Linux Audio

Check our new training course

Loading...
v4.6
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
  13#include "util/cloexec.h"
  14
  15#include <subcmd/parse-options.h>
  16#include "util/trace-event.h"
  17
  18#include "util/debug.h"
  19
  20#include <sys/prctl.h>
  21#include <sys/resource.h>
  22
  23#include <semaphore.h>
  24#include <pthread.h>
  25#include <math.h>
  26#include <api/fs/fs.h>
  27
  28#define PR_SET_NAME		15               /* Set process name */
  29#define MAX_CPUS		4096
  30#define COMM_LEN		20
  31#define SYM_LEN			129
  32#define MAX_PID			1024000
  33
  34struct sched_atom;
  35
  36struct task_desc {
  37	unsigned long		nr;
  38	unsigned long		pid;
  39	char			comm[COMM_LEN];
  40
  41	unsigned long		nr_events;
  42	unsigned long		curr_event;
  43	struct sched_atom	**atoms;
  44
  45	pthread_t		thread;
  46	sem_t			sleep_sem;
  47
  48	sem_t			ready_for_work;
  49	sem_t			work_done_sem;
  50
  51	u64			cpu_usage;
  52};
  53
  54enum sched_event_type {
  55	SCHED_EVENT_RUN,
  56	SCHED_EVENT_SLEEP,
  57	SCHED_EVENT_WAKEUP,
  58	SCHED_EVENT_MIGRATION,
  59};
  60
  61struct sched_atom {
  62	enum sched_event_type	type;
  63	int			specific_wait;
  64	u64			timestamp;
  65	u64			duration;
  66	unsigned long		nr;
  67	sem_t			*wait_sem;
  68	struct task_desc	*wakee;
  69};
  70
  71#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  72
  73enum thread_state {
  74	THREAD_SLEEPING = 0,
  75	THREAD_WAIT_CPU,
  76	THREAD_SCHED_IN,
  77	THREAD_IGNORE
  78};
  79
  80struct work_atom {
  81	struct list_head	list;
  82	enum thread_state	state;
  83	u64			sched_out_time;
  84	u64			wake_up_time;
  85	u64			sched_in_time;
  86	u64			runtime;
  87};
  88
  89struct work_atoms {
  90	struct list_head	work_list;
  91	struct thread		*thread;
  92	struct rb_node		node;
  93	u64			max_lat;
  94	u64			max_lat_at;
  95	u64			total_lat;
  96	u64			nb_atoms;
  97	u64			total_runtime;
  98	int			num_merged;
  99};
 100
 101typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 102
 103struct perf_sched;
 104
 105struct trace_sched_handler {
 106	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 107			    struct perf_sample *sample, struct machine *machine);
 108
 109	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 110			     struct perf_sample *sample, struct machine *machine);
 111
 112	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 113			    struct perf_sample *sample, struct machine *machine);
 114
 115	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 116	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 117			  struct machine *machine);
 118
 119	int (*migrate_task_event)(struct perf_sched *sched,
 120				  struct perf_evsel *evsel,
 121				  struct perf_sample *sample,
 122				  struct machine *machine);
 123};
 124
 125struct perf_sched {
 126	struct perf_tool tool;
 127	const char	 *sort_order;
 128	unsigned long	 nr_tasks;
 129	struct task_desc **pid_to_task;
 130	struct task_desc **tasks;
 131	const struct trace_sched_handler *tp_handler;
 132	pthread_mutex_t	 start_work_mutex;
 133	pthread_mutex_t	 work_done_wait_mutex;
 134	int		 profile_cpu;
 135/*
 136 * Track the current task - that way we can know whether there's any
 137 * weird events, such as a task being switched away that is not current.
 138 */
 139	int		 max_cpu;
 140	u32		 curr_pid[MAX_CPUS];
 141	struct thread	 *curr_thread[MAX_CPUS];
 142	char		 next_shortname1;
 143	char		 next_shortname2;
 144	unsigned int	 replay_repeat;
 145	unsigned long	 nr_run_events;
 146	unsigned long	 nr_sleep_events;
 147	unsigned long	 nr_wakeup_events;
 148	unsigned long	 nr_sleep_corrections;
 149	unsigned long	 nr_run_events_optimized;
 150	unsigned long	 targetless_wakeups;
 151	unsigned long	 multitarget_wakeups;
 152	unsigned long	 nr_runs;
 153	unsigned long	 nr_timestamps;
 154	unsigned long	 nr_unordered_timestamps;
 
 155	unsigned long	 nr_context_switch_bugs;
 156	unsigned long	 nr_events;
 157	unsigned long	 nr_lost_chunks;
 158	unsigned long	 nr_lost_events;
 159	u64		 run_measurement_overhead;
 160	u64		 sleep_measurement_overhead;
 161	u64		 start_time;
 162	u64		 cpu_usage;
 163	u64		 runavg_cpu_usage;
 164	u64		 parent_cpu_usage;
 165	u64		 runavg_parent_cpu_usage;
 166	u64		 sum_runtime;
 167	u64		 sum_fluct;
 168	u64		 run_avg;
 169	u64		 all_runtime;
 170	u64		 all_count;
 171	u64		 cpu_last_switched[MAX_CPUS];
 172	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
 173	struct list_head sort_list, cmp_pid;
 174	bool force;
 175	bool skip_merge;
 176};
 177
 178static u64 get_nsecs(void)
 179{
 180	struct timespec ts;
 181
 182	clock_gettime(CLOCK_MONOTONIC, &ts);
 183
 184	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 185}
 186
 187static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 188{
 189	u64 T0 = get_nsecs(), T1;
 190
 191	do {
 192		T1 = get_nsecs();
 193	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 194}
 195
 196static void sleep_nsecs(u64 nsecs)
 197{
 198	struct timespec ts;
 199
 200	ts.tv_nsec = nsecs % 999999999;
 201	ts.tv_sec = nsecs / 999999999;
 202
 203	nanosleep(&ts, NULL);
 204}
 205
 206static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 207{
 208	u64 T0, T1, delta, min_delta = 1000000000ULL;
 209	int i;
 210
 211	for (i = 0; i < 10; i++) {
 212		T0 = get_nsecs();
 213		burn_nsecs(sched, 0);
 214		T1 = get_nsecs();
 215		delta = T1-T0;
 216		min_delta = min(min_delta, delta);
 217	}
 218	sched->run_measurement_overhead = min_delta;
 219
 220	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 221}
 222
 223static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 224{
 225	u64 T0, T1, delta, min_delta = 1000000000ULL;
 226	int i;
 227
 228	for (i = 0; i < 10; i++) {
 229		T0 = get_nsecs();
 230		sleep_nsecs(10000);
 231		T1 = get_nsecs();
 232		delta = T1-T0;
 233		min_delta = min(min_delta, delta);
 234	}
 235	min_delta -= 10000;
 236	sched->sleep_measurement_overhead = min_delta;
 237
 238	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 239}
 240
 241static struct sched_atom *
 242get_new_event(struct task_desc *task, u64 timestamp)
 243{
 244	struct sched_atom *event = zalloc(sizeof(*event));
 245	unsigned long idx = task->nr_events;
 246	size_t size;
 247
 248	event->timestamp = timestamp;
 249	event->nr = idx;
 250
 251	task->nr_events++;
 252	size = sizeof(struct sched_atom *) * task->nr_events;
 253	task->atoms = realloc(task->atoms, size);
 254	BUG_ON(!task->atoms);
 255
 256	task->atoms[idx] = event;
 257
 258	return event;
 259}
 260
 261static struct sched_atom *last_event(struct task_desc *task)
 262{
 263	if (!task->nr_events)
 264		return NULL;
 265
 266	return task->atoms[task->nr_events - 1];
 267}
 268
 269static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 270				u64 timestamp, u64 duration)
 271{
 272	struct sched_atom *event, *curr_event = last_event(task);
 273
 274	/*
 275	 * optimize an existing RUN event by merging this one
 276	 * to it:
 277	 */
 278	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 279		sched->nr_run_events_optimized++;
 280		curr_event->duration += duration;
 281		return;
 282	}
 283
 284	event = get_new_event(task, timestamp);
 285
 286	event->type = SCHED_EVENT_RUN;
 287	event->duration = duration;
 288
 289	sched->nr_run_events++;
 290}
 291
 292static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 293				   u64 timestamp, struct task_desc *wakee)
 294{
 295	struct sched_atom *event, *wakee_event;
 296
 297	event = get_new_event(task, timestamp);
 298	event->type = SCHED_EVENT_WAKEUP;
 299	event->wakee = wakee;
 300
 301	wakee_event = last_event(wakee);
 302	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 303		sched->targetless_wakeups++;
 304		return;
 305	}
 306	if (wakee_event->wait_sem) {
 307		sched->multitarget_wakeups++;
 308		return;
 309	}
 310
 311	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 312	sem_init(wakee_event->wait_sem, 0, 0);
 313	wakee_event->specific_wait = 1;
 314	event->wait_sem = wakee_event->wait_sem;
 315
 316	sched->nr_wakeup_events++;
 317}
 318
 319static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 320				  u64 timestamp, u64 task_state __maybe_unused)
 321{
 322	struct sched_atom *event = get_new_event(task, timestamp);
 323
 324	event->type = SCHED_EVENT_SLEEP;
 325
 326	sched->nr_sleep_events++;
 327}
 328
 329static struct task_desc *register_pid(struct perf_sched *sched,
 330				      unsigned long pid, const char *comm)
 331{
 332	struct task_desc *task;
 333	static int pid_max;
 334
 335	if (sched->pid_to_task == NULL) {
 336		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 337			pid_max = MAX_PID;
 338		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 339	}
 340	if (pid >= (unsigned long)pid_max) {
 341		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 342			sizeof(struct task_desc *))) == NULL);
 343		while (pid >= (unsigned long)pid_max)
 344			sched->pid_to_task[pid_max++] = NULL;
 345	}
 346
 347	task = sched->pid_to_task[pid];
 348
 349	if (task)
 350		return task;
 351
 352	task = zalloc(sizeof(*task));
 353	task->pid = pid;
 354	task->nr = sched->nr_tasks;
 355	strcpy(task->comm, comm);
 356	/*
 357	 * every task starts in sleeping state - this gets ignored
 358	 * if there's no wakeup pointing to this sleep state:
 359	 */
 360	add_sched_event_sleep(sched, task, 0, 0);
 361
 362	sched->pid_to_task[pid] = task;
 363	sched->nr_tasks++;
 364	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 365	BUG_ON(!sched->tasks);
 366	sched->tasks[task->nr] = task;
 367
 368	if (verbose)
 369		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 370
 371	return task;
 372}
 373
 374
 375static void print_task_traces(struct perf_sched *sched)
 376{
 377	struct task_desc *task;
 378	unsigned long i;
 379
 380	for (i = 0; i < sched->nr_tasks; i++) {
 381		task = sched->tasks[i];
 382		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 383			task->nr, task->comm, task->pid, task->nr_events);
 384	}
 385}
 386
 387static void add_cross_task_wakeups(struct perf_sched *sched)
 388{
 389	struct task_desc *task1, *task2;
 390	unsigned long i, j;
 391
 392	for (i = 0; i < sched->nr_tasks; i++) {
 393		task1 = sched->tasks[i];
 394		j = i + 1;
 395		if (j == sched->nr_tasks)
 396			j = 0;
 397		task2 = sched->tasks[j];
 398		add_sched_event_wakeup(sched, task1, 0, task2);
 399	}
 400}
 401
 402static void perf_sched__process_event(struct perf_sched *sched,
 403				      struct sched_atom *atom)
 404{
 405	int ret = 0;
 406
 407	switch (atom->type) {
 408		case SCHED_EVENT_RUN:
 409			burn_nsecs(sched, atom->duration);
 410			break;
 411		case SCHED_EVENT_SLEEP:
 412			if (atom->wait_sem)
 413				ret = sem_wait(atom->wait_sem);
 414			BUG_ON(ret);
 415			break;
 416		case SCHED_EVENT_WAKEUP:
 417			if (atom->wait_sem)
 418				ret = sem_post(atom->wait_sem);
 419			BUG_ON(ret);
 420			break;
 421		case SCHED_EVENT_MIGRATION:
 422			break;
 423		default:
 424			BUG_ON(1);
 425	}
 426}
 427
 428static u64 get_cpu_usage_nsec_parent(void)
 429{
 430	struct rusage ru;
 431	u64 sum;
 432	int err;
 433
 434	err = getrusage(RUSAGE_SELF, &ru);
 435	BUG_ON(err);
 436
 437	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 438	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 439
 440	return sum;
 441}
 442
 443static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 444{
 445	struct perf_event_attr attr;
 446	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 447	int fd;
 448	struct rlimit limit;
 449	bool need_privilege = false;
 450
 451	memset(&attr, 0, sizeof(attr));
 452
 453	attr.type = PERF_TYPE_SOFTWARE;
 454	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 455
 456force_again:
 457	fd = sys_perf_event_open(&attr, 0, -1, -1,
 458				 perf_event_open_cloexec_flag());
 459
 460	if (fd < 0) {
 461		if (errno == EMFILE) {
 462			if (sched->force) {
 463				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 464				limit.rlim_cur += sched->nr_tasks - cur_task;
 465				if (limit.rlim_cur > limit.rlim_max) {
 466					limit.rlim_max = limit.rlim_cur;
 467					need_privilege = true;
 468				}
 469				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 470					if (need_privilege && errno == EPERM)
 471						strcpy(info, "Need privilege\n");
 472				} else
 473					goto force_again;
 474			} else
 475				strcpy(info, "Have a try with -f option\n");
 476		}
 477		pr_err("Error: sys_perf_event_open() syscall returned "
 478		       "with %d (%s)\n%s", fd,
 479		       strerror_r(errno, sbuf, sizeof(sbuf)), info);
 480		exit(EXIT_FAILURE);
 481	}
 482	return fd;
 483}
 484
 485static u64 get_cpu_usage_nsec_self(int fd)
 486{
 487	u64 runtime;
 488	int ret;
 489
 490	ret = read(fd, &runtime, sizeof(runtime));
 491	BUG_ON(ret != sizeof(runtime));
 492
 493	return runtime;
 494}
 495
 496struct sched_thread_parms {
 497	struct task_desc  *task;
 498	struct perf_sched *sched;
 499	int fd;
 500};
 501
 502static void *thread_func(void *ctx)
 503{
 504	struct sched_thread_parms *parms = ctx;
 505	struct task_desc *this_task = parms->task;
 506	struct perf_sched *sched = parms->sched;
 507	u64 cpu_usage_0, cpu_usage_1;
 508	unsigned long i, ret;
 509	char comm2[22];
 510	int fd = parms->fd;
 511
 512	zfree(&parms);
 513
 514	sprintf(comm2, ":%s", this_task->comm);
 515	prctl(PR_SET_NAME, comm2);
 
 516	if (fd < 0)
 517		return NULL;
 518again:
 519	ret = sem_post(&this_task->ready_for_work);
 520	BUG_ON(ret);
 521	ret = pthread_mutex_lock(&sched->start_work_mutex);
 522	BUG_ON(ret);
 523	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 524	BUG_ON(ret);
 525
 526	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 527
 528	for (i = 0; i < this_task->nr_events; i++) {
 529		this_task->curr_event = i;
 530		perf_sched__process_event(sched, this_task->atoms[i]);
 531	}
 532
 533	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 534	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 535	ret = sem_post(&this_task->work_done_sem);
 536	BUG_ON(ret);
 537
 538	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 539	BUG_ON(ret);
 540	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 541	BUG_ON(ret);
 542
 543	goto again;
 544}
 545
 546static void create_tasks(struct perf_sched *sched)
 547{
 548	struct task_desc *task;
 549	pthread_attr_t attr;
 550	unsigned long i;
 551	int err;
 552
 553	err = pthread_attr_init(&attr);
 554	BUG_ON(err);
 555	err = pthread_attr_setstacksize(&attr,
 556			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 557	BUG_ON(err);
 558	err = pthread_mutex_lock(&sched->start_work_mutex);
 559	BUG_ON(err);
 560	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 561	BUG_ON(err);
 562	for (i = 0; i < sched->nr_tasks; i++) {
 563		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 564		BUG_ON(parms == NULL);
 565		parms->task = task = sched->tasks[i];
 566		parms->sched = sched;
 567		parms->fd = self_open_counters(sched, i);
 568		sem_init(&task->sleep_sem, 0, 0);
 569		sem_init(&task->ready_for_work, 0, 0);
 570		sem_init(&task->work_done_sem, 0, 0);
 571		task->curr_event = 0;
 572		err = pthread_create(&task->thread, &attr, thread_func, parms);
 573		BUG_ON(err);
 574	}
 575}
 576
 577static void wait_for_tasks(struct perf_sched *sched)
 578{
 579	u64 cpu_usage_0, cpu_usage_1;
 580	struct task_desc *task;
 581	unsigned long i, ret;
 582
 583	sched->start_time = get_nsecs();
 584	sched->cpu_usage = 0;
 585	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 586
 587	for (i = 0; i < sched->nr_tasks; i++) {
 588		task = sched->tasks[i];
 589		ret = sem_wait(&task->ready_for_work);
 590		BUG_ON(ret);
 591		sem_init(&task->ready_for_work, 0, 0);
 592	}
 593	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 594	BUG_ON(ret);
 595
 596	cpu_usage_0 = get_cpu_usage_nsec_parent();
 597
 598	pthread_mutex_unlock(&sched->start_work_mutex);
 599
 600	for (i = 0; i < sched->nr_tasks; i++) {
 601		task = sched->tasks[i];
 602		ret = sem_wait(&task->work_done_sem);
 603		BUG_ON(ret);
 604		sem_init(&task->work_done_sem, 0, 0);
 605		sched->cpu_usage += task->cpu_usage;
 606		task->cpu_usage = 0;
 607	}
 608
 609	cpu_usage_1 = get_cpu_usage_nsec_parent();
 610	if (!sched->runavg_cpu_usage)
 611		sched->runavg_cpu_usage = sched->cpu_usage;
 612	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 613
 614	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 615	if (!sched->runavg_parent_cpu_usage)
 616		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 617	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 618					 sched->parent_cpu_usage)/sched->replay_repeat;
 619
 620	ret = pthread_mutex_lock(&sched->start_work_mutex);
 621	BUG_ON(ret);
 622
 623	for (i = 0; i < sched->nr_tasks; i++) {
 624		task = sched->tasks[i];
 625		sem_init(&task->sleep_sem, 0, 0);
 626		task->curr_event = 0;
 627	}
 628}
 629
 630static void run_one_test(struct perf_sched *sched)
 631{
 632	u64 T0, T1, delta, avg_delta, fluct;
 633
 634	T0 = get_nsecs();
 635	wait_for_tasks(sched);
 636	T1 = get_nsecs();
 637
 638	delta = T1 - T0;
 639	sched->sum_runtime += delta;
 640	sched->nr_runs++;
 641
 642	avg_delta = sched->sum_runtime / sched->nr_runs;
 643	if (delta < avg_delta)
 644		fluct = avg_delta - delta;
 645	else
 646		fluct = delta - avg_delta;
 647	sched->sum_fluct += fluct;
 648	if (!sched->run_avg)
 649		sched->run_avg = delta;
 650	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 651
 652	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
 653
 654	printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
 655
 656	printf("cpu: %0.2f / %0.2f",
 657		(double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
 658
 659#if 0
 660	/*
 661	 * rusage statistics done by the parent, these are less
 662	 * accurate than the sched->sum_exec_runtime based statistics:
 663	 */
 664	printf(" [%0.2f / %0.2f]",
 665		(double)sched->parent_cpu_usage/1e6,
 666		(double)sched->runavg_parent_cpu_usage/1e6);
 667#endif
 668
 669	printf("\n");
 670
 671	if (sched->nr_sleep_corrections)
 672		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 673	sched->nr_sleep_corrections = 0;
 674}
 675
 676static void test_calibrations(struct perf_sched *sched)
 677{
 678	u64 T0, T1;
 679
 680	T0 = get_nsecs();
 681	burn_nsecs(sched, 1e6);
 682	T1 = get_nsecs();
 683
 684	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 685
 686	T0 = get_nsecs();
 687	sleep_nsecs(1e6);
 688	T1 = get_nsecs();
 689
 690	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 691}
 692
 693static int
 694replay_wakeup_event(struct perf_sched *sched,
 695		    struct perf_evsel *evsel, struct perf_sample *sample,
 696		    struct machine *machine __maybe_unused)
 697{
 698	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 699	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 700	struct task_desc *waker, *wakee;
 701
 702	if (verbose) {
 703		printf("sched_wakeup event %p\n", evsel);
 704
 705		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 706	}
 707
 708	waker = register_pid(sched, sample->tid, "<unknown>");
 709	wakee = register_pid(sched, pid, comm);
 710
 711	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 712	return 0;
 713}
 714
 715static int replay_switch_event(struct perf_sched *sched,
 716			       struct perf_evsel *evsel,
 717			       struct perf_sample *sample,
 718			       struct machine *machine __maybe_unused)
 719{
 720	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 721		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 722	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 723		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 724	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 725	struct task_desc *prev, __maybe_unused *next;
 726	u64 timestamp0, timestamp = sample->time;
 727	int cpu = sample->cpu;
 728	s64 delta;
 729
 730	if (verbose)
 731		printf("sched_switch event %p\n", evsel);
 732
 733	if (cpu >= MAX_CPUS || cpu < 0)
 734		return 0;
 735
 736	timestamp0 = sched->cpu_last_switched[cpu];
 737	if (timestamp0)
 738		delta = timestamp - timestamp0;
 739	else
 740		delta = 0;
 741
 742	if (delta < 0) {
 743		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 744		return -1;
 745	}
 746
 747	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 748		 prev_comm, prev_pid, next_comm, next_pid, delta);
 749
 750	prev = register_pid(sched, prev_pid, prev_comm);
 751	next = register_pid(sched, next_pid, next_comm);
 752
 753	sched->cpu_last_switched[cpu] = timestamp;
 754
 755	add_sched_event_run(sched, prev, timestamp, delta);
 756	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 757
 758	return 0;
 759}
 760
 761static int replay_fork_event(struct perf_sched *sched,
 762			     union perf_event *event,
 763			     struct machine *machine)
 764{
 765	struct thread *child, *parent;
 766
 767	child = machine__findnew_thread(machine, event->fork.pid,
 768					event->fork.tid);
 769	parent = machine__findnew_thread(machine, event->fork.ppid,
 770					 event->fork.ptid);
 771
 772	if (child == NULL || parent == NULL) {
 773		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 774				 child, parent);
 775		goto out_put;
 776	}
 777
 778	if (verbose) {
 779		printf("fork event\n");
 780		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 781		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 782	}
 783
 784	register_pid(sched, parent->tid, thread__comm_str(parent));
 785	register_pid(sched, child->tid, thread__comm_str(child));
 786out_put:
 787	thread__put(child);
 788	thread__put(parent);
 789	return 0;
 790}
 791
 792struct sort_dimension {
 793	const char		*name;
 794	sort_fn_t		cmp;
 795	struct list_head	list;
 796};
 797
 798static int
 799thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 800{
 801	struct sort_dimension *sort;
 802	int ret = 0;
 803
 804	BUG_ON(list_empty(list));
 805
 806	list_for_each_entry(sort, list, list) {
 807		ret = sort->cmp(l, r);
 808		if (ret)
 809			return ret;
 810	}
 811
 812	return ret;
 813}
 814
 815static struct work_atoms *
 816thread_atoms_search(struct rb_root *root, struct thread *thread,
 817			 struct list_head *sort_list)
 818{
 819	struct rb_node *node = root->rb_node;
 820	struct work_atoms key = { .thread = thread };
 821
 822	while (node) {
 823		struct work_atoms *atoms;
 824		int cmp;
 825
 826		atoms = container_of(node, struct work_atoms, node);
 827
 828		cmp = thread_lat_cmp(sort_list, &key, atoms);
 829		if (cmp > 0)
 830			node = node->rb_left;
 831		else if (cmp < 0)
 832			node = node->rb_right;
 833		else {
 834			BUG_ON(thread != atoms->thread);
 835			return atoms;
 836		}
 837	}
 838	return NULL;
 839}
 840
 841static void
 842__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 843			 struct list_head *sort_list)
 844{
 845	struct rb_node **new = &(root->rb_node), *parent = NULL;
 846
 847	while (*new) {
 848		struct work_atoms *this;
 849		int cmp;
 850
 851		this = container_of(*new, struct work_atoms, node);
 852		parent = *new;
 853
 854		cmp = thread_lat_cmp(sort_list, data, this);
 855
 856		if (cmp > 0)
 857			new = &((*new)->rb_left);
 858		else
 859			new = &((*new)->rb_right);
 860	}
 861
 862	rb_link_node(&data->node, parent, new);
 863	rb_insert_color(&data->node, root);
 864}
 865
 866static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 867{
 868	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 869	if (!atoms) {
 870		pr_err("No memory at %s\n", __func__);
 871		return -1;
 872	}
 873
 874	atoms->thread = thread__get(thread);
 875	INIT_LIST_HEAD(&atoms->work_list);
 876	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 877	return 0;
 878}
 879
 880static char sched_out_state(u64 prev_state)
 881{
 882	const char *str = TASK_STATE_TO_CHAR_STR;
 883
 884	return str[prev_state];
 885}
 886
 887static int
 888add_sched_out_event(struct work_atoms *atoms,
 889		    char run_state,
 890		    u64 timestamp)
 891{
 892	struct work_atom *atom = zalloc(sizeof(*atom));
 893	if (!atom) {
 894		pr_err("Non memory at %s", __func__);
 895		return -1;
 896	}
 897
 898	atom->sched_out_time = timestamp;
 899
 900	if (run_state == 'R') {
 901		atom->state = THREAD_WAIT_CPU;
 902		atom->wake_up_time = atom->sched_out_time;
 903	}
 904
 905	list_add_tail(&atom->list, &atoms->work_list);
 906	return 0;
 907}
 908
 909static void
 910add_runtime_event(struct work_atoms *atoms, u64 delta,
 911		  u64 timestamp __maybe_unused)
 912{
 913	struct work_atom *atom;
 914
 915	BUG_ON(list_empty(&atoms->work_list));
 916
 917	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 918
 919	atom->runtime += delta;
 920	atoms->total_runtime += delta;
 921}
 922
 923static void
 924add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 925{
 926	struct work_atom *atom;
 927	u64 delta;
 928
 929	if (list_empty(&atoms->work_list))
 930		return;
 931
 932	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 933
 934	if (atom->state != THREAD_WAIT_CPU)
 935		return;
 936
 937	if (timestamp < atom->wake_up_time) {
 938		atom->state = THREAD_IGNORE;
 939		return;
 940	}
 941
 942	atom->state = THREAD_SCHED_IN;
 943	atom->sched_in_time = timestamp;
 944
 945	delta = atom->sched_in_time - atom->wake_up_time;
 946	atoms->total_lat += delta;
 947	if (delta > atoms->max_lat) {
 948		atoms->max_lat = delta;
 949		atoms->max_lat_at = timestamp;
 950	}
 951	atoms->nb_atoms++;
 952}
 953
 954static int latency_switch_event(struct perf_sched *sched,
 955				struct perf_evsel *evsel,
 956				struct perf_sample *sample,
 957				struct machine *machine)
 958{
 959	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 960		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 961	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 962	struct work_atoms *out_events, *in_events;
 963	struct thread *sched_out, *sched_in;
 964	u64 timestamp0, timestamp = sample->time;
 965	int cpu = sample->cpu, err = -1;
 966	s64 delta;
 967
 968	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 969
 970	timestamp0 = sched->cpu_last_switched[cpu];
 971	sched->cpu_last_switched[cpu] = timestamp;
 972	if (timestamp0)
 973		delta = timestamp - timestamp0;
 974	else
 975		delta = 0;
 976
 977	if (delta < 0) {
 978		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 979		return -1;
 980	}
 981
 982	sched_out = machine__findnew_thread(machine, -1, prev_pid);
 983	sched_in = machine__findnew_thread(machine, -1, next_pid);
 984	if (sched_out == NULL || sched_in == NULL)
 985		goto out_put;
 986
 987	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 988	if (!out_events) {
 989		if (thread_atoms_insert(sched, sched_out))
 990			goto out_put;
 991		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 992		if (!out_events) {
 993			pr_err("out-event: Internal tree error");
 994			goto out_put;
 995		}
 996	}
 997	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
 998		return -1;
 999
1000	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1001	if (!in_events) {
1002		if (thread_atoms_insert(sched, sched_in))
1003			goto out_put;
1004		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1005		if (!in_events) {
1006			pr_err("in-event: Internal tree error");
1007			goto out_put;
1008		}
1009		/*
1010		 * Take came in we have not heard about yet,
1011		 * add in an initial atom in runnable state:
1012		 */
1013		if (add_sched_out_event(in_events, 'R', timestamp))
1014			goto out_put;
1015	}
1016	add_sched_in_event(in_events, timestamp);
1017	err = 0;
1018out_put:
1019	thread__put(sched_out);
1020	thread__put(sched_in);
1021	return err;
1022}
1023
1024static int latency_runtime_event(struct perf_sched *sched,
1025				 struct perf_evsel *evsel,
1026				 struct perf_sample *sample,
1027				 struct machine *machine)
1028{
1029	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1030	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1031	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1032	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1033	u64 timestamp = sample->time;
1034	int cpu = sample->cpu, err = -1;
1035
1036	if (thread == NULL)
1037		return -1;
1038
1039	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040	if (!atoms) {
1041		if (thread_atoms_insert(sched, thread))
1042			goto out_put;
1043		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1044		if (!atoms) {
1045			pr_err("in-event: Internal tree error");
1046			goto out_put;
1047		}
1048		if (add_sched_out_event(atoms, 'R', timestamp))
1049			goto out_put;
1050	}
1051
1052	add_runtime_event(atoms, runtime, timestamp);
1053	err = 0;
1054out_put:
1055	thread__put(thread);
1056	return err;
1057}
1058
1059static int latency_wakeup_event(struct perf_sched *sched,
1060				struct perf_evsel *evsel,
1061				struct perf_sample *sample,
1062				struct machine *machine)
1063{
1064	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
 
1065	struct work_atoms *atoms;
1066	struct work_atom *atom;
1067	struct thread *wakee;
1068	u64 timestamp = sample->time;
1069	int err = -1;
1070
1071	wakee = machine__findnew_thread(machine, -1, pid);
1072	if (wakee == NULL)
1073		return -1;
 
 
1074	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1075	if (!atoms) {
1076		if (thread_atoms_insert(sched, wakee))
1077			goto out_put;
1078		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1079		if (!atoms) {
1080			pr_err("wakeup-event: Internal tree error");
1081			goto out_put;
1082		}
1083		if (add_sched_out_event(atoms, 'S', timestamp))
1084			goto out_put;
1085	}
1086
1087	BUG_ON(list_empty(&atoms->work_list));
1088
1089	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1090
1091	/*
1092	 * As we do not guarantee the wakeup event happens when
1093	 * task is out of run queue, also may happen when task is
1094	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1095	 * then we should not set the ->wake_up_time when wake up a
1096	 * task which is on run queue.
1097	 *
1098	 * You WILL be missing events if you've recorded only
1099	 * one CPU, or are only looking at only one, so don't
1100	 * skip in this case.
1101	 */
1102	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1103		goto out_ok;
1104
1105	sched->nr_timestamps++;
1106	if (atom->sched_out_time > timestamp) {
1107		sched->nr_unordered_timestamps++;
1108		goto out_ok;
1109	}
1110
1111	atom->state = THREAD_WAIT_CPU;
1112	atom->wake_up_time = timestamp;
1113out_ok:
1114	err = 0;
1115out_put:
1116	thread__put(wakee);
1117	return err;
1118}
1119
1120static int latency_migrate_task_event(struct perf_sched *sched,
1121				      struct perf_evsel *evsel,
1122				      struct perf_sample *sample,
1123				      struct machine *machine)
1124{
1125	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1126	u64 timestamp = sample->time;
1127	struct work_atoms *atoms;
1128	struct work_atom *atom;
1129	struct thread *migrant;
1130	int err = -1;
1131
1132	/*
1133	 * Only need to worry about migration when profiling one CPU.
1134	 */
1135	if (sched->profile_cpu == -1)
1136		return 0;
1137
1138	migrant = machine__findnew_thread(machine, -1, pid);
1139	if (migrant == NULL)
1140		return -1;
1141	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1142	if (!atoms) {
1143		if (thread_atoms_insert(sched, migrant))
1144			goto out_put;
1145		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1146		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1147		if (!atoms) {
1148			pr_err("migration-event: Internal tree error");
1149			goto out_put;
1150		}
1151		if (add_sched_out_event(atoms, 'R', timestamp))
1152			goto out_put;
1153	}
1154
1155	BUG_ON(list_empty(&atoms->work_list));
1156
1157	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1158	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1159
1160	sched->nr_timestamps++;
1161
1162	if (atom->sched_out_time > timestamp)
1163		sched->nr_unordered_timestamps++;
1164	err = 0;
1165out_put:
1166	thread__put(migrant);
1167	return err;
1168}
1169
1170static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1171{
1172	int i;
1173	int ret;
1174	u64 avg;
1175
1176	if (!work_list->nb_atoms)
1177		return;
1178	/*
1179	 * Ignore idle threads:
1180	 */
1181	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1182		return;
1183
1184	sched->all_runtime += work_list->total_runtime;
1185	sched->all_count   += work_list->nb_atoms;
1186
1187	if (work_list->num_merged > 1)
1188		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1189	else
1190		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1191
1192	for (i = 0; i < 24 - ret; i++)
1193		printf(" ");
1194
1195	avg = work_list->total_lat / work_list->nb_atoms;
1196
1197	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1198	      (double)work_list->total_runtime / 1e6,
1199		 work_list->nb_atoms, (double)avg / 1e6,
1200		 (double)work_list->max_lat / 1e6,
1201		 (double)work_list->max_lat_at / 1e9);
1202}
1203
1204static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1205{
1206	if (l->thread == r->thread)
1207		return 0;
1208	if (l->thread->tid < r->thread->tid)
1209		return -1;
1210	if (l->thread->tid > r->thread->tid)
1211		return 1;
1212	return (int)(l->thread - r->thread);
 
1213}
1214
1215static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1216{
1217	u64 avgl, avgr;
1218
1219	if (!l->nb_atoms)
1220		return -1;
1221
1222	if (!r->nb_atoms)
1223		return 1;
1224
1225	avgl = l->total_lat / l->nb_atoms;
1226	avgr = r->total_lat / r->nb_atoms;
1227
1228	if (avgl < avgr)
1229		return -1;
1230	if (avgl > avgr)
1231		return 1;
1232
1233	return 0;
1234}
1235
1236static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1237{
1238	if (l->max_lat < r->max_lat)
1239		return -1;
1240	if (l->max_lat > r->max_lat)
1241		return 1;
1242
1243	return 0;
1244}
1245
1246static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1247{
1248	if (l->nb_atoms < r->nb_atoms)
1249		return -1;
1250	if (l->nb_atoms > r->nb_atoms)
1251		return 1;
1252
1253	return 0;
1254}
1255
1256static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1257{
1258	if (l->total_runtime < r->total_runtime)
1259		return -1;
1260	if (l->total_runtime > r->total_runtime)
1261		return 1;
1262
1263	return 0;
1264}
1265
1266static int sort_dimension__add(const char *tok, struct list_head *list)
1267{
1268	size_t i;
1269	static struct sort_dimension avg_sort_dimension = {
1270		.name = "avg",
1271		.cmp  = avg_cmp,
1272	};
1273	static struct sort_dimension max_sort_dimension = {
1274		.name = "max",
1275		.cmp  = max_cmp,
1276	};
1277	static struct sort_dimension pid_sort_dimension = {
1278		.name = "pid",
1279		.cmp  = pid_cmp,
1280	};
1281	static struct sort_dimension runtime_sort_dimension = {
1282		.name = "runtime",
1283		.cmp  = runtime_cmp,
1284	};
1285	static struct sort_dimension switch_sort_dimension = {
1286		.name = "switch",
1287		.cmp  = switch_cmp,
1288	};
1289	struct sort_dimension *available_sorts[] = {
1290		&pid_sort_dimension,
1291		&avg_sort_dimension,
1292		&max_sort_dimension,
1293		&switch_sort_dimension,
1294		&runtime_sort_dimension,
1295	};
1296
1297	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1298		if (!strcmp(available_sorts[i]->name, tok)) {
1299			list_add_tail(&available_sorts[i]->list, list);
1300
1301			return 0;
1302		}
1303	}
1304
1305	return -1;
1306}
1307
1308static void perf_sched__sort_lat(struct perf_sched *sched)
1309{
1310	struct rb_node *node;
1311	struct rb_root *root = &sched->atom_root;
1312again:
1313	for (;;) {
1314		struct work_atoms *data;
1315		node = rb_first(root);
1316		if (!node)
1317			break;
1318
1319		rb_erase(node, root);
1320		data = rb_entry(node, struct work_atoms, node);
1321		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1322	}
1323	if (root == &sched->atom_root) {
1324		root = &sched->merged_atom_root;
1325		goto again;
1326	}
1327}
1328
1329static int process_sched_wakeup_event(struct perf_tool *tool,
1330				      struct perf_evsel *evsel,
1331				      struct perf_sample *sample,
1332				      struct machine *machine)
1333{
1334	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1335
1336	if (sched->tp_handler->wakeup_event)
1337		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1338
1339	return 0;
1340}
1341
1342static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1343			    struct perf_sample *sample, struct machine *machine)
1344{
1345	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1346	struct thread *sched_in;
 
1347	int new_shortname;
1348	u64 timestamp0, timestamp = sample->time;
1349	s64 delta;
1350	int cpu, this_cpu = sample->cpu;
1351
1352	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1353
1354	if (this_cpu > sched->max_cpu)
1355		sched->max_cpu = this_cpu;
1356
1357	timestamp0 = sched->cpu_last_switched[this_cpu];
1358	sched->cpu_last_switched[this_cpu] = timestamp;
1359	if (timestamp0)
1360		delta = timestamp - timestamp0;
1361	else
1362		delta = 0;
1363
1364	if (delta < 0) {
1365		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1366		return -1;
1367	}
1368
1369	sched_in = machine__findnew_thread(machine, -1, next_pid);
1370	if (sched_in == NULL)
1371		return -1;
1372
1373	sched->curr_thread[this_cpu] = thread__get(sched_in);
1374
1375	printf("  ");
1376
1377	new_shortname = 0;
1378	if (!sched_in->shortname[0]) {
1379		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1380			/*
1381			 * Don't allocate a letter-number for swapper:0
1382			 * as a shortname. Instead, we use '.' for it.
1383			 */
1384			sched_in->shortname[0] = '.';
1385			sched_in->shortname[1] = ' ';
1386		} else {
1387			sched_in->shortname[0] = sched->next_shortname1;
1388			sched_in->shortname[1] = sched->next_shortname2;
1389
1390			if (sched->next_shortname1 < 'Z') {
1391				sched->next_shortname1++;
 
 
 
 
1392			} else {
1393				sched->next_shortname1 = 'A';
1394				if (sched->next_shortname2 < '9')
1395					sched->next_shortname2++;
1396				else
1397					sched->next_shortname2 = '0';
1398			}
1399		}
1400		new_shortname = 1;
1401	}
1402
1403	for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1404		if (cpu != this_cpu)
1405			printf(" ");
1406		else
1407			printf("*");
1408
1409		if (sched->curr_thread[cpu])
1410			printf("%2s ", sched->curr_thread[cpu]->shortname);
1411		else
 
 
 
1412			printf("   ");
1413	}
1414
1415	printf("  %12.6f secs ", (double)timestamp/1e9);
1416	if (new_shortname) {
1417		printf("%s => %s:%d\n",
1418		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1419	} else {
1420		printf("\n");
1421	}
1422
1423	thread__put(sched_in);
1424
1425	return 0;
1426}
1427
1428static int process_sched_switch_event(struct perf_tool *tool,
1429				      struct perf_evsel *evsel,
1430				      struct perf_sample *sample,
1431				      struct machine *machine)
1432{
1433	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1434	int this_cpu = sample->cpu, err = 0;
1435	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1436	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1437
1438	if (sched->curr_pid[this_cpu] != (u32)-1) {
1439		/*
1440		 * Are we trying to switch away a PID that is
1441		 * not current?
1442		 */
1443		if (sched->curr_pid[this_cpu] != prev_pid)
1444			sched->nr_context_switch_bugs++;
1445	}
1446
1447	if (sched->tp_handler->switch_event)
1448		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1449
1450	sched->curr_pid[this_cpu] = next_pid;
1451	return err;
1452}
1453
1454static int process_sched_runtime_event(struct perf_tool *tool,
1455				       struct perf_evsel *evsel,
1456				       struct perf_sample *sample,
1457				       struct machine *machine)
1458{
1459	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1460
1461	if (sched->tp_handler->runtime_event)
1462		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1463
1464	return 0;
1465}
1466
1467static int perf_sched__process_fork_event(struct perf_tool *tool,
1468					  union perf_event *event,
1469					  struct perf_sample *sample,
1470					  struct machine *machine)
1471{
1472	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1473
1474	/* run the fork event through the perf machineruy */
1475	perf_event__process_fork(tool, event, sample, machine);
1476
1477	/* and then run additional processing needed for this command */
1478	if (sched->tp_handler->fork_event)
1479		return sched->tp_handler->fork_event(sched, event, machine);
1480
1481	return 0;
1482}
1483
1484static int process_sched_migrate_task_event(struct perf_tool *tool,
1485					    struct perf_evsel *evsel,
1486					    struct perf_sample *sample,
1487					    struct machine *machine)
1488{
1489	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1490
1491	if (sched->tp_handler->migrate_task_event)
1492		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1493
1494	return 0;
1495}
1496
1497typedef int (*tracepoint_handler)(struct perf_tool *tool,
1498				  struct perf_evsel *evsel,
1499				  struct perf_sample *sample,
1500				  struct machine *machine);
1501
1502static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1503						 union perf_event *event __maybe_unused,
1504						 struct perf_sample *sample,
1505						 struct perf_evsel *evsel,
1506						 struct machine *machine)
1507{
1508	int err = 0;
1509
 
 
 
1510	if (evsel->handler != NULL) {
1511		tracepoint_handler f = evsel->handler;
1512		err = f(tool, evsel, sample, machine);
1513	}
1514
1515	return err;
1516}
1517
1518static int perf_sched__read_events(struct perf_sched *sched)
 
1519{
1520	const struct perf_evsel_str_handler handlers[] = {
1521		{ "sched:sched_switch",	      process_sched_switch_event, },
1522		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1523		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1524		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1525		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1526	};
1527	struct perf_session *session;
1528	struct perf_data_file file = {
1529		.path = input_name,
1530		.mode = PERF_DATA_MODE_READ,
1531		.force = sched->force,
1532	};
1533	int rc = -1;
1534
1535	session = perf_session__new(&file, false, &sched->tool);
1536	if (session == NULL) {
1537		pr_debug("No Memory for session\n");
1538		return -1;
1539	}
1540
1541	symbol__init(&session->header.env);
1542
1543	if (perf_session__set_tracepoints_handlers(session, handlers))
1544		goto out_delete;
1545
1546	if (perf_session__has_traces(session, "record -R")) {
1547		int err = perf_session__process_events(session);
1548		if (err) {
1549			pr_err("Failed to process events, error %d", err);
1550			goto out_delete;
1551		}
1552
1553		sched->nr_events      = session->evlist->stats.nr_events[0];
1554		sched->nr_lost_events = session->evlist->stats.total_lost;
1555		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1556	}
1557
1558	rc = 0;
 
 
 
 
 
 
1559out_delete:
1560	perf_session__delete(session);
1561	return rc;
1562}
1563
1564static void print_bad_events(struct perf_sched *sched)
1565{
1566	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1567		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1568			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1569			sched->nr_unordered_timestamps, sched->nr_timestamps);
1570	}
1571	if (sched->nr_lost_events && sched->nr_events) {
1572		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1573			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1574			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1575	}
 
 
 
 
 
 
 
 
1576	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1577		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1578			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1579			sched->nr_context_switch_bugs, sched->nr_timestamps);
1580		if (sched->nr_lost_events)
1581			printf(" (due to lost events?)");
1582		printf("\n");
1583	}
1584}
1585
1586static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1587{
1588	struct rb_node **new = &(root->rb_node), *parent = NULL;
1589	struct work_atoms *this;
1590	const char *comm = thread__comm_str(data->thread), *this_comm;
1591
1592	while (*new) {
1593		int cmp;
1594
1595		this = container_of(*new, struct work_atoms, node);
1596		parent = *new;
1597
1598		this_comm = thread__comm_str(this->thread);
1599		cmp = strcmp(comm, this_comm);
1600		if (cmp > 0) {
1601			new = &((*new)->rb_left);
1602		} else if (cmp < 0) {
1603			new = &((*new)->rb_right);
1604		} else {
1605			this->num_merged++;
1606			this->total_runtime += data->total_runtime;
1607			this->nb_atoms += data->nb_atoms;
1608			this->total_lat += data->total_lat;
1609			list_splice(&data->work_list, &this->work_list);
1610			if (this->max_lat < data->max_lat) {
1611				this->max_lat = data->max_lat;
1612				this->max_lat_at = data->max_lat_at;
1613			}
1614			zfree(&data);
1615			return;
1616		}
1617	}
1618
1619	data->num_merged++;
1620	rb_link_node(&data->node, parent, new);
1621	rb_insert_color(&data->node, root);
1622}
1623
1624static void perf_sched__merge_lat(struct perf_sched *sched)
1625{
1626	struct work_atoms *data;
1627	struct rb_node *node;
1628
1629	if (sched->skip_merge)
1630		return;
1631
1632	while ((node = rb_first(&sched->atom_root))) {
1633		rb_erase(node, &sched->atom_root);
1634		data = rb_entry(node, struct work_atoms, node);
1635		__merge_work_atoms(&sched->merged_atom_root, data);
1636	}
1637}
1638
1639static int perf_sched__lat(struct perf_sched *sched)
1640{
1641	struct rb_node *next;
 
1642
1643	setup_pager();
1644
1645	if (perf_sched__read_events(sched))
 
1646		return -1;
1647
1648	perf_sched__merge_lat(sched);
1649	perf_sched__sort_lat(sched);
1650
1651	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1652	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1653	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1654
1655	next = rb_first(&sched->sorted_atom_root);
1656
1657	while (next) {
1658		struct work_atoms *work_list;
1659
1660		work_list = rb_entry(next, struct work_atoms, node);
1661		output_lat_thread(sched, work_list);
1662		next = rb_next(next);
1663		thread__zput(work_list->thread);
1664	}
1665
1666	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1667	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1668		(double)sched->all_runtime / 1e6, sched->all_count);
1669
1670	printf(" ---------------------------------------------------\n");
1671
1672	print_bad_events(sched);
1673	printf("\n");
1674
 
1675	return 0;
1676}
1677
1678static int perf_sched__map(struct perf_sched *sched)
1679{
1680	sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1681
1682	setup_pager();
1683	if (perf_sched__read_events(sched))
1684		return -1;
1685	print_bad_events(sched);
1686	return 0;
1687}
1688
1689static int perf_sched__replay(struct perf_sched *sched)
1690{
1691	unsigned long i;
1692
1693	calibrate_run_measurement_overhead(sched);
1694	calibrate_sleep_measurement_overhead(sched);
1695
1696	test_calibrations(sched);
1697
1698	if (perf_sched__read_events(sched))
1699		return -1;
1700
1701	printf("nr_run_events:        %ld\n", sched->nr_run_events);
1702	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1703	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1704
1705	if (sched->targetless_wakeups)
1706		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1707	if (sched->multitarget_wakeups)
1708		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1709	if (sched->nr_run_events_optimized)
1710		printf("run atoms optimized: %ld\n",
1711			sched->nr_run_events_optimized);
1712
1713	print_task_traces(sched);
1714	add_cross_task_wakeups(sched);
1715
1716	create_tasks(sched);
1717	printf("------------------------------------------------------------\n");
1718	for (i = 0; i < sched->replay_repeat; i++)
1719		run_one_test(sched);
1720
1721	return 0;
1722}
1723
1724static void setup_sorting(struct perf_sched *sched, const struct option *options,
1725			  const char * const usage_msg[])
1726{
1727	char *tmp, *tok, *str = strdup(sched->sort_order);
1728
1729	for (tok = strtok_r(str, ", ", &tmp);
1730			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1731		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1732			usage_with_options_msg(usage_msg, options,
1733					"Unknown --sort key: `%s'", tok);
1734		}
1735	}
1736
1737	free(str);
1738
1739	sort_dimension__add("pid", &sched->cmp_pid);
1740}
1741
1742static int __cmd_record(int argc, const char **argv)
1743{
1744	unsigned int rec_argc, i, j;
1745	const char **rec_argv;
1746	const char * const record_args[] = {
1747		"record",
1748		"-a",
1749		"-R",
1750		"-m", "1024",
1751		"-c", "1",
1752		"-e", "sched:sched_switch",
1753		"-e", "sched:sched_stat_wait",
1754		"-e", "sched:sched_stat_sleep",
1755		"-e", "sched:sched_stat_iowait",
1756		"-e", "sched:sched_stat_runtime",
1757		"-e", "sched:sched_process_fork",
1758		"-e", "sched:sched_wakeup",
1759		"-e", "sched:sched_wakeup_new",
1760		"-e", "sched:sched_migrate_task",
1761	};
1762
1763	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1764	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1765
1766	if (rec_argv == NULL)
1767		return -ENOMEM;
1768
1769	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1770		rec_argv[i] = strdup(record_args[i]);
1771
1772	for (j = 1; j < (unsigned int)argc; j++, i++)
1773		rec_argv[i] = argv[j];
1774
1775	BUG_ON(i != rec_argc);
1776
1777	return cmd_record(i, rec_argv, NULL);
1778}
1779
1780int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1781{
1782	const char default_sort_order[] = "avg, max, switch, runtime";
1783	struct perf_sched sched = {
1784		.tool = {
1785			.sample		 = perf_sched__process_tracepoint_sample,
1786			.comm		 = perf_event__process_comm,
1787			.lost		 = perf_event__process_lost,
1788			.fork		 = perf_sched__process_fork_event,
1789			.ordered_events = true,
1790		},
1791		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
1792		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
1793		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1794		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1795		.sort_order	      = default_sort_order,
1796		.replay_repeat	      = 10,
1797		.profile_cpu	      = -1,
1798		.next_shortname1      = 'A',
1799		.next_shortname2      = '0',
1800		.skip_merge           = 0,
1801	};
1802	const struct option latency_options[] = {
1803	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1804		   "sort by key(s): runtime, switch, avg, max"),
1805	OPT_INCR('v', "verbose", &verbose,
1806		    "be more verbose (show symbol address, etc)"),
1807	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1808		    "CPU to profile on"),
1809	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810		    "dump raw trace in ASCII"),
1811	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1812		    "latency stats per pid instead of per comm"),
1813	OPT_END()
1814	};
1815	const struct option replay_options[] = {
1816	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1817		     "repeat the workload replay N times (-1: infinite)"),
1818	OPT_INCR('v', "verbose", &verbose,
1819		    "be more verbose (show symbol address, etc)"),
1820	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1821		    "dump raw trace in ASCII"),
1822	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1823	OPT_END()
1824	};
1825	const struct option sched_options[] = {
1826	OPT_STRING('i', "input", &input_name, "file",
1827		    "input file name"),
1828	OPT_INCR('v', "verbose", &verbose,
1829		    "be more verbose (show symbol address, etc)"),
1830	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1831		    "dump raw trace in ASCII"),
1832	OPT_END()
1833	};
1834	const char * const latency_usage[] = {
1835		"perf sched latency [<options>]",
1836		NULL
1837	};
1838	const char * const replay_usage[] = {
1839		"perf sched replay [<options>]",
1840		NULL
1841	};
1842	const char *const sched_subcommands[] = { "record", "latency", "map",
1843						  "replay", "script", NULL };
1844	const char *sched_usage[] = {
1845		NULL,
1846		NULL
1847	};
1848	struct trace_sched_handler lat_ops  = {
1849		.wakeup_event	    = latency_wakeup_event,
1850		.switch_event	    = latency_switch_event,
1851		.runtime_event	    = latency_runtime_event,
1852		.migrate_task_event = latency_migrate_task_event,
1853	};
1854	struct trace_sched_handler map_ops  = {
1855		.switch_event	    = map_switch_event,
1856	};
1857	struct trace_sched_handler replay_ops  = {
1858		.wakeup_event	    = replay_wakeup_event,
1859		.switch_event	    = replay_switch_event,
1860		.fork_event	    = replay_fork_event,
1861	};
1862	unsigned int i;
1863
1864	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1865		sched.curr_pid[i] = -1;
1866
1867	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
1868					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1869	if (!argc)
1870		usage_with_options(sched_usage, sched_options);
1871
1872	/*
1873	 * Aliased to 'perf script' for now:
1874	 */
1875	if (!strcmp(argv[0], "script"))
1876		return cmd_script(argc, argv, prefix);
1877
 
1878	if (!strncmp(argv[0], "rec", 3)) {
1879		return __cmd_record(argc, argv);
1880	} else if (!strncmp(argv[0], "lat", 3)) {
1881		sched.tp_handler = &lat_ops;
1882		if (argc > 1) {
1883			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1884			if (argc)
1885				usage_with_options(latency_usage, latency_options);
1886		}
1887		setup_sorting(&sched, latency_options, latency_usage);
1888		return perf_sched__lat(&sched);
1889	} else if (!strcmp(argv[0], "map")) {
1890		sched.tp_handler = &map_ops;
1891		setup_sorting(&sched, latency_options, latency_usage);
1892		return perf_sched__map(&sched);
1893	} else if (!strncmp(argv[0], "rep", 3)) {
1894		sched.tp_handler = &replay_ops;
1895		if (argc) {
1896			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1897			if (argc)
1898				usage_with_options(replay_usage, replay_options);
1899		}
1900		return perf_sched__replay(&sched);
1901	} else {
1902		usage_with_options(sched_usage, sched_options);
1903	}
1904
1905	return 0;
1906}
v3.15
   1#include "builtin.h"
   2#include "perf.h"
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
 
  13
  14#include "util/parse-options.h"
  15#include "util/trace-event.h"
  16
  17#include "util/debug.h"
  18
  19#include <sys/prctl.h>
  20#include <sys/resource.h>
  21
  22#include <semaphore.h>
  23#include <pthread.h>
  24#include <math.h>
 
  25
  26#define PR_SET_NAME		15               /* Set process name */
  27#define MAX_CPUS		4096
  28#define COMM_LEN		20
  29#define SYM_LEN			129
  30#define MAX_PID			65536
  31
  32struct sched_atom;
  33
  34struct task_desc {
  35	unsigned long		nr;
  36	unsigned long		pid;
  37	char			comm[COMM_LEN];
  38
  39	unsigned long		nr_events;
  40	unsigned long		curr_event;
  41	struct sched_atom	**atoms;
  42
  43	pthread_t		thread;
  44	sem_t			sleep_sem;
  45
  46	sem_t			ready_for_work;
  47	sem_t			work_done_sem;
  48
  49	u64			cpu_usage;
  50};
  51
  52enum sched_event_type {
  53	SCHED_EVENT_RUN,
  54	SCHED_EVENT_SLEEP,
  55	SCHED_EVENT_WAKEUP,
  56	SCHED_EVENT_MIGRATION,
  57};
  58
  59struct sched_atom {
  60	enum sched_event_type	type;
  61	int			specific_wait;
  62	u64			timestamp;
  63	u64			duration;
  64	unsigned long		nr;
  65	sem_t			*wait_sem;
  66	struct task_desc	*wakee;
  67};
  68
  69#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  70
  71enum thread_state {
  72	THREAD_SLEEPING = 0,
  73	THREAD_WAIT_CPU,
  74	THREAD_SCHED_IN,
  75	THREAD_IGNORE
  76};
  77
  78struct work_atom {
  79	struct list_head	list;
  80	enum thread_state	state;
  81	u64			sched_out_time;
  82	u64			wake_up_time;
  83	u64			sched_in_time;
  84	u64			runtime;
  85};
  86
  87struct work_atoms {
  88	struct list_head	work_list;
  89	struct thread		*thread;
  90	struct rb_node		node;
  91	u64			max_lat;
  92	u64			max_lat_at;
  93	u64			total_lat;
  94	u64			nb_atoms;
  95	u64			total_runtime;
 
  96};
  97
  98typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
  99
 100struct perf_sched;
 101
 102struct trace_sched_handler {
 103	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 104			    struct perf_sample *sample, struct machine *machine);
 105
 106	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 107			     struct perf_sample *sample, struct machine *machine);
 108
 109	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 110			    struct perf_sample *sample, struct machine *machine);
 111
 112	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 113	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 114			  struct machine *machine);
 115
 116	int (*migrate_task_event)(struct perf_sched *sched,
 117				  struct perf_evsel *evsel,
 118				  struct perf_sample *sample,
 119				  struct machine *machine);
 120};
 121
 122struct perf_sched {
 123	struct perf_tool tool;
 124	const char	 *sort_order;
 125	unsigned long	 nr_tasks;
 126	struct task_desc *pid_to_task[MAX_PID];
 127	struct task_desc **tasks;
 128	const struct trace_sched_handler *tp_handler;
 129	pthread_mutex_t	 start_work_mutex;
 130	pthread_mutex_t	 work_done_wait_mutex;
 131	int		 profile_cpu;
 132/*
 133 * Track the current task - that way we can know whether there's any
 134 * weird events, such as a task being switched away that is not current.
 135 */
 136	int		 max_cpu;
 137	u32		 curr_pid[MAX_CPUS];
 138	struct thread	 *curr_thread[MAX_CPUS];
 139	char		 next_shortname1;
 140	char		 next_shortname2;
 141	unsigned int	 replay_repeat;
 142	unsigned long	 nr_run_events;
 143	unsigned long	 nr_sleep_events;
 144	unsigned long	 nr_wakeup_events;
 145	unsigned long	 nr_sleep_corrections;
 146	unsigned long	 nr_run_events_optimized;
 147	unsigned long	 targetless_wakeups;
 148	unsigned long	 multitarget_wakeups;
 149	unsigned long	 nr_runs;
 150	unsigned long	 nr_timestamps;
 151	unsigned long	 nr_unordered_timestamps;
 152	unsigned long	 nr_state_machine_bugs;
 153	unsigned long	 nr_context_switch_bugs;
 154	unsigned long	 nr_events;
 155	unsigned long	 nr_lost_chunks;
 156	unsigned long	 nr_lost_events;
 157	u64		 run_measurement_overhead;
 158	u64		 sleep_measurement_overhead;
 159	u64		 start_time;
 160	u64		 cpu_usage;
 161	u64		 runavg_cpu_usage;
 162	u64		 parent_cpu_usage;
 163	u64		 runavg_parent_cpu_usage;
 164	u64		 sum_runtime;
 165	u64		 sum_fluct;
 166	u64		 run_avg;
 167	u64		 all_runtime;
 168	u64		 all_count;
 169	u64		 cpu_last_switched[MAX_CPUS];
 170	struct rb_root	 atom_root, sorted_atom_root;
 171	struct list_head sort_list, cmp_pid;
 
 
 172};
 173
 174static u64 get_nsecs(void)
 175{
 176	struct timespec ts;
 177
 178	clock_gettime(CLOCK_MONOTONIC, &ts);
 179
 180	return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 181}
 182
 183static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 184{
 185	u64 T0 = get_nsecs(), T1;
 186
 187	do {
 188		T1 = get_nsecs();
 189	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 190}
 191
 192static void sleep_nsecs(u64 nsecs)
 193{
 194	struct timespec ts;
 195
 196	ts.tv_nsec = nsecs % 999999999;
 197	ts.tv_sec = nsecs / 999999999;
 198
 199	nanosleep(&ts, NULL);
 200}
 201
 202static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 203{
 204	u64 T0, T1, delta, min_delta = 1000000000ULL;
 205	int i;
 206
 207	for (i = 0; i < 10; i++) {
 208		T0 = get_nsecs();
 209		burn_nsecs(sched, 0);
 210		T1 = get_nsecs();
 211		delta = T1-T0;
 212		min_delta = min(min_delta, delta);
 213	}
 214	sched->run_measurement_overhead = min_delta;
 215
 216	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 217}
 218
 219static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 220{
 221	u64 T0, T1, delta, min_delta = 1000000000ULL;
 222	int i;
 223
 224	for (i = 0; i < 10; i++) {
 225		T0 = get_nsecs();
 226		sleep_nsecs(10000);
 227		T1 = get_nsecs();
 228		delta = T1-T0;
 229		min_delta = min(min_delta, delta);
 230	}
 231	min_delta -= 10000;
 232	sched->sleep_measurement_overhead = min_delta;
 233
 234	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 235}
 236
 237static struct sched_atom *
 238get_new_event(struct task_desc *task, u64 timestamp)
 239{
 240	struct sched_atom *event = zalloc(sizeof(*event));
 241	unsigned long idx = task->nr_events;
 242	size_t size;
 243
 244	event->timestamp = timestamp;
 245	event->nr = idx;
 246
 247	task->nr_events++;
 248	size = sizeof(struct sched_atom *) * task->nr_events;
 249	task->atoms = realloc(task->atoms, size);
 250	BUG_ON(!task->atoms);
 251
 252	task->atoms[idx] = event;
 253
 254	return event;
 255}
 256
 257static struct sched_atom *last_event(struct task_desc *task)
 258{
 259	if (!task->nr_events)
 260		return NULL;
 261
 262	return task->atoms[task->nr_events - 1];
 263}
 264
 265static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 266				u64 timestamp, u64 duration)
 267{
 268	struct sched_atom *event, *curr_event = last_event(task);
 269
 270	/*
 271	 * optimize an existing RUN event by merging this one
 272	 * to it:
 273	 */
 274	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 275		sched->nr_run_events_optimized++;
 276		curr_event->duration += duration;
 277		return;
 278	}
 279
 280	event = get_new_event(task, timestamp);
 281
 282	event->type = SCHED_EVENT_RUN;
 283	event->duration = duration;
 284
 285	sched->nr_run_events++;
 286}
 287
 288static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 289				   u64 timestamp, struct task_desc *wakee)
 290{
 291	struct sched_atom *event, *wakee_event;
 292
 293	event = get_new_event(task, timestamp);
 294	event->type = SCHED_EVENT_WAKEUP;
 295	event->wakee = wakee;
 296
 297	wakee_event = last_event(wakee);
 298	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 299		sched->targetless_wakeups++;
 300		return;
 301	}
 302	if (wakee_event->wait_sem) {
 303		sched->multitarget_wakeups++;
 304		return;
 305	}
 306
 307	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 308	sem_init(wakee_event->wait_sem, 0, 0);
 309	wakee_event->specific_wait = 1;
 310	event->wait_sem = wakee_event->wait_sem;
 311
 312	sched->nr_wakeup_events++;
 313}
 314
 315static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 316				  u64 timestamp, u64 task_state __maybe_unused)
 317{
 318	struct sched_atom *event = get_new_event(task, timestamp);
 319
 320	event->type = SCHED_EVENT_SLEEP;
 321
 322	sched->nr_sleep_events++;
 323}
 324
 325static struct task_desc *register_pid(struct perf_sched *sched,
 326				      unsigned long pid, const char *comm)
 327{
 328	struct task_desc *task;
 
 329
 330	BUG_ON(pid >= MAX_PID);
 
 
 
 
 
 
 
 
 
 
 331
 332	task = sched->pid_to_task[pid];
 333
 334	if (task)
 335		return task;
 336
 337	task = zalloc(sizeof(*task));
 338	task->pid = pid;
 339	task->nr = sched->nr_tasks;
 340	strcpy(task->comm, comm);
 341	/*
 342	 * every task starts in sleeping state - this gets ignored
 343	 * if there's no wakeup pointing to this sleep state:
 344	 */
 345	add_sched_event_sleep(sched, task, 0, 0);
 346
 347	sched->pid_to_task[pid] = task;
 348	sched->nr_tasks++;
 349	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
 350	BUG_ON(!sched->tasks);
 351	sched->tasks[task->nr] = task;
 352
 353	if (verbose)
 354		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 355
 356	return task;
 357}
 358
 359
 360static void print_task_traces(struct perf_sched *sched)
 361{
 362	struct task_desc *task;
 363	unsigned long i;
 364
 365	for (i = 0; i < sched->nr_tasks; i++) {
 366		task = sched->tasks[i];
 367		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 368			task->nr, task->comm, task->pid, task->nr_events);
 369	}
 370}
 371
 372static void add_cross_task_wakeups(struct perf_sched *sched)
 373{
 374	struct task_desc *task1, *task2;
 375	unsigned long i, j;
 376
 377	for (i = 0; i < sched->nr_tasks; i++) {
 378		task1 = sched->tasks[i];
 379		j = i + 1;
 380		if (j == sched->nr_tasks)
 381			j = 0;
 382		task2 = sched->tasks[j];
 383		add_sched_event_wakeup(sched, task1, 0, task2);
 384	}
 385}
 386
 387static void perf_sched__process_event(struct perf_sched *sched,
 388				      struct sched_atom *atom)
 389{
 390	int ret = 0;
 391
 392	switch (atom->type) {
 393		case SCHED_EVENT_RUN:
 394			burn_nsecs(sched, atom->duration);
 395			break;
 396		case SCHED_EVENT_SLEEP:
 397			if (atom->wait_sem)
 398				ret = sem_wait(atom->wait_sem);
 399			BUG_ON(ret);
 400			break;
 401		case SCHED_EVENT_WAKEUP:
 402			if (atom->wait_sem)
 403				ret = sem_post(atom->wait_sem);
 404			BUG_ON(ret);
 405			break;
 406		case SCHED_EVENT_MIGRATION:
 407			break;
 408		default:
 409			BUG_ON(1);
 410	}
 411}
 412
 413static u64 get_cpu_usage_nsec_parent(void)
 414{
 415	struct rusage ru;
 416	u64 sum;
 417	int err;
 418
 419	err = getrusage(RUSAGE_SELF, &ru);
 420	BUG_ON(err);
 421
 422	sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
 423	sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
 424
 425	return sum;
 426}
 427
 428static int self_open_counters(void)
 429{
 430	struct perf_event_attr attr;
 
 431	int fd;
 
 
 432
 433	memset(&attr, 0, sizeof(attr));
 434
 435	attr.type = PERF_TYPE_SOFTWARE;
 436	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 437
 438	fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
 439
 440	if (fd < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441		pr_err("Error: sys_perf_event_open() syscall returned "
 442		       "with %d (%s)\n", fd, strerror(errno));
 
 
 
 443	return fd;
 444}
 445
 446static u64 get_cpu_usage_nsec_self(int fd)
 447{
 448	u64 runtime;
 449	int ret;
 450
 451	ret = read(fd, &runtime, sizeof(runtime));
 452	BUG_ON(ret != sizeof(runtime));
 453
 454	return runtime;
 455}
 456
 457struct sched_thread_parms {
 458	struct task_desc  *task;
 459	struct perf_sched *sched;
 
 460};
 461
 462static void *thread_func(void *ctx)
 463{
 464	struct sched_thread_parms *parms = ctx;
 465	struct task_desc *this_task = parms->task;
 466	struct perf_sched *sched = parms->sched;
 467	u64 cpu_usage_0, cpu_usage_1;
 468	unsigned long i, ret;
 469	char comm2[22];
 470	int fd;
 471
 472	zfree(&parms);
 473
 474	sprintf(comm2, ":%s", this_task->comm);
 475	prctl(PR_SET_NAME, comm2);
 476	fd = self_open_counters();
 477	if (fd < 0)
 478		return NULL;
 479again:
 480	ret = sem_post(&this_task->ready_for_work);
 481	BUG_ON(ret);
 482	ret = pthread_mutex_lock(&sched->start_work_mutex);
 483	BUG_ON(ret);
 484	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 485	BUG_ON(ret);
 486
 487	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 488
 489	for (i = 0; i < this_task->nr_events; i++) {
 490		this_task->curr_event = i;
 491		perf_sched__process_event(sched, this_task->atoms[i]);
 492	}
 493
 494	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 495	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 496	ret = sem_post(&this_task->work_done_sem);
 497	BUG_ON(ret);
 498
 499	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 500	BUG_ON(ret);
 501	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 502	BUG_ON(ret);
 503
 504	goto again;
 505}
 506
 507static void create_tasks(struct perf_sched *sched)
 508{
 509	struct task_desc *task;
 510	pthread_attr_t attr;
 511	unsigned long i;
 512	int err;
 513
 514	err = pthread_attr_init(&attr);
 515	BUG_ON(err);
 516	err = pthread_attr_setstacksize(&attr,
 517			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 518	BUG_ON(err);
 519	err = pthread_mutex_lock(&sched->start_work_mutex);
 520	BUG_ON(err);
 521	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 522	BUG_ON(err);
 523	for (i = 0; i < sched->nr_tasks; i++) {
 524		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 525		BUG_ON(parms == NULL);
 526		parms->task = task = sched->tasks[i];
 527		parms->sched = sched;
 
 528		sem_init(&task->sleep_sem, 0, 0);
 529		sem_init(&task->ready_for_work, 0, 0);
 530		sem_init(&task->work_done_sem, 0, 0);
 531		task->curr_event = 0;
 532		err = pthread_create(&task->thread, &attr, thread_func, parms);
 533		BUG_ON(err);
 534	}
 535}
 536
 537static void wait_for_tasks(struct perf_sched *sched)
 538{
 539	u64 cpu_usage_0, cpu_usage_1;
 540	struct task_desc *task;
 541	unsigned long i, ret;
 542
 543	sched->start_time = get_nsecs();
 544	sched->cpu_usage = 0;
 545	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 546
 547	for (i = 0; i < sched->nr_tasks; i++) {
 548		task = sched->tasks[i];
 549		ret = sem_wait(&task->ready_for_work);
 550		BUG_ON(ret);
 551		sem_init(&task->ready_for_work, 0, 0);
 552	}
 553	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 554	BUG_ON(ret);
 555
 556	cpu_usage_0 = get_cpu_usage_nsec_parent();
 557
 558	pthread_mutex_unlock(&sched->start_work_mutex);
 559
 560	for (i = 0; i < sched->nr_tasks; i++) {
 561		task = sched->tasks[i];
 562		ret = sem_wait(&task->work_done_sem);
 563		BUG_ON(ret);
 564		sem_init(&task->work_done_sem, 0, 0);
 565		sched->cpu_usage += task->cpu_usage;
 566		task->cpu_usage = 0;
 567	}
 568
 569	cpu_usage_1 = get_cpu_usage_nsec_parent();
 570	if (!sched->runavg_cpu_usage)
 571		sched->runavg_cpu_usage = sched->cpu_usage;
 572	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
 573
 574	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 575	if (!sched->runavg_parent_cpu_usage)
 576		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 577	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
 578					 sched->parent_cpu_usage)/10;
 579
 580	ret = pthread_mutex_lock(&sched->start_work_mutex);
 581	BUG_ON(ret);
 582
 583	for (i = 0; i < sched->nr_tasks; i++) {
 584		task = sched->tasks[i];
 585		sem_init(&task->sleep_sem, 0, 0);
 586		task->curr_event = 0;
 587	}
 588}
 589
 590static void run_one_test(struct perf_sched *sched)
 591{
 592	u64 T0, T1, delta, avg_delta, fluct;
 593
 594	T0 = get_nsecs();
 595	wait_for_tasks(sched);
 596	T1 = get_nsecs();
 597
 598	delta = T1 - T0;
 599	sched->sum_runtime += delta;
 600	sched->nr_runs++;
 601
 602	avg_delta = sched->sum_runtime / sched->nr_runs;
 603	if (delta < avg_delta)
 604		fluct = avg_delta - delta;
 605	else
 606		fluct = delta - avg_delta;
 607	sched->sum_fluct += fluct;
 608	if (!sched->run_avg)
 609		sched->run_avg = delta;
 610	sched->run_avg = (sched->run_avg * 9 + delta) / 10;
 611
 612	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
 613
 614	printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
 615
 616	printf("cpu: %0.2f / %0.2f",
 617		(double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
 618
 619#if 0
 620	/*
 621	 * rusage statistics done by the parent, these are less
 622	 * accurate than the sched->sum_exec_runtime based statistics:
 623	 */
 624	printf(" [%0.2f / %0.2f]",
 625		(double)sched->parent_cpu_usage/1e6,
 626		(double)sched->runavg_parent_cpu_usage/1e6);
 627#endif
 628
 629	printf("\n");
 630
 631	if (sched->nr_sleep_corrections)
 632		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 633	sched->nr_sleep_corrections = 0;
 634}
 635
 636static void test_calibrations(struct perf_sched *sched)
 637{
 638	u64 T0, T1;
 639
 640	T0 = get_nsecs();
 641	burn_nsecs(sched, 1e6);
 642	T1 = get_nsecs();
 643
 644	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 645
 646	T0 = get_nsecs();
 647	sleep_nsecs(1e6);
 648	T1 = get_nsecs();
 649
 650	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 651}
 652
 653static int
 654replay_wakeup_event(struct perf_sched *sched,
 655		    struct perf_evsel *evsel, struct perf_sample *sample,
 656		    struct machine *machine __maybe_unused)
 657{
 658	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 659	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 660	struct task_desc *waker, *wakee;
 661
 662	if (verbose) {
 663		printf("sched_wakeup event %p\n", evsel);
 664
 665		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 666	}
 667
 668	waker = register_pid(sched, sample->tid, "<unknown>");
 669	wakee = register_pid(sched, pid, comm);
 670
 671	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 672	return 0;
 673}
 674
 675static int replay_switch_event(struct perf_sched *sched,
 676			       struct perf_evsel *evsel,
 677			       struct perf_sample *sample,
 678			       struct machine *machine __maybe_unused)
 679{
 680	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 681		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 682	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 683		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 684	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 685	struct task_desc *prev, __maybe_unused *next;
 686	u64 timestamp0, timestamp = sample->time;
 687	int cpu = sample->cpu;
 688	s64 delta;
 689
 690	if (verbose)
 691		printf("sched_switch event %p\n", evsel);
 692
 693	if (cpu >= MAX_CPUS || cpu < 0)
 694		return 0;
 695
 696	timestamp0 = sched->cpu_last_switched[cpu];
 697	if (timestamp0)
 698		delta = timestamp - timestamp0;
 699	else
 700		delta = 0;
 701
 702	if (delta < 0) {
 703		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 704		return -1;
 705	}
 706
 707	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 708		 prev_comm, prev_pid, next_comm, next_pid, delta);
 709
 710	prev = register_pid(sched, prev_pid, prev_comm);
 711	next = register_pid(sched, next_pid, next_comm);
 712
 713	sched->cpu_last_switched[cpu] = timestamp;
 714
 715	add_sched_event_run(sched, prev, timestamp, delta);
 716	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 717
 718	return 0;
 719}
 720
 721static int replay_fork_event(struct perf_sched *sched,
 722			     union perf_event *event,
 723			     struct machine *machine)
 724{
 725	struct thread *child, *parent;
 726
 727	child = machine__findnew_thread(machine, event->fork.pid,
 728					event->fork.tid);
 729	parent = machine__findnew_thread(machine, event->fork.ppid,
 730					 event->fork.ptid);
 731
 732	if (child == NULL || parent == NULL) {
 733		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 734				 child, parent);
 735		return 0;
 736	}
 737
 738	if (verbose) {
 739		printf("fork event\n");
 740		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 741		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 742	}
 743
 744	register_pid(sched, parent->tid, thread__comm_str(parent));
 745	register_pid(sched, child->tid, thread__comm_str(child));
 
 
 
 746	return 0;
 747}
 748
 749struct sort_dimension {
 750	const char		*name;
 751	sort_fn_t		cmp;
 752	struct list_head	list;
 753};
 754
 755static int
 756thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 757{
 758	struct sort_dimension *sort;
 759	int ret = 0;
 760
 761	BUG_ON(list_empty(list));
 762
 763	list_for_each_entry(sort, list, list) {
 764		ret = sort->cmp(l, r);
 765		if (ret)
 766			return ret;
 767	}
 768
 769	return ret;
 770}
 771
 772static struct work_atoms *
 773thread_atoms_search(struct rb_root *root, struct thread *thread,
 774			 struct list_head *sort_list)
 775{
 776	struct rb_node *node = root->rb_node;
 777	struct work_atoms key = { .thread = thread };
 778
 779	while (node) {
 780		struct work_atoms *atoms;
 781		int cmp;
 782
 783		atoms = container_of(node, struct work_atoms, node);
 784
 785		cmp = thread_lat_cmp(sort_list, &key, atoms);
 786		if (cmp > 0)
 787			node = node->rb_left;
 788		else if (cmp < 0)
 789			node = node->rb_right;
 790		else {
 791			BUG_ON(thread != atoms->thread);
 792			return atoms;
 793		}
 794	}
 795	return NULL;
 796}
 797
 798static void
 799__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 800			 struct list_head *sort_list)
 801{
 802	struct rb_node **new = &(root->rb_node), *parent = NULL;
 803
 804	while (*new) {
 805		struct work_atoms *this;
 806		int cmp;
 807
 808		this = container_of(*new, struct work_atoms, node);
 809		parent = *new;
 810
 811		cmp = thread_lat_cmp(sort_list, data, this);
 812
 813		if (cmp > 0)
 814			new = &((*new)->rb_left);
 815		else
 816			new = &((*new)->rb_right);
 817	}
 818
 819	rb_link_node(&data->node, parent, new);
 820	rb_insert_color(&data->node, root);
 821}
 822
 823static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 824{
 825	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 826	if (!atoms) {
 827		pr_err("No memory at %s\n", __func__);
 828		return -1;
 829	}
 830
 831	atoms->thread = thread;
 832	INIT_LIST_HEAD(&atoms->work_list);
 833	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 834	return 0;
 835}
 836
 837static char sched_out_state(u64 prev_state)
 838{
 839	const char *str = TASK_STATE_TO_CHAR_STR;
 840
 841	return str[prev_state];
 842}
 843
 844static int
 845add_sched_out_event(struct work_atoms *atoms,
 846		    char run_state,
 847		    u64 timestamp)
 848{
 849	struct work_atom *atom = zalloc(sizeof(*atom));
 850	if (!atom) {
 851		pr_err("Non memory at %s", __func__);
 852		return -1;
 853	}
 854
 855	atom->sched_out_time = timestamp;
 856
 857	if (run_state == 'R') {
 858		atom->state = THREAD_WAIT_CPU;
 859		atom->wake_up_time = atom->sched_out_time;
 860	}
 861
 862	list_add_tail(&atom->list, &atoms->work_list);
 863	return 0;
 864}
 865
 866static void
 867add_runtime_event(struct work_atoms *atoms, u64 delta,
 868		  u64 timestamp __maybe_unused)
 869{
 870	struct work_atom *atom;
 871
 872	BUG_ON(list_empty(&atoms->work_list));
 873
 874	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 875
 876	atom->runtime += delta;
 877	atoms->total_runtime += delta;
 878}
 879
 880static void
 881add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 882{
 883	struct work_atom *atom;
 884	u64 delta;
 885
 886	if (list_empty(&atoms->work_list))
 887		return;
 888
 889	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 890
 891	if (atom->state != THREAD_WAIT_CPU)
 892		return;
 893
 894	if (timestamp < atom->wake_up_time) {
 895		atom->state = THREAD_IGNORE;
 896		return;
 897	}
 898
 899	atom->state = THREAD_SCHED_IN;
 900	atom->sched_in_time = timestamp;
 901
 902	delta = atom->sched_in_time - atom->wake_up_time;
 903	atoms->total_lat += delta;
 904	if (delta > atoms->max_lat) {
 905		atoms->max_lat = delta;
 906		atoms->max_lat_at = timestamp;
 907	}
 908	atoms->nb_atoms++;
 909}
 910
 911static int latency_switch_event(struct perf_sched *sched,
 912				struct perf_evsel *evsel,
 913				struct perf_sample *sample,
 914				struct machine *machine)
 915{
 916	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 917		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 918	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 919	struct work_atoms *out_events, *in_events;
 920	struct thread *sched_out, *sched_in;
 921	u64 timestamp0, timestamp = sample->time;
 922	int cpu = sample->cpu;
 923	s64 delta;
 924
 925	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 926
 927	timestamp0 = sched->cpu_last_switched[cpu];
 928	sched->cpu_last_switched[cpu] = timestamp;
 929	if (timestamp0)
 930		delta = timestamp - timestamp0;
 931	else
 932		delta = 0;
 933
 934	if (delta < 0) {
 935		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 936		return -1;
 937	}
 938
 939	sched_out = machine__findnew_thread(machine, 0, prev_pid);
 940	sched_in = machine__findnew_thread(machine, 0, next_pid);
 
 
 941
 942	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 943	if (!out_events) {
 944		if (thread_atoms_insert(sched, sched_out))
 945			return -1;
 946		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
 947		if (!out_events) {
 948			pr_err("out-event: Internal tree error");
 949			return -1;
 950		}
 951	}
 952	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
 953		return -1;
 954
 955	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 956	if (!in_events) {
 957		if (thread_atoms_insert(sched, sched_in))
 958			return -1;
 959		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
 960		if (!in_events) {
 961			pr_err("in-event: Internal tree error");
 962			return -1;
 963		}
 964		/*
 965		 * Take came in we have not heard about yet,
 966		 * add in an initial atom in runnable state:
 967		 */
 968		if (add_sched_out_event(in_events, 'R', timestamp))
 969			return -1;
 970	}
 971	add_sched_in_event(in_events, timestamp);
 972
 973	return 0;
 
 
 
 974}
 975
 976static int latency_runtime_event(struct perf_sched *sched,
 977				 struct perf_evsel *evsel,
 978				 struct perf_sample *sample,
 979				 struct machine *machine)
 980{
 981	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
 982	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
 983	struct thread *thread = machine__findnew_thread(machine, 0, pid);
 984	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 985	u64 timestamp = sample->time;
 986	int cpu = sample->cpu;
 
 
 
 987
 988	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
 989	if (!atoms) {
 990		if (thread_atoms_insert(sched, thread))
 991			return -1;
 992		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
 993		if (!atoms) {
 994			pr_err("in-event: Internal tree error");
 995			return -1;
 996		}
 997		if (add_sched_out_event(atoms, 'R', timestamp))
 998			return -1;
 999	}
1000
1001	add_runtime_event(atoms, runtime, timestamp);
1002	return 0;
 
 
 
1003}
1004
1005static int latency_wakeup_event(struct perf_sched *sched,
1006				struct perf_evsel *evsel,
1007				struct perf_sample *sample,
1008				struct machine *machine)
1009{
1010	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid"),
1011		  success = perf_evsel__intval(evsel, sample, "success");
1012	struct work_atoms *atoms;
1013	struct work_atom *atom;
1014	struct thread *wakee;
1015	u64 timestamp = sample->time;
 
1016
1017	/* Note for later, it may be interesting to observe the failing cases */
1018	if (!success)
1019		return 0;
1020
1021	wakee = machine__findnew_thread(machine, 0, pid);
1022	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1023	if (!atoms) {
1024		if (thread_atoms_insert(sched, wakee))
1025			return -1;
1026		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1027		if (!atoms) {
1028			pr_err("wakeup-event: Internal tree error");
1029			return -1;
1030		}
1031		if (add_sched_out_event(atoms, 'S', timestamp))
1032			return -1;
1033	}
1034
1035	BUG_ON(list_empty(&atoms->work_list));
1036
1037	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1038
1039	/*
 
 
 
 
 
 
1040	 * You WILL be missing events if you've recorded only
1041	 * one CPU, or are only looking at only one, so don't
1042	 * make useless noise.
1043	 */
1044	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1045		sched->nr_state_machine_bugs++;
1046
1047	sched->nr_timestamps++;
1048	if (atom->sched_out_time > timestamp) {
1049		sched->nr_unordered_timestamps++;
1050		return 0;
1051	}
1052
1053	atom->state = THREAD_WAIT_CPU;
1054	atom->wake_up_time = timestamp;
1055	return 0;
 
 
 
 
1056}
1057
1058static int latency_migrate_task_event(struct perf_sched *sched,
1059				      struct perf_evsel *evsel,
1060				      struct perf_sample *sample,
1061				      struct machine *machine)
1062{
1063	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1064	u64 timestamp = sample->time;
1065	struct work_atoms *atoms;
1066	struct work_atom *atom;
1067	struct thread *migrant;
 
1068
1069	/*
1070	 * Only need to worry about migration when profiling one CPU.
1071	 */
1072	if (sched->profile_cpu == -1)
1073		return 0;
1074
1075	migrant = machine__findnew_thread(machine, 0, pid);
 
 
1076	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1077	if (!atoms) {
1078		if (thread_atoms_insert(sched, migrant))
1079			return -1;
1080		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1081		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1082		if (!atoms) {
1083			pr_err("migration-event: Internal tree error");
1084			return -1;
1085		}
1086		if (add_sched_out_event(atoms, 'R', timestamp))
1087			return -1;
1088	}
1089
1090	BUG_ON(list_empty(&atoms->work_list));
1091
1092	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1093	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1094
1095	sched->nr_timestamps++;
1096
1097	if (atom->sched_out_time > timestamp)
1098		sched->nr_unordered_timestamps++;
1099
1100	return 0;
 
 
1101}
1102
1103static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1104{
1105	int i;
1106	int ret;
1107	u64 avg;
1108
1109	if (!work_list->nb_atoms)
1110		return;
1111	/*
1112	 * Ignore idle threads:
1113	 */
1114	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1115		return;
1116
1117	sched->all_runtime += work_list->total_runtime;
1118	sched->all_count   += work_list->nb_atoms;
1119
1120	ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
 
 
 
1121
1122	for (i = 0; i < 24 - ret; i++)
1123		printf(" ");
1124
1125	avg = work_list->total_lat / work_list->nb_atoms;
1126
1127	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1128	      (double)work_list->total_runtime / 1e6,
1129		 work_list->nb_atoms, (double)avg / 1e6,
1130		 (double)work_list->max_lat / 1e6,
1131		 (double)work_list->max_lat_at / 1e9);
1132}
1133
1134static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1135{
 
 
1136	if (l->thread->tid < r->thread->tid)
1137		return -1;
1138	if (l->thread->tid > r->thread->tid)
1139		return 1;
1140
1141	return 0;
1142}
1143
1144static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1145{
1146	u64 avgl, avgr;
1147
1148	if (!l->nb_atoms)
1149		return -1;
1150
1151	if (!r->nb_atoms)
1152		return 1;
1153
1154	avgl = l->total_lat / l->nb_atoms;
1155	avgr = r->total_lat / r->nb_atoms;
1156
1157	if (avgl < avgr)
1158		return -1;
1159	if (avgl > avgr)
1160		return 1;
1161
1162	return 0;
1163}
1164
1165static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1166{
1167	if (l->max_lat < r->max_lat)
1168		return -1;
1169	if (l->max_lat > r->max_lat)
1170		return 1;
1171
1172	return 0;
1173}
1174
1175static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1176{
1177	if (l->nb_atoms < r->nb_atoms)
1178		return -1;
1179	if (l->nb_atoms > r->nb_atoms)
1180		return 1;
1181
1182	return 0;
1183}
1184
1185static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1186{
1187	if (l->total_runtime < r->total_runtime)
1188		return -1;
1189	if (l->total_runtime > r->total_runtime)
1190		return 1;
1191
1192	return 0;
1193}
1194
1195static int sort_dimension__add(const char *tok, struct list_head *list)
1196{
1197	size_t i;
1198	static struct sort_dimension avg_sort_dimension = {
1199		.name = "avg",
1200		.cmp  = avg_cmp,
1201	};
1202	static struct sort_dimension max_sort_dimension = {
1203		.name = "max",
1204		.cmp  = max_cmp,
1205	};
1206	static struct sort_dimension pid_sort_dimension = {
1207		.name = "pid",
1208		.cmp  = pid_cmp,
1209	};
1210	static struct sort_dimension runtime_sort_dimension = {
1211		.name = "runtime",
1212		.cmp  = runtime_cmp,
1213	};
1214	static struct sort_dimension switch_sort_dimension = {
1215		.name = "switch",
1216		.cmp  = switch_cmp,
1217	};
1218	struct sort_dimension *available_sorts[] = {
1219		&pid_sort_dimension,
1220		&avg_sort_dimension,
1221		&max_sort_dimension,
1222		&switch_sort_dimension,
1223		&runtime_sort_dimension,
1224	};
1225
1226	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1227		if (!strcmp(available_sorts[i]->name, tok)) {
1228			list_add_tail(&available_sorts[i]->list, list);
1229
1230			return 0;
1231		}
1232	}
1233
1234	return -1;
1235}
1236
1237static void perf_sched__sort_lat(struct perf_sched *sched)
1238{
1239	struct rb_node *node;
1240
 
1241	for (;;) {
1242		struct work_atoms *data;
1243		node = rb_first(&sched->atom_root);
1244		if (!node)
1245			break;
1246
1247		rb_erase(node, &sched->atom_root);
1248		data = rb_entry(node, struct work_atoms, node);
1249		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1250	}
 
 
 
 
1251}
1252
1253static int process_sched_wakeup_event(struct perf_tool *tool,
1254				      struct perf_evsel *evsel,
1255				      struct perf_sample *sample,
1256				      struct machine *machine)
1257{
1258	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1259
1260	if (sched->tp_handler->wakeup_event)
1261		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1262
1263	return 0;
1264}
1265
1266static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1267			    struct perf_sample *sample, struct machine *machine)
1268{
1269	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1270		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1271	struct thread *sched_out __maybe_unused, *sched_in;
1272	int new_shortname;
1273	u64 timestamp0, timestamp = sample->time;
1274	s64 delta;
1275	int cpu, this_cpu = sample->cpu;
1276
1277	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1278
1279	if (this_cpu > sched->max_cpu)
1280		sched->max_cpu = this_cpu;
1281
1282	timestamp0 = sched->cpu_last_switched[this_cpu];
1283	sched->cpu_last_switched[this_cpu] = timestamp;
1284	if (timestamp0)
1285		delta = timestamp - timestamp0;
1286	else
1287		delta = 0;
1288
1289	if (delta < 0) {
1290		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1291		return -1;
1292	}
1293
1294	sched_out = machine__findnew_thread(machine, 0, prev_pid);
1295	sched_in = machine__findnew_thread(machine, 0, next_pid);
 
1296
1297	sched->curr_thread[this_cpu] = sched_in;
1298
1299	printf("  ");
1300
1301	new_shortname = 0;
1302	if (!sched_in->shortname[0]) {
1303		sched_in->shortname[0] = sched->next_shortname1;
1304		sched_in->shortname[1] = sched->next_shortname2;
 
 
 
 
 
 
 
 
1305
1306		if (sched->next_shortname1 < 'Z') {
1307			sched->next_shortname1++;
1308		} else {
1309			sched->next_shortname1='A';
1310			if (sched->next_shortname2 < '9') {
1311				sched->next_shortname2++;
1312			} else {
1313				sched->next_shortname2='0';
 
 
 
 
1314			}
1315		}
1316		new_shortname = 1;
1317	}
1318
1319	for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1320		if (cpu != this_cpu)
1321			printf(" ");
1322		else
1323			printf("*");
1324
1325		if (sched->curr_thread[cpu]) {
1326			if (sched->curr_thread[cpu]->tid)
1327				printf("%2s ", sched->curr_thread[cpu]->shortname);
1328			else
1329				printf(".  ");
1330		} else
1331			printf("   ");
1332	}
1333
1334	printf("  %12.6f secs ", (double)timestamp/1e9);
1335	if (new_shortname) {
1336		printf("%s => %s:%d\n",
1337		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1338	} else {
1339		printf("\n");
1340	}
1341
 
 
1342	return 0;
1343}
1344
1345static int process_sched_switch_event(struct perf_tool *tool,
1346				      struct perf_evsel *evsel,
1347				      struct perf_sample *sample,
1348				      struct machine *machine)
1349{
1350	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1351	int this_cpu = sample->cpu, err = 0;
1352	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1353	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1354
1355	if (sched->curr_pid[this_cpu] != (u32)-1) {
1356		/*
1357		 * Are we trying to switch away a PID that is
1358		 * not current?
1359		 */
1360		if (sched->curr_pid[this_cpu] != prev_pid)
1361			sched->nr_context_switch_bugs++;
1362	}
1363
1364	if (sched->tp_handler->switch_event)
1365		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1366
1367	sched->curr_pid[this_cpu] = next_pid;
1368	return err;
1369}
1370
1371static int process_sched_runtime_event(struct perf_tool *tool,
1372				       struct perf_evsel *evsel,
1373				       struct perf_sample *sample,
1374				       struct machine *machine)
1375{
1376	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1377
1378	if (sched->tp_handler->runtime_event)
1379		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1380
1381	return 0;
1382}
1383
1384static int perf_sched__process_fork_event(struct perf_tool *tool,
1385					  union perf_event *event,
1386					  struct perf_sample *sample,
1387					  struct machine *machine)
1388{
1389	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1390
1391	/* run the fork event through the perf machineruy */
1392	perf_event__process_fork(tool, event, sample, machine);
1393
1394	/* and then run additional processing needed for this command */
1395	if (sched->tp_handler->fork_event)
1396		return sched->tp_handler->fork_event(sched, event, machine);
1397
1398	return 0;
1399}
1400
1401static int process_sched_migrate_task_event(struct perf_tool *tool,
1402					    struct perf_evsel *evsel,
1403					    struct perf_sample *sample,
1404					    struct machine *machine)
1405{
1406	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1407
1408	if (sched->tp_handler->migrate_task_event)
1409		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1410
1411	return 0;
1412}
1413
1414typedef int (*tracepoint_handler)(struct perf_tool *tool,
1415				  struct perf_evsel *evsel,
1416				  struct perf_sample *sample,
1417				  struct machine *machine);
1418
1419static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1420						 union perf_event *event __maybe_unused,
1421						 struct perf_sample *sample,
1422						 struct perf_evsel *evsel,
1423						 struct machine *machine)
1424{
1425	int err = 0;
1426
1427	evsel->hists.stats.total_period += sample->period;
1428	hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1429
1430	if (evsel->handler != NULL) {
1431		tracepoint_handler f = evsel->handler;
1432		err = f(tool, evsel, sample, machine);
1433	}
1434
1435	return err;
1436}
1437
1438static int perf_sched__read_events(struct perf_sched *sched,
1439				   struct perf_session **psession)
1440{
1441	const struct perf_evsel_str_handler handlers[] = {
1442		{ "sched:sched_switch",	      process_sched_switch_event, },
1443		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1444		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1445		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1446		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1447	};
1448	struct perf_session *session;
1449	struct perf_data_file file = {
1450		.path = input_name,
1451		.mode = PERF_DATA_MODE_READ,
 
1452	};
 
1453
1454	session = perf_session__new(&file, false, &sched->tool);
1455	if (session == NULL) {
1456		pr_debug("No Memory for session\n");
1457		return -1;
1458	}
1459
 
 
1460	if (perf_session__set_tracepoints_handlers(session, handlers))
1461		goto out_delete;
1462
1463	if (perf_session__has_traces(session, "record -R")) {
1464		int err = perf_session__process_events(session, &sched->tool);
1465		if (err) {
1466			pr_err("Failed to process events, error %d", err);
1467			goto out_delete;
1468		}
1469
1470		sched->nr_events      = session->stats.nr_events[0];
1471		sched->nr_lost_events = session->stats.total_lost;
1472		sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1473	}
1474
1475	if (psession)
1476		*psession = session;
1477	else
1478		perf_session__delete(session);
1479
1480	return 0;
1481
1482out_delete:
1483	perf_session__delete(session);
1484	return -1;
1485}
1486
1487static void print_bad_events(struct perf_sched *sched)
1488{
1489	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1490		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1491			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1492			sched->nr_unordered_timestamps, sched->nr_timestamps);
1493	}
1494	if (sched->nr_lost_events && sched->nr_events) {
1495		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1496			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1497			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1498	}
1499	if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1500		printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1501			(double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1502			sched->nr_state_machine_bugs, sched->nr_timestamps);
1503		if (sched->nr_lost_events)
1504			printf(" (due to lost events?)");
1505		printf("\n");
1506	}
1507	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1508		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1509			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1510			sched->nr_context_switch_bugs, sched->nr_timestamps);
1511		if (sched->nr_lost_events)
1512			printf(" (due to lost events?)");
1513		printf("\n");
1514	}
1515}
1516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517static int perf_sched__lat(struct perf_sched *sched)
1518{
1519	struct rb_node *next;
1520	struct perf_session *session;
1521
1522	setup_pager();
1523
1524	/* save session -- references to threads are held in work_list */
1525	if (perf_sched__read_events(sched, &session))
1526		return -1;
1527
 
1528	perf_sched__sort_lat(sched);
1529
1530	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1531	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1532	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1533
1534	next = rb_first(&sched->sorted_atom_root);
1535
1536	while (next) {
1537		struct work_atoms *work_list;
1538
1539		work_list = rb_entry(next, struct work_atoms, node);
1540		output_lat_thread(sched, work_list);
1541		next = rb_next(next);
 
1542	}
1543
1544	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1545	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1546		(double)sched->all_runtime / 1e6, sched->all_count);
1547
1548	printf(" ---------------------------------------------------\n");
1549
1550	print_bad_events(sched);
1551	printf("\n");
1552
1553	perf_session__delete(session);
1554	return 0;
1555}
1556
1557static int perf_sched__map(struct perf_sched *sched)
1558{
1559	sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1560
1561	setup_pager();
1562	if (perf_sched__read_events(sched, NULL))
1563		return -1;
1564	print_bad_events(sched);
1565	return 0;
1566}
1567
1568static int perf_sched__replay(struct perf_sched *sched)
1569{
1570	unsigned long i;
1571
1572	calibrate_run_measurement_overhead(sched);
1573	calibrate_sleep_measurement_overhead(sched);
1574
1575	test_calibrations(sched);
1576
1577	if (perf_sched__read_events(sched, NULL))
1578		return -1;
1579
1580	printf("nr_run_events:        %ld\n", sched->nr_run_events);
1581	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1582	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1583
1584	if (sched->targetless_wakeups)
1585		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1586	if (sched->multitarget_wakeups)
1587		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1588	if (sched->nr_run_events_optimized)
1589		printf("run atoms optimized: %ld\n",
1590			sched->nr_run_events_optimized);
1591
1592	print_task_traces(sched);
1593	add_cross_task_wakeups(sched);
1594
1595	create_tasks(sched);
1596	printf("------------------------------------------------------------\n");
1597	for (i = 0; i < sched->replay_repeat; i++)
1598		run_one_test(sched);
1599
1600	return 0;
1601}
1602
1603static void setup_sorting(struct perf_sched *sched, const struct option *options,
1604			  const char * const usage_msg[])
1605{
1606	char *tmp, *tok, *str = strdup(sched->sort_order);
1607
1608	for (tok = strtok_r(str, ", ", &tmp);
1609			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1610		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1611			error("Unknown --sort key: `%s'", tok);
1612			usage_with_options(usage_msg, options);
1613		}
1614	}
1615
1616	free(str);
1617
1618	sort_dimension__add("pid", &sched->cmp_pid);
1619}
1620
1621static int __cmd_record(int argc, const char **argv)
1622{
1623	unsigned int rec_argc, i, j;
1624	const char **rec_argv;
1625	const char * const record_args[] = {
1626		"record",
1627		"-a",
1628		"-R",
1629		"-m", "1024",
1630		"-c", "1",
1631		"-e", "sched:sched_switch",
1632		"-e", "sched:sched_stat_wait",
1633		"-e", "sched:sched_stat_sleep",
1634		"-e", "sched:sched_stat_iowait",
1635		"-e", "sched:sched_stat_runtime",
1636		"-e", "sched:sched_process_fork",
1637		"-e", "sched:sched_wakeup",
 
1638		"-e", "sched:sched_migrate_task",
1639	};
1640
1641	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1642	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1643
1644	if (rec_argv == NULL)
1645		return -ENOMEM;
1646
1647	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1648		rec_argv[i] = strdup(record_args[i]);
1649
1650	for (j = 1; j < (unsigned int)argc; j++, i++)
1651		rec_argv[i] = argv[j];
1652
1653	BUG_ON(i != rec_argc);
1654
1655	return cmd_record(i, rec_argv, NULL);
1656}
1657
1658int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1659{
1660	const char default_sort_order[] = "avg, max, switch, runtime";
1661	struct perf_sched sched = {
1662		.tool = {
1663			.sample		 = perf_sched__process_tracepoint_sample,
1664			.comm		 = perf_event__process_comm,
1665			.lost		 = perf_event__process_lost,
1666			.fork		 = perf_sched__process_fork_event,
1667			.ordered_samples = true,
1668		},
1669		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
1670		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
1671		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1672		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1673		.sort_order	      = default_sort_order,
1674		.replay_repeat	      = 10,
1675		.profile_cpu	      = -1,
1676		.next_shortname1      = 'A',
1677		.next_shortname2      = '0',
 
1678	};
1679	const struct option latency_options[] = {
1680	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1681		   "sort by key(s): runtime, switch, avg, max"),
1682	OPT_INCR('v', "verbose", &verbose,
1683		    "be more verbose (show symbol address, etc)"),
1684	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1685		    "CPU to profile on"),
1686	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1687		    "dump raw trace in ASCII"),
 
 
1688	OPT_END()
1689	};
1690	const struct option replay_options[] = {
1691	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1692		     "repeat the workload replay N times (-1: infinite)"),
1693	OPT_INCR('v', "verbose", &verbose,
1694		    "be more verbose (show symbol address, etc)"),
1695	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1696		    "dump raw trace in ASCII"),
 
1697	OPT_END()
1698	};
1699	const struct option sched_options[] = {
1700	OPT_STRING('i', "input", &input_name, "file",
1701		    "input file name"),
1702	OPT_INCR('v', "verbose", &verbose,
1703		    "be more verbose (show symbol address, etc)"),
1704	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1705		    "dump raw trace in ASCII"),
1706	OPT_END()
1707	};
1708	const char * const latency_usage[] = {
1709		"perf sched latency [<options>]",
1710		NULL
1711	};
1712	const char * const replay_usage[] = {
1713		"perf sched replay [<options>]",
1714		NULL
1715	};
1716	const char * const sched_usage[] = {
1717		"perf sched [<options>] {record|latency|map|replay|script}",
 
 
1718		NULL
1719	};
1720	struct trace_sched_handler lat_ops  = {
1721		.wakeup_event	    = latency_wakeup_event,
1722		.switch_event	    = latency_switch_event,
1723		.runtime_event	    = latency_runtime_event,
1724		.migrate_task_event = latency_migrate_task_event,
1725	};
1726	struct trace_sched_handler map_ops  = {
1727		.switch_event	    = map_switch_event,
1728	};
1729	struct trace_sched_handler replay_ops  = {
1730		.wakeup_event	    = replay_wakeup_event,
1731		.switch_event	    = replay_switch_event,
1732		.fork_event	    = replay_fork_event,
1733	};
1734	unsigned int i;
1735
1736	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
1737		sched.curr_pid[i] = -1;
1738
1739	argc = parse_options(argc, argv, sched_options, sched_usage,
1740			     PARSE_OPT_STOP_AT_NON_OPTION);
1741	if (!argc)
1742		usage_with_options(sched_usage, sched_options);
1743
1744	/*
1745	 * Aliased to 'perf script' for now:
1746	 */
1747	if (!strcmp(argv[0], "script"))
1748		return cmd_script(argc, argv, prefix);
1749
1750	symbol__init();
1751	if (!strncmp(argv[0], "rec", 3)) {
1752		return __cmd_record(argc, argv);
1753	} else if (!strncmp(argv[0], "lat", 3)) {
1754		sched.tp_handler = &lat_ops;
1755		if (argc > 1) {
1756			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1757			if (argc)
1758				usage_with_options(latency_usage, latency_options);
1759		}
1760		setup_sorting(&sched, latency_options, latency_usage);
1761		return perf_sched__lat(&sched);
1762	} else if (!strcmp(argv[0], "map")) {
1763		sched.tp_handler = &map_ops;
1764		setup_sorting(&sched, latency_options, latency_usage);
1765		return perf_sched__map(&sched);
1766	} else if (!strncmp(argv[0], "rep", 3)) {
1767		sched.tp_handler = &replay_ops;
1768		if (argc) {
1769			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1770			if (argc)
1771				usage_with_options(replay_usage, replay_options);
1772		}
1773		return perf_sched__replay(&sched);
1774	} else {
1775		usage_with_options(sched_usage, sched_options);
1776	}
1777
1778	return 0;
1779}