Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * USB Gadget driver for LPC32xx
   3 *
   4 * Authors:
   5 *    Kevin Wells <kevin.wells@nxp.com>
   6 *    Mike James
   7 *    Roland Stigge <stigge@antcom.de>
   8 *
   9 * Copyright (C) 2006 Philips Semiconductors
  10 * Copyright (C) 2009 NXP Semiconductors
  11 * Copyright (C) 2012 Roland Stigge
  12 *
  13 * Note: This driver is based on original work done by Mike James for
  14 *       the LPC3180.
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License as published by
  18 * the Free Software Foundation; either version 2 of the License, or
  19 * (at your option) any later version.
  20 *
  21 * This program is distributed in the hope that it will be useful,
  22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  24 * GNU General Public License for more details.
  25 *
  26 * You should have received a copy of the GNU General Public License
  27 * along with this program; if not, write to the Free Software
  28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  29 */
  30
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/platform_device.h>
  34#include <linux/delay.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/errno.h>
  38#include <linux/init.h>
  39#include <linux/list.h>
  40#include <linux/interrupt.h>
  41#include <linux/proc_fs.h>
  42#include <linux/clk.h>
  43#include <linux/usb/ch9.h>
  44#include <linux/usb/gadget.h>
  45#include <linux/i2c.h>
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
  48#include <linux/dma-mapping.h>
  49#include <linux/dmapool.h>
  50#include <linux/workqueue.h>
  51#include <linux/of.h>
  52#include <linux/usb/isp1301.h>
  53
  54#include <asm/byteorder.h>
  55#include <mach/hardware.h>
  56#include <linux/io.h>
  57#include <asm/irq.h>
  58
  59#include <mach/platform.h>
  60#include <mach/irqs.h>
  61#include <mach/board.h>
  62#ifdef CONFIG_USB_GADGET_DEBUG_FILES
  63#include <linux/debugfs.h>
  64#include <linux/seq_file.h>
  65#endif
  66
  67/*
  68 * USB device configuration structure
  69 */
  70typedef void (*usc_chg_event)(int);
  71struct lpc32xx_usbd_cfg {
  72	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
  73	usc_chg_event conn_chgb; /* Connection change event (optional) */
  74	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
  75	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
  76};
  77
  78/*
  79 * controller driver data structures
  80 */
  81
  82/* 16 endpoints (not to be confused with 32 hardware endpoints) */
  83#define	NUM_ENDPOINTS	16
  84
  85/*
  86 * IRQ indices make reading the code a little easier
  87 */
  88#define IRQ_USB_LP	0
  89#define IRQ_USB_HP	1
  90#define IRQ_USB_DEVDMA	2
  91#define IRQ_USB_ATX	3
  92
  93#define EP_OUT 0 /* RX (from host) */
  94#define EP_IN 1 /* TX (to host) */
  95
  96/* Returns the interrupt mask for the selected hardware endpoint */
  97#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
  98
  99#define EP_INT_TYPE 0
 100#define EP_ISO_TYPE 1
 101#define EP_BLK_TYPE 2
 102#define EP_CTL_TYPE 3
 103
 104/* EP0 states */
 105#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
 106#define DATA_IN        1 /* Expect dev->host transfer */
 107#define DATA_OUT       2 /* Expect host->dev transfer */
 108
 109/* DD (DMA Descriptor) structure, requires word alignment, this is already
 110 * defined in the LPC32XX USB device header file, but this version is slightly
 111 * modified to tag some work data with each DMA descriptor. */
 112struct lpc32xx_usbd_dd_gad {
 113	u32 dd_next_phy;
 114	u32 dd_setup;
 115	u32 dd_buffer_addr;
 116	u32 dd_status;
 117	u32 dd_iso_ps_mem_addr;
 118	u32 this_dma;
 119	u32 iso_status[6]; /* 5 spare */
 120	u32 dd_next_v;
 121};
 122
 123/*
 124 * Logical endpoint structure
 125 */
 126struct lpc32xx_ep {
 127	struct usb_ep		ep;
 128	struct list_head	queue;
 129	struct lpc32xx_udc	*udc;
 130
 131	u32			hwep_num_base; /* Physical hardware EP */
 132	u32			hwep_num; /* Maps to hardware endpoint */
 133	u32			maxpacket;
 134	u32			lep;
 135
 136	bool			is_in;
 137	bool			req_pending;
 138	u32			eptype;
 139
 140	u32                     totalints;
 141
 142	bool			wedge;
 143};
 144
 145/*
 146 * Common UDC structure
 147 */
 148struct lpc32xx_udc {
 149	struct usb_gadget	gadget;
 150	struct usb_gadget_driver *driver;
 151	struct platform_device	*pdev;
 152	struct device		*dev;
 153	struct dentry		*pde;
 154	spinlock_t		lock;
 155	struct i2c_client	*isp1301_i2c_client;
 156
 157	/* Board and device specific */
 158	struct lpc32xx_usbd_cfg	*board;
 159	u32			io_p_start;
 160	u32			io_p_size;
 161	void __iomem		*udp_baseaddr;
 162	int			udp_irq[4];
 163	struct clk		*usb_pll_clk;
 164	struct clk		*usb_slv_clk;
 165	struct clk		*usb_otg_clk;
 166
 167	/* DMA support */
 168	u32			*udca_v_base;
 169	u32			udca_p_base;
 170	struct dma_pool		*dd_cache;
 171
 172	/* Common EP and control data */
 173	u32			enabled_devints;
 174	u32			enabled_hwepints;
 175	u32			dev_status;
 176	u32			realized_eps;
 177
 178	/* VBUS detection, pullup, and power flags */
 179	u8			vbus;
 180	u8			last_vbus;
 181	int			pullup;
 182	int			poweron;
 183
 184	/* Work queues related to I2C support */
 185	struct work_struct	pullup_job;
 186	struct work_struct	vbus_job;
 187	struct work_struct	power_job;
 188
 189	/* USB device peripheral - various */
 190	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
 191	bool			enabled;
 192	bool			clocked;
 193	bool			suspended;
 194	bool			selfpowered;
 195	int                     ep0state;
 196	atomic_t                enabled_ep_cnt;
 197	wait_queue_head_t       ep_disable_wait_queue;
 198};
 199
 200/*
 201 * Endpoint request
 202 */
 203struct lpc32xx_request {
 204	struct usb_request	req;
 205	struct list_head	queue;
 206	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
 207	bool			mapped;
 208	bool			send_zlp;
 209};
 210
 211static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
 212{
 213	return container_of(g, struct lpc32xx_udc, gadget);
 214}
 215
 216#define ep_dbg(epp, fmt, arg...) \
 217	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
 218#define ep_err(epp, fmt, arg...) \
 219	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
 220#define ep_info(epp, fmt, arg...) \
 221	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
 222#define ep_warn(epp, fmt, arg...) \
 223	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
 224
 225#define UDCA_BUFF_SIZE (128)
 226
 227/* TODO: When the clock framework is introduced in LPC32xx, IO_ADDRESS will
 228 * be replaced with an inremap()ed pointer
 229 * */
 230#define USB_CTRL		IO_ADDRESS(LPC32XX_CLK_PM_BASE + 0x64)
 231
 232/* USB_CTRL bit defines */
 233#define USB_SLAVE_HCLK_EN	(1 << 24)
 234#define USB_HOST_NEED_CLK_EN	(1 << 21)
 235#define USB_DEV_NEED_CLK_EN	(1 << 22)
 236
 237/**********************************************************************
 238 * USB device controller register offsets
 239 **********************************************************************/
 240
 241#define USBD_DEVINTST(x)	((x) + 0x200)
 242#define USBD_DEVINTEN(x)	((x) + 0x204)
 243#define USBD_DEVINTCLR(x)	((x) + 0x208)
 244#define USBD_DEVINTSET(x)	((x) + 0x20C)
 245#define USBD_CMDCODE(x)		((x) + 0x210)
 246#define USBD_CMDDATA(x)		((x) + 0x214)
 247#define USBD_RXDATA(x)		((x) + 0x218)
 248#define USBD_TXDATA(x)		((x) + 0x21C)
 249#define USBD_RXPLEN(x)		((x) + 0x220)
 250#define USBD_TXPLEN(x)		((x) + 0x224)
 251#define USBD_CTRL(x)		((x) + 0x228)
 252#define USBD_DEVINTPRI(x)	((x) + 0x22C)
 253#define USBD_EPINTST(x)		((x) + 0x230)
 254#define USBD_EPINTEN(x)		((x) + 0x234)
 255#define USBD_EPINTCLR(x)	((x) + 0x238)
 256#define USBD_EPINTSET(x)	((x) + 0x23C)
 257#define USBD_EPINTPRI(x)	((x) + 0x240)
 258#define USBD_REEP(x)		((x) + 0x244)
 259#define USBD_EPIND(x)		((x) + 0x248)
 260#define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
 261/* DMA support registers only below */
 262/* Set, clear, or get enabled state of the DMA request status. If
 263 * enabled, an IN or OUT token will start a DMA transfer for the EP */
 264#define USBD_DMARST(x)		((x) + 0x250)
 265#define USBD_DMARCLR(x)		((x) + 0x254)
 266#define USBD_DMARSET(x)		((x) + 0x258)
 267/* DMA UDCA head pointer */
 268#define USBD_UDCAH(x)		((x) + 0x280)
 269/* EP DMA status, enable, and disable. This is used to specifically
 270 * enabled or disable DMA for a specific EP */
 271#define USBD_EPDMAST(x)		((x) + 0x284)
 272#define USBD_EPDMAEN(x)		((x) + 0x288)
 273#define USBD_EPDMADIS(x)	((x) + 0x28C)
 274/* DMA master interrupts enable and pending interrupts */
 275#define USBD_DMAINTST(x)	((x) + 0x290)
 276#define USBD_DMAINTEN(x)	((x) + 0x294)
 277/* DMA end of transfer interrupt enable, disable, status */
 278#define USBD_EOTINTST(x)	((x) + 0x2A0)
 279#define USBD_EOTINTCLR(x)	((x) + 0x2A4)
 280#define USBD_EOTINTSET(x)	((x) + 0x2A8)
 281/* New DD request interrupt enable, disable, status */
 282#define USBD_NDDRTINTST(x)	((x) + 0x2AC)
 283#define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
 284#define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
 285/* DMA error interrupt enable, disable, status */
 286#define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
 287#define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
 288#define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
 289
 290/**********************************************************************
 291 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
 292 * USBD_DEVINTPRI register definitions
 293 **********************************************************************/
 294#define USBD_ERR_INT		(1 << 9)
 295#define USBD_EP_RLZED		(1 << 8)
 296#define USBD_TXENDPKT		(1 << 7)
 297#define USBD_RXENDPKT		(1 << 6)
 298#define USBD_CDFULL		(1 << 5)
 299#define USBD_CCEMPTY		(1 << 4)
 300#define USBD_DEV_STAT		(1 << 3)
 301#define USBD_EP_SLOW		(1 << 2)
 302#define USBD_EP_FAST		(1 << 1)
 303#define USBD_FRAME		(1 << 0)
 304
 305/**********************************************************************
 306 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
 307 * USBD_EPINTPRI register definitions
 308 **********************************************************************/
 309/* End point selection macro (RX) */
 310#define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
 311
 312/* End point selection macro (TX) */
 313#define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
 314
 315/**********************************************************************
 316 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
 317 * USBD_EPDMAEN/USBD_EPDMADIS/
 318 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
 319 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
 320 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
 321 * register definitions
 322 **********************************************************************/
 323/* Endpoint selection macro */
 324#define USBD_EP_SEL(e)		(1 << (e))
 325
 326/**********************************************************************
 327 * SBD_DMAINTST/USBD_DMAINTEN
 328 **********************************************************************/
 329#define USBD_SYS_ERR_INT	(1 << 2)
 330#define USBD_NEW_DD_INT		(1 << 1)
 331#define USBD_EOT_INT		(1 << 0)
 332
 333/**********************************************************************
 334 * USBD_RXPLEN register definitions
 335 **********************************************************************/
 336#define USBD_PKT_RDY		(1 << 11)
 337#define USBD_DV			(1 << 10)
 338#define USBD_PK_LEN_MASK	0x3FF
 339
 340/**********************************************************************
 341 * USBD_CTRL register definitions
 342 **********************************************************************/
 343#define USBD_LOG_ENDPOINT(e)	((e) << 2)
 344#define USBD_WR_EN		(1 << 1)
 345#define USBD_RD_EN		(1 << 0)
 346
 347/**********************************************************************
 348 * USBD_CMDCODE register definitions
 349 **********************************************************************/
 350#define USBD_CMD_CODE(c)	((c) << 16)
 351#define USBD_CMD_PHASE(p)	((p) << 8)
 352
 353/**********************************************************************
 354 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
 355 **********************************************************************/
 356#define USBD_DMAEP(e)		(1 << (e))
 357
 358/* DD (DMA Descriptor) structure, requires word alignment */
 359struct lpc32xx_usbd_dd {
 360	u32 *dd_next;
 361	u32 dd_setup;
 362	u32 dd_buffer_addr;
 363	u32 dd_status;
 364	u32 dd_iso_ps_mem_addr;
 365};
 366
 367/* dd_setup bit defines */
 368#define DD_SETUP_ATLE_DMA_MODE	0x01
 369#define DD_SETUP_NEXT_DD_VALID	0x04
 370#define DD_SETUP_ISO_EP		0x10
 371#define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
 372#define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
 373
 374/* dd_status bit defines */
 375#define DD_STATUS_DD_RETIRED	0x01
 376#define DD_STATUS_STS_MASK	0x1E
 377#define DD_STATUS_STS_NS	0x00 /* Not serviced */
 378#define DD_STATUS_STS_BS	0x02 /* Being serviced */
 379#define DD_STATUS_STS_NC	0x04 /* Normal completion */
 380#define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
 381#define DD_STATUS_STS_DOR	0x08 /* Data overrun */
 382#define DD_STATUS_STS_SE	0x12 /* System error */
 383#define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
 384#define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
 385#define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
 386#define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
 387#define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
 388
 389/*
 390 *
 391 * Protocol engine bits below
 392 *
 393 */
 394/* Device Interrupt Bit Definitions */
 395#define FRAME_INT		0x00000001
 396#define EP_FAST_INT		0x00000002
 397#define EP_SLOW_INT		0x00000004
 398#define DEV_STAT_INT		0x00000008
 399#define CCEMTY_INT		0x00000010
 400#define CDFULL_INT		0x00000020
 401#define RxENDPKT_INT		0x00000040
 402#define TxENDPKT_INT		0x00000080
 403#define EP_RLZED_INT		0x00000100
 404#define ERR_INT			0x00000200
 405
 406/* Rx & Tx Packet Length Definitions */
 407#define PKT_LNGTH_MASK		0x000003FF
 408#define PKT_DV			0x00000400
 409#define PKT_RDY			0x00000800
 410
 411/* USB Control Definitions */
 412#define CTRL_RD_EN		0x00000001
 413#define CTRL_WR_EN		0x00000002
 414
 415/* Command Codes */
 416#define CMD_SET_ADDR		0x00D00500
 417#define CMD_CFG_DEV		0x00D80500
 418#define CMD_SET_MODE		0x00F30500
 419#define CMD_RD_FRAME		0x00F50500
 420#define DAT_RD_FRAME		0x00F50200
 421#define CMD_RD_TEST		0x00FD0500
 422#define DAT_RD_TEST		0x00FD0200
 423#define CMD_SET_DEV_STAT	0x00FE0500
 424#define CMD_GET_DEV_STAT	0x00FE0500
 425#define DAT_GET_DEV_STAT	0x00FE0200
 426#define CMD_GET_ERR_CODE	0x00FF0500
 427#define DAT_GET_ERR_CODE	0x00FF0200
 428#define CMD_RD_ERR_STAT		0x00FB0500
 429#define DAT_RD_ERR_STAT		0x00FB0200
 430#define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
 431#define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
 432#define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
 433#define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
 434#define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
 435#define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
 436#define CMD_CLR_BUF		0x00F20500
 437#define DAT_CLR_BUF		0x00F20200
 438#define CMD_VALID_BUF		0x00FA0500
 439
 440/* Device Address Register Definitions */
 441#define DEV_ADDR_MASK		0x7F
 442#define DEV_EN			0x80
 443
 444/* Device Configure Register Definitions */
 445#define CONF_DVICE		0x01
 446
 447/* Device Mode Register Definitions */
 448#define AP_CLK			0x01
 449#define INAK_CI			0x02
 450#define INAK_CO			0x04
 451#define INAK_II			0x08
 452#define INAK_IO			0x10
 453#define INAK_BI			0x20
 454#define INAK_BO			0x40
 455
 456/* Device Status Register Definitions */
 457#define DEV_CON			0x01
 458#define DEV_CON_CH		0x02
 459#define DEV_SUS			0x04
 460#define DEV_SUS_CH		0x08
 461#define DEV_RST			0x10
 462
 463/* Error Code Register Definitions */
 464#define ERR_EC_MASK		0x0F
 465#define ERR_EA			0x10
 466
 467/* Error Status Register Definitions */
 468#define ERR_PID			0x01
 469#define ERR_UEPKT		0x02
 470#define ERR_DCRC		0x04
 471#define ERR_TIMOUT		0x08
 472#define ERR_EOP			0x10
 473#define ERR_B_OVRN		0x20
 474#define ERR_BTSTF		0x40
 475#define ERR_TGL			0x80
 476
 477/* Endpoint Select Register Definitions */
 478#define EP_SEL_F		0x01
 479#define EP_SEL_ST		0x02
 480#define EP_SEL_STP		0x04
 481#define EP_SEL_PO		0x08
 482#define EP_SEL_EPN		0x10
 483#define EP_SEL_B_1_FULL		0x20
 484#define EP_SEL_B_2_FULL		0x40
 485
 486/* Endpoint Status Register Definitions */
 487#define EP_STAT_ST		0x01
 488#define EP_STAT_DA		0x20
 489#define EP_STAT_RF_MO		0x40
 490#define EP_STAT_CND_ST		0x80
 491
 492/* Clear Buffer Register Definitions */
 493#define CLR_BUF_PO		0x01
 494
 495/* DMA Interrupt Bit Definitions */
 496#define EOT_INT			0x01
 497#define NDD_REQ_INT		0x02
 498#define SYS_ERR_INT		0x04
 499
 500#define	DRIVER_VERSION	"1.03"
 501static const char driver_name[] = "lpc32xx_udc";
 502
 503/*
 504 *
 505 * proc interface support
 506 *
 507 */
 508#ifdef CONFIG_USB_GADGET_DEBUG_FILES
 509static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
 510static const char debug_filename[] = "driver/udc";
 511
 512static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
 513{
 514	struct lpc32xx_request *req;
 515
 516	seq_printf(s, "\n");
 517	seq_printf(s, "%12s, maxpacket %4d %3s",
 518			ep->ep.name, ep->ep.maxpacket,
 519			ep->is_in ? "in" : "out");
 520	seq_printf(s, " type %4s", epnames[ep->eptype]);
 521	seq_printf(s, " ints: %12d", ep->totalints);
 522
 523	if (list_empty(&ep->queue))
 524		seq_printf(s, "\t(queue empty)\n");
 525	else {
 526		list_for_each_entry(req, &ep->queue, queue) {
 527			u32 length = req->req.actual;
 528
 529			seq_printf(s, "\treq %p len %d/%d buf %p\n",
 530				   &req->req, length,
 531				   req->req.length, req->req.buf);
 532		}
 533	}
 534}
 535
 536static int proc_udc_show(struct seq_file *s, void *unused)
 537{
 538	struct lpc32xx_udc *udc = s->private;
 539	struct lpc32xx_ep *ep;
 540	unsigned long flags;
 541
 542	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
 543
 544	spin_lock_irqsave(&udc->lock, flags);
 545
 546	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
 547		   udc->vbus ? "present" : "off",
 548		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
 549		   "disabled",
 550		   udc->selfpowered ? "self" : "VBUS",
 551		   udc->suspended ? ", suspended" : "",
 552		   udc->driver ? udc->driver->driver.name : "(none)");
 553
 554	if (udc->enabled && udc->vbus) {
 555		proc_ep_show(s, &udc->ep[0]);
 556		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
 557			proc_ep_show(s, ep);
 558	}
 559
 560	spin_unlock_irqrestore(&udc->lock, flags);
 561
 562	return 0;
 563}
 564
 565static int proc_udc_open(struct inode *inode, struct file *file)
 566{
 567	return single_open(file, proc_udc_show, PDE_DATA(inode));
 568}
 569
 570static const struct file_operations proc_ops = {
 571	.owner		= THIS_MODULE,
 572	.open		= proc_udc_open,
 573	.read		= seq_read,
 574	.llseek		= seq_lseek,
 575	.release	= single_release,
 576};
 577
 578static void create_debug_file(struct lpc32xx_udc *udc)
 579{
 580	udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
 581}
 582
 583static void remove_debug_file(struct lpc32xx_udc *udc)
 584{
 585	if (udc->pde)
 586		debugfs_remove(udc->pde);
 587}
 588
 589#else
 590static inline void create_debug_file(struct lpc32xx_udc *udc) {}
 591static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
 592#endif
 593
 594/* Primary initialization sequence for the ISP1301 transceiver */
 595static void isp1301_udc_configure(struct lpc32xx_udc *udc)
 596{
 597	/* LPC32XX only supports DAT_SE0 USB mode */
 598	/* This sequence is important */
 599
 600	/* Disable transparent UART mode first */
 601	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 602		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
 603		MC1_UART_EN);
 604
 605	/* Set full speed and SE0 mode */
 606	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 607		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
 608	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 609		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
 610
 611	/*
 612	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
 613	 */
 614	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 615		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
 616	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 617		ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_SPD_SUSP_CTRL));
 618
 619	/* Driver VBUS_DRV high or low depending on board setup */
 620	if (udc->board->vbus_drv_pol != 0)
 621		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 622			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
 623	else
 624		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 625			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
 626			OTG1_VBUS_DRV);
 627
 628	/* Bi-directional mode with suspend control
 629	 * Enable both pulldowns for now - the pullup will be enable when VBUS
 630	 * is detected */
 631	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 632		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
 633	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 634		ISP1301_I2C_OTG_CONTROL_1,
 635		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
 636
 637	/* Discharge VBUS (just in case) */
 638	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 639		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
 640	msleep(1);
 641	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 642		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
 643		OTG1_VBUS_DISCHRG);
 644
 645	/* Clear and enable VBUS high edge interrupt */
 646	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 647		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
 648	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 649		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
 650	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 651		ISP1301_I2C_INTERRUPT_FALLING, INT_VBUS_VLD);
 652	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 653		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
 654	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 655		ISP1301_I2C_INTERRUPT_RISING, INT_VBUS_VLD);
 656
 657	/* Enable usb_need_clk clock after transceiver is initialized */
 658	writel((readl(USB_CTRL) | USB_DEV_NEED_CLK_EN), USB_CTRL);
 659
 660	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n",
 661		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00));
 662	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n",
 663		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02));
 664	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
 665		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
 666}
 667
 668/* Enables or disables the USB device pullup via the ISP1301 transceiver */
 669static void isp1301_pullup_set(struct lpc32xx_udc *udc)
 670{
 671	if (udc->pullup)
 672		/* Enable pullup for bus signalling */
 673		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 674			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
 675	else
 676		/* Enable pullup for bus signalling */
 677		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 678			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
 679			OTG1_DP_PULLUP);
 680}
 681
 682static void pullup_work(struct work_struct *work)
 683{
 684	struct lpc32xx_udc *udc =
 685		container_of(work, struct lpc32xx_udc, pullup_job);
 686
 687	isp1301_pullup_set(udc);
 688}
 689
 690static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
 691				  int block)
 692{
 693	if (en_pullup == udc->pullup)
 694		return;
 695
 696	udc->pullup = en_pullup;
 697	if (block)
 698		isp1301_pullup_set(udc);
 699	else
 700		/* defer slow i2c pull up setting */
 701		schedule_work(&udc->pullup_job);
 702}
 703
 704#ifdef CONFIG_PM
 705/* Powers up or down the ISP1301 transceiver */
 706static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
 707{
 708	if (enable != 0)
 709		/* Power up ISP1301 - this ISP1301 will automatically wakeup
 710		   when VBUS is detected */
 711		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 712			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
 713			MC2_GLOBAL_PWR_DN);
 714	else
 715		/* Power down ISP1301 */
 716		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
 717			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
 718}
 719
 720static void power_work(struct work_struct *work)
 721{
 722	struct lpc32xx_udc *udc =
 723		container_of(work, struct lpc32xx_udc, power_job);
 724
 725	isp1301_set_powerstate(udc, udc->poweron);
 726}
 727#endif
 728
 729/*
 730 *
 731 * USB protocol engine command/data read/write helper functions
 732 *
 733 */
 734/* Issues a single command to the USB device state machine */
 735static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
 736{
 737	u32 pass = 0;
 738	int to;
 739
 740	/* EP may lock on CLRI if this read isn't done */
 741	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
 742	(void) tmp;
 743
 744	while (pass == 0) {
 745		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
 746
 747		/* Write command code */
 748		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
 749		to = 10000;
 750		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
 751			 USBD_CCEMPTY) == 0) && (to > 0)) {
 752			to--;
 753		}
 754
 755		if (to > 0)
 756			pass = 1;
 757
 758		cpu_relax();
 759	}
 760}
 761
 762/* Issues 2 commands (or command and data) to the USB device state machine */
 763static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
 764					   u32 data)
 765{
 766	udc_protocol_cmd_w(udc, cmd);
 767	udc_protocol_cmd_w(udc, data);
 768}
 769
 770/* Issues a single command to the USB device state machine and reads
 771 * response data */
 772static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
 773{
 774	u32 tmp;
 775	int to = 1000;
 776
 777	/* Write a command and read data from the protocol engine */
 778	writel((USBD_CDFULL | USBD_CCEMPTY),
 779		     USBD_DEVINTCLR(udc->udp_baseaddr));
 780
 781	/* Write command code */
 782	udc_protocol_cmd_w(udc, cmd);
 783
 784	tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
 785	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
 786	       && (to > 0))
 787		to--;
 788	if (!to)
 789		dev_dbg(udc->dev,
 790			"Protocol engine didn't receive response (CDFULL)\n");
 791
 792	return readl(USBD_CMDDATA(udc->udp_baseaddr));
 793}
 794
 795/*
 796 *
 797 * USB device interrupt mask support functions
 798 *
 799 */
 800/* Enable one or more USB device interrupts */
 801static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
 802{
 803	udc->enabled_devints |= devmask;
 804	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
 805}
 806
 807/* Disable one or more USB device interrupts */
 808static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
 809{
 810	udc->enabled_devints &= ~mask;
 811	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
 812}
 813
 814/* Clear one or more USB device interrupts */
 815static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
 816{
 817	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
 818}
 819
 820/*
 821 *
 822 * Endpoint interrupt disable/enable functions
 823 *
 824 */
 825/* Enable one or more USB endpoint interrupts */
 826static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
 827{
 828	udc->enabled_hwepints |= (1 << hwep);
 829	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
 830}
 831
 832/* Disable one or more USB endpoint interrupts */
 833static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
 834{
 835	udc->enabled_hwepints &= ~(1 << hwep);
 836	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
 837}
 838
 839/* Clear one or more USB endpoint interrupts */
 840static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
 841{
 842	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
 843}
 844
 845/* Enable DMA for the HW channel */
 846static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
 847{
 848	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
 849}
 850
 851/* Disable DMA for the HW channel */
 852static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
 853{
 854	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
 855}
 856
 857/*
 858 *
 859 * Endpoint realize/unrealize functions
 860 *
 861 */
 862/* Before an endpoint can be used, it needs to be realized
 863 * in the USB protocol engine - this realizes the endpoint.
 864 * The interrupt (FIFO or DMA) is not enabled with this function */
 865static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
 866			     u32 maxpacket)
 867{
 868	int to = 1000;
 869
 870	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
 871	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
 872	udc->realized_eps |= (1 << hwep);
 873	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
 874	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
 875
 876	/* Wait until endpoint is realized in hardware */
 877	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
 878		  USBD_EP_RLZED)) && (to > 0))
 879		to--;
 880	if (!to)
 881		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
 882
 883	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
 884}
 885
 886/* Unrealize an EP */
 887static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
 888{
 889	udc->realized_eps &= ~(1 << hwep);
 890	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
 891}
 892
 893/*
 894 *
 895 * Endpoint support functions
 896 *
 897 */
 898/* Select and clear endpoint interrupt */
 899static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
 900{
 901	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
 902	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
 903}
 904
 905/* Disables the endpoint in the USB protocol engine */
 906static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
 907{
 908	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
 909				DAT_WR_BYTE(EP_STAT_DA));
 910}
 911
 912/* Stalls the endpoint - endpoint will return STALL */
 913static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
 914{
 915	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
 916				DAT_WR_BYTE(EP_STAT_ST));
 917}
 918
 919/* Clear stall or reset endpoint */
 920static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
 921{
 922	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
 923				DAT_WR_BYTE(0));
 924}
 925
 926/* Select an endpoint for endpoint status, clear, validate */
 927static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
 928{
 929	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
 930}
 931
 932/*
 933 *
 934 * Endpoint buffer management functions
 935 *
 936 */
 937/* Clear the current endpoint's buffer */
 938static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
 939{
 940	udc_select_hwep(udc, hwep);
 941	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
 942}
 943
 944/* Validate the current endpoint's buffer */
 945static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
 946{
 947	udc_select_hwep(udc, hwep);
 948	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
 949}
 950
 951static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
 952{
 953	/* Clear EP interrupt */
 954	uda_clear_hwepint(udc, hwep);
 955	return udc_selep_clrint(udc, hwep);
 956}
 957
 958/*
 959 *
 960 * USB EP DMA support
 961 *
 962 */
 963/* Allocate a DMA Descriptor */
 964static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
 965{
 966	dma_addr_t			dma;
 967	struct lpc32xx_usbd_dd_gad	*dd;
 968
 969	dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
 970			udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
 971	if (dd)
 972		dd->this_dma = dma;
 973
 974	return dd;
 975}
 976
 977/* Free a DMA Descriptor */
 978static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
 979{
 980	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
 981}
 982
 983/*
 984 *
 985 * USB setup and shutdown functions
 986 *
 987 */
 988/* Enables or disables most of the USB system clocks when low power mode is
 989 * needed. Clocks are typically started on a connection event, and disabled
 990 * when a cable is disconnected */
 991static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
 992{
 993	if (enable != 0) {
 994		if (udc->clocked)
 995			return;
 996
 997		udc->clocked = 1;
 998
 999		/* 48MHz PLL up */
1000		clk_enable(udc->usb_pll_clk);
1001
1002		/* Enable the USB device clock */
1003		writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN,
1004			     USB_CTRL);
1005
1006		clk_enable(udc->usb_otg_clk);
1007	} else {
1008		if (!udc->clocked)
1009			return;
1010
1011		udc->clocked = 0;
1012
1013		/* Never disable the USB_HCLK during normal operation */
1014
1015		/* 48MHz PLL dpwn */
1016		clk_disable(udc->usb_pll_clk);
1017
1018		/* Disable the USB device clock */
1019		writel(readl(USB_CTRL) & ~USB_DEV_NEED_CLK_EN,
1020			     USB_CTRL);
1021
1022		clk_disable(udc->usb_otg_clk);
1023	}
1024}
1025
1026/* Set/reset USB device address */
1027static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
1028{
1029	/* Address will be latched at the end of the status phase, or
1030	   latched immediately if function is called twice */
1031	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
1032				DAT_WR_BYTE(DEV_EN | addr));
1033}
1034
1035/* Setup up a IN request for DMA transfer - this consists of determining the
1036 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1037 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1038static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1039{
1040	struct lpc32xx_request *req;
1041	u32 hwep = ep->hwep_num;
1042
1043	ep->req_pending = 1;
1044
1045	/* There will always be a request waiting here */
1046	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1047
1048	/* Place the DD Descriptor into the UDCA */
1049	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1050
1051	/* Enable DMA and interrupt for the HW EP */
1052	udc_ep_dma_enable(udc, hwep);
1053
1054	/* Clear ZLP if last packet is not of MAXP size */
1055	if (req->req.length % ep->ep.maxpacket)
1056		req->send_zlp = 0;
1057
1058	return 0;
1059}
1060
1061/* Setup up a OUT request for DMA transfer - this consists of determining the
1062 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1063 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1064static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1065{
1066	struct lpc32xx_request *req;
1067	u32 hwep = ep->hwep_num;
1068
1069	ep->req_pending = 1;
1070
1071	/* There will always be a request waiting here */
1072	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1073
1074	/* Place the DD Descriptor into the UDCA */
1075	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1076
1077	/* Enable DMA and interrupt for the HW EP */
1078	udc_ep_dma_enable(udc, hwep);
1079	return 0;
1080}
1081
1082static void udc_disable(struct lpc32xx_udc *udc)
1083{
1084	u32 i;
1085
1086	/* Disable device */
1087	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1088	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1089
1090	/* Disable all device interrupts (including EP0) */
1091	uda_disable_devint(udc, 0x3FF);
1092
1093	/* Disable and reset all endpoint interrupts */
1094	for (i = 0; i < 32; i++) {
1095		uda_disable_hwepint(udc, i);
1096		uda_clear_hwepint(udc, i);
1097		udc_disable_hwep(udc, i);
1098		udc_unrealize_hwep(udc, i);
1099		udc->udca_v_base[i] = 0;
1100
1101		/* Disable and clear all interrupts and DMA */
1102		udc_ep_dma_disable(udc, i);
1103		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1104		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1105		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1106		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1107	}
1108
1109	/* Disable DMA interrupts */
1110	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1111
1112	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1113}
1114
1115static void udc_enable(struct lpc32xx_udc *udc)
1116{
1117	u32 i;
1118	struct lpc32xx_ep *ep = &udc->ep[0];
1119
1120	/* Start with known state */
1121	udc_disable(udc);
1122
1123	/* Enable device */
1124	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1125
1126	/* EP interrupts on high priority, FRAME interrupt on low priority */
1127	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1128	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1129
1130	/* Clear any pending device interrupts */
1131	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1132
1133	/* Setup UDCA - not yet used (DMA) */
1134	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1135
1136	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1137	for (i = 0; i <= 1; i++) {
1138		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1139		uda_enable_hwepint(udc, i);
1140		udc_select_hwep(udc, i);
1141		udc_clrstall_hwep(udc, i);
1142		udc_clr_buffer_hwep(udc, i);
1143	}
1144
1145	/* Device interrupt setup */
1146	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1147			       USBD_EP_FAST));
1148	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1149				USBD_EP_FAST));
1150
1151	/* Set device address to 0 - called twice to force a latch in the USB
1152	   engine without the need of a setup packet status closure */
1153	udc_set_address(udc, 0);
1154	udc_set_address(udc, 0);
1155
1156	/* Enable master DMA interrupts */
1157	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1158		     USBD_DMAINTEN(udc->udp_baseaddr));
1159
1160	udc->dev_status = 0;
1161}
1162
1163/*
1164 *
1165 * USB device board specific events handled via callbacks
1166 *
1167 */
1168/* Connection change event - notify board function of change */
1169static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1170{
1171	/* Just notify of a connection change event (optional) */
1172	if (udc->board->conn_chgb != NULL)
1173		udc->board->conn_chgb(conn);
1174}
1175
1176/* Suspend/resume event - notify board function of change */
1177static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1178{
1179	/* Just notify of a Suspend/resume change event (optional) */
1180	if (udc->board->susp_chgb != NULL)
1181		udc->board->susp_chgb(conn);
1182
1183	if (conn)
1184		udc->suspended = 0;
1185	else
1186		udc->suspended = 1;
1187}
1188
1189/* Remote wakeup enable/disable - notify board function of change */
1190static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1191{
1192	if (udc->board->rmwk_chgb != NULL)
1193		udc->board->rmwk_chgb(udc->dev_status &
1194				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1195}
1196
1197/* Reads data from FIFO, adjusts for alignment and data size */
1198static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1199{
1200	int n, i, bl;
1201	u16 *p16;
1202	u32 *p32, tmp, cbytes;
1203
1204	/* Use optimal data transfer method based on source address and size */
1205	switch (((u32) data) & 0x3) {
1206	case 0: /* 32-bit aligned */
1207		p32 = (u32 *) data;
1208		cbytes = (bytes & ~0x3);
1209
1210		/* Copy 32-bit aligned data first */
1211		for (n = 0; n < cbytes; n += 4)
1212			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1213
1214		/* Handle any remaining bytes */
1215		bl = bytes - cbytes;
1216		if (bl) {
1217			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1218			for (n = 0; n < bl; n++)
1219				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1220
1221		}
1222		break;
1223
1224	case 1: /* 8-bit aligned */
1225	case 3:
1226		/* Each byte has to be handled independently */
1227		for (n = 0; n < bytes; n += 4) {
1228			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1229
1230			bl = bytes - n;
1231			if (bl > 3)
1232				bl = 3;
1233
1234			for (i = 0; i < bl; i++)
1235				data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
1236		}
1237		break;
1238
1239	case 2: /* 16-bit aligned */
1240		p16 = (u16 *) data;
1241		cbytes = (bytes & ~0x3);
1242
1243		/* Copy 32-bit sized objects first with 16-bit alignment */
1244		for (n = 0; n < cbytes; n += 4) {
1245			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1246			*p16++ = (u16)(tmp & 0xFFFF);
1247			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1248		}
1249
1250		/* Handle any remaining bytes */
1251		bl = bytes - cbytes;
1252		if (bl) {
1253			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1254			for (n = 0; n < bl; n++)
1255				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1256		}
1257		break;
1258	}
1259}
1260
1261/* Read data from the FIFO for an endpoint. This function is for endpoints (such
1262 * as EP0) that don't use DMA. This function should only be called if a packet
1263 * is known to be ready to read for the endpoint. Note that the endpoint must
1264 * be selected in the protocol engine prior to this call. */
1265static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1266			 u32 bytes)
1267{
1268	u32 tmpv;
1269	int to = 1000;
1270	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1271
1272	/* Setup read of endpoint */
1273	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1274
1275	/* Wait until packet is ready */
1276	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1277		 PKT_RDY) == 0)	&& (to > 0))
1278		to--;
1279	if (!to)
1280		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1281
1282	/* Mask out count */
1283	tmp = tmpv & PKT_LNGTH_MASK;
1284	if (bytes < tmp)
1285		tmp = bytes;
1286
1287	if ((tmp > 0) && (data != NULL))
1288		udc_pop_fifo(udc, (u8 *) data, tmp);
1289
1290	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1291
1292	/* Clear the buffer */
1293	udc_clr_buffer_hwep(udc, hwep);
1294
1295	return tmp;
1296}
1297
1298/* Stuffs data into the FIFO, adjusts for alignment and data size */
1299static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1300{
1301	int n, i, bl;
1302	u16 *p16;
1303	u32 *p32, tmp, cbytes;
1304
1305	/* Use optimal data transfer method based on source address and size */
1306	switch (((u32) data) & 0x3) {
1307	case 0: /* 32-bit aligned */
1308		p32 = (u32 *) data;
1309		cbytes = (bytes & ~0x3);
1310
1311		/* Copy 32-bit aligned data first */
1312		for (n = 0; n < cbytes; n += 4)
1313			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1314
1315		/* Handle any remaining bytes */
1316		bl = bytes - cbytes;
1317		if (bl) {
1318			tmp = 0;
1319			for (n = 0; n < bl; n++)
1320				tmp |= data[cbytes + n] << (n * 8);
1321
1322			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1323		}
1324		break;
1325
1326	case 1: /* 8-bit aligned */
1327	case 3:
1328		/* Each byte has to be handled independently */
1329		for (n = 0; n < bytes; n += 4) {
1330			bl = bytes - n;
1331			if (bl > 4)
1332				bl = 4;
1333
1334			tmp = 0;
1335			for (i = 0; i < bl; i++)
1336				tmp |= data[n + i] << (i * 8);
1337
1338			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1339		}
1340		break;
1341
1342	case 2: /* 16-bit aligned */
1343		p16 = (u16 *) data;
1344		cbytes = (bytes & ~0x3);
1345
1346		/* Copy 32-bit aligned data first */
1347		for (n = 0; n < cbytes; n += 4) {
1348			tmp = *p16++ & 0xFFFF;
1349			tmp |= (*p16++ & 0xFFFF) << 16;
1350			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1351		}
1352
1353		/* Handle any remaining bytes */
1354		bl = bytes - cbytes;
1355		if (bl) {
1356			tmp = 0;
1357			for (n = 0; n < bl; n++)
1358				tmp |= data[cbytes + n] << (n * 8);
1359
1360			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1361		}
1362		break;
1363	}
1364}
1365
1366/* Write data to the FIFO for an endpoint. This function is for endpoints (such
1367 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1368 * protocol engine prior to this call. */
1369static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1370			   u32 bytes)
1371{
1372	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1373
1374	if ((bytes > 0) && (data == NULL))
1375		return;
1376
1377	/* Setup write of endpoint */
1378	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1379
1380	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1381
1382	/* Need at least 1 byte to trigger TX */
1383	if (bytes == 0)
1384		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1385	else
1386		udc_stuff_fifo(udc, (u8 *) data, bytes);
1387
1388	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1389
1390	udc_val_buffer_hwep(udc, hwep);
1391}
1392
1393/* USB device reset - resets USB to a default state with just EP0
1394   enabled */
1395static void uda_usb_reset(struct lpc32xx_udc *udc)
1396{
1397	u32 i = 0;
1398	/* Re-init device controller and EP0 */
1399	udc_enable(udc);
1400	udc->gadget.speed = USB_SPEED_FULL;
1401
1402	for (i = 1; i < NUM_ENDPOINTS; i++) {
1403		struct lpc32xx_ep *ep = &udc->ep[i];
1404		ep->req_pending = 0;
1405	}
1406}
1407
1408/* Send a ZLP on EP0 */
1409static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1410{
1411	udc_write_hwep(udc, EP_IN, NULL, 0);
1412}
1413
1414/* Get current frame number */
1415static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1416{
1417	u16 flo, fhi;
1418
1419	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1420	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1421	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1422
1423	return (fhi << 8) | flo;
1424}
1425
1426/* Set the device as configured - enables all endpoints */
1427static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1428{
1429	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1430}
1431
1432/* Set the device as unconfigured - disables all endpoints */
1433static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1434{
1435	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1436}
1437
1438/* reinit == restore initial software state */
1439static void udc_reinit(struct lpc32xx_udc *udc)
1440{
1441	u32 i;
1442
1443	INIT_LIST_HEAD(&udc->gadget.ep_list);
1444	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1445
1446	for (i = 0; i < NUM_ENDPOINTS; i++) {
1447		struct lpc32xx_ep *ep = &udc->ep[i];
1448
1449		if (i != 0)
1450			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1451		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1452		INIT_LIST_HEAD(&ep->queue);
1453		ep->req_pending = 0;
1454	}
1455
1456	udc->ep0state = WAIT_FOR_SETUP;
1457}
1458
1459/* Must be called with lock */
1460static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1461{
1462	struct lpc32xx_udc *udc = ep->udc;
1463
1464	list_del_init(&req->queue);
1465	if (req->req.status == -EINPROGRESS)
1466		req->req.status = status;
1467	else
1468		status = req->req.status;
1469
1470	if (ep->lep) {
1471		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1472
1473		/* Free DDs */
1474		udc_dd_free(udc, req->dd_desc_ptr);
1475	}
1476
1477	if (status && status != -ESHUTDOWN)
1478		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1479
1480	ep->req_pending = 0;
1481	spin_unlock(&udc->lock);
1482	req->req.complete(&ep->ep, &req->req);
1483	spin_lock(&udc->lock);
1484}
1485
1486/* Must be called with lock */
1487static void nuke(struct lpc32xx_ep *ep, int status)
1488{
1489	struct lpc32xx_request *req;
1490
1491	while (!list_empty(&ep->queue)) {
1492		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1493		done(ep, req, status);
1494	}
1495
1496	if (status == -ESHUTDOWN) {
1497		uda_disable_hwepint(ep->udc, ep->hwep_num);
1498		udc_disable_hwep(ep->udc, ep->hwep_num);
1499	}
1500}
1501
1502/* IN endpoint 0 transfer */
1503static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1504{
1505	struct lpc32xx_request *req;
1506	struct lpc32xx_ep *ep0 = &udc->ep[0];
1507	u32 tsend, ts = 0;
1508
1509	if (list_empty(&ep0->queue))
1510		/* Nothing to send */
1511		return 0;
1512	else
1513		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1514				 queue);
1515
1516	tsend = ts = req->req.length - req->req.actual;
1517	if (ts == 0) {
1518		/* Send a ZLP */
1519		udc_ep0_send_zlp(udc);
1520		done(ep0, req, 0);
1521		return 1;
1522	} else if (ts > ep0->ep.maxpacket)
1523		ts = ep0->ep.maxpacket; /* Just send what we can */
1524
1525	/* Write data to the EP0 FIFO and start transfer */
1526	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1527
1528	/* Increment data pointer */
1529	req->req.actual += ts;
1530
1531	if (tsend >= ep0->ep.maxpacket)
1532		return 0; /* Stay in data transfer state */
1533
1534	/* Transfer request is complete */
1535	udc->ep0state = WAIT_FOR_SETUP;
1536	done(ep0, req, 0);
1537	return 1;
1538}
1539
1540/* OUT endpoint 0 transfer */
1541static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1542{
1543	struct lpc32xx_request *req;
1544	struct lpc32xx_ep *ep0 = &udc->ep[0];
1545	u32 tr, bufferspace;
1546
1547	if (list_empty(&ep0->queue))
1548		return 0;
1549	else
1550		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1551				 queue);
1552
1553	if (req) {
1554		if (req->req.length == 0) {
1555			/* Just dequeue request */
1556			done(ep0, req, 0);
1557			udc->ep0state = WAIT_FOR_SETUP;
1558			return 1;
1559		}
1560
1561		/* Get data from FIFO */
1562		bufferspace = req->req.length - req->req.actual;
1563		if (bufferspace > ep0->ep.maxpacket)
1564			bufferspace = ep0->ep.maxpacket;
1565
1566		/* Copy data to buffer */
1567		prefetchw(req->req.buf + req->req.actual);
1568		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1569				   bufferspace);
1570		req->req.actual += bufferspace;
1571
1572		if (tr < ep0->ep.maxpacket) {
1573			/* This is the last packet */
1574			done(ep0, req, 0);
1575			udc->ep0state = WAIT_FOR_SETUP;
1576			return 1;
1577		}
1578	}
1579
1580	return 0;
1581}
1582
1583/* Must be called with lock */
1584static void stop_activity(struct lpc32xx_udc *udc)
1585{
1586	struct usb_gadget_driver *driver = udc->driver;
1587	int i;
1588
1589	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1590		driver = NULL;
1591
1592	udc->gadget.speed = USB_SPEED_UNKNOWN;
1593	udc->suspended = 0;
1594
1595	for (i = 0; i < NUM_ENDPOINTS; i++) {
1596		struct lpc32xx_ep *ep = &udc->ep[i];
1597		nuke(ep, -ESHUTDOWN);
1598	}
1599	if (driver) {
1600		spin_unlock(&udc->lock);
1601		driver->disconnect(&udc->gadget);
1602		spin_lock(&udc->lock);
1603	}
1604
1605	isp1301_pullup_enable(udc, 0, 0);
1606	udc_disable(udc);
1607	udc_reinit(udc);
1608}
1609
1610/*
1611 * Activate or kill host pullup
1612 * Can be called with or without lock
1613 */
1614static void pullup(struct lpc32xx_udc *udc, int is_on)
1615{
1616	if (!udc->clocked)
1617		return;
1618
1619	if (!udc->enabled || !udc->vbus)
1620		is_on = 0;
1621
1622	if (is_on != udc->pullup)
1623		isp1301_pullup_enable(udc, is_on, 0);
1624}
1625
1626/* Must be called without lock */
1627static int lpc32xx_ep_disable(struct usb_ep *_ep)
1628{
1629	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1630	struct lpc32xx_udc *udc = ep->udc;
1631	unsigned long	flags;
1632
1633	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1634		return -EINVAL;
1635	spin_lock_irqsave(&udc->lock, flags);
1636
1637	nuke(ep, -ESHUTDOWN);
1638
1639	/* Clear all DMA statuses for this EP */
1640	udc_ep_dma_disable(udc, ep->hwep_num);
1641	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1642	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1643	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1644	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1645
1646	/* Remove the DD pointer in the UDCA */
1647	udc->udca_v_base[ep->hwep_num] = 0;
1648
1649	/* Disable and reset endpoint and interrupt */
1650	uda_clear_hwepint(udc, ep->hwep_num);
1651	udc_unrealize_hwep(udc, ep->hwep_num);
1652
1653	ep->hwep_num = 0;
1654
1655	spin_unlock_irqrestore(&udc->lock, flags);
1656
1657	atomic_dec(&udc->enabled_ep_cnt);
1658	wake_up(&udc->ep_disable_wait_queue);
1659
1660	return 0;
1661}
1662
1663/* Must be called without lock */
1664static int lpc32xx_ep_enable(struct usb_ep *_ep,
1665			     const struct usb_endpoint_descriptor *desc)
1666{
1667	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1668	struct lpc32xx_udc *udc = ep->udc;
1669	u16 maxpacket;
1670	u32 tmp;
1671	unsigned long flags;
1672
1673	/* Verify EP data */
1674	if ((!_ep) || (!ep) || (!desc) ||
1675	    (desc->bDescriptorType != USB_DT_ENDPOINT)) {
1676		dev_dbg(udc->dev, "bad ep or descriptor\n");
1677		return -EINVAL;
1678	}
1679	maxpacket = usb_endpoint_maxp(desc);
1680	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1681		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1682		return -EINVAL;
1683	}
1684
1685	/* Don't touch EP0 */
1686	if (ep->hwep_num_base == 0) {
1687		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1688		return -EINVAL;
1689	}
1690
1691	/* Is driver ready? */
1692	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1693		dev_dbg(udc->dev, "bogus device state\n");
1694		return -ESHUTDOWN;
1695	}
1696
1697	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1698	switch (tmp) {
1699	case USB_ENDPOINT_XFER_CONTROL:
1700		return -EINVAL;
1701
1702	case USB_ENDPOINT_XFER_INT:
1703		if (maxpacket > ep->maxpacket) {
1704			dev_dbg(udc->dev,
1705				"Bad INT endpoint maxpacket %d\n", maxpacket);
1706			return -EINVAL;
1707		}
1708		break;
1709
1710	case USB_ENDPOINT_XFER_BULK:
1711		switch (maxpacket) {
1712		case 8:
1713		case 16:
1714		case 32:
1715		case 64:
1716			break;
1717
1718		default:
1719			dev_dbg(udc->dev,
1720				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1721			return -EINVAL;
1722		}
1723		break;
1724
1725	case USB_ENDPOINT_XFER_ISOC:
1726		break;
1727	}
1728	spin_lock_irqsave(&udc->lock, flags);
1729
1730	/* Initialize endpoint to match the selected descriptor */
1731	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1732	ep->ep.maxpacket = maxpacket;
1733
1734	/* Map hardware endpoint from base and direction */
1735	if (ep->is_in)
1736		/* IN endpoints are offset 1 from the OUT endpoint */
1737		ep->hwep_num = ep->hwep_num_base + EP_IN;
1738	else
1739		ep->hwep_num = ep->hwep_num_base;
1740
1741	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1742	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1743
1744	/* Realize the endpoint, interrupt is enabled later when
1745	 * buffers are queued, IN EPs will NAK until buffers are ready */
1746	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1747	udc_clr_buffer_hwep(udc, ep->hwep_num);
1748	uda_disable_hwepint(udc, ep->hwep_num);
1749	udc_clrstall_hwep(udc, ep->hwep_num);
1750
1751	/* Clear all DMA statuses for this EP */
1752	udc_ep_dma_disable(udc, ep->hwep_num);
1753	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1754	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1755	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1756	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1757
1758	spin_unlock_irqrestore(&udc->lock, flags);
1759
1760	atomic_inc(&udc->enabled_ep_cnt);
1761	return 0;
1762}
1763
1764/*
1765 * Allocate a USB request list
1766 * Can be called with or without lock
1767 */
1768static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1769						    gfp_t gfp_flags)
1770{
1771	struct lpc32xx_request *req;
1772
1773	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1774	if (!req)
1775		return NULL;
1776
1777	INIT_LIST_HEAD(&req->queue);
1778	return &req->req;
1779}
1780
1781/*
1782 * De-allocate a USB request list
1783 * Can be called with or without lock
1784 */
1785static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1786				    struct usb_request *_req)
1787{
1788	struct lpc32xx_request *req;
1789
1790	req = container_of(_req, struct lpc32xx_request, req);
1791	BUG_ON(!list_empty(&req->queue));
1792	kfree(req);
1793}
1794
1795/* Must be called without lock */
1796static int lpc32xx_ep_queue(struct usb_ep *_ep,
1797			    struct usb_request *_req, gfp_t gfp_flags)
1798{
1799	struct lpc32xx_request *req;
1800	struct lpc32xx_ep *ep;
1801	struct lpc32xx_udc *udc;
1802	unsigned long flags;
1803	int status = 0;
1804
1805	req = container_of(_req, struct lpc32xx_request, req);
1806	ep = container_of(_ep, struct lpc32xx_ep, ep);
1807
1808	if (!_req || !_req->complete || !_req->buf ||
1809	    !list_empty(&req->queue))
1810		return -EINVAL;
1811
1812	udc = ep->udc;
1813
1814	if (!_ep) {
1815		dev_dbg(udc->dev, "invalid ep\n");
1816		return -EINVAL;
1817	}
1818
1819
1820	if ((!udc) || (!udc->driver) ||
1821	    (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1822		dev_dbg(udc->dev, "invalid device\n");
1823		return -EINVAL;
1824	}
1825
1826	if (ep->lep) {
1827		struct lpc32xx_usbd_dd_gad *dd;
1828
1829		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1830		if (status)
1831			return status;
1832
1833		/* For the request, build a list of DDs */
1834		dd = udc_dd_alloc(udc);
1835		if (!dd) {
1836			/* Error allocating DD */
1837			return -ENOMEM;
1838		}
1839		req->dd_desc_ptr = dd;
1840
1841		/* Setup the DMA descriptor */
1842		dd->dd_next_phy = dd->dd_next_v = 0;
1843		dd->dd_buffer_addr = req->req.dma;
1844		dd->dd_status = 0;
1845
1846		/* Special handling for ISO EPs */
1847		if (ep->eptype == EP_ISO_TYPE) {
1848			dd->dd_setup = DD_SETUP_ISO_EP |
1849				DD_SETUP_PACKETLEN(0) |
1850				DD_SETUP_DMALENBYTES(1);
1851			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1852			if (ep->is_in)
1853				dd->iso_status[0] = req->req.length;
1854			else
1855				dd->iso_status[0] = 0;
1856		} else
1857			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1858				DD_SETUP_DMALENBYTES(req->req.length);
1859	}
1860
1861	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1862	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1863
1864	spin_lock_irqsave(&udc->lock, flags);
1865
1866	_req->status = -EINPROGRESS;
1867	_req->actual = 0;
1868	req->send_zlp = _req->zero;
1869
1870	/* Kickstart empty queues */
1871	if (list_empty(&ep->queue)) {
1872		list_add_tail(&req->queue, &ep->queue);
1873
1874		if (ep->hwep_num_base == 0) {
1875			/* Handle expected data direction */
1876			if (ep->is_in) {
1877				/* IN packet to host */
1878				udc->ep0state = DATA_IN;
1879				status = udc_ep0_in_req(udc);
1880			} else {
1881				/* OUT packet from host */
1882				udc->ep0state = DATA_OUT;
1883				status = udc_ep0_out_req(udc);
1884			}
1885		} else if (ep->is_in) {
1886			/* IN packet to host and kick off transfer */
1887			if (!ep->req_pending)
1888				udc_ep_in_req_dma(udc, ep);
1889		} else
1890			/* OUT packet from host and kick off list */
1891			if (!ep->req_pending)
1892				udc_ep_out_req_dma(udc, ep);
1893	} else
1894		list_add_tail(&req->queue, &ep->queue);
1895
1896	spin_unlock_irqrestore(&udc->lock, flags);
1897
1898	return (status < 0) ? status : 0;
1899}
1900
1901/* Must be called without lock */
1902static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1903{
1904	struct lpc32xx_ep *ep;
1905	struct lpc32xx_request *req;
1906	unsigned long flags;
1907
1908	ep = container_of(_ep, struct lpc32xx_ep, ep);
1909	if (!_ep || ep->hwep_num_base == 0)
1910		return -EINVAL;
1911
1912	spin_lock_irqsave(&ep->udc->lock, flags);
1913
1914	/* make sure it's actually queued on this endpoint */
1915	list_for_each_entry(req, &ep->queue, queue) {
1916		if (&req->req == _req)
1917			break;
1918	}
1919	if (&req->req != _req) {
1920		spin_unlock_irqrestore(&ep->udc->lock, flags);
1921		return -EINVAL;
1922	}
1923
1924	done(ep, req, -ECONNRESET);
1925
1926	spin_unlock_irqrestore(&ep->udc->lock, flags);
1927
1928	return 0;
1929}
1930
1931/* Must be called without lock */
1932static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1933{
1934	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1935	struct lpc32xx_udc *udc = ep->udc;
1936	unsigned long flags;
1937
1938	if ((!ep) || (ep->hwep_num <= 1))
1939		return -EINVAL;
1940
1941	/* Don't halt an IN EP */
1942	if (ep->is_in)
1943		return -EAGAIN;
1944
1945	spin_lock_irqsave(&udc->lock, flags);
1946
1947	if (value == 1) {
1948		/* stall */
1949		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1950					DAT_WR_BYTE(EP_STAT_ST));
1951	} else {
1952		/* End stall */
1953		ep->wedge = 0;
1954		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1955					DAT_WR_BYTE(0));
1956	}
1957
1958	spin_unlock_irqrestore(&udc->lock, flags);
1959
1960	return 0;
1961}
1962
1963/* set the halt feature and ignores clear requests */
1964static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1965{
1966	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1967
1968	if (!_ep || !ep->udc)
1969		return -EINVAL;
1970
1971	ep->wedge = 1;
1972
1973	return usb_ep_set_halt(_ep);
1974}
1975
1976static const struct usb_ep_ops lpc32xx_ep_ops = {
1977	.enable		= lpc32xx_ep_enable,
1978	.disable	= lpc32xx_ep_disable,
1979	.alloc_request	= lpc32xx_ep_alloc_request,
1980	.free_request	= lpc32xx_ep_free_request,
1981	.queue		= lpc32xx_ep_queue,
1982	.dequeue	= lpc32xx_ep_dequeue,
1983	.set_halt	= lpc32xx_ep_set_halt,
1984	.set_wedge	= lpc32xx_ep_set_wedge,
1985};
1986
1987/* Send a ZLP on a non-0 IN EP */
1988void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1989{
1990	/* Clear EP status */
1991	udc_clearep_getsts(udc, ep->hwep_num);
1992
1993	/* Send ZLP via FIFO mechanism */
1994	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1995}
1996
1997/*
1998 * Handle EP completion for ZLP
1999 * This function will only be called when a delayed ZLP needs to be sent out
2000 * after a DMA transfer has filled both buffers.
2001 */
2002void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
2003{
2004	u32 epstatus;
2005	struct lpc32xx_request *req;
2006
2007	if (ep->hwep_num <= 0)
2008		return;
2009
2010	uda_clear_hwepint(udc, ep->hwep_num);
2011
2012	/* If this interrupt isn't enabled, return now */
2013	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
2014		return;
2015
2016	/* Get endpoint status */
2017	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2018
2019	/*
2020	 * This should never happen, but protect against writing to the
2021	 * buffer when full.
2022	 */
2023	if (epstatus & EP_SEL_F)
2024		return;
2025
2026	if (ep->is_in) {
2027		udc_send_in_zlp(udc, ep);
2028		uda_disable_hwepint(udc, ep->hwep_num);
2029	} else
2030		return;
2031
2032	/* If there isn't a request waiting, something went wrong */
2033	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2034	if (req) {
2035		done(ep, req, 0);
2036
2037		/* Start another request if ready */
2038		if (!list_empty(&ep->queue)) {
2039			if (ep->is_in)
2040				udc_ep_in_req_dma(udc, ep);
2041			else
2042				udc_ep_out_req_dma(udc, ep);
2043		} else
2044			ep->req_pending = 0;
2045	}
2046}
2047
2048
2049/* DMA end of transfer completion */
2050static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
2051{
2052	u32 status, epstatus;
2053	struct lpc32xx_request *req;
2054	struct lpc32xx_usbd_dd_gad *dd;
2055
2056#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2057	ep->totalints++;
2058#endif
2059
2060	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2061	if (!req) {
2062		ep_err(ep, "DMA interrupt on no req!\n");
2063		return;
2064	}
2065	dd = req->dd_desc_ptr;
2066
2067	/* DMA descriptor should always be retired for this call */
2068	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2069		ep_warn(ep, "DMA descriptor did not retire\n");
2070
2071	/* Disable DMA */
2072	udc_ep_dma_disable(udc, ep->hwep_num);
2073	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2074	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2075
2076	/* System error? */
2077	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2078	    (1 << ep->hwep_num)) {
2079		writel((1 << ep->hwep_num),
2080			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2081		ep_err(ep, "AHB critical error!\n");
2082		ep->req_pending = 0;
2083
2084		/* The error could have occurred on a packet of a multipacket
2085		 * transfer, so recovering the transfer is not possible. Close
2086		 * the request with an error */
2087		done(ep, req, -ECONNABORTED);
2088		return;
2089	}
2090
2091	/* Handle the current DD's status */
2092	status = dd->dd_status;
2093	switch (status & DD_STATUS_STS_MASK) {
2094	case DD_STATUS_STS_NS:
2095		/* DD not serviced? This shouldn't happen! */
2096		ep->req_pending = 0;
2097		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2098		       status);
2099
2100		done(ep, req, -ECONNABORTED);
2101		return;
2102
2103	case DD_STATUS_STS_BS:
2104		/* Interrupt only fires on EOT - This shouldn't happen! */
2105		ep->req_pending = 0;
2106		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2107		       status);
2108		done(ep, req, -ECONNABORTED);
2109		return;
2110
2111	case DD_STATUS_STS_NC:
2112	case DD_STATUS_STS_DUR:
2113		/* Really just a short packet, not an underrun */
2114		/* This is a good status and what we expect */
2115		break;
2116
2117	default:
2118		/* Data overrun, system error, or unknown */
2119		ep->req_pending = 0;
2120		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2121		       status);
2122		done(ep, req, -ECONNABORTED);
2123		return;
2124	}
2125
2126	/* ISO endpoints are handled differently */
2127	if (ep->eptype == EP_ISO_TYPE) {
2128		if (ep->is_in)
2129			req->req.actual = req->req.length;
2130		else
2131			req->req.actual = dd->iso_status[0] & 0xFFFF;
2132	} else
2133		req->req.actual += DD_STATUS_CURDMACNT(status);
2134
2135	/* Send a ZLP if necessary. This will be done for non-int
2136	 * packets which have a size that is a divisor of MAXP */
2137	if (req->send_zlp) {
2138		/*
2139		 * If at least 1 buffer is available, send the ZLP now.
2140		 * Otherwise, the ZLP send needs to be deferred until a
2141		 * buffer is available.
2142		 */
2143		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2144			udc_clearep_getsts(udc, ep->hwep_num);
2145			uda_enable_hwepint(udc, ep->hwep_num);
2146			epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2147
2148			/* Let the EP interrupt handle the ZLP */
2149			return;
2150		} else
2151			udc_send_in_zlp(udc, ep);
2152	}
2153
2154	/* Transfer request is complete */
2155	done(ep, req, 0);
2156
2157	/* Start another request if ready */
2158	udc_clearep_getsts(udc, ep->hwep_num);
2159	if (!list_empty((&ep->queue))) {
2160		if (ep->is_in)
2161			udc_ep_in_req_dma(udc, ep);
2162		else
2163			udc_ep_out_req_dma(udc, ep);
2164	} else
2165		ep->req_pending = 0;
2166
2167}
2168
2169/*
2170 *
2171 * Endpoint 0 functions
2172 *
2173 */
2174static void udc_handle_dev(struct lpc32xx_udc *udc)
2175{
2176	u32 tmp;
2177
2178	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2179	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2180
2181	if (tmp & DEV_RST)
2182		uda_usb_reset(udc);
2183	else if (tmp & DEV_CON_CH)
2184		uda_power_event(udc, (tmp & DEV_CON));
2185	else if (tmp & DEV_SUS_CH) {
2186		if (tmp & DEV_SUS) {
2187			if (udc->vbus == 0)
2188				stop_activity(udc);
2189			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2190				 udc->driver) {
2191				/* Power down transceiver */
2192				udc->poweron = 0;
2193				schedule_work(&udc->pullup_job);
2194				uda_resm_susp_event(udc, 1);
2195			}
2196		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2197			   udc->driver && udc->vbus) {
2198			uda_resm_susp_event(udc, 0);
2199			/* Power up transceiver */
2200			udc->poweron = 1;
2201			schedule_work(&udc->pullup_job);
2202		}
2203	}
2204}
2205
2206static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2207{
2208	struct lpc32xx_ep *ep;
2209	u32 ep0buff = 0, tmp;
2210
2211	switch (reqtype & USB_RECIP_MASK) {
2212	case USB_RECIP_INTERFACE:
2213		break; /* Not supported */
2214
2215	case USB_RECIP_DEVICE:
2216		ep0buff = (udc->selfpowered << USB_DEVICE_SELF_POWERED);
2217		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2218			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2219		break;
2220
2221	case USB_RECIP_ENDPOINT:
2222		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2223		ep = &udc->ep[tmp];
2224		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2225			return -EOPNOTSUPP;
2226
2227		if (wIndex & USB_DIR_IN) {
2228			if (!ep->is_in)
2229				return -EOPNOTSUPP; /* Something's wrong */
2230		} else if (ep->is_in)
2231			return -EOPNOTSUPP; /* Not an IN endpoint */
2232
2233		/* Get status of the endpoint */
2234		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2235		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2236
2237		if (tmp & EP_SEL_ST)
2238			ep0buff = (1 << USB_ENDPOINT_HALT);
2239		else
2240			ep0buff = 0;
2241		break;
2242
2243	default:
2244		break;
2245	}
2246
2247	/* Return data */
2248	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2249
2250	return 0;
2251}
2252
2253static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2254{
2255	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2256	struct usb_ctrlrequest ctrlpkt;
2257	int i, bytes;
2258	u16 wIndex, wValue, wLength, reqtype, req, tmp;
2259
2260	/* Nuke previous transfers */
2261	nuke(ep0, -EPROTO);
2262
2263	/* Get setup packet */
2264	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2265	if (bytes != 8) {
2266		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2267			bytes);
2268		return;
2269	}
2270
2271	/* Native endianness */
2272	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2273	wValue = le16_to_cpu(ctrlpkt.wValue);
2274	wLength = le16_to_cpu(ctrlpkt.wLength);
2275	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2276
2277	/* Set direction of EP0 */
2278	if (likely(reqtype & USB_DIR_IN))
2279		ep0->is_in = 1;
2280	else
2281		ep0->is_in = 0;
2282
2283	/* Handle SETUP packet */
2284	req = le16_to_cpu(ctrlpkt.bRequest);
2285	switch (req) {
2286	case USB_REQ_CLEAR_FEATURE:
2287	case USB_REQ_SET_FEATURE:
2288		switch (reqtype) {
2289		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2290			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2291				goto stall; /* Nothing else handled */
2292
2293			/* Tell board about event */
2294			if (req == USB_REQ_CLEAR_FEATURE)
2295				udc->dev_status &=
2296					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2297			else
2298				udc->dev_status |=
2299					(1 << USB_DEVICE_REMOTE_WAKEUP);
2300			uda_remwkp_cgh(udc);
2301			goto zlp_send;
2302
2303		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2304			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2305			if ((wValue != USB_ENDPOINT_HALT) ||
2306			    (tmp >= NUM_ENDPOINTS))
2307				break;
2308
2309			/* Find hardware endpoint from logical endpoint */
2310			ep = &udc->ep[tmp];
2311			tmp = ep->hwep_num;
2312			if (tmp == 0)
2313				break;
2314
2315			if (req == USB_REQ_SET_FEATURE)
2316				udc_stall_hwep(udc, tmp);
2317			else if (!ep->wedge)
2318				udc_clrstall_hwep(udc, tmp);
2319
2320			goto zlp_send;
2321
2322		default:
2323			break;
2324		}
2325
2326
2327	case USB_REQ_SET_ADDRESS:
2328		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2329			udc_set_address(udc, wValue);
2330			goto zlp_send;
2331		}
2332		break;
2333
2334	case USB_REQ_GET_STATUS:
2335		udc_get_status(udc, reqtype, wIndex);
2336		return;
2337
2338	default:
2339		break; /* Let GadgetFS handle the descriptor instead */
2340	}
2341
2342	if (likely(udc->driver)) {
2343		/* device-2-host (IN) or no data setup command, process
2344		 * immediately */
2345		spin_unlock(&udc->lock);
2346		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2347
2348		spin_lock(&udc->lock);
2349		if (req == USB_REQ_SET_CONFIGURATION) {
2350			/* Configuration is set after endpoints are realized */
2351			if (wValue) {
2352				/* Set configuration */
2353				udc_set_device_configured(udc);
2354
2355				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2356							DAT_WR_BYTE(AP_CLK |
2357							INAK_BI | INAK_II));
2358			} else {
2359				/* Clear configuration */
2360				udc_set_device_unconfigured(udc);
2361
2362				/* Disable NAK interrupts */
2363				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2364							DAT_WR_BYTE(AP_CLK));
2365			}
2366		}
2367
2368		if (i < 0) {
2369			/* setup processing failed, force stall */
2370			dev_dbg(udc->dev,
2371				"req %02x.%02x protocol STALL; stat %d\n",
2372				reqtype, req, i);
2373			udc->ep0state = WAIT_FOR_SETUP;
2374			goto stall;
2375		}
2376	}
2377
2378	if (!ep0->is_in)
2379		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2380
2381	return;
2382
2383stall:
2384	udc_stall_hwep(udc, EP_IN);
2385	return;
2386
2387zlp_send:
2388	udc_ep0_send_zlp(udc);
2389	return;
2390}
2391
2392/* IN endpoint 0 transfer */
2393static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2394{
2395	struct lpc32xx_ep *ep0 = &udc->ep[0];
2396	u32 epstatus;
2397
2398	/* Clear EP interrupt */
2399	epstatus = udc_clearep_getsts(udc, EP_IN);
2400
2401#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2402	ep0->totalints++;
2403#endif
2404
2405	/* Stalled? Clear stall and reset buffers */
2406	if (epstatus & EP_SEL_ST) {
2407		udc_clrstall_hwep(udc, EP_IN);
2408		nuke(ep0, -ECONNABORTED);
2409		udc->ep0state = WAIT_FOR_SETUP;
2410		return;
2411	}
2412
2413	/* Is a buffer available? */
2414	if (!(epstatus & EP_SEL_F)) {
2415		/* Handle based on current state */
2416		if (udc->ep0state == DATA_IN)
2417			udc_ep0_in_req(udc);
2418		else {
2419			/* Unknown state for EP0 oe end of DATA IN phase */
2420			nuke(ep0, -ECONNABORTED);
2421			udc->ep0state = WAIT_FOR_SETUP;
2422		}
2423	}
2424}
2425
2426/* OUT endpoint 0 transfer */
2427static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2428{
2429	struct lpc32xx_ep *ep0 = &udc->ep[0];
2430	u32 epstatus;
2431
2432	/* Clear EP interrupt */
2433	epstatus = udc_clearep_getsts(udc, EP_OUT);
2434
2435
2436#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2437	ep0->totalints++;
2438#endif
2439
2440	/* Stalled? */
2441	if (epstatus & EP_SEL_ST) {
2442		udc_clrstall_hwep(udc, EP_OUT);
2443		nuke(ep0, -ECONNABORTED);
2444		udc->ep0state = WAIT_FOR_SETUP;
2445		return;
2446	}
2447
2448	/* A NAK may occur if a packet couldn't be received yet */
2449	if (epstatus & EP_SEL_EPN)
2450		return;
2451	/* Setup packet incoming? */
2452	if (epstatus & EP_SEL_STP) {
2453		nuke(ep0, 0);
2454		udc->ep0state = WAIT_FOR_SETUP;
2455	}
2456
2457	/* Data available? */
2458	if (epstatus & EP_SEL_F)
2459		/* Handle based on current state */
2460		switch (udc->ep0state) {
2461		case WAIT_FOR_SETUP:
2462			udc_handle_ep0_setup(udc);
2463			break;
2464
2465		case DATA_OUT:
2466			udc_ep0_out_req(udc);
2467			break;
2468
2469		default:
2470			/* Unknown state for EP0 */
2471			nuke(ep0, -ECONNABORTED);
2472			udc->ep0state = WAIT_FOR_SETUP;
2473		}
2474}
2475
2476/* Must be called without lock */
2477static int lpc32xx_get_frame(struct usb_gadget *gadget)
2478{
2479	int frame;
2480	unsigned long flags;
2481	struct lpc32xx_udc *udc = to_udc(gadget);
2482
2483	if (!udc->clocked)
2484		return -EINVAL;
2485
2486	spin_lock_irqsave(&udc->lock, flags);
2487
2488	frame = (int) udc_get_current_frame(udc);
2489
2490	spin_unlock_irqrestore(&udc->lock, flags);
2491
2492	return frame;
2493}
2494
2495static int lpc32xx_wakeup(struct usb_gadget *gadget)
2496{
2497	return -ENOTSUPP;
2498}
2499
2500static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2501{
2502	struct lpc32xx_udc *udc = to_udc(gadget);
2503
2504	/* Always self-powered */
2505	udc->selfpowered = (is_on != 0);
2506
2507	return 0;
2508}
2509
2510/*
2511 * vbus is here!  turn everything on that's ready
2512 * Must be called without lock
2513 */
2514static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2515{
2516	unsigned long flags;
2517	struct lpc32xx_udc *udc = to_udc(gadget);
2518
2519	spin_lock_irqsave(&udc->lock, flags);
2520
2521	/* Doesn't need lock */
2522	if (udc->driver) {
2523		udc_clk_set(udc, 1);
2524		udc_enable(udc);
2525		pullup(udc, is_active);
2526	} else {
2527		stop_activity(udc);
2528		pullup(udc, 0);
2529
2530		spin_unlock_irqrestore(&udc->lock, flags);
2531		/*
2532		 *  Wait for all the endpoints to disable,
2533		 *  before disabling clocks. Don't wait if
2534		 *  endpoints are not enabled.
2535		 */
2536		if (atomic_read(&udc->enabled_ep_cnt))
2537			wait_event_interruptible(udc->ep_disable_wait_queue,
2538				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2539
2540		spin_lock_irqsave(&udc->lock, flags);
2541
2542		udc_clk_set(udc, 0);
2543	}
2544
2545	spin_unlock_irqrestore(&udc->lock, flags);
2546
2547	return 0;
2548}
2549
2550/* Can be called with or without lock */
2551static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2552{
2553	struct lpc32xx_udc *udc = to_udc(gadget);
2554
2555	/* Doesn't need lock */
2556	pullup(udc, is_on);
2557
2558	return 0;
2559}
2560
2561static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2562static int lpc32xx_stop(struct usb_gadget *, struct usb_gadget_driver *);
2563
2564static const struct usb_gadget_ops lpc32xx_udc_ops = {
2565	.get_frame		= lpc32xx_get_frame,
2566	.wakeup			= lpc32xx_wakeup,
2567	.set_selfpowered	= lpc32xx_set_selfpowered,
2568	.vbus_session		= lpc32xx_vbus_session,
2569	.pullup			= lpc32xx_pullup,
2570	.udc_start		= lpc32xx_start,
2571	.udc_stop		= lpc32xx_stop,
2572};
2573
2574static void nop_release(struct device *dev)
2575{
2576	/* nothing to free */
2577}
2578
2579static const struct lpc32xx_udc controller_template = {
2580	.gadget = {
2581		.ops	= &lpc32xx_udc_ops,
2582		.name	= driver_name,
2583		.dev	= {
2584			.init_name = "gadget",
2585			.release = nop_release,
2586		}
2587	},
2588	.ep[0] = {
2589		.ep = {
2590			.name	= "ep0",
2591			.ops	= &lpc32xx_ep_ops,
2592		},
2593		.maxpacket	= 64,
2594		.hwep_num_base	= 0,
2595		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2596		.lep		= 0,
2597		.eptype		= EP_CTL_TYPE,
2598	},
2599	.ep[1] = {
2600		.ep = {
2601			.name	= "ep1-int",
2602			.ops	= &lpc32xx_ep_ops,
2603		},
2604		.maxpacket	= 64,
2605		.hwep_num_base	= 2,
2606		.hwep_num	= 0, /* 2 or 3, will be set later */
2607		.lep		= 1,
2608		.eptype		= EP_INT_TYPE,
2609	},
2610	.ep[2] = {
2611		.ep = {
2612			.name	= "ep2-bulk",
2613			.ops	= &lpc32xx_ep_ops,
2614		},
2615		.maxpacket	= 64,
2616		.hwep_num_base	= 4,
2617		.hwep_num	= 0, /* 4 or 5, will be set later */
2618		.lep		= 2,
2619		.eptype		= EP_BLK_TYPE,
2620	},
2621	.ep[3] = {
2622		.ep = {
2623			.name	= "ep3-iso",
2624			.ops	= &lpc32xx_ep_ops,
2625		},
2626		.maxpacket	= 1023,
2627		.hwep_num_base	= 6,
2628		.hwep_num	= 0, /* 6 or 7, will be set later */
2629		.lep		= 3,
2630		.eptype		= EP_ISO_TYPE,
2631	},
2632	.ep[4] = {
2633		.ep = {
2634			.name	= "ep4-int",
2635			.ops	= &lpc32xx_ep_ops,
2636		},
2637		.maxpacket	= 64,
2638		.hwep_num_base	= 8,
2639		.hwep_num	= 0, /* 8 or 9, will be set later */
2640		.lep		= 4,
2641		.eptype		= EP_INT_TYPE,
2642	},
2643	.ep[5] = {
2644		.ep = {
2645			.name	= "ep5-bulk",
2646			.ops	= &lpc32xx_ep_ops,
2647		},
2648		.maxpacket	= 64,
2649		.hwep_num_base	= 10,
2650		.hwep_num	= 0, /* 10 or 11, will be set later */
2651		.lep		= 5,
2652		.eptype		= EP_BLK_TYPE,
2653	},
2654	.ep[6] = {
2655		.ep = {
2656			.name	= "ep6-iso",
2657			.ops	= &lpc32xx_ep_ops,
2658		},
2659		.maxpacket	= 1023,
2660		.hwep_num_base	= 12,
2661		.hwep_num	= 0, /* 12 or 13, will be set later */
2662		.lep		= 6,
2663		.eptype		= EP_ISO_TYPE,
2664	},
2665	.ep[7] = {
2666		.ep = {
2667			.name	= "ep7-int",
2668			.ops	= &lpc32xx_ep_ops,
2669		},
2670		.maxpacket	= 64,
2671		.hwep_num_base	= 14,
2672		.hwep_num	= 0,
2673		.lep		= 7,
2674		.eptype		= EP_INT_TYPE,
2675	},
2676	.ep[8] = {
2677		.ep = {
2678			.name	= "ep8-bulk",
2679			.ops	= &lpc32xx_ep_ops,
2680		},
2681		.maxpacket	= 64,
2682		.hwep_num_base	= 16,
2683		.hwep_num	= 0,
2684		.lep		= 8,
2685		.eptype		= EP_BLK_TYPE,
2686	},
2687	.ep[9] = {
2688		.ep = {
2689			.name	= "ep9-iso",
2690			.ops	= &lpc32xx_ep_ops,
2691		},
2692		.maxpacket	= 1023,
2693		.hwep_num_base	= 18,
2694		.hwep_num	= 0,
2695		.lep		= 9,
2696		.eptype		= EP_ISO_TYPE,
2697	},
2698	.ep[10] = {
2699		.ep = {
2700			.name	= "ep10-int",
2701			.ops	= &lpc32xx_ep_ops,
2702		},
2703		.maxpacket	= 64,
2704		.hwep_num_base	= 20,
2705		.hwep_num	= 0,
2706		.lep		= 10,
2707		.eptype		= EP_INT_TYPE,
2708	},
2709	.ep[11] = {
2710		.ep = {
2711			.name	= "ep11-bulk",
2712			.ops	= &lpc32xx_ep_ops,
2713		},
2714		.maxpacket	= 64,
2715		.hwep_num_base	= 22,
2716		.hwep_num	= 0,
2717		.lep		= 11,
2718		.eptype		= EP_BLK_TYPE,
2719	},
2720	.ep[12] = {
2721		.ep = {
2722			.name	= "ep12-iso",
2723			.ops	= &lpc32xx_ep_ops,
2724		},
2725		.maxpacket	= 1023,
2726		.hwep_num_base	= 24,
2727		.hwep_num	= 0,
2728		.lep		= 12,
2729		.eptype		= EP_ISO_TYPE,
2730	},
2731	.ep[13] = {
2732		.ep = {
2733			.name	= "ep13-int",
2734			.ops	= &lpc32xx_ep_ops,
2735		},
2736		.maxpacket	= 64,
2737		.hwep_num_base	= 26,
2738		.hwep_num	= 0,
2739		.lep		= 13,
2740		.eptype		= EP_INT_TYPE,
2741	},
2742	.ep[14] = {
2743		.ep = {
2744			.name	= "ep14-bulk",
2745			.ops	= &lpc32xx_ep_ops,
2746		},
2747		.maxpacket	= 64,
2748		.hwep_num_base	= 28,
2749		.hwep_num	= 0,
2750		.lep		= 14,
2751		.eptype		= EP_BLK_TYPE,
2752	},
2753	.ep[15] = {
2754		.ep = {
2755			.name	= "ep15-bulk",
2756			.ops	= &lpc32xx_ep_ops,
2757		},
2758		.maxpacket	= 1023,
2759		.hwep_num_base	= 30,
2760		.hwep_num	= 0,
2761		.lep		= 15,
2762		.eptype		= EP_BLK_TYPE,
2763	},
2764};
2765
2766/* ISO and status interrupts */
2767static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2768{
2769	u32 tmp, devstat;
2770	struct lpc32xx_udc *udc = _udc;
2771
2772	spin_lock(&udc->lock);
2773
2774	/* Read the device status register */
2775	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2776
2777	devstat &= ~USBD_EP_FAST;
2778	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2779	devstat = devstat & udc->enabled_devints;
2780
2781	/* Device specific handling needed? */
2782	if (devstat & USBD_DEV_STAT)
2783		udc_handle_dev(udc);
2784
2785	/* Start of frame? (devstat & FRAME_INT):
2786	 * The frame interrupt isn't really needed for ISO support,
2787	 * as the driver will queue the necessary packets */
2788
2789	/* Error? */
2790	if (devstat & ERR_INT) {
2791		/* All types of errors, from cable removal during transfer to
2792		 * misc protocol and bit errors. These are mostly for just info,
2793		 * as the USB hardware will work around these. If these errors
2794		 * happen alot, something is wrong. */
2795		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2796		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2797		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2798	}
2799
2800	spin_unlock(&udc->lock);
2801
2802	return IRQ_HANDLED;
2803}
2804
2805/* EP interrupts */
2806static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2807{
2808	u32 tmp;
2809	struct lpc32xx_udc *udc = _udc;
2810
2811	spin_lock(&udc->lock);
2812
2813	/* Read the device status register */
2814	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2815
2816	/* Endpoints */
2817	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2818
2819	/* Special handling for EP0 */
2820	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2821		/* Handle EP0 IN */
2822		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2823			udc_handle_ep0_in(udc);
2824
2825		/* Handle EP0 OUT */
2826		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2827			udc_handle_ep0_out(udc);
2828	}
2829
2830	/* All other EPs */
2831	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2832		int i;
2833
2834		/* Handle other EP interrupts */
2835		for (i = 1; i < NUM_ENDPOINTS; i++) {
2836			if (tmp & (1 << udc->ep[i].hwep_num))
2837				udc_handle_eps(udc, &udc->ep[i]);
2838		}
2839	}
2840
2841	spin_unlock(&udc->lock);
2842
2843	return IRQ_HANDLED;
2844}
2845
2846static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2847{
2848	struct lpc32xx_udc *udc = _udc;
2849
2850	int i;
2851	u32 tmp;
2852
2853	spin_lock(&udc->lock);
2854
2855	/* Handle EP DMA EOT interrupts */
2856	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2857		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2858		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2859		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2860	for (i = 1; i < NUM_ENDPOINTS; i++) {
2861		if (tmp & (1 << udc->ep[i].hwep_num))
2862			udc_handle_dma_ep(udc, &udc->ep[i]);
2863	}
2864
2865	spin_unlock(&udc->lock);
2866
2867	return IRQ_HANDLED;
2868}
2869
2870/*
2871 *
2872 * VBUS detection, pullup handler, and Gadget cable state notification
2873 *
2874 */
2875static void vbus_work(struct work_struct *work)
2876{
2877	u8 value;
2878	struct lpc32xx_udc *udc = container_of(work, struct lpc32xx_udc,
2879					       vbus_job);
2880
2881	if (udc->enabled != 0) {
2882		/* Discharge VBUS real quick */
2883		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2884			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2885
2886		/* Give VBUS some time (100mS) to discharge */
2887		msleep(100);
2888
2889		/* Disable VBUS discharge resistor */
2890		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2891			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2892			OTG1_VBUS_DISCHRG);
2893
2894		/* Clear interrupt */
2895		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2896			ISP1301_I2C_INTERRUPT_LATCH |
2897			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2898
2899		/* Get the VBUS status from the transceiver */
2900		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2901						 ISP1301_I2C_INTERRUPT_SOURCE);
2902
2903		/* VBUS on or off? */
2904		if (value & INT_SESS_VLD)
2905			udc->vbus = 1;
2906		else
2907			udc->vbus = 0;
2908
2909		/* VBUS changed? */
2910		if (udc->last_vbus != udc->vbus) {
2911			udc->last_vbus = udc->vbus;
2912			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2913		}
2914	}
2915
2916	/* Re-enable after completion */
2917	enable_irq(udc->udp_irq[IRQ_USB_ATX]);
2918}
2919
2920static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2921{
2922	struct lpc32xx_udc *udc = _udc;
2923
2924	/* Defer handling of VBUS IRQ to work queue */
2925	disable_irq_nosync(udc->udp_irq[IRQ_USB_ATX]);
2926	schedule_work(&udc->vbus_job);
2927
2928	return IRQ_HANDLED;
2929}
2930
2931static int lpc32xx_start(struct usb_gadget *gadget,
2932			 struct usb_gadget_driver *driver)
2933{
2934	struct lpc32xx_udc *udc = to_udc(gadget);
2935	int i;
2936
2937	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2938		dev_err(udc->dev, "bad parameter.\n");
2939		return -EINVAL;
2940	}
2941
2942	if (udc->driver) {
2943		dev_err(udc->dev, "UDC already has a gadget driver\n");
2944		return -EBUSY;
2945	}
2946
2947	udc->driver = driver;
2948	udc->gadget.dev.of_node = udc->dev->of_node;
2949	udc->enabled = 1;
2950	udc->selfpowered = 1;
2951	udc->vbus = 0;
2952
2953	/* Force VBUS process once to check for cable insertion */
2954	udc->last_vbus = udc->vbus = 0;
2955	schedule_work(&udc->vbus_job);
2956
2957	/* Do not re-enable ATX IRQ (3) */
2958	for (i = IRQ_USB_LP; i < IRQ_USB_ATX; i++)
2959		enable_irq(udc->udp_irq[i]);
2960
2961	return 0;
2962}
2963
2964static int lpc32xx_stop(struct usb_gadget *gadget,
2965			struct usb_gadget_driver *driver)
2966{
2967	int i;
2968	struct lpc32xx_udc *udc = to_udc(gadget);
2969
2970	if (!driver || driver != udc->driver)
2971		return -EINVAL;
2972
2973	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
2974		disable_irq(udc->udp_irq[i]);
2975
2976	if (udc->clocked) {
2977		spin_lock(&udc->lock);
2978		stop_activity(udc);
2979		spin_unlock(&udc->lock);
2980
2981		/*
2982		 *  Wait for all the endpoints to disable,
2983		 *  before disabling clocks. Don't wait if
2984		 *  endpoints are not enabled.
2985		 */
2986		if (atomic_read(&udc->enabled_ep_cnt))
2987			wait_event_interruptible(udc->ep_disable_wait_queue,
2988				(atomic_read(&udc->enabled_ep_cnt) == 0));
2989
2990		spin_lock(&udc->lock);
2991		udc_clk_set(udc, 0);
2992		spin_unlock(&udc->lock);
2993	}
2994
2995	udc->enabled = 0;
2996	udc->driver = NULL;
2997
2998	return 0;
2999}
3000
3001static void lpc32xx_udc_shutdown(struct platform_device *dev)
3002{
3003	/* Force disconnect on reboot */
3004	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
3005
3006	pullup(udc, 0);
3007}
3008
3009/*
3010 * Callbacks to be overridden by options passed via OF (TODO)
3011 */
3012
3013static void lpc32xx_usbd_conn_chg(int conn)
3014{
3015	/* Do nothing, it might be nice to enable an LED
3016	 * based on conn state being !0 */
3017}
3018
3019static void lpc32xx_usbd_susp_chg(int susp)
3020{
3021	/* Device suspend if susp != 0 */
3022}
3023
3024static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
3025{
3026	/* Enable or disable USB remote wakeup */
3027}
3028
3029struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
3030	.vbus_drv_pol = 0,
3031	.conn_chgb = &lpc32xx_usbd_conn_chg,
3032	.susp_chgb = &lpc32xx_usbd_susp_chg,
3033	.rmwk_chgb = &lpc32xx_rmwkup_chg,
3034};
3035
3036
3037static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
3038
3039static int __init lpc32xx_udc_probe(struct platform_device *pdev)
3040{
3041	struct device *dev = &pdev->dev;
3042	struct lpc32xx_udc *udc;
3043	int retval, i;
3044	struct resource *res;
3045	dma_addr_t dma_handle;
3046	struct device_node *isp1301_node;
3047
3048	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
3049	if (!udc)
3050		return -ENOMEM;
3051
3052	memcpy(udc, &controller_template, sizeof(*udc));
3053	for (i = 0; i <= 15; i++)
3054		udc->ep[i].udc = udc;
3055	udc->gadget.ep0 = &udc->ep[0].ep;
3056
3057	/* init software state */
3058	udc->gadget.dev.parent = dev;
3059	udc->pdev = pdev;
3060	udc->dev = &pdev->dev;
3061	udc->enabled = 0;
3062
3063	if (pdev->dev.of_node) {
3064		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3065						"transceiver", 0);
3066	} else {
3067		isp1301_node = NULL;
3068	}
3069
3070	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3071	if (!udc->isp1301_i2c_client) {
3072		retval = -EPROBE_DEFER;
3073		goto phy_fail;
3074	}
3075
3076	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3077		 udc->isp1301_i2c_client->addr);
3078
3079	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3080	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3081	if (retval)
3082		goto resource_fail;
3083
3084	udc->board = &lpc32xx_usbddata;
3085
3086	/*
3087	 * Resources are mapped as follows:
3088	 *  IORESOURCE_MEM, base address and size of USB space
3089	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3090	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3091	 *  IORESOURCE_IRQ, USB device interrupt number
3092	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3093	 */
3094	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3095	if (!res) {
3096		retval = -ENXIO;
3097		goto resource_fail;
3098	}
3099
3100	spin_lock_init(&udc->lock);
3101
3102	/* Get IRQs */
3103	for (i = 0; i < 4; i++) {
3104		udc->udp_irq[i] = platform_get_irq(pdev, i);
3105		if (udc->udp_irq[i] < 0) {
3106			dev_err(udc->dev,
3107				"irq resource %d not available!\n", i);
3108			retval = udc->udp_irq[i];
3109			goto irq_fail;
3110		}
3111	}
3112
3113	udc->io_p_start = res->start;
3114	udc->io_p_size = resource_size(res);
3115	if (!request_mem_region(udc->io_p_start, udc->io_p_size, driver_name)) {
3116		dev_err(udc->dev, "someone's using UDC memory\n");
3117		retval = -EBUSY;
3118		goto request_mem_region_fail;
3119	}
3120
3121	udc->udp_baseaddr = ioremap(udc->io_p_start, udc->io_p_size);
3122	if (!udc->udp_baseaddr) {
3123		retval = -ENOMEM;
3124		dev_err(udc->dev, "IO map failure\n");
3125		goto io_map_fail;
3126	}
3127
3128	/* Enable AHB slave USB clock, needed for further USB clock control */
3129	writel(USB_SLAVE_HCLK_EN | (1 << 19), USB_CTRL);
3130
3131	/* Get required clocks */
3132	udc->usb_pll_clk = clk_get(&pdev->dev, "ck_pll5");
3133	if (IS_ERR(udc->usb_pll_clk)) {
3134		dev_err(udc->dev, "failed to acquire USB PLL\n");
3135		retval = PTR_ERR(udc->usb_pll_clk);
3136		goto pll_get_fail;
3137	}
3138	udc->usb_slv_clk = clk_get(&pdev->dev, "ck_usbd");
3139	if (IS_ERR(udc->usb_slv_clk)) {
3140		dev_err(udc->dev, "failed to acquire USB device clock\n");
3141		retval = PTR_ERR(udc->usb_slv_clk);
3142		goto usb_clk_get_fail;
3143	}
3144	udc->usb_otg_clk = clk_get(&pdev->dev, "ck_usb_otg");
3145	if (IS_ERR(udc->usb_otg_clk)) {
3146		dev_err(udc->dev, "failed to acquire USB otg clock\n");
3147		retval = PTR_ERR(udc->usb_otg_clk);
3148		goto usb_otg_clk_get_fail;
3149	}
3150
3151	/* Setup PLL clock to 48MHz */
3152	retval = clk_enable(udc->usb_pll_clk);
3153	if (retval < 0) {
3154		dev_err(udc->dev, "failed to start USB PLL\n");
3155		goto pll_enable_fail;
3156	}
3157
3158	retval = clk_set_rate(udc->usb_pll_clk, 48000);
3159	if (retval < 0) {
3160		dev_err(udc->dev, "failed to set USB clock rate\n");
3161		goto pll_set_fail;
3162	}
3163
3164	writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN, USB_CTRL);
3165
3166	/* Enable USB device clock */
3167	retval = clk_enable(udc->usb_slv_clk);
3168	if (retval < 0) {
3169		dev_err(udc->dev, "failed to start USB device clock\n");
3170		goto usb_clk_enable_fail;
3171	}
3172
3173	/* Enable USB OTG clock */
3174	retval = clk_enable(udc->usb_otg_clk);
3175	if (retval < 0) {
3176		dev_err(udc->dev, "failed to start USB otg clock\n");
3177		goto usb_otg_clk_enable_fail;
3178	}
3179
3180	/* Setup deferred workqueue data */
3181	udc->poweron = udc->pullup = 0;
3182	INIT_WORK(&udc->pullup_job, pullup_work);
3183	INIT_WORK(&udc->vbus_job, vbus_work);
3184#ifdef CONFIG_PM
3185	INIT_WORK(&udc->power_job, power_work);
3186#endif
3187
3188	/* All clocks are now on */
3189	udc->clocked = 1;
3190
3191	isp1301_udc_configure(udc);
3192	/* Allocate memory for the UDCA */
3193	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3194					      &dma_handle,
3195					      (GFP_KERNEL | GFP_DMA));
3196	if (!udc->udca_v_base) {
3197		dev_err(udc->dev, "error getting UDCA region\n");
3198		retval = -ENOMEM;
3199		goto i2c_fail;
3200	}
3201	udc->udca_p_base = dma_handle;
3202	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3203		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3204
3205	/* Setup the DD DMA memory pool */
3206	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3207					sizeof(struct lpc32xx_usbd_dd_gad),
3208					sizeof(u32), 0);
3209	if (!udc->dd_cache) {
3210		dev_err(udc->dev, "error getting DD DMA region\n");
3211		retval = -ENOMEM;
3212		goto dma_alloc_fail;
3213	}
3214
3215	/* Clear USB peripheral and initialize gadget endpoints */
3216	udc_disable(udc);
3217	udc_reinit(udc);
3218
3219	/* Request IRQs - low and high priority USB device IRQs are routed to
3220	 * the same handler, while the DMA interrupt is routed elsewhere */
3221	retval = request_irq(udc->udp_irq[IRQ_USB_LP], lpc32xx_usb_lp_irq,
3222			     0, "udc_lp", udc);
3223	if (retval < 0) {
3224		dev_err(udc->dev, "LP request irq %d failed\n",
3225			udc->udp_irq[IRQ_USB_LP]);
3226		goto irq_lp_fail;
3227	}
3228	retval = request_irq(udc->udp_irq[IRQ_USB_HP], lpc32xx_usb_hp_irq,
3229			     0, "udc_hp", udc);
3230	if (retval < 0) {
3231		dev_err(udc->dev, "HP request irq %d failed\n",
3232			udc->udp_irq[IRQ_USB_HP]);
3233		goto irq_hp_fail;
3234	}
3235
3236	retval = request_irq(udc->udp_irq[IRQ_USB_DEVDMA],
3237			     lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3238	if (retval < 0) {
3239		dev_err(udc->dev, "DEV request irq %d failed\n",
3240			udc->udp_irq[IRQ_USB_DEVDMA]);
3241		goto irq_dev_fail;
3242	}
3243
3244	/* The transceiver interrupt is used for VBUS detection and will
3245	   kick off the VBUS handler function */
3246	retval = request_irq(udc->udp_irq[IRQ_USB_ATX], lpc32xx_usb_vbus_irq,
3247			     0, "udc_otg", udc);
3248	if (retval < 0) {
3249		dev_err(udc->dev, "VBUS request irq %d failed\n",
3250			udc->udp_irq[IRQ_USB_ATX]);
3251		goto irq_xcvr_fail;
3252	}
3253
3254	/* Initialize wait queue */
3255	init_waitqueue_head(&udc->ep_disable_wait_queue);
3256	atomic_set(&udc->enabled_ep_cnt, 0);
3257
3258	/* Keep all IRQs disabled until GadgetFS starts up */
3259	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
3260		disable_irq(udc->udp_irq[i]);
3261
3262	retval = usb_add_gadget_udc(dev, &udc->gadget);
3263	if (retval < 0)
3264		goto add_gadget_fail;
3265
3266	dev_set_drvdata(dev, udc);
3267	device_init_wakeup(dev, 1);
3268	create_debug_file(udc);
3269
3270	/* Disable clocks for now */
3271	udc_clk_set(udc, 0);
3272
3273	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3274	return 0;
3275
3276add_gadget_fail:
3277	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3278irq_xcvr_fail:
3279	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3280irq_dev_fail:
3281	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3282irq_hp_fail:
3283	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3284irq_lp_fail:
3285	dma_pool_destroy(udc->dd_cache);
3286dma_alloc_fail:
3287	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3288			  udc->udca_v_base, udc->udca_p_base);
3289i2c_fail:
3290	clk_disable(udc->usb_otg_clk);
3291usb_otg_clk_enable_fail:
3292	clk_disable(udc->usb_slv_clk);
3293usb_clk_enable_fail:
3294pll_set_fail:
3295	clk_disable(udc->usb_pll_clk);
3296pll_enable_fail:
3297	clk_put(udc->usb_otg_clk);
3298usb_otg_clk_get_fail:
3299	clk_put(udc->usb_slv_clk);
3300usb_clk_get_fail:
3301	clk_put(udc->usb_pll_clk);
3302pll_get_fail:
3303	iounmap(udc->udp_baseaddr);
3304io_map_fail:
3305	release_mem_region(udc->io_p_start, udc->io_p_size);
3306	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3307request_mem_region_fail:
3308irq_fail:
3309resource_fail:
3310phy_fail:
3311	kfree(udc);
3312	return retval;
3313}
3314
3315static int lpc32xx_udc_remove(struct platform_device *pdev)
3316{
3317	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3318
3319	usb_del_gadget_udc(&udc->gadget);
3320	if (udc->driver)
3321		return -EBUSY;
3322
3323	udc_clk_set(udc, 1);
3324	udc_disable(udc);
3325	pullup(udc, 0);
3326
3327	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3328
3329	device_init_wakeup(&pdev->dev, 0);
3330	remove_debug_file(udc);
3331
3332	dma_pool_destroy(udc->dd_cache);
3333	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3334			  udc->udca_v_base, udc->udca_p_base);
3335	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3336	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3337	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3338
3339	clk_disable(udc->usb_otg_clk);
3340	clk_put(udc->usb_otg_clk);
3341	clk_disable(udc->usb_slv_clk);
3342	clk_put(udc->usb_slv_clk);
3343	clk_disable(udc->usb_pll_clk);
3344	clk_put(udc->usb_pll_clk);
3345	iounmap(udc->udp_baseaddr);
3346	release_mem_region(udc->io_p_start, udc->io_p_size);
3347	kfree(udc);
3348
3349	return 0;
3350}
3351
3352#ifdef CONFIG_PM
3353static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3354{
3355	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3356
3357	if (udc->clocked) {
3358		/* Power down ISP */
3359		udc->poweron = 0;
3360		isp1301_set_powerstate(udc, 0);
3361
3362		/* Disable clocking */
3363		udc_clk_set(udc, 0);
3364
3365		/* Keep clock flag on, so we know to re-enable clocks
3366		   on resume */
3367		udc->clocked = 1;
3368
3369		/* Kill global USB clock */
3370		clk_disable(udc->usb_slv_clk);
3371	}
3372
3373	return 0;
3374}
3375
3376static int lpc32xx_udc_resume(struct platform_device *pdev)
3377{
3378	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3379
3380	if (udc->clocked) {
3381		/* Enable global USB clock */
3382		clk_enable(udc->usb_slv_clk);
3383
3384		/* Enable clocking */
3385		udc_clk_set(udc, 1);
3386
3387		/* ISP back to normal power mode */
3388		udc->poweron = 1;
3389		isp1301_set_powerstate(udc, 1);
3390	}
3391
3392	return 0;
3393}
3394#else
3395#define	lpc32xx_udc_suspend	NULL
3396#define	lpc32xx_udc_resume	NULL
3397#endif
3398
3399#ifdef CONFIG_OF
3400static struct of_device_id lpc32xx_udc_of_match[] = {
3401	{ .compatible = "nxp,lpc3220-udc", },
3402	{ },
3403};
3404MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3405#endif
3406
3407static struct platform_driver lpc32xx_udc_driver = {
3408	.remove		= lpc32xx_udc_remove,
3409	.shutdown	= lpc32xx_udc_shutdown,
3410	.suspend	= lpc32xx_udc_suspend,
3411	.resume		= lpc32xx_udc_resume,
3412	.driver		= {
3413		.name	= (char *) driver_name,
3414		.owner	= THIS_MODULE,
3415		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3416	},
3417};
3418
3419module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3420
3421MODULE_DESCRIPTION("LPC32XX udc driver");
3422MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3423MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3424MODULE_LICENSE("GPL");
3425MODULE_ALIAS("platform:lpc32xx_udc");