb_node **new = &(root->rb_node), *parent = NULL;
1589 struct work_atoms *this;
1590 const char *comm = thread__comm_str(data->thread), *this_comm;
1591
1592 while (*new) {
1593 int cmp;
1594
1595 this = container_of(*new, struct work_atoms, node);
1596 parent = *new;
1597
1598 this_comm = thread__comm_str(this->thread);
1599 cmp = strcmp(comm, this_comm);
1600 if (cmp > 0) {
1601 new = &((*new)->rb_left);
1602 } else if (cmp < 0) {
1603 new = &((*new)->rb_right);
1604 } else {
1605 this->num_merged++;
1606 this->total_runtime += data->total_runtime;
1607 this->nb_atoms += data->nb_atoms;
1608 this->total_lat += data->total_lat;
1609 list_splice(&data->work_list, &this->work_list);
1610 if (this->max_lat < data->max_lat) {
1611 this->max_lat = data->max_lat;
1612 this->max_lat_at = data->max_lat_at;
1613 }
1614 zfree(&data);
1615 return;
1616 }
1617 }
1618
1619 data->num_merged++;
1620 rb_link_node(&data->node, parent, new);
1621 rb_insert_color(&data->node, root);
1622}
1623
1624static void perf_sched__merge_lat(struct perf_sched *sched)
1625{
1626 struct work_atoms *data;
1627 struct rb_node *node;
1628
1629 if (sched->skip_merge)
1630 return;
1631
1632 while ((node = rb_first(&sched->atom_root))) {
1633 rb_erase(node, &sched->atom_root);
1634 data = rb_entry(node, struct work_atoms, node);
1635 __merge_work_atoms(&sched->merged_atom_root, data);
1636 }
1637}
1638
1639static int perf_sched__lat(struct perf_sched *sched)
1640{
1641 struct rb_node *next;
1642
1643 setup_pager();
1644
1645 if (perf_sched__read_events(sched))
1646 return -1;
1647
1648 perf_sched__merge_lat(sched);
1649 perf_sched__sort_lat(sched);
1650
1651 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1652 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1653 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1654
1655 next = rb_first(&sched->sorted_atom_root);
1656
1657 while (next) {
1658 struct work_atoms *work_list;
1659
1660 work_list = rb_entry(next, struct work_atoms, node);
1661 output_lat_thread(sched, work_list);
1662 next = rb_next(next);
1663 thread__zput(work_list->thread);
1664 }
1665
1666 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1667 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1668 (double)sched->all_runtime / 1e6, sched->all_count);
1669
1670 printf(" ---------------------------------------------------\n");
1671
1672 print_bad_events(sched);
1673 printf("\n");
1674
1675 return 0;
1676}
1677
1678static int perf_sched__map(struct perf_sched *sched)
1679{
1680 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1681
1682 setup_pager();
1683 if (perf_sched__read_events(sched))
1684 return -1;
1685 print_bad_events(sched);
1686 return 0;
1687}
1688
1689static int perf_sched__replay(struct perf_sched *sched)
1690{
1691 unsigned long i;
1692
1693 calibrate_run_measurement_overhead(sched);
1694 calibrate_sleep_measurement_overhead(sched);
1695
1696 test_calibrations(sched);
1697
1698 if (perf_sched__read_events(sched))
1699 return -1;
1700
1701 printf("nr_run_events: %ld\n", sched->nr_run_events);
1702 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1703 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1704
1705 if (sched->targetless_wakeups)
1706 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1707 if (sched->multitarget_wakeups)
1708 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1709 if (sched->nr_run_events_optimized)
1710 printf("run atoms optimized: %ld\n",
1711 sched->nr_run_events_optimized);
1712
1713 print_task_traces(sched);
1714 add_cross_task_wakeups(sched);
1715
1716 create_tasks(sched);
1717 printf("------------------------------------------------------------\n");
1718 for (i = 0; i < sched->replay_repeat; i++)
1719 run_one_test(sched);
1720
1721 return 0;
1722}
1723
1724static void setup_sorting(struct perf_sched *sched, const struct option *options,
1725 const char * const usage_msg[])
1726{
1727 char *tmp, *tok, *str = strdup(sched->sort_order);
1728
1729 for (tok = strtok_r(str, ", ", &tmp);
1730 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1731 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1732 usage_with_options_msg(usage_msg, options,
1733 "Unknown --sort key: `%s'", tok);
1734 }
1735 }
1736
1737 free(str);
1738
1739 sort_dimension__add("pid", &sched->cmp_pid);
1740}
1741
1742static int __cmd_record(int argc, const char **argv)
1743{
1744 unsigned int rec_argc, i, j;
1745 const char **rec_argv;
1746 const char * const record_args[] = {
1747 "record",
1748 "-a",
1749 "-R",
1750 "-m", "1024",
1751 "-c", "1",
1752 "-e", "sched:sched_switch",
1753 "-e", "sched:sched_stat_wait",
1754 "-e", "sched:sched_stat_sleep",
1755 "-e", "sched:sched_stat_iowait",
1756 "-e", "sched:sched_stat_runtime",
1757 "-e", "sched:sched_process_fork",
1758 "-e", "sched:sched_wakeup",
1759 "-e", "sched:sched_wakeup_new",
1760 "-e", "sched:sched_migrate_task",
1761 };
1762
1763 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1764 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1765
1766 if (rec_argv == NULL)
1767 return -ENOMEM;
1768
1769 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1770 rec_argv[i] = strdup(record_args[i]);
1771
1772 for (j = 1; j < (unsigned int)argc; j++, i++)
1773 rec_argv[i] = argv[j];
1774
1775 BUG_ON(i != rec_argc);
1776
1777 return cmd_record(i, rec_argv, NULL);
1778}
1779
1780int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1781{
1782 const char default_sort_order[] = "avg, max, switch, runtime";
1783 struct perf_sched sched = {
1784 .tool = {
1785 .sample = perf_sched__process_tracepoint_sample,
1786 .comm = perf_event__process_comm,
1787 .lost = perf_event__process_lost,
1788 .fork = perf_sched__process_fork_event,
1789 .ordered_events = true,
1790 },
1791 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1792 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1793 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1794 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1795 .sort_order = default_sort_order,
1796 .replay_repeat = 10,
1797 .profile_cpu = -1,
1798 .next_shortname1 = 'A',
1799 .next_shortname2 = '0',
1800 .skip_merge = 0,
1801 };
1802 const struct option latency_options[] = {
1803 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1804 "sort by key(s): runtime, switch, avg, max"),
1805 OPT_INCR('v', "verbose", &verbose,
1806 "be more verbose (show symbol address, etc)"),
1807 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1808 "CPU to profile on"),
1809 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810 "dump raw trace in ASCII"),
1811 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1812 "latency stats per pid instead of per comm"),
1813 OPT_END()
1814 };
1815 const struct option replay_options[] = {
1816 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1817 "repeat the workload replay N times (-1: infinite)"),
1818 OPT_INCR('v', "verbose", &verbose,
1819 "be more verbose (show symbol address, etc)"),
1820 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1821 "dump raw trace in ASCII"),
1822 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1823 OPT_END()
1824 };
1825 const struct option sched_options[] = {
1826 OPT_STRING('i', "input", &input_name, "file",
1827 "input file name"),
1828 OPT_INCR('v', "verbose", &verbose,
1829 "be more verbose (show symbol address, etc)"),
1830 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1831 "dump raw trace in ASCII"),
1832 OPT_END()
1833 };
1834 const char * const latency_usage[] = {
1835 "perf sched latency [<options>]",
1836 NULL
1837 };
1838 const char * const replay_usage[] = {
1839 "perf sched replay [<options>]",
1840 NULL
1841 };
1842 const char *const sched_subcommands[] = { "record", "latency", "map",
1843 "replay", "script", NULL };
1844 const char *sched_usage[] = {
1845 NULL,
1846 NULL
1847 };
1848 struct trace_sched_handler lat_ops = {
1849 .wakeup_event = latency_wakeup_event,
1850 .switch_event = latency_switch_event,
1851 .runtime_event = latency_runtime_event,
1852 .migrate_task_event = latency_migrate_task_event,
1853 };
1854 struct trace_sched_handler map_ops = {
1855 .switch_event = map_switch_event,
1856 };
1857 struct trace_sched_handler replay_ops = {
1858 .wakeup_event = replay_wakeup_event,
1859 .switch_event = replay_switch_event,
1860 .fork_event = replay_fork_event,
1861 };
1862 unsigned int i;
1863
1864 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1865 sched.curr_pid[i] = -1;
1866
1867 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1868 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1869 if (!argc)
1870 usage_with_options(sched_usage, sched_options);
1871
1872 /*
1873 * Aliased to 'perf script' for now:
1874 */
1875 if (!strcmp(argv[0], "script"))
1876 return cmd_script(argc, argv, prefix);
1877
1878 if (!strncmp(argv[0], "rec", 3)) {
1879 return __cmd_record(argc, argv);
1880 } else if (!strncmp(argv[0], "lat", 3)) {
1881 sched.tp_handler = &lat_ops;
1882 if (argc > 1) {
1883 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1884 if (argc)
1885 usage_with_options(latency_usage, latency_options);
1886 }
1887 setup_sorting(&sched, latency_options, latency_usage);
1888 return perf_sched__lat(&sched);
1889 } else if (!strcmp(argv[0], "map")) {
1890 sched.tp_handler = &map_ops;
1891 setup_sorting(&sched, latency_options, latency_usage);
1892 return perf_sched__map(&sched);
1893 } else if (!strncmp(argv[0], "rep", 3)) {
1894 sched.tp_handler = &replay_ops;
1895 if (argc) {
1896 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1897 if (argc)
1898 usage_with_options(replay_usage, replay_options);
1899 }
1900 return perf_sched__replay(&sched);
1901 } else {
1902 usage_with_options(sched_usage, sched_options);
1903 }
1904
1905 return 0;
1906}
1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/evlist.h"
6#include "util/cache.h"
7#include "util/evsel.h"
8#include "util/symbol.h"
9#include "util/thread.h"
10#include "util/header.h"
11#include "util/session.h"
12#include "util/tool.h"
13
14#include "util/parse-options.h"
15#include "util/trace-event.h"
16
17#include "util/debug.h"
18
19#include <sys/prctl.h>
20#include <sys/resource.h>
21
22#include <semaphore.h>
23#include <pthread.h>
24#include <math.h>
25
26#define PR_SET_NAME 15 /* Set process name */
27#define MAX_CPUS 4096
28#define COMM_LEN 20
29#define SYM_LEN 129
30#define MAX_PID 65536
31
32struct sched_atom;
33
34struct task_desc {
35 unsigned long nr;
36 unsigned long pid;
37 char comm[COMM_LEN];
38
39 unsigned long nr_events;
40 unsigned long curr_event;
41 struct sched_atom **atoms;
42
43 pthread_t thread;
44 sem_t sleep_sem;
45
46 sem_t ready_for_work;
47 sem_t work_done_sem;
48
49 u64 cpu_usage;
50};
51
52enum sched_event_type {
53 SCHED_EVENT_RUN,
54 SCHED_EVENT_SLEEP,
55 SCHED_EVENT_WAKEUP,
56 SCHED_EVENT_MIGRATION,
57};
58
59struct sched_atom {
60 enum sched_event_type type;
61 int specific_wait;
62 u64 timestamp;
63 u64 duration;
64 unsigned long nr;
65 sem_t *wait_sem;
66 struct task_desc *wakee;
67};
68
69#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
70
71enum thread_state {
72 THREAD_SLEEPING = 0,
73 THREAD_WAIT_CPU,
74 THREAD_SCHED_IN,
75 THREAD_IGNORE
76};
77
78struct work_atom {
79 struct list_head list;
80 enum thread_state state;
81 u64 sched_out_time;
82 u64 wake_up_time;
83 u64 sched_in_time;
84 u64 runtime;
85};
86
87struct work_atoms {
88 struct list_head work_list;
89 struct thread *thread;
90 struct rb_node node;
91 u64 max_lat;
92 u64 max_lat_at;
93 u64 total_lat;
94 u64 nb_atoms;
95 u64 total_runtime;
96};
97
98typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99
100struct perf_sched;
101
102struct trace_sched_handler {
103 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104 struct perf_sample *sample, struct machine *machine);
105
106 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
108
109 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
111
112 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
113 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
114 struct machine *machine);
115
116 int (*migrate_task_event)(struct perf_sched *sched,
117 struct perf_evsel *evsel,
118 struct perf_sample *sample,
119 struct machine *machine);
120};
121
122struct perf_sched {
123 struct perf_tool tool;
124 const char *sort_order;
125 unsigned long nr_tasks;
126 struct task_desc *pid_to_task[MAX_PID];
127 struct task_desc **tasks;
128 const struct trace_sched_handler *tp_handler;
129 pthread_mutex_t start_work_mutex;
130 pthread_mutex_t work_done_wait_mutex;
131 int profile_cpu;
132/*
133 * Track the current task - that way we can know whether there's any
134 * weird events, such as a task being switched away that is not current.
135 */
136 int max_cpu;
137 u32 curr_pid[MAX_CPUS];
138 struct thread *curr_thread[MAX_CPUS];
139 char next_shortname1;
140 char next_shortname2;
141 unsigned int replay_repeat;
142 unsigned long nr_run_events;
143 unsigned long nr_sleep_events;
144 unsigned long nr_wakeup_events;
145 unsigned long nr_sleep_corrections;
146 unsigned long nr_run_events_optimized;
147 unsigned long targetless_wakeups;
148 unsigned long multitarget_wakeups;
149 unsigned long nr_runs;
150 unsigned long nr_timestamps;
151 unsigned long nr_unordered_timestamps;
152 unsigned long nr_state_machine_bugs;
153 unsigned long nr_context_switch_bugs;
154 unsigned long nr_events;
155 unsigned long nr_lost_chunks;
156 unsigned long nr_lost_events;
157 u64 run_measurement_overhead;
158 u64 sleep_measurement_overhead;
159 u64 start_time;
160 u64 cpu_usage;
161 u64 runavg_cpu_usage;
162 u64 parent_cpu_usage;
163 u64 runavg_parent_cpu_usage;
164 u64 sum_runtime;
165 u64 sum_fluct;
166 u64 run_avg;
167 u64 all_runtime;
168 u64 all_count;
169 u64 cpu_last_switched[MAX_CPUS];
170 struct rb_root atom_root, sorted_atom_root;
171 struct list_head sort_list, cmp_pid;
172};
173
174static u64 get_nsecs(void)
175{
176 struct timespec ts;
177
178 clock_gettime(CLOCK_MONOTONIC, &ts);
179
180 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
181}
182
183static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
184{
185 u64 T0 = get_nsecs(), T1;
186
187 do {
188 T1 = get_nsecs();
189 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
190}
191
192static void sleep_nsecs(u64 nsecs)
193{
194 struct timespec ts;
195
196 ts.tv_nsec = nsecs % 999999999;
197 ts.tv_sec = nsecs / 999999999;
198
199 nanosleep(&ts, NULL);
200}
201
202static void calibrate_run_measurement_overhead(struct perf_sched *sched)
203{
204 u64 T0, T1, delta, min_delta = 1000000000ULL;
205 int i;
206
207 for (i = 0; i < 10; i++) {
208 T0 = get_nsecs();
209 burn_nsecs(sched, 0);
210 T1 = get_nsecs();
211 delta = T1-T0;
212 min_delta = min(min_delta, delta);
213 }
214 sched->run_measurement_overhead = min_delta;
215
216 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
217}
218
219static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
220{
221 u64 T0, T1, delta, min_delta = 1000000000ULL;
222 int i;
223
224 for (i = 0; i < 10; i++) {
225 T0 = get_nsecs();
226 sleep_nsecs(10000);
227 T1 = get_nsecs();
228 delta = T1-T0;
229 min_delta = min(min_delta, delta);
230 }
231 min_delta -= 10000;
232 sched->sleep_measurement_overhead = min_delta;
233
234 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
235}
236
237static struct sched_atom *
238get_new_event(struct task_desc *task, u64 timestamp)
239{
240 struct sched_atom *event = zalloc(sizeof(*event));
241 unsigned long idx = task->nr_events;
242 size_t size;
243
244 event->timestamp = timestamp;
245 event->nr = idx;
246
247 task->nr_events++;
248 size = sizeof(struct sched_atom *) * task->nr_events;
249 task->atoms = realloc(task->atoms, size);
250 BUG_ON(!task->atoms);
251
252 task->atoms[idx] = event;
253
254 return event;
255}
256
257static struct sched_atom *last_event(struct task_desc *task)
258{
259 if (!task->nr_events)
260 return NULL;
261
262 return task->atoms[task->nr_events - 1];
263}
264
265static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266 u64 timestamp, u64 duration)
267{
268 struct sched_atom *event, *curr_event = last_event(task);
269
270 /*
271 * optimize an existing RUN event by merging this one
272 * to it:
273 */
274 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275 sched->nr_run_events_optimized++;
276 curr_event->duration += duration;
277 return;
278 }
279
280 event = get_new_event(task, timestamp);
281
282 event->type = SCHED_EVENT_RUN;
283 event->duration = duration;
284
285 sched->nr_run_events++;
286}
287
288static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289 u64 timestamp, struct task_desc *wakee)
290{
291 struct sched_atom *event, *wakee_event;
292
293 event = get_new_event(task, timestamp);
294 event->type = SCHED_EVENT_WAKEUP;
295 event->wakee = wakee;
296
297 wakee_event = last_event(wakee);
298 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299 sched->targetless_wakeups++;
300 return;
301 }
302 if (wakee_event->wait_sem) {
303 sched->multitarget_wakeups++;
304 return;
305 }
306
307 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308 sem_init(wakee_event->wait_sem, 0, 0);
309 wakee_event->specific_wait = 1;
310 event->wait_sem = wakee_event->wait_sem;
311
312 sched->nr_wakeup_events++;
313}
314
315static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316 u64 timestamp, u64 task_state __maybe_unused)
317{
318 struct sched_atom *event = get_new_event(task, timestamp);
319
320 event->type = SCHED_EVENT_SLEEP;
321
322 sched->nr_sleep_events++;
323}
324
325static struct task_desc *register_pid(struct perf_sched *sched,
326 unsigned long pid, const char *comm)
327{
328 struct task_desc *task;
329
330 BUG_ON(pid >= MAX_PID);
331
332 task = sched->pid_to_task[pid];
333
334 if (task)
335 return task;
336
337 task = zalloc(sizeof(*task));
338 task->pid = pid;
339 task->nr = sched->nr_tasks;
340 strcpy(task->comm, comm);
341 /*
342 * every task starts in sleeping state - this gets ignored
343 * if there's no wakeup pointing to this sleep state:
344 */
345 add_sched_event_sleep(sched, task, 0, 0);
346
347 sched->pid_to_task[pid] = task;
348 sched->nr_tasks++;
349 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350 BUG_ON(!sched->tasks);
351 sched->tasks[task->nr] = task;
352
353 if (verbose)
354 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
355
356 return task;
357}
358
359
360static void print_task_traces(struct perf_sched *sched)
361{
362 struct task_desc *task;
363 unsigned long i;
364
365 for (i = 0; i < sched->nr_tasks; i++) {
366 task = sched->tasks[i];
367 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368 task->nr, task->comm, task->pid, task->nr_events);
369 }
370}
371
372static void add_cross_task_wakeups(struct perf_sched *sched)
373{
374 struct task_desc *task1, *task2;
375 unsigned long i, j;
376
377 for (i = 0; i < sched->nr_tasks; i++) {
378 task1 = sched->tasks[i];
379 j = i + 1;
380 if (j == sched->nr_tasks)
381 j = 0;
382 task2 = sched->tasks[j];
383 add_sched_event_wakeup(sched, task1, 0, task2);
384 }
385}
386
387static void perf_sched__process_event(struct perf_sched *sched,
388 struct sched_atom *atom)
389{
390 int ret = 0;
391
392 switch (atom->type) {
393 case SCHED_EVENT_RUN:
394 burn_nsecs(sched, atom->duration);
395 break;
396 case SCHED_EVENT_SLEEP:
397 if (atom->wait_sem)
398 ret = sem_wait(atom->wait_sem);
399 BUG_ON(ret);
400 break;
401 case SCHED_EVENT_WAKEUP:
402 if (atom->wait_sem)
403 ret = sem_post(atom->wait_sem);
404 BUG_ON(ret);
405 break;
406 case SCHED_EVENT_MIGRATION:
407 break;
408 default:
409 BUG_ON(1);
410 }
411}
412
413static u64 get_cpu_usage_nsec_parent(void)
414{
415 struct rusage ru;
416 u64 sum;
417 int err;
418
419 err = getrusage(RUSAGE_SELF, &ru);
420 BUG_ON(err);
421
422 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
424
425 return sum;
426}
427
428static int self_open_counters(void)
429{
430 struct perf_event_attr attr;
431 int fd;
432
433 memset(&attr, 0, sizeof(attr));
434
435 attr.type = PERF_TYPE_SOFTWARE;
436 attr.config = PERF_COUNT_SW_TASK_CLOCK;
437
438 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
439
440 if (fd < 0)
441 pr_err("Error: sys_perf_event_open() syscall returned "
442 "with %d (%s)\n", fd, strerror(errno));
443 return fd;
444}
445
446static u64 get_cpu_usage_nsec_self(int fd)
447{
448 u64 runtime;
449 int ret;
450
451 ret = read(fd, &runtime, sizeof(runtime));
452 BUG_ON(ret != sizeof(runtime));
453
454 return runtime;
455}
456
457struct sched_thread_parms {
458 struct task_desc *task;
459 struct perf_sched *sched;
460};
461
462static void *thread_func(void *ctx)
463{
464 struct sched_thread_parms *parms = ctx;
465 struct task_desc *this_task = parms->task;
466 struct perf_sched *sched = parms->sched;
467 u64 cpu_usage_0, cpu_usage_1;
468 unsigned long i, ret;
469 char comm2[22];
470 int fd;
471
472 zfree(&parms);
473
474 sprintf(comm2, ":%s", this_task->comm);
475 prctl(PR_SET_NAME, comm2);
476 fd = self_open_counters();
477 if (fd < 0)
478 return NULL;
479again:
480 ret = sem_post(&this_task->ready_for_work);
481 BUG_ON(ret);
482 ret = pthread_mutex_lock(&sched->start_work_mutex);
483 BUG_ON(ret);
484 ret = pthread_mutex_unlock(&sched->start_work_mutex);
485 BUG_ON(ret);
486
487 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
488
489 for (i = 0; i < this_task->nr_events; i++) {
490 this_task->curr_event = i;
491 perf_sched__process_event(sched, this_task->atoms[i]);
492 }
493
494 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
495 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
496 ret = sem_post(&this_task->work_done_sem);
497 BUG_ON(ret);
498
499 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
500 BUG_ON(ret);
501 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
502 BUG_ON(ret);
503
504 goto again;
505}
506
507static void create_tasks(struct perf_sched *sched)
508{
509 struct task_desc *task;
510 pthread_attr_t attr;
511 unsigned long i;
512 int err;
513
514 err = pthread_attr_init(&attr);
515 BUG_ON(err);
516 err = pthread_attr_setstacksize(&attr,
517 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
518 BUG_ON(err);
519 err = pthread_mutex_lock(&sched->start_work_mutex);
520 BUG_ON(err);
521 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
522 BUG_ON(err);
523 for (i = 0; i < sched->nr_tasks; i++) {
524 struct sched_thread_parms *parms = malloc(sizeof(*parms));
525 BUG_ON(parms == NULL);
526 parms->task = task = sched->tasks[i];
527 parms->sched = sched;
528 sem_init(&task->sleep_sem, 0, 0);
529 sem_init(&task->ready_for_work, 0, 0);
530 sem_init(&task->work_done_sem, 0, 0);
531 task->curr_event = 0;
532 err = pthread_create(&task->thread, &attr, thread_func, parms);
533 BUG_ON(err);
534 }
535}
536
537static void wait_for_tasks(struct perf_sched *sched)
538{
539 u64 cpu_usage_0, cpu_usage_1;
540 struct task_desc *task;
541 unsigned long i, ret;
542
543 sched->start_time = get_nsecs();
544 sched->cpu_usage = 0;
545 pthread_mutex_unlock(&sched->work_done_wait_mutex);
546
547 for (i = 0; i < sched->nr_tasks; i++) {
548 task = sched->tasks[i];
549 ret = sem_wait(&task->ready_for_work);
550 BUG_ON(ret);
551 sem_init(&task->ready_for_work, 0, 0);
552 }
553 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
554 BUG_ON(ret);
555
556 cpu_usage_0 = get_cpu_usage_nsec_parent();
557
558 pthread_mutex_unlock(&sched->start_work_mutex);
559
560 for (i = 0; i < sched->nr_tasks; i++) {
561 task = sched->tasks[i];
562 ret = sem_wait(&task->work_done_sem);
563 BUG_ON(ret);
564 sem_init(&task->work_done_sem, 0, 0);
565 sched->cpu_usage += task->cpu_usage;
566 task->cpu_usage = 0;
567 }
568
569 cpu_usage_1 = get_cpu_usage_nsec_parent();
570 if (!sched->runavg_cpu_usage)
571 sched->runavg_cpu_usage = sched->cpu_usage;
572 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
573
574 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
575 if (!sched->runavg_parent_cpu_usage)
576 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
577 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
578 sched->parent_cpu_usage)/10;
579
580 ret = pthread_mutex_lock(&sched->start_work_mutex);
581 BUG_ON(ret);
582
583 for (i = 0; i < sched->nr_tasks; i++) {
584 task = sched->tasks[i];
585 sem_init(&task->sleep_sem, 0, 0);
586 task->curr_event = 0;
587 }
588}
589
590static void run_one_test(struct perf_sched *sched)
591{
592 u64 T0, T1, delta, avg_delta, fluct;
593
594 T0 = get_nsecs();
595 wait_for_tasks(sched);
596 T1 = get_nsecs();
597
598 delta = T1 - T0;
599 sched->sum_runtime += delta;
600 sched->nr_runs++;
601
602 avg_delta = sched->sum_runtime / sched->nr_runs;
603 if (delta < avg_delta)
604 fluct = avg_delta - delta;
605 else
606 fluct = delta - avg_delta;
607 sched->sum_fluct += fluct;
608 if (!sched->run_avg)
609 sched->run_avg = delta;
610 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
611
612 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
613
614 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
615
616 printf("cpu: %0.2f / %0.2f",
617 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
618
619#if 0
620 /*
621 * rusage statistics done by the parent, these are less
622 * accurate than the sched->sum_exec_runtime based statistics:
623 */
624 printf(" [%0.2f / %0.2f]",
625 (double)sched->parent_cpu_usage/1e6,
626 (double)sched->runavg_parent_cpu_usage/1e6);
627#endif
628
629 printf("\n");
630
631 if (sched->nr_sleep_corrections)
632 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
633 sched->nr_sleep_corrections = 0;
634}
635
636static void test_calibrations(struct perf_sched *sched)
637{
638 u64 T0, T1;
639
640 T0 = get_nsecs();
641 burn_nsecs(sched, 1e6);
642 T1 = get_nsecs();
643
644 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
645
646 T0 = get_nsecs();
647 sleep_nsecs(1e6);
648 T1 = get_nsecs();
649
650 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
651}
652
653static int
654replay_wakeup_event(struct perf_sched *sched,
655 struct perf_evsel *evsel, struct perf_sample *sample,
656 struct machine *machine __maybe_unused)
657{
658 const char *comm = perf_evsel__strval(evsel, sample, "comm");
659 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
660 struct task_desc *waker, *wakee;
661
662 if (verbose) {
663 printf("sched_wakeup event %p\n", evsel);
664
665 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
666 }
667
668 waker = register_pid(sched, sample->tid, "<unknown>");
669 wakee = register_pid(sched, pid, comm);
670
671 add_sched_event_wakeup(sched, waker, sample->time, wakee);
672 return 0;
673}
674
675static int replay_switch_event(struct perf_sched *sched,
676 struct perf_evsel *evsel,
677 struct perf_sample *sample,
678 struct machine *machine __maybe_unused)
679{
680 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
681 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
682 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
683 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
684 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
685 struct task_desc *prev, __maybe_unused *next;
686 u64 timestamp0, timestamp = sample->time;
687 int cpu = sample->cpu;
688 s64 delta;
689
690 if (verbose)
691 printf("sched_switch event %p\n", evsel);
692
693 if (cpu >= MAX_CPUS || cpu < 0)
694 return 0;
695
696 timestamp0 = sched->cpu_last_switched[cpu];
697 if (timestamp0)
698 delta = timestamp - timestamp0;
699 else
700 delta = 0;
701
702 if (delta < 0) {
703 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
704 return -1;
705 }
706
707 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
708 prev_comm, prev_pid, next_comm, next_pid, delta);
709
710 prev = register_pid(sched, prev_pid, prev_comm);
711 next = register_pid(sched, next_pid, next_comm);
712
713 sched->cpu_last_switched[cpu] = timestamp;
714
715 add_sched_event_run(sched, prev, timestamp, delta);
716 add_sched_event_sleep(sched, prev, timestamp, prev_state);
717
718 return 0;
719}
720
721static int replay_fork_event(struct perf_sched *sched,
722 union perf_event *event,
723 struct machine *machine)
724{
725 struct thread *child, *parent;
726
727 child = machine__findnew_thread(machine, event->fork.pid,
728 event->fork.tid);
729 parent = machine__findnew_thread(machine, event->fork.ppid,
730 event->fork.ptid);
731
732 if (child == NULL || parent == NULL) {
733 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
734 child, parent);
735 return 0;
736 }
737
738 if (verbose) {
739 printf("fork event\n");
740 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
741 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
742 }
743
744 register_pid(sched, parent->tid, thread__comm_str(parent));
745 register_pid(sched, child->tid, thread__comm_str(child));
746 return 0;
747}
748
749struct sort_dimension {
750 const char *name;
751 sort_fn_t cmp;
752 struct list_head list;
753};
754
755static int
756thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
757{
758 struct sort_dimension *sort;
759 int ret = 0;
760
761 BUG_ON(list_empty(list));
762
763 list_for_each_entry(sort, list, list) {
764 ret = sort->cmp(l, r);
765 if (ret)
766 return ret;
767 }
768
769 return ret;
770}
771
772static struct work_atoms *
773thread_atoms_search(struct rb_root *root, struct thread *thread,
774 struct list_head *sort_list)
775{
776 struct rb_node *node = root->rb_node;
777 struct work_atoms key = { .thread = thread };
778
779 while (node) {
780 struct work_atoms *atoms;
781 int cmp;
782
783 atoms = container_of(node, struct work_atoms, node);
784
785 cmp = thread_lat_cmp(sort_list, &key, atoms);
786 if (cmp > 0)
787 node = node->rb_left;
788 else if (cmp < 0)
789 node = node->rb_right;
790 else {
791 BUG_ON(thread != atoms->thread);
792 return atoms;
793 }
794 }
795 return NULL;
796}
797
798static void
799__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
800 struct list_head *sort_list)
801{
802 struct rb_node **new = &(root->rb_node), *parent = NULL;
803
804 while (*new) {
805 struct work_atoms *this;
806 int cmp;
807
808 this = container_of(*new, struct work_atoms, node);
809 parent = *new;
810
811 cmp = thread_lat_cmp(sort_list, data, this);
812
813 if (cmp > 0)
814 new = &((*new)->rb_left);
815 else
816 new = &((*new)->rb_right);
817 }
818
819 rb_link_node(&data->node, parent, new);
820 rb_insert_color(&data->node, root);
821}
822
823static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
824{
825 struct work_atoms *atoms = zalloc(sizeof(*atoms));
826 if (!atoms) {
827 pr_err("No memory at %s\n", __func__);
828 return -1;
829 }
830
831 atoms->thread = thread;
832 INIT_LIST_HEAD(&atoms->work_list);
833 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
834 return 0;
835}
836
837static char sched_out_state(u64 prev_state)
838{
839 const char *str = TASK_STATE_TO_CHAR_STR;
840
841 return str[prev_state];
842}
843
844static int
845add_sched_out_event(struct work_atoms *atoms,
846 char run_state,
847 u64 timestamp)
848{
849 struct work_atom *atom = zalloc(sizeof(*atom));
850 if (!atom) {
851 pr_err("Non memory at %s", __func__);
852 return -1;
853 }
854
855 atom->sched_out_time = timestamp;
856
857 if (run_state == 'R') {
858 atom->state = THREAD_WAIT_CPU;
859 atom->wake_up_time = atom->sched_out_time;
860 }
861
862 list_add_tail(&atom->list, &atoms->work_list);
863 return 0;
864}
865
866static void
867add_runtime_event(struct work_atoms *atoms, u64 delta,
868 u64 timestamp __maybe_unused)
869{
870 struct work_atom *atom;
871
872 BUG_ON(list_empty(&atoms->work_list));
873
874 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
875
876 atom->runtime += delta;
877 atoms->total_runtime += delta;
878}
879
880static void
881add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
882{
883 struct work_atom *atom;
884 u64 delta;
885
886 if (list_empty(&atoms->work_list))
887 return;
888
889 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
890
891 if (atom->state != THREAD_WAIT_CPU)
892 return;
893
894 if (timestamp < atom->wake_up_time) {
895 atom->state = THREAD_IGNORE;
896 return;
897 }
898
899 atom->state = THREAD_SCHED_IN;
900 atom->sched_in_time = timestamp;
901
902 delta = atom->sched_in_time - atom->wake_up_time;
903 atoms->total_lat += delta;
904 if (delta > atoms->max_lat) {
905 atoms->max_lat = delta;
906 atoms->max_lat_at = timestamp;
907 }
908 atoms->nb_atoms++;
909}
910
911static int latency_switch_event(struct perf_sched *sched,
912 struct perf_evsel *evsel,
913 struct perf_sample *sample,
914 struct machine *machine)
915{
916 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
917 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
918 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
919 struct work_atoms *out_events, *in_events;
920 struct thread *sched_out, *sched_in;
921 u64 timestamp0, timestamp = sample->time;
922 int cpu = sample->cpu;
923 s64 delta;
924
925 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
926
927 timestamp0 = sched->cpu_last_switched[cpu];
928 sched->cpu_last_switched[cpu] = timestamp;
929 if (timestamp0)
930 delta = timestamp - timestamp0;
931 else
932 delta = 0;
933
934 if (delta < 0) {
935 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
936 return -1;
937 }
938
939 sched_out = machine__findnew_thread(machine, 0, prev_pid);
940 sched_in = machine__findnew_thread(machine, 0, next_pid);
941
942 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
943 if (!out_events) {
944 if (thread_atoms_insert(sched, sched_out))
945 return -1;
946 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
947 if (!out_events) {
948 pr_err("out-event: Internal tree error");
949 return -1;
950 }
951 }
952 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
953 return -1;
954
955 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
956 if (!in_events) {
957 if (thread_atoms_insert(sched, sched_in))
958 return -1;
959 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
960 if (!in_events) {
961 pr_err("in-event: Internal tree error");
962 return -1;
963 }
964 /*
965 * Take came in we have not heard about yet,
966 * add in an initial atom in runnable state:
967 */
968 if (add_sched_out_event(in_events, 'R', timestamp))
969 return -1;
970 }
971 add_sched_in_event(in_events, timestamp);
972
973 return 0;
974}
975
976static int latency_runtime_event(struct perf_sched *sched,
977 struct perf_evsel *evsel,
978 struct perf_sample *sample,
979 struct machine *machine)
980{
981 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
982 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
983 struct thread *thread = machine__findnew_thread(machine, 0, pid);
984 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
985 u64 timestamp = sample->time;
986 int cpu = sample->cpu;
987
988 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
989 if (!atoms) {
990 if (thread_atoms_insert(sched, thread))
991 return -1;
992 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
993 if (!atoms) {
994 pr_err("in-event: Internal tree error");
995 return -1;
996 }
997 if (add_sched_out_event(atoms, 'R', timestamp))
998 return -1;
999 }
1000
1001 add_runtime_event(atoms, runtime, timestamp);
1002 return 0;
1003}
1004
1005static int latency_wakeup_event(struct perf_sched *sched,
1006 struct perf_evsel *evsel,
1007 struct perf_sample *sample,
1008 struct machine *machine)
1009{
1010 const u32 pid = perf_evsel__intval(evsel, sample, "pid"),
1011 success = perf_evsel__intval(evsel, sample, "success");
1012 struct work_atoms *atoms;
1013 struct work_atom *atom;
1014 struct thread *wakee;
1015 u64 timestamp = sample->time;
1016
1017 /* Note for later, it may be interesting to observe the failing cases */
1018 if (!success)
1019 return 0;
1020
1021 wakee = machine__findnew_thread(machine, 0, pid);
1022 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1023 if (!atoms) {
1024 if (thread_atoms_insert(sched, wakee))
1025 return -1;
1026 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1027 if (!atoms) {
1028 pr_err("wakeup-event: Internal tree error");
1029 return -1;
1030 }
1031 if (add_sched_out_event(atoms, 'S', timestamp))
1032 return -1;
1033 }
1034
1035 BUG_ON(list_empty(&atoms->work_list));
1036
1037 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1038
1039 /*
1040 * You WILL be missing events if you've recorded only
1041 * one CPU, or are only looking at only one, so don't
1042 * make useless noise.
1043 */
1044 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045 sched->nr_state_machine_bugs++;
1046
1047 sched->nr_timestamps++;
1048 if (atom->sched_out_time > timestamp) {
1049 sched->nr_unordered_timestamps++;
1050 return 0;
1051 }
1052
1053 atom->state = THREAD_WAIT_CPU;
1054 atom->wake_up_time = timestamp;
1055 return 0;
1056}
1057
1058static int latency_migrate_task_event(struct perf_sched *sched,
1059 struct perf_evsel *evsel,
1060 struct perf_sample *sample,
1061 struct machine *machine)
1062{
1063 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064 u64 timestamp = sample->time;
1065 struct work_atoms *atoms;
1066 struct work_atom *atom;
1067 struct thread *migrant;
1068
1069 /*
1070 * Only need to worry about migration when profiling one CPU.
1071 */
1072 if (sched->profile_cpu == -1)
1073 return 0;
1074
1075 migrant = machine__findnew_thread(machine, 0, pid);
1076 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077 if (!atoms) {
1078 if (thread_atoms_insert(sched, migrant))
1079 return -1;
1080 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1081 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082 if (!atoms) {
1083 pr_err("migration-event: Internal tree error");
1084 return -1;
1085 }
1086 if (add_sched_out_event(atoms, 'R', timestamp))
1087 return -1;
1088 }
1089
1090 BUG_ON(list_empty(&atoms->work_list));
1091
1092 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094
1095 sched->nr_timestamps++;
1096
1097 if (atom->sched_out_time > timestamp)
1098 sched->nr_unordered_timestamps++;
1099
1100 return 0;
1101}
1102
1103static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1104{
1105 int i;
1106 int ret;
1107 u64 avg;
1108
1109 if (!work_list->nb_atoms)
1110 return;
1111 /*
1112 * Ignore idle threads:
1113 */
1114 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1115 return;
1116
1117 sched->all_runtime += work_list->total_runtime;
1118 sched->all_count += work_list->nb_atoms;
1119
1120 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1121
1122 for (i = 0; i < 24 - ret; i++)
1123 printf(" ");
1124
1125 avg = work_list->total_lat / work_list->nb_atoms;
1126
1127 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128 (double)work_list->total_runtime / 1e6,
1129 work_list->nb_atoms, (double)avg / 1e6,
1130 (double)work_list->max_lat / 1e6,
1131 (double)work_list->max_lat_at / 1e9);
1132}
1133
1134static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135{
1136 if (l->thread->tid < r->thread->tid)
1137 return -1;
1138 if (l->thread->tid > r->thread->tid)
1139 return 1;
1140
1141 return 0;
1142}
1143
1144static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145{
1146 u64 avgl, avgr;
1147
1148 if (!l->nb_atoms)
1149 return -1;
1150
1151 if (!r->nb_atoms)
1152 return 1;
1153
1154 avgl = l->total_lat / l->nb_atoms;
1155 avgr = r->total_lat / r->nb_atoms;
1156
1157 if (avgl < avgr)
1158 return -1;
1159 if (avgl > avgr)
1160 return 1;
1161
1162 return 0;
1163}
1164
1165static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166{
1167 if (l->max_lat < r->max_lat)
1168 return -1;
1169 if (l->max_lat > r->max_lat)
1170 return 1;
1171
1172 return 0;
1173}
1174
1175static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176{
1177 if (l->nb_atoms < r->nb_atoms)
1178 return -1;
1179 if (l->nb_atoms > r->nb_atoms)
1180 return 1;
1181
1182 return 0;
1183}
1184
1185static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186{
1187 if (l->total_runtime < r->total_runtime)
1188 return -1;
1189 if (l->total_runtime > r->total_runtime)
1190 return 1;
1191
1192 return 0;
1193}
1194
1195static int sort_dimension__add(const char *tok, struct list_head *list)
1196{
1197 size_t i;
1198 static struct sort_dimension avg_sort_dimension = {
1199 .name = "avg",
1200 .cmp = avg_cmp,
1201 };
1202 static struct sort_dimension max_sort_dimension = {
1203 .name = "max",
1204 .cmp = max_cmp,
1205 };
1206 static struct sort_dimension pid_sort_dimension = {
1207 .name = "pid",
1208 .cmp = pid_cmp,
1209 };
1210 static struct sort_dimension runtime_sort_dimension = {
1211 .name = "runtime",
1212 .cmp = runtime_cmp,
1213 };
1214 static struct sort_dimension switch_sort_dimension = {
1215 .name = "switch",
1216 .cmp = switch_cmp,
1217 };
1218 struct sort_dimension *available_sorts[] = {
1219 &pid_sort_dimension,
1220 &avg_sort_dimension,
1221 &max_sort_dimension,
1222 &switch_sort_dimension,
1223 &runtime_sort_dimension,
1224 };
1225
1226 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227 if (!strcmp(available_sorts[i]->name, tok)) {
1228 list_add_tail(&available_sorts[i]->list, list);
1229
1230 return 0;
1231 }
1232 }
1233
1234 return -1;
1235}
1236
1237static void perf_sched__sort_lat(struct perf_sched *sched)
1238{
1239 struct rb_node *node;
1240
1241 for (;;) {
1242 struct work_atoms *data;
1243 node = rb_first(&sched->atom_root);
1244 if (!node)
1245 break;
1246
1247 rb_erase(node, &sched->atom_root);
1248 data = rb_entry(node, struct work_atoms, node);
1249 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1250 }
1251}
1252
1253static int process_sched_wakeup_event(struct perf_tool *tool,
1254 struct perf_evsel *evsel,
1255 struct perf_sample *sample,
1256 struct machine *machine)
1257{
1258 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259
1260 if (sched->tp_handler->wakeup_event)
1261 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262
1263 return 0;
1264}
1265
1266static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1267 struct perf_sample *sample, struct machine *machine)
1268{
1269 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1270 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1271 struct thread *sched_out __maybe_unused, *sched_in;
1272 int new_shortname;
1273 u64 timestamp0, timestamp = sample->time;
1274 s64 delta;
1275 int cpu, this_cpu = sample->cpu;
1276
1277 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1278
1279 if (this_cpu > sched->max_cpu)
1280 sched->max_cpu = this_cpu;
1281
1282 timestamp0 = sched->cpu_last_switched[this_cpu];
1283 sched->cpu_last_switched[this_cpu] = timestamp;
1284 if (timestamp0)
1285 delta = timestamp - timestamp0;
1286 else
1287 delta = 0;
1288
1289 if (delta < 0) {
1290 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1291 return -1;
1292 }
1293
1294 sched_out = machine__findnew_thread(machine, 0, prev_pid);
1295 sched_in = machine__findnew_thread(machine, 0, next_pid);
1296
1297 sched->curr_thread[this_cpu] = sched_in;
1298
1299 printf(" ");
1300
1301 new_shortname = 0;
1302 if (!sched_in->shortname[0]) {
1303 sched_in->shortname[0] = sched->next_shortname1;
1304 sched_in->shortname[1] = sched->next_shortname2;
1305
1306 if (sched->next_shortname1 < 'Z') {
1307 sched->next_shortname1++;
1308 } else {
1309 sched->next_shortname1='A';
1310 if (sched->next_shortname2 < '9') {
1311 sched->next_shortname2++;
1312 } else {
1313 sched->next_shortname2='0';
1314 }
1315 }
1316 new_shortname = 1;
1317 }
1318
1319 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1320 if (cpu != this_cpu)
1321 printf(" ");
1322 else
1323 printf("*");
1324
1325 if (sched->curr_thread[cpu]) {
1326 if (sched->curr_thread[cpu]->tid)
1327 printf("%2s ", sched->curr_thread[cpu]->shortname);
1328 else
1329 printf(". ");
1330 } else
1331 printf(" ");
1332 }
1333
1334 printf(" %12.6f secs ", (double)timestamp/1e9);
1335 if (new_shortname) {
1336 printf("%s => %s:%d\n",
1337 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1338 } else {
1339 printf("\n");
1340 }
1341
1342 return 0;
1343}
1344
1345static int process_sched_switch_event(struct perf_tool *tool,
1346 struct perf_evsel *evsel,
1347 struct perf_sample *sample,
1348 struct machine *machine)
1349{
1350 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1351 int this_cpu = sample->cpu, err = 0;
1352 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1353 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1354
1355 if (sched->curr_pid[this_cpu] != (u32)-1) {
1356 /*
1357 * Are we trying to switch away a PID that is
1358 * not current?
1359 */
1360 if (sched->curr_pid[this_cpu] != prev_pid)
1361 sched->nr_context_switch_bugs++;
1362 }
1363
1364 if (sched->tp_handler->switch_event)
1365 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1366
1367 sched->curr_pid[this_cpu] = next_pid;
1368 return err;
1369}
1370
1371static int process_sched_runtime_event(struct perf_tool *tool,
1372 struct perf_evsel *evsel,
1373 struct perf_sample *sample,
1374 struct machine *machine)
1375{
1376 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1377
1378 if (sched->tp_handler->runtime_event)
1379 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1380
1381 return 0;
1382}
1383
1384static int perf_sched__process_fork_event(struct perf_tool *tool,
1385 union perf_event *event,
1386 struct perf_sample *sample,
1387 struct machine *machine)
1388{
1389 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1390
1391 /* run the fork event through the perf machineruy */
1392 perf_event__process_fork(tool, event, sample, machine);
1393
1394 /* and then run additional processing needed for this command */
1395 if (sched->tp_handler->fork_event)
1396 return sched->tp_handler->fork_event(sched, event, machine);
1397
1398 return 0;
1399}
1400
1401static int process_sched_migrate_task_event(struct perf_tool *tool,
1402 struct perf_evsel *evsel,
1403 struct perf_sample *sample,
1404 struct machine *machine)
1405{
1406 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1407
1408 if (sched->tp_handler->migrate_task_event)
1409 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1410
1411 return 0;
1412}
1413
1414typedef int (*tracepoint_handler)(struct perf_tool *tool,
1415 struct perf_evsel *evsel,
1416 struct perf_sample *sample,
1417 struct machine *machine);
1418
1419static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1420 union perf_event *event __maybe_unused,
1421 struct perf_sample *sample,
1422 struct perf_evsel *evsel,
1423 struct machine *machine)
1424{
1425 int err = 0;
1426
1427 evsel->hists.stats.total_period += sample->period;
1428 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1429
1430 if (evsel->handler != NULL) {
1431 tracepoint_handler f = evsel->handler;
1432 err = f(tool, evsel, sample, machine);
1433 }
1434
1435 return err;
1436}
1437
1438static int perf_sched__read_events(struct perf_sched *sched,
1439 struct perf_session **psession)
1440{
1441 const struct perf_evsel_str_handler handlers[] = {
1442 { "sched:sched_switch", process_sched_switch_event, },
1443 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1444 { "sched:sched_wakeup", process_sched_wakeup_event, },
1445 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1446 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1447 };
1448 struct perf_session *session;
1449 struct perf_data_file file = {
1450 .path = input_name,
1451 .mode = PERF_DATA_MODE_READ,
1452 };
1453
1454 session = perf_session__new(&file, false, &sched->tool);
1455 if (session == NULL) {
1456 pr_debug("No Memory for session\n");
1457 return -1;
1458 }
1459
1460 if (perf_session__set_tracepoints_handlers(session, handlers))
1461 goto out_delete;
1462
1463 if (perf_session__has_traces(session, "record -R")) {
1464 int err = perf_session__process_events(session, &sched->tool);
1465 if (err) {
1466 pr_err("Failed to process events, error %d", err);
1467 goto out_delete;
1468 }
1469
1470 sched->nr_events = session->stats.nr_events[0];
1471 sched->nr_lost_events = session->stats.total_lost;
1472 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1473 }
1474
1475 if (psession)
1476 *psession = session;
1477 else
1478 perf_session__delete(session);
1479
1480 return 0;
1481
1482out_delete:
1483 perf_session__delete(session);
1484 return -1;
1485}
1486
1487static void print_bad_events(struct perf_sched *sched)
1488{
1489 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1490 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1491 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1492 sched->nr_unordered_timestamps, sched->nr_timestamps);
1493 }
1494 if (sched->nr_lost_events && sched->nr_events) {
1495 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1496 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1497 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1498 }
1499 if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1500 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1501 (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1502 sched->nr_state_machine_bugs, sched->nr_timestamps);
1503 if (sched->nr_lost_events)
1504 printf(" (due to lost events?)");
1505 printf("\n");
1506 }
1507 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1508 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1509 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1510 sched->nr_context_switch_bugs, sched->nr_timestamps);
1511 if (sched->nr_lost_events)
1512 printf(" (due to lost events?)");
1513 printf("\n");
1514 }
1515}
1516
1517static int perf_sched__lat(struct perf_sched *sched)
1518{
1519 struct rb_node *next;
1520 struct perf_session *session;
1521
1522 setup_pager();
1523
1524 /* save session -- references to threads are held in work_list */
1525 if (perf_sched__read_events(sched, &session))
1526 return -1;
1527
1528 perf_sched__sort_lat(sched);
1529
1530 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1531 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1532 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1533
1534 next = rb_first(&sched->sorted_atom_root);
1535
1536 while (next) {
1537 struct work_atoms *work_list;
1538
1539 work_list = rb_entry(next, struct work_atoms, node);
1540 output_lat_thread(sched, work_list);
1541 next = rb_next(next);
1542 }
1543
1544 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1545 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1546 (double)sched->all_runtime / 1e6, sched->all_count);
1547
1548 printf(" ---------------------------------------------------\n");
1549
1550 print_bad_events(sched);
1551 printf("\n");
1552
1553 perf_session__delete(session);
1554 return 0;
1555}
1556
1557static int perf_sched__map(struct perf_sched *sched)
1558{
1559 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1560
1561 setup_pager();
1562 if (perf_sched__read_events(sched, NULL))
1563 return -1;
1564 print_bad_events(sched);
1565 return 0;
1566}
1567
1568static int perf_sched__replay(struct perf_sched *sched)
1569{
1570 unsigned long i;
1571
1572 calibrate_run_measurement_overhead(sched);
1573 calibrate_sleep_measurement_overhead(sched);
1574
1575 test_calibrations(sched);
1576
1577 if (perf_sched__read_events(sched, NULL))
1578 return -1;
1579
1580 printf("nr_run_events: %ld\n", sched->nr_run_events);
1581 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1582 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1583
1584 if (sched->targetless_wakeups)
1585 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1586 if (sched->multitarget_wakeups)
1587 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1588 if (sched->nr_run_events_optimized)
1589 printf("run atoms optimized: %ld\n",
1590 sched->nr_run_events_optimized);
1591
1592 print_task_traces(sched);
1593 add_cross_task_wakeups(sched);
1594
1595 create_tasks(sched);
1596 printf("------------------------------------------------------------\n");
1597 for (i = 0; i < sched->replay_repeat; i++)
1598 run_one_test(sched);
1599
1600 return 0;
1601}
1602
1603static void setup_sorting(struct perf_sched *sched, const struct option *options,
1604 const char * const usage_msg[])
1605{
1606 char *tmp, *tok, *str = strdup(sched->sort_order);
1607
1608 for (tok = strtok_r(str, ", ", &tmp);
1609 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1610 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1611 error("Unknown --sort key: `%s'", tok);
1612 usage_with_options(usage_msg, options);
1613 }
1614 }
1615
1616 free(str);
1617
1618 sort_dimension__add("pid", &sched->cmp_pid);
1619}
1620
1621static int __cmd_record(int argc, const char **argv)
1622{
1623 unsigned int rec_argc, i, j;
1624 const char **rec_argv;
1625 const char * const record_args[] = {
1626 "record",
1627 "-a",
1628 "-R",
1629 "-m", "1024",
1630 "-c", "1",
1631 "-e", "sched:sched_switch",
1632 "-e", "sched:sched_stat_wait",
1633 "-e", "sched:sched_stat_sleep",
1634 "-e", "sched:sched_stat_iowait",
1635 "-e", "sched:sched_stat_runtime",
1636 "-e", "sched:sched_process_fork",
1637 "-e", "sched:sched_wakeup",
1638 "-e", "sched:sched_migrate_task",
1639 };
1640
1641 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1642 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1643
1644 if (rec_argv == NULL)
1645 return -ENOMEM;
1646
1647 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1648 rec_argv[i] = strdup(record_args[i]);
1649
1650 for (j = 1; j < (unsigned int)argc; j++, i++)
1651 rec_argv[i] = argv[j];
1652
1653 BUG_ON(i != rec_argc);
1654
1655 return cmd_record(i, rec_argv, NULL);
1656}
1657
1658int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1659{
1660 const char default_sort_order[] = "avg, max, switch, runtime";
1661 struct perf_sched sched = {
1662 .tool = {
1663 .sample = perf_sched__process_tracepoint_sample,
1664 .comm = perf_event__process_comm,
1665 .lost = perf_event__process_lost,
1666 .fork = perf_sched__process_fork_event,
1667 .ordered_samples = true,
1668 },
1669 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1670 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1671 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1672 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1673 .sort_order = default_sort_order,
1674 .replay_repeat = 10,
1675 .profile_cpu = -1,
1676 .next_shortname1 = 'A',
1677 .next_shortname2 = '0',
1678 };
1679 const struct option latency_options[] = {
1680 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1681 "sort by key(s): runtime, switch, avg, max"),
1682 OPT_INCR('v', "verbose", &verbose,
1683 "be more verbose (show symbol address, etc)"),
1684 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1685 "CPU to profile on"),
1686 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1687 "dump raw trace in ASCII"),
1688 OPT_END()
1689 };
1690 const struct option replay_options[] = {
1691 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1692 "repeat the workload replay N times (-1: infinite)"),
1693 OPT_INCR('v', "verbose", &verbose,
1694 "be more verbose (show symbol address, etc)"),
1695 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1696 "dump raw trace in ASCII"),
1697 OPT_END()
1698 };
1699 const struct option sched_options[] = {
1700 OPT_STRING('i', "input", &input_name, "file",
1701 "input file name"),
1702 OPT_INCR('v', "verbose", &verbose,
1703 "be more verbose (show symbol address, etc)"),
1704 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1705 "dump raw trace in ASCII"),
1706 OPT_END()
1707 };
1708 const char * const latency_usage[] = {
1709 "perf sched latency [<options>]",
1710 NULL
1711 };
1712 const char * const replay_usage[] = {
1713 "perf sched replay [<options>]",
1714 NULL
1715 };
1716 const char * const sched_usage[] = {
1717 "perf sched [<options>] {record|latency|map|replay|script}",
1718 NULL
1719 };
1720 struct trace_sched_handler lat_ops = {
1721 .wakeup_event = latency_wakeup_event,
1722 .switch_event = latency_switch_event,
1723 .runtime_event = latency_runtime_event,
1724 .migrate_task_event = latency_migrate_task_event,
1725 };
1726 struct trace_sched_handler map_ops = {
1727 .switch_event = map_switch_event,
1728 };
1729 struct trace_sched_handler replay_ops = {
1730 .wakeup_event = replay_wakeup_event,
1731 .switch_event = replay_switch_event,
1732 .fork_event = replay_fork_event,
1733 };
1734 unsigned int i;
1735
1736 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1737 sched.curr_pid[i] = -1;
1738
1739 argc = parse_options(argc, argv, sched_options, sched_usage,
1740 PARSE_OPT_STOP_AT_NON_OPTION);
1741 if (!argc)
1742 usage_with_options(sched_usage, sched_options);
1743
1744 /*
1745 * Aliased to 'perf script' for now:
1746 */
1747 if (!strcmp(argv[0], "script"))
1748 return cmd_script(argc, argv, prefix);
1749
1750 symbol__init();
1751 if (!strncmp(argv[0], "rec", 3)) {
1752 return __cmd_record(argc, argv);
1753 } else if (!strncmp(argv[0], "lat", 3)) {
1754 sched.tp_handler = &lat_ops;
1755 if (argc > 1) {
1756 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757 if (argc)
1758 usage_with_options(latency_usage, latency_options);
1759 }
1760 setup_sorting(&sched, latency_options, latency_usage);
1761 return perf_sched__lat(&sched);
1762 } else if (!strcmp(argv[0], "map")) {
1763 sched.tp_handler = &map_ops;
1764 setup_sorting(&sched, latency_options, latency_usage);
1765 return perf_sched__map(&sched);
1766 } else if (!strncmp(argv[0], "rep", 3)) {
1767 sched.tp_handler = &replay_ops;
1768 if (argc) {
1769 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770 if (argc)
1771 usage_with_options(replay_usage, replay_options);
1772 }
1773 return perf_sched__replay(&sched);
1774 } else {
1775 usage_with_options(sched_usage, sched_options);
1776 }
1777
1778 return 0;
1779}