Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * sparse memory mappings.
  3 */
  4#include <linux/mm.h>
  5#include <linux/slab.h>
  6#include <linux/mmzone.h>
  7#include <linux/bootmem.h>
  8#include <linux/compiler.h>
  9#include <linux/highmem.h>
 10#include <linux/export.h>
 11#include <linux/spinlock.h>
 12#include <linux/vmalloc.h>
 13
 14#include "internal.h"
 15#include <asm/dma.h>
 16#include <asm/pgalloc.h>
 17#include <asm/pgtable.h>
 18
 19/*
 20 * Permanent SPARSEMEM data:
 21 *
 22 * 1) mem_section	- memory sections, mem_map's for valid memory
 23 */
 24#ifdef CONFIG_SPARSEMEM_EXTREME
 25struct mem_section *mem_section[NR_SECTION_ROOTS]
 26	____cacheline_internodealigned_in_smp;
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available()) {
 69		if (node_state(nid, N_HIGH_MEMORY))
 70			section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71		else
 72			section = kzalloc(array_size, GFP_KERNEL);
 73	} else {
 74		section = memblock_virt_alloc_node(array_size, nid);
 75	}
 76
 77	return section;
 78}
 79
 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 81{
 82	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 83	struct mem_section *section;
 84
 85	if (mem_section[root])
 86		return -EEXIST;
 87
 88	section = sparse_index_alloc(nid);
 89	if (!section)
 90		return -ENOMEM;
 91
 92	mem_section[root] = section;
 93
 94	return 0;
 95}
 96#else /* !SPARSEMEM_EXTREME */
 97static inline int sparse_index_init(unsigned long section_nr, int nid)
 98{
 99	return 0;
100}
101#endif
102
103/*
104 * Although written for the SPARSEMEM_EXTREME case, this happens
105 * to also work for the flat array case because
106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 */
108int __section_nr(struct mem_section* ms)
109{
110	unsigned long root_nr;
111	struct mem_section* root;
112
113	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
114		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
115		if (!root)
116			continue;
117
118		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
119		     break;
120	}
121
122	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
123
124	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
125}
126
127/*
128 * During early boot, before section_mem_map is used for an actual
129 * mem_map, we use section_mem_map to store the section's NUMA
130 * node.  This keeps us from having to use another data structure.  The
131 * node information is cleared just before we store the real mem_map.
132 */
133static inline unsigned long sparse_encode_early_nid(int nid)
134{
135	return (nid << SECTION_NID_SHIFT);
136}
137
138static inline int sparse_early_nid(struct mem_section *section)
139{
140	return (section->section_mem_map >> SECTION_NID_SHIFT);
141}
142
143/* Validate the physical addressing limitations of the model */
144void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
145						unsigned long *end_pfn)
146{
147	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148
149	/*
150	 * Sanity checks - do not allow an architecture to pass
151	 * in larger pfns than the maximum scope of sparsemem:
152	 */
153	if (*start_pfn > max_sparsemem_pfn) {
154		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
155			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156			*start_pfn, *end_pfn, max_sparsemem_pfn);
157		WARN_ON_ONCE(1);
158		*start_pfn = max_sparsemem_pfn;
159		*end_pfn = max_sparsemem_pfn;
160	} else if (*end_pfn > max_sparsemem_pfn) {
161		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163			*start_pfn, *end_pfn, max_sparsemem_pfn);
164		WARN_ON_ONCE(1);
165		*end_pfn = max_sparsemem_pfn;
166	}
167}
168
169/* Record a memory area against a node. */
170void __init memory_present(int nid, unsigned long start, unsigned long end)
171{
172	unsigned long pfn;
173
174	start &= PAGE_SECTION_MASK;
175	mminit_validate_memmodel_limits(&start, &end);
176	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
177		unsigned long section = pfn_to_section_nr(pfn);
178		struct mem_section *ms;
179
180		sparse_index_init(section, nid);
181		set_section_nid(section, nid);
182
183		ms = __nr_to_section(section);
184		if (!ms->section_mem_map)
185			ms->section_mem_map = sparse_encode_early_nid(nid) |
186							SECTION_MARKED_PRESENT;
187	}
188}
189
190/*
191 * Only used by the i386 NUMA architecures, but relatively
192 * generic code.
193 */
194unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
195						     unsigned long end_pfn)
196{
197	unsigned long pfn;
198	unsigned long nr_pages = 0;
199
200	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
201	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
202		if (nid != early_pfn_to_nid(pfn))
203			continue;
204
205		if (pfn_present(pfn))
206			nr_pages += PAGES_PER_SECTION;
207	}
208
209	return nr_pages * sizeof(struct page);
210}
211
212/*
213 * Subtle, we encode the real pfn into the mem_map such that
214 * the identity pfn - section_mem_map will return the actual
215 * physical page frame number.
216 */
217static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
218{
219	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
220}
221
222/*
223 * Decode mem_map from the coded memmap
224 */
225struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
226{
227	/* mask off the extra low bits of information */
228	coded_mem_map &= SECTION_MAP_MASK;
229	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
230}
231
232static int __meminit sparse_init_one_section(struct mem_section *ms,
233		unsigned long pnum, struct page *mem_map,
234		unsigned long *pageblock_bitmap)
235{
236	if (!present_section(ms))
237		return -EINVAL;
238
239	ms->section_mem_map &= ~SECTION_MAP_MASK;
240	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
241							SECTION_HAS_MEM_MAP;
242 	ms->pageblock_flags = pageblock_bitmap;
243
244	return 1;
245}
246
247unsigned long usemap_size(void)
248{
249	unsigned long size_bytes;
250	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
251	size_bytes = roundup(size_bytes, sizeof(unsigned long));
252	return size_bytes;
253}
254
255#ifdef CONFIG_MEMORY_HOTPLUG
256static unsigned long *__kmalloc_section_usemap(void)
257{
258	return kmalloc(usemap_size(), GFP_KERNEL);
259}
260#endif /* CONFIG_MEMORY_HOTPLUG */
261
262#ifdef CONFIG_MEMORY_HOTREMOVE
263static unsigned long * __init
264sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
265					 unsigned long size)
266{
267	unsigned long goal, limit;
268	unsigned long *p;
269	int nid;
270	/*
271	 * A page may contain usemaps for other sections preventing the
272	 * page being freed and making a section unremovable while
273	 * other sections referencing the usemap remain active. Similarly,
274	 * a pgdat can prevent a section being removed. If section A
275	 * contains a pgdat and section B contains the usemap, both
276	 * sections become inter-dependent. This allocates usemaps
277	 * from the same section as the pgdat where possible to avoid
278	 * this problem.
279	 */
280	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
281	limit = goal + (1UL << PA_SECTION_SHIFT);
282	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
283again:
284	p = memblock_virt_alloc_try_nid_nopanic(size,
285						SMP_CACHE_BYTES, goal, limit,
286						nid);
287	if (!p && limit) {
288		limit = 0;
289		goto again;
290	}
291	return p;
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295{
296	unsigned long usemap_snr, pgdat_snr;
297	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299	struct pglist_data *pgdat = NODE_DATA(nid);
300	int usemap_nid;
301
302	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304	if (usemap_snr == pgdat_snr)
305		return;
306
307	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308		/* skip redundant message */
309		return;
310
311	old_usemap_snr = usemap_snr;
312	old_pgdat_snr = pgdat_snr;
313
314	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315	if (usemap_nid != nid) {
316		pr_info("node %d must be removed before remove section %ld\n",
317			nid, usemap_snr);
 
318		return;
319	}
320	/*
321	 * There is a circular dependency.
322	 * Some platforms allow un-removable section because they will just
323	 * gather other removable sections for dynamic partitioning.
324	 * Just notify un-removable section's number here.
325	 */
326	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
327		usemap_snr, pgdat_snr, nid);
 
 
328}
329#else
330static unsigned long * __init
331sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
332					 unsigned long size)
333{
334	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
335}
336
337static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
338{
339}
340#endif /* CONFIG_MEMORY_HOTREMOVE */
341
342static void __init sparse_early_usemaps_alloc_node(void *data,
343				 unsigned long pnum_begin,
344				 unsigned long pnum_end,
345				 unsigned long usemap_count, int nodeid)
346{
347	void *usemap;
348	unsigned long pnum;
349	unsigned long **usemap_map = (unsigned long **)data;
350	int size = usemap_size();
351
352	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
353							  size * usemap_count);
354	if (!usemap) {
355		pr_warn("%s: allocation failed\n", __func__);
356		return;
357	}
358
359	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360		if (!present_section_nr(pnum))
361			continue;
362		usemap_map[pnum] = usemap;
363		usemap += size;
364		check_usemap_section_nr(nodeid, usemap_map[pnum]);
365	}
366}
367
368#ifndef CONFIG_SPARSEMEM_VMEMMAP
369struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
370{
371	struct page *map;
372	unsigned long size;
373
374	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375	if (map)
376		return map;
377
378	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
379	map = memblock_virt_alloc_try_nid(size,
380					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
381					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
382	return map;
383}
384void __init sparse_mem_maps_populate_node(struct page **map_map,
385					  unsigned long pnum_begin,
386					  unsigned long pnum_end,
387					  unsigned long map_count, int nodeid)
388{
389	void *map;
390	unsigned long pnum;
391	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
392
393	map = alloc_remap(nodeid, size * map_count);
394	if (map) {
395		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
396			if (!present_section_nr(pnum))
397				continue;
398			map_map[pnum] = map;
399			map += size;
400		}
401		return;
402	}
403
404	size = PAGE_ALIGN(size);
405	map = memblock_virt_alloc_try_nid(size * map_count,
406					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
407					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
408	if (map) {
409		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
410			if (!present_section_nr(pnum))
411				continue;
412			map_map[pnum] = map;
413			map += size;
414		}
415		return;
416	}
417
418	/* fallback */
419	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
420		struct mem_section *ms;
421
422		if (!present_section_nr(pnum))
423			continue;
424		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
425		if (map_map[pnum])
426			continue;
427		ms = __nr_to_section(pnum);
428		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
429		       __func__);
430		ms->section_mem_map = 0;
431	}
432}
433#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
434
435#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
436static void __init sparse_early_mem_maps_alloc_node(void *data,
437				 unsigned long pnum_begin,
438				 unsigned long pnum_end,
439				 unsigned long map_count, int nodeid)
440{
441	struct page **map_map = (struct page **)data;
442	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
443					 map_count, nodeid);
444}
445#else
446static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
447{
448	struct page *map;
449	struct mem_section *ms = __nr_to_section(pnum);
450	int nid = sparse_early_nid(ms);
451
452	map = sparse_mem_map_populate(pnum, nid);
453	if (map)
454		return map;
455
456	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
457	       __func__);
458	ms->section_mem_map = 0;
459	return NULL;
460}
461#endif
462
463void __weak __meminit vmemmap_populate_print_last(void)
464{
465}
466
467/**
468 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
469 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
470 */
471static void __init alloc_usemap_and_memmap(void (*alloc_func)
472					(void *, unsigned long, unsigned long,
473					unsigned long, int), void *data)
474{
475	unsigned long pnum;
476	unsigned long map_count;
477	int nodeid_begin = 0;
478	unsigned long pnum_begin = 0;
479
480	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
481		struct mem_section *ms;
482
483		if (!present_section_nr(pnum))
484			continue;
485		ms = __nr_to_section(pnum);
486		nodeid_begin = sparse_early_nid(ms);
487		pnum_begin = pnum;
488		break;
489	}
490	map_count = 1;
491	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
492		struct mem_section *ms;
493		int nodeid;
494
495		if (!present_section_nr(pnum))
496			continue;
497		ms = __nr_to_section(pnum);
498		nodeid = sparse_early_nid(ms);
499		if (nodeid == nodeid_begin) {
500			map_count++;
501			continue;
502		}
503		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
504		alloc_func(data, pnum_begin, pnum,
505						map_count, nodeid_begin);
506		/* new start, update count etc*/
507		nodeid_begin = nodeid;
508		pnum_begin = pnum;
509		map_count = 1;
510	}
511	/* ok, last chunk */
512	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
513						map_count, nodeid_begin);
514}
515
516/*
517 * Allocate the accumulated non-linear sections, allocate a mem_map
518 * for each and record the physical to section mapping.
519 */
520void __init sparse_init(void)
521{
522	unsigned long pnum;
523	struct page *map;
524	unsigned long *usemap;
525	unsigned long **usemap_map;
526	int size;
527#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
528	int size2;
529	struct page **map_map;
530#endif
531
532	/* see include/linux/mmzone.h 'struct mem_section' definition */
533	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
534
535	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
536	set_pageblock_order();
537
538	/*
539	 * map is using big page (aka 2M in x86 64 bit)
540	 * usemap is less one page (aka 24 bytes)
541	 * so alloc 2M (with 2M align) and 24 bytes in turn will
542	 * make next 2M slip to one more 2M later.
543	 * then in big system, the memory will have a lot of holes...
544	 * here try to allocate 2M pages continuously.
545	 *
546	 * powerpc need to call sparse_init_one_section right after each
547	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
548	 */
549	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
550	usemap_map = memblock_virt_alloc(size, 0);
551	if (!usemap_map)
552		panic("can not allocate usemap_map\n");
553	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
554							(void *)usemap_map);
555
556#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
557	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
558	map_map = memblock_virt_alloc(size2, 0);
559	if (!map_map)
560		panic("can not allocate map_map\n");
561	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
562							(void *)map_map);
563#endif
564
565	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
566		if (!present_section_nr(pnum))
567			continue;
568
569		usemap = usemap_map[pnum];
570		if (!usemap)
571			continue;
572
573#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
574		map = map_map[pnum];
575#else
576		map = sparse_early_mem_map_alloc(pnum);
577#endif
578		if (!map)
579			continue;
580
581		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
582								usemap);
583	}
584
585	vmemmap_populate_print_last();
586
587#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
588	memblock_free_early(__pa(map_map), size2);
589#endif
590	memblock_free_early(__pa(usemap_map), size);
591}
592
593#ifdef CONFIG_MEMORY_HOTPLUG
594#ifdef CONFIG_SPARSEMEM_VMEMMAP
595static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
596{
597	/* This will make the necessary allocations eventually. */
598	return sparse_mem_map_populate(pnum, nid);
599}
600static void __kfree_section_memmap(struct page *memmap)
601{
602	unsigned long start = (unsigned long)memmap;
603	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
604
605	vmemmap_free(start, end);
606}
607#ifdef CONFIG_MEMORY_HOTREMOVE
608static void free_map_bootmem(struct page *memmap)
609{
610	unsigned long start = (unsigned long)memmap;
611	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
612
613	vmemmap_free(start, end);
614}
615#endif /* CONFIG_MEMORY_HOTREMOVE */
616#else
617static struct page *__kmalloc_section_memmap(void)
618{
619	struct page *page, *ret;
620	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
621
622	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
623	if (page)
624		goto got_map_page;
625
626	ret = vmalloc(memmap_size);
627	if (ret)
628		goto got_map_ptr;
629
630	return NULL;
631got_map_page:
632	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
633got_map_ptr:
634
635	return ret;
636}
637
638static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
639{
640	return __kmalloc_section_memmap();
641}
642
643static void __kfree_section_memmap(struct page *memmap)
644{
645	if (is_vmalloc_addr(memmap))
646		vfree(memmap);
647	else
648		free_pages((unsigned long)memmap,
649			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
650}
651
652#ifdef CONFIG_MEMORY_HOTREMOVE
653static void free_map_bootmem(struct page *memmap)
654{
655	unsigned long maps_section_nr, removing_section_nr, i;
656	unsigned long magic, nr_pages;
657	struct page *page = virt_to_page(memmap);
658
659	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
660		>> PAGE_SHIFT;
661
662	for (i = 0; i < nr_pages; i++, page++) {
663		magic = (unsigned long) page->lru.next;
664
665		BUG_ON(magic == NODE_INFO);
666
667		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
668		removing_section_nr = page->private;
669
670		/*
671		 * When this function is called, the removing section is
672		 * logical offlined state. This means all pages are isolated
673		 * from page allocator. If removing section's memmap is placed
674		 * on the same section, it must not be freed.
675		 * If it is freed, page allocator may allocate it which will
676		 * be removed physically soon.
677		 */
678		if (maps_section_nr != removing_section_nr)
679			put_page_bootmem(page);
680	}
681}
682#endif /* CONFIG_MEMORY_HOTREMOVE */
683#endif /* CONFIG_SPARSEMEM_VMEMMAP */
684
685/*
686 * returns the number of sections whose mem_maps were properly
687 * set.  If this is <=0, then that means that the passed-in
688 * map was not consumed and must be freed.
689 */
690int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
691{
692	unsigned long section_nr = pfn_to_section_nr(start_pfn);
693	struct pglist_data *pgdat = zone->zone_pgdat;
694	struct mem_section *ms;
695	struct page *memmap;
696	unsigned long *usemap;
697	unsigned long flags;
698	int ret;
699
700	/*
701	 * no locking for this, because it does its own
702	 * plus, it does a kmalloc
703	 */
704	ret = sparse_index_init(section_nr, pgdat->node_id);
705	if (ret < 0 && ret != -EEXIST)
706		return ret;
707	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
708	if (!memmap)
709		return -ENOMEM;
710	usemap = __kmalloc_section_usemap();
711	if (!usemap) {
712		__kfree_section_memmap(memmap);
713		return -ENOMEM;
714	}
715
716	pgdat_resize_lock(pgdat, &flags);
717
718	ms = __pfn_to_section(start_pfn);
719	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
720		ret = -EEXIST;
721		goto out;
722	}
723
724	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
725
726	ms->section_mem_map |= SECTION_MARKED_PRESENT;
727
728	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
729
730out:
731	pgdat_resize_unlock(pgdat, &flags);
732	if (ret <= 0) {
733		kfree(usemap);
734		__kfree_section_memmap(memmap);
735	}
736	return ret;
737}
738
739#ifdef CONFIG_MEMORY_HOTREMOVE
740#ifdef CONFIG_MEMORY_FAILURE
741static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
742{
743	int i;
744
745	if (!memmap)
746		return;
747
748	for (i = 0; i < nr_pages; i++) {
749		if (PageHWPoison(&memmap[i])) {
750			atomic_long_sub(1, &num_poisoned_pages);
751			ClearPageHWPoison(&memmap[i]);
752		}
753	}
754}
755#else
756static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
757{
758}
759#endif
760
761static void free_section_usemap(struct page *memmap, unsigned long *usemap)
762{
763	struct page *usemap_page;
764
765	if (!usemap)
766		return;
767
768	usemap_page = virt_to_page(usemap);
769	/*
770	 * Check to see if allocation came from hot-plug-add
771	 */
772	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
773		kfree(usemap);
774		if (memmap)
775			__kfree_section_memmap(memmap);
776		return;
777	}
778
779	/*
780	 * The usemap came from bootmem. This is packed with other usemaps
781	 * on the section which has pgdat at boot time. Just keep it as is now.
782	 */
783
784	if (memmap)
785		free_map_bootmem(memmap);
786}
787
788void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
789		unsigned long map_offset)
790{
791	struct page *memmap = NULL;
792	unsigned long *usemap = NULL, flags;
793	struct pglist_data *pgdat = zone->zone_pgdat;
794
795	pgdat_resize_lock(pgdat, &flags);
796	if (ms->section_mem_map) {
797		usemap = ms->pageblock_flags;
798		memmap = sparse_decode_mem_map(ms->section_mem_map,
799						__section_nr(ms));
800		ms->section_mem_map = 0;
801		ms->pageblock_flags = NULL;
802	}
803	pgdat_resize_unlock(pgdat, &flags);
804
805	clear_hwpoisoned_pages(memmap + map_offset,
806			PAGES_PER_SECTION - map_offset);
807	free_section_usemap(memmap, usemap);
808}
809#endif /* CONFIG_MEMORY_HOTREMOVE */
810#endif /* CONFIG_MEMORY_HOTPLUG */
v3.15
  1/*
  2 * sparse memory mappings.
  3 */
  4#include <linux/mm.h>
  5#include <linux/slab.h>
  6#include <linux/mmzone.h>
  7#include <linux/bootmem.h>
  8#include <linux/compiler.h>
  9#include <linux/highmem.h>
 10#include <linux/export.h>
 11#include <linux/spinlock.h>
 12#include <linux/vmalloc.h>
 13
 14#include "internal.h"
 15#include <asm/dma.h>
 16#include <asm/pgalloc.h>
 17#include <asm/pgtable.h>
 18
 19/*
 20 * Permanent SPARSEMEM data:
 21 *
 22 * 1) mem_section	- memory sections, mem_map's for valid memory
 23 */
 24#ifdef CONFIG_SPARSEMEM_EXTREME
 25struct mem_section *mem_section[NR_SECTION_ROOTS]
 26	____cacheline_internodealigned_in_smp;
 27#else
 28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 29	____cacheline_internodealigned_in_smp;
 30#endif
 31EXPORT_SYMBOL(mem_section);
 32
 33#ifdef NODE_NOT_IN_PAGE_FLAGS
 34/*
 35 * If we did not store the node number in the page then we have to
 36 * do a lookup in the section_to_node_table in order to find which
 37 * node the page belongs to.
 38 */
 39#if MAX_NUMNODES <= 256
 40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 41#else
 42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 43#endif
 44
 45int page_to_nid(const struct page *page)
 46{
 47	return section_to_node_table[page_to_section(page)];
 48}
 49EXPORT_SYMBOL(page_to_nid);
 50
 51static void set_section_nid(unsigned long section_nr, int nid)
 52{
 53	section_to_node_table[section_nr] = nid;
 54}
 55#else /* !NODE_NOT_IN_PAGE_FLAGS */
 56static inline void set_section_nid(unsigned long section_nr, int nid)
 57{
 58}
 59#endif
 60
 61#ifdef CONFIG_SPARSEMEM_EXTREME
 62static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
 63{
 64	struct mem_section *section = NULL;
 65	unsigned long array_size = SECTIONS_PER_ROOT *
 66				   sizeof(struct mem_section);
 67
 68	if (slab_is_available()) {
 69		if (node_state(nid, N_HIGH_MEMORY))
 70			section = kzalloc_node(array_size, GFP_KERNEL, nid);
 71		else
 72			section = kzalloc(array_size, GFP_KERNEL);
 73	} else {
 74		section = memblock_virt_alloc_node(array_size, nid);
 75	}
 76
 77	return section;
 78}
 79
 80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 81{
 82	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 83	struct mem_section *section;
 84
 85	if (mem_section[root])
 86		return -EEXIST;
 87
 88	section = sparse_index_alloc(nid);
 89	if (!section)
 90		return -ENOMEM;
 91
 92	mem_section[root] = section;
 93
 94	return 0;
 95}
 96#else /* !SPARSEMEM_EXTREME */
 97static inline int sparse_index_init(unsigned long section_nr, int nid)
 98{
 99	return 0;
100}
101#endif
102
103/*
104 * Although written for the SPARSEMEM_EXTREME case, this happens
105 * to also work for the flat array case because
106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
107 */
108int __section_nr(struct mem_section* ms)
109{
110	unsigned long root_nr;
111	struct mem_section* root;
112
113	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
114		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
115		if (!root)
116			continue;
117
118		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
119		     break;
120	}
121
122	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
123
124	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
125}
126
127/*
128 * During early boot, before section_mem_map is used for an actual
129 * mem_map, we use section_mem_map to store the section's NUMA
130 * node.  This keeps us from having to use another data structure.  The
131 * node information is cleared just before we store the real mem_map.
132 */
133static inline unsigned long sparse_encode_early_nid(int nid)
134{
135	return (nid << SECTION_NID_SHIFT);
136}
137
138static inline int sparse_early_nid(struct mem_section *section)
139{
140	return (section->section_mem_map >> SECTION_NID_SHIFT);
141}
142
143/* Validate the physical addressing limitations of the model */
144void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
145						unsigned long *end_pfn)
146{
147	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
148
149	/*
150	 * Sanity checks - do not allow an architecture to pass
151	 * in larger pfns than the maximum scope of sparsemem:
152	 */
153	if (*start_pfn > max_sparsemem_pfn) {
154		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
155			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
156			*start_pfn, *end_pfn, max_sparsemem_pfn);
157		WARN_ON_ONCE(1);
158		*start_pfn = max_sparsemem_pfn;
159		*end_pfn = max_sparsemem_pfn;
160	} else if (*end_pfn > max_sparsemem_pfn) {
161		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
162			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
163			*start_pfn, *end_pfn, max_sparsemem_pfn);
164		WARN_ON_ONCE(1);
165		*end_pfn = max_sparsemem_pfn;
166	}
167}
168
169/* Record a memory area against a node. */
170void __init memory_present(int nid, unsigned long start, unsigned long end)
171{
172	unsigned long pfn;
173
174	start &= PAGE_SECTION_MASK;
175	mminit_validate_memmodel_limits(&start, &end);
176	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
177		unsigned long section = pfn_to_section_nr(pfn);
178		struct mem_section *ms;
179
180		sparse_index_init(section, nid);
181		set_section_nid(section, nid);
182
183		ms = __nr_to_section(section);
184		if (!ms->section_mem_map)
185			ms->section_mem_map = sparse_encode_early_nid(nid) |
186							SECTION_MARKED_PRESENT;
187	}
188}
189
190/*
191 * Only used by the i386 NUMA architecures, but relatively
192 * generic code.
193 */
194unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
195						     unsigned long end_pfn)
196{
197	unsigned long pfn;
198	unsigned long nr_pages = 0;
199
200	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
201	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
202		if (nid != early_pfn_to_nid(pfn))
203			continue;
204
205		if (pfn_present(pfn))
206			nr_pages += PAGES_PER_SECTION;
207	}
208
209	return nr_pages * sizeof(struct page);
210}
211
212/*
213 * Subtle, we encode the real pfn into the mem_map such that
214 * the identity pfn - section_mem_map will return the actual
215 * physical page frame number.
216 */
217static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
218{
219	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
220}
221
222/*
223 * Decode mem_map from the coded memmap
224 */
225struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
226{
227	/* mask off the extra low bits of information */
228	coded_mem_map &= SECTION_MAP_MASK;
229	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
230}
231
232static int __meminit sparse_init_one_section(struct mem_section *ms,
233		unsigned long pnum, struct page *mem_map,
234		unsigned long *pageblock_bitmap)
235{
236	if (!present_section(ms))
237		return -EINVAL;
238
239	ms->section_mem_map &= ~SECTION_MAP_MASK;
240	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
241							SECTION_HAS_MEM_MAP;
242 	ms->pageblock_flags = pageblock_bitmap;
243
244	return 1;
245}
246
247unsigned long usemap_size(void)
248{
249	unsigned long size_bytes;
250	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
251	size_bytes = roundup(size_bytes, sizeof(unsigned long));
252	return size_bytes;
253}
254
255#ifdef CONFIG_MEMORY_HOTPLUG
256static unsigned long *__kmalloc_section_usemap(void)
257{
258	return kmalloc(usemap_size(), GFP_KERNEL);
259}
260#endif /* CONFIG_MEMORY_HOTPLUG */
261
262#ifdef CONFIG_MEMORY_HOTREMOVE
263static unsigned long * __init
264sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
265					 unsigned long size)
266{
267	unsigned long goal, limit;
268	unsigned long *p;
269	int nid;
270	/*
271	 * A page may contain usemaps for other sections preventing the
272	 * page being freed and making a section unremovable while
273	 * other sections referencing the usemap remain active. Similarly,
274	 * a pgdat can prevent a section being removed. If section A
275	 * contains a pgdat and section B contains the usemap, both
276	 * sections become inter-dependent. This allocates usemaps
277	 * from the same section as the pgdat where possible to avoid
278	 * this problem.
279	 */
280	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
281	limit = goal + (1UL << PA_SECTION_SHIFT);
282	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
283again:
284	p = memblock_virt_alloc_try_nid_nopanic(size,
285						SMP_CACHE_BYTES, goal, limit,
286						nid);
287	if (!p && limit) {
288		limit = 0;
289		goto again;
290	}
291	return p;
292}
293
294static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295{
296	unsigned long usemap_snr, pgdat_snr;
297	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
298	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
299	struct pglist_data *pgdat = NODE_DATA(nid);
300	int usemap_nid;
301
302	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
303	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
304	if (usemap_snr == pgdat_snr)
305		return;
306
307	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
308		/* skip redundant message */
309		return;
310
311	old_usemap_snr = usemap_snr;
312	old_pgdat_snr = pgdat_snr;
313
314	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
315	if (usemap_nid != nid) {
316		printk(KERN_INFO
317		       "node %d must be removed before remove section %ld\n",
318		       nid, usemap_snr);
319		return;
320	}
321	/*
322	 * There is a circular dependency.
323	 * Some platforms allow un-removable section because they will just
324	 * gather other removable sections for dynamic partitioning.
325	 * Just notify un-removable section's number here.
326	 */
327	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
328	       pgdat_snr, nid);
329	printk(KERN_CONT
330	       " have a circular dependency on usemap and pgdat allocations\n");
331}
332#else
333static unsigned long * __init
334sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
335					 unsigned long size)
336{
337	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
338}
339
340static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
341{
342}
343#endif /* CONFIG_MEMORY_HOTREMOVE */
344
345static void __init sparse_early_usemaps_alloc_node(void *data,
346				 unsigned long pnum_begin,
347				 unsigned long pnum_end,
348				 unsigned long usemap_count, int nodeid)
349{
350	void *usemap;
351	unsigned long pnum;
352	unsigned long **usemap_map = (unsigned long **)data;
353	int size = usemap_size();
354
355	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
356							  size * usemap_count);
357	if (!usemap) {
358		printk(KERN_WARNING "%s: allocation failed\n", __func__);
359		return;
360	}
361
362	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
363		if (!present_section_nr(pnum))
364			continue;
365		usemap_map[pnum] = usemap;
366		usemap += size;
367		check_usemap_section_nr(nodeid, usemap_map[pnum]);
368	}
369}
370
371#ifndef CONFIG_SPARSEMEM_VMEMMAP
372struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
373{
374	struct page *map;
375	unsigned long size;
376
377	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
378	if (map)
379		return map;
380
381	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
382	map = memblock_virt_alloc_try_nid(size,
383					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
384					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
385	return map;
386}
387void __init sparse_mem_maps_populate_node(struct page **map_map,
388					  unsigned long pnum_begin,
389					  unsigned long pnum_end,
390					  unsigned long map_count, int nodeid)
391{
392	void *map;
393	unsigned long pnum;
394	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
395
396	map = alloc_remap(nodeid, size * map_count);
397	if (map) {
398		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
399			if (!present_section_nr(pnum))
400				continue;
401			map_map[pnum] = map;
402			map += size;
403		}
404		return;
405	}
406
407	size = PAGE_ALIGN(size);
408	map = memblock_virt_alloc_try_nid(size * map_count,
409					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
410					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
411	if (map) {
412		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
413			if (!present_section_nr(pnum))
414				continue;
415			map_map[pnum] = map;
416			map += size;
417		}
418		return;
419	}
420
421	/* fallback */
422	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
423		struct mem_section *ms;
424
425		if (!present_section_nr(pnum))
426			continue;
427		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
428		if (map_map[pnum])
429			continue;
430		ms = __nr_to_section(pnum);
431		printk(KERN_ERR "%s: sparsemem memory map backing failed "
432			"some memory will not be available.\n", __func__);
433		ms->section_mem_map = 0;
434	}
435}
436#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
437
438#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
439static void __init sparse_early_mem_maps_alloc_node(void *data,
440				 unsigned long pnum_begin,
441				 unsigned long pnum_end,
442				 unsigned long map_count, int nodeid)
443{
444	struct page **map_map = (struct page **)data;
445	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
446					 map_count, nodeid);
447}
448#else
449static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
450{
451	struct page *map;
452	struct mem_section *ms = __nr_to_section(pnum);
453	int nid = sparse_early_nid(ms);
454
455	map = sparse_mem_map_populate(pnum, nid);
456	if (map)
457		return map;
458
459	printk(KERN_ERR "%s: sparsemem memory map backing failed "
460			"some memory will not be available.\n", __func__);
461	ms->section_mem_map = 0;
462	return NULL;
463}
464#endif
465
466void __weak __meminit vmemmap_populate_print_last(void)
467{
468}
469
470/**
471 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
472 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
473 */
474static void __init alloc_usemap_and_memmap(void (*alloc_func)
475					(void *, unsigned long, unsigned long,
476					unsigned long, int), void *data)
477{
478	unsigned long pnum;
479	unsigned long map_count;
480	int nodeid_begin = 0;
481	unsigned long pnum_begin = 0;
482
483	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
484		struct mem_section *ms;
485
486		if (!present_section_nr(pnum))
487			continue;
488		ms = __nr_to_section(pnum);
489		nodeid_begin = sparse_early_nid(ms);
490		pnum_begin = pnum;
491		break;
492	}
493	map_count = 1;
494	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
495		struct mem_section *ms;
496		int nodeid;
497
498		if (!present_section_nr(pnum))
499			continue;
500		ms = __nr_to_section(pnum);
501		nodeid = sparse_early_nid(ms);
502		if (nodeid == nodeid_begin) {
503			map_count++;
504			continue;
505		}
506		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
507		alloc_func(data, pnum_begin, pnum,
508						map_count, nodeid_begin);
509		/* new start, update count etc*/
510		nodeid_begin = nodeid;
511		pnum_begin = pnum;
512		map_count = 1;
513	}
514	/* ok, last chunk */
515	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
516						map_count, nodeid_begin);
517}
518
519/*
520 * Allocate the accumulated non-linear sections, allocate a mem_map
521 * for each and record the physical to section mapping.
522 */
523void __init sparse_init(void)
524{
525	unsigned long pnum;
526	struct page *map;
527	unsigned long *usemap;
528	unsigned long **usemap_map;
529	int size;
530#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
531	int size2;
532	struct page **map_map;
533#endif
534
535	/* see include/linux/mmzone.h 'struct mem_section' definition */
536	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
537
538	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
539	set_pageblock_order();
540
541	/*
542	 * map is using big page (aka 2M in x86 64 bit)
543	 * usemap is less one page (aka 24 bytes)
544	 * so alloc 2M (with 2M align) and 24 bytes in turn will
545	 * make next 2M slip to one more 2M later.
546	 * then in big system, the memory will have a lot of holes...
547	 * here try to allocate 2M pages continuously.
548	 *
549	 * powerpc need to call sparse_init_one_section right after each
550	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
551	 */
552	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
553	usemap_map = memblock_virt_alloc(size, 0);
554	if (!usemap_map)
555		panic("can not allocate usemap_map\n");
556	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
557							(void *)usemap_map);
558
559#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
560	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
561	map_map = memblock_virt_alloc(size2, 0);
562	if (!map_map)
563		panic("can not allocate map_map\n");
564	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
565							(void *)map_map);
566#endif
567
568	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
569		if (!present_section_nr(pnum))
570			continue;
571
572		usemap = usemap_map[pnum];
573		if (!usemap)
574			continue;
575
576#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
577		map = map_map[pnum];
578#else
579		map = sparse_early_mem_map_alloc(pnum);
580#endif
581		if (!map)
582			continue;
583
584		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
585								usemap);
586	}
587
588	vmemmap_populate_print_last();
589
590#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591	memblock_free_early(__pa(map_map), size2);
592#endif
593	memblock_free_early(__pa(usemap_map), size);
594}
595
596#ifdef CONFIG_MEMORY_HOTPLUG
597#ifdef CONFIG_SPARSEMEM_VMEMMAP
598static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
599{
600	/* This will make the necessary allocations eventually. */
601	return sparse_mem_map_populate(pnum, nid);
602}
603static void __kfree_section_memmap(struct page *memmap)
604{
605	unsigned long start = (unsigned long)memmap;
606	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
607
608	vmemmap_free(start, end);
609}
610#ifdef CONFIG_MEMORY_HOTREMOVE
611static void free_map_bootmem(struct page *memmap)
612{
613	unsigned long start = (unsigned long)memmap;
614	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
615
616	vmemmap_free(start, end);
617}
618#endif /* CONFIG_MEMORY_HOTREMOVE */
619#else
620static struct page *__kmalloc_section_memmap(void)
621{
622	struct page *page, *ret;
623	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
624
625	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
626	if (page)
627		goto got_map_page;
628
629	ret = vmalloc(memmap_size);
630	if (ret)
631		goto got_map_ptr;
632
633	return NULL;
634got_map_page:
635	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
636got_map_ptr:
637
638	return ret;
639}
640
641static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
642{
643	return __kmalloc_section_memmap();
644}
645
646static void __kfree_section_memmap(struct page *memmap)
647{
648	if (is_vmalloc_addr(memmap))
649		vfree(memmap);
650	else
651		free_pages((unsigned long)memmap,
652			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
653}
654
655#ifdef CONFIG_MEMORY_HOTREMOVE
656static void free_map_bootmem(struct page *memmap)
657{
658	unsigned long maps_section_nr, removing_section_nr, i;
659	unsigned long magic, nr_pages;
660	struct page *page = virt_to_page(memmap);
661
662	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
663		>> PAGE_SHIFT;
664
665	for (i = 0; i < nr_pages; i++, page++) {
666		magic = (unsigned long) page->lru.next;
667
668		BUG_ON(magic == NODE_INFO);
669
670		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
671		removing_section_nr = page->private;
672
673		/*
674		 * When this function is called, the removing section is
675		 * logical offlined state. This means all pages are isolated
676		 * from page allocator. If removing section's memmap is placed
677		 * on the same section, it must not be freed.
678		 * If it is freed, page allocator may allocate it which will
679		 * be removed physically soon.
680		 */
681		if (maps_section_nr != removing_section_nr)
682			put_page_bootmem(page);
683	}
684}
685#endif /* CONFIG_MEMORY_HOTREMOVE */
686#endif /* CONFIG_SPARSEMEM_VMEMMAP */
687
688/*
689 * returns the number of sections whose mem_maps were properly
690 * set.  If this is <=0, then that means that the passed-in
691 * map was not consumed and must be freed.
692 */
693int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
694{
695	unsigned long section_nr = pfn_to_section_nr(start_pfn);
696	struct pglist_data *pgdat = zone->zone_pgdat;
697	struct mem_section *ms;
698	struct page *memmap;
699	unsigned long *usemap;
700	unsigned long flags;
701	int ret;
702
703	/*
704	 * no locking for this, because it does its own
705	 * plus, it does a kmalloc
706	 */
707	ret = sparse_index_init(section_nr, pgdat->node_id);
708	if (ret < 0 && ret != -EEXIST)
709		return ret;
710	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
711	if (!memmap)
712		return -ENOMEM;
713	usemap = __kmalloc_section_usemap();
714	if (!usemap) {
715		__kfree_section_memmap(memmap);
716		return -ENOMEM;
717	}
718
719	pgdat_resize_lock(pgdat, &flags);
720
721	ms = __pfn_to_section(start_pfn);
722	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
723		ret = -EEXIST;
724		goto out;
725	}
726
727	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
728
729	ms->section_mem_map |= SECTION_MARKED_PRESENT;
730
731	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
732
733out:
734	pgdat_resize_unlock(pgdat, &flags);
735	if (ret <= 0) {
736		kfree(usemap);
737		__kfree_section_memmap(memmap);
738	}
739	return ret;
740}
741
742#ifdef CONFIG_MEMORY_HOTREMOVE
743#ifdef CONFIG_MEMORY_FAILURE
744static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
745{
746	int i;
747
748	if (!memmap)
749		return;
750
751	for (i = 0; i < PAGES_PER_SECTION; i++) {
752		if (PageHWPoison(&memmap[i])) {
753			atomic_long_sub(1, &num_poisoned_pages);
754			ClearPageHWPoison(&memmap[i]);
755		}
756	}
757}
758#else
759static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
760{
761}
762#endif
763
764static void free_section_usemap(struct page *memmap, unsigned long *usemap)
765{
766	struct page *usemap_page;
767
768	if (!usemap)
769		return;
770
771	usemap_page = virt_to_page(usemap);
772	/*
773	 * Check to see if allocation came from hot-plug-add
774	 */
775	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
776		kfree(usemap);
777		if (memmap)
778			__kfree_section_memmap(memmap);
779		return;
780	}
781
782	/*
783	 * The usemap came from bootmem. This is packed with other usemaps
784	 * on the section which has pgdat at boot time. Just keep it as is now.
785	 */
786
787	if (memmap)
788		free_map_bootmem(memmap);
789}
790
791void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
 
792{
793	struct page *memmap = NULL;
794	unsigned long *usemap = NULL, flags;
795	struct pglist_data *pgdat = zone->zone_pgdat;
796
797	pgdat_resize_lock(pgdat, &flags);
798	if (ms->section_mem_map) {
799		usemap = ms->pageblock_flags;
800		memmap = sparse_decode_mem_map(ms->section_mem_map,
801						__section_nr(ms));
802		ms->section_mem_map = 0;
803		ms->pageblock_flags = NULL;
804	}
805	pgdat_resize_unlock(pgdat, &flags);
806
807	clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
 
808	free_section_usemap(memmap, usemap);
809}
810#endif /* CONFIG_MEMORY_HOTREMOVE */
811#endif /* CONFIG_MEMORY_HOTPLUG */