Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
  44#include <linux/module.h>
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <linux/prefetch.h>
  54#include <linux/delay.h>
  55#include <linux/stop_machine.h>
  56#include <linux/random.h>
  57#include <linux/trace_events.h>
  58#include <linux/suspend.h>
  59
  60#include "tree.h"
  61#include "rcu.h"
  62
  63MODULE_ALIAS("rcutree");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "rcutree."
  68
  69/* Data structures. */
  70
 
 
 
  71/*
  72 * In order to export the rcu_state name to the tracing tools, it
  73 * needs to be added in the __tracepoint_string section.
  74 * This requires defining a separate variable tp_<sname>_varname
  75 * that points to the string being used, and this will allow
  76 * the tracing userspace tools to be able to decipher the string
  77 * address to the matching string.
  78 */
  79#ifdef CONFIG_TRACING
  80# define DEFINE_RCU_TPS(sname) \
  81static char sname##_varname[] = #sname; \
  82static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  83# define RCU_STATE_NAME(sname) sname##_varname
  84#else
  85# define DEFINE_RCU_TPS(sname)
  86# define RCU_STATE_NAME(sname) __stringify(sname)
  87#endif
  88
  89#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  90DEFINE_RCU_TPS(sname) \
  91static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  92struct rcu_state sname##_state = { \
  93	.level = { &sname##_state.node[0] }, \
  94	.rda = &sname##_data, \
  95	.call = cr, \
  96	.gp_state = RCU_GP_IDLE, \
  97	.gpnum = 0UL - 300UL, \
  98	.completed = 0UL - 300UL, \
  99	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
 100	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
 101	.orphan_donetail = &sname##_state.orphan_donelist, \
 102	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 103	.name = RCU_STATE_NAME(sname), \
 
 104	.abbr = sabbr, \
 105}
 
 106
 107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 109
 110static struct rcu_state *const rcu_state_p;
 111LIST_HEAD(rcu_struct_flavors);
 112
 113/* Dump rcu_node combining tree at boot to verify correct setup. */
 114static bool dump_tree;
 115module_param(dump_tree, bool, 0444);
 116/* Control rcu_node-tree auto-balancing at boot time. */
 117static bool rcu_fanout_exact;
 118module_param(rcu_fanout_exact, bool, 0444);
 119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 121module_param(rcu_fanout_leaf, int, 0444);
 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 123/* Number of rcu_nodes at specified level. */
 124static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 
 
 
 
 
 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 126
 127/*
 128 * The rcu_scheduler_active variable transitions from zero to one just
 129 * before the first task is spawned.  So when this variable is zero, RCU
 130 * can assume that there is but one task, allowing RCU to (for example)
 131 * optimize synchronize_sched() to a simple barrier().  When this variable
 132 * is one, RCU must actually do all the hard work required to detect real
 133 * grace periods.  This variable is also used to suppress boot-time false
 134 * positives from lockdep-RCU error checking.
 135 */
 136int rcu_scheduler_active __read_mostly;
 137EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 138
 139/*
 140 * The rcu_scheduler_fully_active variable transitions from zero to one
 141 * during the early_initcall() processing, which is after the scheduler
 142 * is capable of creating new tasks.  So RCU processing (for example,
 143 * creating tasks for RCU priority boosting) must be delayed until after
 144 * rcu_scheduler_fully_active transitions from zero to one.  We also
 145 * currently delay invocation of any RCU callbacks until after this point.
 146 *
 147 * It might later prove better for people registering RCU callbacks during
 148 * early boot to take responsibility for these callbacks, but one step at
 149 * a time.
 150 */
 151static int rcu_scheduler_fully_active __read_mostly;
 152
 153static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 154static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 
 
 
 
 
 
 
 
 
 
 
 155static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 156static void invoke_rcu_core(void);
 157static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 158static void rcu_report_exp_rdp(struct rcu_state *rsp,
 159			       struct rcu_data *rdp, bool wake);
 160
 161/* rcuc/rcub kthread realtime priority */
 162#ifdef CONFIG_RCU_KTHREAD_PRIO
 163static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
 164#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
 165static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 166#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
 167module_param(kthread_prio, int, 0644);
 168
 169/* Delay in jiffies for grace-period initialization delays, debug only. */
 170
 171#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
 172static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
 173module_param(gp_preinit_delay, int, 0644);
 174#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 175static const int gp_preinit_delay;
 176#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
 177
 178#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
 179static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
 180module_param(gp_init_delay, int, 0644);
 181#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 182static const int gp_init_delay;
 183#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
 184
 185#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
 186static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
 187module_param(gp_cleanup_delay, int, 0644);
 188#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 189static const int gp_cleanup_delay;
 190#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
 191
 192/*
 193 * Number of grace periods between delays, normalized by the duration of
 194 * the delay.  The longer the the delay, the more the grace periods between
 195 * each delay.  The reason for this normalization is that it means that,
 196 * for non-zero delays, the overall slowdown of grace periods is constant
 197 * regardless of the duration of the delay.  This arrangement balances
 198 * the need for long delays to increase some race probabilities with the
 199 * need for fast grace periods to increase other race probabilities.
 200 */
 201#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 202
 203/*
 204 * Track the rcutorture test sequence number and the update version
 205 * number within a given test.  The rcutorture_testseq is incremented
 206 * on every rcutorture module load and unload, so has an odd value
 207 * when a test is running.  The rcutorture_vernum is set to zero
 208 * when rcutorture starts and is incremented on each rcutorture update.
 209 * These variables enable correlating rcutorture output with the
 210 * RCU tracing information.
 211 */
 212unsigned long rcutorture_testseq;
 213unsigned long rcutorture_vernum;
 214
 215/*
 216 * Compute the mask of online CPUs for the specified rcu_node structure.
 217 * This will not be stable unless the rcu_node structure's ->lock is
 218 * held, but the bit corresponding to the current CPU will be stable
 219 * in most contexts.
 220 */
 221unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 222{
 223	return READ_ONCE(rnp->qsmaskinitnext);
 224}
 225
 226/*
 227 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 228 * permit this function to be invoked without holding the root rcu_node
 229 * structure's ->lock, but of course results can be subject to change.
 230 */
 231static int rcu_gp_in_progress(struct rcu_state *rsp)
 232{
 233	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 234}
 235
 236/*
 237 * Note a quiescent state.  Because we do not need to know
 238 * how many quiescent states passed, just if there was at least
 239 * one since the start of the grace period, this just sets a flag.
 240 * The caller must have disabled preemption.
 241 */
 242void rcu_sched_qs(void)
 243{
 244	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 245		return;
 246	trace_rcu_grace_period(TPS("rcu_sched"),
 247			       __this_cpu_read(rcu_sched_data.gpnum),
 248			       TPS("cpuqs"));
 249	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 250	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 251		return;
 252	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 253	rcu_report_exp_rdp(&rcu_sched_state,
 254			   this_cpu_ptr(&rcu_sched_data), true);
 255}
 256
 257void rcu_bh_qs(void)
 258{
 259	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 260		trace_rcu_grace_period(TPS("rcu_bh"),
 261				       __this_cpu_read(rcu_bh_data.gpnum),
 262				       TPS("cpuqs"));
 263		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 264	}
 265}
 266
 267static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
 268
 269static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 270	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 271	.dynticks = ATOMIC_INIT(1),
 272#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 273	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 274	.dynticks_idle = ATOMIC_INIT(1),
 275#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 276};
 277
 278DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
 279EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
 280
 281/*
 282 * Let the RCU core know that this CPU has gone through the scheduler,
 283 * which is a quiescent state.  This is called when the need for a
 284 * quiescent state is urgent, so we burn an atomic operation and full
 285 * memory barriers to let the RCU core know about it, regardless of what
 286 * this CPU might (or might not) do in the near future.
 287 *
 288 * We inform the RCU core by emulating a zero-duration dyntick-idle
 289 * period, which we in turn do by incrementing the ->dynticks counter
 290 * by two.
 291 *
 292 * The caller must have disabled interrupts.
 293 */
 294static void rcu_momentary_dyntick_idle(void)
 295{
 296	struct rcu_data *rdp;
 297	struct rcu_dynticks *rdtp;
 298	int resched_mask;
 299	struct rcu_state *rsp;
 300
 301	/*
 302	 * Yes, we can lose flag-setting operations.  This is OK, because
 303	 * the flag will be set again after some delay.
 304	 */
 305	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
 306	raw_cpu_write(rcu_sched_qs_mask, 0);
 307
 308	/* Find the flavor that needs a quiescent state. */
 309	for_each_rcu_flavor(rsp) {
 310		rdp = raw_cpu_ptr(rsp->rda);
 311		if (!(resched_mask & rsp->flavor_mask))
 312			continue;
 313		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
 314		if (READ_ONCE(rdp->mynode->completed) !=
 315		    READ_ONCE(rdp->cond_resched_completed))
 316			continue;
 317
 318		/*
 319		 * Pretend to be momentarily idle for the quiescent state.
 320		 * This allows the grace-period kthread to record the
 321		 * quiescent state, with no need for this CPU to do anything
 322		 * further.
 323		 */
 324		rdtp = this_cpu_ptr(&rcu_dynticks);
 325		smp_mb__before_atomic(); /* Earlier stuff before QS. */
 326		atomic_add(2, &rdtp->dynticks);  /* QS. */
 327		smp_mb__after_atomic(); /* Later stuff after QS. */
 328		break;
 329	}
 330}
 331
 332/*
 333 * Note a context switch.  This is a quiescent state for RCU-sched,
 334 * and requires special handling for preemptible RCU.
 335 * The caller must have disabled interrupts.
 336 */
 337void rcu_note_context_switch(void)
 338{
 339	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 340	trace_rcu_utilization(TPS("Start context switch"));
 341	rcu_sched_qs();
 342	rcu_preempt_note_context_switch();
 343	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
 344		rcu_momentary_dyntick_idle();
 345	trace_rcu_utilization(TPS("End context switch"));
 346	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 347}
 348EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 349
 350/*
 351 * Register a quiescent state for all RCU flavors.  If there is an
 352 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 353 * dyntick-idle quiescent state visible to other CPUs (but only for those
 354 * RCU flavors in desperate need of a quiescent state, which will normally
 355 * be none of them).  Either way, do a lightweight quiescent state for
 356 * all RCU flavors.
 357 *
 358 * The barrier() calls are redundant in the common case when this is
 359 * called externally, but just in case this is called from within this
 360 * file.
 361 *
 362 */
 363void rcu_all_qs(void)
 364{
 365	unsigned long flags;
 366
 367	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 368	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
 369		local_irq_save(flags);
 370		rcu_momentary_dyntick_idle();
 371		local_irq_restore(flags);
 372	}
 373	this_cpu_inc(rcu_qs_ctr);
 374	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 375}
 376EXPORT_SYMBOL_GPL(rcu_all_qs);
 377
 378static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
 379static long qhimark = 10000;	/* If this many pending, ignore blimit. */
 380static long qlowmark = 100;	/* Once only this many pending, use blimit. */
 381
 382module_param(blimit, long, 0444);
 383module_param(qhimark, long, 0444);
 384module_param(qlowmark, long, 0444);
 385
 386static ulong jiffies_till_first_fqs = ULONG_MAX;
 387static ulong jiffies_till_next_fqs = ULONG_MAX;
 388
 389module_param(jiffies_till_first_fqs, ulong, 0644);
 390module_param(jiffies_till_next_fqs, ulong, 0644);
 391
 392/*
 393 * How long the grace period must be before we start recruiting
 394 * quiescent-state help from rcu_note_context_switch().
 395 */
 396static ulong jiffies_till_sched_qs = HZ / 20;
 397module_param(jiffies_till_sched_qs, ulong, 0644);
 398
 399static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 400				  struct rcu_data *rdp);
 401static void force_qs_rnp(struct rcu_state *rsp,
 402			 int (*f)(struct rcu_data *rsp, bool *isidle,
 403				  unsigned long *maxj),
 404			 bool *isidle, unsigned long *maxj);
 405static void force_quiescent_state(struct rcu_state *rsp);
 406static int rcu_pending(void);
 407
 408/*
 409 * Return the number of RCU batches started thus far for debug & stats.
 410 */
 411unsigned long rcu_batches_started(void)
 412{
 413	return rcu_state_p->gpnum;
 414}
 415EXPORT_SYMBOL_GPL(rcu_batches_started);
 416
 417/*
 418 * Return the number of RCU-sched batches started thus far for debug & stats.
 419 */
 420unsigned long rcu_batches_started_sched(void)
 421{
 422	return rcu_sched_state.gpnum;
 423}
 424EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 425
 426/*
 427 * Return the number of RCU BH batches started thus far for debug & stats.
 428 */
 429unsigned long rcu_batches_started_bh(void)
 430{
 431	return rcu_bh_state.gpnum;
 432}
 433EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 434
 435/*
 436 * Return the number of RCU batches completed thus far for debug & stats.
 437 */
 438unsigned long rcu_batches_completed(void)
 439{
 440	return rcu_state_p->completed;
 441}
 442EXPORT_SYMBOL_GPL(rcu_batches_completed);
 443
 444/*
 445 * Return the number of RCU-sched batches completed thus far for debug & stats.
 446 */
 447unsigned long rcu_batches_completed_sched(void)
 448{
 449	return rcu_sched_state.completed;
 450}
 451EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 452
 453/*
 454 * Return the number of RCU BH batches completed thus far for debug & stats.
 455 */
 456unsigned long rcu_batches_completed_bh(void)
 457{
 458	return rcu_bh_state.completed;
 459}
 460EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 461
 462/*
 463 * Force a quiescent state.
 464 */
 465void rcu_force_quiescent_state(void)
 466{
 467	force_quiescent_state(rcu_state_p);
 468}
 469EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 470
 471/*
 472 * Force a quiescent state for RCU BH.
 473 */
 474void rcu_bh_force_quiescent_state(void)
 475{
 476	force_quiescent_state(&rcu_bh_state);
 477}
 478EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 479
 480/*
 481 * Force a quiescent state for RCU-sched.
 482 */
 483void rcu_sched_force_quiescent_state(void)
 484{
 485	force_quiescent_state(&rcu_sched_state);
 486}
 487EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 488
 489/*
 490 * Show the state of the grace-period kthreads.
 491 */
 492void show_rcu_gp_kthreads(void)
 493{
 494	struct rcu_state *rsp;
 495
 496	for_each_rcu_flavor(rsp) {
 497		pr_info("%s: wait state: %d ->state: %#lx\n",
 498			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 499		/* sched_show_task(rsp->gp_kthread); */
 500	}
 501}
 502EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 503
 504/*
 505 * Record the number of times rcutorture tests have been initiated and
 506 * terminated.  This information allows the debugfs tracing stats to be
 507 * correlated to the rcutorture messages, even when the rcutorture module
 508 * is being repeatedly loaded and unloaded.  In other words, we cannot
 509 * store this state in rcutorture itself.
 510 */
 511void rcutorture_record_test_transition(void)
 512{
 513	rcutorture_testseq++;
 514	rcutorture_vernum = 0;
 515}
 516EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 517
 518/*
 519 * Send along grace-period-related data for rcutorture diagnostics.
 520 */
 521void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 522			    unsigned long *gpnum, unsigned long *completed)
 523{
 524	struct rcu_state *rsp = NULL;
 525
 526	switch (test_type) {
 527	case RCU_FLAVOR:
 528		rsp = rcu_state_p;
 529		break;
 530	case RCU_BH_FLAVOR:
 531		rsp = &rcu_bh_state;
 532		break;
 533	case RCU_SCHED_FLAVOR:
 534		rsp = &rcu_sched_state;
 535		break;
 536	default:
 537		break;
 538	}
 539	if (rsp != NULL) {
 540		*flags = READ_ONCE(rsp->gp_flags);
 541		*gpnum = READ_ONCE(rsp->gpnum);
 542		*completed = READ_ONCE(rsp->completed);
 543		return;
 544	}
 545	*flags = 0;
 546	*gpnum = 0;
 547	*completed = 0;
 548}
 549EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 550
 551/*
 552 * Record the number of writer passes through the current rcutorture test.
 553 * This is also used to correlate debugfs tracing stats with the rcutorture
 554 * messages.
 555 */
 556void rcutorture_record_progress(unsigned long vernum)
 557{
 558	rcutorture_vernum++;
 559}
 560EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 561
 562/*
 563 * Does the CPU have callbacks ready to be invoked?
 564 */
 565static int
 566cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 567{
 568	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
 569	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
 570}
 571
 572/*
 573 * Return the root node of the specified rcu_state structure.
 574 */
 575static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 576{
 577	return &rsp->node[0];
 578}
 
 579
 580/*
 581 * Is there any need for future grace periods?
 582 * Interrupts must be disabled.  If the caller does not hold the root
 583 * rnp_node structure's ->lock, the results are advisory only.
 584 */
 585static int rcu_future_needs_gp(struct rcu_state *rsp)
 
 586{
 587	struct rcu_node *rnp = rcu_get_root(rsp);
 588	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 589	int *fp = &rnp->need_future_gp[idx];
 590
 591	return READ_ONCE(*fp);
 592}
 593
 594/*
 595 * Does the current CPU require a not-yet-started grace period?
 596 * The caller must have disabled interrupts to prevent races with
 597 * normal callback registry.
 598 */
 599static bool
 600cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 601{
 602	int i;
 603
 604	if (rcu_gp_in_progress(rsp))
 605		return false;  /* No, a grace period is already in progress. */
 606	if (rcu_future_needs_gp(rsp))
 607		return true;  /* Yes, a no-CBs CPU needs one. */
 608	if (!rdp->nxttail[RCU_NEXT_TAIL])
 609		return false;  /* No, this is a no-CBs (or offline) CPU. */
 610	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
 611		return true;  /* Yes, CPU has newly registered callbacks. */
 612	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
 613		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
 614		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
 615				 rdp->nxtcompleted[i]))
 616			return true;  /* Yes, CBs for future grace period. */
 617	return false; /* No grace period needed. */
 
 
 
 
 
 
 
 
 618}
 619
 620/*
 621 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
 622 *
 623 * If the new value of the ->dynticks_nesting counter now is zero,
 624 * we really have entered idle, and must do the appropriate accounting.
 625 * The caller must have disabled interrupts.
 626 */
 627static void rcu_eqs_enter_common(long long oldval, bool user)
 
 628{
 629	struct rcu_state *rsp;
 630	struct rcu_data *rdp;
 631	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 632
 633	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
 634	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 635	    !user && !is_idle_task(current)) {
 636		struct task_struct *idle __maybe_unused =
 637			idle_task(smp_processor_id());
 638
 639		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
 640		ftrace_dump(DUMP_ORIG);
 641		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 642			  current->pid, current->comm,
 643			  idle->pid, idle->comm); /* must be idle task! */
 644	}
 645	for_each_rcu_flavor(rsp) {
 646		rdp = this_cpu_ptr(rsp->rda);
 647		do_nocb_deferred_wakeup(rdp);
 648	}
 649	rcu_prepare_for_idle();
 650	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 651	smp_mb__before_atomic();  /* See above. */
 652	atomic_inc(&rdtp->dynticks);
 653	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
 654	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 655		     atomic_read(&rdtp->dynticks) & 0x1);
 656	rcu_dynticks_task_enter();
 657
 658	/*
 659	 * It is illegal to enter an extended quiescent state while
 660	 * in an RCU read-side critical section.
 661	 */
 662	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 663			 "Illegal idle entry in RCU read-side critical section.");
 664	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
 665			 "Illegal idle entry in RCU-bh read-side critical section.");
 666	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
 667			 "Illegal idle entry in RCU-sched read-side critical section.");
 668}
 669
 670/*
 671 * Enter an RCU extended quiescent state, which can be either the
 672 * idle loop or adaptive-tickless usermode execution.
 673 */
 674static void rcu_eqs_enter(bool user)
 675{
 676	long long oldval;
 677	struct rcu_dynticks *rdtp;
 678
 679	rdtp = this_cpu_ptr(&rcu_dynticks);
 680	oldval = rdtp->dynticks_nesting;
 681	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 682		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
 683	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
 684		rdtp->dynticks_nesting = 0;
 685		rcu_eqs_enter_common(oldval, user);
 686	} else {
 687		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 688	}
 689}
 690
 691/**
 692 * rcu_idle_enter - inform RCU that current CPU is entering idle
 693 *
 694 * Enter idle mode, in other words, -leave- the mode in which RCU
 695 * read-side critical sections can occur.  (Though RCU read-side
 696 * critical sections can occur in irq handlers in idle, a possibility
 697 * handled by irq_enter() and irq_exit().)
 698 *
 699 * We crowbar the ->dynticks_nesting field to zero to allow for
 700 * the possibility of usermode upcalls having messed up our count
 701 * of interrupt nesting level during the prior busy period.
 702 */
 703void rcu_idle_enter(void)
 704{
 705	unsigned long flags;
 706
 707	local_irq_save(flags);
 708	rcu_eqs_enter(false);
 709	rcu_sysidle_enter(0);
 710	local_irq_restore(flags);
 711}
 712EXPORT_SYMBOL_GPL(rcu_idle_enter);
 713
 714#ifdef CONFIG_NO_HZ_FULL
 715/**
 716 * rcu_user_enter - inform RCU that we are resuming userspace.
 717 *
 718 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 719 * is permitted between this call and rcu_user_exit(). This way the
 720 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 721 * when the CPU runs in userspace.
 722 */
 723void rcu_user_enter(void)
 724{
 725	rcu_eqs_enter(1);
 726}
 727#endif /* CONFIG_NO_HZ_FULL */
 728
 729/**
 730 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 731 *
 732 * Exit from an interrupt handler, which might possibly result in entering
 733 * idle mode, in other words, leaving the mode in which read-side critical
 734 * sections can occur.  The caller must have disabled interrupts.
 735 *
 736 * This code assumes that the idle loop never does anything that might
 737 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 738 * architecture violates this assumption, RCU will give you what you
 739 * deserve, good and hard.  But very infrequently and irreproducibly.
 740 *
 741 * Use things like work queues to work around this limitation.
 742 *
 743 * You have been warned.
 744 */
 745void rcu_irq_exit(void)
 746{
 
 747	long long oldval;
 748	struct rcu_dynticks *rdtp;
 749
 750	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
 751	rdtp = this_cpu_ptr(&rcu_dynticks);
 752	oldval = rdtp->dynticks_nesting;
 753	rdtp->dynticks_nesting--;
 754	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 755		     rdtp->dynticks_nesting < 0);
 756	if (rdtp->dynticks_nesting)
 757		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
 758	else
 759		rcu_eqs_enter_common(oldval, true);
 760	rcu_sysidle_enter(1);
 761}
 762
 763/*
 764 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 765 */
 766void rcu_irq_exit_irqson(void)
 767{
 768	unsigned long flags;
 769
 770	local_irq_save(flags);
 771	rcu_irq_exit();
 772	local_irq_restore(flags);
 773}
 774
 775/*
 776 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 777 *
 778 * If the new value of the ->dynticks_nesting counter was previously zero,
 779 * we really have exited idle, and must do the appropriate accounting.
 780 * The caller must have disabled interrupts.
 781 */
 782static void rcu_eqs_exit_common(long long oldval, int user)
 
 783{
 784	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 785
 786	rcu_dynticks_task_exit();
 787	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
 788	atomic_inc(&rdtp->dynticks);
 789	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 790	smp_mb__after_atomic();  /* See above. */
 791	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 792		     !(atomic_read(&rdtp->dynticks) & 0x1));
 793	rcu_cleanup_after_idle();
 794	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 795	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 796	    !user && !is_idle_task(current)) {
 797		struct task_struct *idle __maybe_unused =
 798			idle_task(smp_processor_id());
 799
 800		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 801				  oldval, rdtp->dynticks_nesting);
 802		ftrace_dump(DUMP_ORIG);
 803		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 804			  current->pid, current->comm,
 805			  idle->pid, idle->comm); /* must be idle task! */
 806	}
 807}
 808
 809/*
 810 * Exit an RCU extended quiescent state, which can be either the
 811 * idle loop or adaptive-tickless usermode execution.
 812 */
 813static void rcu_eqs_exit(bool user)
 814{
 815	struct rcu_dynticks *rdtp;
 816	long long oldval;
 817
 818	rdtp = this_cpu_ptr(&rcu_dynticks);
 819	oldval = rdtp->dynticks_nesting;
 820	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 821	if (oldval & DYNTICK_TASK_NEST_MASK) {
 822		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 823	} else {
 824		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 825		rcu_eqs_exit_common(oldval, user);
 826	}
 827}
 828
 829/**
 830 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 831 *
 832 * Exit idle mode, in other words, -enter- the mode in which RCU
 833 * read-side critical sections can occur.
 834 *
 835 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 836 * allow for the possibility of usermode upcalls messing up our count
 837 * of interrupt nesting level during the busy period that is just
 838 * now starting.
 839 */
 840void rcu_idle_exit(void)
 841{
 842	unsigned long flags;
 843
 844	local_irq_save(flags);
 845	rcu_eqs_exit(false);
 846	rcu_sysidle_exit(0);
 847	local_irq_restore(flags);
 848}
 849EXPORT_SYMBOL_GPL(rcu_idle_exit);
 850
 851#ifdef CONFIG_NO_HZ_FULL
 852/**
 853 * rcu_user_exit - inform RCU that we are exiting userspace.
 854 *
 855 * Exit RCU idle mode while entering the kernel because it can
 856 * run a RCU read side critical section anytime.
 857 */
 858void rcu_user_exit(void)
 859{
 860	rcu_eqs_exit(1);
 861}
 862#endif /* CONFIG_NO_HZ_FULL */
 863
 864/**
 865 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 866 *
 867 * Enter an interrupt handler, which might possibly result in exiting
 868 * idle mode, in other words, entering the mode in which read-side critical
 869 * sections can occur.  The caller must have disabled interrupts.
 870 *
 871 * Note that the Linux kernel is fully capable of entering an interrupt
 872 * handler that it never exits, for example when doing upcalls to
 873 * user mode!  This code assumes that the idle loop never does upcalls to
 874 * user mode.  If your architecture does do upcalls from the idle loop (or
 875 * does anything else that results in unbalanced calls to the irq_enter()
 876 * and irq_exit() functions), RCU will give you what you deserve, good
 877 * and hard.  But very infrequently and irreproducibly.
 878 *
 879 * Use things like work queues to work around this limitation.
 880 *
 881 * You have been warned.
 882 */
 883void rcu_irq_enter(void)
 884{
 
 885	struct rcu_dynticks *rdtp;
 886	long long oldval;
 887
 888	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
 889	rdtp = this_cpu_ptr(&rcu_dynticks);
 890	oldval = rdtp->dynticks_nesting;
 891	rdtp->dynticks_nesting++;
 892	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 893		     rdtp->dynticks_nesting == 0);
 894	if (oldval)
 895		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
 896	else
 897		rcu_eqs_exit_common(oldval, true);
 898	rcu_sysidle_exit(1);
 899}
 900
 901/*
 902 * Wrapper for rcu_irq_enter() where interrupts are enabled.
 903 */
 904void rcu_irq_enter_irqson(void)
 905{
 906	unsigned long flags;
 907
 908	local_irq_save(flags);
 909	rcu_irq_enter();
 910	local_irq_restore(flags);
 911}
 912
 913/**
 914 * rcu_nmi_enter - inform RCU of entry to NMI context
 915 *
 916 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 917 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 918 * that the CPU is active.  This implementation permits nested NMIs, as
 919 * long as the nesting level does not overflow an int.  (You will probably
 920 * run out of stack space first.)
 921 */
 922void rcu_nmi_enter(void)
 923{
 924	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 925	int incby = 2;
 926
 927	/* Complain about underflow. */
 928	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 929
 930	/*
 931	 * If idle from RCU viewpoint, atomically increment ->dynticks
 932	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 933	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 934	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 935	 * to be in the outermost NMI handler that interrupted an RCU-idle
 936	 * period (observation due to Andy Lutomirski).
 937	 */
 938	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
 939		smp_mb__before_atomic();  /* Force delay from prior write. */
 940		atomic_inc(&rdtp->dynticks);
 941		/* atomic_inc() before later RCU read-side crit sects */
 942		smp_mb__after_atomic();  /* See above. */
 943		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 944		incby = 1;
 945	}
 946	rdtp->dynticks_nmi_nesting += incby;
 947	barrier();
 948}
 949
 950/**
 951 * rcu_nmi_exit - inform RCU of exit from NMI context
 952 *
 953 * If we are returning from the outermost NMI handler that interrupted an
 954 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 955 * to let the RCU grace-period handling know that the CPU is back to
 956 * being RCU-idle.
 957 */
 958void rcu_nmi_exit(void)
 959{
 960	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 961
 962	/*
 963	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 964	 * (We are exiting an NMI handler, so RCU better be paying attention
 965	 * to us!)
 966	 */
 967	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
 968	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 969
 970	/*
 971	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 972	 * leave it in non-RCU-idle state.
 973	 */
 974	if (rdtp->dynticks_nmi_nesting != 1) {
 975		rdtp->dynticks_nmi_nesting -= 2;
 976		return;
 977	}
 978
 979	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 980	rdtp->dynticks_nmi_nesting = 0;
 981	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 982	smp_mb__before_atomic();  /* See above. */
 983	atomic_inc(&rdtp->dynticks);
 984	smp_mb__after_atomic();  /* Force delay to next write. */
 985	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 986}
 987
 988/**
 989 * __rcu_is_watching - are RCU read-side critical sections safe?
 990 *
 991 * Return true if RCU is watching the running CPU, which means that
 992 * this CPU can safely enter RCU read-side critical sections.  Unlike
 993 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 994 * least disabled preemption.
 995 */
 996bool notrace __rcu_is_watching(void)
 997{
 998	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
 999}
1000
1001/**
1002 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1003 *
1004 * If the current CPU is in its idle loop and is neither in an interrupt
1005 * or NMI handler, return true.
1006 */
1007bool notrace rcu_is_watching(void)
1008{
1009	bool ret;
1010
1011	preempt_disable_notrace();
1012	ret = __rcu_is_watching();
1013	preempt_enable_notrace();
1014	return ret;
1015}
1016EXPORT_SYMBOL_GPL(rcu_is_watching);
1017
1018#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1019
1020/*
1021 * Is the current CPU online?  Disable preemption to avoid false positives
1022 * that could otherwise happen due to the current CPU number being sampled,
1023 * this task being preempted, its old CPU being taken offline, resuming
1024 * on some other CPU, then determining that its old CPU is now offline.
1025 * It is OK to use RCU on an offline processor during initial boot, hence
1026 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1027 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1028 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1029 * offline to continue to use RCU for one jiffy after marking itself
1030 * offline in the cpu_online_mask.  This leniency is necessary given the
1031 * non-atomic nature of the online and offline processing, for example,
1032 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1033 * notifiers.
1034 *
1035 * This is also why RCU internally marks CPUs online during the
1036 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
1037 *
1038 * Disable checking if in an NMI handler because we cannot safely report
1039 * errors from NMI handlers anyway.
1040 */
1041bool rcu_lockdep_current_cpu_online(void)
1042{
1043	struct rcu_data *rdp;
1044	struct rcu_node *rnp;
1045	bool ret;
1046
1047	if (in_nmi())
1048		return true;
1049	preempt_disable();
1050	rdp = this_cpu_ptr(&rcu_sched_data);
1051	rnp = rdp->mynode;
1052	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1053	      !rcu_scheduler_fully_active;
1054	preempt_enable();
1055	return ret;
1056}
1057EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1058
1059#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1060
1061/**
1062 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1063 *
1064 * If the current CPU is idle or running at a first-level (not nested)
1065 * interrupt from idle, return true.  The caller must have at least
1066 * disabled preemption.
1067 */
1068static int rcu_is_cpu_rrupt_from_idle(void)
1069{
1070	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1071}
1072
1073/*
1074 * Snapshot the specified CPU's dynticks counter so that we can later
1075 * credit them with an implicit quiescent state.  Return 1 if this CPU
1076 * is in dynticks idle mode, which is an extended quiescent state.
1077 */
1078static int dyntick_save_progress_counter(struct rcu_data *rdp,
1079					 bool *isidle, unsigned long *maxj)
1080{
1081	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1082	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1083	if ((rdp->dynticks_snap & 0x1) == 0) {
1084		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1085		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1086				 rdp->mynode->gpnum))
1087			WRITE_ONCE(rdp->gpwrap, true);
1088		return 1;
1089	}
1090	return 0;
1091}
1092
1093/*
 
 
 
 
 
 
1094 * Return true if the specified CPU has passed through a quiescent
1095 * state by virtue of being in or having passed through an dynticks
1096 * idle state since the last call to dyntick_save_progress_counter()
1097 * for this same CPU, or by virtue of having been offline.
1098 */
1099static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1100				    bool *isidle, unsigned long *maxj)
1101{
1102	unsigned int curr;
1103	int *rcrmp;
1104	unsigned int snap;
1105
1106	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1107	snap = (unsigned int)rdp->dynticks_snap;
1108
1109	/*
1110	 * If the CPU passed through or entered a dynticks idle phase with
1111	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1112	 * already acknowledged the request to pass through a quiescent
1113	 * state.  Either way, that CPU cannot possibly be in an RCU
1114	 * read-side critical section that started before the beginning
1115	 * of the current RCU grace period.
1116	 */
1117	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1118		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1119		rdp->dynticks_fqs++;
1120		return 1;
1121	}
1122
1123	/*
1124	 * Check for the CPU being offline, but only if the grace period
1125	 * is old enough.  We don't need to worry about the CPU changing
1126	 * state: If we see it offline even once, it has been through a
1127	 * quiescent state.
1128	 *
1129	 * The reason for insisting that the grace period be at least
1130	 * one jiffy old is that CPUs that are not quite online and that
1131	 * have just gone offline can still execute RCU read-side critical
1132	 * sections.
1133	 */
1134	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1135		return 0;  /* Grace period is not old enough. */
1136	barrier();
1137	if (cpu_is_offline(rdp->cpu)) {
1138		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1139		rdp->offline_fqs++;
1140		return 1;
1141	}
1142
1143	/*
1144	 * A CPU running for an extended time within the kernel can
1145	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1146	 * even context-switching back and forth between a pair of
1147	 * in-kernel CPU-bound tasks cannot advance grace periods.
1148	 * So if the grace period is old enough, make the CPU pay attention.
1149	 * Note that the unsynchronized assignments to the per-CPU
1150	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1151	 * bits can be lost, but they will be set again on the next
1152	 * force-quiescent-state pass.  So lost bit sets do not result
1153	 * in incorrect behavior, merely in a grace period lasting
1154	 * a few jiffies longer than it might otherwise.  Because
1155	 * there are at most four threads involved, and because the
1156	 * updates are only once every few jiffies, the probability of
1157	 * lossage (and thus of slight grace-period extension) is
1158	 * quite low.
1159	 *
1160	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1161	 * is set too high, we override with half of the RCU CPU stall
1162	 * warning delay.
1163	 */
1164	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1165	if (ULONG_CMP_GE(jiffies,
1166			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1167	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1168		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1169			WRITE_ONCE(rdp->cond_resched_completed,
1170				   READ_ONCE(rdp->mynode->completed));
1171			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1172			WRITE_ONCE(*rcrmp,
1173				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1174		}
1175		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1176	}
1177
1178	/* And if it has been a really long time, kick the CPU as well. */
1179	if (ULONG_CMP_GE(jiffies,
1180			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1181	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1182		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1183
1184	return 0;
1185}
1186
1187static void record_gp_stall_check_time(struct rcu_state *rsp)
1188{
1189	unsigned long j = jiffies;
1190	unsigned long j1;
1191
1192	rsp->gp_start = j;
1193	smp_wmb(); /* Record start time before stall time. */
1194	j1 = rcu_jiffies_till_stall_check();
1195	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1196	rsp->jiffies_resched = j + j1 / 2;
1197	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1198}
1199
1200/*
1201 * Convert a ->gp_state value to a character string.
1202 */
1203static const char *gp_state_getname(short gs)
1204{
1205	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1206		return "???";
1207	return gp_state_names[gs];
1208}
1209
1210/*
1211 * Complain about starvation of grace-period kthread.
1212 */
1213static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1214{
1215	unsigned long gpa;
1216	unsigned long j;
1217
1218	j = jiffies;
1219	gpa = READ_ONCE(rsp->gp_activity);
1220	if (j - gpa > 2 * HZ) {
1221		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1222		       rsp->name, j - gpa,
1223		       rsp->gpnum, rsp->completed,
1224		       rsp->gp_flags,
1225		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1226		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1227		if (rsp->gp_kthread)
1228			sched_show_task(rsp->gp_kthread);
1229	}
1230}
1231
1232/*
1233 * Dump stacks of all tasks running on stalled CPUs.
1234 */
1235static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1236{
1237	int cpu;
1238	unsigned long flags;
1239	struct rcu_node *rnp;
1240
1241	rcu_for_each_leaf_node(rsp, rnp) {
1242		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1243		if (rnp->qsmask != 0) {
1244			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1245				if (rnp->qsmask & (1UL << cpu))
1246					dump_cpu_task(rnp->grplo + cpu);
1247		}
1248		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1249	}
1250}
1251
1252static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1253{
1254	int cpu;
1255	long delta;
1256	unsigned long flags;
1257	unsigned long gpa;
1258	unsigned long j;
1259	int ndetected = 0;
1260	struct rcu_node *rnp = rcu_get_root(rsp);
1261	long totqlen = 0;
1262
1263	/* Only let one CPU complain about others per time interval. */
1264
1265	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1266	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1267	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1268		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1269		return;
1270	}
1271	WRITE_ONCE(rsp->jiffies_stall,
1272		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1273	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1274
1275	/*
1276	 * OK, time to rat on our buddy...
1277	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1278	 * RCU CPU stall warnings.
1279	 */
1280	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1281	       rsp->name);
1282	print_cpu_stall_info_begin();
1283	rcu_for_each_leaf_node(rsp, rnp) {
1284		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1285		ndetected += rcu_print_task_stall(rnp);
1286		if (rnp->qsmask != 0) {
1287			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1288				if (rnp->qsmask & (1UL << cpu)) {
1289					print_cpu_stall_info(rsp,
1290							     rnp->grplo + cpu);
1291					ndetected++;
1292				}
1293		}
1294		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1295	}
1296
 
 
 
 
 
 
 
 
 
1297	print_cpu_stall_info_end();
1298	for_each_possible_cpu(cpu)
1299		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1300	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1301	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1302	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1303	if (ndetected) {
 
 
1304		rcu_dump_cpu_stacks(rsp);
1305	} else {
1306		if (READ_ONCE(rsp->gpnum) != gpnum ||
1307		    READ_ONCE(rsp->completed) == gpnum) {
1308			pr_err("INFO: Stall ended before state dump start\n");
1309		} else {
1310			j = jiffies;
1311			gpa = READ_ONCE(rsp->gp_activity);
1312			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1313			       rsp->name, j - gpa, j, gpa,
1314			       jiffies_till_next_fqs,
1315			       rcu_get_root(rsp)->qsmask);
1316			/* In this case, the current CPU might be at fault. */
1317			sched_show_task(current);
1318		}
1319	}
1320
1321	/* Complain about tasks blocking the grace period. */
1322	rcu_print_detail_task_stall(rsp);
1323
1324	rcu_check_gp_kthread_starvation(rsp);
1325
1326	force_quiescent_state(rsp);  /* Kick them all. */
1327}
1328
 
 
 
 
 
 
1329static void print_cpu_stall(struct rcu_state *rsp)
1330{
1331	int cpu;
1332	unsigned long flags;
1333	struct rcu_node *rnp = rcu_get_root(rsp);
1334	long totqlen = 0;
1335
1336	/*
1337	 * OK, time to rat on ourselves...
1338	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1339	 * RCU CPU stall warnings.
1340	 */
1341	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1342	print_cpu_stall_info_begin();
1343	print_cpu_stall_info(rsp, smp_processor_id());
1344	print_cpu_stall_info_end();
1345	for_each_possible_cpu(cpu)
1346		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1347	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1348		jiffies - rsp->gp_start,
1349		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1350
1351	rcu_check_gp_kthread_starvation(rsp);
1352
1353	rcu_dump_cpu_stacks(rsp);
1354
1355	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1356	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1357		WRITE_ONCE(rsp->jiffies_stall,
1358			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1359	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1360
1361	/*
1362	 * Attempt to revive the RCU machinery by forcing a context switch.
1363	 *
1364	 * A context switch would normally allow the RCU state machine to make
1365	 * progress and it could be we're stuck in kernel space without context
1366	 * switches for an entirely unreasonable amount of time.
1367	 */
1368	resched_cpu(smp_processor_id());
1369}
1370
1371static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1372{
1373	unsigned long completed;
1374	unsigned long gpnum;
1375	unsigned long gps;
1376	unsigned long j;
1377	unsigned long js;
1378	struct rcu_node *rnp;
1379
1380	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1381		return;
1382	j = jiffies;
1383
1384	/*
1385	 * Lots of memory barriers to reject false positives.
1386	 *
1387	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1388	 * then rsp->gp_start, and finally rsp->completed.  These values
1389	 * are updated in the opposite order with memory barriers (or
1390	 * equivalent) during grace-period initialization and cleanup.
1391	 * Now, a false positive can occur if we get an new value of
1392	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1393	 * the memory barriers, the only way that this can happen is if one
1394	 * grace period ends and another starts between these two fetches.
1395	 * Detect this by comparing rsp->completed with the previous fetch
1396	 * from rsp->gpnum.
1397	 *
1398	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1399	 * and rsp->gp_start suffice to forestall false positives.
1400	 */
1401	gpnum = READ_ONCE(rsp->gpnum);
1402	smp_rmb(); /* Pick up ->gpnum first... */
1403	js = READ_ONCE(rsp->jiffies_stall);
1404	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1405	gps = READ_ONCE(rsp->gp_start);
1406	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1407	completed = READ_ONCE(rsp->completed);
1408	if (ULONG_CMP_GE(completed, gpnum) ||
1409	    ULONG_CMP_LT(j, js) ||
1410	    ULONG_CMP_GE(gps, js))
1411		return; /* No stall or GP completed since entering function. */
1412	rnp = rdp->mynode;
1413	if (rcu_gp_in_progress(rsp) &&
1414	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1415
1416		/* We haven't checked in, so go dump stack. */
1417		print_cpu_stall(rsp);
1418
1419	} else if (rcu_gp_in_progress(rsp) &&
1420		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1421
1422		/* They had a few time units to dump stack, so complain. */
1423		print_other_cpu_stall(rsp, gpnum);
1424	}
1425}
1426
1427/**
1428 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1429 *
1430 * Set the stall-warning timeout way off into the future, thus preventing
1431 * any RCU CPU stall-warning messages from appearing in the current set of
1432 * RCU grace periods.
1433 *
1434 * The caller must disable hard irqs.
1435 */
1436void rcu_cpu_stall_reset(void)
1437{
1438	struct rcu_state *rsp;
1439
1440	for_each_rcu_flavor(rsp)
1441		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1442}
1443
1444/*
1445 * Initialize the specified rcu_data structure's default callback list
1446 * to empty.  The default callback list is the one that is not used by
1447 * no-callbacks CPUs.
1448 */
1449static void init_default_callback_list(struct rcu_data *rdp)
1450{
1451	int i;
1452
 
 
1453	rdp->nxtlist = NULL;
1454	for (i = 0; i < RCU_NEXT_SIZE; i++)
1455		rdp->nxttail[i] = &rdp->nxtlist;
1456}
1457
1458/*
1459 * Initialize the specified rcu_data structure's callback list to empty.
1460 */
1461static void init_callback_list(struct rcu_data *rdp)
1462{
1463	if (init_nocb_callback_list(rdp))
1464		return;
1465	init_default_callback_list(rdp);
1466}
1467
1468/*
1469 * Determine the value that ->completed will have at the end of the
1470 * next subsequent grace period.  This is used to tag callbacks so that
1471 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1472 * been dyntick-idle for an extended period with callbacks under the
1473 * influence of RCU_FAST_NO_HZ.
1474 *
1475 * The caller must hold rnp->lock with interrupts disabled.
1476 */
1477static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1478				       struct rcu_node *rnp)
1479{
1480	/*
1481	 * If RCU is idle, we just wait for the next grace period.
1482	 * But we can only be sure that RCU is idle if we are looking
1483	 * at the root rcu_node structure -- otherwise, a new grace
1484	 * period might have started, but just not yet gotten around
1485	 * to initializing the current non-root rcu_node structure.
1486	 */
1487	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1488		return rnp->completed + 1;
1489
1490	/*
1491	 * Otherwise, wait for a possible partial grace period and
1492	 * then the subsequent full grace period.
1493	 */
1494	return rnp->completed + 2;
1495}
1496
1497/*
1498 * Trace-event helper function for rcu_start_future_gp() and
1499 * rcu_nocb_wait_gp().
1500 */
1501static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1502				unsigned long c, const char *s)
1503{
1504	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1505				      rnp->completed, c, rnp->level,
1506				      rnp->grplo, rnp->grphi, s);
1507}
1508
1509/*
1510 * Start some future grace period, as needed to handle newly arrived
1511 * callbacks.  The required future grace periods are recorded in each
1512 * rcu_node structure's ->need_future_gp field.  Returns true if there
1513 * is reason to awaken the grace-period kthread.
1514 *
1515 * The caller must hold the specified rcu_node structure's ->lock.
1516 */
1517static bool __maybe_unused
1518rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1519		    unsigned long *c_out)
1520{
1521	unsigned long c;
1522	int i;
1523	bool ret = false;
1524	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1525
1526	/*
1527	 * Pick up grace-period number for new callbacks.  If this
1528	 * grace period is already marked as needed, return to the caller.
1529	 */
1530	c = rcu_cbs_completed(rdp->rsp, rnp);
1531	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1532	if (rnp->need_future_gp[c & 0x1]) {
1533		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1534		goto out;
1535	}
1536
1537	/*
1538	 * If either this rcu_node structure or the root rcu_node structure
1539	 * believe that a grace period is in progress, then we must wait
1540	 * for the one following, which is in "c".  Because our request
1541	 * will be noticed at the end of the current grace period, we don't
1542	 * need to explicitly start one.  We only do the lockless check
1543	 * of rnp_root's fields if the current rcu_node structure thinks
1544	 * there is no grace period in flight, and because we hold rnp->lock,
1545	 * the only possible change is when rnp_root's two fields are
1546	 * equal, in which case rnp_root->gpnum might be concurrently
1547	 * incremented.  But that is OK, as it will just result in our
1548	 * doing some extra useless work.
1549	 */
1550	if (rnp->gpnum != rnp->completed ||
1551	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1552		rnp->need_future_gp[c & 0x1]++;
1553		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1554		goto out;
1555	}
1556
1557	/*
1558	 * There might be no grace period in progress.  If we don't already
1559	 * hold it, acquire the root rcu_node structure's lock in order to
1560	 * start one (if needed).
1561	 */
1562	if (rnp != rnp_root)
1563		raw_spin_lock_rcu_node(rnp_root);
 
 
1564
1565	/*
1566	 * Get a new grace-period number.  If there really is no grace
1567	 * period in progress, it will be smaller than the one we obtained
1568	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1569	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1570	 */
1571	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1572	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1573		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1574			rdp->nxtcompleted[i] = c;
1575
1576	/*
1577	 * If the needed for the required grace period is already
1578	 * recorded, trace and leave.
1579	 */
1580	if (rnp_root->need_future_gp[c & 0x1]) {
1581		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1582		goto unlock_out;
1583	}
1584
1585	/* Record the need for the future grace period. */
1586	rnp_root->need_future_gp[c & 0x1]++;
1587
1588	/* If a grace period is not already in progress, start one. */
1589	if (rnp_root->gpnum != rnp_root->completed) {
1590		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1591	} else {
1592		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1593		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1594	}
1595unlock_out:
1596	if (rnp != rnp_root)
1597		raw_spin_unlock_rcu_node(rnp_root);
1598out:
1599	if (c_out != NULL)
1600		*c_out = c;
1601	return ret;
1602}
1603
1604/*
1605 * Clean up any old requests for the just-ended grace period.  Also return
1606 * whether any additional grace periods have been requested.  Also invoke
1607 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1608 * waiting for this grace period to complete.
1609 */
1610static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1611{
1612	int c = rnp->completed;
1613	int needmore;
1614	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1615
 
1616	rnp->need_future_gp[c & 0x1] = 0;
1617	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1618	trace_rcu_future_gp(rnp, rdp, c,
1619			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1620	return needmore;
1621}
1622
1623/*
1624 * Awaken the grace-period kthread for the specified flavor of RCU.
1625 * Don't do a self-awaken, and don't bother awakening when there is
1626 * nothing for the grace-period kthread to do (as in several CPUs
1627 * raced to awaken, and we lost), and finally don't try to awaken
1628 * a kthread that has not yet been created.
1629 */
1630static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1631{
1632	if (current == rsp->gp_kthread ||
1633	    !READ_ONCE(rsp->gp_flags) ||
1634	    !rsp->gp_kthread)
1635		return;
1636	swake_up(&rsp->gp_wq);
1637}
1638
1639/*
1640 * If there is room, assign a ->completed number to any callbacks on
1641 * this CPU that have not already been assigned.  Also accelerate any
1642 * callbacks that were previously assigned a ->completed number that has
1643 * since proven to be too conservative, which can happen if callbacks get
1644 * assigned a ->completed number while RCU is idle, but with reference to
1645 * a non-root rcu_node structure.  This function is idempotent, so it does
1646 * not hurt to call it repeatedly.  Returns an flag saying that we should
1647 * awaken the RCU grace-period kthread.
1648 *
1649 * The caller must hold rnp->lock with interrupts disabled.
1650 */
1651static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1652			       struct rcu_data *rdp)
1653{
1654	unsigned long c;
1655	int i;
1656	bool ret;
1657
1658	/* If the CPU has no callbacks, nothing to do. */
1659	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1660		return false;
1661
1662	/*
1663	 * Starting from the sublist containing the callbacks most
1664	 * recently assigned a ->completed number and working down, find the
1665	 * first sublist that is not assignable to an upcoming grace period.
1666	 * Such a sublist has something in it (first two tests) and has
1667	 * a ->completed number assigned that will complete sooner than
1668	 * the ->completed number for newly arrived callbacks (last test).
1669	 *
1670	 * The key point is that any later sublist can be assigned the
1671	 * same ->completed number as the newly arrived callbacks, which
1672	 * means that the callbacks in any of these later sublist can be
1673	 * grouped into a single sublist, whether or not they have already
1674	 * been assigned a ->completed number.
1675	 */
1676	c = rcu_cbs_completed(rsp, rnp);
1677	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1678		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1679		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1680			break;
1681
1682	/*
1683	 * If there are no sublist for unassigned callbacks, leave.
1684	 * At the same time, advance "i" one sublist, so that "i" will
1685	 * index into the sublist where all the remaining callbacks should
1686	 * be grouped into.
1687	 */
1688	if (++i >= RCU_NEXT_TAIL)
1689		return false;
1690
1691	/*
1692	 * Assign all subsequent callbacks' ->completed number to the next
1693	 * full grace period and group them all in the sublist initially
1694	 * indexed by "i".
1695	 */
1696	for (; i <= RCU_NEXT_TAIL; i++) {
1697		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1698		rdp->nxtcompleted[i] = c;
1699	}
1700	/* Record any needed additional grace periods. */
1701	ret = rcu_start_future_gp(rnp, rdp, NULL);
1702
1703	/* Trace depending on how much we were able to accelerate. */
1704	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1705		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1706	else
1707		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1708	return ret;
1709}
1710
1711/*
1712 * Move any callbacks whose grace period has completed to the
1713 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1714 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1715 * sublist.  This function is idempotent, so it does not hurt to
1716 * invoke it repeatedly.  As long as it is not invoked -too- often...
1717 * Returns true if the RCU grace-period kthread needs to be awakened.
1718 *
1719 * The caller must hold rnp->lock with interrupts disabled.
1720 */
1721static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1722			    struct rcu_data *rdp)
1723{
1724	int i, j;
1725
1726	/* If the CPU has no callbacks, nothing to do. */
1727	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1728		return false;
1729
1730	/*
1731	 * Find all callbacks whose ->completed numbers indicate that they
1732	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1733	 */
1734	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1735		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1736			break;
1737		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1738	}
1739	/* Clean up any sublist tail pointers that were misordered above. */
1740	for (j = RCU_WAIT_TAIL; j < i; j++)
1741		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1742
1743	/* Copy down callbacks to fill in empty sublists. */
1744	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1745		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1746			break;
1747		rdp->nxttail[j] = rdp->nxttail[i];
1748		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1749	}
1750
1751	/* Classify any remaining callbacks. */
1752	return rcu_accelerate_cbs(rsp, rnp, rdp);
1753}
1754
1755/*
1756 * Update CPU-local rcu_data state to record the beginnings and ends of
1757 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1758 * structure corresponding to the current CPU, and must have irqs disabled.
1759 * Returns true if the grace-period kthread needs to be awakened.
1760 */
1761static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1762			      struct rcu_data *rdp)
1763{
1764	bool ret;
1765
1766	/* Handle the ends of any preceding grace periods first. */
1767	if (rdp->completed == rnp->completed &&
1768	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1769
1770		/* No grace period end, so just accelerate recent callbacks. */
1771		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1772
1773	} else {
1774
1775		/* Advance callbacks. */
1776		ret = rcu_advance_cbs(rsp, rnp, rdp);
1777
1778		/* Remember that we saw this grace-period completion. */
1779		rdp->completed = rnp->completed;
1780		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1781	}
1782
1783	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1784		/*
1785		 * If the current grace period is waiting for this CPU,
1786		 * set up to detect a quiescent state, otherwise don't
1787		 * go looking for one.
1788		 */
1789		rdp->gpnum = rnp->gpnum;
1790		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1791		rdp->cpu_no_qs.b.norm = true;
1792		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1793		rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1794		zero_cpu_stall_ticks(rdp);
1795		WRITE_ONCE(rdp->gpwrap, false);
1796	}
1797	return ret;
1798}
1799
1800static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1801{
1802	unsigned long flags;
1803	bool needwake;
1804	struct rcu_node *rnp;
1805
1806	local_irq_save(flags);
1807	rnp = rdp->mynode;
1808	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1809	     rdp->completed == READ_ONCE(rnp->completed) &&
1810	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1811	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1812		local_irq_restore(flags);
1813		return;
1814	}
1815	needwake = __note_gp_changes(rsp, rnp, rdp);
1816	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1817	if (needwake)
1818		rcu_gp_kthread_wake(rsp);
1819}
1820
1821static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1822{
1823	if (delay > 0 &&
1824	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1825		schedule_timeout_uninterruptible(delay);
1826}
1827
1828/*
1829 * Initialize a new grace period.  Return false if no grace period required.
1830 */
1831static bool rcu_gp_init(struct rcu_state *rsp)
1832{
1833	unsigned long oldmask;
1834	struct rcu_data *rdp;
1835	struct rcu_node *rnp = rcu_get_root(rsp);
1836
1837	WRITE_ONCE(rsp->gp_activity, jiffies);
1838	raw_spin_lock_irq_rcu_node(rnp);
1839	if (!READ_ONCE(rsp->gp_flags)) {
 
1840		/* Spurious wakeup, tell caller to go back to sleep.  */
1841		raw_spin_unlock_irq_rcu_node(rnp);
1842		return false;
1843	}
1844	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1845
1846	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1847		/*
1848		 * Grace period already in progress, don't start another.
1849		 * Not supposed to be able to happen.
1850		 */
1851		raw_spin_unlock_irq_rcu_node(rnp);
1852		return false;
1853	}
1854
1855	/* Advance to a new grace period and initialize state. */
1856	record_gp_stall_check_time(rsp);
1857	/* Record GP times before starting GP, hence smp_store_release(). */
1858	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1859	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1860	raw_spin_unlock_irq_rcu_node(rnp);
1861
1862	/*
1863	 * Apply per-leaf buffered online and offline operations to the
1864	 * rcu_node tree.  Note that this new grace period need not wait
1865	 * for subsequent online CPUs, and that quiescent-state forcing
1866	 * will handle subsequent offline CPUs.
1867	 */
1868	rcu_for_each_leaf_node(rsp, rnp) {
1869		rcu_gp_slow(rsp, gp_preinit_delay);
1870		raw_spin_lock_irq_rcu_node(rnp);
1871		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1872		    !rnp->wait_blkd_tasks) {
1873			/* Nothing to do on this leaf rcu_node structure. */
1874			raw_spin_unlock_irq_rcu_node(rnp);
1875			continue;
1876		}
1877
1878		/* Record old state, apply changes to ->qsmaskinit field. */
1879		oldmask = rnp->qsmaskinit;
1880		rnp->qsmaskinit = rnp->qsmaskinitnext;
1881
1882		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1883		if (!oldmask != !rnp->qsmaskinit) {
1884			if (!oldmask) /* First online CPU for this rcu_node. */
1885				rcu_init_new_rnp(rnp);
1886			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1887				rnp->wait_blkd_tasks = true;
1888			else /* Last offline CPU and can propagate. */
1889				rcu_cleanup_dead_rnp(rnp);
1890		}
1891
1892		/*
1893		 * If all waited-on tasks from prior grace period are
1894		 * done, and if all this rcu_node structure's CPUs are
1895		 * still offline, propagate up the rcu_node tree and
1896		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1897		 * rcu_node structure's CPUs has since come back online,
1898		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1899		 * checks for this, so just call it unconditionally).
1900		 */
1901		if (rnp->wait_blkd_tasks &&
1902		    (!rcu_preempt_has_tasks(rnp) ||
1903		     rnp->qsmaskinit)) {
1904			rnp->wait_blkd_tasks = false;
1905			rcu_cleanup_dead_rnp(rnp);
1906		}
1907
1908		raw_spin_unlock_irq_rcu_node(rnp);
1909	}
1910
1911	/*
1912	 * Set the quiescent-state-needed bits in all the rcu_node
1913	 * structures for all currently online CPUs in breadth-first order,
1914	 * starting from the root rcu_node structure, relying on the layout
1915	 * of the tree within the rsp->node[] array.  Note that other CPUs
1916	 * will access only the leaves of the hierarchy, thus seeing that no
1917	 * grace period is in progress, at least until the corresponding
1918	 * leaf node has been initialized.  In addition, we have excluded
1919	 * CPU-hotplug operations.
1920	 *
1921	 * The grace period cannot complete until the initialization
1922	 * process finishes, because this kthread handles both.
1923	 */
1924	rcu_for_each_node_breadth_first(rsp, rnp) {
1925		rcu_gp_slow(rsp, gp_init_delay);
1926		raw_spin_lock_irq_rcu_node(rnp);
1927		rdp = this_cpu_ptr(rsp->rda);
1928		rcu_preempt_check_blocked_tasks(rnp);
1929		rnp->qsmask = rnp->qsmaskinit;
1930		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1931		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1932			WRITE_ONCE(rnp->completed, rsp->completed);
1933		if (rnp == rdp->mynode)
1934			(void)__note_gp_changes(rsp, rnp, rdp);
1935		rcu_preempt_boost_start_gp(rnp);
1936		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1937					    rnp->level, rnp->grplo,
1938					    rnp->grphi, rnp->qsmask);
1939		raw_spin_unlock_irq_rcu_node(rnp);
1940		cond_resched_rcu_qs();
1941		WRITE_ONCE(rsp->gp_activity, jiffies);
 
 
 
 
1942	}
1943
1944	return true;
1945}
1946
1947/*
1948 * Helper function for wait_event_interruptible_timeout() wakeup
1949 * at force-quiescent-state time.
1950 */
1951static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1952{
1953	struct rcu_node *rnp = rcu_get_root(rsp);
1954
1955	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1956	*gfp = READ_ONCE(rsp->gp_flags);
1957	if (*gfp & RCU_GP_FLAG_FQS)
1958		return true;
1959
1960	/* The current grace period has completed. */
1961	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1962		return true;
1963
1964	return false;
1965}
1966
1967/*
1968 * Do one round of quiescent-state forcing.
1969 */
1970static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
1971{
 
1972	bool isidle = false;
1973	unsigned long maxj;
1974	struct rcu_node *rnp = rcu_get_root(rsp);
1975
1976	WRITE_ONCE(rsp->gp_activity, jiffies);
1977	rsp->n_force_qs++;
1978	if (first_time) {
1979		/* Collect dyntick-idle snapshots. */
1980		if (is_sysidle_rcu_state(rsp)) {
1981			isidle = true;
1982			maxj = jiffies - ULONG_MAX / 4;
1983		}
1984		force_qs_rnp(rsp, dyntick_save_progress_counter,
1985			     &isidle, &maxj);
1986		rcu_sysidle_report_gp(rsp, isidle, maxj);
 
1987	} else {
1988		/* Handle dyntick-idle and offline CPUs. */
1989		isidle = true;
1990		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1991	}
1992	/* Clear flag to prevent immediate re-entry. */
1993	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1994		raw_spin_lock_irq_rcu_node(rnp);
1995		WRITE_ONCE(rsp->gp_flags,
1996			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
1997		raw_spin_unlock_irq_rcu_node(rnp);
1998	}
 
1999}
2000
2001/*
2002 * Clean up after the old grace period.
2003 */
2004static void rcu_gp_cleanup(struct rcu_state *rsp)
2005{
2006	unsigned long gp_duration;
2007	bool needgp = false;
2008	int nocb = 0;
2009	struct rcu_data *rdp;
2010	struct rcu_node *rnp = rcu_get_root(rsp);
2011	struct swait_queue_head *sq;
2012
2013	WRITE_ONCE(rsp->gp_activity, jiffies);
2014	raw_spin_lock_irq_rcu_node(rnp);
2015	gp_duration = jiffies - rsp->gp_start;
2016	if (gp_duration > rsp->gp_max)
2017		rsp->gp_max = gp_duration;
2018
2019	/*
2020	 * We know the grace period is complete, but to everyone else
2021	 * it appears to still be ongoing.  But it is also the case
2022	 * that to everyone else it looks like there is nothing that
2023	 * they can do to advance the grace period.  It is therefore
2024	 * safe for us to drop the lock in order to mark the grace
2025	 * period as completed in all of the rcu_node structures.
2026	 */
2027	raw_spin_unlock_irq_rcu_node(rnp);
2028
2029	/*
2030	 * Propagate new ->completed value to rcu_node structures so
2031	 * that other CPUs don't have to wait until the start of the next
2032	 * grace period to process their callbacks.  This also avoids
2033	 * some nasty RCU grace-period initialization races by forcing
2034	 * the end of the current grace period to be completely recorded in
2035	 * all of the rcu_node structures before the beginning of the next
2036	 * grace period is recorded in any of the rcu_node structures.
2037	 */
2038	rcu_for_each_node_breadth_first(rsp, rnp) {
2039		raw_spin_lock_irq_rcu_node(rnp);
2040		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2041		WARN_ON_ONCE(rnp->qsmask);
2042		WRITE_ONCE(rnp->completed, rsp->gpnum);
2043		rdp = this_cpu_ptr(rsp->rda);
2044		if (rnp == rdp->mynode)
2045			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2046		/* smp_mb() provided by prior unlock-lock pair. */
2047		nocb += rcu_future_gp_cleanup(rsp, rnp);
2048		sq = rcu_nocb_gp_get(rnp);
2049		raw_spin_unlock_irq_rcu_node(rnp);
2050		rcu_nocb_gp_cleanup(sq);
2051		cond_resched_rcu_qs();
2052		WRITE_ONCE(rsp->gp_activity, jiffies);
2053		rcu_gp_slow(rsp, gp_cleanup_delay);
2054	}
2055	rnp = rcu_get_root(rsp);
2056	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
 
2057	rcu_nocb_gp_set(rnp, nocb);
2058
2059	/* Declare grace period done. */
2060	WRITE_ONCE(rsp->completed, rsp->gpnum);
2061	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2062	rsp->gp_state = RCU_GP_IDLE;
2063	rdp = this_cpu_ptr(rsp->rda);
2064	/* Advance CBs to reduce false positives below. */
2065	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2066	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2067		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2068		trace_rcu_grace_period(rsp->name,
2069				       READ_ONCE(rsp->gpnum),
2070				       TPS("newreq"));
2071	}
2072	raw_spin_unlock_irq_rcu_node(rnp);
2073}
2074
2075/*
2076 * Body of kthread that handles grace periods.
2077 */
2078static int __noreturn rcu_gp_kthread(void *arg)
2079{
2080	bool first_gp_fqs;
2081	int gf;
2082	unsigned long j;
2083	int ret;
2084	struct rcu_state *rsp = arg;
2085	struct rcu_node *rnp = rcu_get_root(rsp);
2086
2087	rcu_bind_gp_kthread();
2088	for (;;) {
2089
2090		/* Handle grace-period start. */
2091		for (;;) {
2092			trace_rcu_grace_period(rsp->name,
2093					       READ_ONCE(rsp->gpnum),
2094					       TPS("reqwait"));
2095			rsp->gp_state = RCU_GP_WAIT_GPS;
2096			swait_event_interruptible(rsp->gp_wq,
2097						 READ_ONCE(rsp->gp_flags) &
2098						 RCU_GP_FLAG_INIT);
2099			rsp->gp_state = RCU_GP_DONE_GPS;
2100			/* Locking provides needed memory barrier. */
2101			if (rcu_gp_init(rsp))
2102				break;
2103			cond_resched_rcu_qs();
2104			WRITE_ONCE(rsp->gp_activity, jiffies);
2105			WARN_ON(signal_pending(current));
2106			trace_rcu_grace_period(rsp->name,
2107					       READ_ONCE(rsp->gpnum),
2108					       TPS("reqwaitsig"));
2109		}
2110
2111		/* Handle quiescent-state forcing. */
2112		first_gp_fqs = true;
2113		j = jiffies_till_first_fqs;
2114		if (j > HZ) {
2115			j = HZ;
2116			jiffies_till_first_fqs = HZ;
2117		}
2118		ret = 0;
2119		for (;;) {
2120			if (!ret)
2121				rsp->jiffies_force_qs = jiffies + j;
2122			trace_rcu_grace_period(rsp->name,
2123					       READ_ONCE(rsp->gpnum),
2124					       TPS("fqswait"));
2125			rsp->gp_state = RCU_GP_WAIT_FQS;
2126			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2127					rcu_gp_fqs_check_wake(rsp, &gf), j);
2128			rsp->gp_state = RCU_GP_DOING_FQS;
 
 
2129			/* Locking provides needed memory barriers. */
2130			/* If grace period done, leave loop. */
2131			if (!READ_ONCE(rnp->qsmask) &&
2132			    !rcu_preempt_blocked_readers_cgp(rnp))
2133				break;
2134			/* If time for quiescent-state forcing, do it. */
2135			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2136			    (gf & RCU_GP_FLAG_FQS)) {
2137				trace_rcu_grace_period(rsp->name,
2138						       READ_ONCE(rsp->gpnum),
2139						       TPS("fqsstart"));
2140				rcu_gp_fqs(rsp, first_gp_fqs);
2141				first_gp_fqs = false;
2142				trace_rcu_grace_period(rsp->name,
2143						       READ_ONCE(rsp->gpnum),
2144						       TPS("fqsend"));
2145				cond_resched_rcu_qs();
2146				WRITE_ONCE(rsp->gp_activity, jiffies);
2147			} else {
2148				/* Deal with stray signal. */
2149				cond_resched_rcu_qs();
2150				WRITE_ONCE(rsp->gp_activity, jiffies);
2151				WARN_ON(signal_pending(current));
2152				trace_rcu_grace_period(rsp->name,
2153						       READ_ONCE(rsp->gpnum),
2154						       TPS("fqswaitsig"));
2155			}
2156			j = jiffies_till_next_fqs;
2157			if (j > HZ) {
2158				j = HZ;
2159				jiffies_till_next_fqs = HZ;
2160			} else if (j < 1) {
2161				j = 1;
2162				jiffies_till_next_fqs = 1;
2163			}
2164		}
2165
2166		/* Handle grace-period end. */
2167		rsp->gp_state = RCU_GP_CLEANUP;
2168		rcu_gp_cleanup(rsp);
2169		rsp->gp_state = RCU_GP_CLEANED;
2170	}
2171}
2172
 
 
 
 
 
 
 
 
2173/*
2174 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2175 * in preparation for detecting the next grace period.  The caller must hold
2176 * the root node's ->lock and hard irqs must be disabled.
2177 *
2178 * Note that it is legal for a dying CPU (which is marked as offline) to
2179 * invoke this function.  This can happen when the dying CPU reports its
2180 * quiescent state.
2181 *
2182 * Returns true if the grace-period kthread must be awakened.
2183 */
2184static bool
2185rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2186		      struct rcu_data *rdp)
2187{
2188	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2189		/*
2190		 * Either we have not yet spawned the grace-period
2191		 * task, this CPU does not need another grace period,
2192		 * or a grace period is already in progress.
2193		 * Either way, don't start a new grace period.
2194		 */
2195		return false;
2196	}
2197	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2198	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2199			       TPS("newreq"));
2200
2201	/*
2202	 * We can't do wakeups while holding the rnp->lock, as that
2203	 * could cause possible deadlocks with the rq->lock. Defer
2204	 * the wakeup to our caller.
 
2205	 */
2206	return true;
 
2207}
2208
2209/*
2210 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2211 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2212 * is invoked indirectly from rcu_advance_cbs(), which would result in
2213 * endless recursion -- or would do so if it wasn't for the self-deadlock
2214 * that is encountered beforehand.
2215 *
2216 * Returns true if the grace-period kthread needs to be awakened.
2217 */
2218static bool rcu_start_gp(struct rcu_state *rsp)
 
2219{
2220	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2221	struct rcu_node *rnp = rcu_get_root(rsp);
2222	bool ret = false;
2223
2224	/*
2225	 * If there is no grace period in progress right now, any
2226	 * callbacks we have up to this point will be satisfied by the
2227	 * next grace period.  Also, advancing the callbacks reduces the
2228	 * probability of false positives from cpu_needs_another_gp()
2229	 * resulting in pointless grace periods.  So, advance callbacks
2230	 * then start the grace period!
2231	 */
2232	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2233	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2234	return ret;
2235}
2236
2237/*
2238 * Report a full set of quiescent states to the specified rcu_state data
2239 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2240 * kthread if another grace period is required.  Whether we wake
2241 * the grace-period kthread or it awakens itself for the next round
2242 * of quiescent-state forcing, that kthread will clean up after the
2243 * just-completed grace period.  Note that the caller must hold rnp->lock,
2244 * which is released before return.
2245 */
2246static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2247	__releases(rcu_get_root(rsp)->lock)
2248{
2249	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2250	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2251	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2252	swake_up(&rsp->gp_wq);  /* Memory barrier implied by swake_up() path. */
2253}
2254
2255/*
2256 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2257 * Allows quiescent states for a group of CPUs to be reported at one go
2258 * to the specified rcu_node structure, though all the CPUs in the group
2259 * must be represented by the same rcu_node structure (which need not be a
2260 * leaf rcu_node structure, though it often will be).  The gps parameter
2261 * is the grace-period snapshot, which means that the quiescent states
2262 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2263 * must be held upon entry, and it is released before return.
2264 */
2265static void
2266rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2267		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2268	__releases(rnp->lock)
2269{
2270	unsigned long oldmask = 0;
2271	struct rcu_node *rnp_c;
2272
2273	/* Walk up the rcu_node hierarchy. */
2274	for (;;) {
2275		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2276
2277			/*
2278			 * Our bit has already been cleared, or the
2279			 * relevant grace period is already over, so done.
2280			 */
2281			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2282			return;
2283		}
2284		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2285		rnp->qsmask &= ~mask;
2286		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2287						 mask, rnp->qsmask, rnp->level,
2288						 rnp->grplo, rnp->grphi,
2289						 !!rnp->gp_tasks);
2290		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2291
2292			/* Other bits still set at this level, so done. */
2293			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2294			return;
2295		}
2296		mask = rnp->grpmask;
2297		if (rnp->parent == NULL) {
2298
2299			/* No more levels.  Exit loop holding root lock. */
2300
2301			break;
2302		}
2303		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2304		rnp_c = rnp;
2305		rnp = rnp->parent;
2306		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2307		oldmask = rnp_c->qsmask;
 
2308	}
2309
2310	/*
2311	 * Get here if we are the last CPU to pass through a quiescent
2312	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2313	 * to clean up and start the next grace period if one is needed.
2314	 */
2315	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2316}
2317
2318/*
2319 * Record a quiescent state for all tasks that were previously queued
2320 * on the specified rcu_node structure and that were blocking the current
2321 * RCU grace period.  The caller must hold the specified rnp->lock with
2322 * irqs disabled, and this lock is released upon return, but irqs remain
2323 * disabled.
2324 */
2325static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2326				      struct rcu_node *rnp, unsigned long flags)
2327	__releases(rnp->lock)
2328{
2329	unsigned long gps;
2330	unsigned long mask;
2331	struct rcu_node *rnp_p;
2332
2333	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2334	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2335		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2336		return;  /* Still need more quiescent states! */
2337	}
2338
2339	rnp_p = rnp->parent;
2340	if (rnp_p == NULL) {
2341		/*
2342		 * Only one rcu_node structure in the tree, so don't
2343		 * try to report up to its nonexistent parent!
2344		 */
2345		rcu_report_qs_rsp(rsp, flags);
2346		return;
2347	}
2348
2349	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2350	gps = rnp->gpnum;
2351	mask = rnp->grpmask;
2352	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2353	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2354	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2355}
2356
2357/*
2358 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2359 * structure.  This must be called from the specified CPU.
 
 
 
 
 
2360 */
2361static void
2362rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2363{
2364	unsigned long flags;
2365	unsigned long mask;
2366	bool needwake;
2367	struct rcu_node *rnp;
2368
2369	rnp = rdp->mynode;
2370	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2371	if ((rdp->cpu_no_qs.b.norm &&
2372	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2373	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2374	    rdp->gpwrap) {
2375
2376		/*
2377		 * The grace period in which this quiescent state was
2378		 * recorded has ended, so don't report it upwards.
2379		 * We will instead need a new quiescent state that lies
2380		 * within the current grace period.
2381		 */
2382		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2383		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2384		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2385		return;
2386	}
2387	mask = rdp->grpmask;
2388	if ((rnp->qsmask & mask) == 0) {
2389		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2390	} else {
2391		rdp->core_needs_qs = false;
2392
2393		/*
2394		 * This GP can't end until cpu checks in, so all of our
2395		 * callbacks can be processed during the next GP.
2396		 */
2397		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2398
2399		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2400		/* ^^^ Released rnp->lock */
2401		if (needwake)
2402			rcu_gp_kthread_wake(rsp);
2403	}
2404}
2405
2406/*
2407 * Check to see if there is a new grace period of which this CPU
2408 * is not yet aware, and if so, set up local rcu_data state for it.
2409 * Otherwise, see if this CPU has just passed through its first
2410 * quiescent state for this grace period, and record that fact if so.
2411 */
2412static void
2413rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2414{
2415	/* Check for grace-period ends and beginnings. */
2416	note_gp_changes(rsp, rdp);
2417
2418	/*
2419	 * Does this CPU still need to do its part for current grace period?
2420	 * If no, return and let the other CPUs do their part as well.
2421	 */
2422	if (!rdp->core_needs_qs)
2423		return;
2424
2425	/*
2426	 * Was there a quiescent state since the beginning of the grace
2427	 * period? If no, then exit and wait for the next call.
2428	 */
2429	if (rdp->cpu_no_qs.b.norm &&
2430	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2431		return;
2432
2433	/*
2434	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2435	 * judge of that).
2436	 */
2437	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2438}
2439
 
 
2440/*
2441 * Send the specified CPU's RCU callbacks to the orphanage.  The
2442 * specified CPU must be offline, and the caller must hold the
2443 * ->orphan_lock.
2444 */
2445static void
2446rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2447			  struct rcu_node *rnp, struct rcu_data *rdp)
2448{
2449	/* No-CBs CPUs do not have orphanable callbacks. */
2450	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2451		return;
2452
2453	/*
2454	 * Orphan the callbacks.  First adjust the counts.  This is safe
2455	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2456	 * cannot be running now.  Thus no memory barrier is required.
2457	 */
2458	if (rdp->nxtlist != NULL) {
2459		rsp->qlen_lazy += rdp->qlen_lazy;
2460		rsp->qlen += rdp->qlen;
2461		rdp->n_cbs_orphaned += rdp->qlen;
2462		rdp->qlen_lazy = 0;
2463		WRITE_ONCE(rdp->qlen, 0);
2464	}
2465
2466	/*
2467	 * Next, move those callbacks still needing a grace period to
2468	 * the orphanage, where some other CPU will pick them up.
2469	 * Some of the callbacks might have gone partway through a grace
2470	 * period, but that is too bad.  They get to start over because we
2471	 * cannot assume that grace periods are synchronized across CPUs.
2472	 * We don't bother updating the ->nxttail[] array yet, instead
2473	 * we just reset the whole thing later on.
2474	 */
2475	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2476		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2477		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2478		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2479	}
2480
2481	/*
2482	 * Then move the ready-to-invoke callbacks to the orphanage,
2483	 * where some other CPU will pick them up.  These will not be
2484	 * required to pass though another grace period: They are done.
2485	 */
2486	if (rdp->nxtlist != NULL) {
2487		*rsp->orphan_donetail = rdp->nxtlist;
2488		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2489	}
2490
2491	/*
2492	 * Finally, initialize the rcu_data structure's list to empty and
2493	 * disallow further callbacks on this CPU.
2494	 */
2495	init_callback_list(rdp);
2496	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2497}
2498
2499/*
2500 * Adopt the RCU callbacks from the specified rcu_state structure's
2501 * orphanage.  The caller must hold the ->orphan_lock.
2502 */
2503static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2504{
2505	int i;
2506	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2507
2508	/* No-CBs CPUs are handled specially. */
2509	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2510	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2511		return;
2512
2513	/* Do the accounting first. */
2514	rdp->qlen_lazy += rsp->qlen_lazy;
2515	rdp->qlen += rsp->qlen;
2516	rdp->n_cbs_adopted += rsp->qlen;
2517	if (rsp->qlen_lazy != rsp->qlen)
2518		rcu_idle_count_callbacks_posted();
2519	rsp->qlen_lazy = 0;
2520	rsp->qlen = 0;
2521
2522	/*
2523	 * We do not need a memory barrier here because the only way we
2524	 * can get here if there is an rcu_barrier() in flight is if
2525	 * we are the task doing the rcu_barrier().
2526	 */
2527
2528	/* First adopt the ready-to-invoke callbacks. */
2529	if (rsp->orphan_donelist != NULL) {
2530		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2531		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2532		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2533			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2534				rdp->nxttail[i] = rsp->orphan_donetail;
2535		rsp->orphan_donelist = NULL;
2536		rsp->orphan_donetail = &rsp->orphan_donelist;
2537	}
2538
2539	/* And then adopt the callbacks that still need a grace period. */
2540	if (rsp->orphan_nxtlist != NULL) {
2541		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2542		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2543		rsp->orphan_nxtlist = NULL;
2544		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2545	}
2546}
2547
2548/*
2549 * Trace the fact that this CPU is going offline.
2550 */
2551static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2552{
2553	RCU_TRACE(unsigned long mask);
2554	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2555	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2556
2557	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2558		return;
2559
2560	RCU_TRACE(mask = rdp->grpmask);
2561	trace_rcu_grace_period(rsp->name,
2562			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2563			       TPS("cpuofl"));
2564}
2565
2566/*
2567 * All CPUs for the specified rcu_node structure have gone offline,
2568 * and all tasks that were preempted within an RCU read-side critical
2569 * section while running on one of those CPUs have since exited their RCU
2570 * read-side critical section.  Some other CPU is reporting this fact with
2571 * the specified rcu_node structure's ->lock held and interrupts disabled.
2572 * This function therefore goes up the tree of rcu_node structures,
2573 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2574 * the leaf rcu_node structure's ->qsmaskinit field has already been
2575 * updated
2576 *
2577 * This function does check that the specified rcu_node structure has
2578 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2579 * prematurely.  That said, invoking it after the fact will cost you
2580 * a needless lock acquisition.  So once it has done its work, don't
2581 * invoke it again.
2582 */
2583static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2584{
2585	long mask;
2586	struct rcu_node *rnp = rnp_leaf;
2587
2588	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2589	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2590		return;
2591	for (;;) {
2592		mask = rnp->grpmask;
2593		rnp = rnp->parent;
2594		if (!rnp)
2595			break;
2596		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2597		rnp->qsmaskinit &= ~mask;
2598		rnp->qsmask &= ~mask;
2599		if (rnp->qsmaskinit) {
2600			raw_spin_unlock_rcu_node(rnp);
2601			/* irqs remain disabled. */
2602			return;
2603		}
2604		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2605	}
2606}
2607
2608/*
2609 * The CPU has been completely removed, and some other CPU is reporting
2610 * this fact from process context.  Do the remainder of the cleanup,
2611 * including orphaning the outgoing CPU's RCU callbacks, and also
2612 * adopting them.  There can only be one CPU hotplug operation at a time,
2613 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2614 */
2615static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2616{
2617	unsigned long flags;
 
 
2618	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2619	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2620
2621	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2622		return;
2623
2624	/* Adjust any no-longer-needed kthreads. */
2625	rcu_boost_kthread_setaffinity(rnp, -1);
2626
2627	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
 
 
 
2628	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
 
 
2629	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2630	rcu_adopt_orphan_cbs(rsp, flags);
2631	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2633	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2634		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2635		  cpu, rdp->qlen, rdp->nxtlist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2636}
2637
 
 
2638/*
2639 * Invoke any RCU callbacks that have made it to the end of their grace
2640 * period.  Thottle as specified by rdp->blimit.
2641 */
2642static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2643{
2644	unsigned long flags;
2645	struct rcu_head *next, *list, **tail;
2646	long bl, count, count_lazy;
2647	int i;
2648
2649	/* If no callbacks are ready, just return. */
2650	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2651		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2652		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2653				    need_resched(), is_idle_task(current),
2654				    rcu_is_callbacks_kthread());
2655		return;
2656	}
2657
2658	/*
2659	 * Extract the list of ready callbacks, disabling to prevent
2660	 * races with call_rcu() from interrupt handlers.
2661	 */
2662	local_irq_save(flags);
2663	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2664	bl = rdp->blimit;
2665	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2666	list = rdp->nxtlist;
2667	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2668	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2669	tail = rdp->nxttail[RCU_DONE_TAIL];
2670	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2671		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2672			rdp->nxttail[i] = &rdp->nxtlist;
2673	local_irq_restore(flags);
2674
2675	/* Invoke callbacks. */
2676	count = count_lazy = 0;
2677	while (list) {
2678		next = list->next;
2679		prefetch(next);
2680		debug_rcu_head_unqueue(list);
2681		if (__rcu_reclaim(rsp->name, list))
2682			count_lazy++;
2683		list = next;
2684		/* Stop only if limit reached and CPU has something to do. */
2685		if (++count >= bl &&
2686		    (need_resched() ||
2687		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2688			break;
2689	}
2690
2691	local_irq_save(flags);
2692	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2693			    is_idle_task(current),
2694			    rcu_is_callbacks_kthread());
2695
2696	/* Update count, and requeue any remaining callbacks. */
2697	if (list != NULL) {
2698		*tail = rdp->nxtlist;
2699		rdp->nxtlist = list;
2700		for (i = 0; i < RCU_NEXT_SIZE; i++)
2701			if (&rdp->nxtlist == rdp->nxttail[i])
2702				rdp->nxttail[i] = tail;
2703			else
2704				break;
2705	}
2706	smp_mb(); /* List handling before counting for rcu_barrier(). */
2707	rdp->qlen_lazy -= count_lazy;
2708	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2709	rdp->n_cbs_invoked += count;
2710
2711	/* Reinstate batch limit if we have worked down the excess. */
2712	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2713		rdp->blimit = blimit;
2714
2715	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2716	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2717		rdp->qlen_last_fqs_check = 0;
2718		rdp->n_force_qs_snap = rsp->n_force_qs;
2719	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2720		rdp->qlen_last_fqs_check = rdp->qlen;
2721	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2722
2723	local_irq_restore(flags);
2724
2725	/* Re-invoke RCU core processing if there are callbacks remaining. */
2726	if (cpu_has_callbacks_ready_to_invoke(rdp))
2727		invoke_rcu_core();
2728}
2729
2730/*
2731 * Check to see if this CPU is in a non-context-switch quiescent state
2732 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2733 * Also schedule RCU core processing.
2734 *
2735 * This function must be called from hardirq context.  It is normally
2736 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2737 * false, there is no point in invoking rcu_check_callbacks().
2738 */
2739void rcu_check_callbacks(int user)
2740{
2741	trace_rcu_utilization(TPS("Start scheduler-tick"));
2742	increment_cpu_stall_ticks();
2743	if (user || rcu_is_cpu_rrupt_from_idle()) {
2744
2745		/*
2746		 * Get here if this CPU took its interrupt from user
2747		 * mode or from the idle loop, and if this is not a
2748		 * nested interrupt.  In this case, the CPU is in
2749		 * a quiescent state, so note it.
2750		 *
2751		 * No memory barrier is required here because both
2752		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2753		 * variables that other CPUs neither access nor modify,
2754		 * at least not while the corresponding CPU is online.
2755		 */
2756
2757		rcu_sched_qs();
2758		rcu_bh_qs();
2759
2760	} else if (!in_softirq()) {
2761
2762		/*
2763		 * Get here if this CPU did not take its interrupt from
2764		 * softirq, in other words, if it is not interrupting
2765		 * a rcu_bh read-side critical section.  This is an _bh
2766		 * critical section, so note it.
2767		 */
2768
2769		rcu_bh_qs();
2770	}
2771	rcu_preempt_check_callbacks();
2772	if (rcu_pending())
2773		invoke_rcu_core();
2774	if (user)
2775		rcu_note_voluntary_context_switch(current);
2776	trace_rcu_utilization(TPS("End scheduler-tick"));
2777}
2778
2779/*
2780 * Scan the leaf rcu_node structures, processing dyntick state for any that
2781 * have not yet encountered a quiescent state, using the function specified.
2782 * Also initiate boosting for any threads blocked on the root rcu_node.
2783 *
2784 * The caller must have suppressed start of new grace periods.
2785 */
2786static void force_qs_rnp(struct rcu_state *rsp,
2787			 int (*f)(struct rcu_data *rsp, bool *isidle,
2788				  unsigned long *maxj),
2789			 bool *isidle, unsigned long *maxj)
2790{
2791	unsigned long bit;
2792	int cpu;
2793	unsigned long flags;
2794	unsigned long mask;
2795	struct rcu_node *rnp;
2796
2797	rcu_for_each_leaf_node(rsp, rnp) {
2798		cond_resched_rcu_qs();
2799		mask = 0;
2800		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
 
 
 
 
2801		if (rnp->qsmask == 0) {
2802			if (rcu_state_p == &rcu_sched_state ||
2803			    rsp != rcu_state_p ||
2804			    rcu_preempt_blocked_readers_cgp(rnp)) {
2805				/*
2806				 * No point in scanning bits because they
2807				 * are all zero.  But we might need to
2808				 * priority-boost blocked readers.
2809				 */
2810				rcu_initiate_boost(rnp, flags);
2811				/* rcu_initiate_boost() releases rnp->lock */
2812				continue;
2813			}
2814			if (rnp->parent &&
2815			    (rnp->parent->qsmask & rnp->grpmask)) {
2816				/*
2817				 * Race between grace-period
2818				 * initialization and task exiting RCU
2819				 * read-side critical section: Report.
2820				 */
2821				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2822				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2823				continue;
2824			}
2825		}
2826		cpu = rnp->grplo;
2827		bit = 1;
2828		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2829			if ((rnp->qsmask & bit) != 0) {
 
 
2830				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2831					mask |= bit;
2832			}
2833		}
2834		if (mask != 0) {
2835			/* Idle/offline CPUs, report (releases rnp->lock. */
2836			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2837		} else {
2838			/* Nothing to do here, so just drop the lock. */
2839			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2840		}
 
 
 
 
 
 
 
2841	}
2842}
2843
2844/*
2845 * Force quiescent states on reluctant CPUs, and also detect which
2846 * CPUs are in dyntick-idle mode.
2847 */
2848static void force_quiescent_state(struct rcu_state *rsp)
2849{
2850	unsigned long flags;
2851	bool ret;
2852	struct rcu_node *rnp;
2853	struct rcu_node *rnp_old = NULL;
2854
2855	/* Funnel through hierarchy to reduce memory contention. */
2856	rnp = __this_cpu_read(rsp->rda->mynode);
2857	for (; rnp != NULL; rnp = rnp->parent) {
2858		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2859		      !raw_spin_trylock(&rnp->fqslock);
2860		if (rnp_old != NULL)
2861			raw_spin_unlock(&rnp_old->fqslock);
2862		if (ret) {
2863			rsp->n_force_qs_lh++;
2864			return;
2865		}
2866		rnp_old = rnp;
2867	}
2868	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2869
2870	/* Reached the root of the rcu_node tree, acquire lock. */
2871	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
 
2872	raw_spin_unlock(&rnp_old->fqslock);
2873	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2874		rsp->n_force_qs_lh++;
2875		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2876		return;  /* Someone beat us to it. */
2877	}
2878	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2879	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2880	swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
2881}
2882
2883/*
2884 * This does the RCU core processing work for the specified rcu_state
2885 * and rcu_data structures.  This may be called only from the CPU to
2886 * whom the rdp belongs.
2887 */
2888static void
2889__rcu_process_callbacks(struct rcu_state *rsp)
2890{
2891	unsigned long flags;
2892	bool needwake;
2893	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2894
2895	WARN_ON_ONCE(rdp->beenonline == 0);
2896
2897	/* Update RCU state based on any recent quiescent states. */
2898	rcu_check_quiescent_state(rsp, rdp);
2899
2900	/* Does this CPU require a not-yet-started grace period? */
2901	local_irq_save(flags);
2902	if (cpu_needs_another_gp(rsp, rdp)) {
2903		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2904		needwake = rcu_start_gp(rsp);
2905		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2906		if (needwake)
2907			rcu_gp_kthread_wake(rsp);
2908	} else {
2909		local_irq_restore(flags);
2910	}
2911
2912	/* If there are callbacks ready, invoke them. */
2913	if (cpu_has_callbacks_ready_to_invoke(rdp))
2914		invoke_rcu_callbacks(rsp, rdp);
2915
2916	/* Do any needed deferred wakeups of rcuo kthreads. */
2917	do_nocb_deferred_wakeup(rdp);
2918}
2919
2920/*
2921 * Do RCU core processing for the current CPU.
2922 */
2923static void rcu_process_callbacks(struct softirq_action *unused)
2924{
2925	struct rcu_state *rsp;
2926
2927	if (cpu_is_offline(smp_processor_id()))
2928		return;
2929	trace_rcu_utilization(TPS("Start RCU core"));
2930	for_each_rcu_flavor(rsp)
2931		__rcu_process_callbacks(rsp);
2932	trace_rcu_utilization(TPS("End RCU core"));
2933}
2934
2935/*
2936 * Schedule RCU callback invocation.  If the specified type of RCU
2937 * does not support RCU priority boosting, just do a direct call,
2938 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2939 * are running on the current CPU with softirqs disabled, the
2940 * rcu_cpu_kthread_task cannot disappear out from under us.
2941 */
2942static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2943{
2944	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2945		return;
2946	if (likely(!rsp->boost)) {
2947		rcu_do_batch(rsp, rdp);
2948		return;
2949	}
2950	invoke_rcu_callbacks_kthread();
2951}
2952
2953static void invoke_rcu_core(void)
2954{
2955	if (cpu_online(smp_processor_id()))
2956		raise_softirq(RCU_SOFTIRQ);
2957}
2958
2959/*
2960 * Handle any core-RCU processing required by a call_rcu() invocation.
2961 */
2962static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2963			    struct rcu_head *head, unsigned long flags)
2964{
2965	bool needwake;
2966
2967	/*
2968	 * If called from an extended quiescent state, invoke the RCU
2969	 * core in order to force a re-evaluation of RCU's idleness.
2970	 */
2971	if (!rcu_is_watching())
2972		invoke_rcu_core();
2973
2974	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2975	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2976		return;
2977
2978	/*
2979	 * Force the grace period if too many callbacks or too long waiting.
2980	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2981	 * if some other CPU has recently done so.  Also, don't bother
2982	 * invoking force_quiescent_state() if the newly enqueued callback
2983	 * is the only one waiting for a grace period to complete.
2984	 */
2985	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2986
2987		/* Are we ignoring a completed grace period? */
2988		note_gp_changes(rsp, rdp);
2989
2990		/* Start a new grace period if one not already started. */
2991		if (!rcu_gp_in_progress(rsp)) {
2992			struct rcu_node *rnp_root = rcu_get_root(rsp);
2993
2994			raw_spin_lock_rcu_node(rnp_root);
2995			needwake = rcu_start_gp(rsp);
2996			raw_spin_unlock_rcu_node(rnp_root);
2997			if (needwake)
2998				rcu_gp_kthread_wake(rsp);
2999		} else {
3000			/* Give the grace period a kick. */
3001			rdp->blimit = LONG_MAX;
3002			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3003			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3004				force_quiescent_state(rsp);
3005			rdp->n_force_qs_snap = rsp->n_force_qs;
3006			rdp->qlen_last_fqs_check = rdp->qlen;
3007		}
3008	}
3009}
3010
3011/*
3012 * RCU callback function to leak a callback.
3013 */
3014static void rcu_leak_callback(struct rcu_head *rhp)
3015{
3016}
3017
3018/*
3019 * Helper function for call_rcu() and friends.  The cpu argument will
3020 * normally be -1, indicating "currently running CPU".  It may specify
3021 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3022 * is expected to specify a CPU.
3023 */
3024static void
3025__call_rcu(struct rcu_head *head, rcu_callback_t func,
3026	   struct rcu_state *rsp, int cpu, bool lazy)
3027{
3028	unsigned long flags;
3029	struct rcu_data *rdp;
3030
3031	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3032	if (debug_rcu_head_queue(head)) {
3033		/* Probable double call_rcu(), so leak the callback. */
3034		WRITE_ONCE(head->func, rcu_leak_callback);
3035		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3036		return;
3037	}
3038	head->func = func;
3039	head->next = NULL;
3040
3041	/*
3042	 * Opportunistically note grace-period endings and beginnings.
3043	 * Note that we might see a beginning right after we see an
3044	 * end, but never vice versa, since this CPU has to pass through
3045	 * a quiescent state betweentimes.
3046	 */
3047	local_irq_save(flags);
3048	rdp = this_cpu_ptr(rsp->rda);
3049
3050	/* Add the callback to our list. */
3051	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3052		int offline;
3053
3054		if (cpu != -1)
3055			rdp = per_cpu_ptr(rsp->rda, cpu);
3056		if (likely(rdp->mynode)) {
3057			/* Post-boot, so this should be for a no-CBs CPU. */
3058			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3059			WARN_ON_ONCE(offline);
3060			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3061			local_irq_restore(flags);
3062			return;
3063		}
3064		/*
3065		 * Very early boot, before rcu_init().  Initialize if needed
3066		 * and then drop through to queue the callback.
3067		 */
3068		BUG_ON(cpu != -1);
3069		WARN_ON_ONCE(!rcu_is_watching());
3070		if (!likely(rdp->nxtlist))
3071			init_default_callback_list(rdp);
3072	}
3073	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3074	if (lazy)
3075		rdp->qlen_lazy++;
3076	else
3077		rcu_idle_count_callbacks_posted();
3078	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3079	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3080	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3081
3082	if (__is_kfree_rcu_offset((unsigned long)func))
3083		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3084					 rdp->qlen_lazy, rdp->qlen);
3085	else
3086		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3087
3088	/* Go handle any RCU core processing required. */
3089	__call_rcu_core(rsp, rdp, head, flags);
3090	local_irq_restore(flags);
3091}
3092
3093/*
3094 * Queue an RCU-sched callback for invocation after a grace period.
3095 */
3096void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3097{
3098	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3099}
3100EXPORT_SYMBOL_GPL(call_rcu_sched);
3101
3102/*
3103 * Queue an RCU callback for invocation after a quicker grace period.
3104 */
3105void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3106{
3107	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3108}
3109EXPORT_SYMBOL_GPL(call_rcu_bh);
3110
3111/*
3112 * Queue an RCU callback for lazy invocation after a grace period.
3113 * This will likely be later named something like "call_rcu_lazy()",
3114 * but this change will require some way of tagging the lazy RCU
3115 * callbacks in the list of pending callbacks. Until then, this
3116 * function may only be called from __kfree_rcu().
3117 */
3118void kfree_call_rcu(struct rcu_head *head,
3119		    rcu_callback_t func)
3120{
3121	__call_rcu(head, func, rcu_state_p, -1, 1);
3122}
3123EXPORT_SYMBOL_GPL(kfree_call_rcu);
3124
3125/*
3126 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3127 * any blocking grace-period wait automatically implies a grace period
3128 * if there is only one CPU online at any point time during execution
3129 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3130 * occasionally incorrectly indicate that there are multiple CPUs online
3131 * when there was in fact only one the whole time, as this just adds
3132 * some overhead: RCU still operates correctly.
3133 */
3134static inline int rcu_blocking_is_gp(void)
3135{
3136	int ret;
3137
3138	might_sleep();  /* Check for RCU read-side critical section. */
3139	preempt_disable();
3140	ret = num_online_cpus() <= 1;
3141	preempt_enable();
3142	return ret;
3143}
3144
3145/**
3146 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3147 *
3148 * Control will return to the caller some time after a full rcu-sched
3149 * grace period has elapsed, in other words after all currently executing
3150 * rcu-sched read-side critical sections have completed.   These read-side
3151 * critical sections are delimited by rcu_read_lock_sched() and
3152 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3153 * local_irq_disable(), and so on may be used in place of
3154 * rcu_read_lock_sched().
3155 *
3156 * This means that all preempt_disable code sequences, including NMI and
3157 * non-threaded hardware-interrupt handlers, in progress on entry will
3158 * have completed before this primitive returns.  However, this does not
3159 * guarantee that softirq handlers will have completed, since in some
3160 * kernels, these handlers can run in process context, and can block.
3161 *
3162 * Note that this guarantee implies further memory-ordering guarantees.
3163 * On systems with more than one CPU, when synchronize_sched() returns,
3164 * each CPU is guaranteed to have executed a full memory barrier since the
3165 * end of its last RCU-sched read-side critical section whose beginning
3166 * preceded the call to synchronize_sched().  In addition, each CPU having
3167 * an RCU read-side critical section that extends beyond the return from
3168 * synchronize_sched() is guaranteed to have executed a full memory barrier
3169 * after the beginning of synchronize_sched() and before the beginning of
3170 * that RCU read-side critical section.  Note that these guarantees include
3171 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3172 * that are executing in the kernel.
3173 *
3174 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3175 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3176 * to have executed a full memory barrier during the execution of
3177 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3178 * again only if the system has more than one CPU).
3179 *
3180 * This primitive provides the guarantees made by the (now removed)
3181 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3182 * guarantees that rcu_read_lock() sections will have completed.
3183 * In "classic RCU", these two guarantees happen to be one and
3184 * the same, but can differ in realtime RCU implementations.
3185 */
3186void synchronize_sched(void)
3187{
3188	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3189			 lock_is_held(&rcu_lock_map) ||
3190			 lock_is_held(&rcu_sched_lock_map),
3191			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3192	if (rcu_blocking_is_gp())
3193		return;
3194	if (rcu_gp_is_expedited())
3195		synchronize_sched_expedited();
3196	else
3197		wait_rcu_gp(call_rcu_sched);
3198}
3199EXPORT_SYMBOL_GPL(synchronize_sched);
3200
3201/**
3202 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3203 *
3204 * Control will return to the caller some time after a full rcu_bh grace
3205 * period has elapsed, in other words after all currently executing rcu_bh
3206 * read-side critical sections have completed.  RCU read-side critical
3207 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3208 * and may be nested.
3209 *
3210 * See the description of synchronize_sched() for more detailed information
3211 * on memory ordering guarantees.
3212 */
3213void synchronize_rcu_bh(void)
3214{
3215	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3216			 lock_is_held(&rcu_lock_map) ||
3217			 lock_is_held(&rcu_sched_lock_map),
3218			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3219	if (rcu_blocking_is_gp())
3220		return;
3221	if (rcu_gp_is_expedited())
3222		synchronize_rcu_bh_expedited();
3223	else
3224		wait_rcu_gp(call_rcu_bh);
3225}
3226EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3227
3228/**
3229 * get_state_synchronize_rcu - Snapshot current RCU state
3230 *
3231 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3232 * to determine whether or not a full grace period has elapsed in the
3233 * meantime.
3234 */
3235unsigned long get_state_synchronize_rcu(void)
3236{
3237	/*
3238	 * Any prior manipulation of RCU-protected data must happen
3239	 * before the load from ->gpnum.
3240	 */
3241	smp_mb();  /* ^^^ */
3242
3243	/*
3244	 * Make sure this load happens before the purportedly
3245	 * time-consuming work between get_state_synchronize_rcu()
3246	 * and cond_synchronize_rcu().
3247	 */
3248	return smp_load_acquire(&rcu_state_p->gpnum);
3249}
3250EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3251
3252/**
3253 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3254 *
3255 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3256 *
3257 * If a full RCU grace period has elapsed since the earlier call to
3258 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3259 * synchronize_rcu() to wait for a full grace period.
3260 *
3261 * Yes, this function does not take counter wrap into account.  But
3262 * counter wrap is harmless.  If the counter wraps, we have waited for
3263 * more than 2 billion grace periods (and way more on a 64-bit system!),
3264 * so waiting for one additional grace period should be just fine.
3265 */
3266void cond_synchronize_rcu(unsigned long oldstate)
3267{
3268	unsigned long newstate;
3269
3270	/*
3271	 * Ensure that this load happens before any RCU-destructive
3272	 * actions the caller might carry out after we return.
3273	 */
3274	newstate = smp_load_acquire(&rcu_state_p->completed);
3275	if (ULONG_CMP_GE(oldstate, newstate))
3276		synchronize_rcu();
3277}
3278EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3279
3280/**
3281 * get_state_synchronize_sched - Snapshot current RCU-sched state
3282 *
3283 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3284 * to determine whether or not a full grace period has elapsed in the
3285 * meantime.
3286 */
3287unsigned long get_state_synchronize_sched(void)
3288{
3289	/*
3290	 * Any prior manipulation of RCU-protected data must happen
3291	 * before the load from ->gpnum.
3292	 */
3293	smp_mb();  /* ^^^ */
3294
3295	/*
3296	 * Make sure this load happens before the purportedly
3297	 * time-consuming work between get_state_synchronize_sched()
3298	 * and cond_synchronize_sched().
3299	 */
3300	return smp_load_acquire(&rcu_sched_state.gpnum);
 
3301}
3302EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3303
3304/**
3305 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3306 *
3307 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 
 
 
 
 
 
3308 *
3309 * If a full RCU-sched grace period has elapsed since the earlier call to
3310 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3311 * synchronize_sched() to wait for a full grace period.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312 *
3313 * Yes, this function does not take counter wrap into account.  But
3314 * counter wrap is harmless.  If the counter wraps, we have waited for
3315 * more than 2 billion grace periods (and way more on a 64-bit system!),
3316 * so waiting for one additional grace period should be just fine.
3317 */
3318void cond_synchronize_sched(unsigned long oldstate)
3319{
3320	unsigned long newstate;
 
 
3321
3322	/*
3323	 * Ensure that this load happens before any RCU-destructive
3324	 * actions the caller might carry out after we return.
3325	 */
3326	newstate = smp_load_acquire(&rcu_sched_state.completed);
3327	if (ULONG_CMP_GE(oldstate, newstate))
 
 
 
 
 
3328		synchronize_sched();
3329}
3330EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3331
3332/* Adjust sequence number for start of update-side operation. */
3333static void rcu_seq_start(unsigned long *sp)
3334{
3335	WRITE_ONCE(*sp, *sp + 1);
3336	smp_mb(); /* Ensure update-side operation after counter increment. */
3337	WARN_ON_ONCE(!(*sp & 0x1));
3338}
3339
3340/* Adjust sequence number for end of update-side operation. */
3341static void rcu_seq_end(unsigned long *sp)
3342{
3343	smp_mb(); /* Ensure update-side operation before counter increment. */
3344	WRITE_ONCE(*sp, *sp + 1);
3345	WARN_ON_ONCE(*sp & 0x1);
3346}
3347
3348/* Take a snapshot of the update side's sequence number. */
3349static unsigned long rcu_seq_snap(unsigned long *sp)
3350{
3351	unsigned long s;
3352
3353	s = (READ_ONCE(*sp) + 3) & ~0x1;
3354	smp_mb(); /* Above access must not bleed into critical section. */
3355	return s;
3356}
3357
3358/*
3359 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3360 * full update-side operation has occurred.
3361 */
3362static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3363{
3364	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3365}
3366
3367/* Wrapper functions for expedited grace periods.  */
3368static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3369{
3370	rcu_seq_start(&rsp->expedited_sequence);
3371}
3372static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3373{
3374	rcu_seq_end(&rsp->expedited_sequence);
3375	smp_mb(); /* Ensure that consecutive grace periods serialize. */
3376}
3377static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3378{
3379	smp_mb(); /* Caller's modifications seen first by other CPUs. */
3380	return rcu_seq_snap(&rsp->expedited_sequence);
3381}
3382static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3383{
3384	return rcu_seq_done(&rsp->expedited_sequence, s);
3385}
3386
3387/*
3388 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3389 * recent CPU-online activity.  Note that these masks are not cleared
3390 * when CPUs go offline, so they reflect the union of all CPUs that have
3391 * ever been online.  This means that this function normally takes its
3392 * no-work-to-do fastpath.
3393 */
3394static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3395{
3396	bool done;
3397	unsigned long flags;
3398	unsigned long mask;
3399	unsigned long oldmask;
3400	int ncpus = READ_ONCE(rsp->ncpus);
3401	struct rcu_node *rnp;
3402	struct rcu_node *rnp_up;
3403
3404	/* If no new CPUs onlined since last time, nothing to do. */
3405	if (likely(ncpus == rsp->ncpus_snap))
3406		return;
3407	rsp->ncpus_snap = ncpus;
3408
3409	/*
3410	 * Each pass through the following loop propagates newly onlined
3411	 * CPUs for the current rcu_node structure up the rcu_node tree.
3412	 */
3413	rcu_for_each_leaf_node(rsp, rnp) {
3414		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3415		if (rnp->expmaskinit == rnp->expmaskinitnext) {
3416			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3417			continue;  /* No new CPUs, nothing to do. */
3418		}
3419
3420		/* Update this node's mask, track old value for propagation. */
3421		oldmask = rnp->expmaskinit;
3422		rnp->expmaskinit = rnp->expmaskinitnext;
3423		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3424
3425		/* If was already nonzero, nothing to propagate. */
3426		if (oldmask)
3427			continue;
3428
3429		/* Propagate the new CPU up the tree. */
3430		mask = rnp->grpmask;
3431		rnp_up = rnp->parent;
3432		done = false;
3433		while (rnp_up) {
3434			raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
3435			if (rnp_up->expmaskinit)
3436				done = true;
3437			rnp_up->expmaskinit |= mask;
3438			raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
3439			if (done)
3440				break;
3441			mask = rnp_up->grpmask;
3442			rnp_up = rnp_up->parent;
3443		}
3444	}
3445}
3446
3447/*
3448 * Reset the ->expmask values in the rcu_node tree in preparation for
3449 * a new expedited grace period.
3450 */
3451static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3452{
3453	unsigned long flags;
3454	struct rcu_node *rnp;
3455
3456	sync_exp_reset_tree_hotplug(rsp);
3457	rcu_for_each_node_breadth_first(rsp, rnp) {
3458		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3459		WARN_ON_ONCE(rnp->expmask);
3460		rnp->expmask = rnp->expmaskinit;
3461		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3462	}
3463}
3464
3465/*
3466 * Return non-zero if there is no RCU expedited grace period in progress
3467 * for the specified rcu_node structure, in other words, if all CPUs and
3468 * tasks covered by the specified rcu_node structure have done their bit
3469 * for the current expedited grace period.  Works only for preemptible
3470 * RCU -- other RCU implementation use other means.
3471 *
3472 * Caller must hold the root rcu_node's exp_funnel_mutex.
3473 */
3474static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3475{
3476	return rnp->exp_tasks == NULL &&
3477	       READ_ONCE(rnp->expmask) == 0;
3478}
3479
3480/*
3481 * Report the exit from RCU read-side critical section for the last task
3482 * that queued itself during or before the current expedited preemptible-RCU
3483 * grace period.  This event is reported either to the rcu_node structure on
3484 * which the task was queued or to one of that rcu_node structure's ancestors,
3485 * recursively up the tree.  (Calm down, calm down, we do the recursion
3486 * iteratively!)
3487 *
3488 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3489 * specified rcu_node structure's ->lock.
3490 */
3491static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3492				 bool wake, unsigned long flags)
3493	__releases(rnp->lock)
3494{
3495	unsigned long mask;
3496
3497	for (;;) {
3498		if (!sync_rcu_preempt_exp_done(rnp)) {
3499			if (!rnp->expmask)
3500				rcu_initiate_boost(rnp, flags);
3501			else
3502				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3503			break;
3504		}
3505		if (rnp->parent == NULL) {
3506			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3507			if (wake) {
3508				smp_mb(); /* EGP done before wake_up(). */
3509				swake_up(&rsp->expedited_wq);
3510			}
3511			break;
3512		}
3513		mask = rnp->grpmask;
3514		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
3515		rnp = rnp->parent;
3516		raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
3517		WARN_ON_ONCE(!(rnp->expmask & mask));
3518		rnp->expmask &= ~mask;
3519	}
3520}
3521
3522/*
3523 * Report expedited quiescent state for specified node.  This is a
3524 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3525 *
3526 * Caller must hold the root rcu_node's exp_funnel_mutex.
3527 */
3528static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3529					      struct rcu_node *rnp, bool wake)
3530{
3531	unsigned long flags;
3532
3533	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3534	__rcu_report_exp_rnp(rsp, rnp, wake, flags);
3535}
3536
3537/*
3538 * Report expedited quiescent state for multiple CPUs, all covered by the
3539 * specified leaf rcu_node structure.  Caller must hold the root
3540 * rcu_node's exp_funnel_mutex.
3541 */
3542static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3543				    unsigned long mask, bool wake)
3544{
3545	unsigned long flags;
3546
3547	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3548	if (!(rnp->expmask & mask)) {
3549		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3550		return;
3551	}
3552	rnp->expmask &= ~mask;
3553	__rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3554}
3555
3556/*
3557 * Report expedited quiescent state for specified rcu_data (CPU).
3558 * Caller must hold the root rcu_node's exp_funnel_mutex.
3559 */
3560static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3561			       bool wake)
3562{
3563	rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3564}
3565
3566/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3567static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
3568			       struct rcu_data *rdp,
3569			       atomic_long_t *stat, unsigned long s)
3570{
3571	if (rcu_exp_gp_seq_done(rsp, s)) {
3572		if (rnp)
3573			mutex_unlock(&rnp->exp_funnel_mutex);
3574		else if (rdp)
3575			mutex_unlock(&rdp->exp_funnel_mutex);
3576		/* Ensure test happens before caller kfree(). */
3577		smp_mb__before_atomic(); /* ^^^ */
3578		atomic_long_inc(stat);
3579		return true;
3580	}
3581	return false;
3582}
3583
3584/*
3585 * Funnel-lock acquisition for expedited grace periods.  Returns a
3586 * pointer to the root rcu_node structure, or NULL if some other
3587 * task did the expedited grace period for us.
3588 */
3589static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3590{
3591	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3592	struct rcu_node *rnp0;
3593	struct rcu_node *rnp1 = NULL;
3594
3595	/*
3596	 * First try directly acquiring the root lock in order to reduce
3597	 * latency in the common case where expedited grace periods are
3598	 * rare.  We check mutex_is_locked() to avoid pathological levels of
3599	 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3600	 */
3601	rnp0 = rcu_get_root(rsp);
3602	if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3603		if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3604			if (sync_exp_work_done(rsp, rnp0, NULL,
3605					       &rdp->expedited_workdone0, s))
3606				return NULL;
3607			return rnp0;
 
 
 
 
 
 
3608		}
3609	}
3610
3611	/*
3612	 * Each pass through the following loop works its way
3613	 * up the rcu_node tree, returning if others have done the
3614	 * work or otherwise falls through holding the root rnp's
3615	 * ->exp_funnel_mutex.  The mapping from CPU to rcu_node structure
3616	 * can be inexact, as it is just promoting locality and is not
3617	 * strictly needed for correctness.
3618	 */
3619	if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
3620		return NULL;
3621	mutex_lock(&rdp->exp_funnel_mutex);
3622	rnp0 = rdp->mynode;
3623	for (; rnp0 != NULL; rnp0 = rnp0->parent) {
3624		if (sync_exp_work_done(rsp, rnp1, rdp,
3625				       &rdp->expedited_workdone2, s))
3626			return NULL;
3627		mutex_lock(&rnp0->exp_funnel_mutex);
3628		if (rnp1)
3629			mutex_unlock(&rnp1->exp_funnel_mutex);
3630		else
3631			mutex_unlock(&rdp->exp_funnel_mutex);
3632		rnp1 = rnp0;
3633	}
3634	if (sync_exp_work_done(rsp, rnp1, rdp,
3635			       &rdp->expedited_workdone3, s))
3636		return NULL;
3637	return rnp1;
3638}
3639
3640/* Invoked on each online non-idle CPU for expedited quiescent state. */
3641static void sync_sched_exp_handler(void *data)
3642{
3643	struct rcu_data *rdp;
3644	struct rcu_node *rnp;
3645	struct rcu_state *rsp = data;
3646
3647	rdp = this_cpu_ptr(rsp->rda);
3648	rnp = rdp->mynode;
3649	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3650	    __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3651		return;
3652	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3653	resched_cpu(smp_processor_id());
3654}
3655
3656/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3657static void sync_sched_exp_online_cleanup(int cpu)
3658{
3659	struct rcu_data *rdp;
3660	int ret;
3661	struct rcu_node *rnp;
3662	struct rcu_state *rsp = &rcu_sched_state;
3663
3664	rdp = per_cpu_ptr(rsp->rda, cpu);
3665	rnp = rdp->mynode;
3666	if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3667		return;
3668	ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3669	WARN_ON_ONCE(ret);
3670}
3671
3672/*
3673 * Select the nodes that the upcoming expedited grace period needs
3674 * to wait for.
3675 */
3676static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3677				     smp_call_func_t func)
3678{
3679	int cpu;
3680	unsigned long flags;
3681	unsigned long mask;
3682	unsigned long mask_ofl_test;
3683	unsigned long mask_ofl_ipi;
3684	int ret;
3685	struct rcu_node *rnp;
3686
3687	sync_exp_reset_tree(rsp);
3688	rcu_for_each_leaf_node(rsp, rnp) {
3689		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3690
3691		/* Each pass checks a CPU for identity, offline, and idle. */
3692		mask_ofl_test = 0;
3693		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3694			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3695			struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3696
3697			if (raw_smp_processor_id() == cpu ||
3698			    !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3699				mask_ofl_test |= rdp->grpmask;
3700		}
3701		mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3702
3703		/*
3704		 * Need to wait for any blocked tasks as well.  Note that
3705		 * additional blocking tasks will also block the expedited
3706		 * GP until such time as the ->expmask bits are cleared.
 
 
3707		 */
3708		if (rcu_preempt_has_tasks(rnp))
3709			rnp->exp_tasks = rnp->blkd_tasks.next;
3710		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3711
3712		/* IPI the remaining CPUs for expedited quiescent state. */
3713		mask = 1;
3714		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3715			if (!(mask_ofl_ipi & mask))
3716				continue;
3717retry_ipi:
3718			ret = smp_call_function_single(cpu, func, rsp, 0);
3719			if (!ret) {
3720				mask_ofl_ipi &= ~mask;
3721				continue;
3722			}
3723			/* Failed, raced with offline. */
3724			raw_spin_lock_irqsave_rcu_node(rnp, flags);
3725			if (cpu_online(cpu) &&
3726			    (rnp->expmask & mask)) {
3727				raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3728				schedule_timeout_uninterruptible(1);
3729				if (cpu_online(cpu) &&
3730				    (rnp->expmask & mask))
3731					goto retry_ipi;
3732				raw_spin_lock_irqsave_rcu_node(rnp, flags);
3733			}
3734			if (!(rnp->expmask & mask))
3735				mask_ofl_ipi &= ~mask;
3736			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3737		}
3738		/* Report quiescent states for those that went offline. */
3739		mask_ofl_test |= mask_ofl_ipi;
3740		if (mask_ofl_test)
3741			rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3742	}
3743}
3744
3745static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3746{
3747	int cpu;
3748	unsigned long jiffies_stall;
3749	unsigned long jiffies_start;
3750	unsigned long mask;
3751	int ndetected;
3752	struct rcu_node *rnp;
3753	struct rcu_node *rnp_root = rcu_get_root(rsp);
3754	int ret;
3755
3756	jiffies_stall = rcu_jiffies_till_stall_check();
3757	jiffies_start = jiffies;
3758
3759	for (;;) {
3760		ret = swait_event_timeout(
3761				rsp->expedited_wq,
3762				sync_rcu_preempt_exp_done(rnp_root),
3763				jiffies_stall);
3764		if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
3765			return;
3766		if (ret < 0) {
3767			/* Hit a signal, disable CPU stall warnings. */
3768			swait_event(rsp->expedited_wq,
3769				   sync_rcu_preempt_exp_done(rnp_root));
3770			return;
3771		}
3772		pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
3773		       rsp->name);
3774		ndetected = 0;
3775		rcu_for_each_leaf_node(rsp, rnp) {
3776			ndetected = rcu_print_task_exp_stall(rnp);
3777			mask = 1;
3778			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3779				struct rcu_data *rdp;
3780
3781				if (!(rnp->expmask & mask))
3782					continue;
3783				ndetected++;
3784				rdp = per_cpu_ptr(rsp->rda, cpu);
3785				pr_cont(" %d-%c%c%c", cpu,
3786					"O."[cpu_online(cpu)],
3787					"o."[!!(rdp->grpmask & rnp->expmaskinit)],
3788					"N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
3789			}
3790			mask <<= 1;
3791		}
3792		pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3793			jiffies - jiffies_start, rsp->expedited_sequence,
3794			rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3795		if (!ndetected) {
3796			pr_err("blocking rcu_node structures:");
3797			rcu_for_each_node_breadth_first(rsp, rnp) {
3798				if (rnp == rnp_root)
3799					continue; /* printed unconditionally */
3800				if (sync_rcu_preempt_exp_done(rnp))
3801					continue;
3802				pr_cont(" l=%u:%d-%d:%#lx/%c",
3803					rnp->level, rnp->grplo, rnp->grphi,
3804					rnp->expmask,
3805					".T"[!!rnp->exp_tasks]);
3806			}
3807			pr_cont("\n");
3808		}
3809		rcu_for_each_leaf_node(rsp, rnp) {
3810			mask = 1;
3811			for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3812				if (!(rnp->expmask & mask))
3813					continue;
3814				dump_cpu_task(cpu);
3815			}
3816		}
3817		jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3818	}
3819}
3820
3821/**
3822 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3823 *
3824 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3825 * approach to force the grace period to end quickly.  This consumes
3826 * significant time on all CPUs and is unfriendly to real-time workloads,
3827 * so is thus not recommended for any sort of common-case code.  In fact,
3828 * if you are using synchronize_sched_expedited() in a loop, please
3829 * restructure your code to batch your updates, and then use a single
3830 * synchronize_sched() instead.
3831 *
3832 * This implementation can be thought of as an application of sequence
3833 * locking to expedited grace periods, but using the sequence counter to
3834 * determine when someone else has already done the work instead of for
3835 * retrying readers.
3836 */
3837void synchronize_sched_expedited(void)
3838{
3839	unsigned long s;
3840	struct rcu_node *rnp;
3841	struct rcu_state *rsp = &rcu_sched_state;
3842
3843	/* If only one CPU, this is automatically a grace period. */
3844	if (rcu_blocking_is_gp())
3845		return;
3846
3847	/* If expedited grace periods are prohibited, fall back to normal. */
3848	if (rcu_gp_is_normal()) {
3849		wait_rcu_gp(call_rcu_sched);
3850		return;
3851	}
3852
3853	/* Take a snapshot of the sequence number.  */
3854	s = rcu_exp_gp_seq_snap(rsp);
3855
3856	rnp = exp_funnel_lock(rsp, s);
3857	if (rnp == NULL)
3858		return;  /* Someone else did our work for us. */
3859
3860	rcu_exp_gp_seq_start(rsp);
3861	sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
3862	synchronize_sched_expedited_wait(rsp);
3863
3864	rcu_exp_gp_seq_end(rsp);
3865	mutex_unlock(&rnp->exp_funnel_mutex);
3866}
3867EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3868
3869/*
3870 * Check to see if there is any immediate RCU-related work to be done
3871 * by the current CPU, for the specified type of RCU, returning 1 if so.
3872 * The checks are in order of increasing expense: checks that can be
3873 * carried out against CPU-local state are performed first.  However,
3874 * we must check for CPU stalls first, else we might not get a chance.
3875 */
3876static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3877{
3878	struct rcu_node *rnp = rdp->mynode;
3879
3880	rdp->n_rcu_pending++;
3881
3882	/* Check for CPU stalls, if enabled. */
3883	check_cpu_stall(rsp, rdp);
3884
3885	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3886	if (rcu_nohz_full_cpu(rsp))
3887		return 0;
3888
3889	/* Is the RCU core waiting for a quiescent state from this CPU? */
3890	if (rcu_scheduler_fully_active &&
3891	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3892	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3893		rdp->n_rp_core_needs_qs++;
3894	} else if (rdp->core_needs_qs &&
3895		   (!rdp->cpu_no_qs.b.norm ||
3896		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3897		rdp->n_rp_report_qs++;
3898		return 1;
3899	}
3900
3901	/* Does this CPU have callbacks ready to invoke? */
3902	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3903		rdp->n_rp_cb_ready++;
3904		return 1;
3905	}
3906
3907	/* Has RCU gone idle with this CPU needing another grace period? */
3908	if (cpu_needs_another_gp(rsp, rdp)) {
3909		rdp->n_rp_cpu_needs_gp++;
3910		return 1;
3911	}
3912
3913	/* Has another RCU grace period completed?  */
3914	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3915		rdp->n_rp_gp_completed++;
3916		return 1;
3917	}
3918
3919	/* Has a new RCU grace period started? */
3920	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3921	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3922		rdp->n_rp_gp_started++;
3923		return 1;
3924	}
3925
3926	/* Does this CPU need a deferred NOCB wakeup? */
3927	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3928		rdp->n_rp_nocb_defer_wakeup++;
3929		return 1;
3930	}
3931
3932	/* nothing to do */
3933	rdp->n_rp_need_nothing++;
3934	return 0;
3935}
3936
3937/*
3938 * Check to see if there is any immediate RCU-related work to be done
3939 * by the current CPU, returning 1 if so.  This function is part of the
3940 * RCU implementation; it is -not- an exported member of the RCU API.
3941 */
3942static int rcu_pending(void)
3943{
3944	struct rcu_state *rsp;
3945
3946	for_each_rcu_flavor(rsp)
3947		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3948			return 1;
3949	return 0;
3950}
3951
3952/*
3953 * Return true if the specified CPU has any callback.  If all_lazy is
3954 * non-NULL, store an indication of whether all callbacks are lazy.
3955 * (If there are no callbacks, all of them are deemed to be lazy.)
3956 */
3957static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3958{
3959	bool al = true;
3960	bool hc = false;
3961	struct rcu_data *rdp;
3962	struct rcu_state *rsp;
3963
3964	for_each_rcu_flavor(rsp) {
3965		rdp = this_cpu_ptr(rsp->rda);
3966		if (!rdp->nxtlist)
3967			continue;
3968		hc = true;
3969		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3970			al = false;
3971			break;
3972		}
3973	}
3974	if (all_lazy)
3975		*all_lazy = al;
3976	return hc;
3977}
3978
3979/*
3980 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3981 * the compiler is expected to optimize this away.
3982 */
3983static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3984			       int cpu, unsigned long done)
3985{
3986	trace_rcu_barrier(rsp->name, s, cpu,
3987			  atomic_read(&rsp->barrier_cpu_count), done);
3988}
3989
3990/*
3991 * RCU callback function for _rcu_barrier().  If we are last, wake
3992 * up the task executing _rcu_barrier().
3993 */
3994static void rcu_barrier_callback(struct rcu_head *rhp)
3995{
3996	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3997	struct rcu_state *rsp = rdp->rsp;
3998
3999	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4000		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
4001		complete(&rsp->barrier_completion);
4002	} else {
4003		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
4004	}
4005}
4006
4007/*
4008 * Called with preemption disabled, and from cross-cpu IRQ context.
4009 */
4010static void rcu_barrier_func(void *type)
4011{
4012	struct rcu_state *rsp = type;
4013	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
4014
4015	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
4016	atomic_inc(&rsp->barrier_cpu_count);
4017	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
4018}
4019
4020/*
4021 * Orchestrate the specified type of RCU barrier, waiting for all
4022 * RCU callbacks of the specified type to complete.
4023 */
4024static void _rcu_barrier(struct rcu_state *rsp)
4025{
4026	int cpu;
4027	struct rcu_data *rdp;
4028	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
 
4029
4030	_rcu_barrier_trace(rsp, "Begin", -1, s);
4031
4032	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4033	mutex_lock(&rsp->barrier_mutex);
4034
4035	/* Did someone else do our work for us? */
4036	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4037		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4038		smp_mb(); /* caller's subsequent code after above check. */
4039		mutex_unlock(&rsp->barrier_mutex);
4040		return;
4041	}
4042
4043	/* Mark the start of the barrier operation. */
4044	rcu_seq_start(&rsp->barrier_sequence);
4045	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
 
 
 
 
 
 
4046
4047	/*
4048	 * Initialize the count to one rather than to zero in order to
4049	 * avoid a too-soon return to zero in case of a short grace period
4050	 * (or preemption of this task).  Exclude CPU-hotplug operations
4051	 * to ensure that no offline CPU has callbacks queued.
4052	 */
4053	init_completion(&rsp->barrier_completion);
4054	atomic_set(&rsp->barrier_cpu_count, 1);
4055	get_online_cpus();
4056
4057	/*
4058	 * Force each CPU with callbacks to register a new callback.
4059	 * When that callback is invoked, we will know that all of the
4060	 * corresponding CPU's preceding callbacks have been invoked.
4061	 */
4062	for_each_possible_cpu(cpu) {
4063		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
4064			continue;
4065		rdp = per_cpu_ptr(rsp->rda, cpu);
4066		if (rcu_is_nocb_cpu(cpu)) {
4067			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4068				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4069						   rsp->barrier_sequence);
4070			} else {
4071				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4072						   rsp->barrier_sequence);
4073				smp_mb__before_atomic();
4074				atomic_inc(&rsp->barrier_cpu_count);
4075				__call_rcu(&rdp->barrier_head,
4076					   rcu_barrier_callback, rsp, cpu, 0);
4077			}
4078		} else if (READ_ONCE(rdp->qlen)) {
4079			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
4080					   rsp->barrier_sequence);
4081			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
4082		} else {
4083			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4084					   rsp->barrier_sequence);
4085		}
4086	}
4087	put_online_cpus();
4088
4089	/*
4090	 * Now that we have an rcu_barrier_callback() callback on each
4091	 * CPU, and thus each counted, remove the initial count.
4092	 */
4093	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
4094		complete(&rsp->barrier_completion);
4095
 
 
 
 
 
 
 
4096	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4097	wait_for_completion(&rsp->barrier_completion);
4098
4099	/* Mark the end of the barrier operation. */
4100	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4101	rcu_seq_end(&rsp->barrier_sequence);
4102
4103	/* Other rcu_barrier() invocations can now safely proceed. */
4104	mutex_unlock(&rsp->barrier_mutex);
4105}
4106
4107/**
4108 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4109 */
4110void rcu_barrier_bh(void)
4111{
4112	_rcu_barrier(&rcu_bh_state);
4113}
4114EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4115
4116/**
4117 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4118 */
4119void rcu_barrier_sched(void)
4120{
4121	_rcu_barrier(&rcu_sched_state);
4122}
4123EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4124
4125/*
4126 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4127 * first CPU in a given leaf rcu_node structure coming online.  The caller
4128 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4129 * disabled.
4130 */
4131static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4132{
4133	long mask;
4134	struct rcu_node *rnp = rnp_leaf;
4135
4136	for (;;) {
4137		mask = rnp->grpmask;
4138		rnp = rnp->parent;
4139		if (rnp == NULL)
4140			return;
4141		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4142		rnp->qsmaskinit |= mask;
4143		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4144	}
4145}
4146
4147/*
4148 * Do boot-time initialization of a CPU's per-CPU RCU data.
4149 */
4150static void __init
4151rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
4152{
4153	unsigned long flags;
4154	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4155	struct rcu_node *rnp = rcu_get_root(rsp);
4156
4157	/* Set up local state, ensuring consistent view of global state. */
4158	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4159	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
 
 
 
4160	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4161	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
4162	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
4163	rdp->cpu = cpu;
4164	rdp->rsp = rsp;
4165	mutex_init(&rdp->exp_funnel_mutex);
4166	rcu_boot_init_nocb_percpu_data(rdp);
4167	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4168}
4169
4170/*
4171 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
4172 * offline event can be happening at a given time.  Note also that we
4173 * can accept some slop in the rsp->completed access due to the fact
4174 * that this CPU cannot possibly have any RCU callbacks in flight yet.
4175 */
4176static void
4177rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
4178{
4179	unsigned long flags;
4180	unsigned long mask;
4181	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4182	struct rcu_node *rnp = rcu_get_root(rsp);
4183
 
 
 
4184	/* Set up local state, ensuring consistent view of global state. */
4185	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
 
4186	rdp->qlen_last_fqs_check = 0;
4187	rdp->n_force_qs_snap = rsp->n_force_qs;
4188	rdp->blimit = blimit;
4189	if (!rdp->nxtlist)
4190		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
4191	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
4192	rcu_sysidle_init_percpu_data(rdp->dynticks);
4193	atomic_set(&rdp->dynticks->dynticks,
4194		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
4195	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4196
4197	/*
4198	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4199	 * propagation up the rcu_node tree will happen at the beginning
4200	 * of the next grace period.
4201	 */
4202	rnp = rdp->mynode;
4203	mask = rdp->grpmask;
4204	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4205	rnp->qsmaskinitnext |= mask;
4206	rnp->expmaskinitnext |= mask;
4207	if (!rdp->beenonline)
4208		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4209	rdp->beenonline = true;	 /* We have now been online. */
4210	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4211	rdp->completed = rnp->completed;
4212	rdp->cpu_no_qs.b.norm = true;
4213	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
4214	rdp->core_needs_qs = false;
4215	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4216	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4217}
4218
4219static void rcu_prepare_cpu(int cpu)
4220{
4221	struct rcu_state *rsp;
4222
4223	for_each_rcu_flavor(rsp)
4224		rcu_init_percpu_data(cpu, rsp);
4225}
4226
4227#ifdef CONFIG_HOTPLUG_CPU
4228/*
4229 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4230 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
4231 * bit masks.
4232 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4233 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
4234 * bit masks.
4235 */
4236static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
4237{
4238	unsigned long flags;
4239	unsigned long mask;
4240	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4241	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4242
4243	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4244		return;
4245
4246	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4247	mask = rdp->grpmask;
4248	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4249	rnp->qsmaskinitnext &= ~mask;
4250	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4251}
4252
4253void rcu_report_dead(unsigned int cpu)
4254{
4255	struct rcu_state *rsp;
4256
4257	/* QS for any half-done expedited RCU-sched GP. */
4258	preempt_disable();
4259	rcu_report_exp_rdp(&rcu_sched_state,
4260			   this_cpu_ptr(rcu_sched_state.rda), true);
4261	preempt_enable();
4262	for_each_rcu_flavor(rsp)
4263		rcu_cleanup_dying_idle_cpu(cpu, rsp);
 
4264}
4265#endif
4266
4267/*
4268 * Handle CPU online/offline notification events.
4269 */
4270int rcu_cpu_notify(struct notifier_block *self,
4271		   unsigned long action, void *hcpu)
4272{
4273	long cpu = (long)hcpu;
4274	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
4275	struct rcu_node *rnp = rdp->mynode;
4276	struct rcu_state *rsp;
4277
 
4278	switch (action) {
4279	case CPU_UP_PREPARE:
4280	case CPU_UP_PREPARE_FROZEN:
4281		rcu_prepare_cpu(cpu);
4282		rcu_prepare_kthreads(cpu);
4283		rcu_spawn_all_nocb_kthreads(cpu);
4284		break;
4285	case CPU_ONLINE:
4286	case CPU_DOWN_FAILED:
4287		sync_sched_exp_online_cleanup(cpu);
4288		rcu_boost_kthread_setaffinity(rnp, -1);
4289		break;
4290	case CPU_DOWN_PREPARE:
4291		rcu_boost_kthread_setaffinity(rnp, cpu);
4292		break;
4293	case CPU_DYING:
4294	case CPU_DYING_FROZEN:
4295		for_each_rcu_flavor(rsp)
4296			rcu_cleanup_dying_cpu(rsp);
4297		break;
4298	case CPU_DEAD:
4299	case CPU_DEAD_FROZEN:
4300	case CPU_UP_CANCELED:
4301	case CPU_UP_CANCELED_FROZEN:
4302		for_each_rcu_flavor(rsp) {
4303			rcu_cleanup_dead_cpu(cpu, rsp);
4304			do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4305		}
4306		break;
4307	default:
4308		break;
4309	}
 
4310	return NOTIFY_OK;
4311}
4312
4313static int rcu_pm_notify(struct notifier_block *self,
4314			 unsigned long action, void *hcpu)
4315{
4316	switch (action) {
4317	case PM_HIBERNATION_PREPARE:
4318	case PM_SUSPEND_PREPARE:
4319		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4320			rcu_expedite_gp();
4321		break;
4322	case PM_POST_HIBERNATION:
4323	case PM_POST_SUSPEND:
4324		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4325			rcu_unexpedite_gp();
4326		break;
4327	default:
4328		break;
4329	}
4330	return NOTIFY_OK;
4331}
4332
4333/*
4334 * Spawn the kthreads that handle each RCU flavor's grace periods.
4335 */
4336static int __init rcu_spawn_gp_kthread(void)
4337{
4338	unsigned long flags;
4339	int kthread_prio_in = kthread_prio;
4340	struct rcu_node *rnp;
4341	struct rcu_state *rsp;
4342	struct sched_param sp;
4343	struct task_struct *t;
4344
4345	/* Force priority into range. */
4346	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4347		kthread_prio = 1;
4348	else if (kthread_prio < 0)
4349		kthread_prio = 0;
4350	else if (kthread_prio > 99)
4351		kthread_prio = 99;
4352	if (kthread_prio != kthread_prio_in)
4353		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4354			 kthread_prio, kthread_prio_in);
4355
4356	rcu_scheduler_fully_active = 1;
4357	for_each_rcu_flavor(rsp) {
4358		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4359		BUG_ON(IS_ERR(t));
4360		rnp = rcu_get_root(rsp);
4361		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4362		rsp->gp_kthread = t;
4363		if (kthread_prio) {
4364			sp.sched_priority = kthread_prio;
4365			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4366		}
4367		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4368		wake_up_process(t);
4369	}
4370	rcu_spawn_nocb_kthreads();
4371	rcu_spawn_boost_kthreads();
4372	return 0;
4373}
4374early_initcall(rcu_spawn_gp_kthread);
4375
4376/*
4377 * This function is invoked towards the end of the scheduler's initialization
4378 * process.  Before this is called, the idle task might contain
4379 * RCU read-side critical sections (during which time, this idle
4380 * task is booting the system).  After this function is called, the
4381 * idle tasks are prohibited from containing RCU read-side critical
4382 * sections.  This function also enables RCU lockdep checking.
4383 */
4384void rcu_scheduler_starting(void)
4385{
4386	WARN_ON(num_online_cpus() != 1);
4387	WARN_ON(nr_context_switches() > 0);
4388	rcu_scheduler_active = 1;
4389}
4390
4391/*
4392 * Compute the per-level fanout, either using the exact fanout specified
4393 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4394 */
4395static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
 
4396{
4397	int i;
4398
4399	if (rcu_fanout_exact) {
4400		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4401		for (i = rcu_num_lvls - 2; i >= 0; i--)
4402			levelspread[i] = RCU_FANOUT;
4403	} else {
4404		int ccur;
4405		int cprv;
 
 
 
4406
4407		cprv = nr_cpu_ids;
4408		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4409			ccur = levelcnt[i];
4410			levelspread[i] = (cprv + ccur - 1) / ccur;
4411			cprv = ccur;
4412		}
4413	}
4414}
 
4415
4416/*
4417 * Helper function for rcu_init() that initializes one rcu_state structure.
4418 */
4419static void __init rcu_init_one(struct rcu_state *rsp)
 
4420{
4421	static const char * const buf[] = RCU_NODE_NAME_INIT;
4422	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4423	static const char * const exp[] = RCU_EXP_NAME_INIT;
4424	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4425	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4426	static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4427	static u8 fl_mask = 0x1;
4428
4429	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4430	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4431	int cpustride = 1;
4432	int i;
4433	int j;
4434	struct rcu_node *rnp;
4435
4436	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4437
4438	/* Silence gcc 4.8 false positive about array index out of range. */
4439	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4440		panic("rcu_init_one: rcu_num_lvls out of range");
4441
4442	/* Initialize the level-tracking arrays. */
4443
4444	for (i = 0; i < rcu_num_lvls; i++)
4445		levelcnt[i] = num_rcu_lvl[i];
4446	for (i = 1; i < rcu_num_lvls; i++)
4447		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4448	rcu_init_levelspread(levelspread, levelcnt);
4449	rsp->flavor_mask = fl_mask;
4450	fl_mask <<= 1;
4451
4452	/* Initialize the elements themselves, starting from the leaves. */
4453
4454	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4455		cpustride *= levelspread[i];
4456		rnp = rsp->level[i];
4457		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4458			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4459			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4460						   &rcu_node_class[i], buf[i]);
4461			raw_spin_lock_init(&rnp->fqslock);
4462			lockdep_set_class_and_name(&rnp->fqslock,
4463						   &rcu_fqs_class[i], fqs[i]);
4464			rnp->gpnum = rsp->gpnum;
4465			rnp->completed = rsp->completed;
4466			rnp->qsmask = 0;
4467			rnp->qsmaskinit = 0;
4468			rnp->grplo = j * cpustride;
4469			rnp->grphi = (j + 1) * cpustride - 1;
4470			if (rnp->grphi >= nr_cpu_ids)
4471				rnp->grphi = nr_cpu_ids - 1;
4472			if (i == 0) {
4473				rnp->grpnum = 0;
4474				rnp->grpmask = 0;
4475				rnp->parent = NULL;
4476			} else {
4477				rnp->grpnum = j % levelspread[i - 1];
4478				rnp->grpmask = 1UL << rnp->grpnum;
4479				rnp->parent = rsp->level[i - 1] +
4480					      j / levelspread[i - 1];
4481			}
4482			rnp->level = i;
4483			INIT_LIST_HEAD(&rnp->blkd_tasks);
4484			rcu_init_one_nocb(rnp);
4485			mutex_init(&rnp->exp_funnel_mutex);
4486			lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4487						   &rcu_exp_class[i], exp[i]);
4488		}
4489	}
4490
4491	init_swait_queue_head(&rsp->gp_wq);
4492	init_swait_queue_head(&rsp->expedited_wq);
 
4493	rnp = rsp->level[rcu_num_lvls - 1];
4494	for_each_possible_cpu(i) {
4495		while (i > rnp->grphi)
4496			rnp++;
4497		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4498		rcu_boot_init_percpu_data(i, rsp);
4499	}
4500	list_add(&rsp->flavors, &rcu_struct_flavors);
4501}
4502
4503/*
4504 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4505 * replace the definitions in tree.h because those are needed to size
4506 * the ->node array in the rcu_state structure.
4507 */
4508static void __init rcu_init_geometry(void)
4509{
4510	ulong d;
4511	int i;
4512	int rcu_capacity[RCU_NUM_LVLS];
 
 
4513
4514	/*
4515	 * Initialize any unspecified boot parameters.
4516	 * The default values of jiffies_till_first_fqs and
4517	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4518	 * value, which is a function of HZ, then adding one for each
4519	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4520	 */
4521	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4522	if (jiffies_till_first_fqs == ULONG_MAX)
4523		jiffies_till_first_fqs = d;
4524	if (jiffies_till_next_fqs == ULONG_MAX)
4525		jiffies_till_next_fqs = d;
4526
4527	/* If the compile-time values are accurate, just leave. */
4528	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4529	    nr_cpu_ids == NR_CPUS)
4530		return;
4531	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4532		rcu_fanout_leaf, nr_cpu_ids);
4533
4534	/*
4535	 * The boot-time rcu_fanout_leaf parameter must be at least two
4536	 * and cannot exceed the number of bits in the rcu_node masks.
4537	 * Complain and fall back to the compile-time values if this
4538	 * limit is exceeded.
4539	 */
4540	if (rcu_fanout_leaf < 2 ||
4541	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4542		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4543		WARN_ON(1);
4544		return;
4545	}
4546
4547	/*
4548	 * Compute number of nodes that can be handled an rcu_node tree
4549	 * with the given number of levels.
4550	 */
4551	rcu_capacity[0] = rcu_fanout_leaf;
4552	for (i = 1; i < RCU_NUM_LVLS; i++)
4553		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4554
4555	/*
4556	 * The tree must be able to accommodate the configured number of CPUs.
4557	 * If this limit is exceeded, fall back to the compile-time values.
4558	 */
4559	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4560		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4561		WARN_ON(1);
4562		return;
4563	}
4564
4565	/* Calculate the number of levels in the tree. */
4566	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4567	}
4568	rcu_num_lvls = i + 1;
4569
4570	/* Calculate the number of rcu_nodes at each level of the tree. */
4571	for (i = 0; i < rcu_num_lvls; i++) {
4572		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4573		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4574	}
 
 
 
 
 
 
4575
4576	/* Calculate the total number of rcu_node structures. */
4577	rcu_num_nodes = 0;
4578	for (i = 0; i < rcu_num_lvls; i++)
4579		rcu_num_nodes += num_rcu_lvl[i];
4580}
4581
4582/*
4583 * Dump out the structure of the rcu_node combining tree associated
4584 * with the rcu_state structure referenced by rsp.
4585 */
4586static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4587{
4588	int level = 0;
4589	struct rcu_node *rnp;
4590
4591	pr_info("rcu_node tree layout dump\n");
4592	pr_info(" ");
4593	rcu_for_each_node_breadth_first(rsp, rnp) {
4594		if (rnp->level != level) {
4595			pr_cont("\n");
4596			pr_info(" ");
4597			level = rnp->level;
4598		}
4599		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4600	}
4601	pr_cont("\n");
4602}
4603
4604void __init rcu_init(void)
4605{
4606	int cpu;
4607
4608	rcu_early_boot_tests();
4609
4610	rcu_bootup_announce();
4611	rcu_init_geometry();
4612	rcu_init_one(&rcu_bh_state);
4613	rcu_init_one(&rcu_sched_state);
4614	if (dump_tree)
4615		rcu_dump_rcu_node_tree(&rcu_sched_state);
4616	__rcu_init_preempt();
4617	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4618
4619	/*
4620	 * We don't need protection against CPU-hotplug here because
4621	 * this is called early in boot, before either interrupts
4622	 * or the scheduler are operational.
4623	 */
4624	cpu_notifier(rcu_cpu_notify, 0);
4625	pm_notifier(rcu_pm_notify, 0);
4626	for_each_online_cpu(cpu)
4627		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
4628}
4629
4630#include "tree_plugin.h"
v3.15
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
  44#include <linux/module.h>
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <linux/prefetch.h>
  54#include <linux/delay.h>
  55#include <linux/stop_machine.h>
  56#include <linux/random.h>
  57#include <linux/ftrace_event.h>
  58#include <linux/suspend.h>
  59
  60#include "tree.h"
  61#include "rcu.h"
  62
  63MODULE_ALIAS("rcutree");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "rcutree."
  68
  69/* Data structures. */
  70
  71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  73
  74/*
  75 * In order to export the rcu_state name to the tracing tools, it
  76 * needs to be added in the __tracepoint_string section.
  77 * This requires defining a separate variable tp_<sname>_varname
  78 * that points to the string being used, and this will allow
  79 * the tracing userspace tools to be able to decipher the string
  80 * address to the matching string.
  81 */
 
 
 
 
 
 
 
 
 
 
  82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  83static char sname##_varname[] = #sname; \
  84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
  85struct rcu_state sname##_state = { \
  86	.level = { &sname##_state.node[0] }, \
 
  87	.call = cr, \
  88	.fqs_state = RCU_GP_IDLE, \
  89	.gpnum = 0UL - 300UL, \
  90	.completed = 0UL - 300UL, \
  91	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  92	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
  93	.orphan_donetail = &sname##_state.orphan_donelist, \
  94	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  95	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
  96	.name = sname##_varname, \
  97	.abbr = sabbr, \
  98}; \
  99DEFINE_PER_CPU(struct rcu_data, sname##_data)
 100
 101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 103
 104static struct rcu_state *rcu_state;
 105LIST_HEAD(rcu_struct_flavors);
 106
 107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
 108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
 
 
 
 
 
 
 109module_param(rcu_fanout_leaf, int, 0444);
 110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 111static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
 112	NUM_RCU_LVL_0,
 113	NUM_RCU_LVL_1,
 114	NUM_RCU_LVL_2,
 115	NUM_RCU_LVL_3,
 116	NUM_RCU_LVL_4,
 117};
 118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 119
 120/*
 121 * The rcu_scheduler_active variable transitions from zero to one just
 122 * before the first task is spawned.  So when this variable is zero, RCU
 123 * can assume that there is but one task, allowing RCU to (for example)
 124 * optimize synchronize_sched() to a simple barrier().  When this variable
 125 * is one, RCU must actually do all the hard work required to detect real
 126 * grace periods.  This variable is also used to suppress boot-time false
 127 * positives from lockdep-RCU error checking.
 128 */
 129int rcu_scheduler_active __read_mostly;
 130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 131
 132/*
 133 * The rcu_scheduler_fully_active variable transitions from zero to one
 134 * during the early_initcall() processing, which is after the scheduler
 135 * is capable of creating new tasks.  So RCU processing (for example,
 136 * creating tasks for RCU priority boosting) must be delayed until after
 137 * rcu_scheduler_fully_active transitions from zero to one.  We also
 138 * currently delay invocation of any RCU callbacks until after this point.
 139 *
 140 * It might later prove better for people registering RCU callbacks during
 141 * early boot to take responsibility for these callbacks, but one step at
 142 * a time.
 143 */
 144static int rcu_scheduler_fully_active __read_mostly;
 145
 146#ifdef CONFIG_RCU_BOOST
 147
 148/*
 149 * Control variables for per-CPU and per-rcu_node kthreads.  These
 150 * handle all flavors of RCU.
 151 */
 152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
 153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
 155DEFINE_PER_CPU(char, rcu_cpu_has_work);
 156
 157#endif /* #ifdef CONFIG_RCU_BOOST */
 158
 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 160static void invoke_rcu_core(void);
 161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162
 163/*
 164 * Track the rcutorture test sequence number and the update version
 165 * number within a given test.  The rcutorture_testseq is incremented
 166 * on every rcutorture module load and unload, so has an odd value
 167 * when a test is running.  The rcutorture_vernum is set to zero
 168 * when rcutorture starts and is incremented on each rcutorture update.
 169 * These variables enable correlating rcutorture output with the
 170 * RCU tracing information.
 171 */
 172unsigned long rcutorture_testseq;
 173unsigned long rcutorture_vernum;
 174
 175/*
 176 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 
 
 
 
 
 
 
 
 
 
 
 177 * permit this function to be invoked without holding the root rcu_node
 178 * structure's ->lock, but of course results can be subject to change.
 179 */
 180static int rcu_gp_in_progress(struct rcu_state *rsp)
 181{
 182	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
 183}
 184
 185/*
 186 * Note a quiescent state.  Because we do not need to know
 187 * how many quiescent states passed, just if there was at least
 188 * one since the start of the grace period, this just sets a flag.
 189 * The caller must have disabled preemption.
 190 */
 191void rcu_sched_qs(int cpu)
 192{
 193	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
 
 
 
 
 
 
 
 
 
 
 
 194
 195	if (rdp->passed_quiesce == 0)
 196		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
 197	rdp->passed_quiesce = 1;
 
 
 
 
 
 198}
 199
 200void rcu_bh_qs(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201{
 202	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
 
 
 
 203
 204	if (rdp->passed_quiesce == 0)
 205		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
 206	rdp->passed_quiesce = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207}
 208
 209/*
 210 * Note a context switch.  This is a quiescent state for RCU-sched,
 211 * and requires special handling for preemptible RCU.
 212 * The caller must have disabled preemption.
 213 */
 214void rcu_note_context_switch(int cpu)
 215{
 
 216	trace_rcu_utilization(TPS("Start context switch"));
 217	rcu_sched_qs(cpu);
 218	rcu_preempt_note_context_switch(cpu);
 
 
 219	trace_rcu_utilization(TPS("End context switch"));
 
 220}
 221EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 222
 223static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 224	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 225	.dynticks = ATOMIC_INIT(1),
 226#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 227	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 228	.dynticks_idle = ATOMIC_INIT(1),
 229#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 230};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231
 232static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
 233static long qhimark = 10000;	/* If this many pending, ignore blimit. */
 234static long qlowmark = 100;	/* Once only this many pending, use blimit. */
 235
 236module_param(blimit, long, 0444);
 237module_param(qhimark, long, 0444);
 238module_param(qlowmark, long, 0444);
 239
 240static ulong jiffies_till_first_fqs = ULONG_MAX;
 241static ulong jiffies_till_next_fqs = ULONG_MAX;
 242
 243module_param(jiffies_till_first_fqs, ulong, 0644);
 244module_param(jiffies_till_next_fqs, ulong, 0644);
 245
 246static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 
 
 
 
 
 
 
 247				  struct rcu_data *rdp);
 248static void force_qs_rnp(struct rcu_state *rsp,
 249			 int (*f)(struct rcu_data *rsp, bool *isidle,
 250				  unsigned long *maxj),
 251			 bool *isidle, unsigned long *maxj);
 252static void force_quiescent_state(struct rcu_state *rsp);
 253static int rcu_pending(int cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254
 255/*
 256 * Return the number of RCU-sched batches processed thus far for debug & stats.
 257 */
 258long rcu_batches_completed_sched(void)
 259{
 260	return rcu_sched_state.completed;
 261}
 262EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 263
 264/*
 265 * Return the number of RCU BH batches processed thus far for debug & stats.
 266 */
 267long rcu_batches_completed_bh(void)
 268{
 269	return rcu_bh_state.completed;
 270}
 271EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 272
 273/*
 
 
 
 
 
 
 
 
 
 274 * Force a quiescent state for RCU BH.
 275 */
 276void rcu_bh_force_quiescent_state(void)
 277{
 278	force_quiescent_state(&rcu_bh_state);
 279}
 280EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 281
 282/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283 * Record the number of times rcutorture tests have been initiated and
 284 * terminated.  This information allows the debugfs tracing stats to be
 285 * correlated to the rcutorture messages, even when the rcutorture module
 286 * is being repeatedly loaded and unloaded.  In other words, we cannot
 287 * store this state in rcutorture itself.
 288 */
 289void rcutorture_record_test_transition(void)
 290{
 291	rcutorture_testseq++;
 292	rcutorture_vernum = 0;
 293}
 294EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 295
 296/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297 * Record the number of writer passes through the current rcutorture test.
 298 * This is also used to correlate debugfs tracing stats with the rcutorture
 299 * messages.
 300 */
 301void rcutorture_record_progress(unsigned long vernum)
 302{
 303	rcutorture_vernum++;
 304}
 305EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 306
 307/*
 308 * Force a quiescent state for RCU-sched.
 
 
 
 
 
 
 
 
 
 
 309 */
 310void rcu_sched_force_quiescent_state(void)
 311{
 312	force_quiescent_state(&rcu_sched_state);
 313}
 314EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 315
 316/*
 317 * Does the CPU have callbacks ready to be invoked?
 
 
 318 */
 319static int
 320cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 321{
 322	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
 323	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
 
 
 
 324}
 325
 326/*
 327 * Does the current CPU require a not-yet-started grace period?
 328 * The caller must have disabled interrupts to prevent races with
 329 * normal callback registry.
 330 */
 331static int
 332cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 333{
 334	int i;
 335
 336	if (rcu_gp_in_progress(rsp))
 337		return 0;  /* No, a grace period is already in progress. */
 338	if (rcu_nocb_needs_gp(rsp))
 339		return 1;  /* Yes, a no-CBs CPU needs one. */
 340	if (!rdp->nxttail[RCU_NEXT_TAIL])
 341		return 0;  /* No, this is a no-CBs (or offline) CPU. */
 342	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
 343		return 1;  /* Yes, this CPU has newly registered callbacks. */
 344	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
 345		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
 346		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
 347				 rdp->nxtcompleted[i]))
 348			return 1;  /* Yes, CBs for future grace period. */
 349	return 0; /* No grace period needed. */
 350}
 351
 352/*
 353 * Return the root node of the specified rcu_state structure.
 354 */
 355static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 356{
 357	return &rsp->node[0];
 358}
 359
 360/*
 361 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
 362 *
 363 * If the new value of the ->dynticks_nesting counter now is zero,
 364 * we really have entered idle, and must do the appropriate accounting.
 365 * The caller must have disabled interrupts.
 366 */
 367static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
 368				bool user)
 369{
 370	struct rcu_state *rsp;
 371	struct rcu_data *rdp;
 
 372
 373	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
 374	if (!user && !is_idle_task(current)) {
 
 375		struct task_struct *idle __maybe_unused =
 376			idle_task(smp_processor_id());
 377
 378		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
 379		ftrace_dump(DUMP_ORIG);
 380		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 381			  current->pid, current->comm,
 382			  idle->pid, idle->comm); /* must be idle task! */
 383	}
 384	for_each_rcu_flavor(rsp) {
 385		rdp = this_cpu_ptr(rsp->rda);
 386		do_nocb_deferred_wakeup(rdp);
 387	}
 388	rcu_prepare_for_idle(smp_processor_id());
 389	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 390	smp_mb__before_atomic_inc();  /* See above. */
 391	atomic_inc(&rdtp->dynticks);
 392	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
 393	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 
 
 394
 395	/*
 396	 * It is illegal to enter an extended quiescent state while
 397	 * in an RCU read-side critical section.
 398	 */
 399	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
 400			   "Illegal idle entry in RCU read-side critical section.");
 401	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
 402			   "Illegal idle entry in RCU-bh read-side critical section.");
 403	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
 404			   "Illegal idle entry in RCU-sched read-side critical section.");
 405}
 406
 407/*
 408 * Enter an RCU extended quiescent state, which can be either the
 409 * idle loop or adaptive-tickless usermode execution.
 410 */
 411static void rcu_eqs_enter(bool user)
 412{
 413	long long oldval;
 414	struct rcu_dynticks *rdtp;
 415
 416	rdtp = this_cpu_ptr(&rcu_dynticks);
 417	oldval = rdtp->dynticks_nesting;
 418	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
 
 419	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
 420		rdtp->dynticks_nesting = 0;
 421		rcu_eqs_enter_common(rdtp, oldval, user);
 422	} else {
 423		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 424	}
 425}
 426
 427/**
 428 * rcu_idle_enter - inform RCU that current CPU is entering idle
 429 *
 430 * Enter idle mode, in other words, -leave- the mode in which RCU
 431 * read-side critical sections can occur.  (Though RCU read-side
 432 * critical sections can occur in irq handlers in idle, a possibility
 433 * handled by irq_enter() and irq_exit().)
 434 *
 435 * We crowbar the ->dynticks_nesting field to zero to allow for
 436 * the possibility of usermode upcalls having messed up our count
 437 * of interrupt nesting level during the prior busy period.
 438 */
 439void rcu_idle_enter(void)
 440{
 441	unsigned long flags;
 442
 443	local_irq_save(flags);
 444	rcu_eqs_enter(false);
 445	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
 446	local_irq_restore(flags);
 447}
 448EXPORT_SYMBOL_GPL(rcu_idle_enter);
 449
 450#ifdef CONFIG_RCU_USER_QS
 451/**
 452 * rcu_user_enter - inform RCU that we are resuming userspace.
 453 *
 454 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 455 * is permitted between this call and rcu_user_exit(). This way the
 456 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 457 * when the CPU runs in userspace.
 458 */
 459void rcu_user_enter(void)
 460{
 461	rcu_eqs_enter(1);
 462}
 463#endif /* CONFIG_RCU_USER_QS */
 464
 465/**
 466 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 467 *
 468 * Exit from an interrupt handler, which might possibly result in entering
 469 * idle mode, in other words, leaving the mode in which read-side critical
 470 * sections can occur.
 471 *
 472 * This code assumes that the idle loop never does anything that might
 473 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 474 * architecture violates this assumption, RCU will give you what you
 475 * deserve, good and hard.  But very infrequently and irreproducibly.
 476 *
 477 * Use things like work queues to work around this limitation.
 478 *
 479 * You have been warned.
 480 */
 481void rcu_irq_exit(void)
 482{
 483	unsigned long flags;
 484	long long oldval;
 485	struct rcu_dynticks *rdtp;
 486
 487	local_irq_save(flags);
 488	rdtp = this_cpu_ptr(&rcu_dynticks);
 489	oldval = rdtp->dynticks_nesting;
 490	rdtp->dynticks_nesting--;
 491	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
 
 492	if (rdtp->dynticks_nesting)
 493		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
 494	else
 495		rcu_eqs_enter_common(rdtp, oldval, true);
 496	rcu_sysidle_enter(rdtp, 1);
 
 
 
 
 
 
 
 
 
 
 
 497	local_irq_restore(flags);
 498}
 499
 500/*
 501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 502 *
 503 * If the new value of the ->dynticks_nesting counter was previously zero,
 504 * we really have exited idle, and must do the appropriate accounting.
 505 * The caller must have disabled interrupts.
 506 */
 507static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
 508			       int user)
 509{
 510	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
 
 
 
 511	atomic_inc(&rdtp->dynticks);
 512	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 513	smp_mb__after_atomic_inc();  /* See above. */
 514	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 515	rcu_cleanup_after_idle(smp_processor_id());
 
 516	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 517	if (!user && !is_idle_task(current)) {
 
 518		struct task_struct *idle __maybe_unused =
 519			idle_task(smp_processor_id());
 520
 521		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 522				  oldval, rdtp->dynticks_nesting);
 523		ftrace_dump(DUMP_ORIG);
 524		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 525			  current->pid, current->comm,
 526			  idle->pid, idle->comm); /* must be idle task! */
 527	}
 528}
 529
 530/*
 531 * Exit an RCU extended quiescent state, which can be either the
 532 * idle loop or adaptive-tickless usermode execution.
 533 */
 534static void rcu_eqs_exit(bool user)
 535{
 536	struct rcu_dynticks *rdtp;
 537	long long oldval;
 538
 539	rdtp = this_cpu_ptr(&rcu_dynticks);
 540	oldval = rdtp->dynticks_nesting;
 541	WARN_ON_ONCE(oldval < 0);
 542	if (oldval & DYNTICK_TASK_NEST_MASK) {
 543		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 544	} else {
 545		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 546		rcu_eqs_exit_common(rdtp, oldval, user);
 547	}
 548}
 549
 550/**
 551 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 552 *
 553 * Exit idle mode, in other words, -enter- the mode in which RCU
 554 * read-side critical sections can occur.
 555 *
 556 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 557 * allow for the possibility of usermode upcalls messing up our count
 558 * of interrupt nesting level during the busy period that is just
 559 * now starting.
 560 */
 561void rcu_idle_exit(void)
 562{
 563	unsigned long flags;
 564
 565	local_irq_save(flags);
 566	rcu_eqs_exit(false);
 567	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
 568	local_irq_restore(flags);
 569}
 570EXPORT_SYMBOL_GPL(rcu_idle_exit);
 571
 572#ifdef CONFIG_RCU_USER_QS
 573/**
 574 * rcu_user_exit - inform RCU that we are exiting userspace.
 575 *
 576 * Exit RCU idle mode while entering the kernel because it can
 577 * run a RCU read side critical section anytime.
 578 */
 579void rcu_user_exit(void)
 580{
 581	rcu_eqs_exit(1);
 582}
 583#endif /* CONFIG_RCU_USER_QS */
 584
 585/**
 586 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 587 *
 588 * Enter an interrupt handler, which might possibly result in exiting
 589 * idle mode, in other words, entering the mode in which read-side critical
 590 * sections can occur.
 591 *
 592 * Note that the Linux kernel is fully capable of entering an interrupt
 593 * handler that it never exits, for example when doing upcalls to
 594 * user mode!  This code assumes that the idle loop never does upcalls to
 595 * user mode.  If your architecture does do upcalls from the idle loop (or
 596 * does anything else that results in unbalanced calls to the irq_enter()
 597 * and irq_exit() functions), RCU will give you what you deserve, good
 598 * and hard.  But very infrequently and irreproducibly.
 599 *
 600 * Use things like work queues to work around this limitation.
 601 *
 602 * You have been warned.
 603 */
 604void rcu_irq_enter(void)
 605{
 606	unsigned long flags;
 607	struct rcu_dynticks *rdtp;
 608	long long oldval;
 609
 610	local_irq_save(flags);
 611	rdtp = this_cpu_ptr(&rcu_dynticks);
 612	oldval = rdtp->dynticks_nesting;
 613	rdtp->dynticks_nesting++;
 614	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
 
 615	if (oldval)
 616		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
 617	else
 618		rcu_eqs_exit_common(rdtp, oldval, true);
 619	rcu_sysidle_exit(rdtp, 1);
 
 
 
 
 
 
 
 
 
 
 
 620	local_irq_restore(flags);
 621}
 622
 623/**
 624 * rcu_nmi_enter - inform RCU of entry to NMI context
 625 *
 626 * If the CPU was idle with dynamic ticks active, and there is no
 627 * irq handler running, this updates rdtp->dynticks_nmi to let the
 628 * RCU grace-period handling know that the CPU is active.
 
 
 629 */
 630void rcu_nmi_enter(void)
 631{
 632	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 
 
 
 
 633
 634	if (rdtp->dynticks_nmi_nesting == 0 &&
 635	    (atomic_read(&rdtp->dynticks) & 0x1))
 636		return;
 637	rdtp->dynticks_nmi_nesting++;
 638	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
 639	atomic_inc(&rdtp->dynticks);
 640	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 641	smp_mb__after_atomic_inc();  /* See above. */
 642	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 
 
 
 
 
 
 
 
 
 643}
 644
 645/**
 646 * rcu_nmi_exit - inform RCU of exit from NMI context
 647 *
 648 * If the CPU was idle with dynamic ticks active, and there is no
 649 * irq handler running, this updates rdtp->dynticks_nmi to let the
 650 * RCU grace-period handling know that the CPU is no longer active.
 
 651 */
 652void rcu_nmi_exit(void)
 653{
 654	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 655
 656	if (rdtp->dynticks_nmi_nesting == 0 ||
 657	    --rdtp->dynticks_nmi_nesting != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 658		return;
 
 
 
 
 659	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 660	smp_mb__before_atomic_inc();  /* See above. */
 661	atomic_inc(&rdtp->dynticks);
 662	smp_mb__after_atomic_inc();  /* Force delay to next write. */
 663	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 664}
 665
 666/**
 667 * __rcu_is_watching - are RCU read-side critical sections safe?
 668 *
 669 * Return true if RCU is watching the running CPU, which means that
 670 * this CPU can safely enter RCU read-side critical sections.  Unlike
 671 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 672 * least disabled preemption.
 673 */
 674bool notrace __rcu_is_watching(void)
 675{
 676	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
 677}
 678
 679/**
 680 * rcu_is_watching - see if RCU thinks that the current CPU is idle
 681 *
 682 * If the current CPU is in its idle loop and is neither in an interrupt
 683 * or NMI handler, return true.
 684 */
 685bool notrace rcu_is_watching(void)
 686{
 687	int ret;
 688
 689	preempt_disable();
 690	ret = __rcu_is_watching();
 691	preempt_enable();
 692	return ret;
 693}
 694EXPORT_SYMBOL_GPL(rcu_is_watching);
 695
 696#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 697
 698/*
 699 * Is the current CPU online?  Disable preemption to avoid false positives
 700 * that could otherwise happen due to the current CPU number being sampled,
 701 * this task being preempted, its old CPU being taken offline, resuming
 702 * on some other CPU, then determining that its old CPU is now offline.
 703 * It is OK to use RCU on an offline processor during initial boot, hence
 704 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 705 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 706 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 707 * offline to continue to use RCU for one jiffy after marking itself
 708 * offline in the cpu_online_mask.  This leniency is necessary given the
 709 * non-atomic nature of the online and offline processing, for example,
 710 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 711 * notifiers.
 712 *
 713 * This is also why RCU internally marks CPUs online during the
 714 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
 715 *
 716 * Disable checking if in an NMI handler because we cannot safely report
 717 * errors from NMI handlers anyway.
 718 */
 719bool rcu_lockdep_current_cpu_online(void)
 720{
 721	struct rcu_data *rdp;
 722	struct rcu_node *rnp;
 723	bool ret;
 724
 725	if (in_nmi())
 726		return true;
 727	preempt_disable();
 728	rdp = this_cpu_ptr(&rcu_sched_data);
 729	rnp = rdp->mynode;
 730	ret = (rdp->grpmask & rnp->qsmaskinit) ||
 731	      !rcu_scheduler_fully_active;
 732	preempt_enable();
 733	return ret;
 734}
 735EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 736
 737#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 738
 739/**
 740 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
 741 *
 742 * If the current CPU is idle or running at a first-level (not nested)
 743 * interrupt from idle, return true.  The caller must have at least
 744 * disabled preemption.
 745 */
 746static int rcu_is_cpu_rrupt_from_idle(void)
 747{
 748	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
 749}
 750
 751/*
 752 * Snapshot the specified CPU's dynticks counter so that we can later
 753 * credit them with an implicit quiescent state.  Return 1 if this CPU
 754 * is in dynticks idle mode, which is an extended quiescent state.
 755 */
 756static int dyntick_save_progress_counter(struct rcu_data *rdp,
 757					 bool *isidle, unsigned long *maxj)
 758{
 759	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
 760	rcu_sysidle_check_cpu(rdp, isidle, maxj);
 761	return (rdp->dynticks_snap & 0x1) == 0;
 
 
 
 
 
 
 
 762}
 763
 764/*
 765 * This function really isn't for public consumption, but RCU is special in
 766 * that context switches can allow the state machine to make progress.
 767 */
 768extern void resched_cpu(int cpu);
 769
 770/*
 771 * Return true if the specified CPU has passed through a quiescent
 772 * state by virtue of being in or having passed through an dynticks
 773 * idle state since the last call to dyntick_save_progress_counter()
 774 * for this same CPU, or by virtue of having been offline.
 775 */
 776static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
 777				    bool *isidle, unsigned long *maxj)
 778{
 779	unsigned int curr;
 
 780	unsigned int snap;
 781
 782	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
 783	snap = (unsigned int)rdp->dynticks_snap;
 784
 785	/*
 786	 * If the CPU passed through or entered a dynticks idle phase with
 787	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 788	 * already acknowledged the request to pass through a quiescent
 789	 * state.  Either way, that CPU cannot possibly be in an RCU
 790	 * read-side critical section that started before the beginning
 791	 * of the current RCU grace period.
 792	 */
 793	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
 794		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
 795		rdp->dynticks_fqs++;
 796		return 1;
 797	}
 798
 799	/*
 800	 * Check for the CPU being offline, but only if the grace period
 801	 * is old enough.  We don't need to worry about the CPU changing
 802	 * state: If we see it offline even once, it has been through a
 803	 * quiescent state.
 804	 *
 805	 * The reason for insisting that the grace period be at least
 806	 * one jiffy old is that CPUs that are not quite online and that
 807	 * have just gone offline can still execute RCU read-side critical
 808	 * sections.
 809	 */
 810	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
 811		return 0;  /* Grace period is not old enough. */
 812	barrier();
 813	if (cpu_is_offline(rdp->cpu)) {
 814		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
 815		rdp->offline_fqs++;
 816		return 1;
 817	}
 818
 819	/*
 820	 * There is a possibility that a CPU in adaptive-ticks state
 821	 * might run in the kernel with the scheduling-clock tick disabled
 822	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
 823	 * force the CPU to restart the scheduling-clock tick in this
 824	 * CPU is in this state.
 825	 */
 826	rcu_kick_nohz_cpu(rdp->cpu);
 827
 828	/*
 829	 * Alternatively, the CPU might be running in the kernel
 830	 * for an extended period of time without a quiescent state.
 831	 * Attempt to force the CPU through the scheduler to gain the
 832	 * needed quiescent state, but only if the grace period has gone
 833	 * on for an uncommonly long time.  If there are many stuck CPUs,
 834	 * we will beat on the first one until it gets unstuck, then move
 835	 * to the next.  Only do this for the primary flavor of RCU.
 836	 */
 837	if (rdp->rsp == rcu_state &&
 
 
 
 
 
 838	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
 839		rdp->rsp->jiffies_resched += 5;
 840		resched_cpu(rdp->cpu);
 
 
 
 
 
 
 841	}
 842
 
 
 
 
 
 
 843	return 0;
 844}
 845
 846static void record_gp_stall_check_time(struct rcu_state *rsp)
 847{
 848	unsigned long j = jiffies;
 849	unsigned long j1;
 850
 851	rsp->gp_start = j;
 852	smp_wmb(); /* Record start time before stall time. */
 853	j1 = rcu_jiffies_till_stall_check();
 854	rsp->jiffies_stall = j + j1;
 855	rsp->jiffies_resched = j + j1 / 2;
 
 856}
 857
 858/*
 859 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 860 * for architectures that do not implement trigger_all_cpu_backtrace().
 861 * The NMI-triggered stack traces are more accurate because they are
 862 * printed by the target CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863 */
 864static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
 865{
 866	int cpu;
 867	unsigned long flags;
 868	struct rcu_node *rnp;
 869
 870	rcu_for_each_leaf_node(rsp, rnp) {
 871		raw_spin_lock_irqsave(&rnp->lock, flags);
 872		if (rnp->qsmask != 0) {
 873			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 874				if (rnp->qsmask & (1UL << cpu))
 875					dump_cpu_task(rnp->grplo + cpu);
 876		}
 877		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 878	}
 879}
 880
 881static void print_other_cpu_stall(struct rcu_state *rsp)
 882{
 883	int cpu;
 884	long delta;
 885	unsigned long flags;
 
 
 886	int ndetected = 0;
 887	struct rcu_node *rnp = rcu_get_root(rsp);
 888	long totqlen = 0;
 889
 890	/* Only let one CPU complain about others per time interval. */
 891
 892	raw_spin_lock_irqsave(&rnp->lock, flags);
 893	delta = jiffies - rsp->jiffies_stall;
 894	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
 895		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 896		return;
 897	}
 898	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
 899	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 
 900
 901	/*
 902	 * OK, time to rat on our buddy...
 903	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 904	 * RCU CPU stall warnings.
 905	 */
 906	pr_err("INFO: %s detected stalls on CPUs/tasks:",
 907	       rsp->name);
 908	print_cpu_stall_info_begin();
 909	rcu_for_each_leaf_node(rsp, rnp) {
 910		raw_spin_lock_irqsave(&rnp->lock, flags);
 911		ndetected += rcu_print_task_stall(rnp);
 912		if (rnp->qsmask != 0) {
 913			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 914				if (rnp->qsmask & (1UL << cpu)) {
 915					print_cpu_stall_info(rsp,
 916							     rnp->grplo + cpu);
 917					ndetected++;
 918				}
 919		}
 920		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 921	}
 922
 923	/*
 924	 * Now rat on any tasks that got kicked up to the root rcu_node
 925	 * due to CPU offlining.
 926	 */
 927	rnp = rcu_get_root(rsp);
 928	raw_spin_lock_irqsave(&rnp->lock, flags);
 929	ndetected += rcu_print_task_stall(rnp);
 930	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 931
 932	print_cpu_stall_info_end();
 933	for_each_possible_cpu(cpu)
 934		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
 935	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
 936	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
 937	       rsp->gpnum, rsp->completed, totqlen);
 938	if (ndetected == 0)
 939		pr_err("INFO: Stall ended before state dump start\n");
 940	else if (!trigger_all_cpu_backtrace())
 941		rcu_dump_cpu_stacks(rsp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942
 943	/* Complain about tasks blocking the grace period. */
 
 944
 945	rcu_print_detail_task_stall(rsp);
 946
 947	force_quiescent_state(rsp);  /* Kick them all. */
 948}
 949
 950/*
 951 * This function really isn't for public consumption, but RCU is special in
 952 * that context switches can allow the state machine to make progress.
 953 */
 954extern void resched_cpu(int cpu);
 955
 956static void print_cpu_stall(struct rcu_state *rsp)
 957{
 958	int cpu;
 959	unsigned long flags;
 960	struct rcu_node *rnp = rcu_get_root(rsp);
 961	long totqlen = 0;
 962
 963	/*
 964	 * OK, time to rat on ourselves...
 965	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 966	 * RCU CPU stall warnings.
 967	 */
 968	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
 969	print_cpu_stall_info_begin();
 970	print_cpu_stall_info(rsp, smp_processor_id());
 971	print_cpu_stall_info_end();
 972	for_each_possible_cpu(cpu)
 973		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
 974	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
 975		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
 976	if (!trigger_all_cpu_backtrace())
 977		dump_stack();
 978
 979	raw_spin_lock_irqsave(&rnp->lock, flags);
 980	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
 981		rsp->jiffies_stall = jiffies +
 982				     3 * rcu_jiffies_till_stall_check() + 3;
 983	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 
 
 
 984
 985	/*
 986	 * Attempt to revive the RCU machinery by forcing a context switch.
 987	 *
 988	 * A context switch would normally allow the RCU state machine to make
 989	 * progress and it could be we're stuck in kernel space without context
 990	 * switches for an entirely unreasonable amount of time.
 991	 */
 992	resched_cpu(smp_processor_id());
 993}
 994
 995static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 996{
 997	unsigned long completed;
 998	unsigned long gpnum;
 999	unsigned long gps;
1000	unsigned long j;
1001	unsigned long js;
1002	struct rcu_node *rnp;
1003
1004	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1005		return;
1006	j = jiffies;
1007
1008	/*
1009	 * Lots of memory barriers to reject false positives.
1010	 *
1011	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1012	 * then rsp->gp_start, and finally rsp->completed.  These values
1013	 * are updated in the opposite order with memory barriers (or
1014	 * equivalent) during grace-period initialization and cleanup.
1015	 * Now, a false positive can occur if we get an new value of
1016	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1017	 * the memory barriers, the only way that this can happen is if one
1018	 * grace period ends and another starts between these two fetches.
1019	 * Detect this by comparing rsp->completed with the previous fetch
1020	 * from rsp->gpnum.
1021	 *
1022	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1023	 * and rsp->gp_start suffice to forestall false positives.
1024	 */
1025	gpnum = ACCESS_ONCE(rsp->gpnum);
1026	smp_rmb(); /* Pick up ->gpnum first... */
1027	js = ACCESS_ONCE(rsp->jiffies_stall);
1028	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1029	gps = ACCESS_ONCE(rsp->gp_start);
1030	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1031	completed = ACCESS_ONCE(rsp->completed);
1032	if (ULONG_CMP_GE(completed, gpnum) ||
1033	    ULONG_CMP_LT(j, js) ||
1034	    ULONG_CMP_GE(gps, js))
1035		return; /* No stall or GP completed since entering function. */
1036	rnp = rdp->mynode;
1037	if (rcu_gp_in_progress(rsp) &&
1038	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1039
1040		/* We haven't checked in, so go dump stack. */
1041		print_cpu_stall(rsp);
1042
1043	} else if (rcu_gp_in_progress(rsp) &&
1044		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1045
1046		/* They had a few time units to dump stack, so complain. */
1047		print_other_cpu_stall(rsp);
1048	}
1049}
1050
1051/**
1052 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1053 *
1054 * Set the stall-warning timeout way off into the future, thus preventing
1055 * any RCU CPU stall-warning messages from appearing in the current set of
1056 * RCU grace periods.
1057 *
1058 * The caller must disable hard irqs.
1059 */
1060void rcu_cpu_stall_reset(void)
1061{
1062	struct rcu_state *rsp;
1063
1064	for_each_rcu_flavor(rsp)
1065		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1066}
1067
1068/*
1069 * Initialize the specified rcu_data structure's callback list to empty.
 
 
1070 */
1071static void init_callback_list(struct rcu_data *rdp)
1072{
1073	int i;
1074
1075	if (init_nocb_callback_list(rdp))
1076		return;
1077	rdp->nxtlist = NULL;
1078	for (i = 0; i < RCU_NEXT_SIZE; i++)
1079		rdp->nxttail[i] = &rdp->nxtlist;
1080}
1081
1082/*
 
 
 
 
 
 
 
 
 
 
1083 * Determine the value that ->completed will have at the end of the
1084 * next subsequent grace period.  This is used to tag callbacks so that
1085 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1086 * been dyntick-idle for an extended period with callbacks under the
1087 * influence of RCU_FAST_NO_HZ.
1088 *
1089 * The caller must hold rnp->lock with interrupts disabled.
1090 */
1091static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1092				       struct rcu_node *rnp)
1093{
1094	/*
1095	 * If RCU is idle, we just wait for the next grace period.
1096	 * But we can only be sure that RCU is idle if we are looking
1097	 * at the root rcu_node structure -- otherwise, a new grace
1098	 * period might have started, but just not yet gotten around
1099	 * to initializing the current non-root rcu_node structure.
1100	 */
1101	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1102		return rnp->completed + 1;
1103
1104	/*
1105	 * Otherwise, wait for a possible partial grace period and
1106	 * then the subsequent full grace period.
1107	 */
1108	return rnp->completed + 2;
1109}
1110
1111/*
1112 * Trace-event helper function for rcu_start_future_gp() and
1113 * rcu_nocb_wait_gp().
1114 */
1115static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1116				unsigned long c, const char *s)
1117{
1118	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1119				      rnp->completed, c, rnp->level,
1120				      rnp->grplo, rnp->grphi, s);
1121}
1122
1123/*
1124 * Start some future grace period, as needed to handle newly arrived
1125 * callbacks.  The required future grace periods are recorded in each
1126 * rcu_node structure's ->need_future_gp field.
 
1127 *
1128 * The caller must hold the specified rcu_node structure's ->lock.
1129 */
1130static unsigned long __maybe_unused
1131rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
 
1132{
1133	unsigned long c;
1134	int i;
 
1135	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1136
1137	/*
1138	 * Pick up grace-period number for new callbacks.  If this
1139	 * grace period is already marked as needed, return to the caller.
1140	 */
1141	c = rcu_cbs_completed(rdp->rsp, rnp);
1142	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1143	if (rnp->need_future_gp[c & 0x1]) {
1144		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1145		return c;
1146	}
1147
1148	/*
1149	 * If either this rcu_node structure or the root rcu_node structure
1150	 * believe that a grace period is in progress, then we must wait
1151	 * for the one following, which is in "c".  Because our request
1152	 * will be noticed at the end of the current grace period, we don't
1153	 * need to explicitly start one.
 
 
 
 
 
 
1154	 */
1155	if (rnp->gpnum != rnp->completed ||
1156	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1157		rnp->need_future_gp[c & 0x1]++;
1158		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1159		return c;
1160	}
1161
1162	/*
1163	 * There might be no grace period in progress.  If we don't already
1164	 * hold it, acquire the root rcu_node structure's lock in order to
1165	 * start one (if needed).
1166	 */
1167	if (rnp != rnp_root) {
1168		raw_spin_lock(&rnp_root->lock);
1169		smp_mb__after_unlock_lock();
1170	}
1171
1172	/*
1173	 * Get a new grace-period number.  If there really is no grace
1174	 * period in progress, it will be smaller than the one we obtained
1175	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1176	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1177	 */
1178	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1179	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1180		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1181			rdp->nxtcompleted[i] = c;
1182
1183	/*
1184	 * If the needed for the required grace period is already
1185	 * recorded, trace and leave.
1186	 */
1187	if (rnp_root->need_future_gp[c & 0x1]) {
1188		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1189		goto unlock_out;
1190	}
1191
1192	/* Record the need for the future grace period. */
1193	rnp_root->need_future_gp[c & 0x1]++;
1194
1195	/* If a grace period is not already in progress, start one. */
1196	if (rnp_root->gpnum != rnp_root->completed) {
1197		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1198	} else {
1199		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1200		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1201	}
1202unlock_out:
1203	if (rnp != rnp_root)
1204		raw_spin_unlock(&rnp_root->lock);
1205	return c;
 
 
 
1206}
1207
1208/*
1209 * Clean up any old requests for the just-ended grace period.  Also return
1210 * whether any additional grace periods have been requested.  Also invoke
1211 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1212 * waiting for this grace period to complete.
1213 */
1214static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1215{
1216	int c = rnp->completed;
1217	int needmore;
1218	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1219
1220	rcu_nocb_gp_cleanup(rsp, rnp);
1221	rnp->need_future_gp[c & 0x1] = 0;
1222	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1223	trace_rcu_future_gp(rnp, rdp, c,
1224			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1225	return needmore;
1226}
1227
1228/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229 * If there is room, assign a ->completed number to any callbacks on
1230 * this CPU that have not already been assigned.  Also accelerate any
1231 * callbacks that were previously assigned a ->completed number that has
1232 * since proven to be too conservative, which can happen if callbacks get
1233 * assigned a ->completed number while RCU is idle, but with reference to
1234 * a non-root rcu_node structure.  This function is idempotent, so it does
1235 * not hurt to call it repeatedly.
 
1236 *
1237 * The caller must hold rnp->lock with interrupts disabled.
1238 */
1239static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1240			       struct rcu_data *rdp)
1241{
1242	unsigned long c;
1243	int i;
 
1244
1245	/* If the CPU has no callbacks, nothing to do. */
1246	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1247		return;
1248
1249	/*
1250	 * Starting from the sublist containing the callbacks most
1251	 * recently assigned a ->completed number and working down, find the
1252	 * first sublist that is not assignable to an upcoming grace period.
1253	 * Such a sublist has something in it (first two tests) and has
1254	 * a ->completed number assigned that will complete sooner than
1255	 * the ->completed number for newly arrived callbacks (last test).
1256	 *
1257	 * The key point is that any later sublist can be assigned the
1258	 * same ->completed number as the newly arrived callbacks, which
1259	 * means that the callbacks in any of these later sublist can be
1260	 * grouped into a single sublist, whether or not they have already
1261	 * been assigned a ->completed number.
1262	 */
1263	c = rcu_cbs_completed(rsp, rnp);
1264	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1265		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1266		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1267			break;
1268
1269	/*
1270	 * If there are no sublist for unassigned callbacks, leave.
1271	 * At the same time, advance "i" one sublist, so that "i" will
1272	 * index into the sublist where all the remaining callbacks should
1273	 * be grouped into.
1274	 */
1275	if (++i >= RCU_NEXT_TAIL)
1276		return;
1277
1278	/*
1279	 * Assign all subsequent callbacks' ->completed number to the next
1280	 * full grace period and group them all in the sublist initially
1281	 * indexed by "i".
1282	 */
1283	for (; i <= RCU_NEXT_TAIL; i++) {
1284		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1285		rdp->nxtcompleted[i] = c;
1286	}
1287	/* Record any needed additional grace periods. */
1288	rcu_start_future_gp(rnp, rdp);
1289
1290	/* Trace depending on how much we were able to accelerate. */
1291	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1292		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1293	else
1294		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
 
1295}
1296
1297/*
1298 * Move any callbacks whose grace period has completed to the
1299 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1300 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1301 * sublist.  This function is idempotent, so it does not hurt to
1302 * invoke it repeatedly.  As long as it is not invoked -too- often...
 
1303 *
1304 * The caller must hold rnp->lock with interrupts disabled.
1305 */
1306static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1307			    struct rcu_data *rdp)
1308{
1309	int i, j;
1310
1311	/* If the CPU has no callbacks, nothing to do. */
1312	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1313		return;
1314
1315	/*
1316	 * Find all callbacks whose ->completed numbers indicate that they
1317	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1318	 */
1319	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1320		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1321			break;
1322		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1323	}
1324	/* Clean up any sublist tail pointers that were misordered above. */
1325	for (j = RCU_WAIT_TAIL; j < i; j++)
1326		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1327
1328	/* Copy down callbacks to fill in empty sublists. */
1329	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1330		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1331			break;
1332		rdp->nxttail[j] = rdp->nxttail[i];
1333		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1334	}
1335
1336	/* Classify any remaining callbacks. */
1337	rcu_accelerate_cbs(rsp, rnp, rdp);
1338}
1339
1340/*
1341 * Update CPU-local rcu_data state to record the beginnings and ends of
1342 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1343 * structure corresponding to the current CPU, and must have irqs disabled.
 
1344 */
1345static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
 
1346{
 
 
1347	/* Handle the ends of any preceding grace periods first. */
1348	if (rdp->completed == rnp->completed) {
 
1349
1350		/* No grace period end, so just accelerate recent callbacks. */
1351		rcu_accelerate_cbs(rsp, rnp, rdp);
1352
1353	} else {
1354
1355		/* Advance callbacks. */
1356		rcu_advance_cbs(rsp, rnp, rdp);
1357
1358		/* Remember that we saw this grace-period completion. */
1359		rdp->completed = rnp->completed;
1360		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1361	}
1362
1363	if (rdp->gpnum != rnp->gpnum) {
1364		/*
1365		 * If the current grace period is waiting for this CPU,
1366		 * set up to detect a quiescent state, otherwise don't
1367		 * go looking for one.
1368		 */
1369		rdp->gpnum = rnp->gpnum;
1370		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1371		rdp->passed_quiesce = 0;
1372		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
 
1373		zero_cpu_stall_ticks(rdp);
 
1374	}
 
1375}
1376
1377static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1378{
1379	unsigned long flags;
 
1380	struct rcu_node *rnp;
1381
1382	local_irq_save(flags);
1383	rnp = rdp->mynode;
1384	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1385	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1386	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
 
1387		local_irq_restore(flags);
1388		return;
1389	}
1390	smp_mb__after_unlock_lock();
1391	__note_gp_changes(rsp, rnp, rdp);
1392	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 
 
 
 
 
 
 
 
1393}
1394
1395/*
1396 * Initialize a new grace period.  Return 0 if no grace period required.
1397 */
1398static int rcu_gp_init(struct rcu_state *rsp)
1399{
 
1400	struct rcu_data *rdp;
1401	struct rcu_node *rnp = rcu_get_root(rsp);
1402
1403	rcu_bind_gp_kthread();
1404	raw_spin_lock_irq(&rnp->lock);
1405	smp_mb__after_unlock_lock();
1406	if (rsp->gp_flags == 0) {
1407		/* Spurious wakeup, tell caller to go back to sleep.  */
1408		raw_spin_unlock_irq(&rnp->lock);
1409		return 0;
1410	}
1411	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1412
1413	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1414		/*
1415		 * Grace period already in progress, don't start another.
1416		 * Not supposed to be able to happen.
1417		 */
1418		raw_spin_unlock_irq(&rnp->lock);
1419		return 0;
1420	}
1421
1422	/* Advance to a new grace period and initialize state. */
1423	record_gp_stall_check_time(rsp);
1424	/* Record GP times before starting GP, hence smp_store_release(). */
1425	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1426	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1427	raw_spin_unlock_irq(&rnp->lock);
1428
1429	/* Exclude any concurrent CPU-hotplug operations. */
1430	mutex_lock(&rsp->onoff_mutex);
1431	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432
1433	/*
1434	 * Set the quiescent-state-needed bits in all the rcu_node
1435	 * structures for all currently online CPUs in breadth-first order,
1436	 * starting from the root rcu_node structure, relying on the layout
1437	 * of the tree within the rsp->node[] array.  Note that other CPUs
1438	 * will access only the leaves of the hierarchy, thus seeing that no
1439	 * grace period is in progress, at least until the corresponding
1440	 * leaf node has been initialized.  In addition, we have excluded
1441	 * CPU-hotplug operations.
1442	 *
1443	 * The grace period cannot complete until the initialization
1444	 * process finishes, because this kthread handles both.
1445	 */
1446	rcu_for_each_node_breadth_first(rsp, rnp) {
1447		raw_spin_lock_irq(&rnp->lock);
1448		smp_mb__after_unlock_lock();
1449		rdp = this_cpu_ptr(rsp->rda);
1450		rcu_preempt_check_blocked_tasks(rnp);
1451		rnp->qsmask = rnp->qsmaskinit;
1452		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1453		WARN_ON_ONCE(rnp->completed != rsp->completed);
1454		ACCESS_ONCE(rnp->completed) = rsp->completed;
1455		if (rnp == rdp->mynode)
1456			__note_gp_changes(rsp, rnp, rdp);
1457		rcu_preempt_boost_start_gp(rnp);
1458		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1459					    rnp->level, rnp->grplo,
1460					    rnp->grphi, rnp->qsmask);
1461		raw_spin_unlock_irq(&rnp->lock);
1462#ifdef CONFIG_PROVE_RCU_DELAY
1463		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1464		    system_state == SYSTEM_RUNNING)
1465			udelay(200);
1466#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1467		cond_resched();
1468	}
1469
1470	mutex_unlock(&rsp->onoff_mutex);
1471	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1472}
1473
1474/*
1475 * Do one round of quiescent-state forcing.
1476 */
1477static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1478{
1479	int fqs_state = fqs_state_in;
1480	bool isidle = false;
1481	unsigned long maxj;
1482	struct rcu_node *rnp = rcu_get_root(rsp);
1483
 
1484	rsp->n_force_qs++;
1485	if (fqs_state == RCU_SAVE_DYNTICK) {
1486		/* Collect dyntick-idle snapshots. */
1487		if (is_sysidle_rcu_state(rsp)) {
1488			isidle = 1;
1489			maxj = jiffies - ULONG_MAX / 4;
1490		}
1491		force_qs_rnp(rsp, dyntick_save_progress_counter,
1492			     &isidle, &maxj);
1493		rcu_sysidle_report_gp(rsp, isidle, maxj);
1494		fqs_state = RCU_FORCE_QS;
1495	} else {
1496		/* Handle dyntick-idle and offline CPUs. */
1497		isidle = 0;
1498		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1499	}
1500	/* Clear flag to prevent immediate re-entry. */
1501	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1502		raw_spin_lock_irq(&rnp->lock);
1503		smp_mb__after_unlock_lock();
1504		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1505		raw_spin_unlock_irq(&rnp->lock);
1506	}
1507	return fqs_state;
1508}
1509
1510/*
1511 * Clean up after the old grace period.
1512 */
1513static void rcu_gp_cleanup(struct rcu_state *rsp)
1514{
1515	unsigned long gp_duration;
 
1516	int nocb = 0;
1517	struct rcu_data *rdp;
1518	struct rcu_node *rnp = rcu_get_root(rsp);
 
1519
1520	raw_spin_lock_irq(&rnp->lock);
1521	smp_mb__after_unlock_lock();
1522	gp_duration = jiffies - rsp->gp_start;
1523	if (gp_duration > rsp->gp_max)
1524		rsp->gp_max = gp_duration;
1525
1526	/*
1527	 * We know the grace period is complete, but to everyone else
1528	 * it appears to still be ongoing.  But it is also the case
1529	 * that to everyone else it looks like there is nothing that
1530	 * they can do to advance the grace period.  It is therefore
1531	 * safe for us to drop the lock in order to mark the grace
1532	 * period as completed in all of the rcu_node structures.
1533	 */
1534	raw_spin_unlock_irq(&rnp->lock);
1535
1536	/*
1537	 * Propagate new ->completed value to rcu_node structures so
1538	 * that other CPUs don't have to wait until the start of the next
1539	 * grace period to process their callbacks.  This also avoids
1540	 * some nasty RCU grace-period initialization races by forcing
1541	 * the end of the current grace period to be completely recorded in
1542	 * all of the rcu_node structures before the beginning of the next
1543	 * grace period is recorded in any of the rcu_node structures.
1544	 */
1545	rcu_for_each_node_breadth_first(rsp, rnp) {
1546		raw_spin_lock_irq(&rnp->lock);
1547		smp_mb__after_unlock_lock();
1548		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
 
1549		rdp = this_cpu_ptr(rsp->rda);
1550		if (rnp == rdp->mynode)
1551			__note_gp_changes(rsp, rnp, rdp);
1552		/* smp_mb() provided by prior unlock-lock pair. */
1553		nocb += rcu_future_gp_cleanup(rsp, rnp);
1554		raw_spin_unlock_irq(&rnp->lock);
1555		cond_resched();
 
 
 
 
1556	}
1557	rnp = rcu_get_root(rsp);
1558	raw_spin_lock_irq(&rnp->lock);
1559	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1560	rcu_nocb_gp_set(rnp, nocb);
1561
1562	/* Declare grace period done. */
1563	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1564	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1565	rsp->fqs_state = RCU_GP_IDLE;
1566	rdp = this_cpu_ptr(rsp->rda);
1567	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */
1568	if (cpu_needs_another_gp(rsp, rdp)) {
1569		rsp->gp_flags = RCU_GP_FLAG_INIT;
 
1570		trace_rcu_grace_period(rsp->name,
1571				       ACCESS_ONCE(rsp->gpnum),
1572				       TPS("newreq"));
1573	}
1574	raw_spin_unlock_irq(&rnp->lock);
1575}
1576
1577/*
1578 * Body of kthread that handles grace periods.
1579 */
1580static int __noreturn rcu_gp_kthread(void *arg)
1581{
1582	int fqs_state;
1583	int gf;
1584	unsigned long j;
1585	int ret;
1586	struct rcu_state *rsp = arg;
1587	struct rcu_node *rnp = rcu_get_root(rsp);
1588
 
1589	for (;;) {
1590
1591		/* Handle grace-period start. */
1592		for (;;) {
1593			trace_rcu_grace_period(rsp->name,
1594					       ACCESS_ONCE(rsp->gpnum),
1595					       TPS("reqwait"));
1596			wait_event_interruptible(rsp->gp_wq,
1597						 ACCESS_ONCE(rsp->gp_flags) &
 
1598						 RCU_GP_FLAG_INIT);
 
1599			/* Locking provides needed memory barrier. */
1600			if (rcu_gp_init(rsp))
1601				break;
1602			cond_resched();
1603			flush_signals(current);
 
1604			trace_rcu_grace_period(rsp->name,
1605					       ACCESS_ONCE(rsp->gpnum),
1606					       TPS("reqwaitsig"));
1607		}
1608
1609		/* Handle quiescent-state forcing. */
1610		fqs_state = RCU_SAVE_DYNTICK;
1611		j = jiffies_till_first_fqs;
1612		if (j > HZ) {
1613			j = HZ;
1614			jiffies_till_first_fqs = HZ;
1615		}
1616		ret = 0;
1617		for (;;) {
1618			if (!ret)
1619				rsp->jiffies_force_qs = jiffies + j;
1620			trace_rcu_grace_period(rsp->name,
1621					       ACCESS_ONCE(rsp->gpnum),
1622					       TPS("fqswait"));
1623			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1624					((gf = ACCESS_ONCE(rsp->gp_flags)) &
1625					 RCU_GP_FLAG_FQS) ||
1626					(!ACCESS_ONCE(rnp->qsmask) &&
1627					 !rcu_preempt_blocked_readers_cgp(rnp)),
1628					j);
1629			/* Locking provides needed memory barriers. */
1630			/* If grace period done, leave loop. */
1631			if (!ACCESS_ONCE(rnp->qsmask) &&
1632			    !rcu_preempt_blocked_readers_cgp(rnp))
1633				break;
1634			/* If time for quiescent-state forcing, do it. */
1635			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1636			    (gf & RCU_GP_FLAG_FQS)) {
1637				trace_rcu_grace_period(rsp->name,
1638						       ACCESS_ONCE(rsp->gpnum),
1639						       TPS("fqsstart"));
1640				fqs_state = rcu_gp_fqs(rsp, fqs_state);
 
1641				trace_rcu_grace_period(rsp->name,
1642						       ACCESS_ONCE(rsp->gpnum),
1643						       TPS("fqsend"));
1644				cond_resched();
 
1645			} else {
1646				/* Deal with stray signal. */
1647				cond_resched();
1648				flush_signals(current);
 
1649				trace_rcu_grace_period(rsp->name,
1650						       ACCESS_ONCE(rsp->gpnum),
1651						       TPS("fqswaitsig"));
1652			}
1653			j = jiffies_till_next_fqs;
1654			if (j > HZ) {
1655				j = HZ;
1656				jiffies_till_next_fqs = HZ;
1657			} else if (j < 1) {
1658				j = 1;
1659				jiffies_till_next_fqs = 1;
1660			}
1661		}
1662
1663		/* Handle grace-period end. */
 
1664		rcu_gp_cleanup(rsp);
 
1665	}
1666}
1667
1668static void rsp_wakeup(struct irq_work *work)
1669{
1670	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1671
1672	/* Wake up rcu_gp_kthread() to start the grace period. */
1673	wake_up(&rsp->gp_wq);
1674}
1675
1676/*
1677 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1678 * in preparation for detecting the next grace period.  The caller must hold
1679 * the root node's ->lock and hard irqs must be disabled.
1680 *
1681 * Note that it is legal for a dying CPU (which is marked as offline) to
1682 * invoke this function.  This can happen when the dying CPU reports its
1683 * quiescent state.
 
 
1684 */
1685static void
1686rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1687		      struct rcu_data *rdp)
1688{
1689	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1690		/*
1691		 * Either we have not yet spawned the grace-period
1692		 * task, this CPU does not need another grace period,
1693		 * or a grace period is already in progress.
1694		 * Either way, don't start a new grace period.
1695		 */
1696		return;
1697	}
1698	rsp->gp_flags = RCU_GP_FLAG_INIT;
1699	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1700			       TPS("newreq"));
1701
1702	/*
1703	 * We can't do wakeups while holding the rnp->lock, as that
1704	 * could cause possible deadlocks with the rq->lock. Defer
1705	 * the wakeup to interrupt context.  And don't bother waking
1706	 * up the running kthread.
1707	 */
1708	if (current != rsp->gp_kthread)
1709		irq_work_queue(&rsp->wakeup_work);
1710}
1711
1712/*
1713 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1714 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
1715 * is invoked indirectly from rcu_advance_cbs(), which would result in
1716 * endless recursion -- or would do so if it wasn't for the self-deadlock
1717 * that is encountered beforehand.
 
 
1718 */
1719static void
1720rcu_start_gp(struct rcu_state *rsp)
1721{
1722	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1723	struct rcu_node *rnp = rcu_get_root(rsp);
 
1724
1725	/*
1726	 * If there is no grace period in progress right now, any
1727	 * callbacks we have up to this point will be satisfied by the
1728	 * next grace period.  Also, advancing the callbacks reduces the
1729	 * probability of false positives from cpu_needs_another_gp()
1730	 * resulting in pointless grace periods.  So, advance callbacks
1731	 * then start the grace period!
1732	 */
1733	rcu_advance_cbs(rsp, rnp, rdp);
1734	rcu_start_gp_advanced(rsp, rnp, rdp);
 
1735}
1736
1737/*
1738 * Report a full set of quiescent states to the specified rcu_state
1739 * data structure.  This involves cleaning up after the prior grace
1740 * period and letting rcu_start_gp() start up the next grace period
1741 * if one is needed.  Note that the caller must hold rnp->lock, which
1742 * is released before return.
 
 
1743 */
1744static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1745	__releases(rcu_get_root(rsp)->lock)
1746{
1747	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1748	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1749	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
 
1750}
1751
1752/*
1753 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1754 * Allows quiescent states for a group of CPUs to be reported at one go
1755 * to the specified rcu_node structure, though all the CPUs in the group
1756 * must be represented by the same rcu_node structure (which need not be
1757 * a leaf rcu_node structure, though it often will be).  That structure's
1758 * lock must be held upon entry, and it is released before return.
 
 
1759 */
1760static void
1761rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1762		  struct rcu_node *rnp, unsigned long flags)
1763	__releases(rnp->lock)
1764{
 
1765	struct rcu_node *rnp_c;
1766
1767	/* Walk up the rcu_node hierarchy. */
1768	for (;;) {
1769		if (!(rnp->qsmask & mask)) {
1770
1771			/* Our bit has already been cleared, so done. */
1772			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 
 
 
1773			return;
1774		}
 
1775		rnp->qsmask &= ~mask;
1776		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1777						 mask, rnp->qsmask, rnp->level,
1778						 rnp->grplo, rnp->grphi,
1779						 !!rnp->gp_tasks);
1780		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1781
1782			/* Other bits still set at this level, so done. */
1783			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1784			return;
1785		}
1786		mask = rnp->grpmask;
1787		if (rnp->parent == NULL) {
1788
1789			/* No more levels.  Exit loop holding root lock. */
1790
1791			break;
1792		}
1793		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1794		rnp_c = rnp;
1795		rnp = rnp->parent;
1796		raw_spin_lock_irqsave(&rnp->lock, flags);
1797		smp_mb__after_unlock_lock();
1798		WARN_ON_ONCE(rnp_c->qsmask);
1799	}
1800
1801	/*
1802	 * Get here if we are the last CPU to pass through a quiescent
1803	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1804	 * to clean up and start the next grace period if one is needed.
1805	 */
1806	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1807}
1808
1809/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1811 * structure.  This must be either called from the specified CPU, or
1812 * called when the specified CPU is known to be offline (and when it is
1813 * also known that no other CPU is concurrently trying to help the offline
1814 * CPU).  The lastcomp argument is used to make sure we are still in the
1815 * grace period of interest.  We don't want to end the current grace period
1816 * based on quiescent states detected in an earlier grace period!
1817 */
1818static void
1819rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1820{
1821	unsigned long flags;
1822	unsigned long mask;
 
1823	struct rcu_node *rnp;
1824
1825	rnp = rdp->mynode;
1826	raw_spin_lock_irqsave(&rnp->lock, flags);
1827	smp_mb__after_unlock_lock();
1828	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1829	    rnp->completed == rnp->gpnum) {
 
1830
1831		/*
1832		 * The grace period in which this quiescent state was
1833		 * recorded has ended, so don't report it upwards.
1834		 * We will instead need a new quiescent state that lies
1835		 * within the current grace period.
1836		 */
1837		rdp->passed_quiesce = 0;	/* need qs for new gp. */
1838		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 
1839		return;
1840	}
1841	mask = rdp->grpmask;
1842	if ((rnp->qsmask & mask) == 0) {
1843		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1844	} else {
1845		rdp->qs_pending = 0;
1846
1847		/*
1848		 * This GP can't end until cpu checks in, so all of our
1849		 * callbacks can be processed during the next GP.
1850		 */
1851		rcu_accelerate_cbs(rsp, rnp, rdp);
1852
1853		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
 
 
 
1854	}
1855}
1856
1857/*
1858 * Check to see if there is a new grace period of which this CPU
1859 * is not yet aware, and if so, set up local rcu_data state for it.
1860 * Otherwise, see if this CPU has just passed through its first
1861 * quiescent state for this grace period, and record that fact if so.
1862 */
1863static void
1864rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1865{
1866	/* Check for grace-period ends and beginnings. */
1867	note_gp_changes(rsp, rdp);
1868
1869	/*
1870	 * Does this CPU still need to do its part for current grace period?
1871	 * If no, return and let the other CPUs do their part as well.
1872	 */
1873	if (!rdp->qs_pending)
1874		return;
1875
1876	/*
1877	 * Was there a quiescent state since the beginning of the grace
1878	 * period? If no, then exit and wait for the next call.
1879	 */
1880	if (!rdp->passed_quiesce)
 
1881		return;
1882
1883	/*
1884	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1885	 * judge of that).
1886	 */
1887	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1888}
1889
1890#ifdef CONFIG_HOTPLUG_CPU
1891
1892/*
1893 * Send the specified CPU's RCU callbacks to the orphanage.  The
1894 * specified CPU must be offline, and the caller must hold the
1895 * ->orphan_lock.
1896 */
1897static void
1898rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1899			  struct rcu_node *rnp, struct rcu_data *rdp)
1900{
1901	/* No-CBs CPUs do not have orphanable callbacks. */
1902	if (rcu_is_nocb_cpu(rdp->cpu))
1903		return;
1904
1905	/*
1906	 * Orphan the callbacks.  First adjust the counts.  This is safe
1907	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1908	 * cannot be running now.  Thus no memory barrier is required.
1909	 */
1910	if (rdp->nxtlist != NULL) {
1911		rsp->qlen_lazy += rdp->qlen_lazy;
1912		rsp->qlen += rdp->qlen;
1913		rdp->n_cbs_orphaned += rdp->qlen;
1914		rdp->qlen_lazy = 0;
1915		ACCESS_ONCE(rdp->qlen) = 0;
1916	}
1917
1918	/*
1919	 * Next, move those callbacks still needing a grace period to
1920	 * the orphanage, where some other CPU will pick them up.
1921	 * Some of the callbacks might have gone partway through a grace
1922	 * period, but that is too bad.  They get to start over because we
1923	 * cannot assume that grace periods are synchronized across CPUs.
1924	 * We don't bother updating the ->nxttail[] array yet, instead
1925	 * we just reset the whole thing later on.
1926	 */
1927	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1928		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1929		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1930		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1931	}
1932
1933	/*
1934	 * Then move the ready-to-invoke callbacks to the orphanage,
1935	 * where some other CPU will pick them up.  These will not be
1936	 * required to pass though another grace period: They are done.
1937	 */
1938	if (rdp->nxtlist != NULL) {
1939		*rsp->orphan_donetail = rdp->nxtlist;
1940		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1941	}
1942
1943	/* Finally, initialize the rcu_data structure's list to empty.  */
 
 
 
1944	init_callback_list(rdp);
 
1945}
1946
1947/*
1948 * Adopt the RCU callbacks from the specified rcu_state structure's
1949 * orphanage.  The caller must hold the ->orphan_lock.
1950 */
1951static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
1952{
1953	int i;
1954	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1955
1956	/* No-CBs CPUs are handled specially. */
1957	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
 
1958		return;
1959
1960	/* Do the accounting first. */
1961	rdp->qlen_lazy += rsp->qlen_lazy;
1962	rdp->qlen += rsp->qlen;
1963	rdp->n_cbs_adopted += rsp->qlen;
1964	if (rsp->qlen_lazy != rsp->qlen)
1965		rcu_idle_count_callbacks_posted();
1966	rsp->qlen_lazy = 0;
1967	rsp->qlen = 0;
1968
1969	/*
1970	 * We do not need a memory barrier here because the only way we
1971	 * can get here if there is an rcu_barrier() in flight is if
1972	 * we are the task doing the rcu_barrier().
1973	 */
1974
1975	/* First adopt the ready-to-invoke callbacks. */
1976	if (rsp->orphan_donelist != NULL) {
1977		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1978		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1979		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1980			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1981				rdp->nxttail[i] = rsp->orphan_donetail;
1982		rsp->orphan_donelist = NULL;
1983		rsp->orphan_donetail = &rsp->orphan_donelist;
1984	}
1985
1986	/* And then adopt the callbacks that still need a grace period. */
1987	if (rsp->orphan_nxtlist != NULL) {
1988		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1989		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1990		rsp->orphan_nxtlist = NULL;
1991		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1992	}
1993}
1994
1995/*
1996 * Trace the fact that this CPU is going offline.
1997 */
1998static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1999{
2000	RCU_TRACE(unsigned long mask);
2001	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2002	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2003
 
 
 
2004	RCU_TRACE(mask = rdp->grpmask);
2005	trace_rcu_grace_period(rsp->name,
2006			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2007			       TPS("cpuofl"));
2008}
2009
2010/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011 * The CPU has been completely removed, and some other CPU is reporting
2012 * this fact from process context.  Do the remainder of the cleanup,
2013 * including orphaning the outgoing CPU's RCU callbacks, and also
2014 * adopting them.  There can only be one CPU hotplug operation at a time,
2015 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2016 */
2017static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2018{
2019	unsigned long flags;
2020	unsigned long mask;
2021	int need_report = 0;
2022	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2023	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2024
 
 
 
2025	/* Adjust any no-longer-needed kthreads. */
2026	rcu_boost_kthread_setaffinity(rnp, -1);
2027
2028	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2029
2030	/* Exclude any attempts to start a new grace period. */
2031	mutex_lock(&rsp->onoff_mutex);
2032	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2033
2034	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2035	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2036	rcu_adopt_orphan_cbs(rsp, flags);
 
2037
2038	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2039	mask = rdp->grpmask;	/* rnp->grplo is constant. */
2040	do {
2041		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2042		smp_mb__after_unlock_lock();
2043		rnp->qsmaskinit &= ~mask;
2044		if (rnp->qsmaskinit != 0) {
2045			if (rnp != rdp->mynode)
2046				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2047			break;
2048		}
2049		if (rnp == rdp->mynode)
2050			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2051		else
2052			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2053		mask = rnp->grpmask;
2054		rnp = rnp->parent;
2055	} while (rnp != NULL);
2056
2057	/*
2058	 * We still hold the leaf rcu_node structure lock here, and
2059	 * irqs are still disabled.  The reason for this subterfuge is
2060	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2061	 * held leads to deadlock.
2062	 */
2063	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2064	rnp = rdp->mynode;
2065	if (need_report & RCU_OFL_TASKS_NORM_GP)
2066		rcu_report_unblock_qs_rnp(rnp, flags);
2067	else
2068		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2069	if (need_report & RCU_OFL_TASKS_EXP_GP)
2070		rcu_report_exp_rnp(rsp, rnp, true);
2071	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2072		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2073		  cpu, rdp->qlen, rdp->nxtlist);
2074	init_callback_list(rdp);
2075	/* Disallow further callbacks on this CPU. */
2076	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2077	mutex_unlock(&rsp->onoff_mutex);
2078}
2079
2080#else /* #ifdef CONFIG_HOTPLUG_CPU */
2081
2082static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2083{
2084}
2085
2086static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2087{
2088}
2089
2090#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2091
2092/*
2093 * Invoke any RCU callbacks that have made it to the end of their grace
2094 * period.  Thottle as specified by rdp->blimit.
2095 */
2096static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2097{
2098	unsigned long flags;
2099	struct rcu_head *next, *list, **tail;
2100	long bl, count, count_lazy;
2101	int i;
2102
2103	/* If no callbacks are ready, just return. */
2104	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2105		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2106		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2107				    need_resched(), is_idle_task(current),
2108				    rcu_is_callbacks_kthread());
2109		return;
2110	}
2111
2112	/*
2113	 * Extract the list of ready callbacks, disabling to prevent
2114	 * races with call_rcu() from interrupt handlers.
2115	 */
2116	local_irq_save(flags);
2117	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2118	bl = rdp->blimit;
2119	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2120	list = rdp->nxtlist;
2121	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2122	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2123	tail = rdp->nxttail[RCU_DONE_TAIL];
2124	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2125		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2126			rdp->nxttail[i] = &rdp->nxtlist;
2127	local_irq_restore(flags);
2128
2129	/* Invoke callbacks. */
2130	count = count_lazy = 0;
2131	while (list) {
2132		next = list->next;
2133		prefetch(next);
2134		debug_rcu_head_unqueue(list);
2135		if (__rcu_reclaim(rsp->name, list))
2136			count_lazy++;
2137		list = next;
2138		/* Stop only if limit reached and CPU has something to do. */
2139		if (++count >= bl &&
2140		    (need_resched() ||
2141		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2142			break;
2143	}
2144
2145	local_irq_save(flags);
2146	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2147			    is_idle_task(current),
2148			    rcu_is_callbacks_kthread());
2149
2150	/* Update count, and requeue any remaining callbacks. */
2151	if (list != NULL) {
2152		*tail = rdp->nxtlist;
2153		rdp->nxtlist = list;
2154		for (i = 0; i < RCU_NEXT_SIZE; i++)
2155			if (&rdp->nxtlist == rdp->nxttail[i])
2156				rdp->nxttail[i] = tail;
2157			else
2158				break;
2159	}
2160	smp_mb(); /* List handling before counting for rcu_barrier(). */
2161	rdp->qlen_lazy -= count_lazy;
2162	ACCESS_ONCE(rdp->qlen) -= count;
2163	rdp->n_cbs_invoked += count;
2164
2165	/* Reinstate batch limit if we have worked down the excess. */
2166	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2167		rdp->blimit = blimit;
2168
2169	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2170	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2171		rdp->qlen_last_fqs_check = 0;
2172		rdp->n_force_qs_snap = rsp->n_force_qs;
2173	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2174		rdp->qlen_last_fqs_check = rdp->qlen;
2175	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2176
2177	local_irq_restore(flags);
2178
2179	/* Re-invoke RCU core processing if there are callbacks remaining. */
2180	if (cpu_has_callbacks_ready_to_invoke(rdp))
2181		invoke_rcu_core();
2182}
2183
2184/*
2185 * Check to see if this CPU is in a non-context-switch quiescent state
2186 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2187 * Also schedule RCU core processing.
2188 *
2189 * This function must be called from hardirq context.  It is normally
2190 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2191 * false, there is no point in invoking rcu_check_callbacks().
2192 */
2193void rcu_check_callbacks(int cpu, int user)
2194{
2195	trace_rcu_utilization(TPS("Start scheduler-tick"));
2196	increment_cpu_stall_ticks();
2197	if (user || rcu_is_cpu_rrupt_from_idle()) {
2198
2199		/*
2200		 * Get here if this CPU took its interrupt from user
2201		 * mode or from the idle loop, and if this is not a
2202		 * nested interrupt.  In this case, the CPU is in
2203		 * a quiescent state, so note it.
2204		 *
2205		 * No memory barrier is required here because both
2206		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2207		 * variables that other CPUs neither access nor modify,
2208		 * at least not while the corresponding CPU is online.
2209		 */
2210
2211		rcu_sched_qs(cpu);
2212		rcu_bh_qs(cpu);
2213
2214	} else if (!in_softirq()) {
2215
2216		/*
2217		 * Get here if this CPU did not take its interrupt from
2218		 * softirq, in other words, if it is not interrupting
2219		 * a rcu_bh read-side critical section.  This is an _bh
2220		 * critical section, so note it.
2221		 */
2222
2223		rcu_bh_qs(cpu);
2224	}
2225	rcu_preempt_check_callbacks(cpu);
2226	if (rcu_pending(cpu))
2227		invoke_rcu_core();
 
 
2228	trace_rcu_utilization(TPS("End scheduler-tick"));
2229}
2230
2231/*
2232 * Scan the leaf rcu_node structures, processing dyntick state for any that
2233 * have not yet encountered a quiescent state, using the function specified.
2234 * Also initiate boosting for any threads blocked on the root rcu_node.
2235 *
2236 * The caller must have suppressed start of new grace periods.
2237 */
2238static void force_qs_rnp(struct rcu_state *rsp,
2239			 int (*f)(struct rcu_data *rsp, bool *isidle,
2240				  unsigned long *maxj),
2241			 bool *isidle, unsigned long *maxj)
2242{
2243	unsigned long bit;
2244	int cpu;
2245	unsigned long flags;
2246	unsigned long mask;
2247	struct rcu_node *rnp;
2248
2249	rcu_for_each_leaf_node(rsp, rnp) {
2250		cond_resched();
2251		mask = 0;
2252		raw_spin_lock_irqsave(&rnp->lock, flags);
2253		smp_mb__after_unlock_lock();
2254		if (!rcu_gp_in_progress(rsp)) {
2255			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2256			return;
2257		}
2258		if (rnp->qsmask == 0) {
2259			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2260			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261		}
2262		cpu = rnp->grplo;
2263		bit = 1;
2264		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2265			if ((rnp->qsmask & bit) != 0) {
2266				if ((rnp->qsmaskinit & bit) != 0)
2267					*isidle = 0;
2268				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2269					mask |= bit;
2270			}
2271		}
2272		if (mask != 0) {
2273
2274			/* rcu_report_qs_rnp() releases rnp->lock. */
2275			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2276			continue;
 
2277		}
2278		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2279	}
2280	rnp = rcu_get_root(rsp);
2281	if (rnp->qsmask == 0) {
2282		raw_spin_lock_irqsave(&rnp->lock, flags);
2283		smp_mb__after_unlock_lock();
2284		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2285	}
2286}
2287
2288/*
2289 * Force quiescent states on reluctant CPUs, and also detect which
2290 * CPUs are in dyntick-idle mode.
2291 */
2292static void force_quiescent_state(struct rcu_state *rsp)
2293{
2294	unsigned long flags;
2295	bool ret;
2296	struct rcu_node *rnp;
2297	struct rcu_node *rnp_old = NULL;
2298
2299	/* Funnel through hierarchy to reduce memory contention. */
2300	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2301	for (; rnp != NULL; rnp = rnp->parent) {
2302		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2303		      !raw_spin_trylock(&rnp->fqslock);
2304		if (rnp_old != NULL)
2305			raw_spin_unlock(&rnp_old->fqslock);
2306		if (ret) {
2307			ACCESS_ONCE(rsp->n_force_qs_lh)++;
2308			return;
2309		}
2310		rnp_old = rnp;
2311	}
2312	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2313
2314	/* Reached the root of the rcu_node tree, acquire lock. */
2315	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2316	smp_mb__after_unlock_lock();
2317	raw_spin_unlock(&rnp_old->fqslock);
2318	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2319		ACCESS_ONCE(rsp->n_force_qs_lh)++;
2320		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2321		return;  /* Someone beat us to it. */
2322	}
2323	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2324	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2325	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2326}
2327
2328/*
2329 * This does the RCU core processing work for the specified rcu_state
2330 * and rcu_data structures.  This may be called only from the CPU to
2331 * whom the rdp belongs.
2332 */
2333static void
2334__rcu_process_callbacks(struct rcu_state *rsp)
2335{
2336	unsigned long flags;
2337	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
 
2338
2339	WARN_ON_ONCE(rdp->beenonline == 0);
2340
2341	/* Update RCU state based on any recent quiescent states. */
2342	rcu_check_quiescent_state(rsp, rdp);
2343
2344	/* Does this CPU require a not-yet-started grace period? */
2345	local_irq_save(flags);
2346	if (cpu_needs_another_gp(rsp, rdp)) {
2347		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2348		rcu_start_gp(rsp);
2349		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
 
 
2350	} else {
2351		local_irq_restore(flags);
2352	}
2353
2354	/* If there are callbacks ready, invoke them. */
2355	if (cpu_has_callbacks_ready_to_invoke(rdp))
2356		invoke_rcu_callbacks(rsp, rdp);
2357
2358	/* Do any needed deferred wakeups of rcuo kthreads. */
2359	do_nocb_deferred_wakeup(rdp);
2360}
2361
2362/*
2363 * Do RCU core processing for the current CPU.
2364 */
2365static void rcu_process_callbacks(struct softirq_action *unused)
2366{
2367	struct rcu_state *rsp;
2368
2369	if (cpu_is_offline(smp_processor_id()))
2370		return;
2371	trace_rcu_utilization(TPS("Start RCU core"));
2372	for_each_rcu_flavor(rsp)
2373		__rcu_process_callbacks(rsp);
2374	trace_rcu_utilization(TPS("End RCU core"));
2375}
2376
2377/*
2378 * Schedule RCU callback invocation.  If the specified type of RCU
2379 * does not support RCU priority boosting, just do a direct call,
2380 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2381 * are running on the current CPU with interrupts disabled, the
2382 * rcu_cpu_kthread_task cannot disappear out from under us.
2383 */
2384static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2385{
2386	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2387		return;
2388	if (likely(!rsp->boost)) {
2389		rcu_do_batch(rsp, rdp);
2390		return;
2391	}
2392	invoke_rcu_callbacks_kthread();
2393}
2394
2395static void invoke_rcu_core(void)
2396{
2397	if (cpu_online(smp_processor_id()))
2398		raise_softirq(RCU_SOFTIRQ);
2399}
2400
2401/*
2402 * Handle any core-RCU processing required by a call_rcu() invocation.
2403 */
2404static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2405			    struct rcu_head *head, unsigned long flags)
2406{
 
 
2407	/*
2408	 * If called from an extended quiescent state, invoke the RCU
2409	 * core in order to force a re-evaluation of RCU's idleness.
2410	 */
2411	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2412		invoke_rcu_core();
2413
2414	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2415	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2416		return;
2417
2418	/*
2419	 * Force the grace period if too many callbacks or too long waiting.
2420	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2421	 * if some other CPU has recently done so.  Also, don't bother
2422	 * invoking force_quiescent_state() if the newly enqueued callback
2423	 * is the only one waiting for a grace period to complete.
2424	 */
2425	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2426
2427		/* Are we ignoring a completed grace period? */
2428		note_gp_changes(rsp, rdp);
2429
2430		/* Start a new grace period if one not already started. */
2431		if (!rcu_gp_in_progress(rsp)) {
2432			struct rcu_node *rnp_root = rcu_get_root(rsp);
2433
2434			raw_spin_lock(&rnp_root->lock);
2435			smp_mb__after_unlock_lock();
2436			rcu_start_gp(rsp);
2437			raw_spin_unlock(&rnp_root->lock);
 
2438		} else {
2439			/* Give the grace period a kick. */
2440			rdp->blimit = LONG_MAX;
2441			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2442			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2443				force_quiescent_state(rsp);
2444			rdp->n_force_qs_snap = rsp->n_force_qs;
2445			rdp->qlen_last_fqs_check = rdp->qlen;
2446		}
2447	}
2448}
2449
2450/*
2451 * RCU callback function to leak a callback.
2452 */
2453static void rcu_leak_callback(struct rcu_head *rhp)
2454{
2455}
2456
2457/*
2458 * Helper function for call_rcu() and friends.  The cpu argument will
2459 * normally be -1, indicating "currently running CPU".  It may specify
2460 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2461 * is expected to specify a CPU.
2462 */
2463static void
2464__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2465	   struct rcu_state *rsp, int cpu, bool lazy)
2466{
2467	unsigned long flags;
2468	struct rcu_data *rdp;
2469
2470	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2471	if (debug_rcu_head_queue(head)) {
2472		/* Probable double call_rcu(), so leak the callback. */
2473		ACCESS_ONCE(head->func) = rcu_leak_callback;
2474		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2475		return;
2476	}
2477	head->func = func;
2478	head->next = NULL;
2479
2480	/*
2481	 * Opportunistically note grace-period endings and beginnings.
2482	 * Note that we might see a beginning right after we see an
2483	 * end, but never vice versa, since this CPU has to pass through
2484	 * a quiescent state betweentimes.
2485	 */
2486	local_irq_save(flags);
2487	rdp = this_cpu_ptr(rsp->rda);
2488
2489	/* Add the callback to our list. */
2490	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2491		int offline;
2492
2493		if (cpu != -1)
2494			rdp = per_cpu_ptr(rsp->rda, cpu);
2495		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2496		WARN_ON_ONCE(offline);
2497		/* _call_rcu() is illegal on offline CPU; leak the callback. */
2498		local_irq_restore(flags);
2499		return;
 
 
 
 
 
 
 
 
 
 
 
2500	}
2501	ACCESS_ONCE(rdp->qlen)++;
2502	if (lazy)
2503		rdp->qlen_lazy++;
2504	else
2505		rcu_idle_count_callbacks_posted();
2506	smp_mb();  /* Count before adding callback for rcu_barrier(). */
2507	*rdp->nxttail[RCU_NEXT_TAIL] = head;
2508	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2509
2510	if (__is_kfree_rcu_offset((unsigned long)func))
2511		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2512					 rdp->qlen_lazy, rdp->qlen);
2513	else
2514		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2515
2516	/* Go handle any RCU core processing required. */
2517	__call_rcu_core(rsp, rdp, head, flags);
2518	local_irq_restore(flags);
2519}
2520
2521/*
2522 * Queue an RCU-sched callback for invocation after a grace period.
2523 */
2524void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2525{
2526	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2527}
2528EXPORT_SYMBOL_GPL(call_rcu_sched);
2529
2530/*
2531 * Queue an RCU callback for invocation after a quicker grace period.
2532 */
2533void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2534{
2535	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2536}
2537EXPORT_SYMBOL_GPL(call_rcu_bh);
2538
2539/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2540 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2541 * any blocking grace-period wait automatically implies a grace period
2542 * if there is only one CPU online at any point time during execution
2543 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
2544 * occasionally incorrectly indicate that there are multiple CPUs online
2545 * when there was in fact only one the whole time, as this just adds
2546 * some overhead: RCU still operates correctly.
2547 */
2548static inline int rcu_blocking_is_gp(void)
2549{
2550	int ret;
2551
2552	might_sleep();  /* Check for RCU read-side critical section. */
2553	preempt_disable();
2554	ret = num_online_cpus() <= 1;
2555	preempt_enable();
2556	return ret;
2557}
2558
2559/**
2560 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2561 *
2562 * Control will return to the caller some time after a full rcu-sched
2563 * grace period has elapsed, in other words after all currently executing
2564 * rcu-sched read-side critical sections have completed.   These read-side
2565 * critical sections are delimited by rcu_read_lock_sched() and
2566 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
2567 * local_irq_disable(), and so on may be used in place of
2568 * rcu_read_lock_sched().
2569 *
2570 * This means that all preempt_disable code sequences, including NMI and
2571 * non-threaded hardware-interrupt handlers, in progress on entry will
2572 * have completed before this primitive returns.  However, this does not
2573 * guarantee that softirq handlers will have completed, since in some
2574 * kernels, these handlers can run in process context, and can block.
2575 *
2576 * Note that this guarantee implies further memory-ordering guarantees.
2577 * On systems with more than one CPU, when synchronize_sched() returns,
2578 * each CPU is guaranteed to have executed a full memory barrier since the
2579 * end of its last RCU-sched read-side critical section whose beginning
2580 * preceded the call to synchronize_sched().  In addition, each CPU having
2581 * an RCU read-side critical section that extends beyond the return from
2582 * synchronize_sched() is guaranteed to have executed a full memory barrier
2583 * after the beginning of synchronize_sched() and before the beginning of
2584 * that RCU read-side critical section.  Note that these guarantees include
2585 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2586 * that are executing in the kernel.
2587 *
2588 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2589 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2590 * to have executed a full memory barrier during the execution of
2591 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2592 * again only if the system has more than one CPU).
2593 *
2594 * This primitive provides the guarantees made by the (now removed)
2595 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
2596 * guarantees that rcu_read_lock() sections will have completed.
2597 * In "classic RCU", these two guarantees happen to be one and
2598 * the same, but can differ in realtime RCU implementations.
2599 */
2600void synchronize_sched(void)
2601{
2602	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2603			   !lock_is_held(&rcu_lock_map) &&
2604			   !lock_is_held(&rcu_sched_lock_map),
2605			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2606	if (rcu_blocking_is_gp())
2607		return;
2608	if (rcu_expedited)
2609		synchronize_sched_expedited();
2610	else
2611		wait_rcu_gp(call_rcu_sched);
2612}
2613EXPORT_SYMBOL_GPL(synchronize_sched);
2614
2615/**
2616 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2617 *
2618 * Control will return to the caller some time after a full rcu_bh grace
2619 * period has elapsed, in other words after all currently executing rcu_bh
2620 * read-side critical sections have completed.  RCU read-side critical
2621 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2622 * and may be nested.
2623 *
2624 * See the description of synchronize_sched() for more detailed information
2625 * on memory ordering guarantees.
2626 */
2627void synchronize_rcu_bh(void)
2628{
2629	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2630			   !lock_is_held(&rcu_lock_map) &&
2631			   !lock_is_held(&rcu_sched_lock_map),
2632			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2633	if (rcu_blocking_is_gp())
2634		return;
2635	if (rcu_expedited)
2636		synchronize_rcu_bh_expedited();
2637	else
2638		wait_rcu_gp(call_rcu_bh);
2639}
2640EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2641
2642/**
2643 * get_state_synchronize_rcu - Snapshot current RCU state
2644 *
2645 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2646 * to determine whether or not a full grace period has elapsed in the
2647 * meantime.
2648 */
2649unsigned long get_state_synchronize_rcu(void)
2650{
2651	/*
2652	 * Any prior manipulation of RCU-protected data must happen
2653	 * before the load from ->gpnum.
2654	 */
2655	smp_mb();  /* ^^^ */
2656
2657	/*
2658	 * Make sure this load happens before the purportedly
2659	 * time-consuming work between get_state_synchronize_rcu()
2660	 * and cond_synchronize_rcu().
2661	 */
2662	return smp_load_acquire(&rcu_state->gpnum);
2663}
2664EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2665
2666/**
2667 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2668 *
2669 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2670 *
2671 * If a full RCU grace period has elapsed since the earlier call to
2672 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2673 * synchronize_rcu() to wait for a full grace period.
2674 *
2675 * Yes, this function does not take counter wrap into account.  But
2676 * counter wrap is harmless.  If the counter wraps, we have waited for
2677 * more than 2 billion grace periods (and way more on a 64-bit system!),
2678 * so waiting for one additional grace period should be just fine.
2679 */
2680void cond_synchronize_rcu(unsigned long oldstate)
2681{
2682	unsigned long newstate;
2683
2684	/*
2685	 * Ensure that this load happens before any RCU-destructive
2686	 * actions the caller might carry out after we return.
2687	 */
2688	newstate = smp_load_acquire(&rcu_state->completed);
2689	if (ULONG_CMP_GE(oldstate, newstate))
2690		synchronize_rcu();
2691}
2692EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2693
2694static int synchronize_sched_expedited_cpu_stop(void *data)
 
 
 
 
 
 
 
2695{
2696	/*
2697	 * There must be a full memory barrier on each affected CPU
2698	 * between the time that try_stop_cpus() is called and the
2699	 * time that it returns.
2700	 *
2701	 * In the current initial implementation of cpu_stop, the
2702	 * above condition is already met when the control reaches
2703	 * this point and the following smp_mb() is not strictly
2704	 * necessary.  Do smp_mb() anyway for documentation and
2705	 * robustness against future implementation changes.
2706	 */
2707	smp_mb(); /* See above comment block. */
2708	return 0;
2709}
 
2710
2711/**
2712 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2713 *
2714 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2715 * approach to force the grace period to end quickly.  This consumes
2716 * significant time on all CPUs and is unfriendly to real-time workloads,
2717 * so is thus not recommended for any sort of common-case code.  In fact,
2718 * if you are using synchronize_sched_expedited() in a loop, please
2719 * restructure your code to batch your updates, and then use a single
2720 * synchronize_sched() instead.
2721 *
2722 * Note that it is illegal to call this function while holding any lock
2723 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
2724 * to call this function from a CPU-hotplug notifier.  Failing to observe
2725 * these restriction will result in deadlock.
2726 *
2727 * This implementation can be thought of as an application of ticket
2728 * locking to RCU, with sync_sched_expedited_started and
2729 * sync_sched_expedited_done taking on the roles of the halves
2730 * of the ticket-lock word.  Each task atomically increments
2731 * sync_sched_expedited_started upon entry, snapshotting the old value,
2732 * then attempts to stop all the CPUs.  If this succeeds, then each
2733 * CPU will have executed a context switch, resulting in an RCU-sched
2734 * grace period.  We are then done, so we use atomic_cmpxchg() to
2735 * update sync_sched_expedited_done to match our snapshot -- but
2736 * only if someone else has not already advanced past our snapshot.
2737 *
2738 * On the other hand, if try_stop_cpus() fails, we check the value
2739 * of sync_sched_expedited_done.  If it has advanced past our
2740 * initial snapshot, then someone else must have forced a grace period
2741 * some time after we took our snapshot.  In this case, our work is
2742 * done for us, and we can simply return.  Otherwise, we try again,
2743 * but keep our initial snapshot for purposes of checking for someone
2744 * doing our work for us.
2745 *
2746 * If we fail too many times in a row, we fall back to synchronize_sched().
 
 
 
2747 */
2748void synchronize_sched_expedited(void)
2749{
2750	long firstsnap, s, snap;
2751	int trycount = 0;
2752	struct rcu_state *rsp = &rcu_sched_state;
2753
2754	/*
2755	 * If we are in danger of counter wrap, just do synchronize_sched().
2756	 * By allowing sync_sched_expedited_started to advance no more than
2757	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2758	 * that more than 3.5 billion CPUs would be required to force a
2759	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
2760	 * course be required on a 64-bit system.
2761	 */
2762	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2763			 (ulong)atomic_long_read(&rsp->expedited_done) +
2764			 ULONG_MAX / 8)) {
2765		synchronize_sched();
2766		atomic_long_inc(&rsp->expedited_wrap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2767		return;
2768	}
2769
2770	/*
2771	 * Take a ticket.  Note that atomic_inc_return() implies a
2772	 * full memory barrier.
2773	 */
2774	snap = atomic_long_inc_return(&rsp->expedited_start);
2775	firstsnap = snap;
2776	get_online_cpus();
2777	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2778
2779	/*
2780	 * Each pass through the following loop attempts to force a
2781	 * context switch on each CPU.
 
 
2782	 */
2783	while (try_stop_cpus(cpu_online_mask,
2784			     synchronize_sched_expedited_cpu_stop,
2785			     NULL) == -EAGAIN) {
2786		put_online_cpus();
2787		atomic_long_inc(&rsp->expedited_tryfail);
2788
2789		/* Check to see if someone else did our work for us. */
2790		s = atomic_long_read(&rsp->expedited_done);
2791		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2792			/* ensure test happens before caller kfree */
2793			smp_mb__before_atomic_inc(); /* ^^^ */
2794			atomic_long_inc(&rsp->expedited_workdone1);
2795			return;
2796		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797
2798		/* No joy, try again later.  Or just synchronize_sched(). */
2799		if (trycount++ < 10) {
2800			udelay(trycount * num_online_cpus());
2801		} else {
2802			wait_rcu_gp(call_rcu_sched);
2803			atomic_long_inc(&rsp->expedited_normal);
2804			return;
2805		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806
2807		/* Recheck to see if someone else did our work for us. */
2808		s = atomic_long_read(&rsp->expedited_done);
2809		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2810			/* ensure test happens before caller kfree */
2811			smp_mb__before_atomic_inc(); /* ^^^ */
2812			atomic_long_inc(&rsp->expedited_workdone2);
2813			return;
 
 
2814		}
 
2815
2816		/*
2817		 * Refetching sync_sched_expedited_started allows later
2818		 * callers to piggyback on our grace period.  We retry
2819		 * after they started, so our grace period works for them,
2820		 * and they started after our first try, so their grace
2821		 * period works for us.
2822		 */
2823		get_online_cpus();
2824		snap = atomic_long_read(&rsp->expedited_start);
2825		smp_mb(); /* ensure read is before try_stop_cpus(). */
2826	}
2827	atomic_long_inc(&rsp->expedited_stoppedcpus);
2828
2829	/*
2830	 * Everyone up to our most recent fetch is covered by our grace
2831	 * period.  Update the counter, but only if our work is still
2832	 * relevant -- which it won't be if someone who started later
2833	 * than we did already did their update.
2834	 */
2835	do {
2836		atomic_long_inc(&rsp->expedited_done_tries);
2837		s = atomic_long_read(&rsp->expedited_done);
2838		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2839			/* ensure test happens before caller kfree */
2840			smp_mb__before_atomic_inc(); /* ^^^ */
2841			atomic_long_inc(&rsp->expedited_done_lost);
2842			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2843		}
2844	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2845	atomic_long_inc(&rsp->expedited_done_exit);
 
2846
2847	put_online_cpus();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2848}
2849EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2850
2851/*
2852 * Check to see if there is any immediate RCU-related work to be done
2853 * by the current CPU, for the specified type of RCU, returning 1 if so.
2854 * The checks are in order of increasing expense: checks that can be
2855 * carried out against CPU-local state are performed first.  However,
2856 * we must check for CPU stalls first, else we might not get a chance.
2857 */
2858static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2859{
2860	struct rcu_node *rnp = rdp->mynode;
2861
2862	rdp->n_rcu_pending++;
2863
2864	/* Check for CPU stalls, if enabled. */
2865	check_cpu_stall(rsp, rdp);
2866
2867	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2868	if (rcu_nohz_full_cpu(rsp))
2869		return 0;
2870
2871	/* Is the RCU core waiting for a quiescent state from this CPU? */
2872	if (rcu_scheduler_fully_active &&
2873	    rdp->qs_pending && !rdp->passed_quiesce) {
2874		rdp->n_rp_qs_pending++;
2875	} else if (rdp->qs_pending && rdp->passed_quiesce) {
 
 
 
2876		rdp->n_rp_report_qs++;
2877		return 1;
2878	}
2879
2880	/* Does this CPU have callbacks ready to invoke? */
2881	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2882		rdp->n_rp_cb_ready++;
2883		return 1;
2884	}
2885
2886	/* Has RCU gone idle with this CPU needing another grace period? */
2887	if (cpu_needs_another_gp(rsp, rdp)) {
2888		rdp->n_rp_cpu_needs_gp++;
2889		return 1;
2890	}
2891
2892	/* Has another RCU grace period completed?  */
2893	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2894		rdp->n_rp_gp_completed++;
2895		return 1;
2896	}
2897
2898	/* Has a new RCU grace period started? */
2899	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
 
2900		rdp->n_rp_gp_started++;
2901		return 1;
2902	}
2903
2904	/* Does this CPU need a deferred NOCB wakeup? */
2905	if (rcu_nocb_need_deferred_wakeup(rdp)) {
2906		rdp->n_rp_nocb_defer_wakeup++;
2907		return 1;
2908	}
2909
2910	/* nothing to do */
2911	rdp->n_rp_need_nothing++;
2912	return 0;
2913}
2914
2915/*
2916 * Check to see if there is any immediate RCU-related work to be done
2917 * by the current CPU, returning 1 if so.  This function is part of the
2918 * RCU implementation; it is -not- an exported member of the RCU API.
2919 */
2920static int rcu_pending(int cpu)
2921{
2922	struct rcu_state *rsp;
2923
2924	for_each_rcu_flavor(rsp)
2925		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2926			return 1;
2927	return 0;
2928}
2929
2930/*
2931 * Return true if the specified CPU has any callback.  If all_lazy is
2932 * non-NULL, store an indication of whether all callbacks are lazy.
2933 * (If there are no callbacks, all of them are deemed to be lazy.)
2934 */
2935static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2936{
2937	bool al = true;
2938	bool hc = false;
2939	struct rcu_data *rdp;
2940	struct rcu_state *rsp;
2941
2942	for_each_rcu_flavor(rsp) {
2943		rdp = per_cpu_ptr(rsp->rda, cpu);
2944		if (!rdp->nxtlist)
2945			continue;
2946		hc = true;
2947		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2948			al = false;
2949			break;
2950		}
2951	}
2952	if (all_lazy)
2953		*all_lazy = al;
2954	return hc;
2955}
2956
2957/*
2958 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
2959 * the compiler is expected to optimize this away.
2960 */
2961static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2962			       int cpu, unsigned long done)
2963{
2964	trace_rcu_barrier(rsp->name, s, cpu,
2965			  atomic_read(&rsp->barrier_cpu_count), done);
2966}
2967
2968/*
2969 * RCU callback function for _rcu_barrier().  If we are last, wake
2970 * up the task executing _rcu_barrier().
2971 */
2972static void rcu_barrier_callback(struct rcu_head *rhp)
2973{
2974	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2975	struct rcu_state *rsp = rdp->rsp;
2976
2977	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2978		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2979		complete(&rsp->barrier_completion);
2980	} else {
2981		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2982	}
2983}
2984
2985/*
2986 * Called with preemption disabled, and from cross-cpu IRQ context.
2987 */
2988static void rcu_barrier_func(void *type)
2989{
2990	struct rcu_state *rsp = type;
2991	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2992
2993	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2994	atomic_inc(&rsp->barrier_cpu_count);
2995	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2996}
2997
2998/*
2999 * Orchestrate the specified type of RCU barrier, waiting for all
3000 * RCU callbacks of the specified type to complete.
3001 */
3002static void _rcu_barrier(struct rcu_state *rsp)
3003{
3004	int cpu;
3005	struct rcu_data *rdp;
3006	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3007	unsigned long snap_done;
3008
3009	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3010
3011	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3012	mutex_lock(&rsp->barrier_mutex);
3013
3014	/*
3015	 * Ensure that all prior references, including to ->n_barrier_done,
3016	 * are ordered before the _rcu_barrier() machinery.
3017	 */
3018	smp_mb();  /* See above block comment. */
3019
3020	/*
3021	 * Recheck ->n_barrier_done to see if others did our work for us.
3022	 * This means checking ->n_barrier_done for an even-to-odd-to-even
3023	 * transition.  The "if" expression below therefore rounds the old
3024	 * value up to the next even number and adds two before comparing.
3025	 */
3026	snap_done = rsp->n_barrier_done;
3027	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3028
3029	/*
3030	 * If the value in snap is odd, we needed to wait for the current
3031	 * rcu_barrier() to complete, then wait for the next one, in other
3032	 * words, we need the value of snap_done to be three larger than
3033	 * the value of snap.  On the other hand, if the value in snap is
3034	 * even, we only had to wait for the next rcu_barrier() to complete,
3035	 * in other words, we need the value of snap_done to be only two
3036	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
3037	 * this for us (thank you, Linus!).
3038	 */
3039	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3040		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3041		smp_mb(); /* caller's subsequent code after above check. */
3042		mutex_unlock(&rsp->barrier_mutex);
3043		return;
3044	}
3045
3046	/*
3047	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3048	 * ACCESS_ONCE() to prevent the compiler from speculating
3049	 * the increment to precede the early-exit check.
3050	 */
3051	ACCESS_ONCE(rsp->n_barrier_done)++;
3052	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3053	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3054	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3055
3056	/*
3057	 * Initialize the count to one rather than to zero in order to
3058	 * avoid a too-soon return to zero in case of a short grace period
3059	 * (or preemption of this task).  Exclude CPU-hotplug operations
3060	 * to ensure that no offline CPU has callbacks queued.
3061	 */
3062	init_completion(&rsp->barrier_completion);
3063	atomic_set(&rsp->barrier_cpu_count, 1);
3064	get_online_cpus();
3065
3066	/*
3067	 * Force each CPU with callbacks to register a new callback.
3068	 * When that callback is invoked, we will know that all of the
3069	 * corresponding CPU's preceding callbacks have been invoked.
3070	 */
3071	for_each_possible_cpu(cpu) {
3072		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3073			continue;
3074		rdp = per_cpu_ptr(rsp->rda, cpu);
3075		if (rcu_is_nocb_cpu(cpu)) {
3076			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3077					   rsp->n_barrier_done);
3078			atomic_inc(&rsp->barrier_cpu_count);
3079			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3080				   rsp, cpu, 0);
3081		} else if (ACCESS_ONCE(rdp->qlen)) {
 
 
 
 
 
 
3082			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3083					   rsp->n_barrier_done);
3084			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3085		} else {
3086			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3087					   rsp->n_barrier_done);
3088		}
3089	}
3090	put_online_cpus();
3091
3092	/*
3093	 * Now that we have an rcu_barrier_callback() callback on each
3094	 * CPU, and thus each counted, remove the initial count.
3095	 */
3096	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3097		complete(&rsp->barrier_completion);
3098
3099	/* Increment ->n_barrier_done to prevent duplicate work. */
3100	smp_mb(); /* Keep increment after above mechanism. */
3101	ACCESS_ONCE(rsp->n_barrier_done)++;
3102	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3103	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3104	smp_mb(); /* Keep increment before caller's subsequent code. */
3105
3106	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3107	wait_for_completion(&rsp->barrier_completion);
3108
 
 
 
 
3109	/* Other rcu_barrier() invocations can now safely proceed. */
3110	mutex_unlock(&rsp->barrier_mutex);
3111}
3112
3113/**
3114 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3115 */
3116void rcu_barrier_bh(void)
3117{
3118	_rcu_barrier(&rcu_bh_state);
3119}
3120EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3121
3122/**
3123 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3124 */
3125void rcu_barrier_sched(void)
3126{
3127	_rcu_barrier(&rcu_sched_state);
3128}
3129EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3130
3131/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3132 * Do boot-time initialization of a CPU's per-CPU RCU data.
3133 */
3134static void __init
3135rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3136{
3137	unsigned long flags;
3138	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3139	struct rcu_node *rnp = rcu_get_root(rsp);
3140
3141	/* Set up local state, ensuring consistent view of global state. */
3142	raw_spin_lock_irqsave(&rnp->lock, flags);
3143	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3144	init_callback_list(rdp);
3145	rdp->qlen_lazy = 0;
3146	ACCESS_ONCE(rdp->qlen) = 0;
3147	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3148	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3149	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3150	rdp->cpu = cpu;
3151	rdp->rsp = rsp;
 
3152	rcu_boot_init_nocb_percpu_data(rdp);
3153	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3154}
3155
3156/*
3157 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3158 * offline event can be happening at a given time.  Note also that we
3159 * can accept some slop in the rsp->completed access due to the fact
3160 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3161 */
3162static void
3163rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3164{
3165	unsigned long flags;
3166	unsigned long mask;
3167	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3168	struct rcu_node *rnp = rcu_get_root(rsp);
3169
3170	/* Exclude new grace periods. */
3171	mutex_lock(&rsp->onoff_mutex);
3172
3173	/* Set up local state, ensuring consistent view of global state. */
3174	raw_spin_lock_irqsave(&rnp->lock, flags);
3175	rdp->beenonline = 1;	 /* We have now been online. */
3176	rdp->preemptible = preemptible;
3177	rdp->qlen_last_fqs_check = 0;
3178	rdp->n_force_qs_snap = rsp->n_force_qs;
3179	rdp->blimit = blimit;
3180	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
 
3181	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3182	rcu_sysidle_init_percpu_data(rdp->dynticks);
3183	atomic_set(&rdp->dynticks->dynticks,
3184		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3185	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3186
3187	/* Add CPU to rcu_node bitmasks. */
 
 
 
 
3188	rnp = rdp->mynode;
3189	mask = rdp->grpmask;
3190	do {
3191		/* Exclude any attempts to start a new GP on small systems. */
3192		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3193		rnp->qsmaskinit |= mask;
3194		mask = rnp->grpmask;
3195		if (rnp == rdp->mynode) {
3196			/*
3197			 * If there is a grace period in progress, we will
3198			 * set up to wait for it next time we run the
3199			 * RCU core code.
3200			 */
3201			rdp->gpnum = rnp->completed;
3202			rdp->completed = rnp->completed;
3203			rdp->passed_quiesce = 0;
3204			rdp->qs_pending = 0;
3205			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3206		}
3207		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3208		rnp = rnp->parent;
3209	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3210	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3211
3212	mutex_unlock(&rsp->onoff_mutex);
 
 
 
 
3213}
3214
3215static void rcu_prepare_cpu(int cpu)
3216{
3217	struct rcu_state *rsp;
3218
 
 
 
 
 
3219	for_each_rcu_flavor(rsp)
3220		rcu_init_percpu_data(cpu, rsp,
3221				     strcmp(rsp->name, "rcu_preempt") == 0);
3222}
 
3223
3224/*
3225 * Handle CPU online/offline notification events.
3226 */
3227static int rcu_cpu_notify(struct notifier_block *self,
3228				    unsigned long action, void *hcpu)
3229{
3230	long cpu = (long)hcpu;
3231	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3232	struct rcu_node *rnp = rdp->mynode;
3233	struct rcu_state *rsp;
3234
3235	trace_rcu_utilization(TPS("Start CPU hotplug"));
3236	switch (action) {
3237	case CPU_UP_PREPARE:
3238	case CPU_UP_PREPARE_FROZEN:
3239		rcu_prepare_cpu(cpu);
3240		rcu_prepare_kthreads(cpu);
 
3241		break;
3242	case CPU_ONLINE:
3243	case CPU_DOWN_FAILED:
 
3244		rcu_boost_kthread_setaffinity(rnp, -1);
3245		break;
3246	case CPU_DOWN_PREPARE:
3247		rcu_boost_kthread_setaffinity(rnp, cpu);
3248		break;
3249	case CPU_DYING:
3250	case CPU_DYING_FROZEN:
3251		for_each_rcu_flavor(rsp)
3252			rcu_cleanup_dying_cpu(rsp);
3253		break;
3254	case CPU_DEAD:
3255	case CPU_DEAD_FROZEN:
3256	case CPU_UP_CANCELED:
3257	case CPU_UP_CANCELED_FROZEN:
3258		for_each_rcu_flavor(rsp)
3259			rcu_cleanup_dead_cpu(cpu, rsp);
 
 
3260		break;
3261	default:
3262		break;
3263	}
3264	trace_rcu_utilization(TPS("End CPU hotplug"));
3265	return NOTIFY_OK;
3266}
3267
3268static int rcu_pm_notify(struct notifier_block *self,
3269			 unsigned long action, void *hcpu)
3270{
3271	switch (action) {
3272	case PM_HIBERNATION_PREPARE:
3273	case PM_SUSPEND_PREPARE:
3274		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3275			rcu_expedited = 1;
3276		break;
3277	case PM_POST_HIBERNATION:
3278	case PM_POST_SUSPEND:
3279		rcu_expedited = 0;
 
3280		break;
3281	default:
3282		break;
3283	}
3284	return NOTIFY_OK;
3285}
3286
3287/*
3288 * Spawn the kthread that handles this RCU flavor's grace periods.
3289 */
3290static int __init rcu_spawn_gp_kthread(void)
3291{
3292	unsigned long flags;
 
3293	struct rcu_node *rnp;
3294	struct rcu_state *rsp;
 
3295	struct task_struct *t;
3296
 
 
 
 
 
 
 
 
 
 
 
 
3297	for_each_rcu_flavor(rsp) {
3298		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3299		BUG_ON(IS_ERR(t));
3300		rnp = rcu_get_root(rsp);
3301		raw_spin_lock_irqsave(&rnp->lock, flags);
3302		rsp->gp_kthread = t;
3303		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3304		rcu_spawn_nocb_kthreads(rsp);
 
 
 
 
3305	}
 
 
3306	return 0;
3307}
3308early_initcall(rcu_spawn_gp_kthread);
3309
3310/*
3311 * This function is invoked towards the end of the scheduler's initialization
3312 * process.  Before this is called, the idle task might contain
3313 * RCU read-side critical sections (during which time, this idle
3314 * task is booting the system).  After this function is called, the
3315 * idle tasks are prohibited from containing RCU read-side critical
3316 * sections.  This function also enables RCU lockdep checking.
3317 */
3318void rcu_scheduler_starting(void)
3319{
3320	WARN_ON(num_online_cpus() != 1);
3321	WARN_ON(nr_context_switches() > 0);
3322	rcu_scheduler_active = 1;
3323}
3324
3325/*
3326 * Compute the per-level fanout, either using the exact fanout specified
3327 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3328 */
3329#ifdef CONFIG_RCU_FANOUT_EXACT
3330static void __init rcu_init_levelspread(struct rcu_state *rsp)
3331{
3332	int i;
3333
3334	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3335	for (i = rcu_num_lvls - 2; i >= 0; i--)
3336		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3337}
3338#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3339static void __init rcu_init_levelspread(struct rcu_state *rsp)
3340{
3341	int ccur;
3342	int cprv;
3343	int i;
3344
3345	cprv = nr_cpu_ids;
3346	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3347		ccur = rsp->levelcnt[i];
3348		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3349		cprv = ccur;
 
3350	}
3351}
3352#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3353
3354/*
3355 * Helper function for rcu_init() that initializes one rcu_state structure.
3356 */
3357static void __init rcu_init_one(struct rcu_state *rsp,
3358		struct rcu_data __percpu *rda)
3359{
3360	static char *buf[] = { "rcu_node_0",
3361			       "rcu_node_1",
3362			       "rcu_node_2",
3363			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
3364	static char *fqs[] = { "rcu_node_fqs_0",
3365			       "rcu_node_fqs_1",
3366			       "rcu_node_fqs_2",
3367			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
 
 
3368	int cpustride = 1;
3369	int i;
3370	int j;
3371	struct rcu_node *rnp;
3372
3373	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3374
3375	/* Silence gcc 4.8 warning about array index out of range. */
3376	if (rcu_num_lvls > RCU_NUM_LVLS)
3377		panic("rcu_init_one: rcu_num_lvls overflow");
3378
3379	/* Initialize the level-tracking arrays. */
3380
3381	for (i = 0; i < rcu_num_lvls; i++)
3382		rsp->levelcnt[i] = num_rcu_lvl[i];
3383	for (i = 1; i < rcu_num_lvls; i++)
3384		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3385	rcu_init_levelspread(rsp);
 
 
3386
3387	/* Initialize the elements themselves, starting from the leaves. */
3388
3389	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3390		cpustride *= rsp->levelspread[i];
3391		rnp = rsp->level[i];
3392		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3393			raw_spin_lock_init(&rnp->lock);
3394			lockdep_set_class_and_name(&rnp->lock,
3395						   &rcu_node_class[i], buf[i]);
3396			raw_spin_lock_init(&rnp->fqslock);
3397			lockdep_set_class_and_name(&rnp->fqslock,
3398						   &rcu_fqs_class[i], fqs[i]);
3399			rnp->gpnum = rsp->gpnum;
3400			rnp->completed = rsp->completed;
3401			rnp->qsmask = 0;
3402			rnp->qsmaskinit = 0;
3403			rnp->grplo = j * cpustride;
3404			rnp->grphi = (j + 1) * cpustride - 1;
3405			if (rnp->grphi >= NR_CPUS)
3406				rnp->grphi = NR_CPUS - 1;
3407			if (i == 0) {
3408				rnp->grpnum = 0;
3409				rnp->grpmask = 0;
3410				rnp->parent = NULL;
3411			} else {
3412				rnp->grpnum = j % rsp->levelspread[i - 1];
3413				rnp->grpmask = 1UL << rnp->grpnum;
3414				rnp->parent = rsp->level[i - 1] +
3415					      j / rsp->levelspread[i - 1];
3416			}
3417			rnp->level = i;
3418			INIT_LIST_HEAD(&rnp->blkd_tasks);
3419			rcu_init_one_nocb(rnp);
 
 
 
3420		}
3421	}
3422
3423	rsp->rda = rda;
3424	init_waitqueue_head(&rsp->gp_wq);
3425	init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3426	rnp = rsp->level[rcu_num_lvls - 1];
3427	for_each_possible_cpu(i) {
3428		while (i > rnp->grphi)
3429			rnp++;
3430		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3431		rcu_boot_init_percpu_data(i, rsp);
3432	}
3433	list_add(&rsp->flavors, &rcu_struct_flavors);
3434}
3435
3436/*
3437 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3438 * replace the definitions in tree.h because those are needed to size
3439 * the ->node array in the rcu_state structure.
3440 */
3441static void __init rcu_init_geometry(void)
3442{
3443	ulong d;
3444	int i;
3445	int j;
3446	int n = nr_cpu_ids;
3447	int rcu_capacity[MAX_RCU_LVLS + 1];
3448
3449	/*
3450	 * Initialize any unspecified boot parameters.
3451	 * The default values of jiffies_till_first_fqs and
3452	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3453	 * value, which is a function of HZ, then adding one for each
3454	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3455	 */
3456	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3457	if (jiffies_till_first_fqs == ULONG_MAX)
3458		jiffies_till_first_fqs = d;
3459	if (jiffies_till_next_fqs == ULONG_MAX)
3460		jiffies_till_next_fqs = d;
3461
3462	/* If the compile-time values are accurate, just leave. */
3463	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3464	    nr_cpu_ids == NR_CPUS)
3465		return;
3466	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3467		rcu_fanout_leaf, nr_cpu_ids);
3468
3469	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
3470	 * Compute number of nodes that can be handled an rcu_node tree
3471	 * with the given number of levels.  Setting rcu_capacity[0] makes
3472	 * some of the arithmetic easier.
 
 
 
 
 
 
 
3473	 */
3474	rcu_capacity[0] = 1;
3475	rcu_capacity[1] = rcu_fanout_leaf;
3476	for (i = 2; i <= MAX_RCU_LVLS; i++)
3477		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3478
3479	/*
3480	 * The boot-time rcu_fanout_leaf parameter is only permitted
3481	 * to increase the leaf-level fanout, not decrease it.  Of course,
3482	 * the leaf-level fanout cannot exceed the number of bits in
3483	 * the rcu_node masks.  Finally, the tree must be able to accommodate
3484	 * the configured number of CPUs.  Complain and fall back to the
3485	 * compile-time values if these limits are exceeded.
3486	 */
3487	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3488	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3489	    n > rcu_capacity[MAX_RCU_LVLS]) {
3490		WARN_ON(1);
3491		return;
3492	}
3493
 
 
 
 
 
3494	/* Calculate the number of rcu_nodes at each level of the tree. */
3495	for (i = 1; i <= MAX_RCU_LVLS; i++)
3496		if (n <= rcu_capacity[i]) {
3497			for (j = 0; j <= i; j++)
3498				num_rcu_lvl[j] =
3499					DIV_ROUND_UP(n, rcu_capacity[i - j]);
3500			rcu_num_lvls = i;
3501			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3502				num_rcu_lvl[j] = 0;
3503			break;
3504		}
3505
3506	/* Calculate the total number of rcu_node structures. */
3507	rcu_num_nodes = 0;
3508	for (i = 0; i <= MAX_RCU_LVLS; i++)
3509		rcu_num_nodes += num_rcu_lvl[i];
3510	rcu_num_nodes -= n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3511}
3512
3513void __init rcu_init(void)
3514{
3515	int cpu;
3516
 
 
3517	rcu_bootup_announce();
3518	rcu_init_geometry();
3519	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3520	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
 
 
3521	__rcu_init_preempt();
3522	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3523
3524	/*
3525	 * We don't need protection against CPU-hotplug here because
3526	 * this is called early in boot, before either interrupts
3527	 * or the scheduler are operational.
3528	 */
3529	cpu_notifier(rcu_cpu_notify, 0);
3530	pm_notifier(rcu_pm_notify, 0);
3531	for_each_online_cpu(cpu)
3532		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3533}
3534
3535#include "tree_plugin.h"