Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/gfp.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/pagemap.h>
  22#include <linux/init.h>
  23#include <linux/highmem.h>
  24#include <linux/vmpressure.h>
  25#include <linux/vmstat.h>
  26#include <linux/file.h>
  27#include <linux/writeback.h>
  28#include <linux/blkdev.h>
  29#include <linux/buffer_head.h>	/* for try_to_release_page(),
  30					buffer_heads_over_limit */
  31#include <linux/mm_inline.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rmap.h>
  34#include <linux/topology.h>
  35#include <linux/cpu.h>
  36#include <linux/cpuset.h>
  37#include <linux/compaction.h>
  38#include <linux/notifier.h>
  39#include <linux/rwsem.h>
  40#include <linux/delay.h>
  41#include <linux/kthread.h>
  42#include <linux/freezer.h>
  43#include <linux/memcontrol.h>
  44#include <linux/delayacct.h>
  45#include <linux/sysctl.h>
  46#include <linux/oom.h>
  47#include <linux/prefetch.h>
  48#include <linux/printk.h>
  49#include <linux/dax.h>
  50
  51#include <asm/tlbflush.h>
  52#include <asm/div64.h>
  53
  54#include <linux/swapops.h>
  55#include <linux/balloon_compaction.h>
  56
  57#include "internal.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/vmscan.h>
  61
  62struct scan_control {
 
 
 
 
 
 
  63	/* How many pages shrink_list() should reclaim */
  64	unsigned long nr_to_reclaim;
  65
 
 
  66	/* This context's GFP mask */
  67	gfp_t gfp_mask;
  68
  69	/* Allocation order */
 
 
 
 
 
 
 
  70	int order;
  71
  72	/*
  73	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  74	 * are scanned.
  75	 */
  76	nodemask_t	*nodemask;
  77
  78	/*
  79	 * The memory cgroup that hit its limit and as a result is the
  80	 * primary target of this reclaim invocation.
  81	 */
  82	struct mem_cgroup *target_mem_cgroup;
  83
  84	/* Scan (total_size >> priority) pages at once */
  85	int priority;
  86
  87	unsigned int may_writepage:1;
  88
  89	/* Can mapped pages be reclaimed? */
  90	unsigned int may_unmap:1;
  91
  92	/* Can pages be swapped as part of reclaim? */
  93	unsigned int may_swap:1;
  94
  95	/* Can cgroups be reclaimed below their normal consumption range? */
  96	unsigned int may_thrash:1;
  97
  98	unsigned int hibernation_mode:1;
  99
 100	/* One of the zones is ready for compaction */
 101	unsigned int compaction_ready:1;
 102
 103	/* Incremented by the number of inactive pages that were scanned */
 104	unsigned long nr_scanned;
 105
 106	/* Number of pages freed so far during a call to shrink_zones() */
 107	unsigned long nr_reclaimed;
 108};
 109
 
 
 110#ifdef ARCH_HAS_PREFETCH
 111#define prefetch_prev_lru_page(_page, _base, _field)			\
 112	do {								\
 113		if ((_page)->lru.prev != _base) {			\
 114			struct page *prev;				\
 115									\
 116			prev = lru_to_page(&(_page->lru));		\
 117			prefetch(&prev->_field);			\
 118		}							\
 119	} while (0)
 120#else
 121#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 122#endif
 123
 124#ifdef ARCH_HAS_PREFETCHW
 125#define prefetchw_prev_lru_page(_page, _base, _field)			\
 126	do {								\
 127		if ((_page)->lru.prev != _base) {			\
 128			struct page *prev;				\
 129									\
 130			prev = lru_to_page(&(_page->lru));		\
 131			prefetchw(&prev->_field);			\
 132		}							\
 133	} while (0)
 134#else
 135#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 136#endif
 137
 138/*
 139 * From 0 .. 100.  Higher means more swappy.
 140 */
 141int vm_swappiness = 60;
 142/*
 143 * The total number of pages which are beyond the high watermark within all
 144 * zones.
 145 */
 146unsigned long vm_total_pages;
 147
 148static LIST_HEAD(shrinker_list);
 149static DECLARE_RWSEM(shrinker_rwsem);
 150
 151#ifdef CONFIG_MEMCG
 152static bool global_reclaim(struct scan_control *sc)
 153{
 154	return !sc->target_mem_cgroup;
 155}
 156
 157/**
 158 * sane_reclaim - is the usual dirty throttling mechanism operational?
 159 * @sc: scan_control in question
 160 *
 161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 162 * completely broken with the legacy memcg and direct stalling in
 163 * shrink_page_list() is used for throttling instead, which lacks all the
 164 * niceties such as fairness, adaptive pausing, bandwidth proportional
 165 * allocation and configurability.
 166 *
 167 * This function tests whether the vmscan currently in progress can assume
 168 * that the normal dirty throttling mechanism is operational.
 169 */
 170static bool sane_reclaim(struct scan_control *sc)
 171{
 172	struct mem_cgroup *memcg = sc->target_mem_cgroup;
 173
 174	if (!memcg)
 175		return true;
 176#ifdef CONFIG_CGROUP_WRITEBACK
 177	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 178		return true;
 179#endif
 180	return false;
 181}
 182#else
 183static bool global_reclaim(struct scan_control *sc)
 184{
 185	return true;
 186}
 187
 188static bool sane_reclaim(struct scan_control *sc)
 189{
 190	return true;
 191}
 192#endif
 193
 194static unsigned long zone_reclaimable_pages(struct zone *zone)
 195{
 196	unsigned long nr;
 197
 198	nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
 199	     zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
 200	     zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
 201
 202	if (get_nr_swap_pages() > 0)
 203		nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
 204		      zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
 205		      zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
 206
 207	return nr;
 208}
 209
 210bool zone_reclaimable(struct zone *zone)
 211{
 212	return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
 213		zone_reclaimable_pages(zone) * 6;
 214}
 215
 216unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
 217{
 218	if (!mem_cgroup_disabled())
 219		return mem_cgroup_get_lru_size(lruvec, lru);
 220
 221	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
 222}
 223
 224/*
 225 * Add a shrinker callback to be called from the vm.
 226 */
 227int register_shrinker(struct shrinker *shrinker)
 228{
 229	size_t size = sizeof(*shrinker->nr_deferred);
 230
 
 
 
 
 
 
 
 
 231	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 232		size *= nr_node_ids;
 233
 234	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 235	if (!shrinker->nr_deferred)
 236		return -ENOMEM;
 237
 238	down_write(&shrinker_rwsem);
 239	list_add_tail(&shrinker->list, &shrinker_list);
 240	up_write(&shrinker_rwsem);
 241	return 0;
 242}
 243EXPORT_SYMBOL(register_shrinker);
 244
 245/*
 246 * Remove one
 247 */
 248void unregister_shrinker(struct shrinker *shrinker)
 249{
 250	down_write(&shrinker_rwsem);
 251	list_del(&shrinker->list);
 252	up_write(&shrinker_rwsem);
 253	kfree(shrinker->nr_deferred);
 254}
 255EXPORT_SYMBOL(unregister_shrinker);
 256
 257#define SHRINK_BATCH 128
 258
 259static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 260				    struct shrinker *shrinker,
 261				    unsigned long nr_scanned,
 262				    unsigned long nr_eligible)
 263{
 264	unsigned long freed = 0;
 265	unsigned long long delta;
 266	long total_scan;
 267	long freeable;
 268	long nr;
 269	long new_nr;
 270	int nid = shrinkctl->nid;
 271	long batch_size = shrinker->batch ? shrinker->batch
 272					  : SHRINK_BATCH;
 273
 274	freeable = shrinker->count_objects(shrinker, shrinkctl);
 275	if (freeable == 0)
 276		return 0;
 277
 278	/*
 279	 * copy the current shrinker scan count into a local variable
 280	 * and zero it so that other concurrent shrinker invocations
 281	 * don't also do this scanning work.
 282	 */
 283	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 284
 285	total_scan = nr;
 286	delta = (4 * nr_scanned) / shrinker->seeks;
 287	delta *= freeable;
 288	do_div(delta, nr_eligible + 1);
 289	total_scan += delta;
 290	if (total_scan < 0) {
 291		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 
 292		       shrinker->scan_objects, total_scan);
 293		total_scan = freeable;
 294	}
 295
 296	/*
 297	 * We need to avoid excessive windup on filesystem shrinkers
 298	 * due to large numbers of GFP_NOFS allocations causing the
 299	 * shrinkers to return -1 all the time. This results in a large
 300	 * nr being built up so when a shrink that can do some work
 301	 * comes along it empties the entire cache due to nr >>>
 302	 * freeable. This is bad for sustaining a working set in
 303	 * memory.
 304	 *
 305	 * Hence only allow the shrinker to scan the entire cache when
 306	 * a large delta change is calculated directly.
 307	 */
 308	if (delta < freeable / 4)
 309		total_scan = min(total_scan, freeable / 2);
 310
 311	/*
 312	 * Avoid risking looping forever due to too large nr value:
 313	 * never try to free more than twice the estimate number of
 314	 * freeable entries.
 315	 */
 316	if (total_scan > freeable * 2)
 317		total_scan = freeable * 2;
 318
 319	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 320				   nr_scanned, nr_eligible,
 321				   freeable, delta, total_scan);
 322
 323	/*
 324	 * Normally, we should not scan less than batch_size objects in one
 325	 * pass to avoid too frequent shrinker calls, but if the slab has less
 326	 * than batch_size objects in total and we are really tight on memory,
 327	 * we will try to reclaim all available objects, otherwise we can end
 328	 * up failing allocations although there are plenty of reclaimable
 329	 * objects spread over several slabs with usage less than the
 330	 * batch_size.
 331	 *
 332	 * We detect the "tight on memory" situations by looking at the total
 333	 * number of objects we want to scan (total_scan). If it is greater
 334	 * than the total number of objects on slab (freeable), we must be
 335	 * scanning at high prio and therefore should try to reclaim as much as
 336	 * possible.
 337	 */
 338	while (total_scan >= batch_size ||
 339	       total_scan >= freeable) {
 340		unsigned long ret;
 341		unsigned long nr_to_scan = min(batch_size, total_scan);
 342
 343		shrinkctl->nr_to_scan = nr_to_scan;
 344		ret = shrinker->scan_objects(shrinker, shrinkctl);
 345		if (ret == SHRINK_STOP)
 346			break;
 347		freed += ret;
 348
 349		count_vm_events(SLABS_SCANNED, nr_to_scan);
 350		total_scan -= nr_to_scan;
 351
 352		cond_resched();
 353	}
 354
 355	/*
 356	 * move the unused scan count back into the shrinker in a
 357	 * manner that handles concurrent updates. If we exhausted the
 358	 * scan, there is no need to do an update.
 359	 */
 360	if (total_scan > 0)
 361		new_nr = atomic_long_add_return(total_scan,
 362						&shrinker->nr_deferred[nid]);
 363	else
 364		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 365
 366	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 367	return freed;
 368}
 369
 370/**
 371 * shrink_slab - shrink slab caches
 372 * @gfp_mask: allocation context
 373 * @nid: node whose slab caches to target
 374 * @memcg: memory cgroup whose slab caches to target
 375 * @nr_scanned: pressure numerator
 376 * @nr_eligible: pressure denominator
 377 *
 378 * Call the shrink functions to age shrinkable caches.
 379 *
 380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 381 * unaware shrinkers will receive a node id of 0 instead.
 382 *
 383 * @memcg specifies the memory cgroup to target. If it is not NULL,
 384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
 385 * objects from the memory cgroup specified. Otherwise, only unaware
 386 * shrinkers are called.
 387 *
 388 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
 389 * the available objects should be scanned.  Page reclaim for example
 390 * passes the number of pages scanned and the number of pages on the
 391 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
 392 * when it encountered mapped pages.  The ratio is further biased by
 393 * the ->seeks setting of the shrink function, which indicates the
 394 * cost to recreate an object relative to that of an LRU page.
 395 *
 396 * Returns the number of reclaimed slab objects.
 397 */
 398static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 399				 struct mem_cgroup *memcg,
 400				 unsigned long nr_scanned,
 401				 unsigned long nr_eligible)
 402{
 403	struct shrinker *shrinker;
 404	unsigned long freed = 0;
 405
 406	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
 407		return 0;
 408
 409	if (nr_scanned == 0)
 410		nr_scanned = SWAP_CLUSTER_MAX;
 411
 412	if (!down_read_trylock(&shrinker_rwsem)) {
 413		/*
 414		 * If we would return 0, our callers would understand that we
 415		 * have nothing else to shrink and give up trying. By returning
 416		 * 1 we keep it going and assume we'll be able to shrink next
 417		 * time.
 418		 */
 419		freed = 1;
 420		goto out;
 421	}
 422
 423	list_for_each_entry(shrinker, &shrinker_list, list) {
 424		struct shrink_control sc = {
 425			.gfp_mask = gfp_mask,
 426			.nid = nid,
 427			.memcg = memcg,
 428		};
 429
 430		/*
 431		 * If kernel memory accounting is disabled, we ignore
 432		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
 433		 * passing NULL for memcg.
 434		 */
 435		if (memcg_kmem_enabled() &&
 436		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
 437			continue;
 
 438
 439		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 440			sc.nid = 0;
 
 
 441
 442		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
 443	}
 444
 445	up_read(&shrinker_rwsem);
 446out:
 447	cond_resched();
 448	return freed;
 449}
 450
 451void drop_slab_node(int nid)
 452{
 453	unsigned long freed;
 454
 455	do {
 456		struct mem_cgroup *memcg = NULL;
 457
 458		freed = 0;
 459		do {
 460			freed += shrink_slab(GFP_KERNEL, nid, memcg,
 461					     1000, 1000);
 462		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 463	} while (freed > 10);
 464}
 465
 466void drop_slab(void)
 467{
 468	int nid;
 469
 470	for_each_online_node(nid)
 471		drop_slab_node(nid);
 472}
 473
 474static inline int is_page_cache_freeable(struct page *page)
 475{
 476	/*
 477	 * A freeable page cache page is referenced only by the caller
 478	 * that isolated the page, the page cache radix tree and
 479	 * optional buffer heads at page->private.
 480	 */
 481	return page_count(page) - page_has_private(page) == 2;
 482}
 483
 484static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 
 485{
 486	if (current->flags & PF_SWAPWRITE)
 487		return 1;
 488	if (!inode_write_congested(inode))
 489		return 1;
 490	if (inode_to_bdi(inode) == current->backing_dev_info)
 491		return 1;
 492	return 0;
 493}
 494
 495/*
 496 * We detected a synchronous write error writing a page out.  Probably
 497 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 498 * fsync(), msync() or close().
 499 *
 500 * The tricky part is that after writepage we cannot touch the mapping: nothing
 501 * prevents it from being freed up.  But we have a ref on the page and once
 502 * that page is locked, the mapping is pinned.
 503 *
 504 * We're allowed to run sleeping lock_page() here because we know the caller has
 505 * __GFP_FS.
 506 */
 507static void handle_write_error(struct address_space *mapping,
 508				struct page *page, int error)
 509{
 510	lock_page(page);
 511	if (page_mapping(page) == mapping)
 512		mapping_set_error(mapping, error);
 513	unlock_page(page);
 514}
 515
 516/* possible outcome of pageout() */
 517typedef enum {
 518	/* failed to write page out, page is locked */
 519	PAGE_KEEP,
 520	/* move page to the active list, page is locked */
 521	PAGE_ACTIVATE,
 522	/* page has been sent to the disk successfully, page is unlocked */
 523	PAGE_SUCCESS,
 524	/* page is clean and locked */
 525	PAGE_CLEAN,
 526} pageout_t;
 527
 528/*
 529 * pageout is called by shrink_page_list() for each dirty page.
 530 * Calls ->writepage().
 531 */
 532static pageout_t pageout(struct page *page, struct address_space *mapping,
 533			 struct scan_control *sc)
 534{
 535	/*
 536	 * If the page is dirty, only perform writeback if that write
 537	 * will be non-blocking.  To prevent this allocation from being
 538	 * stalled by pagecache activity.  But note that there may be
 539	 * stalls if we need to run get_block().  We could test
 540	 * PagePrivate for that.
 541	 *
 542	 * If this process is currently in __generic_file_write_iter() against
 543	 * this page's queue, we can perform writeback even if that
 544	 * will block.
 545	 *
 546	 * If the page is swapcache, write it back even if that would
 547	 * block, for some throttling. This happens by accident, because
 548	 * swap_backing_dev_info is bust: it doesn't reflect the
 549	 * congestion state of the swapdevs.  Easy to fix, if needed.
 550	 */
 551	if (!is_page_cache_freeable(page))
 552		return PAGE_KEEP;
 553	if (!mapping) {
 554		/*
 555		 * Some data journaling orphaned pages can have
 556		 * page->mapping == NULL while being dirty with clean buffers.
 557		 */
 558		if (page_has_private(page)) {
 559			if (try_to_free_buffers(page)) {
 560				ClearPageDirty(page);
 561				pr_info("%s: orphaned page\n", __func__);
 562				return PAGE_CLEAN;
 563			}
 564		}
 565		return PAGE_KEEP;
 566	}
 567	if (mapping->a_ops->writepage == NULL)
 568		return PAGE_ACTIVATE;
 569	if (!may_write_to_inode(mapping->host, sc))
 570		return PAGE_KEEP;
 571
 572	if (clear_page_dirty_for_io(page)) {
 573		int res;
 574		struct writeback_control wbc = {
 575			.sync_mode = WB_SYNC_NONE,
 576			.nr_to_write = SWAP_CLUSTER_MAX,
 577			.range_start = 0,
 578			.range_end = LLONG_MAX,
 579			.for_reclaim = 1,
 580		};
 581
 582		SetPageReclaim(page);
 583		res = mapping->a_ops->writepage(page, &wbc);
 584		if (res < 0)
 585			handle_write_error(mapping, page, res);
 586		if (res == AOP_WRITEPAGE_ACTIVATE) {
 587			ClearPageReclaim(page);
 588			return PAGE_ACTIVATE;
 589		}
 590
 591		if (!PageWriteback(page)) {
 592			/* synchronous write or broken a_ops? */
 593			ClearPageReclaim(page);
 594		}
 595		trace_mm_vmscan_writepage(page);
 596		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 597		return PAGE_SUCCESS;
 598	}
 599
 600	return PAGE_CLEAN;
 601}
 602
 603/*
 604 * Same as remove_mapping, but if the page is removed from the mapping, it
 605 * gets returned with a refcount of 0.
 606 */
 607static int __remove_mapping(struct address_space *mapping, struct page *page,
 608			    bool reclaimed)
 609{
 610	unsigned long flags;
 611
 612	BUG_ON(!PageLocked(page));
 613	BUG_ON(mapping != page_mapping(page));
 614
 615	spin_lock_irqsave(&mapping->tree_lock, flags);
 616	/*
 617	 * The non racy check for a busy page.
 618	 *
 619	 * Must be careful with the order of the tests. When someone has
 620	 * a ref to the page, it may be possible that they dirty it then
 621	 * drop the reference. So if PageDirty is tested before page_count
 622	 * here, then the following race may occur:
 623	 *
 624	 * get_user_pages(&page);
 625	 * [user mapping goes away]
 626	 * write_to(page);
 627	 *				!PageDirty(page)    [good]
 628	 * SetPageDirty(page);
 629	 * put_page(page);
 630	 *				!page_count(page)   [good, discard it]
 631	 *
 632	 * [oops, our write_to data is lost]
 633	 *
 634	 * Reversing the order of the tests ensures such a situation cannot
 635	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 636	 * load is not satisfied before that of page->_count.
 637	 *
 638	 * Note that if SetPageDirty is always performed via set_page_dirty,
 639	 * and thus under tree_lock, then this ordering is not required.
 640	 */
 641	if (!page_ref_freeze(page, 2))
 642		goto cannot_free;
 643	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 644	if (unlikely(PageDirty(page))) {
 645		page_ref_unfreeze(page, 2);
 646		goto cannot_free;
 647	}
 648
 649	if (PageSwapCache(page)) {
 650		swp_entry_t swap = { .val = page_private(page) };
 651		mem_cgroup_swapout(page, swap);
 652		__delete_from_swap_cache(page);
 653		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 654		swapcache_free(swap);
 655	} else {
 656		void (*freepage)(struct page *);
 657		void *shadow = NULL;
 658
 659		freepage = mapping->a_ops->freepage;
 660		/*
 661		 * Remember a shadow entry for reclaimed file cache in
 662		 * order to detect refaults, thus thrashing, later on.
 663		 *
 664		 * But don't store shadows in an address space that is
 665		 * already exiting.  This is not just an optizimation,
 666		 * inode reclaim needs to empty out the radix tree or
 667		 * the nodes are lost.  Don't plant shadows behind its
 668		 * back.
 669		 *
 670		 * We also don't store shadows for DAX mappings because the
 671		 * only page cache pages found in these are zero pages
 672		 * covering holes, and because we don't want to mix DAX
 673		 * exceptional entries and shadow exceptional entries in the
 674		 * same page_tree.
 675		 */
 676		if (reclaimed && page_is_file_cache(page) &&
 677		    !mapping_exiting(mapping) && !dax_mapping(mapping))
 678			shadow = workingset_eviction(mapping, page);
 679		__delete_from_page_cache(page, shadow);
 680		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 681
 682		if (freepage != NULL)
 683			freepage(page);
 684	}
 685
 686	return 1;
 687
 688cannot_free:
 689	spin_unlock_irqrestore(&mapping->tree_lock, flags);
 690	return 0;
 691}
 692
 693/*
 694 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 695 * someone else has a ref on the page, abort and return 0.  If it was
 696 * successfully detached, return 1.  Assumes the caller has a single ref on
 697 * this page.
 698 */
 699int remove_mapping(struct address_space *mapping, struct page *page)
 700{
 701	if (__remove_mapping(mapping, page, false)) {
 702		/*
 703		 * Unfreezing the refcount with 1 rather than 2 effectively
 704		 * drops the pagecache ref for us without requiring another
 705		 * atomic operation.
 706		 */
 707		page_ref_unfreeze(page, 1);
 708		return 1;
 709	}
 710	return 0;
 711}
 712
 713/**
 714 * putback_lru_page - put previously isolated page onto appropriate LRU list
 715 * @page: page to be put back to appropriate lru list
 716 *
 717 * Add previously isolated @page to appropriate LRU list.
 718 * Page may still be unevictable for other reasons.
 719 *
 720 * lru_lock must not be held, interrupts must be enabled.
 721 */
 722void putback_lru_page(struct page *page)
 723{
 724	bool is_unevictable;
 725	int was_unevictable = PageUnevictable(page);
 726
 727	VM_BUG_ON_PAGE(PageLRU(page), page);
 728
 729redo:
 730	ClearPageUnevictable(page);
 731
 732	if (page_evictable(page)) {
 733		/*
 734		 * For evictable pages, we can use the cache.
 735		 * In event of a race, worst case is we end up with an
 736		 * unevictable page on [in]active list.
 737		 * We know how to handle that.
 738		 */
 739		is_unevictable = false;
 740		lru_cache_add(page);
 741	} else {
 742		/*
 743		 * Put unevictable pages directly on zone's unevictable
 744		 * list.
 745		 */
 746		is_unevictable = true;
 747		add_page_to_unevictable_list(page);
 748		/*
 749		 * When racing with an mlock or AS_UNEVICTABLE clearing
 750		 * (page is unlocked) make sure that if the other thread
 751		 * does not observe our setting of PG_lru and fails
 752		 * isolation/check_move_unevictable_pages,
 753		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 754		 * the page back to the evictable list.
 755		 *
 756		 * The other side is TestClearPageMlocked() or shmem_lock().
 757		 */
 758		smp_mb();
 759	}
 760
 761	/*
 762	 * page's status can change while we move it among lru. If an evictable
 763	 * page is on unevictable list, it never be freed. To avoid that,
 764	 * check after we added it to the list, again.
 765	 */
 766	if (is_unevictable && page_evictable(page)) {
 767		if (!isolate_lru_page(page)) {
 768			put_page(page);
 769			goto redo;
 770		}
 771		/* This means someone else dropped this page from LRU
 772		 * So, it will be freed or putback to LRU again. There is
 773		 * nothing to do here.
 774		 */
 775	}
 776
 777	if (was_unevictable && !is_unevictable)
 778		count_vm_event(UNEVICTABLE_PGRESCUED);
 779	else if (!was_unevictable && is_unevictable)
 780		count_vm_event(UNEVICTABLE_PGCULLED);
 781
 782	put_page(page);		/* drop ref from isolate */
 783}
 784
 785enum page_references {
 786	PAGEREF_RECLAIM,
 787	PAGEREF_RECLAIM_CLEAN,
 788	PAGEREF_KEEP,
 789	PAGEREF_ACTIVATE,
 790};
 791
 792static enum page_references page_check_references(struct page *page,
 793						  struct scan_control *sc)
 794{
 795	int referenced_ptes, referenced_page;
 796	unsigned long vm_flags;
 797
 798	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 799					  &vm_flags);
 800	referenced_page = TestClearPageReferenced(page);
 801
 802	/*
 803	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 804	 * move the page to the unevictable list.
 805	 */
 806	if (vm_flags & VM_LOCKED)
 807		return PAGEREF_RECLAIM;
 808
 809	if (referenced_ptes) {
 810		if (PageSwapBacked(page))
 811			return PAGEREF_ACTIVATE;
 812		/*
 813		 * All mapped pages start out with page table
 814		 * references from the instantiating fault, so we need
 815		 * to look twice if a mapped file page is used more
 816		 * than once.
 817		 *
 818		 * Mark it and spare it for another trip around the
 819		 * inactive list.  Another page table reference will
 820		 * lead to its activation.
 821		 *
 822		 * Note: the mark is set for activated pages as well
 823		 * so that recently deactivated but used pages are
 824		 * quickly recovered.
 825		 */
 826		SetPageReferenced(page);
 827
 828		if (referenced_page || referenced_ptes > 1)
 829			return PAGEREF_ACTIVATE;
 830
 831		/*
 832		 * Activate file-backed executable pages after first usage.
 833		 */
 834		if (vm_flags & VM_EXEC)
 835			return PAGEREF_ACTIVATE;
 836
 837		return PAGEREF_KEEP;
 838	}
 839
 840	/* Reclaim if clean, defer dirty pages to writeback */
 841	if (referenced_page && !PageSwapBacked(page))
 842		return PAGEREF_RECLAIM_CLEAN;
 843
 844	return PAGEREF_RECLAIM;
 845}
 846
 847/* Check if a page is dirty or under writeback */
 848static void page_check_dirty_writeback(struct page *page,
 849				       bool *dirty, bool *writeback)
 850{
 851	struct address_space *mapping;
 852
 853	/*
 854	 * Anonymous pages are not handled by flushers and must be written
 855	 * from reclaim context. Do not stall reclaim based on them
 856	 */
 857	if (!page_is_file_cache(page)) {
 858		*dirty = false;
 859		*writeback = false;
 860		return;
 861	}
 862
 863	/* By default assume that the page flags are accurate */
 864	*dirty = PageDirty(page);
 865	*writeback = PageWriteback(page);
 866
 867	/* Verify dirty/writeback state if the filesystem supports it */
 868	if (!page_has_private(page))
 869		return;
 870
 871	mapping = page_mapping(page);
 872	if (mapping && mapping->a_ops->is_dirty_writeback)
 873		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 874}
 875
 876/*
 877 * shrink_page_list() returns the number of reclaimed pages
 878 */
 879static unsigned long shrink_page_list(struct list_head *page_list,
 880				      struct zone *zone,
 881				      struct scan_control *sc,
 882				      enum ttu_flags ttu_flags,
 883				      unsigned long *ret_nr_dirty,
 884				      unsigned long *ret_nr_unqueued_dirty,
 885				      unsigned long *ret_nr_congested,
 886				      unsigned long *ret_nr_writeback,
 887				      unsigned long *ret_nr_immediate,
 888				      bool force_reclaim)
 889{
 890	LIST_HEAD(ret_pages);
 891	LIST_HEAD(free_pages);
 892	int pgactivate = 0;
 893	unsigned long nr_unqueued_dirty = 0;
 894	unsigned long nr_dirty = 0;
 895	unsigned long nr_congested = 0;
 896	unsigned long nr_reclaimed = 0;
 897	unsigned long nr_writeback = 0;
 898	unsigned long nr_immediate = 0;
 899
 900	cond_resched();
 901
 
 902	while (!list_empty(page_list)) {
 903		struct address_space *mapping;
 904		struct page *page;
 905		int may_enter_fs;
 906		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 907		bool dirty, writeback;
 908		bool lazyfree = false;
 909		int ret = SWAP_SUCCESS;
 910
 911		cond_resched();
 912
 913		page = lru_to_page(page_list);
 914		list_del(&page->lru);
 915
 916		if (!trylock_page(page))
 917			goto keep;
 918
 919		VM_BUG_ON_PAGE(PageActive(page), page);
 920		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
 921
 922		sc->nr_scanned++;
 923
 924		if (unlikely(!page_evictable(page)))
 925			goto cull_mlocked;
 926
 927		if (!sc->may_unmap && page_mapped(page))
 928			goto keep_locked;
 929
 930		/* Double the slab pressure for mapped and swapcache pages */
 931		if (page_mapped(page) || PageSwapCache(page))
 932			sc->nr_scanned++;
 933
 934		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 935			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 936
 937		/*
 938		 * The number of dirty pages determines if a zone is marked
 939		 * reclaim_congested which affects wait_iff_congested. kswapd
 940		 * will stall and start writing pages if the tail of the LRU
 941		 * is all dirty unqueued pages.
 942		 */
 943		page_check_dirty_writeback(page, &dirty, &writeback);
 944		if (dirty || writeback)
 945			nr_dirty++;
 946
 947		if (dirty && !writeback)
 948			nr_unqueued_dirty++;
 949
 950		/*
 951		 * Treat this page as congested if the underlying BDI is or if
 952		 * pages are cycling through the LRU so quickly that the
 953		 * pages marked for immediate reclaim are making it to the
 954		 * end of the LRU a second time.
 955		 */
 956		mapping = page_mapping(page);
 957		if (((dirty || writeback) && mapping &&
 958		     inode_write_congested(mapping->host)) ||
 959		    (writeback && PageReclaim(page)))
 960			nr_congested++;
 961
 962		/*
 963		 * If a page at the tail of the LRU is under writeback, there
 964		 * are three cases to consider.
 965		 *
 966		 * 1) If reclaim is encountering an excessive number of pages
 967		 *    under writeback and this page is both under writeback and
 968		 *    PageReclaim then it indicates that pages are being queued
 969		 *    for IO but are being recycled through the LRU before the
 970		 *    IO can complete. Waiting on the page itself risks an
 971		 *    indefinite stall if it is impossible to writeback the
 972		 *    page due to IO error or disconnected storage so instead
 973		 *    note that the LRU is being scanned too quickly and the
 974		 *    caller can stall after page list has been processed.
 975		 *
 976		 * 2) Global or new memcg reclaim encounters a page that is
 977		 *    not marked for immediate reclaim, or the caller does not
 978		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
 979		 *    not to fs). In this case mark the page for immediate
 980		 *    reclaim and continue scanning.
 981		 *
 982		 *    Require may_enter_fs because we would wait on fs, which
 983		 *    may not have submitted IO yet. And the loop driver might
 984		 *    enter reclaim, and deadlock if it waits on a page for
 985		 *    which it is needed to do the write (loop masks off
 986		 *    __GFP_IO|__GFP_FS for this reason); but more thought
 987		 *    would probably show more reasons.
 988		 *
 989		 * 3) Legacy memcg encounters a page that is already marked
 
 
 
 
 
 
 990		 *    PageReclaim. memcg does not have any dirty pages
 991		 *    throttling so we could easily OOM just because too many
 992		 *    pages are in writeback and there is nothing else to
 993		 *    reclaim. Wait for the writeback to complete.
 994		 */
 995		if (PageWriteback(page)) {
 996			/* Case 1 above */
 997			if (current_is_kswapd() &&
 998			    PageReclaim(page) &&
 999			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
1000				nr_immediate++;
1001				goto keep_locked;
1002
1003			/* Case 2 above */
1004			} else if (sane_reclaim(sc) ||
1005			    !PageReclaim(page) || !may_enter_fs) {
1006				/*
1007				 * This is slightly racy - end_page_writeback()
1008				 * might have just cleared PageReclaim, then
1009				 * setting PageReclaim here end up interpreted
1010				 * as PageReadahead - but that does not matter
1011				 * enough to care.  What we do want is for this
1012				 * page to have PageReclaim set next time memcg
1013				 * reclaim reaches the tests above, so it will
1014				 * then wait_on_page_writeback() to avoid OOM;
1015				 * and it's also appropriate in global reclaim.
1016				 */
1017				SetPageReclaim(page);
1018				nr_writeback++;
 
1019				goto keep_locked;
1020
1021			/* Case 3 above */
1022			} else {
1023				unlock_page(page);
1024				wait_on_page_writeback(page);
1025				/* then go back and try same page again */
1026				list_add_tail(&page->lru, page_list);
1027				continue;
1028			}
1029		}
1030
1031		if (!force_reclaim)
1032			references = page_check_references(page, sc);
1033
1034		switch (references) {
1035		case PAGEREF_ACTIVATE:
1036			goto activate_locked;
1037		case PAGEREF_KEEP:
1038			goto keep_locked;
1039		case PAGEREF_RECLAIM:
1040		case PAGEREF_RECLAIM_CLEAN:
1041			; /* try to reclaim the page below */
1042		}
1043
1044		/*
1045		 * Anonymous process memory has backing store?
1046		 * Try to allocate it some swap space here.
1047		 */
1048		if (PageAnon(page) && !PageSwapCache(page)) {
1049			if (!(sc->gfp_mask & __GFP_IO))
1050				goto keep_locked;
1051			if (!add_to_swap(page, page_list))
1052				goto activate_locked;
1053			lazyfree = true;
1054			may_enter_fs = 1;
1055
1056			/* Adding to swap updated mapping */
1057			mapping = page_mapping(page);
1058		}
1059
1060		/*
1061		 * The page is mapped into the page tables of one or more
1062		 * processes. Try to unmap it here.
1063		 */
1064		if (page_mapped(page) && mapping) {
1065			switch (ret = try_to_unmap(page, lazyfree ?
1066				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1067				(ttu_flags | TTU_BATCH_FLUSH))) {
1068			case SWAP_FAIL:
1069				goto activate_locked;
1070			case SWAP_AGAIN:
1071				goto keep_locked;
1072			case SWAP_MLOCK:
1073				goto cull_mlocked;
1074			case SWAP_LZFREE:
1075				goto lazyfree;
1076			case SWAP_SUCCESS:
1077				; /* try to free the page below */
1078			}
1079		}
1080
1081		if (PageDirty(page)) {
1082			/*
1083			 * Only kswapd can writeback filesystem pages to
1084			 * avoid risk of stack overflow but only writeback
1085			 * if many dirty pages have been encountered.
1086			 */
1087			if (page_is_file_cache(page) &&
1088					(!current_is_kswapd() ||
1089					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1090				/*
1091				 * Immediately reclaim when written back.
1092				 * Similar in principal to deactivate_page()
1093				 * except we already have the page isolated
1094				 * and know it's dirty
1095				 */
1096				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1097				SetPageReclaim(page);
1098
1099				goto keep_locked;
1100			}
1101
1102			if (references == PAGEREF_RECLAIM_CLEAN)
1103				goto keep_locked;
1104			if (!may_enter_fs)
1105				goto keep_locked;
1106			if (!sc->may_writepage)
1107				goto keep_locked;
1108
1109			/*
1110			 * Page is dirty. Flush the TLB if a writable entry
1111			 * potentially exists to avoid CPU writes after IO
1112			 * starts and then write it out here.
1113			 */
1114			try_to_unmap_flush_dirty();
1115			switch (pageout(page, mapping, sc)) {
1116			case PAGE_KEEP:
1117				goto keep_locked;
1118			case PAGE_ACTIVATE:
1119				goto activate_locked;
1120			case PAGE_SUCCESS:
1121				if (PageWriteback(page))
1122					goto keep;
1123				if (PageDirty(page))
1124					goto keep;
1125
1126				/*
1127				 * A synchronous write - probably a ramdisk.  Go
1128				 * ahead and try to reclaim the page.
1129				 */
1130				if (!trylock_page(page))
1131					goto keep;
1132				if (PageDirty(page) || PageWriteback(page))
1133					goto keep_locked;
1134				mapping = page_mapping(page);
1135			case PAGE_CLEAN:
1136				; /* try to free the page below */
1137			}
1138		}
1139
1140		/*
1141		 * If the page has buffers, try to free the buffer mappings
1142		 * associated with this page. If we succeed we try to free
1143		 * the page as well.
1144		 *
1145		 * We do this even if the page is PageDirty().
1146		 * try_to_release_page() does not perform I/O, but it is
1147		 * possible for a page to have PageDirty set, but it is actually
1148		 * clean (all its buffers are clean).  This happens if the
1149		 * buffers were written out directly, with submit_bh(). ext3
1150		 * will do this, as well as the blockdev mapping.
1151		 * try_to_release_page() will discover that cleanness and will
1152		 * drop the buffers and mark the page clean - it can be freed.
1153		 *
1154		 * Rarely, pages can have buffers and no ->mapping.  These are
1155		 * the pages which were not successfully invalidated in
1156		 * truncate_complete_page().  We try to drop those buffers here
1157		 * and if that worked, and the page is no longer mapped into
1158		 * process address space (page_count == 1) it can be freed.
1159		 * Otherwise, leave the page on the LRU so it is swappable.
1160		 */
1161		if (page_has_private(page)) {
1162			if (!try_to_release_page(page, sc->gfp_mask))
1163				goto activate_locked;
1164			if (!mapping && page_count(page) == 1) {
1165				unlock_page(page);
1166				if (put_page_testzero(page))
1167					goto free_it;
1168				else {
1169					/*
1170					 * rare race with speculative reference.
1171					 * the speculative reference will free
1172					 * this page shortly, so we may
1173					 * increment nr_reclaimed here (and
1174					 * leave it off the LRU).
1175					 */
1176					nr_reclaimed++;
1177					continue;
1178				}
1179			}
1180		}
1181
1182lazyfree:
1183		if (!mapping || !__remove_mapping(mapping, page, true))
1184			goto keep_locked;
1185
1186		/*
1187		 * At this point, we have no other references and there is
1188		 * no way to pick any more up (removed from LRU, removed
1189		 * from pagecache). Can use non-atomic bitops now (and
1190		 * we obviously don't have to worry about waking up a process
1191		 * waiting on the page lock, because there are no references.
1192		 */
1193		__ClearPageLocked(page);
1194free_it:
1195		if (ret == SWAP_LZFREE)
1196			count_vm_event(PGLAZYFREED);
1197
1198		nr_reclaimed++;
1199
1200		/*
1201		 * Is there need to periodically free_page_list? It would
1202		 * appear not as the counts should be low
1203		 */
1204		list_add(&page->lru, &free_pages);
1205		continue;
1206
1207cull_mlocked:
1208		if (PageSwapCache(page))
1209			try_to_free_swap(page);
1210		unlock_page(page);
1211		list_add(&page->lru, &ret_pages);
1212		continue;
1213
1214activate_locked:
1215		/* Not a candidate for swapping, so reclaim swap space. */
1216		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1217			try_to_free_swap(page);
1218		VM_BUG_ON_PAGE(PageActive(page), page);
1219		SetPageActive(page);
1220		pgactivate++;
1221keep_locked:
1222		unlock_page(page);
1223keep:
1224		list_add(&page->lru, &ret_pages);
1225		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1226	}
1227
1228	mem_cgroup_uncharge_list(&free_pages);
1229	try_to_unmap_flush();
1230	free_hot_cold_page_list(&free_pages, true);
1231
1232	list_splice(&ret_pages, page_list);
1233	count_vm_events(PGACTIVATE, pgactivate);
1234
1235	*ret_nr_dirty += nr_dirty;
1236	*ret_nr_congested += nr_congested;
1237	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1238	*ret_nr_writeback += nr_writeback;
1239	*ret_nr_immediate += nr_immediate;
1240	return nr_reclaimed;
1241}
1242
1243unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1244					    struct list_head *page_list)
1245{
1246	struct scan_control sc = {
1247		.gfp_mask = GFP_KERNEL,
1248		.priority = DEF_PRIORITY,
1249		.may_unmap = 1,
1250	};
1251	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1252	struct page *page, *next;
1253	LIST_HEAD(clean_pages);
1254
1255	list_for_each_entry_safe(page, next, page_list, lru) {
1256		if (page_is_file_cache(page) && !PageDirty(page) &&
1257		    !isolated_balloon_page(page)) {
1258			ClearPageActive(page);
1259			list_move(&page->lru, &clean_pages);
1260		}
1261	}
1262
1263	ret = shrink_page_list(&clean_pages, zone, &sc,
1264			TTU_UNMAP|TTU_IGNORE_ACCESS,
1265			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1266	list_splice(&clean_pages, page_list);
1267	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1268	return ret;
1269}
1270
1271/*
1272 * Attempt to remove the specified page from its LRU.  Only take this page
1273 * if it is of the appropriate PageActive status.  Pages which are being
1274 * freed elsewhere are also ignored.
1275 *
1276 * page:	page to consider
1277 * mode:	one of the LRU isolation modes defined above
1278 *
1279 * returns 0 on success, -ve errno on failure.
1280 */
1281int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1282{
1283	int ret = -EINVAL;
1284
1285	/* Only take pages on the LRU. */
1286	if (!PageLRU(page))
1287		return ret;
1288
1289	/* Compaction should not handle unevictable pages but CMA can do so */
1290	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1291		return ret;
1292
1293	ret = -EBUSY;
1294
1295	/*
1296	 * To minimise LRU disruption, the caller can indicate that it only
1297	 * wants to isolate pages it will be able to operate on without
1298	 * blocking - clean pages for the most part.
1299	 *
1300	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1301	 * is used by reclaim when it is cannot write to backing storage
1302	 *
1303	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1304	 * that it is possible to migrate without blocking
1305	 */
1306	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1307		/* All the caller can do on PageWriteback is block */
1308		if (PageWriteback(page))
1309			return ret;
1310
1311		if (PageDirty(page)) {
1312			struct address_space *mapping;
1313
1314			/* ISOLATE_CLEAN means only clean pages */
1315			if (mode & ISOLATE_CLEAN)
1316				return ret;
1317
1318			/*
1319			 * Only pages without mappings or that have a
1320			 * ->migratepage callback are possible to migrate
1321			 * without blocking
1322			 */
1323			mapping = page_mapping(page);
1324			if (mapping && !mapping->a_ops->migratepage)
1325				return ret;
1326		}
1327	}
1328
1329	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1330		return ret;
1331
1332	if (likely(get_page_unless_zero(page))) {
1333		/*
1334		 * Be careful not to clear PageLRU until after we're
1335		 * sure the page is not being freed elsewhere -- the
1336		 * page release code relies on it.
1337		 */
1338		ClearPageLRU(page);
1339		ret = 0;
1340	}
1341
1342	return ret;
1343}
1344
1345/*
1346 * zone->lru_lock is heavily contended.  Some of the functions that
1347 * shrink the lists perform better by taking out a batch of pages
1348 * and working on them outside the LRU lock.
1349 *
1350 * For pagecache intensive workloads, this function is the hottest
1351 * spot in the kernel (apart from copy_*_user functions).
1352 *
1353 * Appropriate locks must be held before calling this function.
1354 *
1355 * @nr_to_scan:	The number of pages to look through on the list.
1356 * @lruvec:	The LRU vector to pull pages from.
1357 * @dst:	The temp list to put pages on to.
1358 * @nr_scanned:	The number of pages that were scanned.
1359 * @sc:		The scan_control struct for this reclaim session
1360 * @mode:	One of the LRU isolation modes
1361 * @lru:	LRU list id for isolating
1362 *
1363 * returns how many pages were moved onto *@dst.
1364 */
1365static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1366		struct lruvec *lruvec, struct list_head *dst,
1367		unsigned long *nr_scanned, struct scan_control *sc,
1368		isolate_mode_t mode, enum lru_list lru)
1369{
1370	struct list_head *src = &lruvec->lists[lru];
1371	unsigned long nr_taken = 0;
1372	unsigned long scan;
1373
1374	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1375					!list_empty(src); scan++) {
1376		struct page *page;
1377		int nr_pages;
1378
1379		page = lru_to_page(src);
1380		prefetchw_prev_lru_page(page, src, flags);
1381
1382		VM_BUG_ON_PAGE(!PageLRU(page), page);
1383
1384		switch (__isolate_lru_page(page, mode)) {
1385		case 0:
1386			nr_pages = hpage_nr_pages(page);
1387			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1388			list_move(&page->lru, dst);
1389			nr_taken += nr_pages;
1390			break;
1391
1392		case -EBUSY:
1393			/* else it is being freed elsewhere */
1394			list_move(&page->lru, src);
1395			continue;
1396
1397		default:
1398			BUG();
1399		}
1400	}
1401
1402	*nr_scanned = scan;
1403	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1404				    nr_taken, mode, is_file_lru(lru));
1405	return nr_taken;
1406}
1407
1408/**
1409 * isolate_lru_page - tries to isolate a page from its LRU list
1410 * @page: page to isolate from its LRU list
1411 *
1412 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1413 * vmstat statistic corresponding to whatever LRU list the page was on.
1414 *
1415 * Returns 0 if the page was removed from an LRU list.
1416 * Returns -EBUSY if the page was not on an LRU list.
1417 *
1418 * The returned page will have PageLRU() cleared.  If it was found on
1419 * the active list, it will have PageActive set.  If it was found on
1420 * the unevictable list, it will have the PageUnevictable bit set. That flag
1421 * may need to be cleared by the caller before letting the page go.
1422 *
1423 * The vmstat statistic corresponding to the list on which the page was
1424 * found will be decremented.
1425 *
1426 * Restrictions:
1427 * (1) Must be called with an elevated refcount on the page. This is a
1428 *     fundamentnal difference from isolate_lru_pages (which is called
1429 *     without a stable reference).
1430 * (2) the lru_lock must not be held.
1431 * (3) interrupts must be enabled.
1432 */
1433int isolate_lru_page(struct page *page)
1434{
1435	int ret = -EBUSY;
1436
1437	VM_BUG_ON_PAGE(!page_count(page), page);
1438	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1439
1440	if (PageLRU(page)) {
1441		struct zone *zone = page_zone(page);
1442		struct lruvec *lruvec;
1443
1444		spin_lock_irq(&zone->lru_lock);
1445		lruvec = mem_cgroup_page_lruvec(page, zone);
1446		if (PageLRU(page)) {
1447			int lru = page_lru(page);
1448			get_page(page);
1449			ClearPageLRU(page);
1450			del_page_from_lru_list(page, lruvec, lru);
1451			ret = 0;
1452		}
1453		spin_unlock_irq(&zone->lru_lock);
1454	}
1455	return ret;
1456}
1457
1458/*
1459 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1460 * then get resheduled. When there are massive number of tasks doing page
1461 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1462 * the LRU list will go small and be scanned faster than necessary, leading to
1463 * unnecessary swapping, thrashing and OOM.
1464 */
1465static int too_many_isolated(struct zone *zone, int file,
1466		struct scan_control *sc)
1467{
1468	unsigned long inactive, isolated;
1469
1470	if (current_is_kswapd())
1471		return 0;
1472
1473	if (!sane_reclaim(sc))
1474		return 0;
1475
1476	if (file) {
1477		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1478		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1479	} else {
1480		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1481		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1482	}
1483
1484	/*
1485	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1486	 * won't get blocked by normal direct-reclaimers, forming a circular
1487	 * deadlock.
1488	 */
1489	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1490		inactive >>= 3;
1491
1492	return isolated > inactive;
1493}
1494
1495static noinline_for_stack void
1496putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1497{
1498	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1499	struct zone *zone = lruvec_zone(lruvec);
1500	LIST_HEAD(pages_to_free);
1501
1502	/*
1503	 * Put back any unfreeable pages.
1504	 */
1505	while (!list_empty(page_list)) {
1506		struct page *page = lru_to_page(page_list);
1507		int lru;
1508
1509		VM_BUG_ON_PAGE(PageLRU(page), page);
1510		list_del(&page->lru);
1511		if (unlikely(!page_evictable(page))) {
1512			spin_unlock_irq(&zone->lru_lock);
1513			putback_lru_page(page);
1514			spin_lock_irq(&zone->lru_lock);
1515			continue;
1516		}
1517
1518		lruvec = mem_cgroup_page_lruvec(page, zone);
1519
1520		SetPageLRU(page);
1521		lru = page_lru(page);
1522		add_page_to_lru_list(page, lruvec, lru);
1523
1524		if (is_active_lru(lru)) {
1525			int file = is_file_lru(lru);
1526			int numpages = hpage_nr_pages(page);
1527			reclaim_stat->recent_rotated[file] += numpages;
1528		}
1529		if (put_page_testzero(page)) {
1530			__ClearPageLRU(page);
1531			__ClearPageActive(page);
1532			del_page_from_lru_list(page, lruvec, lru);
1533
1534			if (unlikely(PageCompound(page))) {
1535				spin_unlock_irq(&zone->lru_lock);
1536				mem_cgroup_uncharge(page);
1537				(*get_compound_page_dtor(page))(page);
1538				spin_lock_irq(&zone->lru_lock);
1539			} else
1540				list_add(&page->lru, &pages_to_free);
1541		}
1542	}
1543
1544	/*
1545	 * To save our caller's stack, now use input list for pages to free.
1546	 */
1547	list_splice(&pages_to_free, page_list);
1548}
1549
1550/*
1551 * If a kernel thread (such as nfsd for loop-back mounts) services
1552 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1553 * In that case we should only throttle if the backing device it is
1554 * writing to is congested.  In other cases it is safe to throttle.
1555 */
1556static int current_may_throttle(void)
1557{
1558	return !(current->flags & PF_LESS_THROTTLE) ||
1559		current->backing_dev_info == NULL ||
1560		bdi_write_congested(current->backing_dev_info);
1561}
1562
1563/*
1564 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1565 * of reclaimed pages
1566 */
1567static noinline_for_stack unsigned long
1568shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1569		     struct scan_control *sc, enum lru_list lru)
1570{
1571	LIST_HEAD(page_list);
1572	unsigned long nr_scanned;
1573	unsigned long nr_reclaimed = 0;
1574	unsigned long nr_taken;
1575	unsigned long nr_dirty = 0;
1576	unsigned long nr_congested = 0;
1577	unsigned long nr_unqueued_dirty = 0;
1578	unsigned long nr_writeback = 0;
1579	unsigned long nr_immediate = 0;
1580	isolate_mode_t isolate_mode = 0;
1581	int file = is_file_lru(lru);
1582	struct zone *zone = lruvec_zone(lruvec);
1583	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1584
1585	while (unlikely(too_many_isolated(zone, file, sc))) {
1586		congestion_wait(BLK_RW_ASYNC, HZ/10);
1587
1588		/* We are about to die and free our memory. Return now. */
1589		if (fatal_signal_pending(current))
1590			return SWAP_CLUSTER_MAX;
1591	}
1592
1593	lru_add_drain();
1594
1595	if (!sc->may_unmap)
1596		isolate_mode |= ISOLATE_UNMAPPED;
1597	if (!sc->may_writepage)
1598		isolate_mode |= ISOLATE_CLEAN;
1599
1600	spin_lock_irq(&zone->lru_lock);
1601
1602	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1603				     &nr_scanned, sc, isolate_mode, lru);
1604
1605	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1606	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1607
1608	if (global_reclaim(sc)) {
1609		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1610		if (current_is_kswapd())
1611			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1612		else
1613			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1614	}
1615	spin_unlock_irq(&zone->lru_lock);
1616
1617	if (nr_taken == 0)
1618		return 0;
1619
1620	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1621				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1622				&nr_writeback, &nr_immediate,
1623				false);
1624
1625	spin_lock_irq(&zone->lru_lock);
1626
1627	reclaim_stat->recent_scanned[file] += nr_taken;
1628
1629	if (global_reclaim(sc)) {
1630		if (current_is_kswapd())
1631			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1632					       nr_reclaimed);
1633		else
1634			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1635					       nr_reclaimed);
1636	}
1637
1638	putback_inactive_pages(lruvec, &page_list);
1639
1640	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1641
1642	spin_unlock_irq(&zone->lru_lock);
1643
1644	mem_cgroup_uncharge_list(&page_list);
1645	free_hot_cold_page_list(&page_list, true);
1646
1647	/*
1648	 * If reclaim is isolating dirty pages under writeback, it implies
1649	 * that the long-lived page allocation rate is exceeding the page
1650	 * laundering rate. Either the global limits are not being effective
1651	 * at throttling processes due to the page distribution throughout
1652	 * zones or there is heavy usage of a slow backing device. The
1653	 * only option is to throttle from reclaim context which is not ideal
1654	 * as there is no guarantee the dirtying process is throttled in the
1655	 * same way balance_dirty_pages() manages.
1656	 *
1657	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1658	 * of pages under pages flagged for immediate reclaim and stall if any
1659	 * are encountered in the nr_immediate check below.
1660	 */
1661	if (nr_writeback && nr_writeback == nr_taken)
1662		set_bit(ZONE_WRITEBACK, &zone->flags);
1663
1664	/*
1665	 * Legacy memcg will stall in page writeback so avoid forcibly
1666	 * stalling here.
1667	 */
1668	if (sane_reclaim(sc)) {
1669		/*
1670		 * Tag a zone as congested if all the dirty pages scanned were
1671		 * backed by a congested BDI and wait_iff_congested will stall.
1672		 */
1673		if (nr_dirty && nr_dirty == nr_congested)
1674			set_bit(ZONE_CONGESTED, &zone->flags);
1675
1676		/*
1677		 * If dirty pages are scanned that are not queued for IO, it
1678		 * implies that flushers are not keeping up. In this case, flag
1679		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1680		 * reclaim context.
 
1681		 */
1682		if (nr_unqueued_dirty == nr_taken)
1683			set_bit(ZONE_DIRTY, &zone->flags);
1684
1685		/*
1686		 * If kswapd scans pages marked marked for immediate
1687		 * reclaim and under writeback (nr_immediate), it implies
1688		 * that pages are cycling through the LRU faster than
1689		 * they are written so also forcibly stall.
1690		 */
1691		if (nr_immediate && current_may_throttle())
1692			congestion_wait(BLK_RW_ASYNC, HZ/10);
1693	}
1694
1695	/*
1696	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1697	 * is congested. Allow kswapd to continue until it starts encountering
1698	 * unqueued dirty pages or cycling through the LRU too quickly.
1699	 */
1700	if (!sc->hibernation_mode && !current_is_kswapd() &&
1701	    current_may_throttle())
1702		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1703
1704	trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1705			sc->priority, file);
 
 
 
1706	return nr_reclaimed;
1707}
1708
1709/*
1710 * This moves pages from the active list to the inactive list.
1711 *
1712 * We move them the other way if the page is referenced by one or more
1713 * processes, from rmap.
1714 *
1715 * If the pages are mostly unmapped, the processing is fast and it is
1716 * appropriate to hold zone->lru_lock across the whole operation.  But if
1717 * the pages are mapped, the processing is slow (page_referenced()) so we
1718 * should drop zone->lru_lock around each page.  It's impossible to balance
1719 * this, so instead we remove the pages from the LRU while processing them.
1720 * It is safe to rely on PG_active against the non-LRU pages in here because
1721 * nobody will play with that bit on a non-LRU page.
1722 *
1723 * The downside is that we have to touch page->_count against each page.
1724 * But we had to alter page->flags anyway.
1725 */
1726
1727static void move_active_pages_to_lru(struct lruvec *lruvec,
1728				     struct list_head *list,
1729				     struct list_head *pages_to_free,
1730				     enum lru_list lru)
1731{
1732	struct zone *zone = lruvec_zone(lruvec);
1733	unsigned long pgmoved = 0;
1734	struct page *page;
1735	int nr_pages;
1736
1737	while (!list_empty(list)) {
1738		page = lru_to_page(list);
1739		lruvec = mem_cgroup_page_lruvec(page, zone);
1740
1741		VM_BUG_ON_PAGE(PageLRU(page), page);
1742		SetPageLRU(page);
1743
1744		nr_pages = hpage_nr_pages(page);
1745		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1746		list_move(&page->lru, &lruvec->lists[lru]);
1747		pgmoved += nr_pages;
1748
1749		if (put_page_testzero(page)) {
1750			__ClearPageLRU(page);
1751			__ClearPageActive(page);
1752			del_page_from_lru_list(page, lruvec, lru);
1753
1754			if (unlikely(PageCompound(page))) {
1755				spin_unlock_irq(&zone->lru_lock);
1756				mem_cgroup_uncharge(page);
1757				(*get_compound_page_dtor(page))(page);
1758				spin_lock_irq(&zone->lru_lock);
1759			} else
1760				list_add(&page->lru, pages_to_free);
1761		}
1762	}
1763	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1764	if (!is_active_lru(lru))
1765		__count_vm_events(PGDEACTIVATE, pgmoved);
1766}
1767
1768static void shrink_active_list(unsigned long nr_to_scan,
1769			       struct lruvec *lruvec,
1770			       struct scan_control *sc,
1771			       enum lru_list lru)
1772{
1773	unsigned long nr_taken;
1774	unsigned long nr_scanned;
1775	unsigned long vm_flags;
1776	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1777	LIST_HEAD(l_active);
1778	LIST_HEAD(l_inactive);
1779	struct page *page;
1780	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1781	unsigned long nr_rotated = 0;
1782	isolate_mode_t isolate_mode = 0;
1783	int file = is_file_lru(lru);
1784	struct zone *zone = lruvec_zone(lruvec);
1785
1786	lru_add_drain();
1787
1788	if (!sc->may_unmap)
1789		isolate_mode |= ISOLATE_UNMAPPED;
1790	if (!sc->may_writepage)
1791		isolate_mode |= ISOLATE_CLEAN;
1792
1793	spin_lock_irq(&zone->lru_lock);
1794
1795	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1796				     &nr_scanned, sc, isolate_mode, lru);
1797	if (global_reclaim(sc))
1798		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1799
1800	reclaim_stat->recent_scanned[file] += nr_taken;
1801
1802	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1803	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1804	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1805	spin_unlock_irq(&zone->lru_lock);
1806
1807	while (!list_empty(&l_hold)) {
1808		cond_resched();
1809		page = lru_to_page(&l_hold);
1810		list_del(&page->lru);
1811
1812		if (unlikely(!page_evictable(page))) {
1813			putback_lru_page(page);
1814			continue;
1815		}
1816
1817		if (unlikely(buffer_heads_over_limit)) {
1818			if (page_has_private(page) && trylock_page(page)) {
1819				if (page_has_private(page))
1820					try_to_release_page(page, 0);
1821				unlock_page(page);
1822			}
1823		}
1824
1825		if (page_referenced(page, 0, sc->target_mem_cgroup,
1826				    &vm_flags)) {
1827			nr_rotated += hpage_nr_pages(page);
1828			/*
1829			 * Identify referenced, file-backed active pages and
1830			 * give them one more trip around the active list. So
1831			 * that executable code get better chances to stay in
1832			 * memory under moderate memory pressure.  Anon pages
1833			 * are not likely to be evicted by use-once streaming
1834			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1835			 * so we ignore them here.
1836			 */
1837			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1838				list_add(&page->lru, &l_active);
1839				continue;
1840			}
1841		}
1842
1843		ClearPageActive(page);	/* we are de-activating */
1844		list_add(&page->lru, &l_inactive);
1845	}
1846
1847	/*
1848	 * Move pages back to the lru list.
1849	 */
1850	spin_lock_irq(&zone->lru_lock);
1851	/*
1852	 * Count referenced pages from currently used mappings as rotated,
1853	 * even though only some of them are actually re-activated.  This
1854	 * helps balance scan pressure between file and anonymous pages in
1855	 * get_scan_count.
1856	 */
1857	reclaim_stat->recent_rotated[file] += nr_rotated;
1858
1859	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1860	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1861	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1862	spin_unlock_irq(&zone->lru_lock);
1863
1864	mem_cgroup_uncharge_list(&l_hold);
1865	free_hot_cold_page_list(&l_hold, true);
1866}
1867
1868#ifdef CONFIG_SWAP
1869static bool inactive_anon_is_low_global(struct zone *zone)
1870{
1871	unsigned long active, inactive;
1872
1873	active = zone_page_state(zone, NR_ACTIVE_ANON);
1874	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1875
1876	return inactive * zone->inactive_ratio < active;
 
 
 
1877}
1878
1879/**
1880 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1881 * @lruvec: LRU vector to check
1882 *
1883 * Returns true if the zone does not have enough inactive anon pages,
1884 * meaning some active anon pages need to be deactivated.
1885 */
1886static bool inactive_anon_is_low(struct lruvec *lruvec)
1887{
1888	/*
1889	 * If we don't have swap space, anonymous page deactivation
1890	 * is pointless.
1891	 */
1892	if (!total_swap_pages)
1893		return false;
1894
1895	if (!mem_cgroup_disabled())
1896		return mem_cgroup_inactive_anon_is_low(lruvec);
1897
1898	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1899}
1900#else
1901static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1902{
1903	return false;
1904}
1905#endif
1906
1907/**
1908 * inactive_file_is_low - check if file pages need to be deactivated
1909 * @lruvec: LRU vector to check
1910 *
1911 * When the system is doing streaming IO, memory pressure here
1912 * ensures that active file pages get deactivated, until more
1913 * than half of the file pages are on the inactive list.
1914 *
1915 * Once we get to that situation, protect the system's working
1916 * set from being evicted by disabling active file page aging.
1917 *
1918 * This uses a different ratio than the anonymous pages, because
1919 * the page cache uses a use-once replacement algorithm.
1920 */
1921static bool inactive_file_is_low(struct lruvec *lruvec)
1922{
1923	unsigned long inactive;
1924	unsigned long active;
1925
1926	inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
1927	active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE);
1928
1929	return active > inactive;
1930}
1931
1932static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1933{
1934	if (is_file_lru(lru))
1935		return inactive_file_is_low(lruvec);
1936	else
1937		return inactive_anon_is_low(lruvec);
1938}
1939
1940static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1941				 struct lruvec *lruvec, struct scan_control *sc)
1942{
1943	if (is_active_lru(lru)) {
1944		if (inactive_list_is_low(lruvec, lru))
1945			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1946		return 0;
1947	}
1948
1949	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1950}
1951
 
 
 
 
 
 
 
1952enum scan_balance {
1953	SCAN_EQUAL,
1954	SCAN_FRACT,
1955	SCAN_ANON,
1956	SCAN_FILE,
1957};
1958
1959/*
1960 * Determine how aggressively the anon and file LRU lists should be
1961 * scanned.  The relative value of each set of LRU lists is determined
1962 * by looking at the fraction of the pages scanned we did rotate back
1963 * onto the active list instead of evict.
1964 *
1965 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1966 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1967 */
1968static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1969			   struct scan_control *sc, unsigned long *nr,
1970			   unsigned long *lru_pages)
1971{
1972	int swappiness = mem_cgroup_swappiness(memcg);
1973	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1974	u64 fraction[2];
1975	u64 denominator = 0;	/* gcc */
1976	struct zone *zone = lruvec_zone(lruvec);
1977	unsigned long anon_prio, file_prio;
1978	enum scan_balance scan_balance;
1979	unsigned long anon, file;
1980	bool force_scan = false;
1981	unsigned long ap, fp;
1982	enum lru_list lru;
1983	bool some_scanned;
1984	int pass;
1985
1986	/*
1987	 * If the zone or memcg is small, nr[l] can be 0.  This
1988	 * results in no scanning on this priority and a potential
1989	 * priority drop.  Global direct reclaim can go to the next
1990	 * zone and tends to have no problems. Global kswapd is for
1991	 * zone balancing and it needs to scan a minimum amount. When
1992	 * reclaiming for a memcg, a priority drop can cause high
1993	 * latencies, so it's better to scan a minimum amount there as
1994	 * well.
1995	 */
1996	if (current_is_kswapd()) {
1997		if (!zone_reclaimable(zone))
1998			force_scan = true;
1999		if (!mem_cgroup_online(memcg))
2000			force_scan = true;
2001	}
2002	if (!global_reclaim(sc))
2003		force_scan = true;
2004
2005	/* If we have no swap space, do not bother scanning anon pages. */
2006	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2007		scan_balance = SCAN_FILE;
2008		goto out;
2009	}
2010
2011	/*
2012	 * Global reclaim will swap to prevent OOM even with no
2013	 * swappiness, but memcg users want to use this knob to
2014	 * disable swapping for individual groups completely when
2015	 * using the memory controller's swap limit feature would be
2016	 * too expensive.
2017	 */
2018	if (!global_reclaim(sc) && !swappiness) {
2019		scan_balance = SCAN_FILE;
2020		goto out;
2021	}
2022
2023	/*
2024	 * Do not apply any pressure balancing cleverness when the
2025	 * system is close to OOM, scan both anon and file equally
2026	 * (unless the swappiness setting disagrees with swapping).
2027	 */
2028	if (!sc->priority && swappiness) {
2029		scan_balance = SCAN_EQUAL;
2030		goto out;
2031	}
2032
 
 
 
 
 
2033	/*
2034	 * Prevent the reclaimer from falling into the cache trap: as
2035	 * cache pages start out inactive, every cache fault will tip
2036	 * the scan balance towards the file LRU.  And as the file LRU
2037	 * shrinks, so does the window for rotation from references.
2038	 * This means we have a runaway feedback loop where a tiny
2039	 * thrashing file LRU becomes infinitely more attractive than
2040	 * anon pages.  Try to detect this based on file LRU size.
2041	 */
2042	if (global_reclaim(sc)) {
2043		unsigned long zonefile;
2044		unsigned long zonefree;
2045
2046		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2047		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2048			   zone_page_state(zone, NR_INACTIVE_FILE);
2049
2050		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2051			scan_balance = SCAN_ANON;
2052			goto out;
2053		}
2054	}
2055
2056	/*
2057	 * If there is enough inactive page cache, i.e. if the size of the
2058	 * inactive list is greater than that of the active list *and* the
2059	 * inactive list actually has some pages to scan on this priority, we
2060	 * do not reclaim anything from the anonymous working set right now.
2061	 * Without the second condition we could end up never scanning an
2062	 * lruvec even if it has plenty of old anonymous pages unless the
2063	 * system is under heavy pressure.
2064	 */
2065	if (!inactive_file_is_low(lruvec) &&
2066	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2067		scan_balance = SCAN_FILE;
2068		goto out;
2069	}
2070
2071	scan_balance = SCAN_FRACT;
2072
2073	/*
2074	 * With swappiness at 100, anonymous and file have the same priority.
2075	 * This scanning priority is essentially the inverse of IO cost.
2076	 */
2077	anon_prio = swappiness;
2078	file_prio = 200 - anon_prio;
2079
2080	/*
2081	 * OK, so we have swap space and a fair amount of page cache
2082	 * pages.  We use the recently rotated / recently scanned
2083	 * ratios to determine how valuable each cache is.
2084	 *
2085	 * Because workloads change over time (and to avoid overflow)
2086	 * we keep these statistics as a floating average, which ends
2087	 * up weighing recent references more than old ones.
2088	 *
2089	 * anon in [0], file in [1]
2090	 */
2091
2092	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2093		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2094	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2095		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2096
2097	spin_lock_irq(&zone->lru_lock);
2098	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2099		reclaim_stat->recent_scanned[0] /= 2;
2100		reclaim_stat->recent_rotated[0] /= 2;
2101	}
2102
2103	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2104		reclaim_stat->recent_scanned[1] /= 2;
2105		reclaim_stat->recent_rotated[1] /= 2;
2106	}
2107
2108	/*
2109	 * The amount of pressure on anon vs file pages is inversely
2110	 * proportional to the fraction of recently scanned pages on
2111	 * each list that were recently referenced and in active use.
2112	 */
2113	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2114	ap /= reclaim_stat->recent_rotated[0] + 1;
2115
2116	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2117	fp /= reclaim_stat->recent_rotated[1] + 1;
2118	spin_unlock_irq(&zone->lru_lock);
2119
2120	fraction[0] = ap;
2121	fraction[1] = fp;
2122	denominator = ap + fp + 1;
2123out:
2124	some_scanned = false;
2125	/* Only use force_scan on second pass. */
2126	for (pass = 0; !some_scanned && pass < 2; pass++) {
2127		*lru_pages = 0;
2128		for_each_evictable_lru(lru) {
2129			int file = is_file_lru(lru);
2130			unsigned long size;
2131			unsigned long scan;
2132
2133			size = lruvec_lru_size(lruvec, lru);
2134			scan = size >> sc->priority;
2135
2136			if (!scan && pass && force_scan)
2137				scan = min(size, SWAP_CLUSTER_MAX);
2138
2139			switch (scan_balance) {
2140			case SCAN_EQUAL:
2141				/* Scan lists relative to size */
2142				break;
2143			case SCAN_FRACT:
2144				/*
2145				 * Scan types proportional to swappiness and
2146				 * their relative recent reclaim efficiency.
2147				 */
2148				scan = div64_u64(scan * fraction[file],
2149							denominator);
2150				break;
2151			case SCAN_FILE:
2152			case SCAN_ANON:
2153				/* Scan one type exclusively */
2154				if ((scan_balance == SCAN_FILE) != file) {
2155					size = 0;
2156					scan = 0;
2157				}
2158				break;
2159			default:
2160				/* Look ma, no brain */
2161				BUG();
2162			}
2163
2164			*lru_pages += size;
2165			nr[lru] = scan;
2166
2167			/*
2168			 * Skip the second pass and don't force_scan,
2169			 * if we found something to scan.
2170			 */
2171			some_scanned |= !!scan;
 
 
 
 
 
 
 
 
 
 
2172		}
 
2173	}
2174}
2175
2176#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2177static void init_tlb_ubc(void)
2178{
2179	/*
2180	 * This deliberately does not clear the cpumask as it's expensive
2181	 * and unnecessary. If there happens to be data in there then the
2182	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2183	 * then will be cleared.
2184	 */
2185	current->tlb_ubc.flush_required = false;
2186}
2187#else
2188static inline void init_tlb_ubc(void)
2189{
2190}
2191#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2192
2193/*
2194 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2195 */
2196static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2197			      struct scan_control *sc, unsigned long *lru_pages)
2198{
2199	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2200	unsigned long nr[NR_LRU_LISTS];
2201	unsigned long targets[NR_LRU_LISTS];
2202	unsigned long nr_to_scan;
2203	enum lru_list lru;
2204	unsigned long nr_reclaimed = 0;
2205	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2206	struct blk_plug plug;
2207	bool scan_adjusted;
2208
2209	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2210
2211	/* Record the original scan target for proportional adjustments later */
2212	memcpy(targets, nr, sizeof(nr));
2213
2214	/*
2215	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2216	 * event that can occur when there is little memory pressure e.g.
2217	 * multiple streaming readers/writers. Hence, we do not abort scanning
2218	 * when the requested number of pages are reclaimed when scanning at
2219	 * DEF_PRIORITY on the assumption that the fact we are direct
2220	 * reclaiming implies that kswapd is not keeping up and it is best to
2221	 * do a batch of work at once. For memcg reclaim one check is made to
2222	 * abort proportional reclaim if either the file or anon lru has already
2223	 * dropped to zero at the first pass.
2224	 */
2225	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2226			 sc->priority == DEF_PRIORITY);
2227
2228	init_tlb_ubc();
2229
2230	blk_start_plug(&plug);
2231	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2232					nr[LRU_INACTIVE_FILE]) {
2233		unsigned long nr_anon, nr_file, percentage;
2234		unsigned long nr_scanned;
2235
2236		for_each_evictable_lru(lru) {
2237			if (nr[lru]) {
2238				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2239				nr[lru] -= nr_to_scan;
2240
2241				nr_reclaimed += shrink_list(lru, nr_to_scan,
2242							    lruvec, sc);
2243			}
2244		}
2245
2246		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2247			continue;
2248
2249		/*
 
 
 
 
 
 
 
 
 
2250		 * For kswapd and memcg, reclaim at least the number of pages
2251		 * requested. Ensure that the anon and file LRUs are scanned
2252		 * proportionally what was requested by get_scan_count(). We
2253		 * stop reclaiming one LRU and reduce the amount scanning
2254		 * proportional to the original scan target.
2255		 */
2256		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2257		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2258
2259		/*
2260		 * It's just vindictive to attack the larger once the smaller
2261		 * has gone to zero.  And given the way we stop scanning the
2262		 * smaller below, this makes sure that we only make one nudge
2263		 * towards proportionality once we've got nr_to_reclaim.
2264		 */
2265		if (!nr_file || !nr_anon)
2266			break;
2267
2268		if (nr_file > nr_anon) {
2269			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2270						targets[LRU_ACTIVE_ANON] + 1;
2271			lru = LRU_BASE;
2272			percentage = nr_anon * 100 / scan_target;
2273		} else {
2274			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2275						targets[LRU_ACTIVE_FILE] + 1;
2276			lru = LRU_FILE;
2277			percentage = nr_file * 100 / scan_target;
2278		}
2279
2280		/* Stop scanning the smaller of the LRU */
2281		nr[lru] = 0;
2282		nr[lru + LRU_ACTIVE] = 0;
2283
2284		/*
2285		 * Recalculate the other LRU scan count based on its original
2286		 * scan target and the percentage scanning already complete
2287		 */
2288		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2289		nr_scanned = targets[lru] - nr[lru];
2290		nr[lru] = targets[lru] * (100 - percentage) / 100;
2291		nr[lru] -= min(nr[lru], nr_scanned);
2292
2293		lru += LRU_ACTIVE;
2294		nr_scanned = targets[lru] - nr[lru];
2295		nr[lru] = targets[lru] * (100 - percentage) / 100;
2296		nr[lru] -= min(nr[lru], nr_scanned);
2297
2298		scan_adjusted = true;
2299	}
2300	blk_finish_plug(&plug);
2301	sc->nr_reclaimed += nr_reclaimed;
2302
2303	/*
2304	 * Even if we did not try to evict anon pages at all, we want to
2305	 * rebalance the anon lru active/inactive ratio.
2306	 */
2307	if (inactive_anon_is_low(lruvec))
2308		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2309				   sc, LRU_ACTIVE_ANON);
2310
2311	throttle_vm_writeout(sc->gfp_mask);
2312}
2313
2314/* Use reclaim/compaction for costly allocs or under memory pressure */
2315static bool in_reclaim_compaction(struct scan_control *sc)
2316{
2317	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2318			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2319			 sc->priority < DEF_PRIORITY - 2))
2320		return true;
2321
2322	return false;
2323}
2324
2325/*
2326 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2327 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2328 * true if more pages should be reclaimed such that when the page allocator
2329 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2330 * It will give up earlier than that if there is difficulty reclaiming pages.
2331 */
2332static inline bool should_continue_reclaim(struct zone *zone,
2333					unsigned long nr_reclaimed,
2334					unsigned long nr_scanned,
2335					struct scan_control *sc)
2336{
2337	unsigned long pages_for_compaction;
2338	unsigned long inactive_lru_pages;
2339
2340	/* If not in reclaim/compaction mode, stop */
2341	if (!in_reclaim_compaction(sc))
2342		return false;
2343
2344	/* Consider stopping depending on scan and reclaim activity */
2345	if (sc->gfp_mask & __GFP_REPEAT) {
2346		/*
2347		 * For __GFP_REPEAT allocations, stop reclaiming if the
2348		 * full LRU list has been scanned and we are still failing
2349		 * to reclaim pages. This full LRU scan is potentially
2350		 * expensive but a __GFP_REPEAT caller really wants to succeed
2351		 */
2352		if (!nr_reclaimed && !nr_scanned)
2353			return false;
2354	} else {
2355		/*
2356		 * For non-__GFP_REPEAT allocations which can presumably
2357		 * fail without consequence, stop if we failed to reclaim
2358		 * any pages from the last SWAP_CLUSTER_MAX number of
2359		 * pages that were scanned. This will return to the
2360		 * caller faster at the risk reclaim/compaction and
2361		 * the resulting allocation attempt fails
2362		 */
2363		if (!nr_reclaimed)
2364			return false;
2365	}
2366
2367	/*
2368	 * If we have not reclaimed enough pages for compaction and the
2369	 * inactive lists are large enough, continue reclaiming
2370	 */
2371	pages_for_compaction = (2UL << sc->order);
2372	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2373	if (get_nr_swap_pages() > 0)
2374		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2375	if (sc->nr_reclaimed < pages_for_compaction &&
2376			inactive_lru_pages > pages_for_compaction)
2377		return true;
2378
2379	/* If compaction would go ahead or the allocation would succeed, stop */
2380	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2381	case COMPACT_PARTIAL:
2382	case COMPACT_CONTINUE:
2383		return false;
2384	default:
2385		return true;
2386	}
2387}
2388
2389static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2390			bool is_classzone)
2391{
2392	struct reclaim_state *reclaim_state = current->reclaim_state;
2393	unsigned long nr_reclaimed, nr_scanned;
2394	bool reclaimable = false;
2395
2396	do {
2397		struct mem_cgroup *root = sc->target_mem_cgroup;
2398		struct mem_cgroup_reclaim_cookie reclaim = {
2399			.zone = zone,
2400			.priority = sc->priority,
2401		};
2402		unsigned long zone_lru_pages = 0;
2403		struct mem_cgroup *memcg;
2404
2405		nr_reclaimed = sc->nr_reclaimed;
2406		nr_scanned = sc->nr_scanned;
2407
2408		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2409		do {
2410			unsigned long lru_pages;
2411			unsigned long reclaimed;
2412			unsigned long scanned;
2413
2414			if (mem_cgroup_low(root, memcg)) {
2415				if (!sc->may_thrash)
2416					continue;
2417				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2418			}
2419
2420			reclaimed = sc->nr_reclaimed;
2421			scanned = sc->nr_scanned;
2422
2423			shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2424			zone_lru_pages += lru_pages;
2425
2426			if (memcg && is_classzone)
2427				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2428					    memcg, sc->nr_scanned - scanned,
2429					    lru_pages);
2430
2431			/* Record the group's reclaim efficiency */
2432			vmpressure(sc->gfp_mask, memcg, false,
2433				   sc->nr_scanned - scanned,
2434				   sc->nr_reclaimed - reclaimed);
2435
2436			/*
2437			 * Direct reclaim and kswapd have to scan all memory
2438			 * cgroups to fulfill the overall scan target for the
2439			 * zone.
2440			 *
2441			 * Limit reclaim, on the other hand, only cares about
2442			 * nr_to_reclaim pages to be reclaimed and it will
2443			 * retry with decreasing priority if one round over the
2444			 * whole hierarchy is not sufficient.
2445			 */
2446			if (!global_reclaim(sc) &&
2447					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2448				mem_cgroup_iter_break(root, memcg);
2449				break;
2450			}
2451		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2452
2453		/*
2454		 * Shrink the slab caches in the same proportion that
2455		 * the eligible LRU pages were scanned.
2456		 */
2457		if (global_reclaim(sc) && is_classzone)
2458			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2459				    sc->nr_scanned - nr_scanned,
2460				    zone_lru_pages);
2461
2462		if (reclaim_state) {
2463			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2464			reclaim_state->reclaimed_slab = 0;
2465		}
2466
2467		/* Record the subtree's reclaim efficiency */
2468		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2469			   sc->nr_scanned - nr_scanned,
2470			   sc->nr_reclaimed - nr_reclaimed);
2471
2472		if (sc->nr_reclaimed - nr_reclaimed)
2473			reclaimable = true;
2474
2475	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2476					 sc->nr_scanned - nr_scanned, sc));
2477
2478	return reclaimable;
2479}
2480
2481/*
2482 * Returns true if compaction should go ahead for a high-order request, or
2483 * the high-order allocation would succeed without compaction.
2484 */
2485static inline bool compaction_ready(struct zone *zone, int order)
2486{
2487	unsigned long balance_gap, watermark;
2488	bool watermark_ok;
2489
 
 
 
 
2490	/*
2491	 * Compaction takes time to run and there are potentially other
2492	 * callers using the pages just freed. Continue reclaiming until
2493	 * there is a buffer of free pages available to give compaction
2494	 * a reasonable chance of completing and allocating the page
2495	 */
2496	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2497			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2498	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2499	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
 
2500
2501	/*
2502	 * If compaction is deferred, reclaim up to a point where
2503	 * compaction will have a chance of success when re-enabled
2504	 */
2505	if (compaction_deferred(zone, order))
2506		return watermark_ok;
2507
2508	/*
2509	 * If compaction is not ready to start and allocation is not likely
2510	 * to succeed without it, then keep reclaiming.
2511	 */
2512	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2513		return false;
2514
2515	return watermark_ok;
2516}
2517
2518/*
2519 * This is the direct reclaim path, for page-allocating processes.  We only
2520 * try to reclaim pages from zones which will satisfy the caller's allocation
2521 * request.
2522 *
2523 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2524 * Because:
2525 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2526 *    allocation or
2527 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2528 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2529 *    zone defense algorithm.
2530 *
2531 * If a zone is deemed to be full of pinned pages then just give it a light
2532 * scan then give up on it.
2533 *
2534 * Returns true if a zone was reclaimable.
 
 
 
2535 */
2536static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2537{
2538	struct zoneref *z;
2539	struct zone *zone;
2540	unsigned long nr_soft_reclaimed;
2541	unsigned long nr_soft_scanned;
 
 
 
2542	gfp_t orig_mask;
 
 
 
2543	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2544	bool reclaimable = false;
2545
2546	/*
2547	 * If the number of buffer_heads in the machine exceeds the maximum
2548	 * allowed level, force direct reclaim to scan the highmem zone as
2549	 * highmem pages could be pinning lowmem pages storing buffer_heads
2550	 */
2551	orig_mask = sc->gfp_mask;
2552	if (buffer_heads_over_limit)
2553		sc->gfp_mask |= __GFP_HIGHMEM;
2554
 
 
2555	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2556					gfp_zone(sc->gfp_mask), sc->nodemask) {
2557		enum zone_type classzone_idx;
2558
2559		if (!populated_zone(zone))
2560			continue;
2561
2562		classzone_idx = requested_highidx;
2563		while (!populated_zone(zone->zone_pgdat->node_zones +
2564							classzone_idx))
2565			classzone_idx--;
2566
2567		/*
2568		 * Take care memory controller reclaiming has small influence
2569		 * to global LRU.
2570		 */
2571		if (global_reclaim(sc)) {
2572			if (!cpuset_zone_allowed(zone,
2573						 GFP_KERNEL | __GFP_HARDWALL))
2574				continue;
2575
 
 
 
2576			if (sc->priority != DEF_PRIORITY &&
2577			    !zone_reclaimable(zone))
2578				continue;	/* Let kswapd poll it */
2579
2580			/*
2581			 * If we already have plenty of memory free for
2582			 * compaction in this zone, don't free any more.
2583			 * Even though compaction is invoked for any
2584			 * non-zero order, only frequent costly order
2585			 * reclamation is disruptive enough to become a
2586			 * noticeable problem, like transparent huge
2587			 * page allocations.
2588			 */
2589			if (IS_ENABLED(CONFIG_COMPACTION) &&
2590			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2591			    zonelist_zone_idx(z) <= requested_highidx &&
2592			    compaction_ready(zone, sc->order)) {
2593				sc->compaction_ready = true;
2594				continue;
2595			}
2596
2597			/*
2598			 * This steals pages from memory cgroups over softlimit
2599			 * and returns the number of reclaimed pages and
2600			 * scanned pages. This works for global memory pressure
2601			 * and balancing, not for a memcg's limit.
2602			 */
2603			nr_soft_scanned = 0;
2604			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2605						sc->order, sc->gfp_mask,
2606						&nr_soft_scanned);
2607			sc->nr_reclaimed += nr_soft_reclaimed;
2608			sc->nr_scanned += nr_soft_scanned;
2609			if (nr_soft_reclaimed)
2610				reclaimable = true;
2611			/* need some check for avoid more shrink_zone() */
2612		}
2613
2614		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2615			reclaimable = true;
2616
2617		if (global_reclaim(sc) &&
2618		    !reclaimable && zone_reclaimable(zone))
2619			reclaimable = true;
 
 
 
 
 
 
 
 
 
2620	}
2621
2622	/*
2623	 * Restore to original mask to avoid the impact on the caller if we
2624	 * promoted it to __GFP_HIGHMEM.
2625	 */
2626	sc->gfp_mask = orig_mask;
2627
2628	return reclaimable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629}
2630
2631/*
2632 * This is the main entry point to direct page reclaim.
2633 *
2634 * If a full scan of the inactive list fails to free enough memory then we
2635 * are "out of memory" and something needs to be killed.
2636 *
2637 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2638 * high - the zone may be full of dirty or under-writeback pages, which this
2639 * caller can't do much about.  We kick the writeback threads and take explicit
2640 * naps in the hope that some of these pages can be written.  But if the
2641 * allocating task holds filesystem locks which prevent writeout this might not
2642 * work, and the allocation attempt will fail.
2643 *
2644 * returns:	0, if no pages reclaimed
2645 * 		else, the number of pages reclaimed
2646 */
2647static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2648					  struct scan_control *sc)
2649{
2650	int initial_priority = sc->priority;
2651	unsigned long total_scanned = 0;
2652	unsigned long writeback_threshold;
2653	bool zones_reclaimable;
2654retry:
2655	delayacct_freepages_start();
2656
2657	if (global_reclaim(sc))
2658		count_vm_event(ALLOCSTALL);
2659
2660	do {
2661		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2662				sc->priority);
2663		sc->nr_scanned = 0;
2664		zones_reclaimable = shrink_zones(zonelist, sc);
2665
2666		total_scanned += sc->nr_scanned;
2667		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2668			break;
2669
2670		if (sc->compaction_ready)
2671			break;
2672
2673		/*
2674		 * If we're getting trouble reclaiming, start doing
2675		 * writepage even in laptop mode.
2676		 */
2677		if (sc->priority < DEF_PRIORITY - 2)
2678			sc->may_writepage = 1;
2679
2680		/*
2681		 * Try to write back as many pages as we just scanned.  This
2682		 * tends to cause slow streaming writers to write data to the
2683		 * disk smoothly, at the dirtying rate, which is nice.   But
2684		 * that's undesirable in laptop mode, where we *want* lumpy
2685		 * writeout.  So in laptop mode, write out the whole world.
2686		 */
2687		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2688		if (total_scanned > writeback_threshold) {
2689			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2690						WB_REASON_TRY_TO_FREE_PAGES);
2691			sc->may_writepage = 1;
2692		}
2693	} while (--sc->priority >= 0);
2694
 
2695	delayacct_freepages_end();
2696
2697	if (sc->nr_reclaimed)
2698		return sc->nr_reclaimed;
2699
 
 
 
 
 
 
 
 
2700	/* Aborted reclaim to try compaction? don't OOM, then */
2701	if (sc->compaction_ready)
2702		return 1;
2703
2704	/* Untapped cgroup reserves?  Don't OOM, retry. */
2705	if (!sc->may_thrash) {
2706		sc->priority = initial_priority;
2707		sc->may_thrash = 1;
2708		goto retry;
2709	}
2710
2711	/* Any of the zones still reclaimable?  Don't OOM. */
2712	if (zones_reclaimable)
2713		return 1;
2714
2715	return 0;
2716}
2717
2718static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2719{
2720	struct zone *zone;
2721	unsigned long pfmemalloc_reserve = 0;
2722	unsigned long free_pages = 0;
2723	int i;
2724	bool wmark_ok;
2725
2726	for (i = 0; i <= ZONE_NORMAL; i++) {
2727		zone = &pgdat->node_zones[i];
2728		if (!populated_zone(zone) ||
2729		    zone_reclaimable_pages(zone) == 0)
2730			continue;
2731
2732		pfmemalloc_reserve += min_wmark_pages(zone);
2733		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2734	}
2735
2736	/* If there are no reserves (unexpected config) then do not throttle */
2737	if (!pfmemalloc_reserve)
2738		return true;
2739
2740	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2741
2742	/* kswapd must be awake if processes are being throttled */
2743	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2744		pgdat->classzone_idx = min(pgdat->classzone_idx,
2745						(enum zone_type)ZONE_NORMAL);
2746		wake_up_interruptible(&pgdat->kswapd_wait);
2747	}
2748
2749	return wmark_ok;
2750}
2751
2752/*
2753 * Throttle direct reclaimers if backing storage is backed by the network
2754 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2755 * depleted. kswapd will continue to make progress and wake the processes
2756 * when the low watermark is reached.
2757 *
2758 * Returns true if a fatal signal was delivered during throttling. If this
2759 * happens, the page allocator should not consider triggering the OOM killer.
2760 */
2761static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2762					nodemask_t *nodemask)
2763{
2764	struct zoneref *z;
2765	struct zone *zone;
2766	pg_data_t *pgdat = NULL;
 
2767
2768	/*
2769	 * Kernel threads should not be throttled as they may be indirectly
2770	 * responsible for cleaning pages necessary for reclaim to make forward
2771	 * progress. kjournald for example may enter direct reclaim while
2772	 * committing a transaction where throttling it could forcing other
2773	 * processes to block on log_wait_commit().
2774	 */
2775	if (current->flags & PF_KTHREAD)
2776		goto out;
2777
2778	/*
2779	 * If a fatal signal is pending, this process should not throttle.
2780	 * It should return quickly so it can exit and free its memory
2781	 */
2782	if (fatal_signal_pending(current))
2783		goto out;
2784
2785	/*
2786	 * Check if the pfmemalloc reserves are ok by finding the first node
2787	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2788	 * GFP_KERNEL will be required for allocating network buffers when
2789	 * swapping over the network so ZONE_HIGHMEM is unusable.
2790	 *
2791	 * Throttling is based on the first usable node and throttled processes
2792	 * wait on a queue until kswapd makes progress and wakes them. There
2793	 * is an affinity then between processes waking up and where reclaim
2794	 * progress has been made assuming the process wakes on the same node.
2795	 * More importantly, processes running on remote nodes will not compete
2796	 * for remote pfmemalloc reserves and processes on different nodes
2797	 * should make reasonable progress.
2798	 */
2799	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2800					gfp_zone(gfp_mask), nodemask) {
2801		if (zone_idx(zone) > ZONE_NORMAL)
2802			continue;
2803
2804		/* Throttle based on the first usable node */
2805		pgdat = zone->zone_pgdat;
2806		if (pfmemalloc_watermark_ok(pgdat))
2807			goto out;
2808		break;
2809	}
2810
2811	/* If no zone was usable by the allocation flags then do not throttle */
2812	if (!pgdat)
2813		goto out;
2814
2815	/* Account for the throttling */
2816	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2817
2818	/*
2819	 * If the caller cannot enter the filesystem, it's possible that it
2820	 * is due to the caller holding an FS lock or performing a journal
2821	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2822	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2823	 * blocked waiting on the same lock. Instead, throttle for up to a
2824	 * second before continuing.
2825	 */
2826	if (!(gfp_mask & __GFP_FS)) {
2827		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2828			pfmemalloc_watermark_ok(pgdat), HZ);
2829
2830		goto check_pending;
2831	}
2832
2833	/* Throttle until kswapd wakes the process */
2834	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2835		pfmemalloc_watermark_ok(pgdat));
2836
2837check_pending:
2838	if (fatal_signal_pending(current))
2839		return true;
2840
2841out:
2842	return false;
2843}
2844
2845unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2846				gfp_t gfp_mask, nodemask_t *nodemask)
2847{
2848	unsigned long nr_reclaimed;
2849	struct scan_control sc = {
2850		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2851		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2852		.order = order,
2853		.nodemask = nodemask,
2854		.priority = DEF_PRIORITY,
2855		.may_writepage = !laptop_mode,
 
2856		.may_unmap = 1,
2857		.may_swap = 1,
 
 
 
 
2858	};
2859
2860	/*
2861	 * Do not enter reclaim if fatal signal was delivered while throttled.
2862	 * 1 is returned so that the page allocator does not OOM kill at this
2863	 * point.
2864	 */
2865	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2866		return 1;
2867
2868	trace_mm_vmscan_direct_reclaim_begin(order,
2869				sc.may_writepage,
2870				gfp_mask);
2871
2872	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2873
2874	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2875
2876	return nr_reclaimed;
2877}
2878
2879#ifdef CONFIG_MEMCG
2880
2881unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2882						gfp_t gfp_mask, bool noswap,
2883						struct zone *zone,
2884						unsigned long *nr_scanned)
2885{
2886	struct scan_control sc = {
 
2887		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2888		.target_mem_cgroup = memcg,
2889		.may_writepage = !laptop_mode,
2890		.may_unmap = 1,
2891		.may_swap = !noswap,
 
 
 
2892	};
2893	unsigned long lru_pages;
2894
2895	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2896			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2897
2898	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2899						      sc.may_writepage,
2900						      sc.gfp_mask);
2901
2902	/*
2903	 * NOTE: Although we can get the priority field, using it
2904	 * here is not a good idea, since it limits the pages we can scan.
2905	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2906	 * will pick up pages from other mem cgroup's as well. We hack
2907	 * the priority and make it zero.
2908	 */
2909	shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2910
2911	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2912
2913	*nr_scanned = sc.nr_scanned;
2914	return sc.nr_reclaimed;
2915}
2916
2917unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2918					   unsigned long nr_pages,
2919					   gfp_t gfp_mask,
2920					   bool may_swap)
2921{
2922	struct zonelist *zonelist;
2923	unsigned long nr_reclaimed;
2924	int nid;
2925	struct scan_control sc = {
2926		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2927		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2928				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2929		.target_mem_cgroup = memcg,
2930		.priority = DEF_PRIORITY,
2931		.may_writepage = !laptop_mode,
2932		.may_unmap = 1,
2933		.may_swap = may_swap,
 
 
 
 
 
 
 
2934	};
2935
2936	/*
2937	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2938	 * take care of from where we get pages. So the node where we start the
2939	 * scan does not need to be the current node.
2940	 */
2941	nid = mem_cgroup_select_victim_node(memcg);
2942
2943	zonelist = NODE_DATA(nid)->node_zonelists;
2944
2945	trace_mm_vmscan_memcg_reclaim_begin(0,
2946					    sc.may_writepage,
2947					    sc.gfp_mask);
2948
2949	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2950
2951	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2952
2953	return nr_reclaimed;
2954}
2955#endif
2956
2957static void age_active_anon(struct zone *zone, struct scan_control *sc)
2958{
2959	struct mem_cgroup *memcg;
2960
2961	if (!total_swap_pages)
2962		return;
2963
2964	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2965	do {
2966		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2967
2968		if (inactive_anon_is_low(lruvec))
2969			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2970					   sc, LRU_ACTIVE_ANON);
2971
2972		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2973	} while (memcg);
2974}
2975
2976static bool zone_balanced(struct zone *zone, int order, bool highorder,
2977			unsigned long balance_gap, int classzone_idx)
2978{
2979	unsigned long mark = high_wmark_pages(zone) + balance_gap;
 
 
2980
2981	/*
2982	 * When checking from pgdat_balanced(), kswapd should stop and sleep
2983	 * when it reaches the high order-0 watermark and let kcompactd take
2984	 * over. Other callers such as wakeup_kswapd() want to determine the
2985	 * true high-order watermark.
2986	 */
2987	if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2988		mark += (1UL << order);
2989		order = 0;
2990	}
2991
2992	return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
2993}
2994
2995/*
2996 * pgdat_balanced() is used when checking if a node is balanced.
2997 *
2998 * For order-0, all zones must be balanced!
2999 *
3000 * For high-order allocations only zones that meet watermarks and are in a
3001 * zone allowed by the callers classzone_idx are added to balanced_pages. The
3002 * total of balanced pages must be at least 25% of the zones allowed by
3003 * classzone_idx for the node to be considered balanced. Forcing all zones to
3004 * be balanced for high orders can cause excessive reclaim when there are
3005 * imbalanced zones.
3006 * The choice of 25% is due to
3007 *   o a 16M DMA zone that is balanced will not balance a zone on any
3008 *     reasonable sized machine
3009 *   o On all other machines, the top zone must be at least a reasonable
3010 *     percentage of the middle zones. For example, on 32-bit x86, highmem
3011 *     would need to be at least 256M for it to be balance a whole node.
3012 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
3013 *     to balance a node on its own. These seemed like reasonable ratios.
3014 */
3015static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3016{
3017	unsigned long managed_pages = 0;
3018	unsigned long balanced_pages = 0;
3019	int i;
3020
3021	/* Check the watermark levels */
3022	for (i = 0; i <= classzone_idx; i++) {
3023		struct zone *zone = pgdat->node_zones + i;
3024
3025		if (!populated_zone(zone))
3026			continue;
3027
3028		managed_pages += zone->managed_pages;
3029
3030		/*
3031		 * A special case here:
3032		 *
3033		 * balance_pgdat() skips over all_unreclaimable after
3034		 * DEF_PRIORITY. Effectively, it considers them balanced so
3035		 * they must be considered balanced here as well!
3036		 */
3037		if (!zone_reclaimable(zone)) {
3038			balanced_pages += zone->managed_pages;
3039			continue;
3040		}
3041
3042		if (zone_balanced(zone, order, false, 0, i))
3043			balanced_pages += zone->managed_pages;
3044		else if (!order)
3045			return false;
3046	}
3047
3048	if (order)
3049		return balanced_pages >= (managed_pages >> 2);
3050	else
3051		return true;
3052}
3053
3054/*
3055 * Prepare kswapd for sleeping. This verifies that there are no processes
3056 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3057 *
3058 * Returns true if kswapd is ready to sleep
3059 */
3060static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3061					int classzone_idx)
3062{
3063	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3064	if (remaining)
3065		return false;
3066
3067	/*
3068	 * The throttled processes are normally woken up in balance_pgdat() as
3069	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3070	 * race between when kswapd checks the watermarks and a process gets
3071	 * throttled. There is also a potential race if processes get
3072	 * throttled, kswapd wakes, a large process exits thereby balancing the
3073	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3074	 * the wake up checks. If kswapd is going to sleep, no process should
3075	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3076	 * the wake up is premature, processes will wake kswapd and get
3077	 * throttled again. The difference from wake ups in balance_pgdat() is
3078	 * that here we are under prepare_to_wait().
3079	 */
3080	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3081		wake_up_all(&pgdat->pfmemalloc_wait);
 
 
3082
3083	return pgdat_balanced(pgdat, order, classzone_idx);
3084}
3085
3086/*
3087 * kswapd shrinks the zone by the number of pages required to reach
3088 * the high watermark.
3089 *
3090 * Returns true if kswapd scanned at least the requested number of pages to
3091 * reclaim or if the lack of progress was due to pages under writeback.
3092 * This is used to determine if the scanning priority needs to be raised.
3093 */
3094static bool kswapd_shrink_zone(struct zone *zone,
3095			       int classzone_idx,
3096			       struct scan_control *sc)
 
 
3097{
 
3098	unsigned long balance_gap;
 
 
 
 
3099	bool lowmem_pressure;
3100
3101	/* Reclaim above the high watermark. */
3102	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3103
3104	/*
 
 
 
 
 
 
 
 
 
 
 
3105	 * We put equal pressure on every zone, unless one zone has way too
3106	 * many pages free already. The "too many pages" is defined as the
3107	 * high wmark plus a "gap" where the gap is either the low
3108	 * watermark or 1% of the zone, whichever is smaller.
3109	 */
3110	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3111			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
 
3112
3113	/*
3114	 * If there is no low memory pressure or the zone is balanced then no
3115	 * reclaim is necessary
3116	 */
3117	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3118	if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
3119						balance_gap, classzone_idx))
3120		return true;
3121
3122	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
 
 
 
 
 
 
3123
3124	clear_bit(ZONE_WRITEBACK, &zone->flags);
 
 
 
3125
3126	/*
3127	 * If a zone reaches its high watermark, consider it to be no longer
3128	 * congested. It's possible there are dirty pages backed by congested
3129	 * BDIs but as pressure is relieved, speculatively avoid congestion
3130	 * waits.
3131	 */
3132	if (zone_reclaimable(zone) &&
3133	    zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
3134		clear_bit(ZONE_CONGESTED, &zone->flags);
3135		clear_bit(ZONE_DIRTY, &zone->flags);
3136	}
3137
3138	return sc->nr_scanned >= sc->nr_to_reclaim;
3139}
3140
3141/*
3142 * For kswapd, balance_pgdat() will work across all this node's zones until
3143 * they are all at high_wmark_pages(zone).
3144 *
3145 * Returns the highest zone idx kswapd was reclaiming at
3146 *
3147 * There is special handling here for zones which are full of pinned pages.
3148 * This can happen if the pages are all mlocked, or if they are all used by
3149 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3150 * What we do is to detect the case where all pages in the zone have been
3151 * scanned twice and there has been zero successful reclaim.  Mark the zone as
3152 * dead and from now on, only perform a short scan.  Basically we're polling
3153 * the zone for when the problem goes away.
3154 *
3155 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3156 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3157 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3158 * lower zones regardless of the number of free pages in the lower zones. This
3159 * interoperates with the page allocator fallback scheme to ensure that aging
3160 * of pages is balanced across the zones.
3161 */
3162static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
 
3163{
3164	int i;
3165	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3166	unsigned long nr_soft_reclaimed;
3167	unsigned long nr_soft_scanned;
3168	struct scan_control sc = {
3169		.gfp_mask = GFP_KERNEL,
3170		.order = order,
3171		.priority = DEF_PRIORITY,
3172		.may_writepage = !laptop_mode,
3173		.may_unmap = 1,
3174		.may_swap = 1,
 
 
 
3175	};
3176	count_vm_event(PAGEOUTRUN);
3177
3178	do {
 
 
3179		bool raise_priority = true;
 
3180
3181		sc.nr_reclaimed = 0;
3182
3183		/*
3184		 * Scan in the highmem->dma direction for the highest
3185		 * zone which needs scanning
3186		 */
3187		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3188			struct zone *zone = pgdat->node_zones + i;
3189
3190			if (!populated_zone(zone))
3191				continue;
3192
3193			if (sc.priority != DEF_PRIORITY &&
3194			    !zone_reclaimable(zone))
3195				continue;
3196
3197			/*
3198			 * Do some background aging of the anon list, to give
3199			 * pages a chance to be referenced before reclaiming.
3200			 */
3201			age_active_anon(zone, &sc);
3202
3203			/*
3204			 * If the number of buffer_heads in the machine
3205			 * exceeds the maximum allowed level and this node
3206			 * has a highmem zone, force kswapd to reclaim from
3207			 * it to relieve lowmem pressure.
3208			 */
3209			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3210				end_zone = i;
3211				break;
3212			}
3213
3214			if (!zone_balanced(zone, order, false, 0, 0)) {
3215				end_zone = i;
3216				break;
3217			} else {
3218				/*
3219				 * If balanced, clear the dirty and congested
3220				 * flags
3221				 */
3222				clear_bit(ZONE_CONGESTED, &zone->flags);
3223				clear_bit(ZONE_DIRTY, &zone->flags);
3224			}
3225		}
3226
3227		if (i < 0)
3228			goto out;
3229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3230		/*
3231		 * If we're getting trouble reclaiming, start doing writepage
3232		 * even in laptop mode.
3233		 */
3234		if (sc.priority < DEF_PRIORITY - 2)
3235			sc.may_writepage = 1;
3236
3237		/*
3238		 * Now scan the zone in the dma->highmem direction, stopping
3239		 * at the last zone which needs scanning.
3240		 *
3241		 * We do this because the page allocator works in the opposite
3242		 * direction.  This prevents the page allocator from allocating
3243		 * pages behind kswapd's direction of progress, which would
3244		 * cause too much scanning of the lower zones.
3245		 */
3246		for (i = 0; i <= end_zone; i++) {
3247			struct zone *zone = pgdat->node_zones + i;
3248
3249			if (!populated_zone(zone))
3250				continue;
3251
3252			if (sc.priority != DEF_PRIORITY &&
3253			    !zone_reclaimable(zone))
3254				continue;
3255
3256			sc.nr_scanned = 0;
3257
3258			nr_soft_scanned = 0;
3259			/*
3260			 * Call soft limit reclaim before calling shrink_zone.
3261			 */
3262			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3263							order, sc.gfp_mask,
3264							&nr_soft_scanned);
3265			sc.nr_reclaimed += nr_soft_reclaimed;
3266
3267			/*
3268			 * There should be no need to raise the scanning
3269			 * priority if enough pages are already being scanned
3270			 * that that high watermark would be met at 100%
3271			 * efficiency.
3272			 */
3273			if (kswapd_shrink_zone(zone, end_zone, &sc))
 
3274				raise_priority = false;
3275		}
3276
3277		/*
3278		 * If the low watermark is met there is no need for processes
3279		 * to be throttled on pfmemalloc_wait as they should not be
3280		 * able to safely make forward progress. Wake them
3281		 */
3282		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3283				pfmemalloc_watermark_ok(pgdat))
3284			wake_up_all(&pgdat->pfmemalloc_wait);
 
 
 
 
 
 
 
 
 
 
 
3285
3286		/* Check if kswapd should be suspending */
3287		if (try_to_freeze() || kthread_should_stop())
3288			break;
3289
3290		/*
 
 
 
 
 
 
 
3291		 * Raise priority if scanning rate is too low or there was no
3292		 * progress in reclaiming pages
3293		 */
3294		if (raise_priority || !sc.nr_reclaimed)
3295			sc.priority--;
3296	} while (sc.priority >= 1 &&
3297			!pgdat_balanced(pgdat, order, classzone_idx));
3298
3299out:
3300	/*
3301	 * Return the highest zone idx we were reclaiming at so
3302	 * prepare_kswapd_sleep() makes the same decisions as here.
 
 
3303	 */
3304	return end_zone;
 
3305}
3306
3307static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3308				int classzone_idx, int balanced_classzone_idx)
3309{
3310	long remaining = 0;
3311	DEFINE_WAIT(wait);
3312
3313	if (freezing(current) || kthread_should_stop())
3314		return;
3315
3316	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3317
3318	/* Try to sleep for a short interval */
3319	if (prepare_kswapd_sleep(pgdat, order, remaining,
3320						balanced_classzone_idx)) {
3321		/*
3322		 * Compaction records what page blocks it recently failed to
3323		 * isolate pages from and skips them in the future scanning.
3324		 * When kswapd is going to sleep, it is reasonable to assume
3325		 * that pages and compaction may succeed so reset the cache.
3326		 */
3327		reset_isolation_suitable(pgdat);
3328
3329		/*
3330		 * We have freed the memory, now we should compact it to make
3331		 * allocation of the requested order possible.
3332		 */
3333		wakeup_kcompactd(pgdat, order, classzone_idx);
3334
3335		remaining = schedule_timeout(HZ/10);
3336		finish_wait(&pgdat->kswapd_wait, &wait);
3337		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3338	}
3339
3340	/*
3341	 * After a short sleep, check if it was a premature sleep. If not, then
3342	 * go fully to sleep until explicitly woken up.
3343	 */
3344	if (prepare_kswapd_sleep(pgdat, order, remaining,
3345						balanced_classzone_idx)) {
3346		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3347
3348		/*
3349		 * vmstat counters are not perfectly accurate and the estimated
3350		 * value for counters such as NR_FREE_PAGES can deviate from the
3351		 * true value by nr_online_cpus * threshold. To avoid the zone
3352		 * watermarks being breached while under pressure, we reduce the
3353		 * per-cpu vmstat threshold while kswapd is awake and restore
3354		 * them before going back to sleep.
3355		 */
3356		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3357
 
 
 
 
 
 
 
 
3358		if (!kthread_should_stop())
3359			schedule();
3360
3361		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3362	} else {
3363		if (remaining)
3364			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3365		else
3366			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3367	}
3368	finish_wait(&pgdat->kswapd_wait, &wait);
3369}
3370
3371/*
3372 * The background pageout daemon, started as a kernel thread
3373 * from the init process.
3374 *
3375 * This basically trickles out pages so that we have _some_
3376 * free memory available even if there is no other activity
3377 * that frees anything up. This is needed for things like routing
3378 * etc, where we otherwise might have all activity going on in
3379 * asynchronous contexts that cannot page things out.
3380 *
3381 * If there are applications that are active memory-allocators
3382 * (most normal use), this basically shouldn't matter.
3383 */
3384static int kswapd(void *p)
3385{
3386	unsigned long order, new_order;
 
3387	int classzone_idx, new_classzone_idx;
3388	int balanced_classzone_idx;
3389	pg_data_t *pgdat = (pg_data_t*)p;
3390	struct task_struct *tsk = current;
3391
3392	struct reclaim_state reclaim_state = {
3393		.reclaimed_slab = 0,
3394	};
3395	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3396
3397	lockdep_set_current_reclaim_state(GFP_KERNEL);
3398
3399	if (!cpumask_empty(cpumask))
3400		set_cpus_allowed_ptr(tsk, cpumask);
3401	current->reclaim_state = &reclaim_state;
3402
3403	/*
3404	 * Tell the memory management that we're a "memory allocator",
3405	 * and that if we need more memory we should get access to it
3406	 * regardless (see "__alloc_pages()"). "kswapd" should
3407	 * never get caught in the normal page freeing logic.
3408	 *
3409	 * (Kswapd normally doesn't need memory anyway, but sometimes
3410	 * you need a small amount of memory in order to be able to
3411	 * page out something else, and this flag essentially protects
3412	 * us from recursively trying to free more memory as we're
3413	 * trying to free the first piece of memory in the first place).
3414	 */
3415	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3416	set_freezable();
3417
3418	order = new_order = 0;
 
3419	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3420	balanced_classzone_idx = classzone_idx;
3421	for ( ; ; ) {
3422		bool ret;
3423
3424		/*
3425		 * While we were reclaiming, there might have been another
3426		 * wakeup, so check the values.
3427		 */
3428		new_order = pgdat->kswapd_max_order;
3429		new_classzone_idx = pgdat->classzone_idx;
3430		pgdat->kswapd_max_order =  0;
3431		pgdat->classzone_idx = pgdat->nr_zones - 1;
 
 
 
 
3432
3433		if (order < new_order || classzone_idx > new_classzone_idx) {
3434			/*
3435			 * Don't sleep if someone wants a larger 'order'
3436			 * allocation or has tigher zone constraints
3437			 */
3438			order = new_order;
3439			classzone_idx = new_classzone_idx;
3440		} else {
3441			kswapd_try_to_sleep(pgdat, order, classzone_idx,
3442						balanced_classzone_idx);
3443			order = pgdat->kswapd_max_order;
3444			classzone_idx = pgdat->classzone_idx;
3445			new_order = order;
3446			new_classzone_idx = classzone_idx;
3447			pgdat->kswapd_max_order = 0;
3448			pgdat->classzone_idx = pgdat->nr_zones - 1;
3449		}
3450
3451		ret = try_to_freeze();
3452		if (kthread_should_stop())
3453			break;
3454
3455		/*
3456		 * We can speed up thawing tasks if we don't call balance_pgdat
3457		 * after returning from the refrigerator
3458		 */
3459		if (!ret) {
3460			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3461			balanced_classzone_idx = balance_pgdat(pgdat, order,
3462								classzone_idx);
 
3463		}
3464	}
3465
3466	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3467	current->reclaim_state = NULL;
3468	lockdep_clear_current_reclaim_state();
3469
3470	return 0;
3471}
3472
3473/*
3474 * A zone is low on free memory, so wake its kswapd task to service it.
3475 */
3476void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3477{
3478	pg_data_t *pgdat;
3479
3480	if (!populated_zone(zone))
3481		return;
3482
3483	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3484		return;
3485	pgdat = zone->zone_pgdat;
3486	if (pgdat->kswapd_max_order < order) {
3487		pgdat->kswapd_max_order = order;
3488		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3489	}
3490	if (!waitqueue_active(&pgdat->kswapd_wait))
3491		return;
3492	if (zone_balanced(zone, order, true, 0, 0))
3493		return;
3494
3495	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3496	wake_up_interruptible(&pgdat->kswapd_wait);
3497}
3498
3499#ifdef CONFIG_HIBERNATION
3500/*
3501 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3502 * freed pages.
3503 *
3504 * Rather than trying to age LRUs the aim is to preserve the overall
3505 * LRU order by reclaiming preferentially
3506 * inactive > active > active referenced > active mapped
3507 */
3508unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3509{
3510	struct reclaim_state reclaim_state;
3511	struct scan_control sc = {
3512		.nr_to_reclaim = nr_to_reclaim,
3513		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3514		.priority = DEF_PRIORITY,
3515		.may_writepage = 1,
3516		.may_unmap = 1,
3517		.may_swap = 1,
 
 
 
3518		.hibernation_mode = 1,
 
 
3519	};
3520	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3521	struct task_struct *p = current;
3522	unsigned long nr_reclaimed;
3523
3524	p->flags |= PF_MEMALLOC;
3525	lockdep_set_current_reclaim_state(sc.gfp_mask);
3526	reclaim_state.reclaimed_slab = 0;
3527	p->reclaim_state = &reclaim_state;
3528
3529	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3530
3531	p->reclaim_state = NULL;
3532	lockdep_clear_current_reclaim_state();
3533	p->flags &= ~PF_MEMALLOC;
3534
3535	return nr_reclaimed;
3536}
3537#endif /* CONFIG_HIBERNATION */
3538
3539/* It's optimal to keep kswapds on the same CPUs as their memory, but
3540   not required for correctness.  So if the last cpu in a node goes
3541   away, we get changed to run anywhere: as the first one comes back,
3542   restore their cpu bindings. */
3543static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3544			void *hcpu)
3545{
3546	int nid;
3547
3548	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3549		for_each_node_state(nid, N_MEMORY) {
3550			pg_data_t *pgdat = NODE_DATA(nid);
3551			const struct cpumask *mask;
3552
3553			mask = cpumask_of_node(pgdat->node_id);
3554
3555			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3556				/* One of our CPUs online: restore mask */
3557				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3558		}
3559	}
3560	return NOTIFY_OK;
3561}
3562
3563/*
3564 * This kswapd start function will be called by init and node-hot-add.
3565 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3566 */
3567int kswapd_run(int nid)
3568{
3569	pg_data_t *pgdat = NODE_DATA(nid);
3570	int ret = 0;
3571
3572	if (pgdat->kswapd)
3573		return 0;
3574
3575	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3576	if (IS_ERR(pgdat->kswapd)) {
3577		/* failure at boot is fatal */
3578		BUG_ON(system_state == SYSTEM_BOOTING);
3579		pr_err("Failed to start kswapd on node %d\n", nid);
3580		ret = PTR_ERR(pgdat->kswapd);
3581		pgdat->kswapd = NULL;
3582	}
3583	return ret;
3584}
3585
3586/*
3587 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3588 * hold mem_hotplug_begin/end().
3589 */
3590void kswapd_stop(int nid)
3591{
3592	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3593
3594	if (kswapd) {
3595		kthread_stop(kswapd);
3596		NODE_DATA(nid)->kswapd = NULL;
3597	}
3598}
3599
3600static int __init kswapd_init(void)
3601{
3602	int nid;
3603
3604	swap_setup();
3605	for_each_node_state(nid, N_MEMORY)
3606 		kswapd_run(nid);
3607	hotcpu_notifier(cpu_callback, 0);
3608	return 0;
3609}
3610
3611module_init(kswapd_init)
3612
3613#ifdef CONFIG_NUMA
3614/*
3615 * Zone reclaim mode
3616 *
3617 * If non-zero call zone_reclaim when the number of free pages falls below
3618 * the watermarks.
3619 */
3620int zone_reclaim_mode __read_mostly;
3621
3622#define RECLAIM_OFF 0
3623#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3624#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3625#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3626
3627/*
3628 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3629 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3630 * a zone.
3631 */
3632#define ZONE_RECLAIM_PRIORITY 4
3633
3634/*
3635 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3636 * occur.
3637 */
3638int sysctl_min_unmapped_ratio = 1;
3639
3640/*
3641 * If the number of slab pages in a zone grows beyond this percentage then
3642 * slab reclaim needs to occur.
3643 */
3644int sysctl_min_slab_ratio = 5;
3645
3646static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3647{
3648	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3649	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3650		zone_page_state(zone, NR_ACTIVE_FILE);
3651
3652	/*
3653	 * It's possible for there to be more file mapped pages than
3654	 * accounted for by the pages on the file LRU lists because
3655	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3656	 */
3657	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3658}
3659
3660/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3661static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3662{
3663	unsigned long nr_pagecache_reclaimable;
3664	unsigned long delta = 0;
3665
3666	/*
3667	 * If RECLAIM_UNMAP is set, then all file pages are considered
3668	 * potentially reclaimable. Otherwise, we have to worry about
3669	 * pages like swapcache and zone_unmapped_file_pages() provides
3670	 * a better estimate
3671	 */
3672	if (zone_reclaim_mode & RECLAIM_UNMAP)
3673		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3674	else
3675		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3676
3677	/* If we can't clean pages, remove dirty pages from consideration */
3678	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3679		delta += zone_page_state(zone, NR_FILE_DIRTY);
3680
3681	/* Watch for any possible underflows due to delta */
3682	if (unlikely(delta > nr_pagecache_reclaimable))
3683		delta = nr_pagecache_reclaimable;
3684
3685	return nr_pagecache_reclaimable - delta;
3686}
3687
3688/*
3689 * Try to free up some pages from this zone through reclaim.
3690 */
3691static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3692{
3693	/* Minimum pages needed in order to stay on node */
3694	const unsigned long nr_pages = 1 << order;
3695	struct task_struct *p = current;
3696	struct reclaim_state reclaim_state;
3697	struct scan_control sc = {
 
 
 
3698		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3699		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3700		.order = order,
3701		.priority = ZONE_RECLAIM_PRIORITY,
3702		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3703		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3704		.may_swap = 1,
3705	};
 
 
 
 
3706
3707	cond_resched();
3708	/*
3709	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3710	 * and we also need to be able to write out pages for RECLAIM_WRITE
3711	 * and RECLAIM_UNMAP.
3712	 */
3713	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3714	lockdep_set_current_reclaim_state(gfp_mask);
3715	reclaim_state.reclaimed_slab = 0;
3716	p->reclaim_state = &reclaim_state;
3717
3718	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3719		/*
3720		 * Free memory by calling shrink zone with increasing
3721		 * priorities until we have enough memory freed.
3722		 */
3723		do {
3724			shrink_zone(zone, &sc, true);
3725		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3726	}
3727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3728	p->reclaim_state = NULL;
3729	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3730	lockdep_clear_current_reclaim_state();
3731	return sc.nr_reclaimed >= nr_pages;
3732}
3733
3734int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3735{
3736	int node_id;
3737	int ret;
3738
3739	/*
3740	 * Zone reclaim reclaims unmapped file backed pages and
3741	 * slab pages if we are over the defined limits.
3742	 *
3743	 * A small portion of unmapped file backed pages is needed for
3744	 * file I/O otherwise pages read by file I/O will be immediately
3745	 * thrown out if the zone is overallocated. So we do not reclaim
3746	 * if less than a specified percentage of the zone is used by
3747	 * unmapped file backed pages.
3748	 */
3749	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3750	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3751		return ZONE_RECLAIM_FULL;
3752
3753	if (!zone_reclaimable(zone))
3754		return ZONE_RECLAIM_FULL;
3755
3756	/*
3757	 * Do not scan if the allocation should not be delayed.
3758	 */
3759	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3760		return ZONE_RECLAIM_NOSCAN;
3761
3762	/*
3763	 * Only run zone reclaim on the local zone or on zones that do not
3764	 * have associated processors. This will favor the local processor
3765	 * over remote processors and spread off node memory allocations
3766	 * as wide as possible.
3767	 */
3768	node_id = zone_to_nid(zone);
3769	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3770		return ZONE_RECLAIM_NOSCAN;
3771
3772	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3773		return ZONE_RECLAIM_NOSCAN;
3774
3775	ret = __zone_reclaim(zone, gfp_mask, order);
3776	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3777
3778	if (!ret)
3779		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3780
3781	return ret;
3782}
3783#endif
3784
3785/*
3786 * page_evictable - test whether a page is evictable
3787 * @page: the page to test
3788 *
3789 * Test whether page is evictable--i.e., should be placed on active/inactive
3790 * lists vs unevictable list.
3791 *
3792 * Reasons page might not be evictable:
3793 * (1) page's mapping marked unevictable
3794 * (2) page is part of an mlocked VMA
3795 *
3796 */
3797int page_evictable(struct page *page)
3798{
3799	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3800}
3801
3802#ifdef CONFIG_SHMEM
3803/**
3804 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3805 * @pages:	array of pages to check
3806 * @nr_pages:	number of pages to check
3807 *
3808 * Checks pages for evictability and moves them to the appropriate lru list.
3809 *
3810 * This function is only used for SysV IPC SHM_UNLOCK.
3811 */
3812void check_move_unevictable_pages(struct page **pages, int nr_pages)
3813{
3814	struct lruvec *lruvec;
3815	struct zone *zone = NULL;
3816	int pgscanned = 0;
3817	int pgrescued = 0;
3818	int i;
3819
3820	for (i = 0; i < nr_pages; i++) {
3821		struct page *page = pages[i];
3822		struct zone *pagezone;
3823
3824		pgscanned++;
3825		pagezone = page_zone(page);
3826		if (pagezone != zone) {
3827			if (zone)
3828				spin_unlock_irq(&zone->lru_lock);
3829			zone = pagezone;
3830			spin_lock_irq(&zone->lru_lock);
3831		}
3832		lruvec = mem_cgroup_page_lruvec(page, zone);
3833
3834		if (!PageLRU(page) || !PageUnevictable(page))
3835			continue;
3836
3837		if (page_evictable(page)) {
3838			enum lru_list lru = page_lru_base_type(page);
3839
3840			VM_BUG_ON_PAGE(PageActive(page), page);
3841			ClearPageUnevictable(page);
3842			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3843			add_page_to_lru_list(page, lruvec, lru);
3844			pgrescued++;
3845		}
3846	}
3847
3848	if (zone) {
3849		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3850		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3851		spin_unlock_irq(&zone->lru_lock);
3852	}
3853}
3854#endif /* CONFIG_SHMEM */
v3.15
   1/*
   2 *  linux/mm/vmscan.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *
   6 *  Swap reorganised 29.12.95, Stephen Tweedie.
   7 *  kswapd added: 7.1.96  sct
   8 *  Removed kswapd_ctl limits, and swap out as many pages as needed
   9 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11 *  Multiqueue VM started 5.8.00, Rik van Riel.
  12 */
  13
 
 
  14#include <linux/mm.h>
  15#include <linux/module.h>
  16#include <linux/gfp.h>
  17#include <linux/kernel_stat.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/init.h>
  21#include <linux/highmem.h>
  22#include <linux/vmpressure.h>
  23#include <linux/vmstat.h>
  24#include <linux/file.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/buffer_head.h>	/* for try_to_release_page(),
  28					buffer_heads_over_limit */
  29#include <linux/mm_inline.h>
  30#include <linux/backing-dev.h>
  31#include <linux/rmap.h>
  32#include <linux/topology.h>
  33#include <linux/cpu.h>
  34#include <linux/cpuset.h>
  35#include <linux/compaction.h>
  36#include <linux/notifier.h>
  37#include <linux/rwsem.h>
  38#include <linux/delay.h>
  39#include <linux/kthread.h>
  40#include <linux/freezer.h>
  41#include <linux/memcontrol.h>
  42#include <linux/delayacct.h>
  43#include <linux/sysctl.h>
  44#include <linux/oom.h>
  45#include <linux/prefetch.h>
 
 
  46
  47#include <asm/tlbflush.h>
  48#include <asm/div64.h>
  49
  50#include <linux/swapops.h>
  51#include <linux/balloon_compaction.h>
  52
  53#include "internal.h"
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/vmscan.h>
  57
  58struct scan_control {
  59	/* Incremented by the number of inactive pages that were scanned */
  60	unsigned long nr_scanned;
  61
  62	/* Number of pages freed so far during a call to shrink_zones() */
  63	unsigned long nr_reclaimed;
  64
  65	/* How many pages shrink_list() should reclaim */
  66	unsigned long nr_to_reclaim;
  67
  68	unsigned long hibernation_mode;
  69
  70	/* This context's GFP mask */
  71	gfp_t gfp_mask;
  72
  73	int may_writepage;
  74
  75	/* Can mapped pages be reclaimed? */
  76	int may_unmap;
  77
  78	/* Can pages be swapped as part of reclaim? */
  79	int may_swap;
  80
  81	int order;
  82
  83	/* Scan (total_size >> priority) pages at once */
  84	int priority;
 
 
 
  85
  86	/*
  87	 * The memory cgroup that hit its limit and as a result is the
  88	 * primary target of this reclaim invocation.
  89	 */
  90	struct mem_cgroup *target_mem_cgroup;
  91
  92	/*
  93	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
  94	 * are scanned.
  95	 */
  96	nodemask_t	*nodemask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97};
  98
  99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
 100
 101#ifdef ARCH_HAS_PREFETCH
 102#define prefetch_prev_lru_page(_page, _base, _field)			\
 103	do {								\
 104		if ((_page)->lru.prev != _base) {			\
 105			struct page *prev;				\
 106									\
 107			prev = lru_to_page(&(_page->lru));		\
 108			prefetch(&prev->_field);			\
 109		}							\
 110	} while (0)
 111#else
 112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 113#endif
 114
 115#ifdef ARCH_HAS_PREFETCHW
 116#define prefetchw_prev_lru_page(_page, _base, _field)			\
 117	do {								\
 118		if ((_page)->lru.prev != _base) {			\
 119			struct page *prev;				\
 120									\
 121			prev = lru_to_page(&(_page->lru));		\
 122			prefetchw(&prev->_field);			\
 123		}							\
 124	} while (0)
 125#else
 126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 127#endif
 128
 129/*
 130 * From 0 .. 100.  Higher means more swappy.
 131 */
 132int vm_swappiness = 60;
 133unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
 
 
 
 
 134
 135static LIST_HEAD(shrinker_list);
 136static DECLARE_RWSEM(shrinker_rwsem);
 137
 138#ifdef CONFIG_MEMCG
 139static bool global_reclaim(struct scan_control *sc)
 140{
 141	return !sc->target_mem_cgroup;
 142}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143#else
 144static bool global_reclaim(struct scan_control *sc)
 145{
 146	return true;
 147}
 
 
 
 
 
 148#endif
 149
 150static unsigned long zone_reclaimable_pages(struct zone *zone)
 151{
 152	int nr;
 153
 154	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
 155	     zone_page_state(zone, NR_INACTIVE_FILE);
 
 156
 157	if (get_nr_swap_pages() > 0)
 158		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
 159		      zone_page_state(zone, NR_INACTIVE_ANON);
 
 160
 161	return nr;
 162}
 163
 164bool zone_reclaimable(struct zone *zone)
 165{
 166	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
 
 167}
 168
 169static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 170{
 171	if (!mem_cgroup_disabled())
 172		return mem_cgroup_get_lru_size(lruvec, lru);
 173
 174	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
 175}
 176
 177/*
 178 * Add a shrinker callback to be called from the vm.
 179 */
 180int register_shrinker(struct shrinker *shrinker)
 181{
 182	size_t size = sizeof(*shrinker->nr_deferred);
 183
 184	/*
 185	 * If we only have one possible node in the system anyway, save
 186	 * ourselves the trouble and disable NUMA aware behavior. This way we
 187	 * will save memory and some small loop time later.
 188	 */
 189	if (nr_node_ids == 1)
 190		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
 191
 192	if (shrinker->flags & SHRINKER_NUMA_AWARE)
 193		size *= nr_node_ids;
 194
 195	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 196	if (!shrinker->nr_deferred)
 197		return -ENOMEM;
 198
 199	down_write(&shrinker_rwsem);
 200	list_add_tail(&shrinker->list, &shrinker_list);
 201	up_write(&shrinker_rwsem);
 202	return 0;
 203}
 204EXPORT_SYMBOL(register_shrinker);
 205
 206/*
 207 * Remove one
 208 */
 209void unregister_shrinker(struct shrinker *shrinker)
 210{
 211	down_write(&shrinker_rwsem);
 212	list_del(&shrinker->list);
 213	up_write(&shrinker_rwsem);
 214	kfree(shrinker->nr_deferred);
 215}
 216EXPORT_SYMBOL(unregister_shrinker);
 217
 218#define SHRINK_BATCH 128
 219
 220static unsigned long
 221shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
 222		 unsigned long nr_pages_scanned, unsigned long lru_pages)
 
 223{
 224	unsigned long freed = 0;
 225	unsigned long long delta;
 226	long total_scan;
 227	long freeable;
 228	long nr;
 229	long new_nr;
 230	int nid = shrinkctl->nid;
 231	long batch_size = shrinker->batch ? shrinker->batch
 232					  : SHRINK_BATCH;
 233
 234	freeable = shrinker->count_objects(shrinker, shrinkctl);
 235	if (freeable == 0)
 236		return 0;
 237
 238	/*
 239	 * copy the current shrinker scan count into a local variable
 240	 * and zero it so that other concurrent shrinker invocations
 241	 * don't also do this scanning work.
 242	 */
 243	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 244
 245	total_scan = nr;
 246	delta = (4 * nr_pages_scanned) / shrinker->seeks;
 247	delta *= freeable;
 248	do_div(delta, lru_pages + 1);
 249	total_scan += delta;
 250	if (total_scan < 0) {
 251		printk(KERN_ERR
 252		"shrink_slab: %pF negative objects to delete nr=%ld\n",
 253		       shrinker->scan_objects, total_scan);
 254		total_scan = freeable;
 255	}
 256
 257	/*
 258	 * We need to avoid excessive windup on filesystem shrinkers
 259	 * due to large numbers of GFP_NOFS allocations causing the
 260	 * shrinkers to return -1 all the time. This results in a large
 261	 * nr being built up so when a shrink that can do some work
 262	 * comes along it empties the entire cache due to nr >>>
 263	 * freeable. This is bad for sustaining a working set in
 264	 * memory.
 265	 *
 266	 * Hence only allow the shrinker to scan the entire cache when
 267	 * a large delta change is calculated directly.
 268	 */
 269	if (delta < freeable / 4)
 270		total_scan = min(total_scan, freeable / 2);
 271
 272	/*
 273	 * Avoid risking looping forever due to too large nr value:
 274	 * never try to free more than twice the estimate number of
 275	 * freeable entries.
 276	 */
 277	if (total_scan > freeable * 2)
 278		total_scan = freeable * 2;
 279
 280	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 281				nr_pages_scanned, lru_pages,
 282				freeable, delta, total_scan);
 283
 284	/*
 285	 * Normally, we should not scan less than batch_size objects in one
 286	 * pass to avoid too frequent shrinker calls, but if the slab has less
 287	 * than batch_size objects in total and we are really tight on memory,
 288	 * we will try to reclaim all available objects, otherwise we can end
 289	 * up failing allocations although there are plenty of reclaimable
 290	 * objects spread over several slabs with usage less than the
 291	 * batch_size.
 292	 *
 293	 * We detect the "tight on memory" situations by looking at the total
 294	 * number of objects we want to scan (total_scan). If it is greater
 295	 * than the total number of objects on slab (freeable), we must be
 296	 * scanning at high prio and therefore should try to reclaim as much as
 297	 * possible.
 298	 */
 299	while (total_scan >= batch_size ||
 300	       total_scan >= freeable) {
 301		unsigned long ret;
 302		unsigned long nr_to_scan = min(batch_size, total_scan);
 303
 304		shrinkctl->nr_to_scan = nr_to_scan;
 305		ret = shrinker->scan_objects(shrinker, shrinkctl);
 306		if (ret == SHRINK_STOP)
 307			break;
 308		freed += ret;
 309
 310		count_vm_events(SLABS_SCANNED, nr_to_scan);
 311		total_scan -= nr_to_scan;
 312
 313		cond_resched();
 314	}
 315
 316	/*
 317	 * move the unused scan count back into the shrinker in a
 318	 * manner that handles concurrent updates. If we exhausted the
 319	 * scan, there is no need to do an update.
 320	 */
 321	if (total_scan > 0)
 322		new_nr = atomic_long_add_return(total_scan,
 323						&shrinker->nr_deferred[nid]);
 324	else
 325		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 326
 327	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
 328	return freed;
 329}
 330
 331/*
 332 * Call the shrink functions to age shrinkable caches
 333 *
 334 * Here we assume it costs one seek to replace a lru page and that it also
 335 * takes a seek to recreate a cache object.  With this in mind we age equal
 336 * percentages of the lru and ageable caches.  This should balance the seeks
 337 * generated by these structures.
 338 *
 339 * If the vm encountered mapped pages on the LRU it increase the pressure on
 340 * slab to avoid swapping.
 341 *
 342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 343 *
 344 * `lru_pages' represents the number of on-LRU pages in all the zones which
 345 * are eligible for the caller's allocation attempt.  It is used for balancing
 346 * slab reclaim versus page reclaim.
 347 *
 348 * Returns the number of slab objects which we shrunk.
 349 */
 350unsigned long shrink_slab(struct shrink_control *shrinkctl,
 351			  unsigned long nr_pages_scanned,
 352			  unsigned long lru_pages)
 
 
 
 
 
 
 
 
 
 
 353{
 354	struct shrinker *shrinker;
 355	unsigned long freed = 0;
 356
 357	if (nr_pages_scanned == 0)
 358		nr_pages_scanned = SWAP_CLUSTER_MAX;
 
 
 
 359
 360	if (!down_read_trylock(&shrinker_rwsem)) {
 361		/*
 362		 * If we would return 0, our callers would understand that we
 363		 * have nothing else to shrink and give up trying. By returning
 364		 * 1 we keep it going and assume we'll be able to shrink next
 365		 * time.
 366		 */
 367		freed = 1;
 368		goto out;
 369	}
 370
 371	list_for_each_entry(shrinker, &shrinker_list, list) {
 372		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
 373			shrinkctl->nid = 0;
 374			freed += shrink_slab_node(shrinkctl, shrinker,
 375					nr_pages_scanned, lru_pages);
 
 
 
 
 
 
 
 
 
 376			continue;
 377		}
 378
 379		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
 380			if (node_online(shrinkctl->nid))
 381				freed += shrink_slab_node(shrinkctl, shrinker,
 382						nr_pages_scanned, lru_pages);
 383
 384		}
 385	}
 
 386	up_read(&shrinker_rwsem);
 387out:
 388	cond_resched();
 389	return freed;
 390}
 391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392static inline int is_page_cache_freeable(struct page *page)
 393{
 394	/*
 395	 * A freeable page cache page is referenced only by the caller
 396	 * that isolated the page, the page cache radix tree and
 397	 * optional buffer heads at page->private.
 398	 */
 399	return page_count(page) - page_has_private(page) == 2;
 400}
 401
 402static int may_write_to_queue(struct backing_dev_info *bdi,
 403			      struct scan_control *sc)
 404{
 405	if (current->flags & PF_SWAPWRITE)
 406		return 1;
 407	if (!bdi_write_congested(bdi))
 408		return 1;
 409	if (bdi == current->backing_dev_info)
 410		return 1;
 411	return 0;
 412}
 413
 414/*
 415 * We detected a synchronous write error writing a page out.  Probably
 416 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 417 * fsync(), msync() or close().
 418 *
 419 * The tricky part is that after writepage we cannot touch the mapping: nothing
 420 * prevents it from being freed up.  But we have a ref on the page and once
 421 * that page is locked, the mapping is pinned.
 422 *
 423 * We're allowed to run sleeping lock_page() here because we know the caller has
 424 * __GFP_FS.
 425 */
 426static void handle_write_error(struct address_space *mapping,
 427				struct page *page, int error)
 428{
 429	lock_page(page);
 430	if (page_mapping(page) == mapping)
 431		mapping_set_error(mapping, error);
 432	unlock_page(page);
 433}
 434
 435/* possible outcome of pageout() */
 436typedef enum {
 437	/* failed to write page out, page is locked */
 438	PAGE_KEEP,
 439	/* move page to the active list, page is locked */
 440	PAGE_ACTIVATE,
 441	/* page has been sent to the disk successfully, page is unlocked */
 442	PAGE_SUCCESS,
 443	/* page is clean and locked */
 444	PAGE_CLEAN,
 445} pageout_t;
 446
 447/*
 448 * pageout is called by shrink_page_list() for each dirty page.
 449 * Calls ->writepage().
 450 */
 451static pageout_t pageout(struct page *page, struct address_space *mapping,
 452			 struct scan_control *sc)
 453{
 454	/*
 455	 * If the page is dirty, only perform writeback if that write
 456	 * will be non-blocking.  To prevent this allocation from being
 457	 * stalled by pagecache activity.  But note that there may be
 458	 * stalls if we need to run get_block().  We could test
 459	 * PagePrivate for that.
 460	 *
 461	 * If this process is currently in __generic_file_aio_write() against
 462	 * this page's queue, we can perform writeback even if that
 463	 * will block.
 464	 *
 465	 * If the page is swapcache, write it back even if that would
 466	 * block, for some throttling. This happens by accident, because
 467	 * swap_backing_dev_info is bust: it doesn't reflect the
 468	 * congestion state of the swapdevs.  Easy to fix, if needed.
 469	 */
 470	if (!is_page_cache_freeable(page))
 471		return PAGE_KEEP;
 472	if (!mapping) {
 473		/*
 474		 * Some data journaling orphaned pages can have
 475		 * page->mapping == NULL while being dirty with clean buffers.
 476		 */
 477		if (page_has_private(page)) {
 478			if (try_to_free_buffers(page)) {
 479				ClearPageDirty(page);
 480				printk("%s: orphaned page\n", __func__);
 481				return PAGE_CLEAN;
 482			}
 483		}
 484		return PAGE_KEEP;
 485	}
 486	if (mapping->a_ops->writepage == NULL)
 487		return PAGE_ACTIVATE;
 488	if (!may_write_to_queue(mapping->backing_dev_info, sc))
 489		return PAGE_KEEP;
 490
 491	if (clear_page_dirty_for_io(page)) {
 492		int res;
 493		struct writeback_control wbc = {
 494			.sync_mode = WB_SYNC_NONE,
 495			.nr_to_write = SWAP_CLUSTER_MAX,
 496			.range_start = 0,
 497			.range_end = LLONG_MAX,
 498			.for_reclaim = 1,
 499		};
 500
 501		SetPageReclaim(page);
 502		res = mapping->a_ops->writepage(page, &wbc);
 503		if (res < 0)
 504			handle_write_error(mapping, page, res);
 505		if (res == AOP_WRITEPAGE_ACTIVATE) {
 506			ClearPageReclaim(page);
 507			return PAGE_ACTIVATE;
 508		}
 509
 510		if (!PageWriteback(page)) {
 511			/* synchronous write or broken a_ops? */
 512			ClearPageReclaim(page);
 513		}
 514		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
 515		inc_zone_page_state(page, NR_VMSCAN_WRITE);
 516		return PAGE_SUCCESS;
 517	}
 518
 519	return PAGE_CLEAN;
 520}
 521
 522/*
 523 * Same as remove_mapping, but if the page is removed from the mapping, it
 524 * gets returned with a refcount of 0.
 525 */
 526static int __remove_mapping(struct address_space *mapping, struct page *page,
 527			    bool reclaimed)
 528{
 
 
 529	BUG_ON(!PageLocked(page));
 530	BUG_ON(mapping != page_mapping(page));
 531
 532	spin_lock_irq(&mapping->tree_lock);
 533	/*
 534	 * The non racy check for a busy page.
 535	 *
 536	 * Must be careful with the order of the tests. When someone has
 537	 * a ref to the page, it may be possible that they dirty it then
 538	 * drop the reference. So if PageDirty is tested before page_count
 539	 * here, then the following race may occur:
 540	 *
 541	 * get_user_pages(&page);
 542	 * [user mapping goes away]
 543	 * write_to(page);
 544	 *				!PageDirty(page)    [good]
 545	 * SetPageDirty(page);
 546	 * put_page(page);
 547	 *				!page_count(page)   [good, discard it]
 548	 *
 549	 * [oops, our write_to data is lost]
 550	 *
 551	 * Reversing the order of the tests ensures such a situation cannot
 552	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 553	 * load is not satisfied before that of page->_count.
 554	 *
 555	 * Note that if SetPageDirty is always performed via set_page_dirty,
 556	 * and thus under tree_lock, then this ordering is not required.
 557	 */
 558	if (!page_freeze_refs(page, 2))
 559		goto cannot_free;
 560	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
 561	if (unlikely(PageDirty(page))) {
 562		page_unfreeze_refs(page, 2);
 563		goto cannot_free;
 564	}
 565
 566	if (PageSwapCache(page)) {
 567		swp_entry_t swap = { .val = page_private(page) };
 
 568		__delete_from_swap_cache(page);
 569		spin_unlock_irq(&mapping->tree_lock);
 570		swapcache_free(swap, page);
 571	} else {
 572		void (*freepage)(struct page *);
 573		void *shadow = NULL;
 574
 575		freepage = mapping->a_ops->freepage;
 576		/*
 577		 * Remember a shadow entry for reclaimed file cache in
 578		 * order to detect refaults, thus thrashing, later on.
 579		 *
 580		 * But don't store shadows in an address space that is
 581		 * already exiting.  This is not just an optizimation,
 582		 * inode reclaim needs to empty out the radix tree or
 583		 * the nodes are lost.  Don't plant shadows behind its
 584		 * back.
 
 
 
 
 
 
 585		 */
 586		if (reclaimed && page_is_file_cache(page) &&
 587		    !mapping_exiting(mapping))
 588			shadow = workingset_eviction(mapping, page);
 589		__delete_from_page_cache(page, shadow);
 590		spin_unlock_irq(&mapping->tree_lock);
 591		mem_cgroup_uncharge_cache_page(page);
 592
 593		if (freepage != NULL)
 594			freepage(page);
 595	}
 596
 597	return 1;
 598
 599cannot_free:
 600	spin_unlock_irq(&mapping->tree_lock);
 601	return 0;
 602}
 603
 604/*
 605 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 606 * someone else has a ref on the page, abort and return 0.  If it was
 607 * successfully detached, return 1.  Assumes the caller has a single ref on
 608 * this page.
 609 */
 610int remove_mapping(struct address_space *mapping, struct page *page)
 611{
 612	if (__remove_mapping(mapping, page, false)) {
 613		/*
 614		 * Unfreezing the refcount with 1 rather than 2 effectively
 615		 * drops the pagecache ref for us without requiring another
 616		 * atomic operation.
 617		 */
 618		page_unfreeze_refs(page, 1);
 619		return 1;
 620	}
 621	return 0;
 622}
 623
 624/**
 625 * putback_lru_page - put previously isolated page onto appropriate LRU list
 626 * @page: page to be put back to appropriate lru list
 627 *
 628 * Add previously isolated @page to appropriate LRU list.
 629 * Page may still be unevictable for other reasons.
 630 *
 631 * lru_lock must not be held, interrupts must be enabled.
 632 */
 633void putback_lru_page(struct page *page)
 634{
 635	bool is_unevictable;
 636	int was_unevictable = PageUnevictable(page);
 637
 638	VM_BUG_ON_PAGE(PageLRU(page), page);
 639
 640redo:
 641	ClearPageUnevictable(page);
 642
 643	if (page_evictable(page)) {
 644		/*
 645		 * For evictable pages, we can use the cache.
 646		 * In event of a race, worst case is we end up with an
 647		 * unevictable page on [in]active list.
 648		 * We know how to handle that.
 649		 */
 650		is_unevictable = false;
 651		lru_cache_add(page);
 652	} else {
 653		/*
 654		 * Put unevictable pages directly on zone's unevictable
 655		 * list.
 656		 */
 657		is_unevictable = true;
 658		add_page_to_unevictable_list(page);
 659		/*
 660		 * When racing with an mlock or AS_UNEVICTABLE clearing
 661		 * (page is unlocked) make sure that if the other thread
 662		 * does not observe our setting of PG_lru and fails
 663		 * isolation/check_move_unevictable_pages,
 664		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
 665		 * the page back to the evictable list.
 666		 *
 667		 * The other side is TestClearPageMlocked() or shmem_lock().
 668		 */
 669		smp_mb();
 670	}
 671
 672	/*
 673	 * page's status can change while we move it among lru. If an evictable
 674	 * page is on unevictable list, it never be freed. To avoid that,
 675	 * check after we added it to the list, again.
 676	 */
 677	if (is_unevictable && page_evictable(page)) {
 678		if (!isolate_lru_page(page)) {
 679			put_page(page);
 680			goto redo;
 681		}
 682		/* This means someone else dropped this page from LRU
 683		 * So, it will be freed or putback to LRU again. There is
 684		 * nothing to do here.
 685		 */
 686	}
 687
 688	if (was_unevictable && !is_unevictable)
 689		count_vm_event(UNEVICTABLE_PGRESCUED);
 690	else if (!was_unevictable && is_unevictable)
 691		count_vm_event(UNEVICTABLE_PGCULLED);
 692
 693	put_page(page);		/* drop ref from isolate */
 694}
 695
 696enum page_references {
 697	PAGEREF_RECLAIM,
 698	PAGEREF_RECLAIM_CLEAN,
 699	PAGEREF_KEEP,
 700	PAGEREF_ACTIVATE,
 701};
 702
 703static enum page_references page_check_references(struct page *page,
 704						  struct scan_control *sc)
 705{
 706	int referenced_ptes, referenced_page;
 707	unsigned long vm_flags;
 708
 709	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
 710					  &vm_flags);
 711	referenced_page = TestClearPageReferenced(page);
 712
 713	/*
 714	 * Mlock lost the isolation race with us.  Let try_to_unmap()
 715	 * move the page to the unevictable list.
 716	 */
 717	if (vm_flags & VM_LOCKED)
 718		return PAGEREF_RECLAIM;
 719
 720	if (referenced_ptes) {
 721		if (PageSwapBacked(page))
 722			return PAGEREF_ACTIVATE;
 723		/*
 724		 * All mapped pages start out with page table
 725		 * references from the instantiating fault, so we need
 726		 * to look twice if a mapped file page is used more
 727		 * than once.
 728		 *
 729		 * Mark it and spare it for another trip around the
 730		 * inactive list.  Another page table reference will
 731		 * lead to its activation.
 732		 *
 733		 * Note: the mark is set for activated pages as well
 734		 * so that recently deactivated but used pages are
 735		 * quickly recovered.
 736		 */
 737		SetPageReferenced(page);
 738
 739		if (referenced_page || referenced_ptes > 1)
 740			return PAGEREF_ACTIVATE;
 741
 742		/*
 743		 * Activate file-backed executable pages after first usage.
 744		 */
 745		if (vm_flags & VM_EXEC)
 746			return PAGEREF_ACTIVATE;
 747
 748		return PAGEREF_KEEP;
 749	}
 750
 751	/* Reclaim if clean, defer dirty pages to writeback */
 752	if (referenced_page && !PageSwapBacked(page))
 753		return PAGEREF_RECLAIM_CLEAN;
 754
 755	return PAGEREF_RECLAIM;
 756}
 757
 758/* Check if a page is dirty or under writeback */
 759static void page_check_dirty_writeback(struct page *page,
 760				       bool *dirty, bool *writeback)
 761{
 762	struct address_space *mapping;
 763
 764	/*
 765	 * Anonymous pages are not handled by flushers and must be written
 766	 * from reclaim context. Do not stall reclaim based on them
 767	 */
 768	if (!page_is_file_cache(page)) {
 769		*dirty = false;
 770		*writeback = false;
 771		return;
 772	}
 773
 774	/* By default assume that the page flags are accurate */
 775	*dirty = PageDirty(page);
 776	*writeback = PageWriteback(page);
 777
 778	/* Verify dirty/writeback state if the filesystem supports it */
 779	if (!page_has_private(page))
 780		return;
 781
 782	mapping = page_mapping(page);
 783	if (mapping && mapping->a_ops->is_dirty_writeback)
 784		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
 785}
 786
 787/*
 788 * shrink_page_list() returns the number of reclaimed pages
 789 */
 790static unsigned long shrink_page_list(struct list_head *page_list,
 791				      struct zone *zone,
 792				      struct scan_control *sc,
 793				      enum ttu_flags ttu_flags,
 794				      unsigned long *ret_nr_dirty,
 795				      unsigned long *ret_nr_unqueued_dirty,
 796				      unsigned long *ret_nr_congested,
 797				      unsigned long *ret_nr_writeback,
 798				      unsigned long *ret_nr_immediate,
 799				      bool force_reclaim)
 800{
 801	LIST_HEAD(ret_pages);
 802	LIST_HEAD(free_pages);
 803	int pgactivate = 0;
 804	unsigned long nr_unqueued_dirty = 0;
 805	unsigned long nr_dirty = 0;
 806	unsigned long nr_congested = 0;
 807	unsigned long nr_reclaimed = 0;
 808	unsigned long nr_writeback = 0;
 809	unsigned long nr_immediate = 0;
 810
 811	cond_resched();
 812
 813	mem_cgroup_uncharge_start();
 814	while (!list_empty(page_list)) {
 815		struct address_space *mapping;
 816		struct page *page;
 817		int may_enter_fs;
 818		enum page_references references = PAGEREF_RECLAIM_CLEAN;
 819		bool dirty, writeback;
 
 
 820
 821		cond_resched();
 822
 823		page = lru_to_page(page_list);
 824		list_del(&page->lru);
 825
 826		if (!trylock_page(page))
 827			goto keep;
 828
 829		VM_BUG_ON_PAGE(PageActive(page), page);
 830		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
 831
 832		sc->nr_scanned++;
 833
 834		if (unlikely(!page_evictable(page)))
 835			goto cull_mlocked;
 836
 837		if (!sc->may_unmap && page_mapped(page))
 838			goto keep_locked;
 839
 840		/* Double the slab pressure for mapped and swapcache pages */
 841		if (page_mapped(page) || PageSwapCache(page))
 842			sc->nr_scanned++;
 843
 844		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
 845			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
 846
 847		/*
 848		 * The number of dirty pages determines if a zone is marked
 849		 * reclaim_congested which affects wait_iff_congested. kswapd
 850		 * will stall and start writing pages if the tail of the LRU
 851		 * is all dirty unqueued pages.
 852		 */
 853		page_check_dirty_writeback(page, &dirty, &writeback);
 854		if (dirty || writeback)
 855			nr_dirty++;
 856
 857		if (dirty && !writeback)
 858			nr_unqueued_dirty++;
 859
 860		/*
 861		 * Treat this page as congested if the underlying BDI is or if
 862		 * pages are cycling through the LRU so quickly that the
 863		 * pages marked for immediate reclaim are making it to the
 864		 * end of the LRU a second time.
 865		 */
 866		mapping = page_mapping(page);
 867		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
 
 868		    (writeback && PageReclaim(page)))
 869			nr_congested++;
 870
 871		/*
 872		 * If a page at the tail of the LRU is under writeback, there
 873		 * are three cases to consider.
 874		 *
 875		 * 1) If reclaim is encountering an excessive number of pages
 876		 *    under writeback and this page is both under writeback and
 877		 *    PageReclaim then it indicates that pages are being queued
 878		 *    for IO but are being recycled through the LRU before the
 879		 *    IO can complete. Waiting on the page itself risks an
 880		 *    indefinite stall if it is impossible to writeback the
 881		 *    page due to IO error or disconnected storage so instead
 882		 *    note that the LRU is being scanned too quickly and the
 883		 *    caller can stall after page list has been processed.
 884		 *
 885		 * 2) Global reclaim encounters a page, memcg encounters a
 886		 *    page that is not marked for immediate reclaim or
 887		 *    the caller does not have __GFP_IO. In this case mark
 888		 *    the page for immediate reclaim and continue scanning.
 
 889		 *
 890		 *    __GFP_IO is checked  because a loop driver thread might
 
 891		 *    enter reclaim, and deadlock if it waits on a page for
 892		 *    which it is needed to do the write (loop masks off
 893		 *    __GFP_IO|__GFP_FS for this reason); but more thought
 894		 *    would probably show more reasons.
 895		 *
 896		 *    Don't require __GFP_FS, since we're not going into the
 897		 *    FS, just waiting on its writeback completion. Worryingly,
 898		 *    ext4 gfs2 and xfs allocate pages with
 899		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
 900		 *    may_enter_fs here is liable to OOM on them.
 901		 *
 902		 * 3) memcg encounters a page that is not already marked
 903		 *    PageReclaim. memcg does not have any dirty pages
 904		 *    throttling so we could easily OOM just because too many
 905		 *    pages are in writeback and there is nothing else to
 906		 *    reclaim. Wait for the writeback to complete.
 907		 */
 908		if (PageWriteback(page)) {
 909			/* Case 1 above */
 910			if (current_is_kswapd() &&
 911			    PageReclaim(page) &&
 912			    zone_is_reclaim_writeback(zone)) {
 913				nr_immediate++;
 914				goto keep_locked;
 915
 916			/* Case 2 above */
 917			} else if (global_reclaim(sc) ||
 918			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
 919				/*
 920				 * This is slightly racy - end_page_writeback()
 921				 * might have just cleared PageReclaim, then
 922				 * setting PageReclaim here end up interpreted
 923				 * as PageReadahead - but that does not matter
 924				 * enough to care.  What we do want is for this
 925				 * page to have PageReclaim set next time memcg
 926				 * reclaim reaches the tests above, so it will
 927				 * then wait_on_page_writeback() to avoid OOM;
 928				 * and it's also appropriate in global reclaim.
 929				 */
 930				SetPageReclaim(page);
 931				nr_writeback++;
 932
 933				goto keep_locked;
 934
 935			/* Case 3 above */
 936			} else {
 
 937				wait_on_page_writeback(page);
 
 
 
 938			}
 939		}
 940
 941		if (!force_reclaim)
 942			references = page_check_references(page, sc);
 943
 944		switch (references) {
 945		case PAGEREF_ACTIVATE:
 946			goto activate_locked;
 947		case PAGEREF_KEEP:
 948			goto keep_locked;
 949		case PAGEREF_RECLAIM:
 950		case PAGEREF_RECLAIM_CLEAN:
 951			; /* try to reclaim the page below */
 952		}
 953
 954		/*
 955		 * Anonymous process memory has backing store?
 956		 * Try to allocate it some swap space here.
 957		 */
 958		if (PageAnon(page) && !PageSwapCache(page)) {
 959			if (!(sc->gfp_mask & __GFP_IO))
 960				goto keep_locked;
 961			if (!add_to_swap(page, page_list))
 962				goto activate_locked;
 
 963			may_enter_fs = 1;
 964
 965			/* Adding to swap updated mapping */
 966			mapping = page_mapping(page);
 967		}
 968
 969		/*
 970		 * The page is mapped into the page tables of one or more
 971		 * processes. Try to unmap it here.
 972		 */
 973		if (page_mapped(page) && mapping) {
 974			switch (try_to_unmap(page, ttu_flags)) {
 
 
 975			case SWAP_FAIL:
 976				goto activate_locked;
 977			case SWAP_AGAIN:
 978				goto keep_locked;
 979			case SWAP_MLOCK:
 980				goto cull_mlocked;
 
 
 981			case SWAP_SUCCESS:
 982				; /* try to free the page below */
 983			}
 984		}
 985
 986		if (PageDirty(page)) {
 987			/*
 988			 * Only kswapd can writeback filesystem pages to
 989			 * avoid risk of stack overflow but only writeback
 990			 * if many dirty pages have been encountered.
 991			 */
 992			if (page_is_file_cache(page) &&
 993					(!current_is_kswapd() ||
 994					 !zone_is_reclaim_dirty(zone))) {
 995				/*
 996				 * Immediately reclaim when written back.
 997				 * Similar in principal to deactivate_page()
 998				 * except we already have the page isolated
 999				 * and know it's dirty
1000				 */
1001				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1002				SetPageReclaim(page);
1003
1004				goto keep_locked;
1005			}
1006
1007			if (references == PAGEREF_RECLAIM_CLEAN)
1008				goto keep_locked;
1009			if (!may_enter_fs)
1010				goto keep_locked;
1011			if (!sc->may_writepage)
1012				goto keep_locked;
1013
1014			/* Page is dirty, try to write it out here */
 
 
 
 
 
1015			switch (pageout(page, mapping, sc)) {
1016			case PAGE_KEEP:
1017				goto keep_locked;
1018			case PAGE_ACTIVATE:
1019				goto activate_locked;
1020			case PAGE_SUCCESS:
1021				if (PageWriteback(page))
1022					goto keep;
1023				if (PageDirty(page))
1024					goto keep;
1025
1026				/*
1027				 * A synchronous write - probably a ramdisk.  Go
1028				 * ahead and try to reclaim the page.
1029				 */
1030				if (!trylock_page(page))
1031					goto keep;
1032				if (PageDirty(page) || PageWriteback(page))
1033					goto keep_locked;
1034				mapping = page_mapping(page);
1035			case PAGE_CLEAN:
1036				; /* try to free the page below */
1037			}
1038		}
1039
1040		/*
1041		 * If the page has buffers, try to free the buffer mappings
1042		 * associated with this page. If we succeed we try to free
1043		 * the page as well.
1044		 *
1045		 * We do this even if the page is PageDirty().
1046		 * try_to_release_page() does not perform I/O, but it is
1047		 * possible for a page to have PageDirty set, but it is actually
1048		 * clean (all its buffers are clean).  This happens if the
1049		 * buffers were written out directly, with submit_bh(). ext3
1050		 * will do this, as well as the blockdev mapping.
1051		 * try_to_release_page() will discover that cleanness and will
1052		 * drop the buffers and mark the page clean - it can be freed.
1053		 *
1054		 * Rarely, pages can have buffers and no ->mapping.  These are
1055		 * the pages which were not successfully invalidated in
1056		 * truncate_complete_page().  We try to drop those buffers here
1057		 * and if that worked, and the page is no longer mapped into
1058		 * process address space (page_count == 1) it can be freed.
1059		 * Otherwise, leave the page on the LRU so it is swappable.
1060		 */
1061		if (page_has_private(page)) {
1062			if (!try_to_release_page(page, sc->gfp_mask))
1063				goto activate_locked;
1064			if (!mapping && page_count(page) == 1) {
1065				unlock_page(page);
1066				if (put_page_testzero(page))
1067					goto free_it;
1068				else {
1069					/*
1070					 * rare race with speculative reference.
1071					 * the speculative reference will free
1072					 * this page shortly, so we may
1073					 * increment nr_reclaimed here (and
1074					 * leave it off the LRU).
1075					 */
1076					nr_reclaimed++;
1077					continue;
1078				}
1079			}
1080		}
1081
 
1082		if (!mapping || !__remove_mapping(mapping, page, true))
1083			goto keep_locked;
1084
1085		/*
1086		 * At this point, we have no other references and there is
1087		 * no way to pick any more up (removed from LRU, removed
1088		 * from pagecache). Can use non-atomic bitops now (and
1089		 * we obviously don't have to worry about waking up a process
1090		 * waiting on the page lock, because there are no references.
1091		 */
1092		__clear_page_locked(page);
1093free_it:
 
 
 
1094		nr_reclaimed++;
1095
1096		/*
1097		 * Is there need to periodically free_page_list? It would
1098		 * appear not as the counts should be low
1099		 */
1100		list_add(&page->lru, &free_pages);
1101		continue;
1102
1103cull_mlocked:
1104		if (PageSwapCache(page))
1105			try_to_free_swap(page);
1106		unlock_page(page);
1107		putback_lru_page(page);
1108		continue;
1109
1110activate_locked:
1111		/* Not a candidate for swapping, so reclaim swap space. */
1112		if (PageSwapCache(page) && vm_swap_full())
1113			try_to_free_swap(page);
1114		VM_BUG_ON_PAGE(PageActive(page), page);
1115		SetPageActive(page);
1116		pgactivate++;
1117keep_locked:
1118		unlock_page(page);
1119keep:
1120		list_add(&page->lru, &ret_pages);
1121		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1122	}
1123
1124	free_hot_cold_page_list(&free_pages, 1);
 
 
1125
1126	list_splice(&ret_pages, page_list);
1127	count_vm_events(PGACTIVATE, pgactivate);
1128	mem_cgroup_uncharge_end();
1129	*ret_nr_dirty += nr_dirty;
1130	*ret_nr_congested += nr_congested;
1131	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1132	*ret_nr_writeback += nr_writeback;
1133	*ret_nr_immediate += nr_immediate;
1134	return nr_reclaimed;
1135}
1136
1137unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1138					    struct list_head *page_list)
1139{
1140	struct scan_control sc = {
1141		.gfp_mask = GFP_KERNEL,
1142		.priority = DEF_PRIORITY,
1143		.may_unmap = 1,
1144	};
1145	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1146	struct page *page, *next;
1147	LIST_HEAD(clean_pages);
1148
1149	list_for_each_entry_safe(page, next, page_list, lru) {
1150		if (page_is_file_cache(page) && !PageDirty(page) &&
1151		    !isolated_balloon_page(page)) {
1152			ClearPageActive(page);
1153			list_move(&page->lru, &clean_pages);
1154		}
1155	}
1156
1157	ret = shrink_page_list(&clean_pages, zone, &sc,
1158			TTU_UNMAP|TTU_IGNORE_ACCESS,
1159			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1160	list_splice(&clean_pages, page_list);
1161	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1162	return ret;
1163}
1164
1165/*
1166 * Attempt to remove the specified page from its LRU.  Only take this page
1167 * if it is of the appropriate PageActive status.  Pages which are being
1168 * freed elsewhere are also ignored.
1169 *
1170 * page:	page to consider
1171 * mode:	one of the LRU isolation modes defined above
1172 *
1173 * returns 0 on success, -ve errno on failure.
1174 */
1175int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1176{
1177	int ret = -EINVAL;
1178
1179	/* Only take pages on the LRU. */
1180	if (!PageLRU(page))
1181		return ret;
1182
1183	/* Compaction should not handle unevictable pages but CMA can do so */
1184	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1185		return ret;
1186
1187	ret = -EBUSY;
1188
1189	/*
1190	 * To minimise LRU disruption, the caller can indicate that it only
1191	 * wants to isolate pages it will be able to operate on without
1192	 * blocking - clean pages for the most part.
1193	 *
1194	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1195	 * is used by reclaim when it is cannot write to backing storage
1196	 *
1197	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1198	 * that it is possible to migrate without blocking
1199	 */
1200	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1201		/* All the caller can do on PageWriteback is block */
1202		if (PageWriteback(page))
1203			return ret;
1204
1205		if (PageDirty(page)) {
1206			struct address_space *mapping;
1207
1208			/* ISOLATE_CLEAN means only clean pages */
1209			if (mode & ISOLATE_CLEAN)
1210				return ret;
1211
1212			/*
1213			 * Only pages without mappings or that have a
1214			 * ->migratepage callback are possible to migrate
1215			 * without blocking
1216			 */
1217			mapping = page_mapping(page);
1218			if (mapping && !mapping->a_ops->migratepage)
1219				return ret;
1220		}
1221	}
1222
1223	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1224		return ret;
1225
1226	if (likely(get_page_unless_zero(page))) {
1227		/*
1228		 * Be careful not to clear PageLRU until after we're
1229		 * sure the page is not being freed elsewhere -- the
1230		 * page release code relies on it.
1231		 */
1232		ClearPageLRU(page);
1233		ret = 0;
1234	}
1235
1236	return ret;
1237}
1238
1239/*
1240 * zone->lru_lock is heavily contended.  Some of the functions that
1241 * shrink the lists perform better by taking out a batch of pages
1242 * and working on them outside the LRU lock.
1243 *
1244 * For pagecache intensive workloads, this function is the hottest
1245 * spot in the kernel (apart from copy_*_user functions).
1246 *
1247 * Appropriate locks must be held before calling this function.
1248 *
1249 * @nr_to_scan:	The number of pages to look through on the list.
1250 * @lruvec:	The LRU vector to pull pages from.
1251 * @dst:	The temp list to put pages on to.
1252 * @nr_scanned:	The number of pages that were scanned.
1253 * @sc:		The scan_control struct for this reclaim session
1254 * @mode:	One of the LRU isolation modes
1255 * @lru:	LRU list id for isolating
1256 *
1257 * returns how many pages were moved onto *@dst.
1258 */
1259static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1260		struct lruvec *lruvec, struct list_head *dst,
1261		unsigned long *nr_scanned, struct scan_control *sc,
1262		isolate_mode_t mode, enum lru_list lru)
1263{
1264	struct list_head *src = &lruvec->lists[lru];
1265	unsigned long nr_taken = 0;
1266	unsigned long scan;
1267
1268	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
 
1269		struct page *page;
1270		int nr_pages;
1271
1272		page = lru_to_page(src);
1273		prefetchw_prev_lru_page(page, src, flags);
1274
1275		VM_BUG_ON_PAGE(!PageLRU(page), page);
1276
1277		switch (__isolate_lru_page(page, mode)) {
1278		case 0:
1279			nr_pages = hpage_nr_pages(page);
1280			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1281			list_move(&page->lru, dst);
1282			nr_taken += nr_pages;
1283			break;
1284
1285		case -EBUSY:
1286			/* else it is being freed elsewhere */
1287			list_move(&page->lru, src);
1288			continue;
1289
1290		default:
1291			BUG();
1292		}
1293	}
1294
1295	*nr_scanned = scan;
1296	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1297				    nr_taken, mode, is_file_lru(lru));
1298	return nr_taken;
1299}
1300
1301/**
1302 * isolate_lru_page - tries to isolate a page from its LRU list
1303 * @page: page to isolate from its LRU list
1304 *
1305 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1306 * vmstat statistic corresponding to whatever LRU list the page was on.
1307 *
1308 * Returns 0 if the page was removed from an LRU list.
1309 * Returns -EBUSY if the page was not on an LRU list.
1310 *
1311 * The returned page will have PageLRU() cleared.  If it was found on
1312 * the active list, it will have PageActive set.  If it was found on
1313 * the unevictable list, it will have the PageUnevictable bit set. That flag
1314 * may need to be cleared by the caller before letting the page go.
1315 *
1316 * The vmstat statistic corresponding to the list on which the page was
1317 * found will be decremented.
1318 *
1319 * Restrictions:
1320 * (1) Must be called with an elevated refcount on the page. This is a
1321 *     fundamentnal difference from isolate_lru_pages (which is called
1322 *     without a stable reference).
1323 * (2) the lru_lock must not be held.
1324 * (3) interrupts must be enabled.
1325 */
1326int isolate_lru_page(struct page *page)
1327{
1328	int ret = -EBUSY;
1329
1330	VM_BUG_ON_PAGE(!page_count(page), page);
 
1331
1332	if (PageLRU(page)) {
1333		struct zone *zone = page_zone(page);
1334		struct lruvec *lruvec;
1335
1336		spin_lock_irq(&zone->lru_lock);
1337		lruvec = mem_cgroup_page_lruvec(page, zone);
1338		if (PageLRU(page)) {
1339			int lru = page_lru(page);
1340			get_page(page);
1341			ClearPageLRU(page);
1342			del_page_from_lru_list(page, lruvec, lru);
1343			ret = 0;
1344		}
1345		spin_unlock_irq(&zone->lru_lock);
1346	}
1347	return ret;
1348}
1349
1350/*
1351 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1352 * then get resheduled. When there are massive number of tasks doing page
1353 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1354 * the LRU list will go small and be scanned faster than necessary, leading to
1355 * unnecessary swapping, thrashing and OOM.
1356 */
1357static int too_many_isolated(struct zone *zone, int file,
1358		struct scan_control *sc)
1359{
1360	unsigned long inactive, isolated;
1361
1362	if (current_is_kswapd())
1363		return 0;
1364
1365	if (!global_reclaim(sc))
1366		return 0;
1367
1368	if (file) {
1369		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371	} else {
1372		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1374	}
1375
1376	/*
1377	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1378	 * won't get blocked by normal direct-reclaimers, forming a circular
1379	 * deadlock.
1380	 */
1381	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1382		inactive >>= 3;
1383
1384	return isolated > inactive;
1385}
1386
1387static noinline_for_stack void
1388putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1389{
1390	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1391	struct zone *zone = lruvec_zone(lruvec);
1392	LIST_HEAD(pages_to_free);
1393
1394	/*
1395	 * Put back any unfreeable pages.
1396	 */
1397	while (!list_empty(page_list)) {
1398		struct page *page = lru_to_page(page_list);
1399		int lru;
1400
1401		VM_BUG_ON_PAGE(PageLRU(page), page);
1402		list_del(&page->lru);
1403		if (unlikely(!page_evictable(page))) {
1404			spin_unlock_irq(&zone->lru_lock);
1405			putback_lru_page(page);
1406			spin_lock_irq(&zone->lru_lock);
1407			continue;
1408		}
1409
1410		lruvec = mem_cgroup_page_lruvec(page, zone);
1411
1412		SetPageLRU(page);
1413		lru = page_lru(page);
1414		add_page_to_lru_list(page, lruvec, lru);
1415
1416		if (is_active_lru(lru)) {
1417			int file = is_file_lru(lru);
1418			int numpages = hpage_nr_pages(page);
1419			reclaim_stat->recent_rotated[file] += numpages;
1420		}
1421		if (put_page_testzero(page)) {
1422			__ClearPageLRU(page);
1423			__ClearPageActive(page);
1424			del_page_from_lru_list(page, lruvec, lru);
1425
1426			if (unlikely(PageCompound(page))) {
1427				spin_unlock_irq(&zone->lru_lock);
 
1428				(*get_compound_page_dtor(page))(page);
1429				spin_lock_irq(&zone->lru_lock);
1430			} else
1431				list_add(&page->lru, &pages_to_free);
1432		}
1433	}
1434
1435	/*
1436	 * To save our caller's stack, now use input list for pages to free.
1437	 */
1438	list_splice(&pages_to_free, page_list);
1439}
1440
1441/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1442 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1443 * of reclaimed pages
1444 */
1445static noinline_for_stack unsigned long
1446shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1447		     struct scan_control *sc, enum lru_list lru)
1448{
1449	LIST_HEAD(page_list);
1450	unsigned long nr_scanned;
1451	unsigned long nr_reclaimed = 0;
1452	unsigned long nr_taken;
1453	unsigned long nr_dirty = 0;
1454	unsigned long nr_congested = 0;
1455	unsigned long nr_unqueued_dirty = 0;
1456	unsigned long nr_writeback = 0;
1457	unsigned long nr_immediate = 0;
1458	isolate_mode_t isolate_mode = 0;
1459	int file = is_file_lru(lru);
1460	struct zone *zone = lruvec_zone(lruvec);
1461	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1462
1463	while (unlikely(too_many_isolated(zone, file, sc))) {
1464		congestion_wait(BLK_RW_ASYNC, HZ/10);
1465
1466		/* We are about to die and free our memory. Return now. */
1467		if (fatal_signal_pending(current))
1468			return SWAP_CLUSTER_MAX;
1469	}
1470
1471	lru_add_drain();
1472
1473	if (!sc->may_unmap)
1474		isolate_mode |= ISOLATE_UNMAPPED;
1475	if (!sc->may_writepage)
1476		isolate_mode |= ISOLATE_CLEAN;
1477
1478	spin_lock_irq(&zone->lru_lock);
1479
1480	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1481				     &nr_scanned, sc, isolate_mode, lru);
1482
1483	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1484	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1485
1486	if (global_reclaim(sc)) {
1487		zone->pages_scanned += nr_scanned;
1488		if (current_is_kswapd())
1489			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1490		else
1491			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1492	}
1493	spin_unlock_irq(&zone->lru_lock);
1494
1495	if (nr_taken == 0)
1496		return 0;
1497
1498	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1499				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1500				&nr_writeback, &nr_immediate,
1501				false);
1502
1503	spin_lock_irq(&zone->lru_lock);
1504
1505	reclaim_stat->recent_scanned[file] += nr_taken;
1506
1507	if (global_reclaim(sc)) {
1508		if (current_is_kswapd())
1509			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1510					       nr_reclaimed);
1511		else
1512			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1513					       nr_reclaimed);
1514	}
1515
1516	putback_inactive_pages(lruvec, &page_list);
1517
1518	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1519
1520	spin_unlock_irq(&zone->lru_lock);
1521
1522	free_hot_cold_page_list(&page_list, 1);
 
1523
1524	/*
1525	 * If reclaim is isolating dirty pages under writeback, it implies
1526	 * that the long-lived page allocation rate is exceeding the page
1527	 * laundering rate. Either the global limits are not being effective
1528	 * at throttling processes due to the page distribution throughout
1529	 * zones or there is heavy usage of a slow backing device. The
1530	 * only option is to throttle from reclaim context which is not ideal
1531	 * as there is no guarantee the dirtying process is throttled in the
1532	 * same way balance_dirty_pages() manages.
1533	 *
1534	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1535	 * of pages under pages flagged for immediate reclaim and stall if any
1536	 * are encountered in the nr_immediate check below.
1537	 */
1538	if (nr_writeback && nr_writeback == nr_taken)
1539		zone_set_flag(zone, ZONE_WRITEBACK);
1540
1541	/*
1542	 * memcg will stall in page writeback so only consider forcibly
1543	 * stalling for global reclaim
1544	 */
1545	if (global_reclaim(sc)) {
1546		/*
1547		 * Tag a zone as congested if all the dirty pages scanned were
1548		 * backed by a congested BDI and wait_iff_congested will stall.
1549		 */
1550		if (nr_dirty && nr_dirty == nr_congested)
1551			zone_set_flag(zone, ZONE_CONGESTED);
1552
1553		/*
1554		 * If dirty pages are scanned that are not queued for IO, it
1555		 * implies that flushers are not keeping up. In this case, flag
1556		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1557		 * pages from reclaim context. It will forcibly stall in the
1558		 * next check.
1559		 */
1560		if (nr_unqueued_dirty == nr_taken)
1561			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1562
1563		/*
1564		 * In addition, if kswapd scans pages marked marked for
1565		 * immediate reclaim and under writeback (nr_immediate), it
1566		 * implies that pages are cycling through the LRU faster than
1567		 * they are written so also forcibly stall.
1568		 */
1569		if (nr_unqueued_dirty == nr_taken || nr_immediate)
1570			congestion_wait(BLK_RW_ASYNC, HZ/10);
1571	}
1572
1573	/*
1574	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1575	 * is congested. Allow kswapd to continue until it starts encountering
1576	 * unqueued dirty pages or cycling through the LRU too quickly.
1577	 */
1578	if (!sc->hibernation_mode && !current_is_kswapd())
 
1579		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1580
1581	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1582		zone_idx(zone),
1583		nr_scanned, nr_reclaimed,
1584		sc->priority,
1585		trace_shrink_flags(file));
1586	return nr_reclaimed;
1587}
1588
1589/*
1590 * This moves pages from the active list to the inactive list.
1591 *
1592 * We move them the other way if the page is referenced by one or more
1593 * processes, from rmap.
1594 *
1595 * If the pages are mostly unmapped, the processing is fast and it is
1596 * appropriate to hold zone->lru_lock across the whole operation.  But if
1597 * the pages are mapped, the processing is slow (page_referenced()) so we
1598 * should drop zone->lru_lock around each page.  It's impossible to balance
1599 * this, so instead we remove the pages from the LRU while processing them.
1600 * It is safe to rely on PG_active against the non-LRU pages in here because
1601 * nobody will play with that bit on a non-LRU page.
1602 *
1603 * The downside is that we have to touch page->_count against each page.
1604 * But we had to alter page->flags anyway.
1605 */
1606
1607static void move_active_pages_to_lru(struct lruvec *lruvec,
1608				     struct list_head *list,
1609				     struct list_head *pages_to_free,
1610				     enum lru_list lru)
1611{
1612	struct zone *zone = lruvec_zone(lruvec);
1613	unsigned long pgmoved = 0;
1614	struct page *page;
1615	int nr_pages;
1616
1617	while (!list_empty(list)) {
1618		page = lru_to_page(list);
1619		lruvec = mem_cgroup_page_lruvec(page, zone);
1620
1621		VM_BUG_ON_PAGE(PageLRU(page), page);
1622		SetPageLRU(page);
1623
1624		nr_pages = hpage_nr_pages(page);
1625		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1626		list_move(&page->lru, &lruvec->lists[lru]);
1627		pgmoved += nr_pages;
1628
1629		if (put_page_testzero(page)) {
1630			__ClearPageLRU(page);
1631			__ClearPageActive(page);
1632			del_page_from_lru_list(page, lruvec, lru);
1633
1634			if (unlikely(PageCompound(page))) {
1635				spin_unlock_irq(&zone->lru_lock);
 
1636				(*get_compound_page_dtor(page))(page);
1637				spin_lock_irq(&zone->lru_lock);
1638			} else
1639				list_add(&page->lru, pages_to_free);
1640		}
1641	}
1642	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1643	if (!is_active_lru(lru))
1644		__count_vm_events(PGDEACTIVATE, pgmoved);
1645}
1646
1647static void shrink_active_list(unsigned long nr_to_scan,
1648			       struct lruvec *lruvec,
1649			       struct scan_control *sc,
1650			       enum lru_list lru)
1651{
1652	unsigned long nr_taken;
1653	unsigned long nr_scanned;
1654	unsigned long vm_flags;
1655	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1656	LIST_HEAD(l_active);
1657	LIST_HEAD(l_inactive);
1658	struct page *page;
1659	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1660	unsigned long nr_rotated = 0;
1661	isolate_mode_t isolate_mode = 0;
1662	int file = is_file_lru(lru);
1663	struct zone *zone = lruvec_zone(lruvec);
1664
1665	lru_add_drain();
1666
1667	if (!sc->may_unmap)
1668		isolate_mode |= ISOLATE_UNMAPPED;
1669	if (!sc->may_writepage)
1670		isolate_mode |= ISOLATE_CLEAN;
1671
1672	spin_lock_irq(&zone->lru_lock);
1673
1674	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1675				     &nr_scanned, sc, isolate_mode, lru);
1676	if (global_reclaim(sc))
1677		zone->pages_scanned += nr_scanned;
1678
1679	reclaim_stat->recent_scanned[file] += nr_taken;
1680
1681	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1682	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1683	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1684	spin_unlock_irq(&zone->lru_lock);
1685
1686	while (!list_empty(&l_hold)) {
1687		cond_resched();
1688		page = lru_to_page(&l_hold);
1689		list_del(&page->lru);
1690
1691		if (unlikely(!page_evictable(page))) {
1692			putback_lru_page(page);
1693			continue;
1694		}
1695
1696		if (unlikely(buffer_heads_over_limit)) {
1697			if (page_has_private(page) && trylock_page(page)) {
1698				if (page_has_private(page))
1699					try_to_release_page(page, 0);
1700				unlock_page(page);
1701			}
1702		}
1703
1704		if (page_referenced(page, 0, sc->target_mem_cgroup,
1705				    &vm_flags)) {
1706			nr_rotated += hpage_nr_pages(page);
1707			/*
1708			 * Identify referenced, file-backed active pages and
1709			 * give them one more trip around the active list. So
1710			 * that executable code get better chances to stay in
1711			 * memory under moderate memory pressure.  Anon pages
1712			 * are not likely to be evicted by use-once streaming
1713			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1714			 * so we ignore them here.
1715			 */
1716			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1717				list_add(&page->lru, &l_active);
1718				continue;
1719			}
1720		}
1721
1722		ClearPageActive(page);	/* we are de-activating */
1723		list_add(&page->lru, &l_inactive);
1724	}
1725
1726	/*
1727	 * Move pages back to the lru list.
1728	 */
1729	spin_lock_irq(&zone->lru_lock);
1730	/*
1731	 * Count referenced pages from currently used mappings as rotated,
1732	 * even though only some of them are actually re-activated.  This
1733	 * helps balance scan pressure between file and anonymous pages in
1734	 * get_scan_ratio.
1735	 */
1736	reclaim_stat->recent_rotated[file] += nr_rotated;
1737
1738	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1739	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1740	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1741	spin_unlock_irq(&zone->lru_lock);
1742
1743	free_hot_cold_page_list(&l_hold, 1);
 
1744}
1745
1746#ifdef CONFIG_SWAP
1747static int inactive_anon_is_low_global(struct zone *zone)
1748{
1749	unsigned long active, inactive;
1750
1751	active = zone_page_state(zone, NR_ACTIVE_ANON);
1752	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1753
1754	if (inactive * zone->inactive_ratio < active)
1755		return 1;
1756
1757	return 0;
1758}
1759
1760/**
1761 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1762 * @lruvec: LRU vector to check
1763 *
1764 * Returns true if the zone does not have enough inactive anon pages,
1765 * meaning some active anon pages need to be deactivated.
1766 */
1767static int inactive_anon_is_low(struct lruvec *lruvec)
1768{
1769	/*
1770	 * If we don't have swap space, anonymous page deactivation
1771	 * is pointless.
1772	 */
1773	if (!total_swap_pages)
1774		return 0;
1775
1776	if (!mem_cgroup_disabled())
1777		return mem_cgroup_inactive_anon_is_low(lruvec);
1778
1779	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1780}
1781#else
1782static inline int inactive_anon_is_low(struct lruvec *lruvec)
1783{
1784	return 0;
1785}
1786#endif
1787
1788/**
1789 * inactive_file_is_low - check if file pages need to be deactivated
1790 * @lruvec: LRU vector to check
1791 *
1792 * When the system is doing streaming IO, memory pressure here
1793 * ensures that active file pages get deactivated, until more
1794 * than half of the file pages are on the inactive list.
1795 *
1796 * Once we get to that situation, protect the system's working
1797 * set from being evicted by disabling active file page aging.
1798 *
1799 * This uses a different ratio than the anonymous pages, because
1800 * the page cache uses a use-once replacement algorithm.
1801 */
1802static int inactive_file_is_low(struct lruvec *lruvec)
1803{
1804	unsigned long inactive;
1805	unsigned long active;
1806
1807	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1808	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1809
1810	return active > inactive;
1811}
1812
1813static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1814{
1815	if (is_file_lru(lru))
1816		return inactive_file_is_low(lruvec);
1817	else
1818		return inactive_anon_is_low(lruvec);
1819}
1820
1821static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1822				 struct lruvec *lruvec, struct scan_control *sc)
1823{
1824	if (is_active_lru(lru)) {
1825		if (inactive_list_is_low(lruvec, lru))
1826			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1827		return 0;
1828	}
1829
1830	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1831}
1832
1833static int vmscan_swappiness(struct scan_control *sc)
1834{
1835	if (global_reclaim(sc))
1836		return vm_swappiness;
1837	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1838}
1839
1840enum scan_balance {
1841	SCAN_EQUAL,
1842	SCAN_FRACT,
1843	SCAN_ANON,
1844	SCAN_FILE,
1845};
1846
1847/*
1848 * Determine how aggressively the anon and file LRU lists should be
1849 * scanned.  The relative value of each set of LRU lists is determined
1850 * by looking at the fraction of the pages scanned we did rotate back
1851 * onto the active list instead of evict.
1852 *
1853 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1854 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1855 */
1856static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1857			   unsigned long *nr)
 
1858{
 
1859	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1860	u64 fraction[2];
1861	u64 denominator = 0;	/* gcc */
1862	struct zone *zone = lruvec_zone(lruvec);
1863	unsigned long anon_prio, file_prio;
1864	enum scan_balance scan_balance;
1865	unsigned long anon, file;
1866	bool force_scan = false;
1867	unsigned long ap, fp;
1868	enum lru_list lru;
 
 
1869
1870	/*
1871	 * If the zone or memcg is small, nr[l] can be 0.  This
1872	 * results in no scanning on this priority and a potential
1873	 * priority drop.  Global direct reclaim can go to the next
1874	 * zone and tends to have no problems. Global kswapd is for
1875	 * zone balancing and it needs to scan a minimum amount. When
1876	 * reclaiming for a memcg, a priority drop can cause high
1877	 * latencies, so it's better to scan a minimum amount there as
1878	 * well.
1879	 */
1880	if (current_is_kswapd() && !zone_reclaimable(zone))
1881		force_scan = true;
 
 
 
 
1882	if (!global_reclaim(sc))
1883		force_scan = true;
1884
1885	/* If we have no swap space, do not bother scanning anon pages. */
1886	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1887		scan_balance = SCAN_FILE;
1888		goto out;
1889	}
1890
1891	/*
1892	 * Global reclaim will swap to prevent OOM even with no
1893	 * swappiness, but memcg users want to use this knob to
1894	 * disable swapping for individual groups completely when
1895	 * using the memory controller's swap limit feature would be
1896	 * too expensive.
1897	 */
1898	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1899		scan_balance = SCAN_FILE;
1900		goto out;
1901	}
1902
1903	/*
1904	 * Do not apply any pressure balancing cleverness when the
1905	 * system is close to OOM, scan both anon and file equally
1906	 * (unless the swappiness setting disagrees with swapping).
1907	 */
1908	if (!sc->priority && vmscan_swappiness(sc)) {
1909		scan_balance = SCAN_EQUAL;
1910		goto out;
1911	}
1912
1913	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1914		get_lru_size(lruvec, LRU_INACTIVE_ANON);
1915	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1916		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1917
1918	/*
1919	 * Prevent the reclaimer from falling into the cache trap: as
1920	 * cache pages start out inactive, every cache fault will tip
1921	 * the scan balance towards the file LRU.  And as the file LRU
1922	 * shrinks, so does the window for rotation from references.
1923	 * This means we have a runaway feedback loop where a tiny
1924	 * thrashing file LRU becomes infinitely more attractive than
1925	 * anon pages.  Try to detect this based on file LRU size.
1926	 */
1927	if (global_reclaim(sc)) {
1928		unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
 
 
 
 
 
1929
1930		if (unlikely(file + free <= high_wmark_pages(zone))) {
1931			scan_balance = SCAN_ANON;
1932			goto out;
1933		}
1934	}
1935
1936	/*
1937	 * There is enough inactive page cache, do not reclaim
1938	 * anything from the anonymous working set right now.
 
 
 
 
 
1939	 */
1940	if (!inactive_file_is_low(lruvec)) {
 
1941		scan_balance = SCAN_FILE;
1942		goto out;
1943	}
1944
1945	scan_balance = SCAN_FRACT;
1946
1947	/*
1948	 * With swappiness at 100, anonymous and file have the same priority.
1949	 * This scanning priority is essentially the inverse of IO cost.
1950	 */
1951	anon_prio = vmscan_swappiness(sc);
1952	file_prio = 200 - anon_prio;
1953
1954	/*
1955	 * OK, so we have swap space and a fair amount of page cache
1956	 * pages.  We use the recently rotated / recently scanned
1957	 * ratios to determine how valuable each cache is.
1958	 *
1959	 * Because workloads change over time (and to avoid overflow)
1960	 * we keep these statistics as a floating average, which ends
1961	 * up weighing recent references more than old ones.
1962	 *
1963	 * anon in [0], file in [1]
1964	 */
 
 
 
 
 
 
1965	spin_lock_irq(&zone->lru_lock);
1966	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1967		reclaim_stat->recent_scanned[0] /= 2;
1968		reclaim_stat->recent_rotated[0] /= 2;
1969	}
1970
1971	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1972		reclaim_stat->recent_scanned[1] /= 2;
1973		reclaim_stat->recent_rotated[1] /= 2;
1974	}
1975
1976	/*
1977	 * The amount of pressure on anon vs file pages is inversely
1978	 * proportional to the fraction of recently scanned pages on
1979	 * each list that were recently referenced and in active use.
1980	 */
1981	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1982	ap /= reclaim_stat->recent_rotated[0] + 1;
1983
1984	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1985	fp /= reclaim_stat->recent_rotated[1] + 1;
1986	spin_unlock_irq(&zone->lru_lock);
1987
1988	fraction[0] = ap;
1989	fraction[1] = fp;
1990	denominator = ap + fp + 1;
1991out:
1992	for_each_evictable_lru(lru) {
1993		int file = is_file_lru(lru);
1994		unsigned long size;
1995		unsigned long scan;
1996
1997		size = get_lru_size(lruvec, lru);
1998		scan = size >> sc->priority;
1999
2000		if (!scan && force_scan)
2001			scan = min(size, SWAP_CLUSTER_MAX);
2002
2003		switch (scan_balance) {
2004		case SCAN_EQUAL:
2005			/* Scan lists relative to size */
2006			break;
2007		case SCAN_FRACT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008			/*
2009			 * Scan types proportional to swappiness and
2010			 * their relative recent reclaim efficiency.
2011			 */
2012			scan = div64_u64(scan * fraction[file], denominator);
2013			break;
2014		case SCAN_FILE:
2015		case SCAN_ANON:
2016			/* Scan one type exclusively */
2017			if ((scan_balance == SCAN_FILE) != file)
2018				scan = 0;
2019			break;
2020		default:
2021			/* Look ma, no brain */
2022			BUG();
2023		}
2024		nr[lru] = scan;
2025	}
2026}
2027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028/*
2029 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2030 */
2031static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
 
2032{
 
2033	unsigned long nr[NR_LRU_LISTS];
2034	unsigned long targets[NR_LRU_LISTS];
2035	unsigned long nr_to_scan;
2036	enum lru_list lru;
2037	unsigned long nr_reclaimed = 0;
2038	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2039	struct blk_plug plug;
2040	bool scan_adjusted = false;
2041
2042	get_scan_count(lruvec, sc, nr);
2043
2044	/* Record the original scan target for proportional adjustments later */
2045	memcpy(targets, nr, sizeof(nr));
2046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047	blk_start_plug(&plug);
2048	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2049					nr[LRU_INACTIVE_FILE]) {
2050		unsigned long nr_anon, nr_file, percentage;
2051		unsigned long nr_scanned;
2052
2053		for_each_evictable_lru(lru) {
2054			if (nr[lru]) {
2055				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2056				nr[lru] -= nr_to_scan;
2057
2058				nr_reclaimed += shrink_list(lru, nr_to_scan,
2059							    lruvec, sc);
2060			}
2061		}
2062
2063		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2064			continue;
2065
2066		/*
2067		 * For global direct reclaim, reclaim only the number of pages
2068		 * requested. Less care is taken to scan proportionally as it
2069		 * is more important to minimise direct reclaim stall latency
2070		 * than it is to properly age the LRU lists.
2071		 */
2072		if (global_reclaim(sc) && !current_is_kswapd())
2073			break;
2074
2075		/*
2076		 * For kswapd and memcg, reclaim at least the number of pages
2077		 * requested. Ensure that the anon and file LRUs shrink
2078		 * proportionally what was requested by get_scan_count(). We
2079		 * stop reclaiming one LRU and reduce the amount scanning
2080		 * proportional to the original scan target.
2081		 */
2082		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2083		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2084
 
 
 
 
 
 
 
 
 
2085		if (nr_file > nr_anon) {
2086			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2087						targets[LRU_ACTIVE_ANON] + 1;
2088			lru = LRU_BASE;
2089			percentage = nr_anon * 100 / scan_target;
2090		} else {
2091			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2092						targets[LRU_ACTIVE_FILE] + 1;
2093			lru = LRU_FILE;
2094			percentage = nr_file * 100 / scan_target;
2095		}
2096
2097		/* Stop scanning the smaller of the LRU */
2098		nr[lru] = 0;
2099		nr[lru + LRU_ACTIVE] = 0;
2100
2101		/*
2102		 * Recalculate the other LRU scan count based on its original
2103		 * scan target and the percentage scanning already complete
2104		 */
2105		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2106		nr_scanned = targets[lru] - nr[lru];
2107		nr[lru] = targets[lru] * (100 - percentage) / 100;
2108		nr[lru] -= min(nr[lru], nr_scanned);
2109
2110		lru += LRU_ACTIVE;
2111		nr_scanned = targets[lru] - nr[lru];
2112		nr[lru] = targets[lru] * (100 - percentage) / 100;
2113		nr[lru] -= min(nr[lru], nr_scanned);
2114
2115		scan_adjusted = true;
2116	}
2117	blk_finish_plug(&plug);
2118	sc->nr_reclaimed += nr_reclaimed;
2119
2120	/*
2121	 * Even if we did not try to evict anon pages at all, we want to
2122	 * rebalance the anon lru active/inactive ratio.
2123	 */
2124	if (inactive_anon_is_low(lruvec))
2125		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2126				   sc, LRU_ACTIVE_ANON);
2127
2128	throttle_vm_writeout(sc->gfp_mask);
2129}
2130
2131/* Use reclaim/compaction for costly allocs or under memory pressure */
2132static bool in_reclaim_compaction(struct scan_control *sc)
2133{
2134	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2135			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2136			 sc->priority < DEF_PRIORITY - 2))
2137		return true;
2138
2139	return false;
2140}
2141
2142/*
2143 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2144 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2145 * true if more pages should be reclaimed such that when the page allocator
2146 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2147 * It will give up earlier than that if there is difficulty reclaiming pages.
2148 */
2149static inline bool should_continue_reclaim(struct zone *zone,
2150					unsigned long nr_reclaimed,
2151					unsigned long nr_scanned,
2152					struct scan_control *sc)
2153{
2154	unsigned long pages_for_compaction;
2155	unsigned long inactive_lru_pages;
2156
2157	/* If not in reclaim/compaction mode, stop */
2158	if (!in_reclaim_compaction(sc))
2159		return false;
2160
2161	/* Consider stopping depending on scan and reclaim activity */
2162	if (sc->gfp_mask & __GFP_REPEAT) {
2163		/*
2164		 * For __GFP_REPEAT allocations, stop reclaiming if the
2165		 * full LRU list has been scanned and we are still failing
2166		 * to reclaim pages. This full LRU scan is potentially
2167		 * expensive but a __GFP_REPEAT caller really wants to succeed
2168		 */
2169		if (!nr_reclaimed && !nr_scanned)
2170			return false;
2171	} else {
2172		/*
2173		 * For non-__GFP_REPEAT allocations which can presumably
2174		 * fail without consequence, stop if we failed to reclaim
2175		 * any pages from the last SWAP_CLUSTER_MAX number of
2176		 * pages that were scanned. This will return to the
2177		 * caller faster at the risk reclaim/compaction and
2178		 * the resulting allocation attempt fails
2179		 */
2180		if (!nr_reclaimed)
2181			return false;
2182	}
2183
2184	/*
2185	 * If we have not reclaimed enough pages for compaction and the
2186	 * inactive lists are large enough, continue reclaiming
2187	 */
2188	pages_for_compaction = (2UL << sc->order);
2189	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2190	if (get_nr_swap_pages() > 0)
2191		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2192	if (sc->nr_reclaimed < pages_for_compaction &&
2193			inactive_lru_pages > pages_for_compaction)
2194		return true;
2195
2196	/* If compaction would go ahead or the allocation would succeed, stop */
2197	switch (compaction_suitable(zone, sc->order)) {
2198	case COMPACT_PARTIAL:
2199	case COMPACT_CONTINUE:
2200		return false;
2201	default:
2202		return true;
2203	}
2204}
2205
2206static void shrink_zone(struct zone *zone, struct scan_control *sc)
 
2207{
 
2208	unsigned long nr_reclaimed, nr_scanned;
 
2209
2210	do {
2211		struct mem_cgroup *root = sc->target_mem_cgroup;
2212		struct mem_cgroup_reclaim_cookie reclaim = {
2213			.zone = zone,
2214			.priority = sc->priority,
2215		};
 
2216		struct mem_cgroup *memcg;
2217
2218		nr_reclaimed = sc->nr_reclaimed;
2219		nr_scanned = sc->nr_scanned;
2220
2221		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2222		do {
2223			struct lruvec *lruvec;
 
 
 
 
 
 
 
 
 
 
 
2224
2225			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
 
2226
2227			shrink_lruvec(lruvec, sc);
 
 
 
 
 
 
 
 
2228
2229			/*
2230			 * Direct reclaim and kswapd have to scan all memory
2231			 * cgroups to fulfill the overall scan target for the
2232			 * zone.
2233			 *
2234			 * Limit reclaim, on the other hand, only cares about
2235			 * nr_to_reclaim pages to be reclaimed and it will
2236			 * retry with decreasing priority if one round over the
2237			 * whole hierarchy is not sufficient.
2238			 */
2239			if (!global_reclaim(sc) &&
2240					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2241				mem_cgroup_iter_break(root, memcg);
2242				break;
2243			}
2244			memcg = mem_cgroup_iter(root, memcg, &reclaim);
2245		} while (memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
2246
2247		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
 
2248			   sc->nr_scanned - nr_scanned,
2249			   sc->nr_reclaimed - nr_reclaimed);
2250
 
 
 
2251	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2252					 sc->nr_scanned - nr_scanned, sc));
 
 
2253}
2254
2255/* Returns true if compaction should go ahead for a high-order request */
2256static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
 
 
 
2257{
2258	unsigned long balance_gap, watermark;
2259	bool watermark_ok;
2260
2261	/* Do not consider compaction for orders reclaim is meant to satisfy */
2262	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2263		return false;
2264
2265	/*
2266	 * Compaction takes time to run and there are potentially other
2267	 * callers using the pages just freed. Continue reclaiming until
2268	 * there is a buffer of free pages available to give compaction
2269	 * a reasonable chance of completing and allocating the page
2270	 */
2271	balance_gap = min(low_wmark_pages(zone),
2272		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2273			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2274	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2275	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2276
2277	/*
2278	 * If compaction is deferred, reclaim up to a point where
2279	 * compaction will have a chance of success when re-enabled
2280	 */
2281	if (compaction_deferred(zone, sc->order))
2282		return watermark_ok;
2283
2284	/* If compaction is not ready to start, keep reclaiming */
2285	if (!compaction_suitable(zone, sc->order))
 
 
 
2286		return false;
2287
2288	return watermark_ok;
2289}
2290
2291/*
2292 * This is the direct reclaim path, for page-allocating processes.  We only
2293 * try to reclaim pages from zones which will satisfy the caller's allocation
2294 * request.
2295 *
2296 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2297 * Because:
2298 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2299 *    allocation or
2300 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2301 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2302 *    zone defense algorithm.
2303 *
2304 * If a zone is deemed to be full of pinned pages then just give it a light
2305 * scan then give up on it.
2306 *
2307 * This function returns true if a zone is being reclaimed for a costly
2308 * high-order allocation and compaction is ready to begin. This indicates to
2309 * the caller that it should consider retrying the allocation instead of
2310 * further reclaim.
2311 */
2312static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2313{
2314	struct zoneref *z;
2315	struct zone *zone;
2316	unsigned long nr_soft_reclaimed;
2317	unsigned long nr_soft_scanned;
2318	unsigned long lru_pages = 0;
2319	bool aborted_reclaim = false;
2320	struct reclaim_state *reclaim_state = current->reclaim_state;
2321	gfp_t orig_mask;
2322	struct shrink_control shrink = {
2323		.gfp_mask = sc->gfp_mask,
2324	};
2325	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
 
2326
2327	/*
2328	 * If the number of buffer_heads in the machine exceeds the maximum
2329	 * allowed level, force direct reclaim to scan the highmem zone as
2330	 * highmem pages could be pinning lowmem pages storing buffer_heads
2331	 */
2332	orig_mask = sc->gfp_mask;
2333	if (buffer_heads_over_limit)
2334		sc->gfp_mask |= __GFP_HIGHMEM;
2335
2336	nodes_clear(shrink.nodes_to_scan);
2337
2338	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2339					gfp_zone(sc->gfp_mask), sc->nodemask) {
 
 
2340		if (!populated_zone(zone))
2341			continue;
 
 
 
 
 
 
2342		/*
2343		 * Take care memory controller reclaiming has small influence
2344		 * to global LRU.
2345		 */
2346		if (global_reclaim(sc)) {
2347			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
 
2348				continue;
2349
2350			lru_pages += zone_reclaimable_pages(zone);
2351			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2352
2353			if (sc->priority != DEF_PRIORITY &&
2354			    !zone_reclaimable(zone))
2355				continue;	/* Let kswapd poll it */
2356			if (IS_ENABLED(CONFIG_COMPACTION)) {
2357				/*
2358				 * If we already have plenty of memory free for
2359				 * compaction in this zone, don't free any more.
2360				 * Even though compaction is invoked for any
2361				 * non-zero order, only frequent costly order
2362				 * reclamation is disruptive enough to become a
2363				 * noticeable problem, like transparent huge
2364				 * page allocations.
2365				 */
2366				if ((zonelist_zone_idx(z) <= requested_highidx)
2367				    && compaction_ready(zone, sc)) {
2368					aborted_reclaim = true;
2369					continue;
2370				}
 
2371			}
 
2372			/*
2373			 * This steals pages from memory cgroups over softlimit
2374			 * and returns the number of reclaimed pages and
2375			 * scanned pages. This works for global memory pressure
2376			 * and balancing, not for a memcg's limit.
2377			 */
2378			nr_soft_scanned = 0;
2379			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2380						sc->order, sc->gfp_mask,
2381						&nr_soft_scanned);
2382			sc->nr_reclaimed += nr_soft_reclaimed;
2383			sc->nr_scanned += nr_soft_scanned;
 
 
2384			/* need some check for avoid more shrink_zone() */
2385		}
2386
2387		shrink_zone(zone, sc);
2388	}
2389
2390	/*
2391	 * Don't shrink slabs when reclaiming memory from over limit cgroups
2392	 * but do shrink slab at least once when aborting reclaim for
2393	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2394	 * pages.
2395	 */
2396	if (global_reclaim(sc)) {
2397		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2398		if (reclaim_state) {
2399			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2400			reclaim_state->reclaimed_slab = 0;
2401		}
2402	}
2403
2404	/*
2405	 * Restore to original mask to avoid the impact on the caller if we
2406	 * promoted it to __GFP_HIGHMEM.
2407	 */
2408	sc->gfp_mask = orig_mask;
2409
2410	return aborted_reclaim;
2411}
2412
2413/* All zones in zonelist are unreclaimable? */
2414static bool all_unreclaimable(struct zonelist *zonelist,
2415		struct scan_control *sc)
2416{
2417	struct zoneref *z;
2418	struct zone *zone;
2419
2420	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2421			gfp_zone(sc->gfp_mask), sc->nodemask) {
2422		if (!populated_zone(zone))
2423			continue;
2424		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2425			continue;
2426		if (zone_reclaimable(zone))
2427			return false;
2428	}
2429
2430	return true;
2431}
2432
2433/*
2434 * This is the main entry point to direct page reclaim.
2435 *
2436 * If a full scan of the inactive list fails to free enough memory then we
2437 * are "out of memory" and something needs to be killed.
2438 *
2439 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2440 * high - the zone may be full of dirty or under-writeback pages, which this
2441 * caller can't do much about.  We kick the writeback threads and take explicit
2442 * naps in the hope that some of these pages can be written.  But if the
2443 * allocating task holds filesystem locks which prevent writeout this might not
2444 * work, and the allocation attempt will fail.
2445 *
2446 * returns:	0, if no pages reclaimed
2447 * 		else, the number of pages reclaimed
2448 */
2449static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2450					  struct scan_control *sc)
2451{
 
2452	unsigned long total_scanned = 0;
2453	unsigned long writeback_threshold;
2454	bool aborted_reclaim;
2455
2456	delayacct_freepages_start();
2457
2458	if (global_reclaim(sc))
2459		count_vm_event(ALLOCSTALL);
2460
2461	do {
2462		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2463				sc->priority);
2464		sc->nr_scanned = 0;
2465		aborted_reclaim = shrink_zones(zonelist, sc);
2466
2467		total_scanned += sc->nr_scanned;
2468		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2469			goto out;
 
 
 
2470
2471		/*
2472		 * If we're getting trouble reclaiming, start doing
2473		 * writepage even in laptop mode.
2474		 */
2475		if (sc->priority < DEF_PRIORITY - 2)
2476			sc->may_writepage = 1;
2477
2478		/*
2479		 * Try to write back as many pages as we just scanned.  This
2480		 * tends to cause slow streaming writers to write data to the
2481		 * disk smoothly, at the dirtying rate, which is nice.   But
2482		 * that's undesirable in laptop mode, where we *want* lumpy
2483		 * writeout.  So in laptop mode, write out the whole world.
2484		 */
2485		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2486		if (total_scanned > writeback_threshold) {
2487			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2488						WB_REASON_TRY_TO_FREE_PAGES);
2489			sc->may_writepage = 1;
2490		}
2491	} while (--sc->priority >= 0 && !aborted_reclaim);
2492
2493out:
2494	delayacct_freepages_end();
2495
2496	if (sc->nr_reclaimed)
2497		return sc->nr_reclaimed;
2498
2499	/*
2500	 * As hibernation is going on, kswapd is freezed so that it can't mark
2501	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2502	 * check.
2503	 */
2504	if (oom_killer_disabled)
2505		return 0;
2506
2507	/* Aborted reclaim to try compaction? don't OOM, then */
2508	if (aborted_reclaim)
2509		return 1;
2510
2511	/* top priority shrink_zones still had more to do? don't OOM, then */
2512	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
 
 
 
 
 
 
 
2513		return 1;
2514
2515	return 0;
2516}
2517
2518static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2519{
2520	struct zone *zone;
2521	unsigned long pfmemalloc_reserve = 0;
2522	unsigned long free_pages = 0;
2523	int i;
2524	bool wmark_ok;
2525
2526	for (i = 0; i <= ZONE_NORMAL; i++) {
2527		zone = &pgdat->node_zones[i];
 
 
 
 
2528		pfmemalloc_reserve += min_wmark_pages(zone);
2529		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2530	}
2531
 
 
 
 
2532	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2533
2534	/* kswapd must be awake if processes are being throttled */
2535	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2536		pgdat->classzone_idx = min(pgdat->classzone_idx,
2537						(enum zone_type)ZONE_NORMAL);
2538		wake_up_interruptible(&pgdat->kswapd_wait);
2539	}
2540
2541	return wmark_ok;
2542}
2543
2544/*
2545 * Throttle direct reclaimers if backing storage is backed by the network
2546 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2547 * depleted. kswapd will continue to make progress and wake the processes
2548 * when the low watermark is reached.
2549 *
2550 * Returns true if a fatal signal was delivered during throttling. If this
2551 * happens, the page allocator should not consider triggering the OOM killer.
2552 */
2553static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2554					nodemask_t *nodemask)
2555{
 
2556	struct zone *zone;
2557	int high_zoneidx = gfp_zone(gfp_mask);
2558	pg_data_t *pgdat;
2559
2560	/*
2561	 * Kernel threads should not be throttled as they may be indirectly
2562	 * responsible for cleaning pages necessary for reclaim to make forward
2563	 * progress. kjournald for example may enter direct reclaim while
2564	 * committing a transaction where throttling it could forcing other
2565	 * processes to block on log_wait_commit().
2566	 */
2567	if (current->flags & PF_KTHREAD)
2568		goto out;
2569
2570	/*
2571	 * If a fatal signal is pending, this process should not throttle.
2572	 * It should return quickly so it can exit and free its memory
2573	 */
2574	if (fatal_signal_pending(current))
2575		goto out;
2576
2577	/* Check if the pfmemalloc reserves are ok */
2578	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2579	pgdat = zone->zone_pgdat;
2580	if (pfmemalloc_watermark_ok(pgdat))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2581		goto out;
2582
2583	/* Account for the throttling */
2584	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2585
2586	/*
2587	 * If the caller cannot enter the filesystem, it's possible that it
2588	 * is due to the caller holding an FS lock or performing a journal
2589	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2590	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2591	 * blocked waiting on the same lock. Instead, throttle for up to a
2592	 * second before continuing.
2593	 */
2594	if (!(gfp_mask & __GFP_FS)) {
2595		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2596			pfmemalloc_watermark_ok(pgdat), HZ);
2597
2598		goto check_pending;
2599	}
2600
2601	/* Throttle until kswapd wakes the process */
2602	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2603		pfmemalloc_watermark_ok(pgdat));
2604
2605check_pending:
2606	if (fatal_signal_pending(current))
2607		return true;
2608
2609out:
2610	return false;
2611}
2612
2613unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2614				gfp_t gfp_mask, nodemask_t *nodemask)
2615{
2616	unsigned long nr_reclaimed;
2617	struct scan_control sc = {
 
2618		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
 
 
 
2619		.may_writepage = !laptop_mode,
2620		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2621		.may_unmap = 1,
2622		.may_swap = 1,
2623		.order = order,
2624		.priority = DEF_PRIORITY,
2625		.target_mem_cgroup = NULL,
2626		.nodemask = nodemask,
2627	};
2628
2629	/*
2630	 * Do not enter reclaim if fatal signal was delivered while throttled.
2631	 * 1 is returned so that the page allocator does not OOM kill at this
2632	 * point.
2633	 */
2634	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2635		return 1;
2636
2637	trace_mm_vmscan_direct_reclaim_begin(order,
2638				sc.may_writepage,
2639				gfp_mask);
2640
2641	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2642
2643	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2644
2645	return nr_reclaimed;
2646}
2647
2648#ifdef CONFIG_MEMCG
2649
2650unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2651						gfp_t gfp_mask, bool noswap,
2652						struct zone *zone,
2653						unsigned long *nr_scanned)
2654{
2655	struct scan_control sc = {
2656		.nr_scanned = 0,
2657		.nr_to_reclaim = SWAP_CLUSTER_MAX,
 
2658		.may_writepage = !laptop_mode,
2659		.may_unmap = 1,
2660		.may_swap = !noswap,
2661		.order = 0,
2662		.priority = 0,
2663		.target_mem_cgroup = memcg,
2664	};
2665	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2666
2667	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2668			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2669
2670	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2671						      sc.may_writepage,
2672						      sc.gfp_mask);
2673
2674	/*
2675	 * NOTE: Although we can get the priority field, using it
2676	 * here is not a good idea, since it limits the pages we can scan.
2677	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2678	 * will pick up pages from other mem cgroup's as well. We hack
2679	 * the priority and make it zero.
2680	 */
2681	shrink_lruvec(lruvec, &sc);
2682
2683	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2684
2685	*nr_scanned = sc.nr_scanned;
2686	return sc.nr_reclaimed;
2687}
2688
2689unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
 
2690					   gfp_t gfp_mask,
2691					   bool noswap)
2692{
2693	struct zonelist *zonelist;
2694	unsigned long nr_reclaimed;
2695	int nid;
2696	struct scan_control sc = {
 
 
 
 
 
2697		.may_writepage = !laptop_mode,
2698		.may_unmap = 1,
2699		.may_swap = !noswap,
2700		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2701		.order = 0,
2702		.priority = DEF_PRIORITY,
2703		.target_mem_cgroup = memcg,
2704		.nodemask = NULL, /* we don't care the placement */
2705		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2706				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2707	};
2708
2709	/*
2710	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2711	 * take care of from where we get pages. So the node where we start the
2712	 * scan does not need to be the current node.
2713	 */
2714	nid = mem_cgroup_select_victim_node(memcg);
2715
2716	zonelist = NODE_DATA(nid)->node_zonelists;
2717
2718	trace_mm_vmscan_memcg_reclaim_begin(0,
2719					    sc.may_writepage,
2720					    sc.gfp_mask);
2721
2722	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2723
2724	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2725
2726	return nr_reclaimed;
2727}
2728#endif
2729
2730static void age_active_anon(struct zone *zone, struct scan_control *sc)
2731{
2732	struct mem_cgroup *memcg;
2733
2734	if (!total_swap_pages)
2735		return;
2736
2737	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2738	do {
2739		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2740
2741		if (inactive_anon_is_low(lruvec))
2742			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2743					   sc, LRU_ACTIVE_ANON);
2744
2745		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2746	} while (memcg);
2747}
2748
2749static bool zone_balanced(struct zone *zone, int order,
2750			  unsigned long balance_gap, int classzone_idx)
2751{
2752	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2753				    balance_gap, classzone_idx, 0))
2754		return false;
2755
2756	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2757	    !compaction_suitable(zone, order))
2758		return false;
 
 
 
 
 
 
 
2759
2760	return true;
2761}
2762
2763/*
2764 * pgdat_balanced() is used when checking if a node is balanced.
2765 *
2766 * For order-0, all zones must be balanced!
2767 *
2768 * For high-order allocations only zones that meet watermarks and are in a
2769 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2770 * total of balanced pages must be at least 25% of the zones allowed by
2771 * classzone_idx for the node to be considered balanced. Forcing all zones to
2772 * be balanced for high orders can cause excessive reclaim when there are
2773 * imbalanced zones.
2774 * The choice of 25% is due to
2775 *   o a 16M DMA zone that is balanced will not balance a zone on any
2776 *     reasonable sized machine
2777 *   o On all other machines, the top zone must be at least a reasonable
2778 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2779 *     would need to be at least 256M for it to be balance a whole node.
2780 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2781 *     to balance a node on its own. These seemed like reasonable ratios.
2782 */
2783static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2784{
2785	unsigned long managed_pages = 0;
2786	unsigned long balanced_pages = 0;
2787	int i;
2788
2789	/* Check the watermark levels */
2790	for (i = 0; i <= classzone_idx; i++) {
2791		struct zone *zone = pgdat->node_zones + i;
2792
2793		if (!populated_zone(zone))
2794			continue;
2795
2796		managed_pages += zone->managed_pages;
2797
2798		/*
2799		 * A special case here:
2800		 *
2801		 * balance_pgdat() skips over all_unreclaimable after
2802		 * DEF_PRIORITY. Effectively, it considers them balanced so
2803		 * they must be considered balanced here as well!
2804		 */
2805		if (!zone_reclaimable(zone)) {
2806			balanced_pages += zone->managed_pages;
2807			continue;
2808		}
2809
2810		if (zone_balanced(zone, order, 0, i))
2811			balanced_pages += zone->managed_pages;
2812		else if (!order)
2813			return false;
2814	}
2815
2816	if (order)
2817		return balanced_pages >= (managed_pages >> 2);
2818	else
2819		return true;
2820}
2821
2822/*
2823 * Prepare kswapd for sleeping. This verifies that there are no processes
2824 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2825 *
2826 * Returns true if kswapd is ready to sleep
2827 */
2828static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2829					int classzone_idx)
2830{
2831	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2832	if (remaining)
2833		return false;
2834
2835	/*
2836	 * There is a potential race between when kswapd checks its watermarks
2837	 * and a process gets throttled. There is also a potential race if
2838	 * processes get throttled, kswapd wakes, a large process exits therby
2839	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2840	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2841	 * so wake them now if necessary. If necessary, processes will wake
2842	 * kswapd and get throttled again
 
 
 
 
2843	 */
2844	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2845		wake_up(&pgdat->pfmemalloc_wait);
2846		return false;
2847	}
2848
2849	return pgdat_balanced(pgdat, order, classzone_idx);
2850}
2851
2852/*
2853 * kswapd shrinks the zone by the number of pages required to reach
2854 * the high watermark.
2855 *
2856 * Returns true if kswapd scanned at least the requested number of pages to
2857 * reclaim or if the lack of progress was due to pages under writeback.
2858 * This is used to determine if the scanning priority needs to be raised.
2859 */
2860static bool kswapd_shrink_zone(struct zone *zone,
2861			       int classzone_idx,
2862			       struct scan_control *sc,
2863			       unsigned long lru_pages,
2864			       unsigned long *nr_attempted)
2865{
2866	int testorder = sc->order;
2867	unsigned long balance_gap;
2868	struct reclaim_state *reclaim_state = current->reclaim_state;
2869	struct shrink_control shrink = {
2870		.gfp_mask = sc->gfp_mask,
2871	};
2872	bool lowmem_pressure;
2873
2874	/* Reclaim above the high watermark. */
2875	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2876
2877	/*
2878	 * Kswapd reclaims only single pages with compaction enabled. Trying
2879	 * too hard to reclaim until contiguous free pages have become
2880	 * available can hurt performance by evicting too much useful data
2881	 * from memory. Do not reclaim more than needed for compaction.
2882	 */
2883	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2884			compaction_suitable(zone, sc->order) !=
2885				COMPACT_SKIPPED)
2886		testorder = 0;
2887
2888	/*
2889	 * We put equal pressure on every zone, unless one zone has way too
2890	 * many pages free already. The "too many pages" is defined as the
2891	 * high wmark plus a "gap" where the gap is either the low
2892	 * watermark or 1% of the zone, whichever is smaller.
2893	 */
2894	balance_gap = min(low_wmark_pages(zone),
2895		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2896		KSWAPD_ZONE_BALANCE_GAP_RATIO);
2897
2898	/*
2899	 * If there is no low memory pressure or the zone is balanced then no
2900	 * reclaim is necessary
2901	 */
2902	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2903	if (!lowmem_pressure && zone_balanced(zone, testorder,
2904						balance_gap, classzone_idx))
2905		return true;
2906
2907	shrink_zone(zone, sc);
2908	nodes_clear(shrink.nodes_to_scan);
2909	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2910
2911	reclaim_state->reclaimed_slab = 0;
2912	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2913	sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2914
2915	/* Account for the number of pages attempted to reclaim */
2916	*nr_attempted += sc->nr_to_reclaim;
2917
2918	zone_clear_flag(zone, ZONE_WRITEBACK);
2919
2920	/*
2921	 * If a zone reaches its high watermark, consider it to be no longer
2922	 * congested. It's possible there are dirty pages backed by congested
2923	 * BDIs but as pressure is relieved, speculatively avoid congestion
2924	 * waits.
2925	 */
2926	if (zone_reclaimable(zone) &&
2927	    zone_balanced(zone, testorder, 0, classzone_idx)) {
2928		zone_clear_flag(zone, ZONE_CONGESTED);
2929		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2930	}
2931
2932	return sc->nr_scanned >= sc->nr_to_reclaim;
2933}
2934
2935/*
2936 * For kswapd, balance_pgdat() will work across all this node's zones until
2937 * they are all at high_wmark_pages(zone).
2938 *
2939 * Returns the final order kswapd was reclaiming at
2940 *
2941 * There is special handling here for zones which are full of pinned pages.
2942 * This can happen if the pages are all mlocked, or if they are all used by
2943 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2944 * What we do is to detect the case where all pages in the zone have been
2945 * scanned twice and there has been zero successful reclaim.  Mark the zone as
2946 * dead and from now on, only perform a short scan.  Basically we're polling
2947 * the zone for when the problem goes away.
2948 *
2949 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2950 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2951 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2952 * lower zones regardless of the number of free pages in the lower zones. This
2953 * interoperates with the page allocator fallback scheme to ensure that aging
2954 * of pages is balanced across the zones.
2955 */
2956static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2957							int *classzone_idx)
2958{
2959	int i;
2960	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2961	unsigned long nr_soft_reclaimed;
2962	unsigned long nr_soft_scanned;
2963	struct scan_control sc = {
2964		.gfp_mask = GFP_KERNEL,
 
2965		.priority = DEF_PRIORITY,
 
2966		.may_unmap = 1,
2967		.may_swap = 1,
2968		.may_writepage = !laptop_mode,
2969		.order = order,
2970		.target_mem_cgroup = NULL,
2971	};
2972	count_vm_event(PAGEOUTRUN);
2973
2974	do {
2975		unsigned long lru_pages = 0;
2976		unsigned long nr_attempted = 0;
2977		bool raise_priority = true;
2978		bool pgdat_needs_compaction = (order > 0);
2979
2980		sc.nr_reclaimed = 0;
2981
2982		/*
2983		 * Scan in the highmem->dma direction for the highest
2984		 * zone which needs scanning
2985		 */
2986		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2987			struct zone *zone = pgdat->node_zones + i;
2988
2989			if (!populated_zone(zone))
2990				continue;
2991
2992			if (sc.priority != DEF_PRIORITY &&
2993			    !zone_reclaimable(zone))
2994				continue;
2995
2996			/*
2997			 * Do some background aging of the anon list, to give
2998			 * pages a chance to be referenced before reclaiming.
2999			 */
3000			age_active_anon(zone, &sc);
3001
3002			/*
3003			 * If the number of buffer_heads in the machine
3004			 * exceeds the maximum allowed level and this node
3005			 * has a highmem zone, force kswapd to reclaim from
3006			 * it to relieve lowmem pressure.
3007			 */
3008			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3009				end_zone = i;
3010				break;
3011			}
3012
3013			if (!zone_balanced(zone, order, 0, 0)) {
3014				end_zone = i;
3015				break;
3016			} else {
3017				/*
3018				 * If balanced, clear the dirty and congested
3019				 * flags
3020				 */
3021				zone_clear_flag(zone, ZONE_CONGESTED);
3022				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3023			}
3024		}
3025
3026		if (i < 0)
3027			goto out;
3028
3029		for (i = 0; i <= end_zone; i++) {
3030			struct zone *zone = pgdat->node_zones + i;
3031
3032			if (!populated_zone(zone))
3033				continue;
3034
3035			lru_pages += zone_reclaimable_pages(zone);
3036
3037			/*
3038			 * If any zone is currently balanced then kswapd will
3039			 * not call compaction as it is expected that the
3040			 * necessary pages are already available.
3041			 */
3042			if (pgdat_needs_compaction &&
3043					zone_watermark_ok(zone, order,
3044						low_wmark_pages(zone),
3045						*classzone_idx, 0))
3046				pgdat_needs_compaction = false;
3047		}
3048
3049		/*
3050		 * If we're getting trouble reclaiming, start doing writepage
3051		 * even in laptop mode.
3052		 */
3053		if (sc.priority < DEF_PRIORITY - 2)
3054			sc.may_writepage = 1;
3055
3056		/*
3057		 * Now scan the zone in the dma->highmem direction, stopping
3058		 * at the last zone which needs scanning.
3059		 *
3060		 * We do this because the page allocator works in the opposite
3061		 * direction.  This prevents the page allocator from allocating
3062		 * pages behind kswapd's direction of progress, which would
3063		 * cause too much scanning of the lower zones.
3064		 */
3065		for (i = 0; i <= end_zone; i++) {
3066			struct zone *zone = pgdat->node_zones + i;
3067
3068			if (!populated_zone(zone))
3069				continue;
3070
3071			if (sc.priority != DEF_PRIORITY &&
3072			    !zone_reclaimable(zone))
3073				continue;
3074
3075			sc.nr_scanned = 0;
3076
3077			nr_soft_scanned = 0;
3078			/*
3079			 * Call soft limit reclaim before calling shrink_zone.
3080			 */
3081			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3082							order, sc.gfp_mask,
3083							&nr_soft_scanned);
3084			sc.nr_reclaimed += nr_soft_reclaimed;
3085
3086			/*
3087			 * There should be no need to raise the scanning
3088			 * priority if enough pages are already being scanned
3089			 * that that high watermark would be met at 100%
3090			 * efficiency.
3091			 */
3092			if (kswapd_shrink_zone(zone, end_zone, &sc,
3093					lru_pages, &nr_attempted))
3094				raise_priority = false;
3095		}
3096
3097		/*
3098		 * If the low watermark is met there is no need for processes
3099		 * to be throttled on pfmemalloc_wait as they should not be
3100		 * able to safely make forward progress. Wake them
3101		 */
3102		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3103				pfmemalloc_watermark_ok(pgdat))
3104			wake_up(&pgdat->pfmemalloc_wait);
3105
3106		/*
3107		 * Fragmentation may mean that the system cannot be rebalanced
3108		 * for high-order allocations in all zones. If twice the
3109		 * allocation size has been reclaimed and the zones are still
3110		 * not balanced then recheck the watermarks at order-0 to
3111		 * prevent kswapd reclaiming excessively. Assume that a
3112		 * process requested a high-order can direct reclaim/compact.
3113		 */
3114		if (order && sc.nr_reclaimed >= 2UL << order)
3115			order = sc.order = 0;
3116
3117		/* Check if kswapd should be suspending */
3118		if (try_to_freeze() || kthread_should_stop())
3119			break;
3120
3121		/*
3122		 * Compact if necessary and kswapd is reclaiming at least the
3123		 * high watermark number of pages as requsted
3124		 */
3125		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3126			compact_pgdat(pgdat, order);
3127
3128		/*
3129		 * Raise priority if scanning rate is too low or there was no
3130		 * progress in reclaiming pages
3131		 */
3132		if (raise_priority || !sc.nr_reclaimed)
3133			sc.priority--;
3134	} while (sc.priority >= 1 &&
3135		 !pgdat_balanced(pgdat, order, *classzone_idx));
3136
3137out:
3138	/*
3139	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3140	 * makes a decision on the order we were last reclaiming at. However,
3141	 * if another caller entered the allocator slow path while kswapd
3142	 * was awake, order will remain at the higher level
3143	 */
3144	*classzone_idx = end_zone;
3145	return order;
3146}
3147
3148static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
 
3149{
3150	long remaining = 0;
3151	DEFINE_WAIT(wait);
3152
3153	if (freezing(current) || kthread_should_stop())
3154		return;
3155
3156	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3157
3158	/* Try to sleep for a short interval */
3159	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3160		remaining = schedule_timeout(HZ/10);
3161		finish_wait(&pgdat->kswapd_wait, &wait);
3162		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3163	}
3164
3165	/*
3166	 * After a short sleep, check if it was a premature sleep. If not, then
3167	 * go fully to sleep until explicitly woken up.
3168	 */
3169	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
 
3170		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3171
3172		/*
3173		 * vmstat counters are not perfectly accurate and the estimated
3174		 * value for counters such as NR_FREE_PAGES can deviate from the
3175		 * true value by nr_online_cpus * threshold. To avoid the zone
3176		 * watermarks being breached while under pressure, we reduce the
3177		 * per-cpu vmstat threshold while kswapd is awake and restore
3178		 * them before going back to sleep.
3179		 */
3180		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3181
3182		/*
3183		 * Compaction records what page blocks it recently failed to
3184		 * isolate pages from and skips them in the future scanning.
3185		 * When kswapd is going to sleep, it is reasonable to assume
3186		 * that pages and compaction may succeed so reset the cache.
3187		 */
3188		reset_isolation_suitable(pgdat);
3189
3190		if (!kthread_should_stop())
3191			schedule();
3192
3193		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3194	} else {
3195		if (remaining)
3196			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3197		else
3198			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3199	}
3200	finish_wait(&pgdat->kswapd_wait, &wait);
3201}
3202
3203/*
3204 * The background pageout daemon, started as a kernel thread
3205 * from the init process.
3206 *
3207 * This basically trickles out pages so that we have _some_
3208 * free memory available even if there is no other activity
3209 * that frees anything up. This is needed for things like routing
3210 * etc, where we otherwise might have all activity going on in
3211 * asynchronous contexts that cannot page things out.
3212 *
3213 * If there are applications that are active memory-allocators
3214 * (most normal use), this basically shouldn't matter.
3215 */
3216static int kswapd(void *p)
3217{
3218	unsigned long order, new_order;
3219	unsigned balanced_order;
3220	int classzone_idx, new_classzone_idx;
3221	int balanced_classzone_idx;
3222	pg_data_t *pgdat = (pg_data_t*)p;
3223	struct task_struct *tsk = current;
3224
3225	struct reclaim_state reclaim_state = {
3226		.reclaimed_slab = 0,
3227	};
3228	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3229
3230	lockdep_set_current_reclaim_state(GFP_KERNEL);
3231
3232	if (!cpumask_empty(cpumask))
3233		set_cpus_allowed_ptr(tsk, cpumask);
3234	current->reclaim_state = &reclaim_state;
3235
3236	/*
3237	 * Tell the memory management that we're a "memory allocator",
3238	 * and that if we need more memory we should get access to it
3239	 * regardless (see "__alloc_pages()"). "kswapd" should
3240	 * never get caught in the normal page freeing logic.
3241	 *
3242	 * (Kswapd normally doesn't need memory anyway, but sometimes
3243	 * you need a small amount of memory in order to be able to
3244	 * page out something else, and this flag essentially protects
3245	 * us from recursively trying to free more memory as we're
3246	 * trying to free the first piece of memory in the first place).
3247	 */
3248	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3249	set_freezable();
3250
3251	order = new_order = 0;
3252	balanced_order = 0;
3253	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3254	balanced_classzone_idx = classzone_idx;
3255	for ( ; ; ) {
3256		bool ret;
3257
3258		/*
3259		 * If the last balance_pgdat was unsuccessful it's unlikely a
3260		 * new request of a similar or harder type will succeed soon
3261		 * so consider going to sleep on the basis we reclaimed at
3262		 */
3263		if (balanced_classzone_idx >= new_classzone_idx &&
3264					balanced_order == new_order) {
3265			new_order = pgdat->kswapd_max_order;
3266			new_classzone_idx = pgdat->classzone_idx;
3267			pgdat->kswapd_max_order =  0;
3268			pgdat->classzone_idx = pgdat->nr_zones - 1;
3269		}
3270
3271		if (order < new_order || classzone_idx > new_classzone_idx) {
3272			/*
3273			 * Don't sleep if someone wants a larger 'order'
3274			 * allocation or has tigher zone constraints
3275			 */
3276			order = new_order;
3277			classzone_idx = new_classzone_idx;
3278		} else {
3279			kswapd_try_to_sleep(pgdat, balanced_order,
3280						balanced_classzone_idx);
3281			order = pgdat->kswapd_max_order;
3282			classzone_idx = pgdat->classzone_idx;
3283			new_order = order;
3284			new_classzone_idx = classzone_idx;
3285			pgdat->kswapd_max_order = 0;
3286			pgdat->classzone_idx = pgdat->nr_zones - 1;
3287		}
3288
3289		ret = try_to_freeze();
3290		if (kthread_should_stop())
3291			break;
3292
3293		/*
3294		 * We can speed up thawing tasks if we don't call balance_pgdat
3295		 * after returning from the refrigerator
3296		 */
3297		if (!ret) {
3298			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3299			balanced_classzone_idx = classzone_idx;
3300			balanced_order = balance_pgdat(pgdat, order,
3301						&balanced_classzone_idx);
3302		}
3303	}
3304
 
3305	current->reclaim_state = NULL;
 
 
3306	return 0;
3307}
3308
3309/*
3310 * A zone is low on free memory, so wake its kswapd task to service it.
3311 */
3312void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3313{
3314	pg_data_t *pgdat;
3315
3316	if (!populated_zone(zone))
3317		return;
3318
3319	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3320		return;
3321	pgdat = zone->zone_pgdat;
3322	if (pgdat->kswapd_max_order < order) {
3323		pgdat->kswapd_max_order = order;
3324		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3325	}
3326	if (!waitqueue_active(&pgdat->kswapd_wait))
3327		return;
3328	if (zone_balanced(zone, order, 0, 0))
3329		return;
3330
3331	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3332	wake_up_interruptible(&pgdat->kswapd_wait);
3333}
3334
3335#ifdef CONFIG_HIBERNATION
3336/*
3337 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3338 * freed pages.
3339 *
3340 * Rather than trying to age LRUs the aim is to preserve the overall
3341 * LRU order by reclaiming preferentially
3342 * inactive > active > active referenced > active mapped
3343 */
3344unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3345{
3346	struct reclaim_state reclaim_state;
3347	struct scan_control sc = {
 
3348		.gfp_mask = GFP_HIGHUSER_MOVABLE,
 
 
 
3349		.may_swap = 1,
3350		.may_unmap = 1,
3351		.may_writepage = 1,
3352		.nr_to_reclaim = nr_to_reclaim,
3353		.hibernation_mode = 1,
3354		.order = 0,
3355		.priority = DEF_PRIORITY,
3356	};
3357	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3358	struct task_struct *p = current;
3359	unsigned long nr_reclaimed;
3360
3361	p->flags |= PF_MEMALLOC;
3362	lockdep_set_current_reclaim_state(sc.gfp_mask);
3363	reclaim_state.reclaimed_slab = 0;
3364	p->reclaim_state = &reclaim_state;
3365
3366	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3367
3368	p->reclaim_state = NULL;
3369	lockdep_clear_current_reclaim_state();
3370	p->flags &= ~PF_MEMALLOC;
3371
3372	return nr_reclaimed;
3373}
3374#endif /* CONFIG_HIBERNATION */
3375
3376/* It's optimal to keep kswapds on the same CPUs as their memory, but
3377   not required for correctness.  So if the last cpu in a node goes
3378   away, we get changed to run anywhere: as the first one comes back,
3379   restore their cpu bindings. */
3380static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3381			void *hcpu)
3382{
3383	int nid;
3384
3385	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3386		for_each_node_state(nid, N_MEMORY) {
3387			pg_data_t *pgdat = NODE_DATA(nid);
3388			const struct cpumask *mask;
3389
3390			mask = cpumask_of_node(pgdat->node_id);
3391
3392			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3393				/* One of our CPUs online: restore mask */
3394				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3395		}
3396	}
3397	return NOTIFY_OK;
3398}
3399
3400/*
3401 * This kswapd start function will be called by init and node-hot-add.
3402 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3403 */
3404int kswapd_run(int nid)
3405{
3406	pg_data_t *pgdat = NODE_DATA(nid);
3407	int ret = 0;
3408
3409	if (pgdat->kswapd)
3410		return 0;
3411
3412	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3413	if (IS_ERR(pgdat->kswapd)) {
3414		/* failure at boot is fatal */
3415		BUG_ON(system_state == SYSTEM_BOOTING);
3416		pr_err("Failed to start kswapd on node %d\n", nid);
3417		ret = PTR_ERR(pgdat->kswapd);
3418		pgdat->kswapd = NULL;
3419	}
3420	return ret;
3421}
3422
3423/*
3424 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3425 * hold lock_memory_hotplug().
3426 */
3427void kswapd_stop(int nid)
3428{
3429	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3430
3431	if (kswapd) {
3432		kthread_stop(kswapd);
3433		NODE_DATA(nid)->kswapd = NULL;
3434	}
3435}
3436
3437static int __init kswapd_init(void)
3438{
3439	int nid;
3440
3441	swap_setup();
3442	for_each_node_state(nid, N_MEMORY)
3443 		kswapd_run(nid);
3444	hotcpu_notifier(cpu_callback, 0);
3445	return 0;
3446}
3447
3448module_init(kswapd_init)
3449
3450#ifdef CONFIG_NUMA
3451/*
3452 * Zone reclaim mode
3453 *
3454 * If non-zero call zone_reclaim when the number of free pages falls below
3455 * the watermarks.
3456 */
3457int zone_reclaim_mode __read_mostly;
3458
3459#define RECLAIM_OFF 0
3460#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3461#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3462#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3463
3464/*
3465 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3466 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3467 * a zone.
3468 */
3469#define ZONE_RECLAIM_PRIORITY 4
3470
3471/*
3472 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3473 * occur.
3474 */
3475int sysctl_min_unmapped_ratio = 1;
3476
3477/*
3478 * If the number of slab pages in a zone grows beyond this percentage then
3479 * slab reclaim needs to occur.
3480 */
3481int sysctl_min_slab_ratio = 5;
3482
3483static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3484{
3485	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3486	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3487		zone_page_state(zone, NR_ACTIVE_FILE);
3488
3489	/*
3490	 * It's possible for there to be more file mapped pages than
3491	 * accounted for by the pages on the file LRU lists because
3492	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3493	 */
3494	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3495}
3496
3497/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3498static long zone_pagecache_reclaimable(struct zone *zone)
3499{
3500	long nr_pagecache_reclaimable;
3501	long delta = 0;
3502
3503	/*
3504	 * If RECLAIM_SWAP is set, then all file pages are considered
3505	 * potentially reclaimable. Otherwise, we have to worry about
3506	 * pages like swapcache and zone_unmapped_file_pages() provides
3507	 * a better estimate
3508	 */
3509	if (zone_reclaim_mode & RECLAIM_SWAP)
3510		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3511	else
3512		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3513
3514	/* If we can't clean pages, remove dirty pages from consideration */
3515	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3516		delta += zone_page_state(zone, NR_FILE_DIRTY);
3517
3518	/* Watch for any possible underflows due to delta */
3519	if (unlikely(delta > nr_pagecache_reclaimable))
3520		delta = nr_pagecache_reclaimable;
3521
3522	return nr_pagecache_reclaimable - delta;
3523}
3524
3525/*
3526 * Try to free up some pages from this zone through reclaim.
3527 */
3528static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3529{
3530	/* Minimum pages needed in order to stay on node */
3531	const unsigned long nr_pages = 1 << order;
3532	struct task_struct *p = current;
3533	struct reclaim_state reclaim_state;
3534	struct scan_control sc = {
3535		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3536		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3537		.may_swap = 1,
3538		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3539		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3540		.order = order,
3541		.priority = ZONE_RECLAIM_PRIORITY,
 
 
 
3542	};
3543	struct shrink_control shrink = {
3544		.gfp_mask = sc.gfp_mask,
3545	};
3546	unsigned long nr_slab_pages0, nr_slab_pages1;
3547
3548	cond_resched();
3549	/*
3550	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3551	 * and we also need to be able to write out pages for RECLAIM_WRITE
3552	 * and RECLAIM_SWAP.
3553	 */
3554	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3555	lockdep_set_current_reclaim_state(gfp_mask);
3556	reclaim_state.reclaimed_slab = 0;
3557	p->reclaim_state = &reclaim_state;
3558
3559	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3560		/*
3561		 * Free memory by calling shrink zone with increasing
3562		 * priorities until we have enough memory freed.
3563		 */
3564		do {
3565			shrink_zone(zone, &sc);
3566		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3567	}
3568
3569	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3570	if (nr_slab_pages0 > zone->min_slab_pages) {
3571		/*
3572		 * shrink_slab() does not currently allow us to determine how
3573		 * many pages were freed in this zone. So we take the current
3574		 * number of slab pages and shake the slab until it is reduced
3575		 * by the same nr_pages that we used for reclaiming unmapped
3576		 * pages.
3577		 */
3578		nodes_clear(shrink.nodes_to_scan);
3579		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3580		for (;;) {
3581			unsigned long lru_pages = zone_reclaimable_pages(zone);
3582
3583			/* No reclaimable slab or very low memory pressure */
3584			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3585				break;
3586
3587			/* Freed enough memory */
3588			nr_slab_pages1 = zone_page_state(zone,
3589							NR_SLAB_RECLAIMABLE);
3590			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3591				break;
3592		}
3593
3594		/*
3595		 * Update nr_reclaimed by the number of slab pages we
3596		 * reclaimed from this zone.
3597		 */
3598		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3599		if (nr_slab_pages1 < nr_slab_pages0)
3600			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3601	}
3602
3603	p->reclaim_state = NULL;
3604	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3605	lockdep_clear_current_reclaim_state();
3606	return sc.nr_reclaimed >= nr_pages;
3607}
3608
3609int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3610{
3611	int node_id;
3612	int ret;
3613
3614	/*
3615	 * Zone reclaim reclaims unmapped file backed pages and
3616	 * slab pages if we are over the defined limits.
3617	 *
3618	 * A small portion of unmapped file backed pages is needed for
3619	 * file I/O otherwise pages read by file I/O will be immediately
3620	 * thrown out if the zone is overallocated. So we do not reclaim
3621	 * if less than a specified percentage of the zone is used by
3622	 * unmapped file backed pages.
3623	 */
3624	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3625	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3626		return ZONE_RECLAIM_FULL;
3627
3628	if (!zone_reclaimable(zone))
3629		return ZONE_RECLAIM_FULL;
3630
3631	/*
3632	 * Do not scan if the allocation should not be delayed.
3633	 */
3634	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3635		return ZONE_RECLAIM_NOSCAN;
3636
3637	/*
3638	 * Only run zone reclaim on the local zone or on zones that do not
3639	 * have associated processors. This will favor the local processor
3640	 * over remote processors and spread off node memory allocations
3641	 * as wide as possible.
3642	 */
3643	node_id = zone_to_nid(zone);
3644	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3645		return ZONE_RECLAIM_NOSCAN;
3646
3647	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3648		return ZONE_RECLAIM_NOSCAN;
3649
3650	ret = __zone_reclaim(zone, gfp_mask, order);
3651	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3652
3653	if (!ret)
3654		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3655
3656	return ret;
3657}
3658#endif
3659
3660/*
3661 * page_evictable - test whether a page is evictable
3662 * @page: the page to test
3663 *
3664 * Test whether page is evictable--i.e., should be placed on active/inactive
3665 * lists vs unevictable list.
3666 *
3667 * Reasons page might not be evictable:
3668 * (1) page's mapping marked unevictable
3669 * (2) page is part of an mlocked VMA
3670 *
3671 */
3672int page_evictable(struct page *page)
3673{
3674	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3675}
3676
3677#ifdef CONFIG_SHMEM
3678/**
3679 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3680 * @pages:	array of pages to check
3681 * @nr_pages:	number of pages to check
3682 *
3683 * Checks pages for evictability and moves them to the appropriate lru list.
3684 *
3685 * This function is only used for SysV IPC SHM_UNLOCK.
3686 */
3687void check_move_unevictable_pages(struct page **pages, int nr_pages)
3688{
3689	struct lruvec *lruvec;
3690	struct zone *zone = NULL;
3691	int pgscanned = 0;
3692	int pgrescued = 0;
3693	int i;
3694
3695	for (i = 0; i < nr_pages; i++) {
3696		struct page *page = pages[i];
3697		struct zone *pagezone;
3698
3699		pgscanned++;
3700		pagezone = page_zone(page);
3701		if (pagezone != zone) {
3702			if (zone)
3703				spin_unlock_irq(&zone->lru_lock);
3704			zone = pagezone;
3705			spin_lock_irq(&zone->lru_lock);
3706		}
3707		lruvec = mem_cgroup_page_lruvec(page, zone);
3708
3709		if (!PageLRU(page) || !PageUnevictable(page))
3710			continue;
3711
3712		if (page_evictable(page)) {
3713			enum lru_list lru = page_lru_base_type(page);
3714
3715			VM_BUG_ON_PAGE(PageActive(page), page);
3716			ClearPageUnevictable(page);
3717			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3718			add_page_to_lru_list(page, lruvec, lru);
3719			pgrescued++;
3720		}
3721	}
3722
3723	if (zone) {
3724		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3725		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3726		spin_unlock_irq(&zone->lru_lock);
3727	}
3728}
3729#endif /* CONFIG_SHMEM */
3730
3731static void warn_scan_unevictable_pages(void)
3732{
3733	printk_once(KERN_WARNING
3734		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3735		    "disabled for lack of a legitimate use case.  If you have "
3736		    "one, please send an email to linux-mm@kvack.org.\n",
3737		    current->comm);
3738}
3739
3740/*
3741 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3742 * all nodes' unevictable lists for evictable pages
3743 */
3744unsigned long scan_unevictable_pages;
3745
3746int scan_unevictable_handler(struct ctl_table *table, int write,
3747			   void __user *buffer,
3748			   size_t *length, loff_t *ppos)
3749{
3750	warn_scan_unevictable_pages();
3751	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3752	scan_unevictable_pages = 0;
3753	return 0;
3754}
3755
3756#ifdef CONFIG_NUMA
3757/*
3758 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3759 * a specified node's per zone unevictable lists for evictable pages.
3760 */
3761
3762static ssize_t read_scan_unevictable_node(struct device *dev,
3763					  struct device_attribute *attr,
3764					  char *buf)
3765{
3766	warn_scan_unevictable_pages();
3767	return sprintf(buf, "0\n");	/* always zero; should fit... */
3768}
3769
3770static ssize_t write_scan_unevictable_node(struct device *dev,
3771					   struct device_attribute *attr,
3772					const char *buf, size_t count)
3773{
3774	warn_scan_unevictable_pages();
3775	return 1;
3776}
3777
3778
3779static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3780			read_scan_unevictable_node,
3781			write_scan_unevictable_node);
3782
3783int scan_unevictable_register_node(struct node *node)
3784{
3785	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3786}
3787
3788void scan_unevictable_unregister_node(struct node *node)
3789{
3790	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3791}
3792#endif