Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
 
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/rmap.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/page-isolation.h>
  25#include <linux/jhash.h>
  26
  27#include <asm/page.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30
  31#include <linux/io.h>
  32#include <linux/hugetlb.h>
  33#include <linux/hugetlb_cgroup.h>
  34#include <linux/node.h>
  35#include "internal.h"
  36
  37int hugepages_treat_as_movable;
 
  38
  39int hugetlb_max_hstate __read_mostly;
  40unsigned int default_hstate_idx;
  41struct hstate hstates[HUGE_MAX_HSTATE];
  42/*
  43 * Minimum page order among possible hugepage sizes, set to a proper value
  44 * at boot time.
  45 */
  46static unsigned int minimum_order __read_mostly = UINT_MAX;
  47
  48__initdata LIST_HEAD(huge_boot_pages);
  49
  50/* for command line parsing */
  51static struct hstate * __initdata parsed_hstate;
  52static unsigned long __initdata default_hstate_max_huge_pages;
  53static unsigned long __initdata default_hstate_size;
  54
  55/*
  56 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  57 * free_huge_pages, and surplus_huge_pages.
  58 */
  59DEFINE_SPINLOCK(hugetlb_lock);
  60
  61/*
  62 * Serializes faults on the same logical page.  This is used to
  63 * prevent spurious OOMs when the hugepage pool is fully utilized.
  64 */
  65static int num_fault_mutexes;
  66struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  67
  68/* Forward declaration */
  69static int hugetlb_acct_memory(struct hstate *h, long delta);
  70
  71static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  72{
  73	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  74
  75	spin_unlock(&spool->lock);
  76
  77	/* If no pages are used, and no other handles to the subpool
  78	 * remain, give up any reservations mased on minimum size and
  79	 * free the subpool */
  80	if (free) {
  81		if (spool->min_hpages != -1)
  82			hugetlb_acct_memory(spool->hstate,
  83						-spool->min_hpages);
  84		kfree(spool);
  85	}
  86}
  87
  88struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  89						long min_hpages)
  90{
  91	struct hugepage_subpool *spool;
  92
  93	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  94	if (!spool)
  95		return NULL;
  96
  97	spin_lock_init(&spool->lock);
  98	spool->count = 1;
  99	spool->max_hpages = max_hpages;
 100	spool->hstate = h;
 101	spool->min_hpages = min_hpages;
 102
 103	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 104		kfree(spool);
 105		return NULL;
 106	}
 107	spool->rsv_hpages = min_hpages;
 108
 109	return spool;
 110}
 111
 112void hugepage_put_subpool(struct hugepage_subpool *spool)
 113{
 114	spin_lock(&spool->lock);
 115	BUG_ON(!spool->count);
 116	spool->count--;
 117	unlock_or_release_subpool(spool);
 118}
 119
 120/*
 121 * Subpool accounting for allocating and reserving pages.
 122 * Return -ENOMEM if there are not enough resources to satisfy the
 123 * the request.  Otherwise, return the number of pages by which the
 124 * global pools must be adjusted (upward).  The returned value may
 125 * only be different than the passed value (delta) in the case where
 126 * a subpool minimum size must be manitained.
 127 */
 128static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 129				      long delta)
 130{
 131	long ret = delta;
 132
 133	if (!spool)
 134		return ret;
 135
 136	spin_lock(&spool->lock);
 137
 138	if (spool->max_hpages != -1) {		/* maximum size accounting */
 139		if ((spool->used_hpages + delta) <= spool->max_hpages)
 140			spool->used_hpages += delta;
 141		else {
 142			ret = -ENOMEM;
 143			goto unlock_ret;
 144		}
 145	}
 146
 147	if (spool->min_hpages != -1) {		/* minimum size accounting */
 148		if (delta > spool->rsv_hpages) {
 149			/*
 150			 * Asking for more reserves than those already taken on
 151			 * behalf of subpool.  Return difference.
 152			 */
 153			ret = delta - spool->rsv_hpages;
 154			spool->rsv_hpages = 0;
 155		} else {
 156			ret = 0;	/* reserves already accounted for */
 157			spool->rsv_hpages -= delta;
 158		}
 159	}
 160
 161unlock_ret:
 162	spin_unlock(&spool->lock);
 
 163	return ret;
 164}
 165
 166/*
 167 * Subpool accounting for freeing and unreserving pages.
 168 * Return the number of global page reservations that must be dropped.
 169 * The return value may only be different than the passed value (delta)
 170 * in the case where a subpool minimum size must be maintained.
 171 */
 172static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 173				       long delta)
 174{
 175	long ret = delta;
 176
 177	if (!spool)
 178		return delta;
 179
 180	spin_lock(&spool->lock);
 181
 182	if (spool->max_hpages != -1)		/* maximum size accounting */
 183		spool->used_hpages -= delta;
 184
 185	if (spool->min_hpages != -1) {		/* minimum size accounting */
 186		if (spool->rsv_hpages + delta <= spool->min_hpages)
 187			ret = 0;
 188		else
 189			ret = spool->rsv_hpages + delta - spool->min_hpages;
 190
 191		spool->rsv_hpages += delta;
 192		if (spool->rsv_hpages > spool->min_hpages)
 193			spool->rsv_hpages = spool->min_hpages;
 194	}
 195
 196	/*
 197	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
 198	 * quota reference, free it now.
 199	 */
 200	unlock_or_release_subpool(spool);
 201
 202	return ret;
 203}
 204
 205static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 206{
 207	return HUGETLBFS_SB(inode->i_sb)->spool;
 208}
 209
 210static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 211{
 212	return subpool_inode(file_inode(vma->vm_file));
 213}
 214
 215/*
 216 * Region tracking -- allows tracking of reservations and instantiated pages
 217 *                    across the pages in a mapping.
 218 *
 219 * The region data structures are embedded into a resv_map and protected
 220 * by a resv_map's lock.  The set of regions within the resv_map represent
 221 * reservations for huge pages, or huge pages that have already been
 222 * instantiated within the map.  The from and to elements are huge page
 223 * indicies into the associated mapping.  from indicates the starting index
 224 * of the region.  to represents the first index past the end of  the region.
 225 *
 226 * For example, a file region structure with from == 0 and to == 4 represents
 227 * four huge pages in a mapping.  It is important to note that the to element
 228 * represents the first element past the end of the region. This is used in
 229 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 230 *
 231 * Interval notation of the form [from, to) will be used to indicate that
 232 * the endpoint from is inclusive and to is exclusive.
 233 */
 234struct file_region {
 235	struct list_head link;
 236	long from;
 237	long to;
 238};
 239
 240/*
 241 * Add the huge page range represented by [f, t) to the reserve
 242 * map.  In the normal case, existing regions will be expanded
 243 * to accommodate the specified range.  Sufficient regions should
 244 * exist for expansion due to the previous call to region_chg
 245 * with the same range.  However, it is possible that region_del
 246 * could have been called after region_chg and modifed the map
 247 * in such a way that no region exists to be expanded.  In this
 248 * case, pull a region descriptor from the cache associated with
 249 * the map and use that for the new range.
 250 *
 251 * Return the number of new huge pages added to the map.  This
 252 * number is greater than or equal to zero.
 253 */
 254static long region_add(struct resv_map *resv, long f, long t)
 255{
 256	struct list_head *head = &resv->regions;
 257	struct file_region *rg, *nrg, *trg;
 258	long add = 0;
 259
 260	spin_lock(&resv->lock);
 261	/* Locate the region we are either in or before. */
 262	list_for_each_entry(rg, head, link)
 263		if (f <= rg->to)
 264			break;
 265
 266	/*
 267	 * If no region exists which can be expanded to include the
 268	 * specified range, the list must have been modified by an
 269	 * interleving call to region_del().  Pull a region descriptor
 270	 * from the cache and use it for this range.
 271	 */
 272	if (&rg->link == head || t < rg->from) {
 273		VM_BUG_ON(resv->region_cache_count <= 0);
 274
 275		resv->region_cache_count--;
 276		nrg = list_first_entry(&resv->region_cache, struct file_region,
 277					link);
 278		list_del(&nrg->link);
 279
 280		nrg->from = f;
 281		nrg->to = t;
 282		list_add(&nrg->link, rg->link.prev);
 283
 284		add += t - f;
 285		goto out_locked;
 286	}
 287
 288	/* Round our left edge to the current segment if it encloses us. */
 289	if (f > rg->from)
 290		f = rg->from;
 291
 292	/* Check for and consume any regions we now overlap with. */
 293	nrg = rg;
 294	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 295		if (&rg->link == head)
 296			break;
 297		if (rg->from > t)
 298			break;
 299
 300		/* If this area reaches higher then extend our area to
 301		 * include it completely.  If this is not the first area
 302		 * which we intend to reuse, free it. */
 303		if (rg->to > t)
 304			t = rg->to;
 305		if (rg != nrg) {
 306			/* Decrement return value by the deleted range.
 307			 * Another range will span this area so that by
 308			 * end of routine add will be >= zero
 309			 */
 310			add -= (rg->to - rg->from);
 311			list_del(&rg->link);
 312			kfree(rg);
 313		}
 314	}
 315
 316	add += (nrg->from - f);		/* Added to beginning of region */
 317	nrg->from = f;
 318	add += t - nrg->to;		/* Added to end of region */
 319	nrg->to = t;
 320
 321out_locked:
 322	resv->adds_in_progress--;
 323	spin_unlock(&resv->lock);
 324	VM_BUG_ON(add < 0);
 325	return add;
 326}
 327
 328/*
 329 * Examine the existing reserve map and determine how many
 330 * huge pages in the specified range [f, t) are NOT currently
 331 * represented.  This routine is called before a subsequent
 332 * call to region_add that will actually modify the reserve
 333 * map to add the specified range [f, t).  region_chg does
 334 * not change the number of huge pages represented by the
 335 * map.  However, if the existing regions in the map can not
 336 * be expanded to represent the new range, a new file_region
 337 * structure is added to the map as a placeholder.  This is
 338 * so that the subsequent region_add call will have all the
 339 * regions it needs and will not fail.
 340 *
 341 * Upon entry, region_chg will also examine the cache of region descriptors
 342 * associated with the map.  If there are not enough descriptors cached, one
 343 * will be allocated for the in progress add operation.
 344 *
 345 * Returns the number of huge pages that need to be added to the existing
 346 * reservation map for the range [f, t).  This number is greater or equal to
 347 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 348 * is needed and can not be allocated.
 349 */
 350static long region_chg(struct resv_map *resv, long f, long t)
 351{
 352	struct list_head *head = &resv->regions;
 353	struct file_region *rg, *nrg = NULL;
 354	long chg = 0;
 355
 356retry:
 357	spin_lock(&resv->lock);
 358retry_locked:
 359	resv->adds_in_progress++;
 360
 361	/*
 362	 * Check for sufficient descriptors in the cache to accommodate
 363	 * the number of in progress add operations.
 364	 */
 365	if (resv->adds_in_progress > resv->region_cache_count) {
 366		struct file_region *trg;
 367
 368		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 369		/* Must drop lock to allocate a new descriptor. */
 370		resv->adds_in_progress--;
 371		spin_unlock(&resv->lock);
 372
 373		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 374		if (!trg) {
 375			kfree(nrg);
 376			return -ENOMEM;
 377		}
 378
 379		spin_lock(&resv->lock);
 380		list_add(&trg->link, &resv->region_cache);
 381		resv->region_cache_count++;
 382		goto retry_locked;
 383	}
 384
 385	/* Locate the region we are before or in. */
 386	list_for_each_entry(rg, head, link)
 387		if (f <= rg->to)
 388			break;
 389
 390	/* If we are below the current region then a new region is required.
 391	 * Subtle, allocate a new region at the position but make it zero
 392	 * size such that we can guarantee to record the reservation. */
 393	if (&rg->link == head || t < rg->from) {
 394		if (!nrg) {
 395			resv->adds_in_progress--;
 396			spin_unlock(&resv->lock);
 397			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 398			if (!nrg)
 399				return -ENOMEM;
 400
 401			nrg->from = f;
 402			nrg->to   = f;
 403			INIT_LIST_HEAD(&nrg->link);
 404			goto retry;
 405		}
 406
 407		list_add(&nrg->link, rg->link.prev);
 408		chg = t - f;
 409		goto out_nrg;
 410	}
 411
 412	/* Round our left edge to the current segment if it encloses us. */
 413	if (f > rg->from)
 414		f = rg->from;
 415	chg = t - f;
 416
 417	/* Check for and consume any regions we now overlap with. */
 418	list_for_each_entry(rg, rg->link.prev, link) {
 419		if (&rg->link == head)
 420			break;
 421		if (rg->from > t)
 422			goto out;
 423
 424		/* We overlap with this area, if it extends further than
 425		 * us then we must extend ourselves.  Account for its
 426		 * existing reservation. */
 427		if (rg->to > t) {
 428			chg += rg->to - t;
 429			t = rg->to;
 430		}
 431		chg -= rg->to - rg->from;
 432	}
 433
 434out:
 435	spin_unlock(&resv->lock);
 436	/*  We already know we raced and no longer need the new region */
 437	kfree(nrg);
 438	return chg;
 439out_nrg:
 440	spin_unlock(&resv->lock);
 441	return chg;
 442}
 443
 444/*
 445 * Abort the in progress add operation.  The adds_in_progress field
 446 * of the resv_map keeps track of the operations in progress between
 447 * calls to region_chg and region_add.  Operations are sometimes
 448 * aborted after the call to region_chg.  In such cases, region_abort
 449 * is called to decrement the adds_in_progress counter.
 450 *
 451 * NOTE: The range arguments [f, t) are not needed or used in this
 452 * routine.  They are kept to make reading the calling code easier as
 453 * arguments will match the associated region_chg call.
 454 */
 455static void region_abort(struct resv_map *resv, long f, long t)
 456{
 457	spin_lock(&resv->lock);
 458	VM_BUG_ON(!resv->region_cache_count);
 459	resv->adds_in_progress--;
 460	spin_unlock(&resv->lock);
 461}
 462
 463/*
 464 * Delete the specified range [f, t) from the reserve map.  If the
 465 * t parameter is LONG_MAX, this indicates that ALL regions after f
 466 * should be deleted.  Locate the regions which intersect [f, t)
 467 * and either trim, delete or split the existing regions.
 468 *
 469 * Returns the number of huge pages deleted from the reserve map.
 470 * In the normal case, the return value is zero or more.  In the
 471 * case where a region must be split, a new region descriptor must
 472 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 473 * NOTE: If the parameter t == LONG_MAX, then we will never split
 474 * a region and possibly return -ENOMEM.  Callers specifying
 475 * t == LONG_MAX do not need to check for -ENOMEM error.
 476 */
 477static long region_del(struct resv_map *resv, long f, long t)
 478{
 479	struct list_head *head = &resv->regions;
 480	struct file_region *rg, *trg;
 481	struct file_region *nrg = NULL;
 482	long del = 0;
 483
 484retry:
 485	spin_lock(&resv->lock);
 486	list_for_each_entry_safe(rg, trg, head, link) {
 487		/*
 488		 * Skip regions before the range to be deleted.  file_region
 489		 * ranges are normally of the form [from, to).  However, there
 490		 * may be a "placeholder" entry in the map which is of the form
 491		 * (from, to) with from == to.  Check for placeholder entries
 492		 * at the beginning of the range to be deleted.
 493		 */
 494		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 495			continue;
 496
 497		if (rg->from >= t)
 498			break;
 
 
 499
 500		if (f > rg->from && t < rg->to) { /* Must split region */
 501			/*
 502			 * Check for an entry in the cache before dropping
 503			 * lock and attempting allocation.
 504			 */
 505			if (!nrg &&
 506			    resv->region_cache_count > resv->adds_in_progress) {
 507				nrg = list_first_entry(&resv->region_cache,
 508							struct file_region,
 509							link);
 510				list_del(&nrg->link);
 511				resv->region_cache_count--;
 512			}
 513
 514			if (!nrg) {
 515				spin_unlock(&resv->lock);
 516				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 517				if (!nrg)
 518					return -ENOMEM;
 519				goto retry;
 520			}
 521
 522			del += t - f;
 523
 524			/* New entry for end of split region */
 525			nrg->from = t;
 526			nrg->to = rg->to;
 527			INIT_LIST_HEAD(&nrg->link);
 528
 529			/* Original entry is trimmed */
 530			rg->to = f;
 531
 532			list_add(&nrg->link, &rg->link);
 533			nrg = NULL;
 
 534			break;
 535		}
 536
 537		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 538			del += rg->to - rg->from;
 539			list_del(&rg->link);
 540			kfree(rg);
 541			continue;
 542		}
 543
 544		if (f <= rg->from) {	/* Trim beginning of region */
 545			del += t - rg->from;
 546			rg->from = t;
 547		} else {		/* Trim end of region */
 548			del += rg->to - f;
 549			rg->to = f;
 550		}
 551	}
 552
 
 553	spin_unlock(&resv->lock);
 554	kfree(nrg);
 555	return del;
 556}
 557
 558/*
 559 * A rare out of memory error was encountered which prevented removal of
 560 * the reserve map region for a page.  The huge page itself was free'ed
 561 * and removed from the page cache.  This routine will adjust the subpool
 562 * usage count, and the global reserve count if needed.  By incrementing
 563 * these counts, the reserve map entry which could not be deleted will
 564 * appear as a "reserved" entry instead of simply dangling with incorrect
 565 * counts.
 566 */
 567void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
 568{
 569	struct hugepage_subpool *spool = subpool_inode(inode);
 570	long rsv_adjust;
 571
 572	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 573	if (restore_reserve && rsv_adjust) {
 574		struct hstate *h = hstate_inode(inode);
 575
 576		hugetlb_acct_memory(h, 1);
 577	}
 578}
 579
 580/*
 581 * Count and return the number of huge pages in the reserve map
 582 * that intersect with the range [f, t).
 583 */
 584static long region_count(struct resv_map *resv, long f, long t)
 585{
 586	struct list_head *head = &resv->regions;
 587	struct file_region *rg;
 588	long chg = 0;
 589
 590	spin_lock(&resv->lock);
 591	/* Locate each segment we overlap with, and count that overlap. */
 592	list_for_each_entry(rg, head, link) {
 593		long seg_from;
 594		long seg_to;
 595
 596		if (rg->to <= f)
 597			continue;
 598		if (rg->from >= t)
 599			break;
 600
 601		seg_from = max(rg->from, f);
 602		seg_to = min(rg->to, t);
 603
 604		chg += seg_to - seg_from;
 605	}
 606	spin_unlock(&resv->lock);
 607
 608	return chg;
 609}
 610
 611/*
 612 * Convert the address within this vma to the page offset within
 613 * the mapping, in pagecache page units; huge pages here.
 614 */
 615static pgoff_t vma_hugecache_offset(struct hstate *h,
 616			struct vm_area_struct *vma, unsigned long address)
 617{
 618	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 619			(vma->vm_pgoff >> huge_page_order(h));
 620}
 621
 622pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 623				     unsigned long address)
 624{
 625	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 626}
 627
 628/*
 629 * Return the size of the pages allocated when backing a VMA. In the majority
 630 * cases this will be same size as used by the page table entries.
 631 */
 632unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 633{
 634	struct hstate *hstate;
 635
 636	if (!is_vm_hugetlb_page(vma))
 637		return PAGE_SIZE;
 638
 639	hstate = hstate_vma(vma);
 640
 641	return 1UL << huge_page_shift(hstate);
 642}
 643EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 644
 645/*
 646 * Return the page size being used by the MMU to back a VMA. In the majority
 647 * of cases, the page size used by the kernel matches the MMU size. On
 648 * architectures where it differs, an architecture-specific version of this
 649 * function is required.
 650 */
 651#ifndef vma_mmu_pagesize
 652unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 653{
 654	return vma_kernel_pagesize(vma);
 655}
 656#endif
 657
 658/*
 659 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 660 * bits of the reservation map pointer, which are always clear due to
 661 * alignment.
 662 */
 663#define HPAGE_RESV_OWNER    (1UL << 0)
 664#define HPAGE_RESV_UNMAPPED (1UL << 1)
 665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 666
 667/*
 668 * These helpers are used to track how many pages are reserved for
 669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 670 * is guaranteed to have their future faults succeed.
 671 *
 672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 673 * the reserve counters are updated with the hugetlb_lock held. It is safe
 674 * to reset the VMA at fork() time as it is not in use yet and there is no
 675 * chance of the global counters getting corrupted as a result of the values.
 676 *
 677 * The private mapping reservation is represented in a subtly different
 678 * manner to a shared mapping.  A shared mapping has a region map associated
 679 * with the underlying file, this region map represents the backing file
 680 * pages which have ever had a reservation assigned which this persists even
 681 * after the page is instantiated.  A private mapping has a region map
 682 * associated with the original mmap which is attached to all VMAs which
 683 * reference it, this region map represents those offsets which have consumed
 684 * reservation ie. where pages have been instantiated.
 685 */
 686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 687{
 688	return (unsigned long)vma->vm_private_data;
 689}
 690
 691static void set_vma_private_data(struct vm_area_struct *vma,
 692							unsigned long value)
 693{
 694	vma->vm_private_data = (void *)value;
 695}
 696
 697struct resv_map *resv_map_alloc(void)
 698{
 699	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 700	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 701
 702	if (!resv_map || !rg) {
 703		kfree(resv_map);
 704		kfree(rg);
 705		return NULL;
 706	}
 707
 708	kref_init(&resv_map->refs);
 709	spin_lock_init(&resv_map->lock);
 710	INIT_LIST_HEAD(&resv_map->regions);
 711
 712	resv_map->adds_in_progress = 0;
 713
 714	INIT_LIST_HEAD(&resv_map->region_cache);
 715	list_add(&rg->link, &resv_map->region_cache);
 716	resv_map->region_cache_count = 1;
 717
 718	return resv_map;
 719}
 720
 721void resv_map_release(struct kref *ref)
 722{
 723	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 724	struct list_head *head = &resv_map->region_cache;
 725	struct file_region *rg, *trg;
 726
 727	/* Clear out any active regions before we release the map. */
 728	region_del(resv_map, 0, LONG_MAX);
 729
 730	/* ... and any entries left in the cache */
 731	list_for_each_entry_safe(rg, trg, head, link) {
 732		list_del(&rg->link);
 733		kfree(rg);
 734	}
 735
 736	VM_BUG_ON(resv_map->adds_in_progress);
 737
 738	kfree(resv_map);
 739}
 740
 741static inline struct resv_map *inode_resv_map(struct inode *inode)
 742{
 743	return inode->i_mapping->private_data;
 744}
 745
 746static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 747{
 748	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 749	if (vma->vm_flags & VM_MAYSHARE) {
 750		struct address_space *mapping = vma->vm_file->f_mapping;
 751		struct inode *inode = mapping->host;
 752
 753		return inode_resv_map(inode);
 754
 755	} else {
 756		return (struct resv_map *)(get_vma_private_data(vma) &
 757							~HPAGE_RESV_MASK);
 758	}
 759}
 760
 761static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 762{
 763	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 764	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 765
 766	set_vma_private_data(vma, (get_vma_private_data(vma) &
 767				HPAGE_RESV_MASK) | (unsigned long)map);
 768}
 769
 770static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 771{
 772	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 773	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 774
 775	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 776}
 777
 778static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 779{
 780	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 781
 782	return (get_vma_private_data(vma) & flag) != 0;
 783}
 784
 785/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 786void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 787{
 788	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 789	if (!(vma->vm_flags & VM_MAYSHARE))
 790		vma->vm_private_data = (void *)0;
 791}
 792
 793/* Returns true if the VMA has associated reserve pages */
 794static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 795{
 796	if (vma->vm_flags & VM_NORESERVE) {
 797		/*
 798		 * This address is already reserved by other process(chg == 0),
 799		 * so, we should decrement reserved count. Without decrementing,
 800		 * reserve count remains after releasing inode, because this
 801		 * allocated page will go into page cache and is regarded as
 802		 * coming from reserved pool in releasing step.  Currently, we
 803		 * don't have any other solution to deal with this situation
 804		 * properly, so add work-around here.
 805		 */
 806		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 807			return true;
 808		else
 809			return false;
 810	}
 811
 812	/* Shared mappings always use reserves */
 813	if (vma->vm_flags & VM_MAYSHARE) {
 814		/*
 815		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 816		 * be a region map for all pages.  The only situation where
 817		 * there is no region map is if a hole was punched via
 818		 * fallocate.  In this case, there really are no reverves to
 819		 * use.  This situation is indicated if chg != 0.
 820		 */
 821		if (chg)
 822			return false;
 823		else
 824			return true;
 825	}
 826
 827	/*
 828	 * Only the process that called mmap() has reserves for
 829	 * private mappings.
 830	 */
 831	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 832		return true;
 833
 834	return false;
 835}
 836
 837static void enqueue_huge_page(struct hstate *h, struct page *page)
 838{
 839	int nid = page_to_nid(page);
 840	list_move(&page->lru, &h->hugepage_freelists[nid]);
 841	h->free_huge_pages++;
 842	h->free_huge_pages_node[nid]++;
 843}
 844
 845static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 846{
 847	struct page *page;
 848
 849	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 850		if (!is_migrate_isolate_page(page))
 851			break;
 852	/*
 853	 * if 'non-isolated free hugepage' not found on the list,
 854	 * the allocation fails.
 855	 */
 856	if (&h->hugepage_freelists[nid] == &page->lru)
 857		return NULL;
 858	list_move(&page->lru, &h->hugepage_activelist);
 859	set_page_refcounted(page);
 860	h->free_huge_pages--;
 861	h->free_huge_pages_node[nid]--;
 862	return page;
 863}
 864
 865/* Movability of hugepages depends on migration support. */
 866static inline gfp_t htlb_alloc_mask(struct hstate *h)
 867{
 868	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
 869		return GFP_HIGHUSER_MOVABLE;
 870	else
 871		return GFP_HIGHUSER;
 872}
 873
 874static struct page *dequeue_huge_page_vma(struct hstate *h,
 875				struct vm_area_struct *vma,
 876				unsigned long address, int avoid_reserve,
 877				long chg)
 878{
 879	struct page *page = NULL;
 880	struct mempolicy *mpol;
 881	nodemask_t *nodemask;
 882	struct zonelist *zonelist;
 883	struct zone *zone;
 884	struct zoneref *z;
 885	unsigned int cpuset_mems_cookie;
 886
 887	/*
 888	 * A child process with MAP_PRIVATE mappings created by their parent
 889	 * have no page reserves. This check ensures that reservations are
 890	 * not "stolen". The child may still get SIGKILLed
 891	 */
 892	if (!vma_has_reserves(vma, chg) &&
 893			h->free_huge_pages - h->resv_huge_pages == 0)
 894		goto err;
 895
 896	/* If reserves cannot be used, ensure enough pages are in the pool */
 897	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 898		goto err;
 899
 900retry_cpuset:
 901	cpuset_mems_cookie = read_mems_allowed_begin();
 902	zonelist = huge_zonelist(vma, address,
 903					htlb_alloc_mask(h), &mpol, &nodemask);
 904
 905	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 906						MAX_NR_ZONES - 1, nodemask) {
 907		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
 908			page = dequeue_huge_page_node(h, zone_to_nid(zone));
 909			if (page) {
 910				if (avoid_reserve)
 911					break;
 912				if (!vma_has_reserves(vma, chg))
 913					break;
 914
 915				SetPagePrivate(page);
 916				h->resv_huge_pages--;
 917				break;
 918			}
 919		}
 920	}
 921
 922	mpol_cond_put(mpol);
 923	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 924		goto retry_cpuset;
 925	return page;
 926
 927err:
 928	return NULL;
 929}
 930
 931/*
 932 * common helper functions for hstate_next_node_to_{alloc|free}.
 933 * We may have allocated or freed a huge page based on a different
 934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 935 * be outside of *nodes_allowed.  Ensure that we use an allowed
 936 * node for alloc or free.
 937 */
 938static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 939{
 940	nid = next_node(nid, *nodes_allowed);
 941	if (nid == MAX_NUMNODES)
 942		nid = first_node(*nodes_allowed);
 943	VM_BUG_ON(nid >= MAX_NUMNODES);
 944
 945	return nid;
 946}
 947
 948static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 949{
 950	if (!node_isset(nid, *nodes_allowed))
 951		nid = next_node_allowed(nid, nodes_allowed);
 952	return nid;
 953}
 954
 955/*
 956 * returns the previously saved node ["this node"] from which to
 957 * allocate a persistent huge page for the pool and advance the
 958 * next node from which to allocate, handling wrap at end of node
 959 * mask.
 960 */
 961static int hstate_next_node_to_alloc(struct hstate *h,
 962					nodemask_t *nodes_allowed)
 963{
 964	int nid;
 965
 966	VM_BUG_ON(!nodes_allowed);
 967
 968	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 969	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 970
 971	return nid;
 972}
 973
 974/*
 975 * helper for free_pool_huge_page() - return the previously saved
 976 * node ["this node"] from which to free a huge page.  Advance the
 977 * next node id whether or not we find a free huge page to free so
 978 * that the next attempt to free addresses the next node.
 979 */
 980static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 981{
 982	int nid;
 983
 984	VM_BUG_ON(!nodes_allowed);
 985
 986	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 987	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 988
 989	return nid;
 990}
 991
 992#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
 993	for (nr_nodes = nodes_weight(*mask);				\
 994		nr_nodes > 0 &&						\
 995		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
 996		nr_nodes--)
 997
 998#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
 999	for (nr_nodes = nodes_weight(*mask);				\
1000		nr_nodes > 0 &&						\
1001		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1002		nr_nodes--)
1003
1004#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1005static void destroy_compound_gigantic_page(struct page *page,
1006					unsigned int order)
1007{
1008	int i;
1009	int nr_pages = 1 << order;
1010	struct page *p = page + 1;
1011
1012	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013		clear_compound_head(p);
1014		set_page_refcounted(p);
1015	}
1016
1017	set_compound_order(page, 0);
1018	__ClearPageHead(page);
1019}
1020
1021static void free_gigantic_page(struct page *page, unsigned int order)
1022{
1023	free_contig_range(page_to_pfn(page), 1 << order);
1024}
1025
1026static int __alloc_gigantic_page(unsigned long start_pfn,
1027				unsigned long nr_pages)
1028{
1029	unsigned long end_pfn = start_pfn + nr_pages;
1030	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1031}
1032
1033static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1034				unsigned long nr_pages)
1035{
1036	unsigned long i, end_pfn = start_pfn + nr_pages;
1037	struct page *page;
1038
1039	for (i = start_pfn; i < end_pfn; i++) {
1040		if (!pfn_valid(i))
1041			return false;
1042
1043		page = pfn_to_page(i);
1044
1045		if (PageReserved(page))
1046			return false;
1047
1048		if (page_count(page) > 0)
1049			return false;
1050
1051		if (PageHuge(page))
1052			return false;
1053	}
1054
1055	return true;
1056}
1057
1058static bool zone_spans_last_pfn(const struct zone *zone,
1059			unsigned long start_pfn, unsigned long nr_pages)
1060{
1061	unsigned long last_pfn = start_pfn + nr_pages - 1;
1062	return zone_spans_pfn(zone, last_pfn);
1063}
1064
1065static struct page *alloc_gigantic_page(int nid, unsigned int order)
1066{
1067	unsigned long nr_pages = 1 << order;
1068	unsigned long ret, pfn, flags;
1069	struct zone *z;
1070
1071	z = NODE_DATA(nid)->node_zones;
1072	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1073		spin_lock_irqsave(&z->lock, flags);
1074
1075		pfn = ALIGN(z->zone_start_pfn, nr_pages);
1076		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1077			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1078				/*
1079				 * We release the zone lock here because
1080				 * alloc_contig_range() will also lock the zone
1081				 * at some point. If there's an allocation
1082				 * spinning on this lock, it may win the race
1083				 * and cause alloc_contig_range() to fail...
1084				 */
1085				spin_unlock_irqrestore(&z->lock, flags);
1086				ret = __alloc_gigantic_page(pfn, nr_pages);
1087				if (!ret)
1088					return pfn_to_page(pfn);
1089				spin_lock_irqsave(&z->lock, flags);
1090			}
1091			pfn += nr_pages;
1092		}
1093
1094		spin_unlock_irqrestore(&z->lock, flags);
1095	}
1096
1097	return NULL;
1098}
1099
1100static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1101static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1102
1103static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1104{
1105	struct page *page;
1106
1107	page = alloc_gigantic_page(nid, huge_page_order(h));
1108	if (page) {
1109		prep_compound_gigantic_page(page, huge_page_order(h));
1110		prep_new_huge_page(h, page, nid);
1111	}
1112
1113	return page;
1114}
1115
1116static int alloc_fresh_gigantic_page(struct hstate *h,
1117				nodemask_t *nodes_allowed)
1118{
1119	struct page *page = NULL;
1120	int nr_nodes, node;
1121
1122	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1123		page = alloc_fresh_gigantic_page_node(h, node);
1124		if (page)
1125			return 1;
1126	}
1127
1128	return 0;
1129}
1130
1131static inline bool gigantic_page_supported(void) { return true; }
1132#else
1133static inline bool gigantic_page_supported(void) { return false; }
1134static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1135static inline void destroy_compound_gigantic_page(struct page *page,
1136						unsigned int order) { }
1137static inline int alloc_fresh_gigantic_page(struct hstate *h,
1138					nodemask_t *nodes_allowed) { return 0; }
1139#endif
1140
1141static void update_and_free_page(struct hstate *h, struct page *page)
1142{
1143	int i;
1144
1145	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1146		return;
1147
1148	h->nr_huge_pages--;
1149	h->nr_huge_pages_node[page_to_nid(page)]--;
1150	for (i = 0; i < pages_per_huge_page(h); i++) {
1151		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1152				1 << PG_referenced | 1 << PG_dirty |
1153				1 << PG_active | 1 << PG_private |
1154				1 << PG_writeback);
1155	}
1156	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1157	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1158	set_page_refcounted(page);
1159	if (hstate_is_gigantic(h)) {
1160		destroy_compound_gigantic_page(page, huge_page_order(h));
1161		free_gigantic_page(page, huge_page_order(h));
1162	} else {
1163		__free_pages(page, huge_page_order(h));
1164	}
1165}
1166
1167struct hstate *size_to_hstate(unsigned long size)
1168{
1169	struct hstate *h;
1170
1171	for_each_hstate(h) {
1172		if (huge_page_size(h) == size)
1173			return h;
1174	}
1175	return NULL;
1176}
1177
1178/*
1179 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1180 * to hstate->hugepage_activelist.)
1181 *
1182 * This function can be called for tail pages, but never returns true for them.
1183 */
1184bool page_huge_active(struct page *page)
1185{
1186	VM_BUG_ON_PAGE(!PageHuge(page), page);
1187	return PageHead(page) && PagePrivate(&page[1]);
1188}
1189
1190/* never called for tail page */
1191static void set_page_huge_active(struct page *page)
1192{
1193	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1194	SetPagePrivate(&page[1]);
1195}
1196
1197static void clear_page_huge_active(struct page *page)
1198{
1199	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1200	ClearPagePrivate(&page[1]);
1201}
1202
1203void free_huge_page(struct page *page)
1204{
1205	/*
1206	 * Can't pass hstate in here because it is called from the
1207	 * compound page destructor.
1208	 */
1209	struct hstate *h = page_hstate(page);
1210	int nid = page_to_nid(page);
1211	struct hugepage_subpool *spool =
1212		(struct hugepage_subpool *)page_private(page);
1213	bool restore_reserve;
1214
1215	set_page_private(page, 0);
1216	page->mapping = NULL;
1217	VM_BUG_ON_PAGE(page_count(page), page);
1218	VM_BUG_ON_PAGE(page_mapcount(page), page);
1219	restore_reserve = PagePrivate(page);
1220	ClearPagePrivate(page);
1221
1222	/*
1223	 * A return code of zero implies that the subpool will be under its
1224	 * minimum size if the reservation is not restored after page is free.
1225	 * Therefore, force restore_reserve operation.
1226	 */
1227	if (hugepage_subpool_put_pages(spool, 1) == 0)
1228		restore_reserve = true;
1229
1230	spin_lock(&hugetlb_lock);
1231	clear_page_huge_active(page);
1232	hugetlb_cgroup_uncharge_page(hstate_index(h),
1233				     pages_per_huge_page(h), page);
1234	if (restore_reserve)
1235		h->resv_huge_pages++;
1236
1237	if (h->surplus_huge_pages_node[nid]) {
1238		/* remove the page from active list */
1239		list_del(&page->lru);
1240		update_and_free_page(h, page);
1241		h->surplus_huge_pages--;
1242		h->surplus_huge_pages_node[nid]--;
1243	} else {
1244		arch_clear_hugepage_flags(page);
1245		enqueue_huge_page(h, page);
1246	}
1247	spin_unlock(&hugetlb_lock);
 
1248}
1249
1250static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1251{
1252	INIT_LIST_HEAD(&page->lru);
1253	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1254	spin_lock(&hugetlb_lock);
1255	set_hugetlb_cgroup(page, NULL);
1256	h->nr_huge_pages++;
1257	h->nr_huge_pages_node[nid]++;
1258	spin_unlock(&hugetlb_lock);
1259	put_page(page); /* free it into the hugepage allocator */
1260}
1261
1262static void prep_compound_gigantic_page(struct page *page, unsigned int order)
 
1263{
1264	int i;
1265	int nr_pages = 1 << order;
1266	struct page *p = page + 1;
1267
1268	/* we rely on prep_new_huge_page to set the destructor */
1269	set_compound_order(page, order);
1270	__ClearPageReserved(page);
1271	__SetPageHead(page);
 
1272	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 
1273		/*
1274		 * For gigantic hugepages allocated through bootmem at
1275		 * boot, it's safer to be consistent with the not-gigantic
1276		 * hugepages and clear the PG_reserved bit from all tail pages
1277		 * too.  Otherwse drivers using get_user_pages() to access tail
1278		 * pages may get the reference counting wrong if they see
1279		 * PG_reserved set on a tail page (despite the head page not
1280		 * having PG_reserved set).  Enforcing this consistency between
1281		 * head and tail pages allows drivers to optimize away a check
1282		 * on the head page when they need know if put_page() is needed
1283		 * after get_user_pages().
1284		 */
1285		__ClearPageReserved(p);
1286		set_page_count(p, 0);
1287		set_compound_head(p, page);
1288	}
1289	atomic_set(compound_mapcount_ptr(page), -1);
1290}
1291
1292/*
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages.  See the PageTransHuge() documentation for more
1295 * details.
1296 */
1297int PageHuge(struct page *page)
1298{
1299	if (!PageCompound(page))
1300		return 0;
1301
1302	page = compound_head(page);
1303	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304}
1305EXPORT_SYMBOL_GPL(PageHuge);
1306
1307/*
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1310 */
1311int PageHeadHuge(struct page *page_head)
1312{
1313	if (!PageHead(page_head))
1314		return 0;
1315
1316	return get_compound_page_dtor(page_head) == free_huge_page;
1317}
1318
1319pgoff_t __basepage_index(struct page *page)
1320{
1321	struct page *page_head = compound_head(page);
1322	pgoff_t index = page_index(page_head);
1323	unsigned long compound_idx;
1324
1325	if (!PageHuge(page_head))
1326		return page_index(page);
1327
1328	if (compound_order(page_head) >= MAX_ORDER)
1329		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330	else
1331		compound_idx = page - page_head;
1332
1333	return (index << compound_order(page_head)) + compound_idx;
1334}
1335
1336static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337{
1338	struct page *page;
1339
1340	page = __alloc_pages_node(nid,
 
 
 
1341		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342						__GFP_REPEAT|__GFP_NOWARN,
1343		huge_page_order(h));
1344	if (page) {
 
 
 
 
1345		prep_new_huge_page(h, page, nid);
1346	}
1347
1348	return page;
1349}
1350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352{
1353	struct page *page;
1354	int nr_nodes, node;
1355	int ret = 0;
1356
1357	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358		page = alloc_fresh_huge_page_node(h, node);
1359		if (page) {
1360			ret = 1;
1361			break;
1362		}
1363	}
1364
1365	if (ret)
1366		count_vm_event(HTLB_BUDDY_PGALLOC);
1367	else
1368		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370	return ret;
1371}
1372
1373/*
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1378 */
1379static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380							 bool acct_surplus)
1381{
1382	int nr_nodes, node;
1383	int ret = 0;
1384
1385	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386		/*
1387		 * If we're returning unused surplus pages, only examine
1388		 * nodes with surplus pages.
1389		 */
1390		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391		    !list_empty(&h->hugepage_freelists[node])) {
1392			struct page *page =
1393				list_entry(h->hugepage_freelists[node].next,
1394					  struct page, lru);
1395			list_del(&page->lru);
1396			h->free_huge_pages--;
1397			h->free_huge_pages_node[node]--;
1398			if (acct_surplus) {
1399				h->surplus_huge_pages--;
1400				h->surplus_huge_pages_node[node]--;
1401			}
1402			update_and_free_page(h, page);
1403			ret = 1;
1404			break;
1405		}
1406	}
1407
1408	return ret;
1409}
1410
1411/*
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
1414 */
1415static void dissolve_free_huge_page(struct page *page)
1416{
1417	spin_lock(&hugetlb_lock);
1418	if (PageHuge(page) && !page_count(page)) {
1419		struct hstate *h = page_hstate(page);
1420		int nid = page_to_nid(page);
1421		list_del(&page->lru);
1422		h->free_huge_pages--;
1423		h->free_huge_pages_node[nid]--;
1424		update_and_free_page(h, page);
1425	}
1426	spin_unlock(&hugetlb_lock);
1427}
1428
1429/*
1430 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431 * make specified memory blocks removable from the system.
1432 * Note that start_pfn should aligned with (minimum) hugepage size.
1433 */
1434void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435{
 
1436	unsigned long pfn;
 
1437
1438	if (!hugepages_supported())
1439		return;
1440
1441	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
 
1443		dissolve_free_huge_page(pfn_to_page(pfn));
1444}
1445
1446/*
1447 * There are 3 ways this can get called:
1448 * 1. With vma+addr: we use the VMA's memory policy
1449 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
1450 *    page from any node, and let the buddy allocator itself figure
1451 *    it out.
1452 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
1453 *    strictly from 'nid'
1454 */
1455static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456		struct vm_area_struct *vma, unsigned long addr, int nid)
1457{
1458	int order = huge_page_order(h);
1459	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460	unsigned int cpuset_mems_cookie;
1461
1462	/*
1463	 * We need a VMA to get a memory policy.  If we do not
1464	 * have one, we use the 'nid' argument.
1465	 *
1466	 * The mempolicy stuff below has some non-inlined bits
1467	 * and calls ->vm_ops.  That makes it hard to optimize at
1468	 * compile-time, even when NUMA is off and it does
1469	 * nothing.  This helps the compiler optimize it out.
1470	 */
1471	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472		/*
1473		 * If a specific node is requested, make sure to
1474		 * get memory from there, but only when a node
1475		 * is explicitly specified.
1476		 */
1477		if (nid != NUMA_NO_NODE)
1478			gfp |= __GFP_THISNODE;
1479		/*
1480		 * Make sure to call something that can handle
1481		 * nid=NUMA_NO_NODE
1482		 */
1483		return alloc_pages_node(nid, gfp, order);
1484	}
1485
1486	/*
1487	 * OK, so we have a VMA.  Fetch the mempolicy and try to
1488	 * allocate a huge page with it.  We will only reach this
1489	 * when CONFIG_NUMA=y.
1490	 */
1491	do {
1492		struct page *page;
1493		struct mempolicy *mpol;
1494		struct zonelist *zl;
1495		nodemask_t *nodemask;
1496
1497		cpuset_mems_cookie = read_mems_allowed_begin();
1498		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499		mpol_cond_put(mpol);
1500		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501		if (page)
1502			return page;
1503	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505	return NULL;
1506}
1507
1508/*
1509 * There are two ways to allocate a huge page:
1510 * 1. When you have a VMA and an address (like a fault)
1511 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512 *
1513 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
1514 * this case which signifies that the allocation should be done with
1515 * respect for the VMA's memory policy.
1516 *
1517 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518 * implies that memory policies will not be taken in to account.
1519 */
1520static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521		struct vm_area_struct *vma, unsigned long addr, int nid)
1522{
1523	struct page *page;
1524	unsigned int r_nid;
1525
1526	if (hstate_is_gigantic(h))
1527		return NULL;
1528
1529	/*
1530	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531	 * This makes sure the caller is picking _one_ of the modes with which
1532	 * we can call this function, not both.
1533	 */
1534	if (vma || (addr != -1)) {
1535		VM_WARN_ON_ONCE(addr == -1);
1536		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537	}
1538	/*
1539	 * Assume we will successfully allocate the surplus page to
1540	 * prevent racing processes from causing the surplus to exceed
1541	 * overcommit
1542	 *
1543	 * This however introduces a different race, where a process B
1544	 * tries to grow the static hugepage pool while alloc_pages() is
1545	 * called by process A. B will only examine the per-node
1546	 * counters in determining if surplus huge pages can be
1547	 * converted to normal huge pages in adjust_pool_surplus(). A
1548	 * won't be able to increment the per-node counter, until the
1549	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550	 * no more huge pages can be converted from surplus to normal
1551	 * state (and doesn't try to convert again). Thus, we have a
1552	 * case where a surplus huge page exists, the pool is grown, and
1553	 * the surplus huge page still exists after, even though it
1554	 * should just have been converted to a normal huge page. This
1555	 * does not leak memory, though, as the hugepage will be freed
1556	 * once it is out of use. It also does not allow the counters to
1557	 * go out of whack in adjust_pool_surplus() as we don't modify
1558	 * the node values until we've gotten the hugepage and only the
1559	 * per-node value is checked there.
1560	 */
1561	spin_lock(&hugetlb_lock);
1562	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563		spin_unlock(&hugetlb_lock);
1564		return NULL;
1565	} else {
1566		h->nr_huge_pages++;
1567		h->surplus_huge_pages++;
1568	}
1569	spin_unlock(&hugetlb_lock);
1570
1571	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
 
 
 
 
 
 
 
 
 
 
 
 
1572
1573	spin_lock(&hugetlb_lock);
1574	if (page) {
1575		INIT_LIST_HEAD(&page->lru);
1576		r_nid = page_to_nid(page);
1577		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578		set_hugetlb_cgroup(page, NULL);
1579		/*
1580		 * We incremented the global counters already
1581		 */
1582		h->nr_huge_pages_node[r_nid]++;
1583		h->surplus_huge_pages_node[r_nid]++;
1584		__count_vm_event(HTLB_BUDDY_PGALLOC);
1585	} else {
1586		h->nr_huge_pages--;
1587		h->surplus_huge_pages--;
1588		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589	}
1590	spin_unlock(&hugetlb_lock);
1591
1592	return page;
1593}
1594
1595/*
1596 * Allocate a huge page from 'nid'.  Note, 'nid' may be
1597 * NUMA_NO_NODE, which means that it may be allocated
1598 * anywhere.
1599 */
1600static
1601struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602{
1603	unsigned long addr = -1;
1604
1605	return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606}
1607
1608/*
1609 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610 */
1611static
1612struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613		struct vm_area_struct *vma, unsigned long addr)
1614{
1615	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616}
1617
1618/*
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1622 */
1623struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624{
1625	struct page *page = NULL;
1626
1627	spin_lock(&hugetlb_lock);
1628	if (h->free_huge_pages - h->resv_huge_pages > 0)
1629		page = dequeue_huge_page_node(h, nid);
1630	spin_unlock(&hugetlb_lock);
1631
1632	if (!page)
1633		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634
1635	return page;
1636}
1637
1638/*
1639 * Increase the hugetlb pool such that it can accommodate a reservation
1640 * of size 'delta'.
1641 */
1642static int gather_surplus_pages(struct hstate *h, int delta)
1643{
1644	struct list_head surplus_list;
1645	struct page *page, *tmp;
1646	int ret, i;
1647	int needed, allocated;
1648	bool alloc_ok = true;
1649
1650	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651	if (needed <= 0) {
1652		h->resv_huge_pages += delta;
1653		return 0;
1654	}
1655
1656	allocated = 0;
1657	INIT_LIST_HEAD(&surplus_list);
1658
1659	ret = -ENOMEM;
1660retry:
1661	spin_unlock(&hugetlb_lock);
1662	for (i = 0; i < needed; i++) {
1663		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664		if (!page) {
1665			alloc_ok = false;
1666			break;
1667		}
1668		list_add(&page->lru, &surplus_list);
1669	}
1670	allocated += i;
1671
1672	/*
1673	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1674	 * because either resv_huge_pages or free_huge_pages may have changed.
1675	 */
1676	spin_lock(&hugetlb_lock);
1677	needed = (h->resv_huge_pages + delta) -
1678			(h->free_huge_pages + allocated);
1679	if (needed > 0) {
1680		if (alloc_ok)
1681			goto retry;
1682		/*
1683		 * We were not able to allocate enough pages to
1684		 * satisfy the entire reservation so we free what
1685		 * we've allocated so far.
1686		 */
1687		goto free;
1688	}
1689	/*
1690	 * The surplus_list now contains _at_least_ the number of extra pages
1691	 * needed to accommodate the reservation.  Add the appropriate number
1692	 * of pages to the hugetlb pool and free the extras back to the buddy
1693	 * allocator.  Commit the entire reservation here to prevent another
1694	 * process from stealing the pages as they are added to the pool but
1695	 * before they are reserved.
1696	 */
1697	needed += allocated;
1698	h->resv_huge_pages += delta;
1699	ret = 0;
1700
1701	/* Free the needed pages to the hugetlb pool */
1702	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703		if ((--needed) < 0)
1704			break;
1705		/*
1706		 * This page is now managed by the hugetlb allocator and has
1707		 * no users -- drop the buddy allocator's reference.
1708		 */
1709		put_page_testzero(page);
1710		VM_BUG_ON_PAGE(page_count(page), page);
1711		enqueue_huge_page(h, page);
1712	}
1713free:
1714	spin_unlock(&hugetlb_lock);
1715
1716	/* Free unnecessary surplus pages to the buddy allocator */
1717	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718		put_page(page);
1719	spin_lock(&hugetlb_lock);
1720
1721	return ret;
1722}
1723
1724/*
1725 * When releasing a hugetlb pool reservation, any surplus pages that were
1726 * allocated to satisfy the reservation must be explicitly freed if they were
1727 * never used.
1728 * Called with hugetlb_lock held.
1729 */
1730static void return_unused_surplus_pages(struct hstate *h,
1731					unsigned long unused_resv_pages)
1732{
1733	unsigned long nr_pages;
1734
1735	/* Uncommit the reservation */
1736	h->resv_huge_pages -= unused_resv_pages;
1737
1738	/* Cannot return gigantic pages currently */
1739	if (hstate_is_gigantic(h))
1740		return;
1741
1742	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743
1744	/*
1745	 * We want to release as many surplus pages as possible, spread
1746	 * evenly across all nodes with memory. Iterate across these nodes
1747	 * until we can no longer free unreserved surplus pages. This occurs
1748	 * when the nodes with surplus pages have no free pages.
1749	 * free_pool_huge_page() will balance the the freed pages across the
1750	 * on-line nodes with memory and will handle the hstate accounting.
1751	 */
1752	while (nr_pages--) {
1753		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754			break;
1755		cond_resched_lock(&hugetlb_lock);
1756	}
1757}
1758
1759
1760/*
1761 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762 * are used by the huge page allocation routines to manage reservations.
1763 *
1764 * vma_needs_reservation is called to determine if the huge page at addr
1765 * within the vma has an associated reservation.  If a reservation is
1766 * needed, the value 1 is returned.  The caller is then responsible for
1767 * managing the global reservation and subpool usage counts.  After
1768 * the huge page has been allocated, vma_commit_reservation is called
1769 * to add the page to the reservation map.  If the page allocation fails,
1770 * the reservation must be ended instead of committed.  vma_end_reservation
1771 * is called in such cases.
1772 *
1773 * In the normal case, vma_commit_reservation returns the same value
1774 * as the preceding vma_needs_reservation call.  The only time this
1775 * is not the case is if a reserve map was changed between calls.  It
1776 * is the responsibility of the caller to notice the difference and
1777 * take appropriate action.
1778 */
1779enum vma_resv_mode {
1780	VMA_NEEDS_RESV,
1781	VMA_COMMIT_RESV,
1782	VMA_END_RESV,
1783};
1784static long __vma_reservation_common(struct hstate *h,
1785				struct vm_area_struct *vma, unsigned long addr,
1786				enum vma_resv_mode mode)
1787{
1788	struct resv_map *resv;
1789	pgoff_t idx;
1790	long ret;
1791
1792	resv = vma_resv_map(vma);
1793	if (!resv)
1794		return 1;
1795
1796	idx = vma_hugecache_offset(h, vma, addr);
1797	switch (mode) {
1798	case VMA_NEEDS_RESV:
1799		ret = region_chg(resv, idx, idx + 1);
1800		break;
1801	case VMA_COMMIT_RESV:
1802		ret = region_add(resv, idx, idx + 1);
1803		break;
1804	case VMA_END_RESV:
1805		region_abort(resv, idx, idx + 1);
1806		ret = 0;
1807		break;
1808	default:
1809		BUG();
1810	}
1811
1812	if (vma->vm_flags & VM_MAYSHARE)
1813		return ret;
1814	else
1815		return ret < 0 ? ret : 0;
1816}
1817
1818static long vma_needs_reservation(struct hstate *h,
1819			struct vm_area_struct *vma, unsigned long addr)
1820{
1821	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822}
1823
1824static long vma_commit_reservation(struct hstate *h,
1825			struct vm_area_struct *vma, unsigned long addr)
1826{
1827	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828}
1829
1830static void vma_end_reservation(struct hstate *h,
1831			struct vm_area_struct *vma, unsigned long addr)
1832{
1833	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834}
1835
1836struct page *alloc_huge_page(struct vm_area_struct *vma,
1837				    unsigned long addr, int avoid_reserve)
1838{
1839	struct hugepage_subpool *spool = subpool_vma(vma);
1840	struct hstate *h = hstate_vma(vma);
1841	struct page *page;
1842	long map_chg, map_commit;
1843	long gbl_chg;
1844	int ret, idx;
1845	struct hugetlb_cgroup *h_cg;
1846
1847	idx = hstate_index(h);
1848	/*
1849	 * Examine the region/reserve map to determine if the process
1850	 * has a reservation for the page to be allocated.  A return
1851	 * code of zero indicates a reservation exists (no change).
1852	 */
1853	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854	if (map_chg < 0)
1855		return ERR_PTR(-ENOMEM);
1856
1857	/*
1858	 * Processes that did not create the mapping will have no
1859	 * reserves as indicated by the region/reserve map. Check
1860	 * that the allocation will not exceed the subpool limit.
1861	 * Allocations for MAP_NORESERVE mappings also need to be
1862	 * checked against any subpool limit.
 
1863	 */
1864	if (map_chg || avoid_reserve) {
1865		gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866		if (gbl_chg < 0) {
1867			vma_end_reservation(h, vma, addr);
 
1868			return ERR_PTR(-ENOSPC);
1869		}
1870
1871		/*
1872		 * Even though there was no reservation in the region/reserve
1873		 * map, there could be reservations associated with the
1874		 * subpool that can be used.  This would be indicated if the
1875		 * return value of hugepage_subpool_get_pages() is zero.
1876		 * However, if avoid_reserve is specified we still avoid even
1877		 * the subpool reservations.
1878		 */
1879		if (avoid_reserve)
1880			gbl_chg = 1;
1881	}
1882
1883	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884	if (ret)
1885		goto out_subpool_put;
1886
 
 
1887	spin_lock(&hugetlb_lock);
1888	/*
1889	 * glb_chg is passed to indicate whether or not a page must be taken
1890	 * from the global free pool (global change).  gbl_chg == 0 indicates
1891	 * a reservation exists for the allocation.
1892	 */
1893	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894	if (!page) {
1895		spin_unlock(&hugetlb_lock);
1896		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897		if (!page)
1898			goto out_uncharge_cgroup;
1899		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900			SetPagePrivate(page);
1901			h->resv_huge_pages--;
 
 
1902		}
1903		spin_lock(&hugetlb_lock);
1904		list_move(&page->lru, &h->hugepage_activelist);
1905		/* Fall through */
1906	}
1907	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908	spin_unlock(&hugetlb_lock);
1909
1910	set_page_private(page, (unsigned long)spool);
1911
1912	map_commit = vma_commit_reservation(h, vma, addr);
1913	if (unlikely(map_chg > map_commit)) {
1914		/*
1915		 * The page was added to the reservation map between
1916		 * vma_needs_reservation and vma_commit_reservation.
1917		 * This indicates a race with hugetlb_reserve_pages.
1918		 * Adjust for the subpool count incremented above AND
1919		 * in hugetlb_reserve_pages for the same page.  Also,
1920		 * the reservation count added in hugetlb_reserve_pages
1921		 * no longer applies.
1922		 */
1923		long rsv_adjust;
1924
1925		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926		hugetlb_acct_memory(h, -rsv_adjust);
1927	}
1928	return page;
1929
1930out_uncharge_cgroup:
1931	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932out_subpool_put:
1933	if (map_chg || avoid_reserve)
1934		hugepage_subpool_put_pages(spool, 1);
1935	vma_end_reservation(h, vma, addr);
1936	return ERR_PTR(-ENOSPC);
1937}
1938
1939/*
1940 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942 * where no ERR_VALUE is expected to be returned.
1943 */
1944struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945				unsigned long addr, int avoid_reserve)
1946{
1947	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948	if (IS_ERR(page))
1949		page = NULL;
1950	return page;
1951}
1952
1953int __weak alloc_bootmem_huge_page(struct hstate *h)
1954{
1955	struct huge_bootmem_page *m;
1956	int nr_nodes, node;
1957
1958	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959		void *addr;
1960
1961		addr = memblock_virt_alloc_try_nid_nopanic(
1962				huge_page_size(h), huge_page_size(h),
1963				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964		if (addr) {
1965			/*
1966			 * Use the beginning of the huge page to store the
1967			 * huge_bootmem_page struct (until gather_bootmem
1968			 * puts them into the mem_map).
1969			 */
1970			m = addr;
1971			goto found;
1972		}
1973	}
1974	return 0;
1975
1976found:
1977	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978	/* Put them into a private list first because mem_map is not up yet */
1979	list_add(&m->list, &huge_boot_pages);
1980	m->hstate = h;
1981	return 1;
1982}
1983
1984static void __init prep_compound_huge_page(struct page *page,
1985		unsigned int order)
1986{
1987	if (unlikely(order > (MAX_ORDER - 1)))
1988		prep_compound_gigantic_page(page, order);
1989	else
1990		prep_compound_page(page, order);
1991}
1992
1993/* Put bootmem huge pages into the standard lists after mem_map is up */
1994static void __init gather_bootmem_prealloc(void)
1995{
1996	struct huge_bootmem_page *m;
1997
1998	list_for_each_entry(m, &huge_boot_pages, list) {
1999		struct hstate *h = m->hstate;
2000		struct page *page;
2001
2002#ifdef CONFIG_HIGHMEM
2003		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004		memblock_free_late(__pa(m),
2005				   sizeof(struct huge_bootmem_page));
2006#else
2007		page = virt_to_page(m);
2008#endif
2009		WARN_ON(page_count(page) != 1);
2010		prep_compound_huge_page(page, h->order);
2011		WARN_ON(PageReserved(page));
2012		prep_new_huge_page(h, page, page_to_nid(page));
2013		/*
2014		 * If we had gigantic hugepages allocated at boot time, we need
2015		 * to restore the 'stolen' pages to totalram_pages in order to
2016		 * fix confusing memory reports from free(1) and another
2017		 * side-effects, like CommitLimit going negative.
2018		 */
2019		if (hstate_is_gigantic(h))
2020			adjust_managed_page_count(page, 1 << h->order);
2021	}
2022}
2023
2024static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025{
2026	unsigned long i;
2027
2028	for (i = 0; i < h->max_huge_pages; ++i) {
2029		if (hstate_is_gigantic(h)) {
2030			if (!alloc_bootmem_huge_page(h))
2031				break;
2032		} else if (!alloc_fresh_huge_page(h,
2033					 &node_states[N_MEMORY]))
2034			break;
2035	}
2036	h->max_huge_pages = i;
2037}
2038
2039static void __init hugetlb_init_hstates(void)
2040{
2041	struct hstate *h;
2042
2043	for_each_hstate(h) {
2044		if (minimum_order > huge_page_order(h))
2045			minimum_order = huge_page_order(h);
2046
2047		/* oversize hugepages were init'ed in early boot */
2048		if (!hstate_is_gigantic(h))
2049			hugetlb_hstate_alloc_pages(h);
2050	}
2051	VM_BUG_ON(minimum_order == UINT_MAX);
2052}
2053
2054static char * __init memfmt(char *buf, unsigned long n)
2055{
2056	if (n >= (1UL << 30))
2057		sprintf(buf, "%lu GB", n >> 30);
2058	else if (n >= (1UL << 20))
2059		sprintf(buf, "%lu MB", n >> 20);
2060	else
2061		sprintf(buf, "%lu KB", n >> 10);
2062	return buf;
2063}
2064
2065static void __init report_hugepages(void)
2066{
2067	struct hstate *h;
2068
2069	for_each_hstate(h) {
2070		char buf[32];
2071		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072			memfmt(buf, huge_page_size(h)),
2073			h->free_huge_pages);
2074	}
2075}
2076
2077#ifdef CONFIG_HIGHMEM
2078static void try_to_free_low(struct hstate *h, unsigned long count,
2079						nodemask_t *nodes_allowed)
2080{
2081	int i;
2082
2083	if (hstate_is_gigantic(h))
2084		return;
2085
2086	for_each_node_mask(i, *nodes_allowed) {
2087		struct page *page, *next;
2088		struct list_head *freel = &h->hugepage_freelists[i];
2089		list_for_each_entry_safe(page, next, freel, lru) {
2090			if (count >= h->nr_huge_pages)
2091				return;
2092			if (PageHighMem(page))
2093				continue;
2094			list_del(&page->lru);
2095			update_and_free_page(h, page);
2096			h->free_huge_pages--;
2097			h->free_huge_pages_node[page_to_nid(page)]--;
2098		}
2099	}
2100}
2101#else
2102static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103						nodemask_t *nodes_allowed)
2104{
2105}
2106#endif
2107
2108/*
2109 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2110 * balanced by operating on them in a round-robin fashion.
2111 * Returns 1 if an adjustment was made.
2112 */
2113static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114				int delta)
2115{
2116	int nr_nodes, node;
2117
2118	VM_BUG_ON(delta != -1 && delta != 1);
2119
2120	if (delta < 0) {
2121		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122			if (h->surplus_huge_pages_node[node])
2123				goto found;
2124		}
2125	} else {
2126		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127			if (h->surplus_huge_pages_node[node] <
2128					h->nr_huge_pages_node[node])
2129				goto found;
2130		}
2131	}
2132	return 0;
2133
2134found:
2135	h->surplus_huge_pages += delta;
2136	h->surplus_huge_pages_node[node] += delta;
2137	return 1;
2138}
2139
2140#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142						nodemask_t *nodes_allowed)
2143{
2144	unsigned long min_count, ret;
2145
2146	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147		return h->max_huge_pages;
2148
2149	/*
2150	 * Increase the pool size
2151	 * First take pages out of surplus state.  Then make up the
2152	 * remaining difference by allocating fresh huge pages.
2153	 *
2154	 * We might race with __alloc_buddy_huge_page() here and be unable
2155	 * to convert a surplus huge page to a normal huge page. That is
2156	 * not critical, though, it just means the overall size of the
2157	 * pool might be one hugepage larger than it needs to be, but
2158	 * within all the constraints specified by the sysctls.
2159	 */
2160	spin_lock(&hugetlb_lock);
2161	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163			break;
2164	}
2165
2166	while (count > persistent_huge_pages(h)) {
2167		/*
2168		 * If this allocation races such that we no longer need the
2169		 * page, free_huge_page will handle it by freeing the page
2170		 * and reducing the surplus.
2171		 */
2172		spin_unlock(&hugetlb_lock);
2173		if (hstate_is_gigantic(h))
2174			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2175		else
2176			ret = alloc_fresh_huge_page(h, nodes_allowed);
2177		spin_lock(&hugetlb_lock);
2178		if (!ret)
2179			goto out;
2180
2181		/* Bail for signals. Probably ctrl-c from user */
2182		if (signal_pending(current))
2183			goto out;
2184	}
2185
2186	/*
2187	 * Decrease the pool size
2188	 * First return free pages to the buddy allocator (being careful
2189	 * to keep enough around to satisfy reservations).  Then place
2190	 * pages into surplus state as needed so the pool will shrink
2191	 * to the desired size as pages become free.
2192	 *
2193	 * By placing pages into the surplus state independent of the
2194	 * overcommit value, we are allowing the surplus pool size to
2195	 * exceed overcommit. There are few sane options here. Since
2196	 * __alloc_buddy_huge_page() is checking the global counter,
2197	 * though, we'll note that we're not allowed to exceed surplus
2198	 * and won't grow the pool anywhere else. Not until one of the
2199	 * sysctls are changed, or the surplus pages go out of use.
2200	 */
2201	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2202	min_count = max(count, min_count);
2203	try_to_free_low(h, min_count, nodes_allowed);
2204	while (min_count < persistent_huge_pages(h)) {
2205		if (!free_pool_huge_page(h, nodes_allowed, 0))
2206			break;
2207		cond_resched_lock(&hugetlb_lock);
2208	}
2209	while (count < persistent_huge_pages(h)) {
2210		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2211			break;
2212	}
2213out:
2214	ret = persistent_huge_pages(h);
2215	spin_unlock(&hugetlb_lock);
2216	return ret;
2217}
2218
2219#define HSTATE_ATTR_RO(_name) \
2220	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2221
2222#define HSTATE_ATTR(_name) \
2223	static struct kobj_attribute _name##_attr = \
2224		__ATTR(_name, 0644, _name##_show, _name##_store)
2225
2226static struct kobject *hugepages_kobj;
2227static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2228
2229static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2230
2231static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2232{
2233	int i;
2234
2235	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2236		if (hstate_kobjs[i] == kobj) {
2237			if (nidp)
2238				*nidp = NUMA_NO_NODE;
2239			return &hstates[i];
2240		}
2241
2242	return kobj_to_node_hstate(kobj, nidp);
2243}
2244
2245static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2246					struct kobj_attribute *attr, char *buf)
2247{
2248	struct hstate *h;
2249	unsigned long nr_huge_pages;
2250	int nid;
2251
2252	h = kobj_to_hstate(kobj, &nid);
2253	if (nid == NUMA_NO_NODE)
2254		nr_huge_pages = h->nr_huge_pages;
2255	else
2256		nr_huge_pages = h->nr_huge_pages_node[nid];
2257
2258	return sprintf(buf, "%lu\n", nr_huge_pages);
2259}
2260
2261static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2262					   struct hstate *h, int nid,
2263					   unsigned long count, size_t len)
2264{
2265	int err;
 
 
 
2266	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2267
2268	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
 
 
 
 
 
2269		err = -EINVAL;
2270		goto out;
2271	}
2272
2273	if (nid == NUMA_NO_NODE) {
2274		/*
2275		 * global hstate attribute
2276		 */
2277		if (!(obey_mempolicy &&
2278				init_nodemask_of_mempolicy(nodes_allowed))) {
2279			NODEMASK_FREE(nodes_allowed);
2280			nodes_allowed = &node_states[N_MEMORY];
2281		}
2282	} else if (nodes_allowed) {
2283		/*
2284		 * per node hstate attribute: adjust count to global,
2285		 * but restrict alloc/free to the specified node.
2286		 */
2287		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2288		init_nodemask_of_node(nodes_allowed, nid);
2289	} else
2290		nodes_allowed = &node_states[N_MEMORY];
2291
2292	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2293
2294	if (nodes_allowed != &node_states[N_MEMORY])
2295		NODEMASK_FREE(nodes_allowed);
2296
2297	return len;
2298out:
2299	NODEMASK_FREE(nodes_allowed);
2300	return err;
2301}
2302
2303static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2304					 struct kobject *kobj, const char *buf,
2305					 size_t len)
2306{
2307	struct hstate *h;
2308	unsigned long count;
2309	int nid;
2310	int err;
2311
2312	err = kstrtoul(buf, 10, &count);
2313	if (err)
2314		return err;
2315
2316	h = kobj_to_hstate(kobj, &nid);
2317	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2318}
2319
2320static ssize_t nr_hugepages_show(struct kobject *kobj,
2321				       struct kobj_attribute *attr, char *buf)
2322{
2323	return nr_hugepages_show_common(kobj, attr, buf);
2324}
2325
2326static ssize_t nr_hugepages_store(struct kobject *kobj,
2327	       struct kobj_attribute *attr, const char *buf, size_t len)
2328{
2329	return nr_hugepages_store_common(false, kobj, buf, len);
2330}
2331HSTATE_ATTR(nr_hugepages);
2332
2333#ifdef CONFIG_NUMA
2334
2335/*
2336 * hstate attribute for optionally mempolicy-based constraint on persistent
2337 * huge page alloc/free.
2338 */
2339static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2340				       struct kobj_attribute *attr, char *buf)
2341{
2342	return nr_hugepages_show_common(kobj, attr, buf);
2343}
2344
2345static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2346	       struct kobj_attribute *attr, const char *buf, size_t len)
2347{
2348	return nr_hugepages_store_common(true, kobj, buf, len);
2349}
2350HSTATE_ATTR(nr_hugepages_mempolicy);
2351#endif
2352
2353
2354static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2355					struct kobj_attribute *attr, char *buf)
2356{
2357	struct hstate *h = kobj_to_hstate(kobj, NULL);
2358	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2359}
2360
2361static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2362		struct kobj_attribute *attr, const char *buf, size_t count)
2363{
2364	int err;
2365	unsigned long input;
2366	struct hstate *h = kobj_to_hstate(kobj, NULL);
2367
2368	if (hstate_is_gigantic(h))
2369		return -EINVAL;
2370
2371	err = kstrtoul(buf, 10, &input);
2372	if (err)
2373		return err;
2374
2375	spin_lock(&hugetlb_lock);
2376	h->nr_overcommit_huge_pages = input;
2377	spin_unlock(&hugetlb_lock);
2378
2379	return count;
2380}
2381HSTATE_ATTR(nr_overcommit_hugepages);
2382
2383static ssize_t free_hugepages_show(struct kobject *kobj,
2384					struct kobj_attribute *attr, char *buf)
2385{
2386	struct hstate *h;
2387	unsigned long free_huge_pages;
2388	int nid;
2389
2390	h = kobj_to_hstate(kobj, &nid);
2391	if (nid == NUMA_NO_NODE)
2392		free_huge_pages = h->free_huge_pages;
2393	else
2394		free_huge_pages = h->free_huge_pages_node[nid];
2395
2396	return sprintf(buf, "%lu\n", free_huge_pages);
2397}
2398HSTATE_ATTR_RO(free_hugepages);
2399
2400static ssize_t resv_hugepages_show(struct kobject *kobj,
2401					struct kobj_attribute *attr, char *buf)
2402{
2403	struct hstate *h = kobj_to_hstate(kobj, NULL);
2404	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2405}
2406HSTATE_ATTR_RO(resv_hugepages);
2407
2408static ssize_t surplus_hugepages_show(struct kobject *kobj,
2409					struct kobj_attribute *attr, char *buf)
2410{
2411	struct hstate *h;
2412	unsigned long surplus_huge_pages;
2413	int nid;
2414
2415	h = kobj_to_hstate(kobj, &nid);
2416	if (nid == NUMA_NO_NODE)
2417		surplus_huge_pages = h->surplus_huge_pages;
2418	else
2419		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2420
2421	return sprintf(buf, "%lu\n", surplus_huge_pages);
2422}
2423HSTATE_ATTR_RO(surplus_hugepages);
2424
2425static struct attribute *hstate_attrs[] = {
2426	&nr_hugepages_attr.attr,
2427	&nr_overcommit_hugepages_attr.attr,
2428	&free_hugepages_attr.attr,
2429	&resv_hugepages_attr.attr,
2430	&surplus_hugepages_attr.attr,
2431#ifdef CONFIG_NUMA
2432	&nr_hugepages_mempolicy_attr.attr,
2433#endif
2434	NULL,
2435};
2436
2437static struct attribute_group hstate_attr_group = {
2438	.attrs = hstate_attrs,
2439};
2440
2441static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2442				    struct kobject **hstate_kobjs,
2443				    struct attribute_group *hstate_attr_group)
2444{
2445	int retval;
2446	int hi = hstate_index(h);
2447
2448	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2449	if (!hstate_kobjs[hi])
2450		return -ENOMEM;
2451
2452	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2453	if (retval)
2454		kobject_put(hstate_kobjs[hi]);
2455
2456	return retval;
2457}
2458
2459static void __init hugetlb_sysfs_init(void)
2460{
2461	struct hstate *h;
2462	int err;
2463
2464	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2465	if (!hugepages_kobj)
2466		return;
2467
2468	for_each_hstate(h) {
2469		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2470					 hstate_kobjs, &hstate_attr_group);
2471		if (err)
2472			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2473	}
2474}
2475
2476#ifdef CONFIG_NUMA
2477
2478/*
2479 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480 * with node devices in node_devices[] using a parallel array.  The array
2481 * index of a node device or _hstate == node id.
2482 * This is here to avoid any static dependency of the node device driver, in
2483 * the base kernel, on the hugetlb module.
2484 */
2485struct node_hstate {
2486	struct kobject		*hugepages_kobj;
2487	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
2488};
2489static struct node_hstate node_hstates[MAX_NUMNODES];
2490
2491/*
2492 * A subset of global hstate attributes for node devices
2493 */
2494static struct attribute *per_node_hstate_attrs[] = {
2495	&nr_hugepages_attr.attr,
2496	&free_hugepages_attr.attr,
2497	&surplus_hugepages_attr.attr,
2498	NULL,
2499};
2500
2501static struct attribute_group per_node_hstate_attr_group = {
2502	.attrs = per_node_hstate_attrs,
2503};
2504
2505/*
2506 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507 * Returns node id via non-NULL nidp.
2508 */
2509static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2510{
2511	int nid;
2512
2513	for (nid = 0; nid < nr_node_ids; nid++) {
2514		struct node_hstate *nhs = &node_hstates[nid];
2515		int i;
2516		for (i = 0; i < HUGE_MAX_HSTATE; i++)
2517			if (nhs->hstate_kobjs[i] == kobj) {
2518				if (nidp)
2519					*nidp = nid;
2520				return &hstates[i];
2521			}
2522	}
2523
2524	BUG();
2525	return NULL;
2526}
2527
2528/*
2529 * Unregister hstate attributes from a single node device.
2530 * No-op if no hstate attributes attached.
2531 */
2532static void hugetlb_unregister_node(struct node *node)
2533{
2534	struct hstate *h;
2535	struct node_hstate *nhs = &node_hstates[node->dev.id];
2536
2537	if (!nhs->hugepages_kobj)
2538		return;		/* no hstate attributes */
2539
2540	for_each_hstate(h) {
2541		int idx = hstate_index(h);
2542		if (nhs->hstate_kobjs[idx]) {
2543			kobject_put(nhs->hstate_kobjs[idx]);
2544			nhs->hstate_kobjs[idx] = NULL;
2545		}
2546	}
2547
2548	kobject_put(nhs->hugepages_kobj);
2549	nhs->hugepages_kobj = NULL;
2550}
2551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552
2553/*
2554 * Register hstate attributes for a single node device.
2555 * No-op if attributes already registered.
2556 */
2557static void hugetlb_register_node(struct node *node)
2558{
2559	struct hstate *h;
2560	struct node_hstate *nhs = &node_hstates[node->dev.id];
2561	int err;
2562
2563	if (nhs->hugepages_kobj)
2564		return;		/* already allocated */
2565
2566	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2567							&node->dev.kobj);
2568	if (!nhs->hugepages_kobj)
2569		return;
2570
2571	for_each_hstate(h) {
2572		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2573						nhs->hstate_kobjs,
2574						&per_node_hstate_attr_group);
2575		if (err) {
2576			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2577				h->name, node->dev.id);
2578			hugetlb_unregister_node(node);
2579			break;
2580		}
2581	}
2582}
2583
2584/*
2585 * hugetlb init time:  register hstate attributes for all registered node
2586 * devices of nodes that have memory.  All on-line nodes should have
2587 * registered their associated device by this time.
2588 */
2589static void __init hugetlb_register_all_nodes(void)
2590{
2591	int nid;
2592
2593	for_each_node_state(nid, N_MEMORY) {
2594		struct node *node = node_devices[nid];
2595		if (node->dev.id == nid)
2596			hugetlb_register_node(node);
2597	}
2598
2599	/*
2600	 * Let the node device driver know we're here so it can
2601	 * [un]register hstate attributes on node hotplug.
2602	 */
2603	register_hugetlbfs_with_node(hugetlb_register_node,
2604				     hugetlb_unregister_node);
2605}
2606#else	/* !CONFIG_NUMA */
2607
2608static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2609{
2610	BUG();
2611	if (nidp)
2612		*nidp = -1;
2613	return NULL;
2614}
2615
 
 
2616static void hugetlb_register_all_nodes(void) { }
2617
2618#endif
2619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620static int __init hugetlb_init(void)
2621{
2622	int i;
2623
2624	if (!hugepages_supported())
2625		return 0;
2626
2627	if (!size_to_hstate(default_hstate_size)) {
2628		default_hstate_size = HPAGE_SIZE;
2629		if (!size_to_hstate(default_hstate_size))
2630			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2631	}
2632	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2633	if (default_hstate_max_huge_pages) {
2634		if (!default_hstate.max_huge_pages)
2635			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2636	}
2637
2638	hugetlb_init_hstates();
2639	gather_bootmem_prealloc();
2640	report_hugepages();
2641
2642	hugetlb_sysfs_init();
2643	hugetlb_register_all_nodes();
2644	hugetlb_cgroup_file_init();
2645
2646#ifdef CONFIG_SMP
2647	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2648#else
2649	num_fault_mutexes = 1;
2650#endif
2651	hugetlb_fault_mutex_table =
2652		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2653	BUG_ON(!hugetlb_fault_mutex_table);
2654
2655	for (i = 0; i < num_fault_mutexes; i++)
2656		mutex_init(&hugetlb_fault_mutex_table[i]);
2657	return 0;
2658}
2659subsys_initcall(hugetlb_init);
2660
2661/* Should be called on processing a hugepagesz=... option */
2662void __init hugetlb_add_hstate(unsigned int order)
2663{
2664	struct hstate *h;
2665	unsigned long i;
2666
2667	if (size_to_hstate(PAGE_SIZE << order)) {
2668		pr_warn("hugepagesz= specified twice, ignoring\n");
2669		return;
2670	}
2671	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2672	BUG_ON(order == 0);
2673	h = &hstates[hugetlb_max_hstate++];
2674	h->order = order;
2675	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2676	h->nr_huge_pages = 0;
2677	h->free_huge_pages = 0;
2678	for (i = 0; i < MAX_NUMNODES; ++i)
2679		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2680	INIT_LIST_HEAD(&h->hugepage_activelist);
2681	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2682	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2683	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2684					huge_page_size(h)/1024);
2685
2686	parsed_hstate = h;
2687}
2688
2689static int __init hugetlb_nrpages_setup(char *s)
2690{
2691	unsigned long *mhp;
2692	static unsigned long *last_mhp;
2693
2694	/*
2695	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2696	 * so this hugepages= parameter goes to the "default hstate".
2697	 */
2698	if (!hugetlb_max_hstate)
2699		mhp = &default_hstate_max_huge_pages;
2700	else
2701		mhp = &parsed_hstate->max_huge_pages;
2702
2703	if (mhp == last_mhp) {
2704		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
 
2705		return 1;
2706	}
2707
2708	if (sscanf(s, "%lu", mhp) <= 0)
2709		*mhp = 0;
2710
2711	/*
2712	 * Global state is always initialized later in hugetlb_init.
2713	 * But we need to allocate >= MAX_ORDER hstates here early to still
2714	 * use the bootmem allocator.
2715	 */
2716	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2717		hugetlb_hstate_alloc_pages(parsed_hstate);
2718
2719	last_mhp = mhp;
2720
2721	return 1;
2722}
2723__setup("hugepages=", hugetlb_nrpages_setup);
2724
2725static int __init hugetlb_default_setup(char *s)
2726{
2727	default_hstate_size = memparse(s, &s);
2728	return 1;
2729}
2730__setup("default_hugepagesz=", hugetlb_default_setup);
2731
2732static unsigned int cpuset_mems_nr(unsigned int *array)
2733{
2734	int node;
2735	unsigned int nr = 0;
2736
2737	for_each_node_mask(node, cpuset_current_mems_allowed)
2738		nr += array[node];
2739
2740	return nr;
2741}
2742
2743#ifdef CONFIG_SYSCTL
2744static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2745			 struct ctl_table *table, int write,
2746			 void __user *buffer, size_t *length, loff_t *ppos)
2747{
2748	struct hstate *h = &default_hstate;
2749	unsigned long tmp = h->max_huge_pages;
2750	int ret;
2751
2752	if (!hugepages_supported())
2753		return -EOPNOTSUPP;
 
 
 
 
 
2754
2755	table->data = &tmp;
2756	table->maxlen = sizeof(unsigned long);
2757	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2758	if (ret)
2759		goto out;
2760
2761	if (write)
2762		ret = __nr_hugepages_store_common(obey_mempolicy, h,
2763						  NUMA_NO_NODE, tmp, *length);
 
 
 
 
 
 
 
 
 
 
2764out:
2765	return ret;
2766}
2767
2768int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2769			  void __user *buffer, size_t *length, loff_t *ppos)
2770{
2771
2772	return hugetlb_sysctl_handler_common(false, table, write,
2773							buffer, length, ppos);
2774}
2775
2776#ifdef CONFIG_NUMA
2777int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2778			  void __user *buffer, size_t *length, loff_t *ppos)
2779{
2780	return hugetlb_sysctl_handler_common(true, table, write,
2781							buffer, length, ppos);
2782}
2783#endif /* CONFIG_NUMA */
2784
2785int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2786			void __user *buffer,
2787			size_t *length, loff_t *ppos)
2788{
2789	struct hstate *h = &default_hstate;
2790	unsigned long tmp;
2791	int ret;
2792
2793	if (!hugepages_supported())
2794		return -EOPNOTSUPP;
2795
2796	tmp = h->nr_overcommit_huge_pages;
2797
2798	if (write && hstate_is_gigantic(h))
2799		return -EINVAL;
2800
2801	table->data = &tmp;
2802	table->maxlen = sizeof(unsigned long);
2803	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2804	if (ret)
2805		goto out;
2806
2807	if (write) {
2808		spin_lock(&hugetlb_lock);
2809		h->nr_overcommit_huge_pages = tmp;
2810		spin_unlock(&hugetlb_lock);
2811	}
2812out:
2813	return ret;
2814}
2815
2816#endif /* CONFIG_SYSCTL */
2817
2818void hugetlb_report_meminfo(struct seq_file *m)
2819{
2820	struct hstate *h = &default_hstate;
2821	if (!hugepages_supported())
2822		return;
2823	seq_printf(m,
2824			"HugePages_Total:   %5lu\n"
2825			"HugePages_Free:    %5lu\n"
2826			"HugePages_Rsvd:    %5lu\n"
2827			"HugePages_Surp:    %5lu\n"
2828			"Hugepagesize:   %8lu kB\n",
2829			h->nr_huge_pages,
2830			h->free_huge_pages,
2831			h->resv_huge_pages,
2832			h->surplus_huge_pages,
2833			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2834}
2835
2836int hugetlb_report_node_meminfo(int nid, char *buf)
2837{
2838	struct hstate *h = &default_hstate;
2839	if (!hugepages_supported())
2840		return 0;
2841	return sprintf(buf,
2842		"Node %d HugePages_Total: %5u\n"
2843		"Node %d HugePages_Free:  %5u\n"
2844		"Node %d HugePages_Surp:  %5u\n",
2845		nid, h->nr_huge_pages_node[nid],
2846		nid, h->free_huge_pages_node[nid],
2847		nid, h->surplus_huge_pages_node[nid]);
2848}
2849
2850void hugetlb_show_meminfo(void)
2851{
2852	struct hstate *h;
2853	int nid;
2854
2855	if (!hugepages_supported())
2856		return;
2857
2858	for_each_node_state(nid, N_MEMORY)
2859		for_each_hstate(h)
2860			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2861				nid,
2862				h->nr_huge_pages_node[nid],
2863				h->free_huge_pages_node[nid],
2864				h->surplus_huge_pages_node[nid],
2865				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2866}
2867
2868void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2869{
2870	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2871		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2872}
2873
2874/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2875unsigned long hugetlb_total_pages(void)
2876{
2877	struct hstate *h;
2878	unsigned long nr_total_pages = 0;
2879
2880	for_each_hstate(h)
2881		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2882	return nr_total_pages;
2883}
2884
2885static int hugetlb_acct_memory(struct hstate *h, long delta)
2886{
2887	int ret = -ENOMEM;
2888
2889	spin_lock(&hugetlb_lock);
2890	/*
2891	 * When cpuset is configured, it breaks the strict hugetlb page
2892	 * reservation as the accounting is done on a global variable. Such
2893	 * reservation is completely rubbish in the presence of cpuset because
2894	 * the reservation is not checked against page availability for the
2895	 * current cpuset. Application can still potentially OOM'ed by kernel
2896	 * with lack of free htlb page in cpuset that the task is in.
2897	 * Attempt to enforce strict accounting with cpuset is almost
2898	 * impossible (or too ugly) because cpuset is too fluid that
2899	 * task or memory node can be dynamically moved between cpusets.
2900	 *
2901	 * The change of semantics for shared hugetlb mapping with cpuset is
2902	 * undesirable. However, in order to preserve some of the semantics,
2903	 * we fall back to check against current free page availability as
2904	 * a best attempt and hopefully to minimize the impact of changing
2905	 * semantics that cpuset has.
2906	 */
2907	if (delta > 0) {
2908		if (gather_surplus_pages(h, delta) < 0)
2909			goto out;
2910
2911		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2912			return_unused_surplus_pages(h, delta);
2913			goto out;
2914		}
2915	}
2916
2917	ret = 0;
2918	if (delta < 0)
2919		return_unused_surplus_pages(h, (unsigned long) -delta);
2920
2921out:
2922	spin_unlock(&hugetlb_lock);
2923	return ret;
2924}
2925
2926static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2927{
2928	struct resv_map *resv = vma_resv_map(vma);
2929
2930	/*
2931	 * This new VMA should share its siblings reservation map if present.
2932	 * The VMA will only ever have a valid reservation map pointer where
2933	 * it is being copied for another still existing VMA.  As that VMA
2934	 * has a reference to the reservation map it cannot disappear until
2935	 * after this open call completes.  It is therefore safe to take a
2936	 * new reference here without additional locking.
2937	 */
2938	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2939		kref_get(&resv->refs);
2940}
2941
2942static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2943{
2944	struct hstate *h = hstate_vma(vma);
2945	struct resv_map *resv = vma_resv_map(vma);
2946	struct hugepage_subpool *spool = subpool_vma(vma);
2947	unsigned long reserve, start, end;
2948	long gbl_reserve;
2949
2950	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2951		return;
2952
2953	start = vma_hugecache_offset(h, vma, vma->vm_start);
2954	end = vma_hugecache_offset(h, vma, vma->vm_end);
2955
2956	reserve = (end - start) - region_count(resv, start, end);
2957
2958	kref_put(&resv->refs, resv_map_release);
2959
2960	if (reserve) {
2961		/*
2962		 * Decrement reserve counts.  The global reserve count may be
2963		 * adjusted if the subpool has a minimum size.
2964		 */
2965		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2966		hugetlb_acct_memory(h, -gbl_reserve);
2967	}
2968}
2969
2970/*
2971 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2972 * handle_mm_fault() to try to instantiate regular-sized pages in the
2973 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2974 * this far.
2975 */
2976static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2977{
2978	BUG();
2979	return 0;
2980}
2981
2982const struct vm_operations_struct hugetlb_vm_ops = {
2983	.fault = hugetlb_vm_op_fault,
2984	.open = hugetlb_vm_op_open,
2985	.close = hugetlb_vm_op_close,
2986};
2987
2988static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2989				int writable)
2990{
2991	pte_t entry;
2992
2993	if (writable) {
2994		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2995					 vma->vm_page_prot)));
2996	} else {
2997		entry = huge_pte_wrprotect(mk_huge_pte(page,
2998					   vma->vm_page_prot));
2999	}
3000	entry = pte_mkyoung(entry);
3001	entry = pte_mkhuge(entry);
3002	entry = arch_make_huge_pte(entry, vma, page, writable);
3003
3004	return entry;
3005}
3006
3007static void set_huge_ptep_writable(struct vm_area_struct *vma,
3008				   unsigned long address, pte_t *ptep)
3009{
3010	pte_t entry;
3011
3012	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3013	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3014		update_mmu_cache(vma, address, ptep);
3015}
3016
3017static int is_hugetlb_entry_migration(pte_t pte)
3018{
3019	swp_entry_t swp;
3020
3021	if (huge_pte_none(pte) || pte_present(pte))
3022		return 0;
3023	swp = pte_to_swp_entry(pte);
3024	if (non_swap_entry(swp) && is_migration_entry(swp))
3025		return 1;
3026	else
3027		return 0;
3028}
3029
3030static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3031{
3032	swp_entry_t swp;
3033
3034	if (huge_pte_none(pte) || pte_present(pte))
3035		return 0;
3036	swp = pte_to_swp_entry(pte);
3037	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3038		return 1;
3039	else
3040		return 0;
3041}
3042
3043int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3044			    struct vm_area_struct *vma)
3045{
3046	pte_t *src_pte, *dst_pte, entry;
3047	struct page *ptepage;
3048	unsigned long addr;
3049	int cow;
3050	struct hstate *h = hstate_vma(vma);
3051	unsigned long sz = huge_page_size(h);
3052	unsigned long mmun_start;	/* For mmu_notifiers */
3053	unsigned long mmun_end;		/* For mmu_notifiers */
3054	int ret = 0;
3055
3056	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3057
3058	mmun_start = vma->vm_start;
3059	mmun_end = vma->vm_end;
3060	if (cow)
3061		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3062
3063	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3064		spinlock_t *src_ptl, *dst_ptl;
3065		src_pte = huge_pte_offset(src, addr);
3066		if (!src_pte)
3067			continue;
3068		dst_pte = huge_pte_alloc(dst, addr, sz);
3069		if (!dst_pte) {
3070			ret = -ENOMEM;
3071			break;
3072		}
3073
3074		/* If the pagetables are shared don't copy or take references */
3075		if (dst_pte == src_pte)
3076			continue;
3077
3078		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3079		src_ptl = huge_pte_lockptr(h, src, src_pte);
3080		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3081		entry = huge_ptep_get(src_pte);
3082		if (huge_pte_none(entry)) { /* skip none entry */
3083			;
3084		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3085				    is_hugetlb_entry_hwpoisoned(entry))) {
3086			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3087
3088			if (is_write_migration_entry(swp_entry) && cow) {
3089				/*
3090				 * COW mappings require pages in both
3091				 * parent and child to be set to read.
3092				 */
3093				make_migration_entry_read(&swp_entry);
3094				entry = swp_entry_to_pte(swp_entry);
3095				set_huge_pte_at(src, addr, src_pte, entry);
3096			}
3097			set_huge_pte_at(dst, addr, dst_pte, entry);
3098		} else {
3099			if (cow) {
3100				huge_ptep_set_wrprotect(src, addr, src_pte);
3101				mmu_notifier_invalidate_range(src, mmun_start,
3102								   mmun_end);
3103			}
3104			entry = huge_ptep_get(src_pte);
3105			ptepage = pte_page(entry);
3106			get_page(ptepage);
3107			page_dup_rmap(ptepage, true);
3108			set_huge_pte_at(dst, addr, dst_pte, entry);
3109			hugetlb_count_add(pages_per_huge_page(h), dst);
3110		}
3111		spin_unlock(src_ptl);
3112		spin_unlock(dst_ptl);
3113	}
3114
3115	if (cow)
3116		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3117
3118	return ret;
3119}
3120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3121void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3122			    unsigned long start, unsigned long end,
3123			    struct page *ref_page)
3124{
3125	int force_flush = 0;
3126	struct mm_struct *mm = vma->vm_mm;
3127	unsigned long address;
3128	pte_t *ptep;
3129	pte_t pte;
3130	spinlock_t *ptl;
3131	struct page *page;
3132	struct hstate *h = hstate_vma(vma);
3133	unsigned long sz = huge_page_size(h);
3134	const unsigned long mmun_start = start;	/* For mmu_notifiers */
3135	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3136
3137	WARN_ON(!is_vm_hugetlb_page(vma));
3138	BUG_ON(start & ~huge_page_mask(h));
3139	BUG_ON(end & ~huge_page_mask(h));
3140
3141	tlb_start_vma(tlb, vma);
3142	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3143	address = start;
3144again:
3145	for (; address < end; address += sz) {
3146		ptep = huge_pte_offset(mm, address);
3147		if (!ptep)
3148			continue;
3149
3150		ptl = huge_pte_lock(h, mm, ptep);
3151		if (huge_pmd_unshare(mm, &address, ptep))
3152			goto unlock;
3153
3154		pte = huge_ptep_get(ptep);
3155		if (huge_pte_none(pte))
3156			goto unlock;
3157
3158		/*
3159		 * Migrating hugepage or HWPoisoned hugepage is already
3160		 * unmapped and its refcount is dropped, so just clear pte here.
3161		 */
3162		if (unlikely(!pte_present(pte))) {
3163			huge_pte_clear(mm, address, ptep);
3164			goto unlock;
3165		}
3166
3167		page = pte_page(pte);
3168		/*
3169		 * If a reference page is supplied, it is because a specific
3170		 * page is being unmapped, not a range. Ensure the page we
3171		 * are about to unmap is the actual page of interest.
3172		 */
3173		if (ref_page) {
3174			if (page != ref_page)
3175				goto unlock;
3176
3177			/*
3178			 * Mark the VMA as having unmapped its page so that
3179			 * future faults in this VMA will fail rather than
3180			 * looking like data was lost
3181			 */
3182			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3183		}
3184
3185		pte = huge_ptep_get_and_clear(mm, address, ptep);
3186		tlb_remove_tlb_entry(tlb, ptep, address);
3187		if (huge_pte_dirty(pte))
3188			set_page_dirty(page);
3189
3190		hugetlb_count_sub(pages_per_huge_page(h), mm);
3191		page_remove_rmap(page, true);
3192		force_flush = !__tlb_remove_page(tlb, page);
3193		if (force_flush) {
3194			address += sz;
3195			spin_unlock(ptl);
3196			break;
3197		}
3198		/* Bail out after unmapping reference page if supplied */
3199		if (ref_page) {
3200			spin_unlock(ptl);
3201			break;
3202		}
3203unlock:
3204		spin_unlock(ptl);
3205	}
3206	/*
3207	 * mmu_gather ran out of room to batch pages, we break out of
3208	 * the PTE lock to avoid doing the potential expensive TLB invalidate
3209	 * and page-free while holding it.
3210	 */
3211	if (force_flush) {
3212		force_flush = 0;
3213		tlb_flush_mmu(tlb);
3214		if (address < end && !ref_page)
3215			goto again;
3216	}
3217	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3218	tlb_end_vma(tlb, vma);
3219}
3220
3221void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3222			  struct vm_area_struct *vma, unsigned long start,
3223			  unsigned long end, struct page *ref_page)
3224{
3225	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
3226
3227	/*
3228	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3229	 * test will fail on a vma being torn down, and not grab a page table
3230	 * on its way out.  We're lucky that the flag has such an appropriate
3231	 * name, and can in fact be safely cleared here. We could clear it
3232	 * before the __unmap_hugepage_range above, but all that's necessary
3233	 * is to clear it before releasing the i_mmap_rwsem. This works
3234	 * because in the context this is called, the VMA is about to be
3235	 * destroyed and the i_mmap_rwsem is held.
3236	 */
3237	vma->vm_flags &= ~VM_MAYSHARE;
3238}
3239
3240void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3241			  unsigned long end, struct page *ref_page)
3242{
3243	struct mm_struct *mm;
3244	struct mmu_gather tlb;
3245
3246	mm = vma->vm_mm;
3247
3248	tlb_gather_mmu(&tlb, mm, start, end);
3249	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3250	tlb_finish_mmu(&tlb, start, end);
3251}
3252
3253/*
3254 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3255 * mappping it owns the reserve page for. The intention is to unmap the page
3256 * from other VMAs and let the children be SIGKILLed if they are faulting the
3257 * same region.
3258 */
3259static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3260			      struct page *page, unsigned long address)
3261{
3262	struct hstate *h = hstate_vma(vma);
3263	struct vm_area_struct *iter_vma;
3264	struct address_space *mapping;
3265	pgoff_t pgoff;
3266
3267	/*
3268	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3269	 * from page cache lookup which is in HPAGE_SIZE units.
3270	 */
3271	address = address & huge_page_mask(h);
3272	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3273			vma->vm_pgoff;
3274	mapping = file_inode(vma->vm_file)->i_mapping;
3275
3276	/*
3277	 * Take the mapping lock for the duration of the table walk. As
3278	 * this mapping should be shared between all the VMAs,
3279	 * __unmap_hugepage_range() is called as the lock is already held
3280	 */
3281	i_mmap_lock_write(mapping);
3282	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3283		/* Do not unmap the current VMA */
3284		if (iter_vma == vma)
3285			continue;
3286
3287		/*
3288		 * Shared VMAs have their own reserves and do not affect
3289		 * MAP_PRIVATE accounting but it is possible that a shared
3290		 * VMA is using the same page so check and skip such VMAs.
3291		 */
3292		if (iter_vma->vm_flags & VM_MAYSHARE)
3293			continue;
3294
3295		/*
3296		 * Unmap the page from other VMAs without their own reserves.
3297		 * They get marked to be SIGKILLed if they fault in these
3298		 * areas. This is because a future no-page fault on this VMA
3299		 * could insert a zeroed page instead of the data existing
3300		 * from the time of fork. This would look like data corruption
3301		 */
3302		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3303			unmap_hugepage_range(iter_vma, address,
3304					     address + huge_page_size(h), page);
3305	}
3306	i_mmap_unlock_write(mapping);
 
 
3307}
3308
3309/*
3310 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3311 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3312 * cannot race with other handlers or page migration.
3313 * Keep the pte_same checks anyway to make transition from the mutex easier.
3314 */
3315static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3316			unsigned long address, pte_t *ptep, pte_t pte,
3317			struct page *pagecache_page, spinlock_t *ptl)
3318{
3319	struct hstate *h = hstate_vma(vma);
3320	struct page *old_page, *new_page;
3321	int ret = 0, outside_reserve = 0;
3322	unsigned long mmun_start;	/* For mmu_notifiers */
3323	unsigned long mmun_end;		/* For mmu_notifiers */
3324
3325	old_page = pte_page(pte);
3326
3327retry_avoidcopy:
3328	/* If no-one else is actually using this page, avoid the copy
3329	 * and just make the page writable */
3330	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3331		page_move_anon_rmap(old_page, vma, address);
3332		set_huge_ptep_writable(vma, address, ptep);
3333		return 0;
3334	}
3335
3336	/*
3337	 * If the process that created a MAP_PRIVATE mapping is about to
3338	 * perform a COW due to a shared page count, attempt to satisfy
3339	 * the allocation without using the existing reserves. The pagecache
3340	 * page is used to determine if the reserve at this address was
3341	 * consumed or not. If reserves were used, a partial faulted mapping
3342	 * at the time of fork() could consume its reserves on COW instead
3343	 * of the full address range.
3344	 */
3345	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3346			old_page != pagecache_page)
3347		outside_reserve = 1;
3348
3349	get_page(old_page);
3350
3351	/*
3352	 * Drop page table lock as buddy allocator may be called. It will
3353	 * be acquired again before returning to the caller, as expected.
3354	 */
3355	spin_unlock(ptl);
3356	new_page = alloc_huge_page(vma, address, outside_reserve);
3357
3358	if (IS_ERR(new_page)) {
 
 
 
3359		/*
3360		 * If a process owning a MAP_PRIVATE mapping fails to COW,
3361		 * it is due to references held by a child and an insufficient
3362		 * huge page pool. To guarantee the original mappers
3363		 * reliability, unmap the page from child processes. The child
3364		 * may get SIGKILLed if it later faults.
3365		 */
3366		if (outside_reserve) {
3367			put_page(old_page);
3368			BUG_ON(huge_pte_none(pte));
3369			unmap_ref_private(mm, vma, old_page, address);
3370			BUG_ON(huge_pte_none(pte));
3371			spin_lock(ptl);
3372			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3373			if (likely(ptep &&
3374				   pte_same(huge_ptep_get(ptep), pte)))
3375				goto retry_avoidcopy;
3376			/*
3377			 * race occurs while re-acquiring page table
3378			 * lock, and our job is done.
3379			 */
3380			return 0;
 
 
 
 
3381		}
3382
3383		ret = (PTR_ERR(new_page) == -ENOMEM) ?
3384			VM_FAULT_OOM : VM_FAULT_SIGBUS;
3385		goto out_release_old;
 
 
 
3386	}
3387
3388	/*
3389	 * When the original hugepage is shared one, it does not have
3390	 * anon_vma prepared.
3391	 */
3392	if (unlikely(anon_vma_prepare(vma))) {
3393		ret = VM_FAULT_OOM;
3394		goto out_release_all;
 
 
 
3395	}
3396
3397	copy_user_huge_page(new_page, old_page, address, vma,
3398			    pages_per_huge_page(h));
3399	__SetPageUptodate(new_page);
3400	set_page_huge_active(new_page);
3401
3402	mmun_start = address & huge_page_mask(h);
3403	mmun_end = mmun_start + huge_page_size(h);
3404	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3405
3406	/*
3407	 * Retake the page table lock to check for racing updates
3408	 * before the page tables are altered
3409	 */
3410	spin_lock(ptl);
3411	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3412	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3413		ClearPagePrivate(new_page);
3414
3415		/* Break COW */
3416		huge_ptep_clear_flush(vma, address, ptep);
3417		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3418		set_huge_pte_at(mm, address, ptep,
3419				make_huge_pte(vma, new_page, 1));
3420		page_remove_rmap(old_page, true);
3421		hugepage_add_new_anon_rmap(new_page, vma, address);
3422		/* Make the old page be freed below */
3423		new_page = old_page;
3424	}
3425	spin_unlock(ptl);
3426	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3427out_release_all:
3428	put_page(new_page);
3429out_release_old:
3430	put_page(old_page);
3431
3432	spin_lock(ptl); /* Caller expects lock to be held */
3433	return ret;
 
3434}
3435
3436/* Return the pagecache page at a given address within a VMA */
3437static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3438			struct vm_area_struct *vma, unsigned long address)
3439{
3440	struct address_space *mapping;
3441	pgoff_t idx;
3442
3443	mapping = vma->vm_file->f_mapping;
3444	idx = vma_hugecache_offset(h, vma, address);
3445
3446	return find_lock_page(mapping, idx);
3447}
3448
3449/*
3450 * Return whether there is a pagecache page to back given address within VMA.
3451 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3452 */
3453static bool hugetlbfs_pagecache_present(struct hstate *h,
3454			struct vm_area_struct *vma, unsigned long address)
3455{
3456	struct address_space *mapping;
3457	pgoff_t idx;
3458	struct page *page;
3459
3460	mapping = vma->vm_file->f_mapping;
3461	idx = vma_hugecache_offset(h, vma, address);
3462
3463	page = find_get_page(mapping, idx);
3464	if (page)
3465		put_page(page);
3466	return page != NULL;
3467}
3468
3469int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3470			   pgoff_t idx)
3471{
3472	struct inode *inode = mapping->host;
3473	struct hstate *h = hstate_inode(inode);
3474	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3475
3476	if (err)
3477		return err;
3478	ClearPagePrivate(page);
3479
3480	spin_lock(&inode->i_lock);
3481	inode->i_blocks += blocks_per_huge_page(h);
3482	spin_unlock(&inode->i_lock);
3483	return 0;
3484}
3485
3486static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3487			   struct address_space *mapping, pgoff_t idx,
3488			   unsigned long address, pte_t *ptep, unsigned int flags)
3489{
3490	struct hstate *h = hstate_vma(vma);
3491	int ret = VM_FAULT_SIGBUS;
3492	int anon_rmap = 0;
3493	unsigned long size;
3494	struct page *page;
3495	pte_t new_pte;
3496	spinlock_t *ptl;
3497
3498	/*
3499	 * Currently, we are forced to kill the process in the event the
3500	 * original mapper has unmapped pages from the child due to a failed
3501	 * COW. Warn that such a situation has occurred as it may not be obvious
3502	 */
3503	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3504		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3505			   current->pid);
3506		return ret;
3507	}
3508
3509	/*
3510	 * Use page lock to guard against racing truncation
3511	 * before we get page_table_lock.
3512	 */
3513retry:
3514	page = find_lock_page(mapping, idx);
3515	if (!page) {
3516		size = i_size_read(mapping->host) >> huge_page_shift(h);
3517		if (idx >= size)
3518			goto out;
3519		page = alloc_huge_page(vma, address, 0);
3520		if (IS_ERR(page)) {
3521			ret = PTR_ERR(page);
3522			if (ret == -ENOMEM)
3523				ret = VM_FAULT_OOM;
3524			else
3525				ret = VM_FAULT_SIGBUS;
3526			goto out;
3527		}
3528		clear_huge_page(page, address, pages_per_huge_page(h));
3529		__SetPageUptodate(page);
3530		set_page_huge_active(page);
3531
3532		if (vma->vm_flags & VM_MAYSHARE) {
3533			int err = huge_add_to_page_cache(page, mapping, idx);
 
 
 
3534			if (err) {
3535				put_page(page);
3536				if (err == -EEXIST)
3537					goto retry;
3538				goto out;
3539			}
 
 
 
 
 
3540		} else {
3541			lock_page(page);
3542			if (unlikely(anon_vma_prepare(vma))) {
3543				ret = VM_FAULT_OOM;
3544				goto backout_unlocked;
3545			}
3546			anon_rmap = 1;
3547		}
3548	} else {
3549		/*
3550		 * If memory error occurs between mmap() and fault, some process
3551		 * don't have hwpoisoned swap entry for errored virtual address.
3552		 * So we need to block hugepage fault by PG_hwpoison bit check.
3553		 */
3554		if (unlikely(PageHWPoison(page))) {
3555			ret = VM_FAULT_HWPOISON |
3556				VM_FAULT_SET_HINDEX(hstate_index(h));
3557			goto backout_unlocked;
3558		}
3559	}
3560
3561	/*
3562	 * If we are going to COW a private mapping later, we examine the
3563	 * pending reservations for this page now. This will ensure that
3564	 * any allocations necessary to record that reservation occur outside
3565	 * the spinlock.
3566	 */
3567	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3568		if (vma_needs_reservation(h, vma, address) < 0) {
3569			ret = VM_FAULT_OOM;
3570			goto backout_unlocked;
3571		}
3572		/* Just decrements count, does not deallocate */
3573		vma_end_reservation(h, vma, address);
3574	}
3575
3576	ptl = huge_pte_lockptr(h, mm, ptep);
3577	spin_lock(ptl);
3578	size = i_size_read(mapping->host) >> huge_page_shift(h);
3579	if (idx >= size)
3580		goto backout;
3581
3582	ret = 0;
3583	if (!huge_pte_none(huge_ptep_get(ptep)))
3584		goto backout;
3585
3586	if (anon_rmap) {
3587		ClearPagePrivate(page);
3588		hugepage_add_new_anon_rmap(page, vma, address);
3589	} else
3590		page_dup_rmap(page, true);
3591	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3592				&& (vma->vm_flags & VM_SHARED)));
3593	set_huge_pte_at(mm, address, ptep, new_pte);
3594
3595	hugetlb_count_add(pages_per_huge_page(h), mm);
3596	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3597		/* Optimization, do the COW without a second fault */
3598		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3599	}
3600
3601	spin_unlock(ptl);
3602	unlock_page(page);
3603out:
3604	return ret;
3605
3606backout:
3607	spin_unlock(ptl);
3608backout_unlocked:
3609	unlock_page(page);
3610	put_page(page);
3611	goto out;
3612}
3613
3614#ifdef CONFIG_SMP
3615u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3616			    struct vm_area_struct *vma,
3617			    struct address_space *mapping,
3618			    pgoff_t idx, unsigned long address)
3619{
3620	unsigned long key[2];
3621	u32 hash;
3622
3623	if (vma->vm_flags & VM_SHARED) {
3624		key[0] = (unsigned long) mapping;
3625		key[1] = idx;
3626	} else {
3627		key[0] = (unsigned long) mm;
3628		key[1] = address >> huge_page_shift(h);
3629	}
3630
3631	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3632
3633	return hash & (num_fault_mutexes - 1);
3634}
3635#else
3636/*
3637 * For uniprocesor systems we always use a single mutex, so just
3638 * return 0 and avoid the hashing overhead.
3639 */
3640u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3641			    struct vm_area_struct *vma,
3642			    struct address_space *mapping,
3643			    pgoff_t idx, unsigned long address)
3644{
3645	return 0;
3646}
3647#endif
3648
3649int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3650			unsigned long address, unsigned int flags)
3651{
3652	pte_t *ptep, entry;
3653	spinlock_t *ptl;
3654	int ret;
3655	u32 hash;
3656	pgoff_t idx;
3657	struct page *page = NULL;
3658	struct page *pagecache_page = NULL;
3659	struct hstate *h = hstate_vma(vma);
3660	struct address_space *mapping;
3661	int need_wait_lock = 0;
3662
3663	address &= huge_page_mask(h);
3664
3665	ptep = huge_pte_offset(mm, address);
3666	if (ptep) {
3667		entry = huge_ptep_get(ptep);
3668		if (unlikely(is_hugetlb_entry_migration(entry))) {
3669			migration_entry_wait_huge(vma, mm, ptep);
3670			return 0;
3671		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3672			return VM_FAULT_HWPOISON_LARGE |
3673				VM_FAULT_SET_HINDEX(hstate_index(h));
3674	} else {
3675		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3676		if (!ptep)
3677			return VM_FAULT_OOM;
3678	}
3679
 
 
 
 
3680	mapping = vma->vm_file->f_mapping;
3681	idx = vma_hugecache_offset(h, vma, address);
3682
3683	/*
3684	 * Serialize hugepage allocation and instantiation, so that we don't
3685	 * get spurious allocation failures if two CPUs race to instantiate
3686	 * the same page in the page cache.
3687	 */
3688	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3689	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3690
3691	entry = huge_ptep_get(ptep);
3692	if (huge_pte_none(entry)) {
3693		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3694		goto out_mutex;
3695	}
3696
3697	ret = 0;
3698
3699	/*
3700	 * entry could be a migration/hwpoison entry at this point, so this
3701	 * check prevents the kernel from going below assuming that we have
3702	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3703	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3704	 * handle it.
3705	 */
3706	if (!pte_present(entry))
3707		goto out_mutex;
3708
3709	/*
3710	 * If we are going to COW the mapping later, we examine the pending
3711	 * reservations for this page now. This will ensure that any
3712	 * allocations necessary to record that reservation occur outside the
3713	 * spinlock. For private mappings, we also lookup the pagecache
3714	 * page now as it is used to determine if a reservation has been
3715	 * consumed.
3716	 */
3717	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3718		if (vma_needs_reservation(h, vma, address) < 0) {
3719			ret = VM_FAULT_OOM;
3720			goto out_mutex;
3721		}
3722		/* Just decrements count, does not deallocate */
3723		vma_end_reservation(h, vma, address);
3724
3725		if (!(vma->vm_flags & VM_MAYSHARE))
3726			pagecache_page = hugetlbfs_pagecache_page(h,
3727								vma, address);
3728	}
3729
3730	ptl = huge_pte_lock(h, mm, ptep);
3731
3732	/* Check for a racing update before calling hugetlb_cow */
3733	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3734		goto out_ptl;
3735
3736	/*
3737	 * hugetlb_cow() requires page locks of pte_page(entry) and
3738	 * pagecache_page, so here we need take the former one
3739	 * when page != pagecache_page or !pagecache_page.
 
 
3740	 */
3741	page = pte_page(entry);
 
3742	if (page != pagecache_page)
3743		if (!trylock_page(page)) {
3744			need_wait_lock = 1;
3745			goto out_ptl;
3746		}
 
 
 
3747
3748	get_page(page);
3749
3750	if (flags & FAULT_FLAG_WRITE) {
3751		if (!huge_pte_write(entry)) {
3752			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3753					pagecache_page, ptl);
3754			goto out_put_page;
3755		}
3756		entry = huge_pte_mkdirty(entry);
3757	}
3758	entry = pte_mkyoung(entry);
3759	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3760						flags & FAULT_FLAG_WRITE))
3761		update_mmu_cache(vma, address, ptep);
3762out_put_page:
3763	if (page != pagecache_page)
3764		unlock_page(page);
3765	put_page(page);
3766out_ptl:
3767	spin_unlock(ptl);
3768
3769	if (pagecache_page) {
3770		unlock_page(pagecache_page);
3771		put_page(pagecache_page);
3772	}
 
 
 
 
3773out_mutex:
3774	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3775	/*
3776	 * Generally it's safe to hold refcount during waiting page lock. But
3777	 * here we just wait to defer the next page fault to avoid busy loop and
3778	 * the page is not used after unlocked before returning from the current
3779	 * page fault. So we are safe from accessing freed page, even if we wait
3780	 * here without taking refcount.
3781	 */
3782	if (need_wait_lock)
3783		wait_on_page_locked(page);
3784	return ret;
3785}
3786
3787long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3788			 struct page **pages, struct vm_area_struct **vmas,
3789			 unsigned long *position, unsigned long *nr_pages,
3790			 long i, unsigned int flags)
3791{
3792	unsigned long pfn_offset;
3793	unsigned long vaddr = *position;
3794	unsigned long remainder = *nr_pages;
3795	struct hstate *h = hstate_vma(vma);
3796
3797	while (vaddr < vma->vm_end && remainder) {
3798		pte_t *pte;
3799		spinlock_t *ptl = NULL;
3800		int absent;
3801		struct page *page;
3802
3803		/*
3804		 * If we have a pending SIGKILL, don't keep faulting pages and
3805		 * potentially allocating memory.
3806		 */
3807		if (unlikely(fatal_signal_pending(current))) {
3808			remainder = 0;
3809			break;
3810		}
3811
3812		/*
3813		 * Some archs (sparc64, sh*) have multiple pte_ts to
3814		 * each hugepage.  We have to make sure we get the
3815		 * first, for the page indexing below to work.
3816		 *
3817		 * Note that page table lock is not held when pte is null.
3818		 */
3819		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3820		if (pte)
3821			ptl = huge_pte_lock(h, mm, pte);
3822		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3823
3824		/*
3825		 * When coredumping, it suits get_dump_page if we just return
3826		 * an error where there's an empty slot with no huge pagecache
3827		 * to back it.  This way, we avoid allocating a hugepage, and
3828		 * the sparse dumpfile avoids allocating disk blocks, but its
3829		 * huge holes still show up with zeroes where they need to be.
3830		 */
3831		if (absent && (flags & FOLL_DUMP) &&
3832		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3833			if (pte)
3834				spin_unlock(ptl);
3835			remainder = 0;
3836			break;
3837		}
3838
3839		/*
3840		 * We need call hugetlb_fault for both hugepages under migration
3841		 * (in which case hugetlb_fault waits for the migration,) and
3842		 * hwpoisoned hugepages (in which case we need to prevent the
3843		 * caller from accessing to them.) In order to do this, we use
3844		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3845		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3846		 * both cases, and because we can't follow correct pages
3847		 * directly from any kind of swap entries.
3848		 */
3849		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3850		    ((flags & FOLL_WRITE) &&
3851		      !huge_pte_write(huge_ptep_get(pte)))) {
3852			int ret;
3853
3854			if (pte)
3855				spin_unlock(ptl);
3856			ret = hugetlb_fault(mm, vma, vaddr,
3857				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3858			if (!(ret & VM_FAULT_ERROR))
3859				continue;
3860
3861			remainder = 0;
3862			break;
3863		}
3864
3865		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3866		page = pte_page(huge_ptep_get(pte));
3867same_page:
3868		if (pages) {
3869			pages[i] = mem_map_offset(page, pfn_offset);
3870			get_page(pages[i]);
3871		}
3872
3873		if (vmas)
3874			vmas[i] = vma;
3875
3876		vaddr += PAGE_SIZE;
3877		++pfn_offset;
3878		--remainder;
3879		++i;
3880		if (vaddr < vma->vm_end && remainder &&
3881				pfn_offset < pages_per_huge_page(h)) {
3882			/*
3883			 * We use pfn_offset to avoid touching the pageframes
3884			 * of this compound page.
3885			 */
3886			goto same_page;
3887		}
3888		spin_unlock(ptl);
3889	}
3890	*nr_pages = remainder;
3891	*position = vaddr;
3892
3893	return i ? i : -EFAULT;
3894}
3895
3896unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3897		unsigned long address, unsigned long end, pgprot_t newprot)
3898{
3899	struct mm_struct *mm = vma->vm_mm;
3900	unsigned long start = address;
3901	pte_t *ptep;
3902	pte_t pte;
3903	struct hstate *h = hstate_vma(vma);
3904	unsigned long pages = 0;
3905
3906	BUG_ON(address >= end);
3907	flush_cache_range(vma, address, end);
3908
3909	mmu_notifier_invalidate_range_start(mm, start, end);
3910	i_mmap_lock_write(vma->vm_file->f_mapping);
3911	for (; address < end; address += huge_page_size(h)) {
3912		spinlock_t *ptl;
3913		ptep = huge_pte_offset(mm, address);
3914		if (!ptep)
3915			continue;
3916		ptl = huge_pte_lock(h, mm, ptep);
3917		if (huge_pmd_unshare(mm, &address, ptep)) {
3918			pages++;
3919			spin_unlock(ptl);
3920			continue;
3921		}
3922		pte = huge_ptep_get(ptep);
3923		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3924			spin_unlock(ptl);
3925			continue;
3926		}
3927		if (unlikely(is_hugetlb_entry_migration(pte))) {
3928			swp_entry_t entry = pte_to_swp_entry(pte);
3929
3930			if (is_write_migration_entry(entry)) {
3931				pte_t newpte;
3932
3933				make_migration_entry_read(&entry);
3934				newpte = swp_entry_to_pte(entry);
3935				set_huge_pte_at(mm, address, ptep, newpte);
3936				pages++;
3937			}
3938			spin_unlock(ptl);
3939			continue;
3940		}
3941		if (!huge_pte_none(pte)) {
3942			pte = huge_ptep_get_and_clear(mm, address, ptep);
3943			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3944			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3945			set_huge_pte_at(mm, address, ptep, pte);
3946			pages++;
3947		}
3948		spin_unlock(ptl);
3949	}
3950	/*
3951	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3952	 * may have cleared our pud entry and done put_page on the page table:
3953	 * once we release i_mmap_rwsem, another task can do the final put_page
3954	 * and that page table be reused and filled with junk.
3955	 */
3956	flush_tlb_range(vma, start, end);
3957	mmu_notifier_invalidate_range(mm, start, end);
3958	i_mmap_unlock_write(vma->vm_file->f_mapping);
3959	mmu_notifier_invalidate_range_end(mm, start, end);
3960
3961	return pages << h->order;
3962}
3963
3964int hugetlb_reserve_pages(struct inode *inode,
3965					long from, long to,
3966					struct vm_area_struct *vma,
3967					vm_flags_t vm_flags)
3968{
3969	long ret, chg;
3970	struct hstate *h = hstate_inode(inode);
3971	struct hugepage_subpool *spool = subpool_inode(inode);
3972	struct resv_map *resv_map;
3973	long gbl_reserve;
3974
3975	/*
3976	 * Only apply hugepage reservation if asked. At fault time, an
3977	 * attempt will be made for VM_NORESERVE to allocate a page
3978	 * without using reserves
3979	 */
3980	if (vm_flags & VM_NORESERVE)
3981		return 0;
3982
3983	/*
3984	 * Shared mappings base their reservation on the number of pages that
3985	 * are already allocated on behalf of the file. Private mappings need
3986	 * to reserve the full area even if read-only as mprotect() may be
3987	 * called to make the mapping read-write. Assume !vma is a shm mapping
3988	 */
3989	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3990		resv_map = inode_resv_map(inode);
3991
3992		chg = region_chg(resv_map, from, to);
3993
3994	} else {
3995		resv_map = resv_map_alloc();
3996		if (!resv_map)
3997			return -ENOMEM;
3998
3999		chg = to - from;
4000
4001		set_vma_resv_map(vma, resv_map);
4002		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4003	}
4004
4005	if (chg < 0) {
4006		ret = chg;
4007		goto out_err;
4008	}
4009
4010	/*
4011	 * There must be enough pages in the subpool for the mapping. If
4012	 * the subpool has a minimum size, there may be some global
4013	 * reservations already in place (gbl_reserve).
4014	 */
4015	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4016	if (gbl_reserve < 0) {
4017		ret = -ENOSPC;
4018		goto out_err;
4019	}
4020
4021	/*
4022	 * Check enough hugepages are available for the reservation.
4023	 * Hand the pages back to the subpool if there are not
4024	 */
4025	ret = hugetlb_acct_memory(h, gbl_reserve);
4026	if (ret < 0) {
4027		/* put back original number of pages, chg */
4028		(void)hugepage_subpool_put_pages(spool, chg);
4029		goto out_err;
4030	}
4031
4032	/*
4033	 * Account for the reservations made. Shared mappings record regions
4034	 * that have reservations as they are shared by multiple VMAs.
4035	 * When the last VMA disappears, the region map says how much
4036	 * the reservation was and the page cache tells how much of
4037	 * the reservation was consumed. Private mappings are per-VMA and
4038	 * only the consumed reservations are tracked. When the VMA
4039	 * disappears, the original reservation is the VMA size and the
4040	 * consumed reservations are stored in the map. Hence, nothing
4041	 * else has to be done for private mappings here
4042	 */
4043	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044		long add = region_add(resv_map, from, to);
4045
4046		if (unlikely(chg > add)) {
4047			/*
4048			 * pages in this range were added to the reserve
4049			 * map between region_chg and region_add.  This
4050			 * indicates a race with alloc_huge_page.  Adjust
4051			 * the subpool and reserve counts modified above
4052			 * based on the difference.
4053			 */
4054			long rsv_adjust;
4055
4056			rsv_adjust = hugepage_subpool_put_pages(spool,
4057								chg - add);
4058			hugetlb_acct_memory(h, -rsv_adjust);
4059		}
4060	}
4061	return 0;
4062out_err:
4063	if (!vma || vma->vm_flags & VM_MAYSHARE)
4064		region_abort(resv_map, from, to);
4065	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4066		kref_put(&resv_map->refs, resv_map_release);
4067	return ret;
4068}
4069
4070long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4071								long freed)
4072{
4073	struct hstate *h = hstate_inode(inode);
4074	struct resv_map *resv_map = inode_resv_map(inode);
4075	long chg = 0;
4076	struct hugepage_subpool *spool = subpool_inode(inode);
4077	long gbl_reserve;
4078
4079	if (resv_map) {
4080		chg = region_del(resv_map, start, end);
4081		/*
4082		 * region_del() can fail in the rare case where a region
4083		 * must be split and another region descriptor can not be
4084		 * allocated.  If end == LONG_MAX, it will not fail.
4085		 */
4086		if (chg < 0)
4087			return chg;
4088	}
4089
 
 
4090	spin_lock(&inode->i_lock);
4091	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4092	spin_unlock(&inode->i_lock);
4093
4094	/*
4095	 * If the subpool has a minimum size, the number of global
4096	 * reservations to be released may be adjusted.
4097	 */
4098	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4099	hugetlb_acct_memory(h, -gbl_reserve);
4100
4101	return 0;
4102}
4103
4104#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4105static unsigned long page_table_shareable(struct vm_area_struct *svma,
4106				struct vm_area_struct *vma,
4107				unsigned long addr, pgoff_t idx)
4108{
4109	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4110				svma->vm_start;
4111	unsigned long sbase = saddr & PUD_MASK;
4112	unsigned long s_end = sbase + PUD_SIZE;
4113
4114	/* Allow segments to share if only one is marked locked */
4115	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4116	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4117
4118	/*
4119	 * match the virtual addresses, permission and the alignment of the
4120	 * page table page.
4121	 */
4122	if (pmd_index(addr) != pmd_index(saddr) ||
4123	    vm_flags != svm_flags ||
4124	    sbase < svma->vm_start || svma->vm_end < s_end)
4125		return 0;
4126
4127	return saddr;
4128}
4129
4130static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4131{
4132	unsigned long base = addr & PUD_MASK;
4133	unsigned long end = base + PUD_SIZE;
4134
4135	/*
4136	 * check on proper vm_flags and page table alignment
4137	 */
4138	if (vma->vm_flags & VM_MAYSHARE &&
4139	    vma->vm_start <= base && end <= vma->vm_end)
4140		return true;
4141	return false;
4142}
4143
4144/*
4145 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4146 * and returns the corresponding pte. While this is not necessary for the
4147 * !shared pmd case because we can allocate the pmd later as well, it makes the
4148 * code much cleaner. pmd allocation is essential for the shared case because
4149 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4150 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4151 * bad pmd for sharing.
4152 */
4153pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4154{
4155	struct vm_area_struct *vma = find_vma(mm, addr);
4156	struct address_space *mapping = vma->vm_file->f_mapping;
4157	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4158			vma->vm_pgoff;
4159	struct vm_area_struct *svma;
4160	unsigned long saddr;
4161	pte_t *spte = NULL;
4162	pte_t *pte;
4163	spinlock_t *ptl;
4164
4165	if (!vma_shareable(vma, addr))
4166		return (pte_t *)pmd_alloc(mm, pud, addr);
4167
4168	i_mmap_lock_write(mapping);
4169	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4170		if (svma == vma)
4171			continue;
4172
4173		saddr = page_table_shareable(svma, vma, addr, idx);
4174		if (saddr) {
4175			spte = huge_pte_offset(svma->vm_mm, saddr);
4176			if (spte) {
4177				mm_inc_nr_pmds(mm);
4178				get_page(virt_to_page(spte));
4179				break;
4180			}
4181		}
4182	}
4183
4184	if (!spte)
4185		goto out;
4186
4187	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4188	spin_lock(ptl);
4189	if (pud_none(*pud)) {
4190		pud_populate(mm, pud,
4191				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4192	} else {
4193		put_page(virt_to_page(spte));
4194		mm_inc_nr_pmds(mm);
4195	}
4196	spin_unlock(ptl);
4197out:
4198	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4199	i_mmap_unlock_write(mapping);
4200	return pte;
4201}
4202
4203/*
4204 * unmap huge page backed by shared pte.
4205 *
4206 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4207 * indicated by page_count > 1, unmap is achieved by clearing pud and
4208 * decrementing the ref count. If count == 1, the pte page is not shared.
4209 *
4210 * called with page table lock held.
4211 *
4212 * returns: 1 successfully unmapped a shared pte page
4213 *	    0 the underlying pte page is not shared, or it is the last user
4214 */
4215int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4216{
4217	pgd_t *pgd = pgd_offset(mm, *addr);
4218	pud_t *pud = pud_offset(pgd, *addr);
4219
4220	BUG_ON(page_count(virt_to_page(ptep)) == 0);
4221	if (page_count(virt_to_page(ptep)) == 1)
4222		return 0;
4223
4224	pud_clear(pud);
4225	put_page(virt_to_page(ptep));
4226	mm_dec_nr_pmds(mm);
4227	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4228	return 1;
4229}
4230#define want_pmd_share()	(1)
4231#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4232pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4233{
4234	return NULL;
4235}
4236
4237int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4238{
4239	return 0;
4240}
4241#define want_pmd_share()	(0)
4242#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4243
4244#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4245pte_t *huge_pte_alloc(struct mm_struct *mm,
4246			unsigned long addr, unsigned long sz)
4247{
4248	pgd_t *pgd;
4249	pud_t *pud;
4250	pte_t *pte = NULL;
4251
4252	pgd = pgd_offset(mm, addr);
4253	pud = pud_alloc(mm, pgd, addr);
4254	if (pud) {
4255		if (sz == PUD_SIZE) {
4256			pte = (pte_t *)pud;
4257		} else {
4258			BUG_ON(sz != PMD_SIZE);
4259			if (want_pmd_share() && pud_none(*pud))
4260				pte = huge_pmd_share(mm, addr, pud);
4261			else
4262				pte = (pte_t *)pmd_alloc(mm, pud, addr);
4263		}
4264	}
4265	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4266
4267	return pte;
4268}
4269
4270pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4271{
4272	pgd_t *pgd;
4273	pud_t *pud;
4274	pmd_t *pmd = NULL;
4275
4276	pgd = pgd_offset(mm, addr);
4277	if (pgd_present(*pgd)) {
4278		pud = pud_offset(pgd, addr);
4279		if (pud_present(*pud)) {
4280			if (pud_huge(*pud))
4281				return (pte_t *)pud;
4282			pmd = pmd_offset(pud, addr);
4283		}
4284	}
4285	return (pte_t *) pmd;
4286}
4287
4288#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4289
4290/*
4291 * These functions are overwritable if your architecture needs its own
4292 * behavior.
4293 */
4294struct page * __weak
4295follow_huge_addr(struct mm_struct *mm, unsigned long address,
4296			      int write)
4297{
4298	return ERR_PTR(-EINVAL);
 
 
 
 
 
4299}
4300
4301struct page * __weak
4302follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4303		pmd_t *pmd, int flags)
4304{
4305	struct page *page = NULL;
4306	spinlock_t *ptl;
4307retry:
4308	ptl = pmd_lockptr(mm, pmd);
4309	spin_lock(ptl);
4310	/*
4311	 * make sure that the address range covered by this pmd is not
4312	 * unmapped from other threads.
4313	 */
4314	if (!pmd_huge(*pmd))
4315		goto out;
4316	if (pmd_present(*pmd)) {
4317		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4318		if (flags & FOLL_GET)
4319			get_page(page);
4320	} else {
4321		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4322			spin_unlock(ptl);
4323			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
4324			goto retry;
4325		}
4326		/*
4327		 * hwpoisoned entry is treated as no_page_table in
4328		 * follow_page_mask().
4329		 */
4330	}
4331out:
4332	spin_unlock(ptl);
4333	return page;
4334}
4335
 
 
 
4336struct page * __weak
4337follow_huge_pud(struct mm_struct *mm, unsigned long address,
4338		pud_t *pud, int flags)
4339{
4340	if (flags & FOLL_GET)
4341		return NULL;
4342
4343	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4344}
4345
 
 
4346#ifdef CONFIG_MEMORY_FAILURE
4347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4348/*
4349 * This function is called from memory failure code.
4350 * Assume the caller holds page lock of the head page.
4351 */
4352int dequeue_hwpoisoned_huge_page(struct page *hpage)
4353{
4354	struct hstate *h = page_hstate(hpage);
4355	int nid = page_to_nid(hpage);
4356	int ret = -EBUSY;
4357
4358	spin_lock(&hugetlb_lock);
4359	/*
4360	 * Just checking !page_huge_active is not enough, because that could be
4361	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4362	 */
4363	if (!page_huge_active(hpage) && !page_count(hpage)) {
4364		/*
4365		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4366		 * but dangling hpage->lru can trigger list-debug warnings
4367		 * (this happens when we call unpoison_memory() on it),
4368		 * so let it point to itself with list_del_init().
4369		 */
4370		list_del_init(&hpage->lru);
4371		set_page_refcounted(hpage);
4372		h->free_huge_pages--;
4373		h->free_huge_pages_node[nid]--;
4374		ret = 0;
4375	}
4376	spin_unlock(&hugetlb_lock);
4377	return ret;
4378}
4379#endif
4380
4381bool isolate_huge_page(struct page *page, struct list_head *list)
4382{
4383	bool ret = true;
4384
4385	VM_BUG_ON_PAGE(!PageHead(page), page);
 
 
4386	spin_lock(&hugetlb_lock);
4387	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4388		ret = false;
4389		goto unlock;
4390	}
4391	clear_page_huge_active(page);
4392	list_move_tail(&page->lru, list);
4393unlock:
4394	spin_unlock(&hugetlb_lock);
4395	return ret;
4396}
4397
4398void putback_active_hugepage(struct page *page)
4399{
4400	VM_BUG_ON_PAGE(!PageHead(page), page);
4401	spin_lock(&hugetlb_lock);
4402	set_page_huge_active(page);
4403	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4404	spin_unlock(&hugetlb_lock);
4405	put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4406}
v3.15
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/module.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/bootmem.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/rmap.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/page-isolation.h>
  26#include <linux/jhash.h>
  27
  28#include <asm/page.h>
  29#include <asm/pgtable.h>
  30#include <asm/tlb.h>
  31
  32#include <linux/io.h>
  33#include <linux/hugetlb.h>
  34#include <linux/hugetlb_cgroup.h>
  35#include <linux/node.h>
  36#include "internal.h"
  37
  38const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  39unsigned long hugepages_treat_as_movable;
  40
  41int hugetlb_max_hstate __read_mostly;
  42unsigned int default_hstate_idx;
  43struct hstate hstates[HUGE_MAX_HSTATE];
 
 
 
 
 
  44
  45__initdata LIST_HEAD(huge_boot_pages);
  46
  47/* for command line parsing */
  48static struct hstate * __initdata parsed_hstate;
  49static unsigned long __initdata default_hstate_max_huge_pages;
  50static unsigned long __initdata default_hstate_size;
  51
  52/*
  53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  54 * free_huge_pages, and surplus_huge_pages.
  55 */
  56DEFINE_SPINLOCK(hugetlb_lock);
  57
  58/*
  59 * Serializes faults on the same logical page.  This is used to
  60 * prevent spurious OOMs when the hugepage pool is fully utilized.
  61 */
  62static int num_fault_mutexes;
  63static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
 
 
 
  64
  65static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  66{
  67	bool free = (spool->count == 0) && (spool->used_hpages == 0);
  68
  69	spin_unlock(&spool->lock);
  70
  71	/* If no pages are used, and no other handles to the subpool
  72	 * remain, free the subpool the subpool remain */
  73	if (free)
 
 
 
 
  74		kfree(spool);
 
  75}
  76
  77struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
 
  78{
  79	struct hugepage_subpool *spool;
  80
  81	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
  82	if (!spool)
  83		return NULL;
  84
  85	spin_lock_init(&spool->lock);
  86	spool->count = 1;
  87	spool->max_hpages = nr_blocks;
  88	spool->used_hpages = 0;
 
 
 
 
 
 
 
  89
  90	return spool;
  91}
  92
  93void hugepage_put_subpool(struct hugepage_subpool *spool)
  94{
  95	spin_lock(&spool->lock);
  96	BUG_ON(!spool->count);
  97	spool->count--;
  98	unlock_or_release_subpool(spool);
  99}
 100
 101static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 
 
 
 
 
 
 
 
 102				      long delta)
 103{
 104	int ret = 0;
 105
 106	if (!spool)
 107		return 0;
 108
 109	spin_lock(&spool->lock);
 110	if ((spool->used_hpages + delta) <= spool->max_hpages) {
 111		spool->used_hpages += delta;
 112	} else {
 113		ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114	}
 
 
 115	spin_unlock(&spool->lock);
 116
 117	return ret;
 118}
 119
 120static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 
 
 
 
 
 
 121				       long delta)
 122{
 
 
 123	if (!spool)
 124		return;
 125
 126	spin_lock(&spool->lock);
 127	spool->used_hpages -= delta;
 128	/* If hugetlbfs_put_super couldn't free spool due to
 129	* an outstanding quota reference, free it now. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130	unlock_or_release_subpool(spool);
 
 
 131}
 132
 133static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 134{
 135	return HUGETLBFS_SB(inode->i_sb)->spool;
 136}
 137
 138static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 139{
 140	return subpool_inode(file_inode(vma->vm_file));
 141}
 142
 143/*
 144 * Region tracking -- allows tracking of reservations and instantiated pages
 145 *                    across the pages in a mapping.
 146 *
 147 * The region data structures are embedded into a resv_map and
 148 * protected by a resv_map's lock
 
 
 
 
 
 
 
 
 
 
 
 
 149 */
 150struct file_region {
 151	struct list_head link;
 152	long from;
 153	long to;
 154};
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156static long region_add(struct resv_map *resv, long f, long t)
 157{
 158	struct list_head *head = &resv->regions;
 159	struct file_region *rg, *nrg, *trg;
 
 160
 161	spin_lock(&resv->lock);
 162	/* Locate the region we are either in or before. */
 163	list_for_each_entry(rg, head, link)
 164		if (f <= rg->to)
 165			break;
 166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167	/* Round our left edge to the current segment if it encloses us. */
 168	if (f > rg->from)
 169		f = rg->from;
 170
 171	/* Check for and consume any regions we now overlap with. */
 172	nrg = rg;
 173	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 174		if (&rg->link == head)
 175			break;
 176		if (rg->from > t)
 177			break;
 178
 179		/* If this area reaches higher then extend our area to
 180		 * include it completely.  If this is not the first area
 181		 * which we intend to reuse, free it. */
 182		if (rg->to > t)
 183			t = rg->to;
 184		if (rg != nrg) {
 
 
 
 
 
 185			list_del(&rg->link);
 186			kfree(rg);
 187		}
 188	}
 
 
 189	nrg->from = f;
 
 190	nrg->to = t;
 
 
 
 191	spin_unlock(&resv->lock);
 192	return 0;
 
 193}
 194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195static long region_chg(struct resv_map *resv, long f, long t)
 196{
 197	struct list_head *head = &resv->regions;
 198	struct file_region *rg, *nrg = NULL;
 199	long chg = 0;
 200
 201retry:
 202	spin_lock(&resv->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203	/* Locate the region we are before or in. */
 204	list_for_each_entry(rg, head, link)
 205		if (f <= rg->to)
 206			break;
 207
 208	/* If we are below the current region then a new region is required.
 209	 * Subtle, allocate a new region at the position but make it zero
 210	 * size such that we can guarantee to record the reservation. */
 211	if (&rg->link == head || t < rg->from) {
 212		if (!nrg) {
 
 213			spin_unlock(&resv->lock);
 214			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 215			if (!nrg)
 216				return -ENOMEM;
 217
 218			nrg->from = f;
 219			nrg->to   = f;
 220			INIT_LIST_HEAD(&nrg->link);
 221			goto retry;
 222		}
 223
 224		list_add(&nrg->link, rg->link.prev);
 225		chg = t - f;
 226		goto out_nrg;
 227	}
 228
 229	/* Round our left edge to the current segment if it encloses us. */
 230	if (f > rg->from)
 231		f = rg->from;
 232	chg = t - f;
 233
 234	/* Check for and consume any regions we now overlap with. */
 235	list_for_each_entry(rg, rg->link.prev, link) {
 236		if (&rg->link == head)
 237			break;
 238		if (rg->from > t)
 239			goto out;
 240
 241		/* We overlap with this area, if it extends further than
 242		 * us then we must extend ourselves.  Account for its
 243		 * existing reservation. */
 244		if (rg->to > t) {
 245			chg += rg->to - t;
 246			t = rg->to;
 247		}
 248		chg -= rg->to - rg->from;
 249	}
 250
 251out:
 252	spin_unlock(&resv->lock);
 253	/*  We already know we raced and no longer need the new region */
 254	kfree(nrg);
 255	return chg;
 256out_nrg:
 257	spin_unlock(&resv->lock);
 258	return chg;
 259}
 260
 261static long region_truncate(struct resv_map *resv, long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262{
 263	struct list_head *head = &resv->regions;
 264	struct file_region *rg, *trg;
 265	long chg = 0;
 
 266
 
 267	spin_lock(&resv->lock);
 268	/* Locate the region we are either in or before. */
 269	list_for_each_entry(rg, head, link)
 270		if (end <= rg->to)
 
 
 
 
 
 
 
 
 
 271			break;
 272	if (&rg->link == head)
 273		goto out;
 274
 275	/* If we are in the middle of a region then adjust it. */
 276	if (end > rg->from) {
 277		chg = rg->to - end;
 278		rg->to = end;
 279		rg = list_entry(rg->link.next, typeof(*rg), link);
 280	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281
 282	/* Drop any remaining regions. */
 283	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 284		if (&rg->link == head)
 285			break;
 286		chg += rg->to - rg->from;
 287		list_del(&rg->link);
 288		kfree(rg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 289	}
 290
 291out:
 292	spin_unlock(&resv->lock);
 293	return chg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294}
 295
 
 
 
 
 296static long region_count(struct resv_map *resv, long f, long t)
 297{
 298	struct list_head *head = &resv->regions;
 299	struct file_region *rg;
 300	long chg = 0;
 301
 302	spin_lock(&resv->lock);
 303	/* Locate each segment we overlap with, and count that overlap. */
 304	list_for_each_entry(rg, head, link) {
 305		long seg_from;
 306		long seg_to;
 307
 308		if (rg->to <= f)
 309			continue;
 310		if (rg->from >= t)
 311			break;
 312
 313		seg_from = max(rg->from, f);
 314		seg_to = min(rg->to, t);
 315
 316		chg += seg_to - seg_from;
 317	}
 318	spin_unlock(&resv->lock);
 319
 320	return chg;
 321}
 322
 323/*
 324 * Convert the address within this vma to the page offset within
 325 * the mapping, in pagecache page units; huge pages here.
 326 */
 327static pgoff_t vma_hugecache_offset(struct hstate *h,
 328			struct vm_area_struct *vma, unsigned long address)
 329{
 330	return ((address - vma->vm_start) >> huge_page_shift(h)) +
 331			(vma->vm_pgoff >> huge_page_order(h));
 332}
 333
 334pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 335				     unsigned long address)
 336{
 337	return vma_hugecache_offset(hstate_vma(vma), vma, address);
 338}
 339
 340/*
 341 * Return the size of the pages allocated when backing a VMA. In the majority
 342 * cases this will be same size as used by the page table entries.
 343 */
 344unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 345{
 346	struct hstate *hstate;
 347
 348	if (!is_vm_hugetlb_page(vma))
 349		return PAGE_SIZE;
 350
 351	hstate = hstate_vma(vma);
 352
 353	return 1UL << huge_page_shift(hstate);
 354}
 355EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 356
 357/*
 358 * Return the page size being used by the MMU to back a VMA. In the majority
 359 * of cases, the page size used by the kernel matches the MMU size. On
 360 * architectures where it differs, an architecture-specific version of this
 361 * function is required.
 362 */
 363#ifndef vma_mmu_pagesize
 364unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 365{
 366	return vma_kernel_pagesize(vma);
 367}
 368#endif
 369
 370/*
 371 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 372 * bits of the reservation map pointer, which are always clear due to
 373 * alignment.
 374 */
 375#define HPAGE_RESV_OWNER    (1UL << 0)
 376#define HPAGE_RESV_UNMAPPED (1UL << 1)
 377#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 378
 379/*
 380 * These helpers are used to track how many pages are reserved for
 381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 382 * is guaranteed to have their future faults succeed.
 383 *
 384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 385 * the reserve counters are updated with the hugetlb_lock held. It is safe
 386 * to reset the VMA at fork() time as it is not in use yet and there is no
 387 * chance of the global counters getting corrupted as a result of the values.
 388 *
 389 * The private mapping reservation is represented in a subtly different
 390 * manner to a shared mapping.  A shared mapping has a region map associated
 391 * with the underlying file, this region map represents the backing file
 392 * pages which have ever had a reservation assigned which this persists even
 393 * after the page is instantiated.  A private mapping has a region map
 394 * associated with the original mmap which is attached to all VMAs which
 395 * reference it, this region map represents those offsets which have consumed
 396 * reservation ie. where pages have been instantiated.
 397 */
 398static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 399{
 400	return (unsigned long)vma->vm_private_data;
 401}
 402
 403static void set_vma_private_data(struct vm_area_struct *vma,
 404							unsigned long value)
 405{
 406	vma->vm_private_data = (void *)value;
 407}
 408
 409struct resv_map *resv_map_alloc(void)
 410{
 411	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 412	if (!resv_map)
 
 
 
 
 413		return NULL;
 
 414
 415	kref_init(&resv_map->refs);
 416	spin_lock_init(&resv_map->lock);
 417	INIT_LIST_HEAD(&resv_map->regions);
 418
 
 
 
 
 
 
 419	return resv_map;
 420}
 421
 422void resv_map_release(struct kref *ref)
 423{
 424	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 
 
 425
 426	/* Clear out any active regions before we release the map. */
 427	region_truncate(resv_map, 0);
 
 
 
 
 
 
 
 
 
 428	kfree(resv_map);
 429}
 430
 431static inline struct resv_map *inode_resv_map(struct inode *inode)
 432{
 433	return inode->i_mapping->private_data;
 434}
 435
 436static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 437{
 438	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 439	if (vma->vm_flags & VM_MAYSHARE) {
 440		struct address_space *mapping = vma->vm_file->f_mapping;
 441		struct inode *inode = mapping->host;
 442
 443		return inode_resv_map(inode);
 444
 445	} else {
 446		return (struct resv_map *)(get_vma_private_data(vma) &
 447							~HPAGE_RESV_MASK);
 448	}
 449}
 450
 451static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 452{
 453	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 454	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 455
 456	set_vma_private_data(vma, (get_vma_private_data(vma) &
 457				HPAGE_RESV_MASK) | (unsigned long)map);
 458}
 459
 460static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 461{
 462	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 463	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
 464
 465	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 466}
 467
 468static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 469{
 470	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 471
 472	return (get_vma_private_data(vma) & flag) != 0;
 473}
 474
 475/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 476void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 477{
 478	VM_BUG_ON(!is_vm_hugetlb_page(vma));
 479	if (!(vma->vm_flags & VM_MAYSHARE))
 480		vma->vm_private_data = (void *)0;
 481}
 482
 483/* Returns true if the VMA has associated reserve pages */
 484static int vma_has_reserves(struct vm_area_struct *vma, long chg)
 485{
 486	if (vma->vm_flags & VM_NORESERVE) {
 487		/*
 488		 * This address is already reserved by other process(chg == 0),
 489		 * so, we should decrement reserved count. Without decrementing,
 490		 * reserve count remains after releasing inode, because this
 491		 * allocated page will go into page cache and is regarded as
 492		 * coming from reserved pool in releasing step.  Currently, we
 493		 * don't have any other solution to deal with this situation
 494		 * properly, so add work-around here.
 495		 */
 496		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 497			return 1;
 498		else
 499			return 0;
 500	}
 501
 502	/* Shared mappings always use reserves */
 503	if (vma->vm_flags & VM_MAYSHARE)
 504		return 1;
 
 
 
 
 
 
 
 
 
 
 
 505
 506	/*
 507	 * Only the process that called mmap() has reserves for
 508	 * private mappings.
 509	 */
 510	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
 511		return 1;
 512
 513	return 0;
 514}
 515
 516static void enqueue_huge_page(struct hstate *h, struct page *page)
 517{
 518	int nid = page_to_nid(page);
 519	list_move(&page->lru, &h->hugepage_freelists[nid]);
 520	h->free_huge_pages++;
 521	h->free_huge_pages_node[nid]++;
 522}
 523
 524static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
 525{
 526	struct page *page;
 527
 528	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 529		if (!is_migrate_isolate_page(page))
 530			break;
 531	/*
 532	 * if 'non-isolated free hugepage' not found on the list,
 533	 * the allocation fails.
 534	 */
 535	if (&h->hugepage_freelists[nid] == &page->lru)
 536		return NULL;
 537	list_move(&page->lru, &h->hugepage_activelist);
 538	set_page_refcounted(page);
 539	h->free_huge_pages--;
 540	h->free_huge_pages_node[nid]--;
 541	return page;
 542}
 543
 544/* Movability of hugepages depends on migration support. */
 545static inline gfp_t htlb_alloc_mask(struct hstate *h)
 546{
 547	if (hugepages_treat_as_movable || hugepage_migration_support(h))
 548		return GFP_HIGHUSER_MOVABLE;
 549	else
 550		return GFP_HIGHUSER;
 551}
 552
 553static struct page *dequeue_huge_page_vma(struct hstate *h,
 554				struct vm_area_struct *vma,
 555				unsigned long address, int avoid_reserve,
 556				long chg)
 557{
 558	struct page *page = NULL;
 559	struct mempolicy *mpol;
 560	nodemask_t *nodemask;
 561	struct zonelist *zonelist;
 562	struct zone *zone;
 563	struct zoneref *z;
 564	unsigned int cpuset_mems_cookie;
 565
 566	/*
 567	 * A child process with MAP_PRIVATE mappings created by their parent
 568	 * have no page reserves. This check ensures that reservations are
 569	 * not "stolen". The child may still get SIGKILLed
 570	 */
 571	if (!vma_has_reserves(vma, chg) &&
 572			h->free_huge_pages - h->resv_huge_pages == 0)
 573		goto err;
 574
 575	/* If reserves cannot be used, ensure enough pages are in the pool */
 576	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 577		goto err;
 578
 579retry_cpuset:
 580	cpuset_mems_cookie = read_mems_allowed_begin();
 581	zonelist = huge_zonelist(vma, address,
 582					htlb_alloc_mask(h), &mpol, &nodemask);
 583
 584	for_each_zone_zonelist_nodemask(zone, z, zonelist,
 585						MAX_NR_ZONES - 1, nodemask) {
 586		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
 587			page = dequeue_huge_page_node(h, zone_to_nid(zone));
 588			if (page) {
 589				if (avoid_reserve)
 590					break;
 591				if (!vma_has_reserves(vma, chg))
 592					break;
 593
 594				SetPagePrivate(page);
 595				h->resv_huge_pages--;
 596				break;
 597			}
 598		}
 599	}
 600
 601	mpol_cond_put(mpol);
 602	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
 603		goto retry_cpuset;
 604	return page;
 605
 606err:
 607	return NULL;
 608}
 609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610static void update_and_free_page(struct hstate *h, struct page *page)
 611{
 612	int i;
 613
 614	VM_BUG_ON(h->order >= MAX_ORDER);
 
 615
 616	h->nr_huge_pages--;
 617	h->nr_huge_pages_node[page_to_nid(page)]--;
 618	for (i = 0; i < pages_per_huge_page(h); i++) {
 619		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
 620				1 << PG_referenced | 1 << PG_dirty |
 621				1 << PG_active | 1 << PG_reserved |
 622				1 << PG_private | 1 << PG_writeback);
 623	}
 624	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
 625	set_compound_page_dtor(page, NULL);
 626	set_page_refcounted(page);
 627	arch_release_hugepage(page);
 628	__free_pages(page, huge_page_order(h));
 
 
 
 
 629}
 630
 631struct hstate *size_to_hstate(unsigned long size)
 632{
 633	struct hstate *h;
 634
 635	for_each_hstate(h) {
 636		if (huge_page_size(h) == size)
 637			return h;
 638	}
 639	return NULL;
 640}
 641
 642static void free_huge_page(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643{
 644	/*
 645	 * Can't pass hstate in here because it is called from the
 646	 * compound page destructor.
 647	 */
 648	struct hstate *h = page_hstate(page);
 649	int nid = page_to_nid(page);
 650	struct hugepage_subpool *spool =
 651		(struct hugepage_subpool *)page_private(page);
 652	bool restore_reserve;
 653
 654	set_page_private(page, 0);
 655	page->mapping = NULL;
 656	BUG_ON(page_count(page));
 657	BUG_ON(page_mapcount(page));
 658	restore_reserve = PagePrivate(page);
 659	ClearPagePrivate(page);
 660
 
 
 
 
 
 
 
 
 661	spin_lock(&hugetlb_lock);
 
 662	hugetlb_cgroup_uncharge_page(hstate_index(h),
 663				     pages_per_huge_page(h), page);
 664	if (restore_reserve)
 665		h->resv_huge_pages++;
 666
 667	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
 668		/* remove the page from active list */
 669		list_del(&page->lru);
 670		update_and_free_page(h, page);
 671		h->surplus_huge_pages--;
 672		h->surplus_huge_pages_node[nid]--;
 673	} else {
 674		arch_clear_hugepage_flags(page);
 675		enqueue_huge_page(h, page);
 676	}
 677	spin_unlock(&hugetlb_lock);
 678	hugepage_subpool_put_pages(spool, 1);
 679}
 680
 681static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
 682{
 683	INIT_LIST_HEAD(&page->lru);
 684	set_compound_page_dtor(page, free_huge_page);
 685	spin_lock(&hugetlb_lock);
 686	set_hugetlb_cgroup(page, NULL);
 687	h->nr_huge_pages++;
 688	h->nr_huge_pages_node[nid]++;
 689	spin_unlock(&hugetlb_lock);
 690	put_page(page); /* free it into the hugepage allocator */
 691}
 692
 693static void __init prep_compound_gigantic_page(struct page *page,
 694					       unsigned long order)
 695{
 696	int i;
 697	int nr_pages = 1 << order;
 698	struct page *p = page + 1;
 699
 700	/* we rely on prep_new_huge_page to set the destructor */
 701	set_compound_order(page, order);
 
 702	__SetPageHead(page);
 703	__ClearPageReserved(page);
 704	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
 705		__SetPageTail(p);
 706		/*
 707		 * For gigantic hugepages allocated through bootmem at
 708		 * boot, it's safer to be consistent with the not-gigantic
 709		 * hugepages and clear the PG_reserved bit from all tail pages
 710		 * too.  Otherwse drivers using get_user_pages() to access tail
 711		 * pages may get the reference counting wrong if they see
 712		 * PG_reserved set on a tail page (despite the head page not
 713		 * having PG_reserved set).  Enforcing this consistency between
 714		 * head and tail pages allows drivers to optimize away a check
 715		 * on the head page when they need know if put_page() is needed
 716		 * after get_user_pages().
 717		 */
 718		__ClearPageReserved(p);
 719		set_page_count(p, 0);
 720		p->first_page = page;
 721	}
 
 722}
 723
 724/*
 725 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 726 * transparent huge pages.  See the PageTransHuge() documentation for more
 727 * details.
 728 */
 729int PageHuge(struct page *page)
 730{
 731	if (!PageCompound(page))
 732		return 0;
 733
 734	page = compound_head(page);
 735	return get_compound_page_dtor(page) == free_huge_page;
 736}
 737EXPORT_SYMBOL_GPL(PageHuge);
 738
 739/*
 740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 741 * normal or transparent huge pages.
 742 */
 743int PageHeadHuge(struct page *page_head)
 744{
 745	if (!PageHead(page_head))
 746		return 0;
 747
 748	return get_compound_page_dtor(page_head) == free_huge_page;
 749}
 750
 751pgoff_t __basepage_index(struct page *page)
 752{
 753	struct page *page_head = compound_head(page);
 754	pgoff_t index = page_index(page_head);
 755	unsigned long compound_idx;
 756
 757	if (!PageHuge(page_head))
 758		return page_index(page);
 759
 760	if (compound_order(page_head) >= MAX_ORDER)
 761		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
 762	else
 763		compound_idx = page - page_head;
 764
 765	return (index << compound_order(page_head)) + compound_idx;
 766}
 767
 768static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
 769{
 770	struct page *page;
 771
 772	if (h->order >= MAX_ORDER)
 773		return NULL;
 774
 775	page = alloc_pages_exact_node(nid,
 776		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
 777						__GFP_REPEAT|__GFP_NOWARN,
 778		huge_page_order(h));
 779	if (page) {
 780		if (arch_prepare_hugepage(page)) {
 781			__free_pages(page, huge_page_order(h));
 782			return NULL;
 783		}
 784		prep_new_huge_page(h, page, nid);
 785	}
 786
 787	return page;
 788}
 789
 790/*
 791 * common helper functions for hstate_next_node_to_{alloc|free}.
 792 * We may have allocated or freed a huge page based on a different
 793 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 794 * be outside of *nodes_allowed.  Ensure that we use an allowed
 795 * node for alloc or free.
 796 */
 797static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 798{
 799	nid = next_node(nid, *nodes_allowed);
 800	if (nid == MAX_NUMNODES)
 801		nid = first_node(*nodes_allowed);
 802	VM_BUG_ON(nid >= MAX_NUMNODES);
 803
 804	return nid;
 805}
 806
 807static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 808{
 809	if (!node_isset(nid, *nodes_allowed))
 810		nid = next_node_allowed(nid, nodes_allowed);
 811	return nid;
 812}
 813
 814/*
 815 * returns the previously saved node ["this node"] from which to
 816 * allocate a persistent huge page for the pool and advance the
 817 * next node from which to allocate, handling wrap at end of node
 818 * mask.
 819 */
 820static int hstate_next_node_to_alloc(struct hstate *h,
 821					nodemask_t *nodes_allowed)
 822{
 823	int nid;
 824
 825	VM_BUG_ON(!nodes_allowed);
 826
 827	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
 828	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
 829
 830	return nid;
 831}
 832
 833/*
 834 * helper for free_pool_huge_page() - return the previously saved
 835 * node ["this node"] from which to free a huge page.  Advance the
 836 * next node id whether or not we find a free huge page to free so
 837 * that the next attempt to free addresses the next node.
 838 */
 839static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
 840{
 841	int nid;
 842
 843	VM_BUG_ON(!nodes_allowed);
 844
 845	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
 846	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
 847
 848	return nid;
 849}
 850
 851#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
 852	for (nr_nodes = nodes_weight(*mask);				\
 853		nr_nodes > 0 &&						\
 854		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
 855		nr_nodes--)
 856
 857#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
 858	for (nr_nodes = nodes_weight(*mask);				\
 859		nr_nodes > 0 &&						\
 860		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
 861		nr_nodes--)
 862
 863static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
 864{
 865	struct page *page;
 866	int nr_nodes, node;
 867	int ret = 0;
 868
 869	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
 870		page = alloc_fresh_huge_page_node(h, node);
 871		if (page) {
 872			ret = 1;
 873			break;
 874		}
 875	}
 876
 877	if (ret)
 878		count_vm_event(HTLB_BUDDY_PGALLOC);
 879	else
 880		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
 881
 882	return ret;
 883}
 884
 885/*
 886 * Free huge page from pool from next node to free.
 887 * Attempt to keep persistent huge pages more or less
 888 * balanced over allowed nodes.
 889 * Called with hugetlb_lock locked.
 890 */
 891static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
 892							 bool acct_surplus)
 893{
 894	int nr_nodes, node;
 895	int ret = 0;
 896
 897	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
 898		/*
 899		 * If we're returning unused surplus pages, only examine
 900		 * nodes with surplus pages.
 901		 */
 902		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
 903		    !list_empty(&h->hugepage_freelists[node])) {
 904			struct page *page =
 905				list_entry(h->hugepage_freelists[node].next,
 906					  struct page, lru);
 907			list_del(&page->lru);
 908			h->free_huge_pages--;
 909			h->free_huge_pages_node[node]--;
 910			if (acct_surplus) {
 911				h->surplus_huge_pages--;
 912				h->surplus_huge_pages_node[node]--;
 913			}
 914			update_and_free_page(h, page);
 915			ret = 1;
 916			break;
 917		}
 918	}
 919
 920	return ret;
 921}
 922
 923/*
 924 * Dissolve a given free hugepage into free buddy pages. This function does
 925 * nothing for in-use (including surplus) hugepages.
 926 */
 927static void dissolve_free_huge_page(struct page *page)
 928{
 929	spin_lock(&hugetlb_lock);
 930	if (PageHuge(page) && !page_count(page)) {
 931		struct hstate *h = page_hstate(page);
 932		int nid = page_to_nid(page);
 933		list_del(&page->lru);
 934		h->free_huge_pages--;
 935		h->free_huge_pages_node[nid]--;
 936		update_and_free_page(h, page);
 937	}
 938	spin_unlock(&hugetlb_lock);
 939}
 940
 941/*
 942 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 943 * make specified memory blocks removable from the system.
 944 * Note that start_pfn should aligned with (minimum) hugepage size.
 945 */
 946void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
 947{
 948	unsigned int order = 8 * sizeof(void *);
 949	unsigned long pfn;
 950	struct hstate *h;
 951
 952	/* Set scan step to minimum hugepage size */
 953	for_each_hstate(h)
 954		if (order > huge_page_order(h))
 955			order = huge_page_order(h);
 956	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
 957	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
 958		dissolve_free_huge_page(pfn_to_page(pfn));
 959}
 960
 961static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962{
 963	struct page *page;
 964	unsigned int r_nid;
 965
 966	if (h->order >= MAX_ORDER)
 967		return NULL;
 968
 969	/*
 
 
 
 
 
 
 
 
 
 970	 * Assume we will successfully allocate the surplus page to
 971	 * prevent racing processes from causing the surplus to exceed
 972	 * overcommit
 973	 *
 974	 * This however introduces a different race, where a process B
 975	 * tries to grow the static hugepage pool while alloc_pages() is
 976	 * called by process A. B will only examine the per-node
 977	 * counters in determining if surplus huge pages can be
 978	 * converted to normal huge pages in adjust_pool_surplus(). A
 979	 * won't be able to increment the per-node counter, until the
 980	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
 981	 * no more huge pages can be converted from surplus to normal
 982	 * state (and doesn't try to convert again). Thus, we have a
 983	 * case where a surplus huge page exists, the pool is grown, and
 984	 * the surplus huge page still exists after, even though it
 985	 * should just have been converted to a normal huge page. This
 986	 * does not leak memory, though, as the hugepage will be freed
 987	 * once it is out of use. It also does not allow the counters to
 988	 * go out of whack in adjust_pool_surplus() as we don't modify
 989	 * the node values until we've gotten the hugepage and only the
 990	 * per-node value is checked there.
 991	 */
 992	spin_lock(&hugetlb_lock);
 993	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
 994		spin_unlock(&hugetlb_lock);
 995		return NULL;
 996	} else {
 997		h->nr_huge_pages++;
 998		h->surplus_huge_pages++;
 999	}
1000	spin_unlock(&hugetlb_lock);
1001
1002	if (nid == NUMA_NO_NODE)
1003		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004				   __GFP_REPEAT|__GFP_NOWARN,
1005				   huge_page_order(h));
1006	else
1007		page = alloc_pages_exact_node(nid,
1008			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1010
1011	if (page && arch_prepare_hugepage(page)) {
1012		__free_pages(page, huge_page_order(h));
1013		page = NULL;
1014	}
1015
1016	spin_lock(&hugetlb_lock);
1017	if (page) {
1018		INIT_LIST_HEAD(&page->lru);
1019		r_nid = page_to_nid(page);
1020		set_compound_page_dtor(page, free_huge_page);
1021		set_hugetlb_cgroup(page, NULL);
1022		/*
1023		 * We incremented the global counters already
1024		 */
1025		h->nr_huge_pages_node[r_nid]++;
1026		h->surplus_huge_pages_node[r_nid]++;
1027		__count_vm_event(HTLB_BUDDY_PGALLOC);
1028	} else {
1029		h->nr_huge_pages--;
1030		h->surplus_huge_pages--;
1031		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032	}
1033	spin_unlock(&hugetlb_lock);
1034
1035	return page;
1036}
1037
1038/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039 * This allocation function is useful in the context where vma is irrelevant.
1040 * E.g. soft-offlining uses this function because it only cares physical
1041 * address of error page.
1042 */
1043struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044{
1045	struct page *page = NULL;
1046
1047	spin_lock(&hugetlb_lock);
1048	if (h->free_huge_pages - h->resv_huge_pages > 0)
1049		page = dequeue_huge_page_node(h, nid);
1050	spin_unlock(&hugetlb_lock);
1051
1052	if (!page)
1053		page = alloc_buddy_huge_page(h, nid);
1054
1055	return page;
1056}
1057
1058/*
1059 * Increase the hugetlb pool such that it can accommodate a reservation
1060 * of size 'delta'.
1061 */
1062static int gather_surplus_pages(struct hstate *h, int delta)
1063{
1064	struct list_head surplus_list;
1065	struct page *page, *tmp;
1066	int ret, i;
1067	int needed, allocated;
1068	bool alloc_ok = true;
1069
1070	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071	if (needed <= 0) {
1072		h->resv_huge_pages += delta;
1073		return 0;
1074	}
1075
1076	allocated = 0;
1077	INIT_LIST_HEAD(&surplus_list);
1078
1079	ret = -ENOMEM;
1080retry:
1081	spin_unlock(&hugetlb_lock);
1082	for (i = 0; i < needed; i++) {
1083		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1084		if (!page) {
1085			alloc_ok = false;
1086			break;
1087		}
1088		list_add(&page->lru, &surplus_list);
1089	}
1090	allocated += i;
1091
1092	/*
1093	 * After retaking hugetlb_lock, we need to recalculate 'needed'
1094	 * because either resv_huge_pages or free_huge_pages may have changed.
1095	 */
1096	spin_lock(&hugetlb_lock);
1097	needed = (h->resv_huge_pages + delta) -
1098			(h->free_huge_pages + allocated);
1099	if (needed > 0) {
1100		if (alloc_ok)
1101			goto retry;
1102		/*
1103		 * We were not able to allocate enough pages to
1104		 * satisfy the entire reservation so we free what
1105		 * we've allocated so far.
1106		 */
1107		goto free;
1108	}
1109	/*
1110	 * The surplus_list now contains _at_least_ the number of extra pages
1111	 * needed to accommodate the reservation.  Add the appropriate number
1112	 * of pages to the hugetlb pool and free the extras back to the buddy
1113	 * allocator.  Commit the entire reservation here to prevent another
1114	 * process from stealing the pages as they are added to the pool but
1115	 * before they are reserved.
1116	 */
1117	needed += allocated;
1118	h->resv_huge_pages += delta;
1119	ret = 0;
1120
1121	/* Free the needed pages to the hugetlb pool */
1122	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123		if ((--needed) < 0)
1124			break;
1125		/*
1126		 * This page is now managed by the hugetlb allocator and has
1127		 * no users -- drop the buddy allocator's reference.
1128		 */
1129		put_page_testzero(page);
1130		VM_BUG_ON_PAGE(page_count(page), page);
1131		enqueue_huge_page(h, page);
1132	}
1133free:
1134	spin_unlock(&hugetlb_lock);
1135
1136	/* Free unnecessary surplus pages to the buddy allocator */
1137	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138		put_page(page);
1139	spin_lock(&hugetlb_lock);
1140
1141	return ret;
1142}
1143
1144/*
1145 * When releasing a hugetlb pool reservation, any surplus pages that were
1146 * allocated to satisfy the reservation must be explicitly freed if they were
1147 * never used.
1148 * Called with hugetlb_lock held.
1149 */
1150static void return_unused_surplus_pages(struct hstate *h,
1151					unsigned long unused_resv_pages)
1152{
1153	unsigned long nr_pages;
1154
1155	/* Uncommit the reservation */
1156	h->resv_huge_pages -= unused_resv_pages;
1157
1158	/* Cannot return gigantic pages currently */
1159	if (h->order >= MAX_ORDER)
1160		return;
1161
1162	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163
1164	/*
1165	 * We want to release as many surplus pages as possible, spread
1166	 * evenly across all nodes with memory. Iterate across these nodes
1167	 * until we can no longer free unreserved surplus pages. This occurs
1168	 * when the nodes with surplus pages have no free pages.
1169	 * free_pool_huge_page() will balance the the freed pages across the
1170	 * on-line nodes with memory and will handle the hstate accounting.
1171	 */
1172	while (nr_pages--) {
1173		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174			break;
1175		cond_resched_lock(&hugetlb_lock);
1176	}
1177}
1178
 
1179/*
1180 * Determine if the huge page at addr within the vma has an associated
1181 * reservation.  Where it does not we will need to logically increase
1182 * reservation and actually increase subpool usage before an allocation
1183 * can occur.  Where any new reservation would be required the
1184 * reservation change is prepared, but not committed.  Once the page
1185 * has been allocated from the subpool and instantiated the change should
1186 * be committed via vma_commit_reservation.  No action is required on
1187 * failure.
 
 
 
 
 
 
 
 
 
1188 */
1189static long vma_needs_reservation(struct hstate *h,
1190			struct vm_area_struct *vma, unsigned long addr)
 
 
 
 
 
 
1191{
1192	struct resv_map *resv;
1193	pgoff_t idx;
1194	long chg;
1195
1196	resv = vma_resv_map(vma);
1197	if (!resv)
1198		return 1;
1199
1200	idx = vma_hugecache_offset(h, vma, addr);
1201	chg = region_chg(resv, idx, idx + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
1202
1203	if (vma->vm_flags & VM_MAYSHARE)
1204		return chg;
1205	else
1206		return chg < 0 ? chg : 0;
1207}
1208static void vma_commit_reservation(struct hstate *h,
 
1209			struct vm_area_struct *vma, unsigned long addr)
1210{
1211	struct resv_map *resv;
1212	pgoff_t idx;
1213
1214	resv = vma_resv_map(vma);
1215	if (!resv)
1216		return;
 
 
1217
1218	idx = vma_hugecache_offset(h, vma, addr);
1219	region_add(resv, idx, idx + 1);
 
 
1220}
1221
1222static struct page *alloc_huge_page(struct vm_area_struct *vma,
1223				    unsigned long addr, int avoid_reserve)
1224{
1225	struct hugepage_subpool *spool = subpool_vma(vma);
1226	struct hstate *h = hstate_vma(vma);
1227	struct page *page;
1228	long chg;
 
1229	int ret, idx;
1230	struct hugetlb_cgroup *h_cg;
1231
1232	idx = hstate_index(h);
1233	/*
 
 
 
 
 
 
 
 
 
1234	 * Processes that did not create the mapping will have no
1235	 * reserves and will not have accounted against subpool
1236	 * limit. Check that the subpool limit can be made before
1237	 * satisfying the allocation MAP_NORESERVE mappings may also
1238	 * need pages and subpool limit allocated allocated if no reserve
1239	 * mapping overlaps.
1240	 */
1241	chg = vma_needs_reservation(h, vma, addr);
1242	if (chg < 0)
1243		return ERR_PTR(-ENOMEM);
1244	if (chg || avoid_reserve)
1245		if (hugepage_subpool_get_pages(spool, 1))
1246			return ERR_PTR(-ENOSPC);
 
 
 
 
 
 
 
 
 
 
 
 
 
1247
1248	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1249	if (ret) {
1250		if (chg || avoid_reserve)
1251			hugepage_subpool_put_pages(spool, 1);
1252		return ERR_PTR(-ENOSPC);
1253	}
1254	spin_lock(&hugetlb_lock);
1255	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
 
 
 
 
 
1256	if (!page) {
1257		spin_unlock(&hugetlb_lock);
1258		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1259		if (!page) {
1260			hugetlb_cgroup_uncharge_cgroup(idx,
1261						       pages_per_huge_page(h),
1262						       h_cg);
1263			if (chg || avoid_reserve)
1264				hugepage_subpool_put_pages(spool, 1);
1265			return ERR_PTR(-ENOSPC);
1266		}
1267		spin_lock(&hugetlb_lock);
1268		list_move(&page->lru, &h->hugepage_activelist);
1269		/* Fall through */
1270	}
1271	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1272	spin_unlock(&hugetlb_lock);
1273
1274	set_page_private(page, (unsigned long)spool);
1275
1276	vma_commit_reservation(h, vma, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277	return page;
 
 
 
 
 
 
 
 
1278}
1279
1280/*
1281 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1282 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1283 * where no ERR_VALUE is expected to be returned.
1284 */
1285struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1286				unsigned long addr, int avoid_reserve)
1287{
1288	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1289	if (IS_ERR(page))
1290		page = NULL;
1291	return page;
1292}
1293
1294int __weak alloc_bootmem_huge_page(struct hstate *h)
1295{
1296	struct huge_bootmem_page *m;
1297	int nr_nodes, node;
1298
1299	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1300		void *addr;
1301
1302		addr = memblock_virt_alloc_try_nid_nopanic(
1303				huge_page_size(h), huge_page_size(h),
1304				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1305		if (addr) {
1306			/*
1307			 * Use the beginning of the huge page to store the
1308			 * huge_bootmem_page struct (until gather_bootmem
1309			 * puts them into the mem_map).
1310			 */
1311			m = addr;
1312			goto found;
1313		}
1314	}
1315	return 0;
1316
1317found:
1318	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1319	/* Put them into a private list first because mem_map is not up yet */
1320	list_add(&m->list, &huge_boot_pages);
1321	m->hstate = h;
1322	return 1;
1323}
1324
1325static void __init prep_compound_huge_page(struct page *page, int order)
 
1326{
1327	if (unlikely(order > (MAX_ORDER - 1)))
1328		prep_compound_gigantic_page(page, order);
1329	else
1330		prep_compound_page(page, order);
1331}
1332
1333/* Put bootmem huge pages into the standard lists after mem_map is up */
1334static void __init gather_bootmem_prealloc(void)
1335{
1336	struct huge_bootmem_page *m;
1337
1338	list_for_each_entry(m, &huge_boot_pages, list) {
1339		struct hstate *h = m->hstate;
1340		struct page *page;
1341
1342#ifdef CONFIG_HIGHMEM
1343		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1344		memblock_free_late(__pa(m),
1345				   sizeof(struct huge_bootmem_page));
1346#else
1347		page = virt_to_page(m);
1348#endif
1349		WARN_ON(page_count(page) != 1);
1350		prep_compound_huge_page(page, h->order);
1351		WARN_ON(PageReserved(page));
1352		prep_new_huge_page(h, page, page_to_nid(page));
1353		/*
1354		 * If we had gigantic hugepages allocated at boot time, we need
1355		 * to restore the 'stolen' pages to totalram_pages in order to
1356		 * fix confusing memory reports from free(1) and another
1357		 * side-effects, like CommitLimit going negative.
1358		 */
1359		if (h->order > (MAX_ORDER - 1))
1360			adjust_managed_page_count(page, 1 << h->order);
1361	}
1362}
1363
1364static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1365{
1366	unsigned long i;
1367
1368	for (i = 0; i < h->max_huge_pages; ++i) {
1369		if (h->order >= MAX_ORDER) {
1370			if (!alloc_bootmem_huge_page(h))
1371				break;
1372		} else if (!alloc_fresh_huge_page(h,
1373					 &node_states[N_MEMORY]))
1374			break;
1375	}
1376	h->max_huge_pages = i;
1377}
1378
1379static void __init hugetlb_init_hstates(void)
1380{
1381	struct hstate *h;
1382
1383	for_each_hstate(h) {
 
 
 
1384		/* oversize hugepages were init'ed in early boot */
1385		if (h->order < MAX_ORDER)
1386			hugetlb_hstate_alloc_pages(h);
1387	}
 
1388}
1389
1390static char * __init memfmt(char *buf, unsigned long n)
1391{
1392	if (n >= (1UL << 30))
1393		sprintf(buf, "%lu GB", n >> 30);
1394	else if (n >= (1UL << 20))
1395		sprintf(buf, "%lu MB", n >> 20);
1396	else
1397		sprintf(buf, "%lu KB", n >> 10);
1398	return buf;
1399}
1400
1401static void __init report_hugepages(void)
1402{
1403	struct hstate *h;
1404
1405	for_each_hstate(h) {
1406		char buf[32];
1407		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1408			memfmt(buf, huge_page_size(h)),
1409			h->free_huge_pages);
1410	}
1411}
1412
1413#ifdef CONFIG_HIGHMEM
1414static void try_to_free_low(struct hstate *h, unsigned long count,
1415						nodemask_t *nodes_allowed)
1416{
1417	int i;
1418
1419	if (h->order >= MAX_ORDER)
1420		return;
1421
1422	for_each_node_mask(i, *nodes_allowed) {
1423		struct page *page, *next;
1424		struct list_head *freel = &h->hugepage_freelists[i];
1425		list_for_each_entry_safe(page, next, freel, lru) {
1426			if (count >= h->nr_huge_pages)
1427				return;
1428			if (PageHighMem(page))
1429				continue;
1430			list_del(&page->lru);
1431			update_and_free_page(h, page);
1432			h->free_huge_pages--;
1433			h->free_huge_pages_node[page_to_nid(page)]--;
1434		}
1435	}
1436}
1437#else
1438static inline void try_to_free_low(struct hstate *h, unsigned long count,
1439						nodemask_t *nodes_allowed)
1440{
1441}
1442#endif
1443
1444/*
1445 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1446 * balanced by operating on them in a round-robin fashion.
1447 * Returns 1 if an adjustment was made.
1448 */
1449static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1450				int delta)
1451{
1452	int nr_nodes, node;
1453
1454	VM_BUG_ON(delta != -1 && delta != 1);
1455
1456	if (delta < 0) {
1457		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1458			if (h->surplus_huge_pages_node[node])
1459				goto found;
1460		}
1461	} else {
1462		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1463			if (h->surplus_huge_pages_node[node] <
1464					h->nr_huge_pages_node[node])
1465				goto found;
1466		}
1467	}
1468	return 0;
1469
1470found:
1471	h->surplus_huge_pages += delta;
1472	h->surplus_huge_pages_node[node] += delta;
1473	return 1;
1474}
1475
1476#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1477static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1478						nodemask_t *nodes_allowed)
1479{
1480	unsigned long min_count, ret;
1481
1482	if (h->order >= MAX_ORDER)
1483		return h->max_huge_pages;
1484
1485	/*
1486	 * Increase the pool size
1487	 * First take pages out of surplus state.  Then make up the
1488	 * remaining difference by allocating fresh huge pages.
1489	 *
1490	 * We might race with alloc_buddy_huge_page() here and be unable
1491	 * to convert a surplus huge page to a normal huge page. That is
1492	 * not critical, though, it just means the overall size of the
1493	 * pool might be one hugepage larger than it needs to be, but
1494	 * within all the constraints specified by the sysctls.
1495	 */
1496	spin_lock(&hugetlb_lock);
1497	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1498		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1499			break;
1500	}
1501
1502	while (count > persistent_huge_pages(h)) {
1503		/*
1504		 * If this allocation races such that we no longer need the
1505		 * page, free_huge_page will handle it by freeing the page
1506		 * and reducing the surplus.
1507		 */
1508		spin_unlock(&hugetlb_lock);
1509		ret = alloc_fresh_huge_page(h, nodes_allowed);
 
 
 
1510		spin_lock(&hugetlb_lock);
1511		if (!ret)
1512			goto out;
1513
1514		/* Bail for signals. Probably ctrl-c from user */
1515		if (signal_pending(current))
1516			goto out;
1517	}
1518
1519	/*
1520	 * Decrease the pool size
1521	 * First return free pages to the buddy allocator (being careful
1522	 * to keep enough around to satisfy reservations).  Then place
1523	 * pages into surplus state as needed so the pool will shrink
1524	 * to the desired size as pages become free.
1525	 *
1526	 * By placing pages into the surplus state independent of the
1527	 * overcommit value, we are allowing the surplus pool size to
1528	 * exceed overcommit. There are few sane options here. Since
1529	 * alloc_buddy_huge_page() is checking the global counter,
1530	 * though, we'll note that we're not allowed to exceed surplus
1531	 * and won't grow the pool anywhere else. Not until one of the
1532	 * sysctls are changed, or the surplus pages go out of use.
1533	 */
1534	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1535	min_count = max(count, min_count);
1536	try_to_free_low(h, min_count, nodes_allowed);
1537	while (min_count < persistent_huge_pages(h)) {
1538		if (!free_pool_huge_page(h, nodes_allowed, 0))
1539			break;
1540		cond_resched_lock(&hugetlb_lock);
1541	}
1542	while (count < persistent_huge_pages(h)) {
1543		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1544			break;
1545	}
1546out:
1547	ret = persistent_huge_pages(h);
1548	spin_unlock(&hugetlb_lock);
1549	return ret;
1550}
1551
1552#define HSTATE_ATTR_RO(_name) \
1553	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1554
1555#define HSTATE_ATTR(_name) \
1556	static struct kobj_attribute _name##_attr = \
1557		__ATTR(_name, 0644, _name##_show, _name##_store)
1558
1559static struct kobject *hugepages_kobj;
1560static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1561
1562static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1563
1564static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1565{
1566	int i;
1567
1568	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1569		if (hstate_kobjs[i] == kobj) {
1570			if (nidp)
1571				*nidp = NUMA_NO_NODE;
1572			return &hstates[i];
1573		}
1574
1575	return kobj_to_node_hstate(kobj, nidp);
1576}
1577
1578static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1579					struct kobj_attribute *attr, char *buf)
1580{
1581	struct hstate *h;
1582	unsigned long nr_huge_pages;
1583	int nid;
1584
1585	h = kobj_to_hstate(kobj, &nid);
1586	if (nid == NUMA_NO_NODE)
1587		nr_huge_pages = h->nr_huge_pages;
1588	else
1589		nr_huge_pages = h->nr_huge_pages_node[nid];
1590
1591	return sprintf(buf, "%lu\n", nr_huge_pages);
1592}
1593
1594static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1595			struct kobject *kobj, struct kobj_attribute *attr,
1596			const char *buf, size_t len)
1597{
1598	int err;
1599	int nid;
1600	unsigned long count;
1601	struct hstate *h;
1602	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1603
1604	err = kstrtoul(buf, 10, &count);
1605	if (err)
1606		goto out;
1607
1608	h = kobj_to_hstate(kobj, &nid);
1609	if (h->order >= MAX_ORDER) {
1610		err = -EINVAL;
1611		goto out;
1612	}
1613
1614	if (nid == NUMA_NO_NODE) {
1615		/*
1616		 * global hstate attribute
1617		 */
1618		if (!(obey_mempolicy &&
1619				init_nodemask_of_mempolicy(nodes_allowed))) {
1620			NODEMASK_FREE(nodes_allowed);
1621			nodes_allowed = &node_states[N_MEMORY];
1622		}
1623	} else if (nodes_allowed) {
1624		/*
1625		 * per node hstate attribute: adjust count to global,
1626		 * but restrict alloc/free to the specified node.
1627		 */
1628		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1629		init_nodemask_of_node(nodes_allowed, nid);
1630	} else
1631		nodes_allowed = &node_states[N_MEMORY];
1632
1633	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1634
1635	if (nodes_allowed != &node_states[N_MEMORY])
1636		NODEMASK_FREE(nodes_allowed);
1637
1638	return len;
1639out:
1640	NODEMASK_FREE(nodes_allowed);
1641	return err;
1642}
1643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644static ssize_t nr_hugepages_show(struct kobject *kobj,
1645				       struct kobj_attribute *attr, char *buf)
1646{
1647	return nr_hugepages_show_common(kobj, attr, buf);
1648}
1649
1650static ssize_t nr_hugepages_store(struct kobject *kobj,
1651	       struct kobj_attribute *attr, const char *buf, size_t len)
1652{
1653	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1654}
1655HSTATE_ATTR(nr_hugepages);
1656
1657#ifdef CONFIG_NUMA
1658
1659/*
1660 * hstate attribute for optionally mempolicy-based constraint on persistent
1661 * huge page alloc/free.
1662 */
1663static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1664				       struct kobj_attribute *attr, char *buf)
1665{
1666	return nr_hugepages_show_common(kobj, attr, buf);
1667}
1668
1669static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1670	       struct kobj_attribute *attr, const char *buf, size_t len)
1671{
1672	return nr_hugepages_store_common(true, kobj, attr, buf, len);
1673}
1674HSTATE_ATTR(nr_hugepages_mempolicy);
1675#endif
1676
1677
1678static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1679					struct kobj_attribute *attr, char *buf)
1680{
1681	struct hstate *h = kobj_to_hstate(kobj, NULL);
1682	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1683}
1684
1685static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1686		struct kobj_attribute *attr, const char *buf, size_t count)
1687{
1688	int err;
1689	unsigned long input;
1690	struct hstate *h = kobj_to_hstate(kobj, NULL);
1691
1692	if (h->order >= MAX_ORDER)
1693		return -EINVAL;
1694
1695	err = kstrtoul(buf, 10, &input);
1696	if (err)
1697		return err;
1698
1699	spin_lock(&hugetlb_lock);
1700	h->nr_overcommit_huge_pages = input;
1701	spin_unlock(&hugetlb_lock);
1702
1703	return count;
1704}
1705HSTATE_ATTR(nr_overcommit_hugepages);
1706
1707static ssize_t free_hugepages_show(struct kobject *kobj,
1708					struct kobj_attribute *attr, char *buf)
1709{
1710	struct hstate *h;
1711	unsigned long free_huge_pages;
1712	int nid;
1713
1714	h = kobj_to_hstate(kobj, &nid);
1715	if (nid == NUMA_NO_NODE)
1716		free_huge_pages = h->free_huge_pages;
1717	else
1718		free_huge_pages = h->free_huge_pages_node[nid];
1719
1720	return sprintf(buf, "%lu\n", free_huge_pages);
1721}
1722HSTATE_ATTR_RO(free_hugepages);
1723
1724static ssize_t resv_hugepages_show(struct kobject *kobj,
1725					struct kobj_attribute *attr, char *buf)
1726{
1727	struct hstate *h = kobj_to_hstate(kobj, NULL);
1728	return sprintf(buf, "%lu\n", h->resv_huge_pages);
1729}
1730HSTATE_ATTR_RO(resv_hugepages);
1731
1732static ssize_t surplus_hugepages_show(struct kobject *kobj,
1733					struct kobj_attribute *attr, char *buf)
1734{
1735	struct hstate *h;
1736	unsigned long surplus_huge_pages;
1737	int nid;
1738
1739	h = kobj_to_hstate(kobj, &nid);
1740	if (nid == NUMA_NO_NODE)
1741		surplus_huge_pages = h->surplus_huge_pages;
1742	else
1743		surplus_huge_pages = h->surplus_huge_pages_node[nid];
1744
1745	return sprintf(buf, "%lu\n", surplus_huge_pages);
1746}
1747HSTATE_ATTR_RO(surplus_hugepages);
1748
1749static struct attribute *hstate_attrs[] = {
1750	&nr_hugepages_attr.attr,
1751	&nr_overcommit_hugepages_attr.attr,
1752	&free_hugepages_attr.attr,
1753	&resv_hugepages_attr.attr,
1754	&surplus_hugepages_attr.attr,
1755#ifdef CONFIG_NUMA
1756	&nr_hugepages_mempolicy_attr.attr,
1757#endif
1758	NULL,
1759};
1760
1761static struct attribute_group hstate_attr_group = {
1762	.attrs = hstate_attrs,
1763};
1764
1765static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1766				    struct kobject **hstate_kobjs,
1767				    struct attribute_group *hstate_attr_group)
1768{
1769	int retval;
1770	int hi = hstate_index(h);
1771
1772	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1773	if (!hstate_kobjs[hi])
1774		return -ENOMEM;
1775
1776	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1777	if (retval)
1778		kobject_put(hstate_kobjs[hi]);
1779
1780	return retval;
1781}
1782
1783static void __init hugetlb_sysfs_init(void)
1784{
1785	struct hstate *h;
1786	int err;
1787
1788	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1789	if (!hugepages_kobj)
1790		return;
1791
1792	for_each_hstate(h) {
1793		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1794					 hstate_kobjs, &hstate_attr_group);
1795		if (err)
1796			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1797	}
1798}
1799
1800#ifdef CONFIG_NUMA
1801
1802/*
1803 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1804 * with node devices in node_devices[] using a parallel array.  The array
1805 * index of a node device or _hstate == node id.
1806 * This is here to avoid any static dependency of the node device driver, in
1807 * the base kernel, on the hugetlb module.
1808 */
1809struct node_hstate {
1810	struct kobject		*hugepages_kobj;
1811	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
1812};
1813struct node_hstate node_hstates[MAX_NUMNODES];
1814
1815/*
1816 * A subset of global hstate attributes for node devices
1817 */
1818static struct attribute *per_node_hstate_attrs[] = {
1819	&nr_hugepages_attr.attr,
1820	&free_hugepages_attr.attr,
1821	&surplus_hugepages_attr.attr,
1822	NULL,
1823};
1824
1825static struct attribute_group per_node_hstate_attr_group = {
1826	.attrs = per_node_hstate_attrs,
1827};
1828
1829/*
1830 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1831 * Returns node id via non-NULL nidp.
1832 */
1833static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1834{
1835	int nid;
1836
1837	for (nid = 0; nid < nr_node_ids; nid++) {
1838		struct node_hstate *nhs = &node_hstates[nid];
1839		int i;
1840		for (i = 0; i < HUGE_MAX_HSTATE; i++)
1841			if (nhs->hstate_kobjs[i] == kobj) {
1842				if (nidp)
1843					*nidp = nid;
1844				return &hstates[i];
1845			}
1846	}
1847
1848	BUG();
1849	return NULL;
1850}
1851
1852/*
1853 * Unregister hstate attributes from a single node device.
1854 * No-op if no hstate attributes attached.
1855 */
1856static void hugetlb_unregister_node(struct node *node)
1857{
1858	struct hstate *h;
1859	struct node_hstate *nhs = &node_hstates[node->dev.id];
1860
1861	if (!nhs->hugepages_kobj)
1862		return;		/* no hstate attributes */
1863
1864	for_each_hstate(h) {
1865		int idx = hstate_index(h);
1866		if (nhs->hstate_kobjs[idx]) {
1867			kobject_put(nhs->hstate_kobjs[idx]);
1868			nhs->hstate_kobjs[idx] = NULL;
1869		}
1870	}
1871
1872	kobject_put(nhs->hugepages_kobj);
1873	nhs->hugepages_kobj = NULL;
1874}
1875
1876/*
1877 * hugetlb module exit:  unregister hstate attributes from node devices
1878 * that have them.
1879 */
1880static void hugetlb_unregister_all_nodes(void)
1881{
1882	int nid;
1883
1884	/*
1885	 * disable node device registrations.
1886	 */
1887	register_hugetlbfs_with_node(NULL, NULL);
1888
1889	/*
1890	 * remove hstate attributes from any nodes that have them.
1891	 */
1892	for (nid = 0; nid < nr_node_ids; nid++)
1893		hugetlb_unregister_node(node_devices[nid]);
1894}
1895
1896/*
1897 * Register hstate attributes for a single node device.
1898 * No-op if attributes already registered.
1899 */
1900static void hugetlb_register_node(struct node *node)
1901{
1902	struct hstate *h;
1903	struct node_hstate *nhs = &node_hstates[node->dev.id];
1904	int err;
1905
1906	if (nhs->hugepages_kobj)
1907		return;		/* already allocated */
1908
1909	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1910							&node->dev.kobj);
1911	if (!nhs->hugepages_kobj)
1912		return;
1913
1914	for_each_hstate(h) {
1915		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1916						nhs->hstate_kobjs,
1917						&per_node_hstate_attr_group);
1918		if (err) {
1919			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1920				h->name, node->dev.id);
1921			hugetlb_unregister_node(node);
1922			break;
1923		}
1924	}
1925}
1926
1927/*
1928 * hugetlb init time:  register hstate attributes for all registered node
1929 * devices of nodes that have memory.  All on-line nodes should have
1930 * registered their associated device by this time.
1931 */
1932static void hugetlb_register_all_nodes(void)
1933{
1934	int nid;
1935
1936	for_each_node_state(nid, N_MEMORY) {
1937		struct node *node = node_devices[nid];
1938		if (node->dev.id == nid)
1939			hugetlb_register_node(node);
1940	}
1941
1942	/*
1943	 * Let the node device driver know we're here so it can
1944	 * [un]register hstate attributes on node hotplug.
1945	 */
1946	register_hugetlbfs_with_node(hugetlb_register_node,
1947				     hugetlb_unregister_node);
1948}
1949#else	/* !CONFIG_NUMA */
1950
1951static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1952{
1953	BUG();
1954	if (nidp)
1955		*nidp = -1;
1956	return NULL;
1957}
1958
1959static void hugetlb_unregister_all_nodes(void) { }
1960
1961static void hugetlb_register_all_nodes(void) { }
1962
1963#endif
1964
1965static void __exit hugetlb_exit(void)
1966{
1967	struct hstate *h;
1968
1969	hugetlb_unregister_all_nodes();
1970
1971	for_each_hstate(h) {
1972		kobject_put(hstate_kobjs[hstate_index(h)]);
1973	}
1974
1975	kobject_put(hugepages_kobj);
1976	kfree(htlb_fault_mutex_table);
1977}
1978module_exit(hugetlb_exit);
1979
1980static int __init hugetlb_init(void)
1981{
1982	int i;
1983
1984	if (!hugepages_supported())
1985		return 0;
1986
1987	if (!size_to_hstate(default_hstate_size)) {
1988		default_hstate_size = HPAGE_SIZE;
1989		if (!size_to_hstate(default_hstate_size))
1990			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1991	}
1992	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1993	if (default_hstate_max_huge_pages)
1994		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
 
 
1995
1996	hugetlb_init_hstates();
1997	gather_bootmem_prealloc();
1998	report_hugepages();
1999
2000	hugetlb_sysfs_init();
2001	hugetlb_register_all_nodes();
2002	hugetlb_cgroup_file_init();
2003
2004#ifdef CONFIG_SMP
2005	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2006#else
2007	num_fault_mutexes = 1;
2008#endif
2009	htlb_fault_mutex_table =
2010		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2011	BUG_ON(!htlb_fault_mutex_table);
2012
2013	for (i = 0; i < num_fault_mutexes; i++)
2014		mutex_init(&htlb_fault_mutex_table[i]);
2015	return 0;
2016}
2017module_init(hugetlb_init);
2018
2019/* Should be called on processing a hugepagesz=... option */
2020void __init hugetlb_add_hstate(unsigned order)
2021{
2022	struct hstate *h;
2023	unsigned long i;
2024
2025	if (size_to_hstate(PAGE_SIZE << order)) {
2026		pr_warning("hugepagesz= specified twice, ignoring\n");
2027		return;
2028	}
2029	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2030	BUG_ON(order == 0);
2031	h = &hstates[hugetlb_max_hstate++];
2032	h->order = order;
2033	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2034	h->nr_huge_pages = 0;
2035	h->free_huge_pages = 0;
2036	for (i = 0; i < MAX_NUMNODES; ++i)
2037		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2038	INIT_LIST_HEAD(&h->hugepage_activelist);
2039	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2040	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2041	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2042					huge_page_size(h)/1024);
2043
2044	parsed_hstate = h;
2045}
2046
2047static int __init hugetlb_nrpages_setup(char *s)
2048{
2049	unsigned long *mhp;
2050	static unsigned long *last_mhp;
2051
2052	/*
2053	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2054	 * so this hugepages= parameter goes to the "default hstate".
2055	 */
2056	if (!hugetlb_max_hstate)
2057		mhp = &default_hstate_max_huge_pages;
2058	else
2059		mhp = &parsed_hstate->max_huge_pages;
2060
2061	if (mhp == last_mhp) {
2062		pr_warning("hugepages= specified twice without "
2063			   "interleaving hugepagesz=, ignoring\n");
2064		return 1;
2065	}
2066
2067	if (sscanf(s, "%lu", mhp) <= 0)
2068		*mhp = 0;
2069
2070	/*
2071	 * Global state is always initialized later in hugetlb_init.
2072	 * But we need to allocate >= MAX_ORDER hstates here early to still
2073	 * use the bootmem allocator.
2074	 */
2075	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2076		hugetlb_hstate_alloc_pages(parsed_hstate);
2077
2078	last_mhp = mhp;
2079
2080	return 1;
2081}
2082__setup("hugepages=", hugetlb_nrpages_setup);
2083
2084static int __init hugetlb_default_setup(char *s)
2085{
2086	default_hstate_size = memparse(s, &s);
2087	return 1;
2088}
2089__setup("default_hugepagesz=", hugetlb_default_setup);
2090
2091static unsigned int cpuset_mems_nr(unsigned int *array)
2092{
2093	int node;
2094	unsigned int nr = 0;
2095
2096	for_each_node_mask(node, cpuset_current_mems_allowed)
2097		nr += array[node];
2098
2099	return nr;
2100}
2101
2102#ifdef CONFIG_SYSCTL
2103static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2104			 struct ctl_table *table, int write,
2105			 void __user *buffer, size_t *length, loff_t *ppos)
2106{
2107	struct hstate *h = &default_hstate;
2108	unsigned long tmp;
2109	int ret;
2110
2111	if (!hugepages_supported())
2112		return -ENOTSUPP;
2113
2114	tmp = h->max_huge_pages;
2115
2116	if (write && h->order >= MAX_ORDER)
2117		return -EINVAL;
2118
2119	table->data = &tmp;
2120	table->maxlen = sizeof(unsigned long);
2121	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2122	if (ret)
2123		goto out;
2124
2125	if (write) {
2126		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2127						GFP_KERNEL | __GFP_NORETRY);
2128		if (!(obey_mempolicy &&
2129			       init_nodemask_of_mempolicy(nodes_allowed))) {
2130			NODEMASK_FREE(nodes_allowed);
2131			nodes_allowed = &node_states[N_MEMORY];
2132		}
2133		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2134
2135		if (nodes_allowed != &node_states[N_MEMORY])
2136			NODEMASK_FREE(nodes_allowed);
2137	}
2138out:
2139	return ret;
2140}
2141
2142int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2143			  void __user *buffer, size_t *length, loff_t *ppos)
2144{
2145
2146	return hugetlb_sysctl_handler_common(false, table, write,
2147							buffer, length, ppos);
2148}
2149
2150#ifdef CONFIG_NUMA
2151int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2152			  void __user *buffer, size_t *length, loff_t *ppos)
2153{
2154	return hugetlb_sysctl_handler_common(true, table, write,
2155							buffer, length, ppos);
2156}
2157#endif /* CONFIG_NUMA */
2158
2159int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2160			void __user *buffer,
2161			size_t *length, loff_t *ppos)
2162{
2163	struct hstate *h = &default_hstate;
2164	unsigned long tmp;
2165	int ret;
2166
2167	if (!hugepages_supported())
2168		return -ENOTSUPP;
2169
2170	tmp = h->nr_overcommit_huge_pages;
2171
2172	if (write && h->order >= MAX_ORDER)
2173		return -EINVAL;
2174
2175	table->data = &tmp;
2176	table->maxlen = sizeof(unsigned long);
2177	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2178	if (ret)
2179		goto out;
2180
2181	if (write) {
2182		spin_lock(&hugetlb_lock);
2183		h->nr_overcommit_huge_pages = tmp;
2184		spin_unlock(&hugetlb_lock);
2185	}
2186out:
2187	return ret;
2188}
2189
2190#endif /* CONFIG_SYSCTL */
2191
2192void hugetlb_report_meminfo(struct seq_file *m)
2193{
2194	struct hstate *h = &default_hstate;
2195	if (!hugepages_supported())
2196		return;
2197	seq_printf(m,
2198			"HugePages_Total:   %5lu\n"
2199			"HugePages_Free:    %5lu\n"
2200			"HugePages_Rsvd:    %5lu\n"
2201			"HugePages_Surp:    %5lu\n"
2202			"Hugepagesize:   %8lu kB\n",
2203			h->nr_huge_pages,
2204			h->free_huge_pages,
2205			h->resv_huge_pages,
2206			h->surplus_huge_pages,
2207			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2208}
2209
2210int hugetlb_report_node_meminfo(int nid, char *buf)
2211{
2212	struct hstate *h = &default_hstate;
2213	if (!hugepages_supported())
2214		return 0;
2215	return sprintf(buf,
2216		"Node %d HugePages_Total: %5u\n"
2217		"Node %d HugePages_Free:  %5u\n"
2218		"Node %d HugePages_Surp:  %5u\n",
2219		nid, h->nr_huge_pages_node[nid],
2220		nid, h->free_huge_pages_node[nid],
2221		nid, h->surplus_huge_pages_node[nid]);
2222}
2223
2224void hugetlb_show_meminfo(void)
2225{
2226	struct hstate *h;
2227	int nid;
2228
2229	if (!hugepages_supported())
2230		return;
2231
2232	for_each_node_state(nid, N_MEMORY)
2233		for_each_hstate(h)
2234			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2235				nid,
2236				h->nr_huge_pages_node[nid],
2237				h->free_huge_pages_node[nid],
2238				h->surplus_huge_pages_node[nid],
2239				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2240}
2241
 
 
 
 
 
 
2242/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2243unsigned long hugetlb_total_pages(void)
2244{
2245	struct hstate *h;
2246	unsigned long nr_total_pages = 0;
2247
2248	for_each_hstate(h)
2249		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2250	return nr_total_pages;
2251}
2252
2253static int hugetlb_acct_memory(struct hstate *h, long delta)
2254{
2255	int ret = -ENOMEM;
2256
2257	spin_lock(&hugetlb_lock);
2258	/*
2259	 * When cpuset is configured, it breaks the strict hugetlb page
2260	 * reservation as the accounting is done on a global variable. Such
2261	 * reservation is completely rubbish in the presence of cpuset because
2262	 * the reservation is not checked against page availability for the
2263	 * current cpuset. Application can still potentially OOM'ed by kernel
2264	 * with lack of free htlb page in cpuset that the task is in.
2265	 * Attempt to enforce strict accounting with cpuset is almost
2266	 * impossible (or too ugly) because cpuset is too fluid that
2267	 * task or memory node can be dynamically moved between cpusets.
2268	 *
2269	 * The change of semantics for shared hugetlb mapping with cpuset is
2270	 * undesirable. However, in order to preserve some of the semantics,
2271	 * we fall back to check against current free page availability as
2272	 * a best attempt and hopefully to minimize the impact of changing
2273	 * semantics that cpuset has.
2274	 */
2275	if (delta > 0) {
2276		if (gather_surplus_pages(h, delta) < 0)
2277			goto out;
2278
2279		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2280			return_unused_surplus_pages(h, delta);
2281			goto out;
2282		}
2283	}
2284
2285	ret = 0;
2286	if (delta < 0)
2287		return_unused_surplus_pages(h, (unsigned long) -delta);
2288
2289out:
2290	spin_unlock(&hugetlb_lock);
2291	return ret;
2292}
2293
2294static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2295{
2296	struct resv_map *resv = vma_resv_map(vma);
2297
2298	/*
2299	 * This new VMA should share its siblings reservation map if present.
2300	 * The VMA will only ever have a valid reservation map pointer where
2301	 * it is being copied for another still existing VMA.  As that VMA
2302	 * has a reference to the reservation map it cannot disappear until
2303	 * after this open call completes.  It is therefore safe to take a
2304	 * new reference here without additional locking.
2305	 */
2306	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2307		kref_get(&resv->refs);
2308}
2309
2310static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2311{
2312	struct hstate *h = hstate_vma(vma);
2313	struct resv_map *resv = vma_resv_map(vma);
2314	struct hugepage_subpool *spool = subpool_vma(vma);
2315	unsigned long reserve, start, end;
 
2316
2317	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2318		return;
2319
2320	start = vma_hugecache_offset(h, vma, vma->vm_start);
2321	end = vma_hugecache_offset(h, vma, vma->vm_end);
2322
2323	reserve = (end - start) - region_count(resv, start, end);
2324
2325	kref_put(&resv->refs, resv_map_release);
2326
2327	if (reserve) {
2328		hugetlb_acct_memory(h, -reserve);
2329		hugepage_subpool_put_pages(spool, reserve);
 
 
 
 
2330	}
2331}
2332
2333/*
2334 * We cannot handle pagefaults against hugetlb pages at all.  They cause
2335 * handle_mm_fault() to try to instantiate regular-sized pages in the
2336 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2337 * this far.
2338 */
2339static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2340{
2341	BUG();
2342	return 0;
2343}
2344
2345const struct vm_operations_struct hugetlb_vm_ops = {
2346	.fault = hugetlb_vm_op_fault,
2347	.open = hugetlb_vm_op_open,
2348	.close = hugetlb_vm_op_close,
2349};
2350
2351static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2352				int writable)
2353{
2354	pte_t entry;
2355
2356	if (writable) {
2357		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2358					 vma->vm_page_prot)));
2359	} else {
2360		entry = huge_pte_wrprotect(mk_huge_pte(page,
2361					   vma->vm_page_prot));
2362	}
2363	entry = pte_mkyoung(entry);
2364	entry = pte_mkhuge(entry);
2365	entry = arch_make_huge_pte(entry, vma, page, writable);
2366
2367	return entry;
2368}
2369
2370static void set_huge_ptep_writable(struct vm_area_struct *vma,
2371				   unsigned long address, pte_t *ptep)
2372{
2373	pte_t entry;
2374
2375	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2376	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2377		update_mmu_cache(vma, address, ptep);
2378}
2379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380
2381int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2382			    struct vm_area_struct *vma)
2383{
2384	pte_t *src_pte, *dst_pte, entry;
2385	struct page *ptepage;
2386	unsigned long addr;
2387	int cow;
2388	struct hstate *h = hstate_vma(vma);
2389	unsigned long sz = huge_page_size(h);
2390	unsigned long mmun_start;	/* For mmu_notifiers */
2391	unsigned long mmun_end;		/* For mmu_notifiers */
2392	int ret = 0;
2393
2394	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2395
2396	mmun_start = vma->vm_start;
2397	mmun_end = vma->vm_end;
2398	if (cow)
2399		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2400
2401	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2402		spinlock_t *src_ptl, *dst_ptl;
2403		src_pte = huge_pte_offset(src, addr);
2404		if (!src_pte)
2405			continue;
2406		dst_pte = huge_pte_alloc(dst, addr, sz);
2407		if (!dst_pte) {
2408			ret = -ENOMEM;
2409			break;
2410		}
2411
2412		/* If the pagetables are shared don't copy or take references */
2413		if (dst_pte == src_pte)
2414			continue;
2415
2416		dst_ptl = huge_pte_lock(h, dst, dst_pte);
2417		src_ptl = huge_pte_lockptr(h, src, src_pte);
2418		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2419		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2420			if (cow)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421				huge_ptep_set_wrprotect(src, addr, src_pte);
 
 
 
2422			entry = huge_ptep_get(src_pte);
2423			ptepage = pte_page(entry);
2424			get_page(ptepage);
2425			page_dup_rmap(ptepage);
2426			set_huge_pte_at(dst, addr, dst_pte, entry);
 
2427		}
2428		spin_unlock(src_ptl);
2429		spin_unlock(dst_ptl);
2430	}
2431
2432	if (cow)
2433		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2434
2435	return ret;
2436}
2437
2438static int is_hugetlb_entry_migration(pte_t pte)
2439{
2440	swp_entry_t swp;
2441
2442	if (huge_pte_none(pte) || pte_present(pte))
2443		return 0;
2444	swp = pte_to_swp_entry(pte);
2445	if (non_swap_entry(swp) && is_migration_entry(swp))
2446		return 1;
2447	else
2448		return 0;
2449}
2450
2451static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2452{
2453	swp_entry_t swp;
2454
2455	if (huge_pte_none(pte) || pte_present(pte))
2456		return 0;
2457	swp = pte_to_swp_entry(pte);
2458	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2459		return 1;
2460	else
2461		return 0;
2462}
2463
2464void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2465			    unsigned long start, unsigned long end,
2466			    struct page *ref_page)
2467{
2468	int force_flush = 0;
2469	struct mm_struct *mm = vma->vm_mm;
2470	unsigned long address;
2471	pte_t *ptep;
2472	pte_t pte;
2473	spinlock_t *ptl;
2474	struct page *page;
2475	struct hstate *h = hstate_vma(vma);
2476	unsigned long sz = huge_page_size(h);
2477	const unsigned long mmun_start = start;	/* For mmu_notifiers */
2478	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2479
2480	WARN_ON(!is_vm_hugetlb_page(vma));
2481	BUG_ON(start & ~huge_page_mask(h));
2482	BUG_ON(end & ~huge_page_mask(h));
2483
2484	tlb_start_vma(tlb, vma);
2485	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
2486again:
2487	for (address = start; address < end; address += sz) {
2488		ptep = huge_pte_offset(mm, address);
2489		if (!ptep)
2490			continue;
2491
2492		ptl = huge_pte_lock(h, mm, ptep);
2493		if (huge_pmd_unshare(mm, &address, ptep))
2494			goto unlock;
2495
2496		pte = huge_ptep_get(ptep);
2497		if (huge_pte_none(pte))
2498			goto unlock;
2499
2500		/*
2501		 * HWPoisoned hugepage is already unmapped and dropped reference
 
2502		 */
2503		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2504			huge_pte_clear(mm, address, ptep);
2505			goto unlock;
2506		}
2507
2508		page = pte_page(pte);
2509		/*
2510		 * If a reference page is supplied, it is because a specific
2511		 * page is being unmapped, not a range. Ensure the page we
2512		 * are about to unmap is the actual page of interest.
2513		 */
2514		if (ref_page) {
2515			if (page != ref_page)
2516				goto unlock;
2517
2518			/*
2519			 * Mark the VMA as having unmapped its page so that
2520			 * future faults in this VMA will fail rather than
2521			 * looking like data was lost
2522			 */
2523			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2524		}
2525
2526		pte = huge_ptep_get_and_clear(mm, address, ptep);
2527		tlb_remove_tlb_entry(tlb, ptep, address);
2528		if (huge_pte_dirty(pte))
2529			set_page_dirty(page);
2530
2531		page_remove_rmap(page);
 
2532		force_flush = !__tlb_remove_page(tlb, page);
2533		if (force_flush) {
 
2534			spin_unlock(ptl);
2535			break;
2536		}
2537		/* Bail out after unmapping reference page if supplied */
2538		if (ref_page) {
2539			spin_unlock(ptl);
2540			break;
2541		}
2542unlock:
2543		spin_unlock(ptl);
2544	}
2545	/*
2546	 * mmu_gather ran out of room to batch pages, we break out of
2547	 * the PTE lock to avoid doing the potential expensive TLB invalidate
2548	 * and page-free while holding it.
2549	 */
2550	if (force_flush) {
2551		force_flush = 0;
2552		tlb_flush_mmu(tlb);
2553		if (address < end && !ref_page)
2554			goto again;
2555	}
2556	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2557	tlb_end_vma(tlb, vma);
2558}
2559
2560void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2561			  struct vm_area_struct *vma, unsigned long start,
2562			  unsigned long end, struct page *ref_page)
2563{
2564	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
2565
2566	/*
2567	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2568	 * test will fail on a vma being torn down, and not grab a page table
2569	 * on its way out.  We're lucky that the flag has such an appropriate
2570	 * name, and can in fact be safely cleared here. We could clear it
2571	 * before the __unmap_hugepage_range above, but all that's necessary
2572	 * is to clear it before releasing the i_mmap_mutex. This works
2573	 * because in the context this is called, the VMA is about to be
2574	 * destroyed and the i_mmap_mutex is held.
2575	 */
2576	vma->vm_flags &= ~VM_MAYSHARE;
2577}
2578
2579void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2580			  unsigned long end, struct page *ref_page)
2581{
2582	struct mm_struct *mm;
2583	struct mmu_gather tlb;
2584
2585	mm = vma->vm_mm;
2586
2587	tlb_gather_mmu(&tlb, mm, start, end);
2588	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2589	tlb_finish_mmu(&tlb, start, end);
2590}
2591
2592/*
2593 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2594 * mappping it owns the reserve page for. The intention is to unmap the page
2595 * from other VMAs and let the children be SIGKILLed if they are faulting the
2596 * same region.
2597 */
2598static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2599				struct page *page, unsigned long address)
2600{
2601	struct hstate *h = hstate_vma(vma);
2602	struct vm_area_struct *iter_vma;
2603	struct address_space *mapping;
2604	pgoff_t pgoff;
2605
2606	/*
2607	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2608	 * from page cache lookup which is in HPAGE_SIZE units.
2609	 */
2610	address = address & huge_page_mask(h);
2611	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2612			vma->vm_pgoff;
2613	mapping = file_inode(vma->vm_file)->i_mapping;
2614
2615	/*
2616	 * Take the mapping lock for the duration of the table walk. As
2617	 * this mapping should be shared between all the VMAs,
2618	 * __unmap_hugepage_range() is called as the lock is already held
2619	 */
2620	mutex_lock(&mapping->i_mmap_mutex);
2621	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2622		/* Do not unmap the current VMA */
2623		if (iter_vma == vma)
2624			continue;
2625
2626		/*
 
 
 
 
 
 
 
 
2627		 * Unmap the page from other VMAs without their own reserves.
2628		 * They get marked to be SIGKILLed if they fault in these
2629		 * areas. This is because a future no-page fault on this VMA
2630		 * could insert a zeroed page instead of the data existing
2631		 * from the time of fork. This would look like data corruption
2632		 */
2633		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2634			unmap_hugepage_range(iter_vma, address,
2635					     address + huge_page_size(h), page);
2636	}
2637	mutex_unlock(&mapping->i_mmap_mutex);
2638
2639	return 1;
2640}
2641
2642/*
2643 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2644 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2645 * cannot race with other handlers or page migration.
2646 * Keep the pte_same checks anyway to make transition from the mutex easier.
2647 */
2648static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2649			unsigned long address, pte_t *ptep, pte_t pte,
2650			struct page *pagecache_page, spinlock_t *ptl)
2651{
2652	struct hstate *h = hstate_vma(vma);
2653	struct page *old_page, *new_page;
2654	int outside_reserve = 0;
2655	unsigned long mmun_start;	/* For mmu_notifiers */
2656	unsigned long mmun_end;		/* For mmu_notifiers */
2657
2658	old_page = pte_page(pte);
2659
2660retry_avoidcopy:
2661	/* If no-one else is actually using this page, avoid the copy
2662	 * and just make the page writable */
2663	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2664		page_move_anon_rmap(old_page, vma, address);
2665		set_huge_ptep_writable(vma, address, ptep);
2666		return 0;
2667	}
2668
2669	/*
2670	 * If the process that created a MAP_PRIVATE mapping is about to
2671	 * perform a COW due to a shared page count, attempt to satisfy
2672	 * the allocation without using the existing reserves. The pagecache
2673	 * page is used to determine if the reserve at this address was
2674	 * consumed or not. If reserves were used, a partial faulted mapping
2675	 * at the time of fork() could consume its reserves on COW instead
2676	 * of the full address range.
2677	 */
2678	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2679			old_page != pagecache_page)
2680		outside_reserve = 1;
2681
2682	page_cache_get(old_page);
2683
2684	/* Drop page table lock as buddy allocator may be called */
 
 
 
2685	spin_unlock(ptl);
2686	new_page = alloc_huge_page(vma, address, outside_reserve);
2687
2688	if (IS_ERR(new_page)) {
2689		long err = PTR_ERR(new_page);
2690		page_cache_release(old_page);
2691
2692		/*
2693		 * If a process owning a MAP_PRIVATE mapping fails to COW,
2694		 * it is due to references held by a child and an insufficient
2695		 * huge page pool. To guarantee the original mappers
2696		 * reliability, unmap the page from child processes. The child
2697		 * may get SIGKILLed if it later faults.
2698		 */
2699		if (outside_reserve) {
 
 
 
2700			BUG_ON(huge_pte_none(pte));
2701			if (unmap_ref_private(mm, vma, old_page, address)) {
2702				BUG_ON(huge_pte_none(pte));
2703				spin_lock(ptl);
2704				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2705				if (likely(ptep &&
2706					   pte_same(huge_ptep_get(ptep), pte)))
2707					goto retry_avoidcopy;
2708				/*
2709				 * race occurs while re-acquiring page table
2710				 * lock, and our job is done.
2711				 */
2712				return 0;
2713			}
2714			WARN_ON_ONCE(1);
2715		}
2716
2717		/* Caller expects lock to be held */
2718		spin_lock(ptl);
2719		if (err == -ENOMEM)
2720			return VM_FAULT_OOM;
2721		else
2722			return VM_FAULT_SIGBUS;
2723	}
2724
2725	/*
2726	 * When the original hugepage is shared one, it does not have
2727	 * anon_vma prepared.
2728	 */
2729	if (unlikely(anon_vma_prepare(vma))) {
2730		page_cache_release(new_page);
2731		page_cache_release(old_page);
2732		/* Caller expects lock to be held */
2733		spin_lock(ptl);
2734		return VM_FAULT_OOM;
2735	}
2736
2737	copy_user_huge_page(new_page, old_page, address, vma,
2738			    pages_per_huge_page(h));
2739	__SetPageUptodate(new_page);
 
2740
2741	mmun_start = address & huge_page_mask(h);
2742	mmun_end = mmun_start + huge_page_size(h);
2743	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
2744	/*
2745	 * Retake the page table lock to check for racing updates
2746	 * before the page tables are altered
2747	 */
2748	spin_lock(ptl);
2749	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2750	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2751		ClearPagePrivate(new_page);
2752
2753		/* Break COW */
2754		huge_ptep_clear_flush(vma, address, ptep);
 
2755		set_huge_pte_at(mm, address, ptep,
2756				make_huge_pte(vma, new_page, 1));
2757		page_remove_rmap(old_page);
2758		hugepage_add_new_anon_rmap(new_page, vma, address);
2759		/* Make the old page be freed below */
2760		new_page = old_page;
2761	}
2762	spin_unlock(ptl);
2763	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2764	page_cache_release(new_page);
2765	page_cache_release(old_page);
 
 
2766
2767	/* Caller expects lock to be held */
2768	spin_lock(ptl);
2769	return 0;
2770}
2771
2772/* Return the pagecache page at a given address within a VMA */
2773static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2774			struct vm_area_struct *vma, unsigned long address)
2775{
2776	struct address_space *mapping;
2777	pgoff_t idx;
2778
2779	mapping = vma->vm_file->f_mapping;
2780	idx = vma_hugecache_offset(h, vma, address);
2781
2782	return find_lock_page(mapping, idx);
2783}
2784
2785/*
2786 * Return whether there is a pagecache page to back given address within VMA.
2787 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2788 */
2789static bool hugetlbfs_pagecache_present(struct hstate *h,
2790			struct vm_area_struct *vma, unsigned long address)
2791{
2792	struct address_space *mapping;
2793	pgoff_t idx;
2794	struct page *page;
2795
2796	mapping = vma->vm_file->f_mapping;
2797	idx = vma_hugecache_offset(h, vma, address);
2798
2799	page = find_get_page(mapping, idx);
2800	if (page)
2801		put_page(page);
2802	return page != NULL;
2803}
2804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2806			   struct address_space *mapping, pgoff_t idx,
2807			   unsigned long address, pte_t *ptep, unsigned int flags)
2808{
2809	struct hstate *h = hstate_vma(vma);
2810	int ret = VM_FAULT_SIGBUS;
2811	int anon_rmap = 0;
2812	unsigned long size;
2813	struct page *page;
2814	pte_t new_pte;
2815	spinlock_t *ptl;
2816
2817	/*
2818	 * Currently, we are forced to kill the process in the event the
2819	 * original mapper has unmapped pages from the child due to a failed
2820	 * COW. Warn that such a situation has occurred as it may not be obvious
2821	 */
2822	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2823		pr_warning("PID %d killed due to inadequate hugepage pool\n",
2824			   current->pid);
2825		return ret;
2826	}
2827
2828	/*
2829	 * Use page lock to guard against racing truncation
2830	 * before we get page_table_lock.
2831	 */
2832retry:
2833	page = find_lock_page(mapping, idx);
2834	if (!page) {
2835		size = i_size_read(mapping->host) >> huge_page_shift(h);
2836		if (idx >= size)
2837			goto out;
2838		page = alloc_huge_page(vma, address, 0);
2839		if (IS_ERR(page)) {
2840			ret = PTR_ERR(page);
2841			if (ret == -ENOMEM)
2842				ret = VM_FAULT_OOM;
2843			else
2844				ret = VM_FAULT_SIGBUS;
2845			goto out;
2846		}
2847		clear_huge_page(page, address, pages_per_huge_page(h));
2848		__SetPageUptodate(page);
 
2849
2850		if (vma->vm_flags & VM_MAYSHARE) {
2851			int err;
2852			struct inode *inode = mapping->host;
2853
2854			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2855			if (err) {
2856				put_page(page);
2857				if (err == -EEXIST)
2858					goto retry;
2859				goto out;
2860			}
2861			ClearPagePrivate(page);
2862
2863			spin_lock(&inode->i_lock);
2864			inode->i_blocks += blocks_per_huge_page(h);
2865			spin_unlock(&inode->i_lock);
2866		} else {
2867			lock_page(page);
2868			if (unlikely(anon_vma_prepare(vma))) {
2869				ret = VM_FAULT_OOM;
2870				goto backout_unlocked;
2871			}
2872			anon_rmap = 1;
2873		}
2874	} else {
2875		/*
2876		 * If memory error occurs between mmap() and fault, some process
2877		 * don't have hwpoisoned swap entry for errored virtual address.
2878		 * So we need to block hugepage fault by PG_hwpoison bit check.
2879		 */
2880		if (unlikely(PageHWPoison(page))) {
2881			ret = VM_FAULT_HWPOISON |
2882				VM_FAULT_SET_HINDEX(hstate_index(h));
2883			goto backout_unlocked;
2884		}
2885	}
2886
2887	/*
2888	 * If we are going to COW a private mapping later, we examine the
2889	 * pending reservations for this page now. This will ensure that
2890	 * any allocations necessary to record that reservation occur outside
2891	 * the spinlock.
2892	 */
2893	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2894		if (vma_needs_reservation(h, vma, address) < 0) {
2895			ret = VM_FAULT_OOM;
2896			goto backout_unlocked;
2897		}
 
 
 
2898
2899	ptl = huge_pte_lockptr(h, mm, ptep);
2900	spin_lock(ptl);
2901	size = i_size_read(mapping->host) >> huge_page_shift(h);
2902	if (idx >= size)
2903		goto backout;
2904
2905	ret = 0;
2906	if (!huge_pte_none(huge_ptep_get(ptep)))
2907		goto backout;
2908
2909	if (anon_rmap) {
2910		ClearPagePrivate(page);
2911		hugepage_add_new_anon_rmap(page, vma, address);
2912	} else
2913		page_dup_rmap(page);
2914	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2915				&& (vma->vm_flags & VM_SHARED)));
2916	set_huge_pte_at(mm, address, ptep, new_pte);
2917
 
2918	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2919		/* Optimization, do the COW without a second fault */
2920		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2921	}
2922
2923	spin_unlock(ptl);
2924	unlock_page(page);
2925out:
2926	return ret;
2927
2928backout:
2929	spin_unlock(ptl);
2930backout_unlocked:
2931	unlock_page(page);
2932	put_page(page);
2933	goto out;
2934}
2935
2936#ifdef CONFIG_SMP
2937static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2938			    struct vm_area_struct *vma,
2939			    struct address_space *mapping,
2940			    pgoff_t idx, unsigned long address)
2941{
2942	unsigned long key[2];
2943	u32 hash;
2944
2945	if (vma->vm_flags & VM_SHARED) {
2946		key[0] = (unsigned long) mapping;
2947		key[1] = idx;
2948	} else {
2949		key[0] = (unsigned long) mm;
2950		key[1] = address >> huge_page_shift(h);
2951	}
2952
2953	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2954
2955	return hash & (num_fault_mutexes - 1);
2956}
2957#else
2958/*
2959 * For uniprocesor systems we always use a single mutex, so just
2960 * return 0 and avoid the hashing overhead.
2961 */
2962static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2963			    struct vm_area_struct *vma,
2964			    struct address_space *mapping,
2965			    pgoff_t idx, unsigned long address)
2966{
2967	return 0;
2968}
2969#endif
2970
2971int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2972			unsigned long address, unsigned int flags)
2973{
2974	pte_t *ptep, entry;
2975	spinlock_t *ptl;
2976	int ret;
2977	u32 hash;
2978	pgoff_t idx;
2979	struct page *page = NULL;
2980	struct page *pagecache_page = NULL;
2981	struct hstate *h = hstate_vma(vma);
2982	struct address_space *mapping;
 
2983
2984	address &= huge_page_mask(h);
2985
2986	ptep = huge_pte_offset(mm, address);
2987	if (ptep) {
2988		entry = huge_ptep_get(ptep);
2989		if (unlikely(is_hugetlb_entry_migration(entry))) {
2990			migration_entry_wait_huge(vma, mm, ptep);
2991			return 0;
2992		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2993			return VM_FAULT_HWPOISON_LARGE |
2994				VM_FAULT_SET_HINDEX(hstate_index(h));
 
 
 
 
2995	}
2996
2997	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2998	if (!ptep)
2999		return VM_FAULT_OOM;
3000
3001	mapping = vma->vm_file->f_mapping;
3002	idx = vma_hugecache_offset(h, vma, address);
3003
3004	/*
3005	 * Serialize hugepage allocation and instantiation, so that we don't
3006	 * get spurious allocation failures if two CPUs race to instantiate
3007	 * the same page in the page cache.
3008	 */
3009	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3010	mutex_lock(&htlb_fault_mutex_table[hash]);
3011
3012	entry = huge_ptep_get(ptep);
3013	if (huge_pte_none(entry)) {
3014		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3015		goto out_mutex;
3016	}
3017
3018	ret = 0;
3019
3020	/*
 
 
 
 
 
 
 
 
 
 
3021	 * If we are going to COW the mapping later, we examine the pending
3022	 * reservations for this page now. This will ensure that any
3023	 * allocations necessary to record that reservation occur outside the
3024	 * spinlock. For private mappings, we also lookup the pagecache
3025	 * page now as it is used to determine if a reservation has been
3026	 * consumed.
3027	 */
3028	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3029		if (vma_needs_reservation(h, vma, address) < 0) {
3030			ret = VM_FAULT_OOM;
3031			goto out_mutex;
3032		}
 
 
3033
3034		if (!(vma->vm_flags & VM_MAYSHARE))
3035			pagecache_page = hugetlbfs_pagecache_page(h,
3036								vma, address);
3037	}
3038
 
 
 
 
 
 
3039	/*
3040	 * hugetlb_cow() requires page locks of pte_page(entry) and
3041	 * pagecache_page, so here we need take the former one
3042	 * when page != pagecache_page or !pagecache_page.
3043	 * Note that locking order is always pagecache_page -> page,
3044	 * so no worry about deadlock.
3045	 */
3046	page = pte_page(entry);
3047	get_page(page);
3048	if (page != pagecache_page)
3049		lock_page(page);
3050
3051	ptl = huge_pte_lockptr(h, mm, ptep);
3052	spin_lock(ptl);
3053	/* Check for a racing update before calling hugetlb_cow */
3054	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3055		goto out_ptl;
3056
 
3057
3058	if (flags & FAULT_FLAG_WRITE) {
3059		if (!huge_pte_write(entry)) {
3060			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3061					pagecache_page, ptl);
3062			goto out_ptl;
3063		}
3064		entry = huge_pte_mkdirty(entry);
3065	}
3066	entry = pte_mkyoung(entry);
3067	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3068						flags & FAULT_FLAG_WRITE))
3069		update_mmu_cache(vma, address, ptep);
3070
 
 
 
3071out_ptl:
3072	spin_unlock(ptl);
3073
3074	if (pagecache_page) {
3075		unlock_page(pagecache_page);
3076		put_page(pagecache_page);
3077	}
3078	if (page != pagecache_page)
3079		unlock_page(page);
3080	put_page(page);
3081
3082out_mutex:
3083	mutex_unlock(&htlb_fault_mutex_table[hash]);
 
 
 
 
 
 
 
 
 
3084	return ret;
3085}
3086
3087long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3088			 struct page **pages, struct vm_area_struct **vmas,
3089			 unsigned long *position, unsigned long *nr_pages,
3090			 long i, unsigned int flags)
3091{
3092	unsigned long pfn_offset;
3093	unsigned long vaddr = *position;
3094	unsigned long remainder = *nr_pages;
3095	struct hstate *h = hstate_vma(vma);
3096
3097	while (vaddr < vma->vm_end && remainder) {
3098		pte_t *pte;
3099		spinlock_t *ptl = NULL;
3100		int absent;
3101		struct page *page;
3102
3103		/*
 
 
 
 
 
 
 
 
 
3104		 * Some archs (sparc64, sh*) have multiple pte_ts to
3105		 * each hugepage.  We have to make sure we get the
3106		 * first, for the page indexing below to work.
3107		 *
3108		 * Note that page table lock is not held when pte is null.
3109		 */
3110		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3111		if (pte)
3112			ptl = huge_pte_lock(h, mm, pte);
3113		absent = !pte || huge_pte_none(huge_ptep_get(pte));
3114
3115		/*
3116		 * When coredumping, it suits get_dump_page if we just return
3117		 * an error where there's an empty slot with no huge pagecache
3118		 * to back it.  This way, we avoid allocating a hugepage, and
3119		 * the sparse dumpfile avoids allocating disk blocks, but its
3120		 * huge holes still show up with zeroes where they need to be.
3121		 */
3122		if (absent && (flags & FOLL_DUMP) &&
3123		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3124			if (pte)
3125				spin_unlock(ptl);
3126			remainder = 0;
3127			break;
3128		}
3129
3130		/*
3131		 * We need call hugetlb_fault for both hugepages under migration
3132		 * (in which case hugetlb_fault waits for the migration,) and
3133		 * hwpoisoned hugepages (in which case we need to prevent the
3134		 * caller from accessing to them.) In order to do this, we use
3135		 * here is_swap_pte instead of is_hugetlb_entry_migration and
3136		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3137		 * both cases, and because we can't follow correct pages
3138		 * directly from any kind of swap entries.
3139		 */
3140		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3141		    ((flags & FOLL_WRITE) &&
3142		      !huge_pte_write(huge_ptep_get(pte)))) {
3143			int ret;
3144
3145			if (pte)
3146				spin_unlock(ptl);
3147			ret = hugetlb_fault(mm, vma, vaddr,
3148				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3149			if (!(ret & VM_FAULT_ERROR))
3150				continue;
3151
3152			remainder = 0;
3153			break;
3154		}
3155
3156		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3157		page = pte_page(huge_ptep_get(pte));
3158same_page:
3159		if (pages) {
3160			pages[i] = mem_map_offset(page, pfn_offset);
3161			get_page_foll(pages[i]);
3162		}
3163
3164		if (vmas)
3165			vmas[i] = vma;
3166
3167		vaddr += PAGE_SIZE;
3168		++pfn_offset;
3169		--remainder;
3170		++i;
3171		if (vaddr < vma->vm_end && remainder &&
3172				pfn_offset < pages_per_huge_page(h)) {
3173			/*
3174			 * We use pfn_offset to avoid touching the pageframes
3175			 * of this compound page.
3176			 */
3177			goto same_page;
3178		}
3179		spin_unlock(ptl);
3180	}
3181	*nr_pages = remainder;
3182	*position = vaddr;
3183
3184	return i ? i : -EFAULT;
3185}
3186
3187unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3188		unsigned long address, unsigned long end, pgprot_t newprot)
3189{
3190	struct mm_struct *mm = vma->vm_mm;
3191	unsigned long start = address;
3192	pte_t *ptep;
3193	pte_t pte;
3194	struct hstate *h = hstate_vma(vma);
3195	unsigned long pages = 0;
3196
3197	BUG_ON(address >= end);
3198	flush_cache_range(vma, address, end);
3199
3200	mmu_notifier_invalidate_range_start(mm, start, end);
3201	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3202	for (; address < end; address += huge_page_size(h)) {
3203		spinlock_t *ptl;
3204		ptep = huge_pte_offset(mm, address);
3205		if (!ptep)
3206			continue;
3207		ptl = huge_pte_lock(h, mm, ptep);
3208		if (huge_pmd_unshare(mm, &address, ptep)) {
3209			pages++;
3210			spin_unlock(ptl);
3211			continue;
3212		}
3213		if (!huge_pte_none(huge_ptep_get(ptep))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3214			pte = huge_ptep_get_and_clear(mm, address, ptep);
3215			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3216			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3217			set_huge_pte_at(mm, address, ptep, pte);
3218			pages++;
3219		}
3220		spin_unlock(ptl);
3221	}
3222	/*
3223	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3224	 * may have cleared our pud entry and done put_page on the page table:
3225	 * once we release i_mmap_mutex, another task can do the final put_page
3226	 * and that page table be reused and filled with junk.
3227	 */
3228	flush_tlb_range(vma, start, end);
3229	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
 
3230	mmu_notifier_invalidate_range_end(mm, start, end);
3231
3232	return pages << h->order;
3233}
3234
3235int hugetlb_reserve_pages(struct inode *inode,
3236					long from, long to,
3237					struct vm_area_struct *vma,
3238					vm_flags_t vm_flags)
3239{
3240	long ret, chg;
3241	struct hstate *h = hstate_inode(inode);
3242	struct hugepage_subpool *spool = subpool_inode(inode);
3243	struct resv_map *resv_map;
 
3244
3245	/*
3246	 * Only apply hugepage reservation if asked. At fault time, an
3247	 * attempt will be made for VM_NORESERVE to allocate a page
3248	 * without using reserves
3249	 */
3250	if (vm_flags & VM_NORESERVE)
3251		return 0;
3252
3253	/*
3254	 * Shared mappings base their reservation on the number of pages that
3255	 * are already allocated on behalf of the file. Private mappings need
3256	 * to reserve the full area even if read-only as mprotect() may be
3257	 * called to make the mapping read-write. Assume !vma is a shm mapping
3258	 */
3259	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3260		resv_map = inode_resv_map(inode);
3261
3262		chg = region_chg(resv_map, from, to);
3263
3264	} else {
3265		resv_map = resv_map_alloc();
3266		if (!resv_map)
3267			return -ENOMEM;
3268
3269		chg = to - from;
3270
3271		set_vma_resv_map(vma, resv_map);
3272		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3273	}
3274
3275	if (chg < 0) {
3276		ret = chg;
3277		goto out_err;
3278	}
3279
3280	/* There must be enough pages in the subpool for the mapping */
3281	if (hugepage_subpool_get_pages(spool, chg)) {
 
 
 
 
 
3282		ret = -ENOSPC;
3283		goto out_err;
3284	}
3285
3286	/*
3287	 * Check enough hugepages are available for the reservation.
3288	 * Hand the pages back to the subpool if there are not
3289	 */
3290	ret = hugetlb_acct_memory(h, chg);
3291	if (ret < 0) {
3292		hugepage_subpool_put_pages(spool, chg);
 
3293		goto out_err;
3294	}
3295
3296	/*
3297	 * Account for the reservations made. Shared mappings record regions
3298	 * that have reservations as they are shared by multiple VMAs.
3299	 * When the last VMA disappears, the region map says how much
3300	 * the reservation was and the page cache tells how much of
3301	 * the reservation was consumed. Private mappings are per-VMA and
3302	 * only the consumed reservations are tracked. When the VMA
3303	 * disappears, the original reservation is the VMA size and the
3304	 * consumed reservations are stored in the map. Hence, nothing
3305	 * else has to be done for private mappings here
3306	 */
3307	if (!vma || vma->vm_flags & VM_MAYSHARE)
3308		region_add(resv_map, from, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3309	return 0;
3310out_err:
 
 
3311	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3312		kref_put(&resv_map->refs, resv_map_release);
3313	return ret;
3314}
3315
3316void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
 
3317{
3318	struct hstate *h = hstate_inode(inode);
3319	struct resv_map *resv_map = inode_resv_map(inode);
3320	long chg = 0;
3321	struct hugepage_subpool *spool = subpool_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
3322
3323	if (resv_map)
3324		chg = region_truncate(resv_map, offset);
3325	spin_lock(&inode->i_lock);
3326	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3327	spin_unlock(&inode->i_lock);
3328
3329	hugepage_subpool_put_pages(spool, (chg - freed));
3330	hugetlb_acct_memory(h, -(chg - freed));
 
 
 
 
 
 
3331}
3332
3333#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3334static unsigned long page_table_shareable(struct vm_area_struct *svma,
3335				struct vm_area_struct *vma,
3336				unsigned long addr, pgoff_t idx)
3337{
3338	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3339				svma->vm_start;
3340	unsigned long sbase = saddr & PUD_MASK;
3341	unsigned long s_end = sbase + PUD_SIZE;
3342
3343	/* Allow segments to share if only one is marked locked */
3344	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3345	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3346
3347	/*
3348	 * match the virtual addresses, permission and the alignment of the
3349	 * page table page.
3350	 */
3351	if (pmd_index(addr) != pmd_index(saddr) ||
3352	    vm_flags != svm_flags ||
3353	    sbase < svma->vm_start || svma->vm_end < s_end)
3354		return 0;
3355
3356	return saddr;
3357}
3358
3359static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3360{
3361	unsigned long base = addr & PUD_MASK;
3362	unsigned long end = base + PUD_SIZE;
3363
3364	/*
3365	 * check on proper vm_flags and page table alignment
3366	 */
3367	if (vma->vm_flags & VM_MAYSHARE &&
3368	    vma->vm_start <= base && end <= vma->vm_end)
3369		return 1;
3370	return 0;
3371}
3372
3373/*
3374 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3375 * and returns the corresponding pte. While this is not necessary for the
3376 * !shared pmd case because we can allocate the pmd later as well, it makes the
3377 * code much cleaner. pmd allocation is essential for the shared case because
3378 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3379 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3380 * bad pmd for sharing.
3381 */
3382pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3383{
3384	struct vm_area_struct *vma = find_vma(mm, addr);
3385	struct address_space *mapping = vma->vm_file->f_mapping;
3386	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3387			vma->vm_pgoff;
3388	struct vm_area_struct *svma;
3389	unsigned long saddr;
3390	pte_t *spte = NULL;
3391	pte_t *pte;
3392	spinlock_t *ptl;
3393
3394	if (!vma_shareable(vma, addr))
3395		return (pte_t *)pmd_alloc(mm, pud, addr);
3396
3397	mutex_lock(&mapping->i_mmap_mutex);
3398	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3399		if (svma == vma)
3400			continue;
3401
3402		saddr = page_table_shareable(svma, vma, addr, idx);
3403		if (saddr) {
3404			spte = huge_pte_offset(svma->vm_mm, saddr);
3405			if (spte) {
 
3406				get_page(virt_to_page(spte));
3407				break;
3408			}
3409		}
3410	}
3411
3412	if (!spte)
3413		goto out;
3414
3415	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3416	spin_lock(ptl);
3417	if (pud_none(*pud))
3418		pud_populate(mm, pud,
3419				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3420	else
3421		put_page(virt_to_page(spte));
 
 
3422	spin_unlock(ptl);
3423out:
3424	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3425	mutex_unlock(&mapping->i_mmap_mutex);
3426	return pte;
3427}
3428
3429/*
3430 * unmap huge page backed by shared pte.
3431 *
3432 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3433 * indicated by page_count > 1, unmap is achieved by clearing pud and
3434 * decrementing the ref count. If count == 1, the pte page is not shared.
3435 *
3436 * called with page table lock held.
3437 *
3438 * returns: 1 successfully unmapped a shared pte page
3439 *	    0 the underlying pte page is not shared, or it is the last user
3440 */
3441int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3442{
3443	pgd_t *pgd = pgd_offset(mm, *addr);
3444	pud_t *pud = pud_offset(pgd, *addr);
3445
3446	BUG_ON(page_count(virt_to_page(ptep)) == 0);
3447	if (page_count(virt_to_page(ptep)) == 1)
3448		return 0;
3449
3450	pud_clear(pud);
3451	put_page(virt_to_page(ptep));
 
3452	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3453	return 1;
3454}
3455#define want_pmd_share()	(1)
3456#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3457pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3458{
3459	return NULL;
3460}
 
 
 
 
 
3461#define want_pmd_share()	(0)
3462#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3463
3464#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3465pte_t *huge_pte_alloc(struct mm_struct *mm,
3466			unsigned long addr, unsigned long sz)
3467{
3468	pgd_t *pgd;
3469	pud_t *pud;
3470	pte_t *pte = NULL;
3471
3472	pgd = pgd_offset(mm, addr);
3473	pud = pud_alloc(mm, pgd, addr);
3474	if (pud) {
3475		if (sz == PUD_SIZE) {
3476			pte = (pte_t *)pud;
3477		} else {
3478			BUG_ON(sz != PMD_SIZE);
3479			if (want_pmd_share() && pud_none(*pud))
3480				pte = huge_pmd_share(mm, addr, pud);
3481			else
3482				pte = (pte_t *)pmd_alloc(mm, pud, addr);
3483		}
3484	}
3485	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3486
3487	return pte;
3488}
3489
3490pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3491{
3492	pgd_t *pgd;
3493	pud_t *pud;
3494	pmd_t *pmd = NULL;
3495
3496	pgd = pgd_offset(mm, addr);
3497	if (pgd_present(*pgd)) {
3498		pud = pud_offset(pgd, addr);
3499		if (pud_present(*pud)) {
3500			if (pud_huge(*pud))
3501				return (pte_t *)pud;
3502			pmd = pmd_offset(pud, addr);
3503		}
3504	}
3505	return (pte_t *) pmd;
3506}
3507
3508struct page *
3509follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3510		pmd_t *pmd, int write)
 
 
 
 
 
 
3511{
3512	struct page *page;
3513
3514	page = pte_page(*(pte_t *)pmd);
3515	if (page)
3516		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3517	return page;
3518}
3519
3520struct page *
3521follow_huge_pud(struct mm_struct *mm, unsigned long address,
3522		pud_t *pud, int write)
3523{
3524	struct page *page;
3525
3526	page = pte_page(*(pte_t *)pud);
3527	if (page)
3528		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3529	return page;
3530}
3531
3532#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3533
3534/* Can be overriden by architectures */
3535struct page * __weak
3536follow_huge_pud(struct mm_struct *mm, unsigned long address,
3537	       pud_t *pud, int write)
3538{
3539	BUG();
3540	return NULL;
 
 
3541}
3542
3543#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3544
3545#ifdef CONFIG_MEMORY_FAILURE
3546
3547/* Should be called in hugetlb_lock */
3548static int is_hugepage_on_freelist(struct page *hpage)
3549{
3550	struct page *page;
3551	struct page *tmp;
3552	struct hstate *h = page_hstate(hpage);
3553	int nid = page_to_nid(hpage);
3554
3555	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3556		if (page == hpage)
3557			return 1;
3558	return 0;
3559}
3560
3561/*
3562 * This function is called from memory failure code.
3563 * Assume the caller holds page lock of the head page.
3564 */
3565int dequeue_hwpoisoned_huge_page(struct page *hpage)
3566{
3567	struct hstate *h = page_hstate(hpage);
3568	int nid = page_to_nid(hpage);
3569	int ret = -EBUSY;
3570
3571	spin_lock(&hugetlb_lock);
3572	if (is_hugepage_on_freelist(hpage)) {
 
 
 
 
3573		/*
3574		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3575		 * but dangling hpage->lru can trigger list-debug warnings
3576		 * (this happens when we call unpoison_memory() on it),
3577		 * so let it point to itself with list_del_init().
3578		 */
3579		list_del_init(&hpage->lru);
3580		set_page_refcounted(hpage);
3581		h->free_huge_pages--;
3582		h->free_huge_pages_node[nid]--;
3583		ret = 0;
3584	}
3585	spin_unlock(&hugetlb_lock);
3586	return ret;
3587}
3588#endif
3589
3590bool isolate_huge_page(struct page *page, struct list_head *list)
3591{
 
 
3592	VM_BUG_ON_PAGE(!PageHead(page), page);
3593	if (!get_page_unless_zero(page))
3594		return false;
3595	spin_lock(&hugetlb_lock);
 
 
 
 
 
3596	list_move_tail(&page->lru, list);
 
3597	spin_unlock(&hugetlb_lock);
3598	return true;
3599}
3600
3601void putback_active_hugepage(struct page *page)
3602{
3603	VM_BUG_ON_PAGE(!PageHead(page), page);
3604	spin_lock(&hugetlb_lock);
 
3605	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3606	spin_unlock(&hugetlb_lock);
3607	put_page(page);
3608}
3609
3610bool is_hugepage_active(struct page *page)
3611{
3612	VM_BUG_ON_PAGE(!PageHuge(page), page);
3613	/*
3614	 * This function can be called for a tail page because the caller,
3615	 * scan_movable_pages, scans through a given pfn-range which typically
3616	 * covers one memory block. In systems using gigantic hugepage (1GB
3617	 * for x86_64,) a hugepage is larger than a memory block, and we don't
3618	 * support migrating such large hugepages for now, so return false
3619	 * when called for tail pages.
3620	 */
3621	if (PageTail(page))
3622		return false;
3623	/*
3624	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3625	 * so we should return false for them.
3626	 */
3627	if (unlikely(PageHWPoison(page)))
3628		return false;
3629	return page_count(page) > 0;
3630}