Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
   3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
   4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the version 2 of the GNU General Public License
   8 * as published by the Free Software Foundation
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/netdevice.h>
  23#include <linux/if_arp.h>
  24#include <linux/can.h>
  25#include <linux/can/dev.h>
  26#include <linux/can/skb.h>
  27#include <linux/can/netlink.h>
  28#include <linux/can/led.h>
  29#include <net/rtnetlink.h>
  30
  31#define MOD_DESC "CAN device driver interface"
  32
  33MODULE_DESCRIPTION(MOD_DESC);
  34MODULE_LICENSE("GPL v2");
  35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  36
  37/* CAN DLC to real data length conversion helpers */
  38
  39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  40			     8, 12, 16, 20, 24, 32, 48, 64};
  41
  42/* get data length from can_dlc with sanitized can_dlc */
  43u8 can_dlc2len(u8 can_dlc)
  44{
  45	return dlc2len[can_dlc & 0x0F];
  46}
  47EXPORT_SYMBOL_GPL(can_dlc2len);
  48
  49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
  50			     9, 9, 9, 9,			/* 9 - 12 */
  51			     10, 10, 10, 10,			/* 13 - 16 */
  52			     11, 11, 11, 11,			/* 17 - 20 */
  53			     12, 12, 12, 12,			/* 21 - 24 */
  54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
  55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
  56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
  57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
  58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
  59
  60/* map the sanitized data length to an appropriate data length code */
  61u8 can_len2dlc(u8 len)
  62{
  63	if (unlikely(len > 64))
  64		return 0xF;
  65
  66	return len2dlc[len];
  67}
  68EXPORT_SYMBOL_GPL(can_len2dlc);
  69
  70#ifdef CONFIG_CAN_CALC_BITTIMING
  71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  72
  73/*
  74 * Bit-timing calculation derived from:
  75 *
  76 * Code based on LinCAN sources and H8S2638 project
  77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  78 * Copyright 2005      Stanislav Marek
  79 * email: pisa@cmp.felk.cvut.cz
  80 *
  81 * Calculates proper bit-timing parameters for a specified bit-rate
  82 * and sample-point, which can then be used to set the bit-timing
  83 * registers of the CAN controller. You can find more information
  84 * in the header file linux/can/netlink.h.
  85 */
  86static int can_update_spt(const struct can_bittiming_const *btc,
  87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
  88{
  89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
  90	if (*tseg2 < btc->tseg2_min)
  91		*tseg2 = btc->tseg2_min;
  92	if (*tseg2 > btc->tseg2_max)
  93		*tseg2 = btc->tseg2_max;
  94	*tseg1 = tseg - *tseg2;
  95	if (*tseg1 > btc->tseg1_max) {
  96		*tseg1 = btc->tseg1_max;
  97		*tseg2 = tseg - *tseg1;
  98	}
  99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
 100}
 101
 102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 103			      const struct can_bittiming_const *btc)
 104{
 105	struct can_priv *priv = netdev_priv(dev);
 
 106	long best_error = 1000000000, error = 0;
 107	int best_tseg = 0, best_brp = 0, brp = 0;
 108	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
 109	int spt_error = 1000, spt = 0, sampl_pt;
 110	long rate;
 111	u64 v64;
 112
 113	/* Use CiA recommended sample points */
 114	if (bt->sample_point) {
 115		sampl_pt = bt->sample_point;
 116	} else {
 117		if (bt->bitrate > 800000)
 118			sampl_pt = 750;
 119		else if (bt->bitrate > 500000)
 120			sampl_pt = 800;
 121		else
 122			sampl_pt = 875;
 123	}
 124
 125	/* tseg even = round down, odd = round up */
 126	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 127	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 128		tsegall = 1 + tseg / 2;
 129		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 130		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 131		/* chose brp step which is possible in system */
 132		brp = (brp / btc->brp_inc) * btc->brp_inc;
 133		if ((brp < btc->brp_min) || (brp > btc->brp_max))
 134			continue;
 135		rate = priv->clock.freq / (brp * tsegall);
 136		error = bt->bitrate - rate;
 137		/* tseg brp biterror */
 138		if (error < 0)
 139			error = -error;
 140		if (error > best_error)
 141			continue;
 142		best_error = error;
 143		if (error == 0) {
 144			spt = can_update_spt(btc, sampl_pt, tseg / 2,
 145					     &tseg1, &tseg2);
 146			error = sampl_pt - spt;
 147			if (error < 0)
 148				error = -error;
 149			if (error > spt_error)
 150				continue;
 151			spt_error = error;
 152		}
 153		best_tseg = tseg / 2;
 154		best_brp = brp;
 
 155		if (error == 0)
 156			break;
 157	}
 158
 159	if (best_error) {
 160		/* Error in one-tenth of a percent */
 161		error = (best_error * 1000) / bt->bitrate;
 162		if (error > CAN_CALC_MAX_ERROR) {
 163			netdev_err(dev,
 164				   "bitrate error %ld.%ld%% too high\n",
 165				   error / 10, error % 10);
 166			return -EDOM;
 167		} else {
 168			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
 169				    error / 10, error % 10);
 170		}
 171	}
 172
 173	/* real sample point */
 174	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
 175					  &tseg1, &tseg2);
 176
 177	v64 = (u64)best_brp * 1000000000UL;
 178	do_div(v64, priv->clock.freq);
 179	bt->tq = (u32)v64;
 180	bt->prop_seg = tseg1 / 2;
 181	bt->phase_seg1 = tseg1 - bt->prop_seg;
 182	bt->phase_seg2 = tseg2;
 183
 184	/* check for sjw user settings */
 185	if (!bt->sjw || !btc->sjw_max)
 186		bt->sjw = 1;
 187	else {
 188		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 189		if (bt->sjw > btc->sjw_max)
 190			bt->sjw = btc->sjw_max;
 191		/* bt->sjw must not be higher than tseg2 */
 192		if (tseg2 < bt->sjw)
 193			bt->sjw = tseg2;
 194	}
 195
 196	bt->brp = best_brp;
 197	/* real bit-rate */
 198	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
 199
 200	return 0;
 201}
 202#else /* !CONFIG_CAN_CALC_BITTIMING */
 203static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 204			      const struct can_bittiming_const *btc)
 205{
 206	netdev_err(dev, "bit-timing calculation not available\n");
 207	return -EINVAL;
 208}
 209#endif /* CONFIG_CAN_CALC_BITTIMING */
 210
 211/*
 212 * Checks the validity of the specified bit-timing parameters prop_seg,
 213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 214 * prescaler value brp. You can find more information in the header
 215 * file linux/can/netlink.h.
 216 */
 217static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 218			       const struct can_bittiming_const *btc)
 219{
 220	struct can_priv *priv = netdev_priv(dev);
 221	int tseg1, alltseg;
 222	u64 brp64;
 223
 224	tseg1 = bt->prop_seg + bt->phase_seg1;
 225	if (!bt->sjw)
 226		bt->sjw = 1;
 227	if (bt->sjw > btc->sjw_max ||
 228	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 229	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 230		return -ERANGE;
 231
 232	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 233	if (btc->brp_inc > 1)
 234		do_div(brp64, btc->brp_inc);
 235	brp64 += 500000000UL - 1;
 236	do_div(brp64, 1000000000UL); /* the practicable BRP */
 237	if (btc->brp_inc > 1)
 238		brp64 *= btc->brp_inc;
 239	bt->brp = (u32)brp64;
 240
 241	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 242		return -EINVAL;
 243
 244	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 245	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 246	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 247
 248	return 0;
 249}
 250
 251static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 252			     const struct can_bittiming_const *btc)
 253{
 254	int err;
 255
 256	/* Check if the CAN device has bit-timing parameters */
 257	if (!btc)
 258		return -EOPNOTSUPP;
 259
 260	/*
 261	 * Depending on the given can_bittiming parameter structure the CAN
 262	 * timing parameters are calculated based on the provided bitrate OR
 263	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 264	 * provided directly which are then checked and fixed up.
 265	 */
 266	if (!bt->tq && bt->bitrate)
 267		err = can_calc_bittiming(dev, bt, btc);
 268	else if (bt->tq && !bt->bitrate)
 269		err = can_fixup_bittiming(dev, bt, btc);
 270	else
 271		err = -EINVAL;
 272
 273	return err;
 274}
 275
 276static void can_update_state_error_stats(struct net_device *dev,
 277					 enum can_state new_state)
 278{
 279	struct can_priv *priv = netdev_priv(dev);
 280
 281	if (new_state <= priv->state)
 282		return;
 283
 284	switch (new_state) {
 285	case CAN_STATE_ERROR_WARNING:
 286		priv->can_stats.error_warning++;
 287		break;
 288	case CAN_STATE_ERROR_PASSIVE:
 289		priv->can_stats.error_passive++;
 290		break;
 291	case CAN_STATE_BUS_OFF:
 292		priv->can_stats.bus_off++;
 293		break;
 294	default:
 295		break;
 296	}
 297}
 298
 299static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
 300{
 301	switch (state) {
 302	case CAN_STATE_ERROR_ACTIVE:
 303		return CAN_ERR_CRTL_ACTIVE;
 304	case CAN_STATE_ERROR_WARNING:
 305		return CAN_ERR_CRTL_TX_WARNING;
 306	case CAN_STATE_ERROR_PASSIVE:
 307		return CAN_ERR_CRTL_TX_PASSIVE;
 308	default:
 309		return 0;
 310	}
 311}
 312
 313static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
 314{
 315	switch (state) {
 316	case CAN_STATE_ERROR_ACTIVE:
 317		return CAN_ERR_CRTL_ACTIVE;
 318	case CAN_STATE_ERROR_WARNING:
 319		return CAN_ERR_CRTL_RX_WARNING;
 320	case CAN_STATE_ERROR_PASSIVE:
 321		return CAN_ERR_CRTL_RX_PASSIVE;
 322	default:
 323		return 0;
 324	}
 325}
 326
 327void can_change_state(struct net_device *dev, struct can_frame *cf,
 328		      enum can_state tx_state, enum can_state rx_state)
 329{
 330	struct can_priv *priv = netdev_priv(dev);
 331	enum can_state new_state = max(tx_state, rx_state);
 332
 333	if (unlikely(new_state == priv->state)) {
 334		netdev_warn(dev, "%s: oops, state did not change", __func__);
 335		return;
 336	}
 337
 338	netdev_dbg(dev, "New error state: %d\n", new_state);
 339
 340	can_update_state_error_stats(dev, new_state);
 341	priv->state = new_state;
 342
 343	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
 344		cf->can_id |= CAN_ERR_BUSOFF;
 345		return;
 346	}
 347
 348	cf->can_id |= CAN_ERR_CRTL;
 349	cf->data[1] |= tx_state >= rx_state ?
 350		       can_tx_state_to_frame(dev, tx_state) : 0;
 351	cf->data[1] |= tx_state <= rx_state ?
 352		       can_rx_state_to_frame(dev, rx_state) : 0;
 353}
 354EXPORT_SYMBOL_GPL(can_change_state);
 355
 356/*
 357 * Local echo of CAN messages
 358 *
 359 * CAN network devices *should* support a local echo functionality
 360 * (see Documentation/networking/can.txt). To test the handling of CAN
 361 * interfaces that do not support the local echo both driver types are
 362 * implemented. In the case that the driver does not support the echo
 363 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 364 * to perform the echo as a fallback solution.
 365 */
 366static void can_flush_echo_skb(struct net_device *dev)
 367{
 368	struct can_priv *priv = netdev_priv(dev);
 369	struct net_device_stats *stats = &dev->stats;
 370	int i;
 371
 372	for (i = 0; i < priv->echo_skb_max; i++) {
 373		if (priv->echo_skb[i]) {
 374			kfree_skb(priv->echo_skb[i]);
 375			priv->echo_skb[i] = NULL;
 376			stats->tx_dropped++;
 377			stats->tx_aborted_errors++;
 378		}
 379	}
 380}
 381
 382/*
 383 * Put the skb on the stack to be looped backed locally lateron
 384 *
 385 * The function is typically called in the start_xmit function
 386 * of the device driver. The driver must protect access to
 387 * priv->echo_skb, if necessary.
 388 */
 389void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 390		      unsigned int idx)
 391{
 392	struct can_priv *priv = netdev_priv(dev);
 393
 394	BUG_ON(idx >= priv->echo_skb_max);
 395
 396	/* check flag whether this packet has to be looped back */
 397	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 398	    (skb->protocol != htons(ETH_P_CAN) &&
 399	     skb->protocol != htons(ETH_P_CANFD))) {
 400		kfree_skb(skb);
 401		return;
 402	}
 403
 404	if (!priv->echo_skb[idx]) {
 405
 406		skb = can_create_echo_skb(skb);
 407		if (!skb)
 408			return;
 409
 410		/* make settings for echo to reduce code in irq context */
 411		skb->pkt_type = PACKET_BROADCAST;
 412		skb->ip_summed = CHECKSUM_UNNECESSARY;
 413		skb->dev = dev;
 414
 415		/* save this skb for tx interrupt echo handling */
 416		priv->echo_skb[idx] = skb;
 417	} else {
 418		/* locking problem with netif_stop_queue() ?? */
 419		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 420		kfree_skb(skb);
 421	}
 422}
 423EXPORT_SYMBOL_GPL(can_put_echo_skb);
 424
 425/*
 426 * Get the skb from the stack and loop it back locally
 427 *
 428 * The function is typically called when the TX done interrupt
 429 * is handled in the device driver. The driver must protect
 430 * access to priv->echo_skb, if necessary.
 431 */
 432unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 433{
 434	struct can_priv *priv = netdev_priv(dev);
 435
 436	BUG_ON(idx >= priv->echo_skb_max);
 437
 438	if (priv->echo_skb[idx]) {
 439		struct sk_buff *skb = priv->echo_skb[idx];
 440		struct can_frame *cf = (struct can_frame *)skb->data;
 441		u8 dlc = cf->can_dlc;
 442
 443		netif_rx(priv->echo_skb[idx]);
 444		priv->echo_skb[idx] = NULL;
 445
 446		return dlc;
 447	}
 448
 449	return 0;
 450}
 451EXPORT_SYMBOL_GPL(can_get_echo_skb);
 452
 453/*
 454  * Remove the skb from the stack and free it.
 455  *
 456  * The function is typically called when TX failed.
 457  */
 458void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 459{
 460	struct can_priv *priv = netdev_priv(dev);
 461
 462	BUG_ON(idx >= priv->echo_skb_max);
 463
 464	if (priv->echo_skb[idx]) {
 465		dev_kfree_skb_any(priv->echo_skb[idx]);
 466		priv->echo_skb[idx] = NULL;
 467	}
 468}
 469EXPORT_SYMBOL_GPL(can_free_echo_skb);
 470
 471/*
 472 * CAN device restart for bus-off recovery
 473 */
 474static void can_restart(unsigned long data)
 475{
 476	struct net_device *dev = (struct net_device *)data;
 477	struct can_priv *priv = netdev_priv(dev);
 478	struct net_device_stats *stats = &dev->stats;
 479	struct sk_buff *skb;
 480	struct can_frame *cf;
 481	int err;
 482
 483	BUG_ON(netif_carrier_ok(dev));
 484
 485	/*
 486	 * No synchronization needed because the device is bus-off and
 487	 * no messages can come in or go out.
 488	 */
 489	can_flush_echo_skb(dev);
 490
 491	/* send restart message upstream */
 492	skb = alloc_can_err_skb(dev, &cf);
 493	if (skb == NULL) {
 494		err = -ENOMEM;
 495		goto restart;
 496	}
 497	cf->can_id |= CAN_ERR_RESTARTED;
 498
 499	netif_rx(skb);
 500
 501	stats->rx_packets++;
 502	stats->rx_bytes += cf->can_dlc;
 503
 504restart:
 505	netdev_dbg(dev, "restarted\n");
 506	priv->can_stats.restarts++;
 507
 508	/* Now restart the device */
 509	err = priv->do_set_mode(dev, CAN_MODE_START);
 510
 511	netif_carrier_on(dev);
 512	if (err)
 513		netdev_err(dev, "Error %d during restart", err);
 514}
 515
 516int can_restart_now(struct net_device *dev)
 517{
 518	struct can_priv *priv = netdev_priv(dev);
 519
 520	/*
 521	 * A manual restart is only permitted if automatic restart is
 522	 * disabled and the device is in the bus-off state
 523	 */
 524	if (priv->restart_ms)
 525		return -EINVAL;
 526	if (priv->state != CAN_STATE_BUS_OFF)
 527		return -EBUSY;
 528
 529	/* Runs as soon as possible in the timer context */
 530	mod_timer(&priv->restart_timer, jiffies);
 531
 532	return 0;
 533}
 534
 535/*
 536 * CAN bus-off
 537 *
 538 * This functions should be called when the device goes bus-off to
 539 * tell the netif layer that no more packets can be sent or received.
 540 * If enabled, a timer is started to trigger bus-off recovery.
 541 */
 542void can_bus_off(struct net_device *dev)
 543{
 544	struct can_priv *priv = netdev_priv(dev);
 545
 546	netdev_dbg(dev, "bus-off\n");
 547
 548	netif_carrier_off(dev);
 
 549
 550	if (priv->restart_ms)
 551		mod_timer(&priv->restart_timer,
 552			  jiffies + (priv->restart_ms * HZ) / 1000);
 553}
 554EXPORT_SYMBOL_GPL(can_bus_off);
 555
 556static void can_setup(struct net_device *dev)
 557{
 558	dev->type = ARPHRD_CAN;
 559	dev->mtu = CAN_MTU;
 560	dev->hard_header_len = 0;
 561	dev->addr_len = 0;
 562	dev->tx_queue_len = 10;
 563
 564	/* New-style flags. */
 565	dev->flags = IFF_NOARP;
 566	dev->features = NETIF_F_HW_CSUM;
 567}
 568
 569struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 570{
 571	struct sk_buff *skb;
 572
 573	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 574			       sizeof(struct can_frame));
 575	if (unlikely(!skb))
 576		return NULL;
 577
 578	skb->protocol = htons(ETH_P_CAN);
 579	skb->pkt_type = PACKET_BROADCAST;
 580	skb->ip_summed = CHECKSUM_UNNECESSARY;
 581
 582	skb_reset_mac_header(skb);
 583	skb_reset_network_header(skb);
 584	skb_reset_transport_header(skb);
 585
 586	can_skb_reserve(skb);
 587	can_skb_prv(skb)->ifindex = dev->ifindex;
 588	can_skb_prv(skb)->skbcnt = 0;
 589
 590	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
 591	memset(*cf, 0, sizeof(struct can_frame));
 592
 593	return skb;
 594}
 595EXPORT_SYMBOL_GPL(alloc_can_skb);
 596
 597struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 598				struct canfd_frame **cfd)
 599{
 600	struct sk_buff *skb;
 601
 602	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 603			       sizeof(struct canfd_frame));
 604	if (unlikely(!skb))
 605		return NULL;
 606
 607	skb->protocol = htons(ETH_P_CANFD);
 608	skb->pkt_type = PACKET_BROADCAST;
 609	skb->ip_summed = CHECKSUM_UNNECESSARY;
 610
 611	skb_reset_mac_header(skb);
 612	skb_reset_network_header(skb);
 613	skb_reset_transport_header(skb);
 614
 615	can_skb_reserve(skb);
 616	can_skb_prv(skb)->ifindex = dev->ifindex;
 617	can_skb_prv(skb)->skbcnt = 0;
 618
 619	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
 620	memset(*cfd, 0, sizeof(struct canfd_frame));
 621
 622	return skb;
 623}
 624EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 625
 626struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 627{
 628	struct sk_buff *skb;
 629
 630	skb = alloc_can_skb(dev, cf);
 631	if (unlikely(!skb))
 632		return NULL;
 633
 634	(*cf)->can_id = CAN_ERR_FLAG;
 635	(*cf)->can_dlc = CAN_ERR_DLC;
 636
 637	return skb;
 638}
 639EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 640
 641/*
 642 * Allocate and setup space for the CAN network device
 643 */
 644struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
 645{
 646	struct net_device *dev;
 647	struct can_priv *priv;
 648	int size;
 649
 650	if (echo_skb_max)
 651		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
 652			echo_skb_max * sizeof(struct sk_buff *);
 653	else
 654		size = sizeof_priv;
 655
 656	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
 657	if (!dev)
 658		return NULL;
 659
 660	priv = netdev_priv(dev);
 661
 662	if (echo_skb_max) {
 663		priv->echo_skb_max = echo_skb_max;
 664		priv->echo_skb = (void *)priv +
 665			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
 666	}
 667
 668	priv->state = CAN_STATE_STOPPED;
 669
 670	init_timer(&priv->restart_timer);
 671
 672	return dev;
 673}
 674EXPORT_SYMBOL_GPL(alloc_candev);
 675
 676/*
 677 * Free space of the CAN network device
 678 */
 679void free_candev(struct net_device *dev)
 680{
 681	free_netdev(dev);
 682}
 683EXPORT_SYMBOL_GPL(free_candev);
 684
 685/*
 686 * changing MTU and control mode for CAN/CANFD devices
 687 */
 688int can_change_mtu(struct net_device *dev, int new_mtu)
 689{
 690	struct can_priv *priv = netdev_priv(dev);
 691
 692	/* Do not allow changing the MTU while running */
 693	if (dev->flags & IFF_UP)
 694		return -EBUSY;
 695
 696	/* allow change of MTU according to the CANFD ability of the device */
 697	switch (new_mtu) {
 698	case CAN_MTU:
 699		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 700		break;
 701
 702	case CANFD_MTU:
 703		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
 704			return -EINVAL;
 705
 706		priv->ctrlmode |= CAN_CTRLMODE_FD;
 707		break;
 708
 709	default:
 710		return -EINVAL;
 711	}
 712
 713	dev->mtu = new_mtu;
 714	return 0;
 715}
 716EXPORT_SYMBOL_GPL(can_change_mtu);
 717
 718/*
 719 * Common open function when the device gets opened.
 720 *
 721 * This function should be called in the open function of the device
 722 * driver.
 723 */
 724int open_candev(struct net_device *dev)
 725{
 726	struct can_priv *priv = netdev_priv(dev);
 727
 728	if (!priv->bittiming.bitrate) {
 729		netdev_err(dev, "bit-timing not yet defined\n");
 730		return -EINVAL;
 731	}
 732
 733	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 734	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 735	    (!priv->data_bittiming.bitrate ||
 736	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
 737		netdev_err(dev, "incorrect/missing data bit-timing\n");
 738		return -EINVAL;
 739	}
 740
 741	/* Switch carrier on if device was stopped while in bus-off state */
 742	if (!netif_carrier_ok(dev))
 743		netif_carrier_on(dev);
 744
 745	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
 746
 747	return 0;
 748}
 749EXPORT_SYMBOL_GPL(open_candev);
 750
 751/*
 752 * Common close function for cleanup before the device gets closed.
 753 *
 754 * This function should be called in the close function of the device
 755 * driver.
 756 */
 757void close_candev(struct net_device *dev)
 758{
 759	struct can_priv *priv = netdev_priv(dev);
 760
 761	del_timer_sync(&priv->restart_timer);
 762	can_flush_echo_skb(dev);
 763}
 764EXPORT_SYMBOL_GPL(close_candev);
 765
 766/*
 767 * CAN netlink interface
 768 */
 769static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 770	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
 771	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
 772	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
 773	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
 774	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
 775	[IFLA_CAN_BITTIMING_CONST]
 776				= { .len = sizeof(struct can_bittiming_const) },
 777	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
 778	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 779	[IFLA_CAN_DATA_BITTIMING]
 780				= { .len = sizeof(struct can_bittiming) },
 781	[IFLA_CAN_DATA_BITTIMING_CONST]
 782				= { .len = sizeof(struct can_bittiming_const) },
 783};
 784
 785static int can_changelink(struct net_device *dev,
 786			  struct nlattr *tb[], struct nlattr *data[])
 787{
 788	struct can_priv *priv = netdev_priv(dev);
 789	int err;
 790
 791	/* We need synchronization with dev->stop() */
 792	ASSERT_RTNL();
 793
 794	if (data[IFLA_CAN_BITTIMING]) {
 795		struct can_bittiming bt;
 796
 797		/* Do not allow changing bittiming while running */
 798		if (dev->flags & IFF_UP)
 799			return -EBUSY;
 800		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 801		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
 802		if (err)
 803			return err;
 804		memcpy(&priv->bittiming, &bt, sizeof(bt));
 805
 806		if (priv->do_set_bittiming) {
 807			/* Finally, set the bit-timing registers */
 808			err = priv->do_set_bittiming(dev);
 809			if (err)
 810				return err;
 811		}
 812	}
 813
 814	if (data[IFLA_CAN_CTRLMODE]) {
 815		struct can_ctrlmode *cm;
 816
 817		/* Do not allow changing controller mode while running */
 818		if (dev->flags & IFF_UP)
 819			return -EBUSY;
 820		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 821
 822		/* check whether changed bits are allowed to be modified */
 823		if (cm->mask & ~priv->ctrlmode_supported)
 824			return -EOPNOTSUPP;
 825
 826		/* clear bits to be modified and copy the flag values */
 827		priv->ctrlmode &= ~cm->mask;
 828		priv->ctrlmode |= (cm->flags & cm->mask);
 829
 830		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
 831		if (priv->ctrlmode & CAN_CTRLMODE_FD)
 832			dev->mtu = CANFD_MTU;
 833		else
 834			dev->mtu = CAN_MTU;
 835	}
 836
 837	if (data[IFLA_CAN_RESTART_MS]) {
 838		/* Do not allow changing restart delay while running */
 839		if (dev->flags & IFF_UP)
 840			return -EBUSY;
 841		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
 842	}
 843
 844	if (data[IFLA_CAN_RESTART]) {
 845		/* Do not allow a restart while not running */
 846		if (!(dev->flags & IFF_UP))
 847			return -EINVAL;
 848		err = can_restart_now(dev);
 849		if (err)
 850			return err;
 851	}
 852
 853	if (data[IFLA_CAN_DATA_BITTIMING]) {
 854		struct can_bittiming dbt;
 855
 856		/* Do not allow changing bittiming while running */
 857		if (dev->flags & IFF_UP)
 858			return -EBUSY;
 859		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
 860		       sizeof(dbt));
 861		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
 862		if (err)
 863			return err;
 864		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
 865
 866		if (priv->do_set_data_bittiming) {
 867			/* Finally, set the bit-timing registers */
 868			err = priv->do_set_data_bittiming(dev);
 869			if (err)
 870				return err;
 871		}
 872	}
 873
 874	return 0;
 875}
 876
 877static size_t can_get_size(const struct net_device *dev)
 878{
 879	struct can_priv *priv = netdev_priv(dev);
 880	size_t size = 0;
 881
 882	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
 883		size += nla_total_size(sizeof(struct can_bittiming));
 884	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
 885		size += nla_total_size(sizeof(struct can_bittiming_const));
 886	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
 887	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
 888	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
 889	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
 890	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
 891		size += nla_total_size(sizeof(struct can_berr_counter));
 892	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
 893		size += nla_total_size(sizeof(struct can_bittiming));
 894	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
 895		size += nla_total_size(sizeof(struct can_bittiming_const));
 896
 897	return size;
 898}
 899
 900static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
 901{
 902	struct can_priv *priv = netdev_priv(dev);
 903	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
 904	struct can_berr_counter bec;
 905	enum can_state state = priv->state;
 906
 907	if (priv->do_get_state)
 908		priv->do_get_state(dev, &state);
 909
 910	if ((priv->bittiming.bitrate &&
 911	     nla_put(skb, IFLA_CAN_BITTIMING,
 912		     sizeof(priv->bittiming), &priv->bittiming)) ||
 913
 914	    (priv->bittiming_const &&
 915	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
 916		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
 917
 918	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
 919	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
 920	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
 921	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
 922
 923	    (priv->do_get_berr_counter &&
 924	     !priv->do_get_berr_counter(dev, &bec) &&
 925	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
 926
 927	    (priv->data_bittiming.bitrate &&
 928	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
 929		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
 930
 931	    (priv->data_bittiming_const &&
 932	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
 933		     sizeof(*priv->data_bittiming_const),
 934		     priv->data_bittiming_const)))
 935		return -EMSGSIZE;
 936
 937	return 0;
 938}
 939
 940static size_t can_get_xstats_size(const struct net_device *dev)
 941{
 942	return sizeof(struct can_device_stats);
 943}
 944
 945static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
 946{
 947	struct can_priv *priv = netdev_priv(dev);
 948
 949	if (nla_put(skb, IFLA_INFO_XSTATS,
 950		    sizeof(priv->can_stats), &priv->can_stats))
 951		goto nla_put_failure;
 952	return 0;
 953
 954nla_put_failure:
 955	return -EMSGSIZE;
 956}
 957
 958static int can_newlink(struct net *src_net, struct net_device *dev,
 959		       struct nlattr *tb[], struct nlattr *data[])
 960{
 961	return -EOPNOTSUPP;
 962}
 963
 964static struct rtnl_link_ops can_link_ops __read_mostly = {
 965	.kind		= "can",
 966	.maxtype	= IFLA_CAN_MAX,
 967	.policy		= can_policy,
 968	.setup		= can_setup,
 969	.newlink	= can_newlink,
 970	.changelink	= can_changelink,
 971	.get_size	= can_get_size,
 972	.fill_info	= can_fill_info,
 973	.get_xstats_size = can_get_xstats_size,
 974	.fill_xstats	= can_fill_xstats,
 975};
 976
 977/*
 978 * Register the CAN network device
 979 */
 980int register_candev(struct net_device *dev)
 981{
 982	dev->rtnl_link_ops = &can_link_ops;
 983	return register_netdev(dev);
 984}
 985EXPORT_SYMBOL_GPL(register_candev);
 986
 987/*
 988 * Unregister the CAN network device
 989 */
 990void unregister_candev(struct net_device *dev)
 991{
 992	unregister_netdev(dev);
 993}
 994EXPORT_SYMBOL_GPL(unregister_candev);
 995
 996/*
 997 * Test if a network device is a candev based device
 998 * and return the can_priv* if so.
 999 */
1000struct can_priv *safe_candev_priv(struct net_device *dev)
1001{
1002	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1003		return NULL;
1004
1005	return netdev_priv(dev);
1006}
1007EXPORT_SYMBOL_GPL(safe_candev_priv);
1008
1009static __init int can_dev_init(void)
1010{
1011	int err;
1012
1013	can_led_notifier_init();
1014
1015	err = rtnl_link_register(&can_link_ops);
1016	if (!err)
1017		printk(KERN_INFO MOD_DESC "\n");
1018
1019	return err;
1020}
1021module_init(can_dev_init);
1022
1023static __exit void can_dev_exit(void)
1024{
1025	rtnl_link_unregister(&can_link_ops);
1026
1027	can_led_notifier_exit();
1028}
1029module_exit(can_dev_exit);
1030
1031MODULE_ALIAS_RTNL_LINK("can");
v3.15
  1/*
  2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the version 2 of the GNU General Public License
  8 * as published by the Free Software Foundation
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/kernel.h>
 21#include <linux/slab.h>
 22#include <linux/netdevice.h>
 23#include <linux/if_arp.h>
 24#include <linux/can.h>
 25#include <linux/can/dev.h>
 26#include <linux/can/skb.h>
 27#include <linux/can/netlink.h>
 28#include <linux/can/led.h>
 29#include <net/rtnetlink.h>
 30
 31#define MOD_DESC "CAN device driver interface"
 32
 33MODULE_DESCRIPTION(MOD_DESC);
 34MODULE_LICENSE("GPL v2");
 35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
 36
 37/* CAN DLC to real data length conversion helpers */
 38
 39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
 40			     8, 12, 16, 20, 24, 32, 48, 64};
 41
 42/* get data length from can_dlc with sanitized can_dlc */
 43u8 can_dlc2len(u8 can_dlc)
 44{
 45	return dlc2len[can_dlc & 0x0F];
 46}
 47EXPORT_SYMBOL_GPL(can_dlc2len);
 48
 49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
 50			     9, 9, 9, 9,			/* 9 - 12 */
 51			     10, 10, 10, 10,			/* 13 - 16 */
 52			     11, 11, 11, 11,			/* 17 - 20 */
 53			     12, 12, 12, 12,			/* 21 - 24 */
 54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
 55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
 56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
 57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
 58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
 59
 60/* map the sanitized data length to an appropriate data length code */
 61u8 can_len2dlc(u8 len)
 62{
 63	if (unlikely(len > 64))
 64		return 0xF;
 65
 66	return len2dlc[len];
 67}
 68EXPORT_SYMBOL_GPL(can_len2dlc);
 69
 70#ifdef CONFIG_CAN_CALC_BITTIMING
 71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
 72
 73/*
 74 * Bit-timing calculation derived from:
 75 *
 76 * Code based on LinCAN sources and H8S2638 project
 77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
 78 * Copyright 2005      Stanislav Marek
 79 * email: pisa@cmp.felk.cvut.cz
 80 *
 81 * Calculates proper bit-timing parameters for a specified bit-rate
 82 * and sample-point, which can then be used to set the bit-timing
 83 * registers of the CAN controller. You can find more information
 84 * in the header file linux/can/netlink.h.
 85 */
 86static int can_update_spt(const struct can_bittiming_const *btc,
 87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
 88{
 89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
 90	if (*tseg2 < btc->tseg2_min)
 91		*tseg2 = btc->tseg2_min;
 92	if (*tseg2 > btc->tseg2_max)
 93		*tseg2 = btc->tseg2_max;
 94	*tseg1 = tseg - *tseg2;
 95	if (*tseg1 > btc->tseg1_max) {
 96		*tseg1 = btc->tseg1_max;
 97		*tseg2 = tseg - *tseg1;
 98	}
 99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100}
101
102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
103			      const struct can_bittiming_const *btc)
104{
105	struct can_priv *priv = netdev_priv(dev);
106	long rate, best_rate = 0;
107	long best_error = 1000000000, error = 0;
108	int best_tseg = 0, best_brp = 0, brp = 0;
109	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
110	int spt_error = 1000, spt = 0, sampl_pt;
 
111	u64 v64;
112
113	/* Use CIA recommended sample points */
114	if (bt->sample_point) {
115		sampl_pt = bt->sample_point;
116	} else {
117		if (bt->bitrate > 800000)
118			sampl_pt = 750;
119		else if (bt->bitrate > 500000)
120			sampl_pt = 800;
121		else
122			sampl_pt = 875;
123	}
124
125	/* tseg even = round down, odd = round up */
126	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
127	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
128		tsegall = 1 + tseg / 2;
129		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
131		/* chose brp step which is possible in system */
132		brp = (brp / btc->brp_inc) * btc->brp_inc;
133		if ((brp < btc->brp_min) || (brp > btc->brp_max))
134			continue;
135		rate = priv->clock.freq / (brp * tsegall);
136		error = bt->bitrate - rate;
137		/* tseg brp biterror */
138		if (error < 0)
139			error = -error;
140		if (error > best_error)
141			continue;
142		best_error = error;
143		if (error == 0) {
144			spt = can_update_spt(btc, sampl_pt, tseg / 2,
145					     &tseg1, &tseg2);
146			error = sampl_pt - spt;
147			if (error < 0)
148				error = -error;
149			if (error > spt_error)
150				continue;
151			spt_error = error;
152		}
153		best_tseg = tseg / 2;
154		best_brp = brp;
155		best_rate = rate;
156		if (error == 0)
157			break;
158	}
159
160	if (best_error) {
161		/* Error in one-tenth of a percent */
162		error = (best_error * 1000) / bt->bitrate;
163		if (error > CAN_CALC_MAX_ERROR) {
164			netdev_err(dev,
165				   "bitrate error %ld.%ld%% too high\n",
166				   error / 10, error % 10);
167			return -EDOM;
168		} else {
169			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
170				    error / 10, error % 10);
171		}
172	}
173
174	/* real sample point */
175	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
176					  &tseg1, &tseg2);
177
178	v64 = (u64)best_brp * 1000000000UL;
179	do_div(v64, priv->clock.freq);
180	bt->tq = (u32)v64;
181	bt->prop_seg = tseg1 / 2;
182	bt->phase_seg1 = tseg1 - bt->prop_seg;
183	bt->phase_seg2 = tseg2;
184
185	/* check for sjw user settings */
186	if (!bt->sjw || !btc->sjw_max)
187		bt->sjw = 1;
188	else {
189		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
190		if (bt->sjw > btc->sjw_max)
191			bt->sjw = btc->sjw_max;
192		/* bt->sjw must not be higher than tseg2 */
193		if (tseg2 < bt->sjw)
194			bt->sjw = tseg2;
195	}
196
197	bt->brp = best_brp;
198	/* real bit-rate */
199	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
200
201	return 0;
202}
203#else /* !CONFIG_CAN_CALC_BITTIMING */
204static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
205			      const struct can_bittiming_const *btc)
206{
207	netdev_err(dev, "bit-timing calculation not available\n");
208	return -EINVAL;
209}
210#endif /* CONFIG_CAN_CALC_BITTIMING */
211
212/*
213 * Checks the validity of the specified bit-timing parameters prop_seg,
214 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
215 * prescaler value brp. You can find more information in the header
216 * file linux/can/netlink.h.
217 */
218static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
219			       const struct can_bittiming_const *btc)
220{
221	struct can_priv *priv = netdev_priv(dev);
222	int tseg1, alltseg;
223	u64 brp64;
224
225	tseg1 = bt->prop_seg + bt->phase_seg1;
226	if (!bt->sjw)
227		bt->sjw = 1;
228	if (bt->sjw > btc->sjw_max ||
229	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
230	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
231		return -ERANGE;
232
233	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
234	if (btc->brp_inc > 1)
235		do_div(brp64, btc->brp_inc);
236	brp64 += 500000000UL - 1;
237	do_div(brp64, 1000000000UL); /* the practicable BRP */
238	if (btc->brp_inc > 1)
239		brp64 *= btc->brp_inc;
240	bt->brp = (u32)brp64;
241
242	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
243		return -EINVAL;
244
245	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
246	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
247	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
248
249	return 0;
250}
251
252static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
253			     const struct can_bittiming_const *btc)
254{
255	int err;
256
257	/* Check if the CAN device has bit-timing parameters */
258	if (!btc)
259		return -EOPNOTSUPP;
260
261	/*
262	 * Depending on the given can_bittiming parameter structure the CAN
263	 * timing parameters are calculated based on the provided bitrate OR
264	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
265	 * provided directly which are then checked and fixed up.
266	 */
267	if (!bt->tq && bt->bitrate)
268		err = can_calc_bittiming(dev, bt, btc);
269	else if (bt->tq && !bt->bitrate)
270		err = can_fixup_bittiming(dev, bt, btc);
271	else
272		err = -EINVAL;
273
274	return err;
275}
276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277/*
278 * Local echo of CAN messages
279 *
280 * CAN network devices *should* support a local echo functionality
281 * (see Documentation/networking/can.txt). To test the handling of CAN
282 * interfaces that do not support the local echo both driver types are
283 * implemented. In the case that the driver does not support the echo
284 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
285 * to perform the echo as a fallback solution.
286 */
287static void can_flush_echo_skb(struct net_device *dev)
288{
289	struct can_priv *priv = netdev_priv(dev);
290	struct net_device_stats *stats = &dev->stats;
291	int i;
292
293	for (i = 0; i < priv->echo_skb_max; i++) {
294		if (priv->echo_skb[i]) {
295			kfree_skb(priv->echo_skb[i]);
296			priv->echo_skb[i] = NULL;
297			stats->tx_dropped++;
298			stats->tx_aborted_errors++;
299		}
300	}
301}
302
303/*
304 * Put the skb on the stack to be looped backed locally lateron
305 *
306 * The function is typically called in the start_xmit function
307 * of the device driver. The driver must protect access to
308 * priv->echo_skb, if necessary.
309 */
310void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
311		      unsigned int idx)
312{
313	struct can_priv *priv = netdev_priv(dev);
314
315	BUG_ON(idx >= priv->echo_skb_max);
316
317	/* check flag whether this packet has to be looped back */
318	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
319	    (skb->protocol != htons(ETH_P_CAN) &&
320	     skb->protocol != htons(ETH_P_CANFD))) {
321		kfree_skb(skb);
322		return;
323	}
324
325	if (!priv->echo_skb[idx]) {
326
327		skb = can_create_echo_skb(skb);
328		if (!skb)
329			return;
330
331		/* make settings for echo to reduce code in irq context */
332		skb->pkt_type = PACKET_BROADCAST;
333		skb->ip_summed = CHECKSUM_UNNECESSARY;
334		skb->dev = dev;
335
336		/* save this skb for tx interrupt echo handling */
337		priv->echo_skb[idx] = skb;
338	} else {
339		/* locking problem with netif_stop_queue() ?? */
340		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
341		kfree_skb(skb);
342	}
343}
344EXPORT_SYMBOL_GPL(can_put_echo_skb);
345
346/*
347 * Get the skb from the stack and loop it back locally
348 *
349 * The function is typically called when the TX done interrupt
350 * is handled in the device driver. The driver must protect
351 * access to priv->echo_skb, if necessary.
352 */
353unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
354{
355	struct can_priv *priv = netdev_priv(dev);
356
357	BUG_ON(idx >= priv->echo_skb_max);
358
359	if (priv->echo_skb[idx]) {
360		struct sk_buff *skb = priv->echo_skb[idx];
361		struct can_frame *cf = (struct can_frame *)skb->data;
362		u8 dlc = cf->can_dlc;
363
364		netif_rx(priv->echo_skb[idx]);
365		priv->echo_skb[idx] = NULL;
366
367		return dlc;
368	}
369
370	return 0;
371}
372EXPORT_SYMBOL_GPL(can_get_echo_skb);
373
374/*
375  * Remove the skb from the stack and free it.
376  *
377  * The function is typically called when TX failed.
378  */
379void can_free_echo_skb(struct net_device *dev, unsigned int idx)
380{
381	struct can_priv *priv = netdev_priv(dev);
382
383	BUG_ON(idx >= priv->echo_skb_max);
384
385	if (priv->echo_skb[idx]) {
386		kfree_skb(priv->echo_skb[idx]);
387		priv->echo_skb[idx] = NULL;
388	}
389}
390EXPORT_SYMBOL_GPL(can_free_echo_skb);
391
392/*
393 * CAN device restart for bus-off recovery
394 */
395static void can_restart(unsigned long data)
396{
397	struct net_device *dev = (struct net_device *)data;
398	struct can_priv *priv = netdev_priv(dev);
399	struct net_device_stats *stats = &dev->stats;
400	struct sk_buff *skb;
401	struct can_frame *cf;
402	int err;
403
404	BUG_ON(netif_carrier_ok(dev));
405
406	/*
407	 * No synchronization needed because the device is bus-off and
408	 * no messages can come in or go out.
409	 */
410	can_flush_echo_skb(dev);
411
412	/* send restart message upstream */
413	skb = alloc_can_err_skb(dev, &cf);
414	if (skb == NULL) {
415		err = -ENOMEM;
416		goto restart;
417	}
418	cf->can_id |= CAN_ERR_RESTARTED;
419
420	netif_rx(skb);
421
422	stats->rx_packets++;
423	stats->rx_bytes += cf->can_dlc;
424
425restart:
426	netdev_dbg(dev, "restarted\n");
427	priv->can_stats.restarts++;
428
429	/* Now restart the device */
430	err = priv->do_set_mode(dev, CAN_MODE_START);
431
432	netif_carrier_on(dev);
433	if (err)
434		netdev_err(dev, "Error %d during restart", err);
435}
436
437int can_restart_now(struct net_device *dev)
438{
439	struct can_priv *priv = netdev_priv(dev);
440
441	/*
442	 * A manual restart is only permitted if automatic restart is
443	 * disabled and the device is in the bus-off state
444	 */
445	if (priv->restart_ms)
446		return -EINVAL;
447	if (priv->state != CAN_STATE_BUS_OFF)
448		return -EBUSY;
449
450	/* Runs as soon as possible in the timer context */
451	mod_timer(&priv->restart_timer, jiffies);
452
453	return 0;
454}
455
456/*
457 * CAN bus-off
458 *
459 * This functions should be called when the device goes bus-off to
460 * tell the netif layer that no more packets can be sent or received.
461 * If enabled, a timer is started to trigger bus-off recovery.
462 */
463void can_bus_off(struct net_device *dev)
464{
465	struct can_priv *priv = netdev_priv(dev);
466
467	netdev_dbg(dev, "bus-off\n");
468
469	netif_carrier_off(dev);
470	priv->can_stats.bus_off++;
471
472	if (priv->restart_ms)
473		mod_timer(&priv->restart_timer,
474			  jiffies + (priv->restart_ms * HZ) / 1000);
475}
476EXPORT_SYMBOL_GPL(can_bus_off);
477
478static void can_setup(struct net_device *dev)
479{
480	dev->type = ARPHRD_CAN;
481	dev->mtu = CAN_MTU;
482	dev->hard_header_len = 0;
483	dev->addr_len = 0;
484	dev->tx_queue_len = 10;
485
486	/* New-style flags. */
487	dev->flags = IFF_NOARP;
488	dev->features = NETIF_F_HW_CSUM;
489}
490
491struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
492{
493	struct sk_buff *skb;
494
495	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
496			       sizeof(struct can_frame));
497	if (unlikely(!skb))
498		return NULL;
499
500	skb->protocol = htons(ETH_P_CAN);
501	skb->pkt_type = PACKET_BROADCAST;
502	skb->ip_summed = CHECKSUM_UNNECESSARY;
503
 
 
 
 
504	can_skb_reserve(skb);
505	can_skb_prv(skb)->ifindex = dev->ifindex;
 
506
507	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
508	memset(*cf, 0, sizeof(struct can_frame));
509
510	return skb;
511}
512EXPORT_SYMBOL_GPL(alloc_can_skb);
513
514struct sk_buff *alloc_canfd_skb(struct net_device *dev,
515				struct canfd_frame **cfd)
516{
517	struct sk_buff *skb;
518
519	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
520			       sizeof(struct canfd_frame));
521	if (unlikely(!skb))
522		return NULL;
523
524	skb->protocol = htons(ETH_P_CANFD);
525	skb->pkt_type = PACKET_BROADCAST;
526	skb->ip_summed = CHECKSUM_UNNECESSARY;
527
 
 
 
 
528	can_skb_reserve(skb);
529	can_skb_prv(skb)->ifindex = dev->ifindex;
 
530
531	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
532	memset(*cfd, 0, sizeof(struct canfd_frame));
533
534	return skb;
535}
536EXPORT_SYMBOL_GPL(alloc_canfd_skb);
537
538struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
539{
540	struct sk_buff *skb;
541
542	skb = alloc_can_skb(dev, cf);
543	if (unlikely(!skb))
544		return NULL;
545
546	(*cf)->can_id = CAN_ERR_FLAG;
547	(*cf)->can_dlc = CAN_ERR_DLC;
548
549	return skb;
550}
551EXPORT_SYMBOL_GPL(alloc_can_err_skb);
552
553/*
554 * Allocate and setup space for the CAN network device
555 */
556struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
557{
558	struct net_device *dev;
559	struct can_priv *priv;
560	int size;
561
562	if (echo_skb_max)
563		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
564			echo_skb_max * sizeof(struct sk_buff *);
565	else
566		size = sizeof_priv;
567
568	dev = alloc_netdev(size, "can%d", can_setup);
569	if (!dev)
570		return NULL;
571
572	priv = netdev_priv(dev);
573
574	if (echo_skb_max) {
575		priv->echo_skb_max = echo_skb_max;
576		priv->echo_skb = (void *)priv +
577			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
578	}
579
580	priv->state = CAN_STATE_STOPPED;
581
582	init_timer(&priv->restart_timer);
583
584	return dev;
585}
586EXPORT_SYMBOL_GPL(alloc_candev);
587
588/*
589 * Free space of the CAN network device
590 */
591void free_candev(struct net_device *dev)
592{
593	free_netdev(dev);
594}
595EXPORT_SYMBOL_GPL(free_candev);
596
597/*
598 * changing MTU and control mode for CAN/CANFD devices
599 */
600int can_change_mtu(struct net_device *dev, int new_mtu)
601{
602	struct can_priv *priv = netdev_priv(dev);
603
604	/* Do not allow changing the MTU while running */
605	if (dev->flags & IFF_UP)
606		return -EBUSY;
607
608	/* allow change of MTU according to the CANFD ability of the device */
609	switch (new_mtu) {
610	case CAN_MTU:
611		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
612		break;
613
614	case CANFD_MTU:
615		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
616			return -EINVAL;
617
618		priv->ctrlmode |= CAN_CTRLMODE_FD;
619		break;
620
621	default:
622		return -EINVAL;
623	}
624
625	dev->mtu = new_mtu;
626	return 0;
627}
628EXPORT_SYMBOL_GPL(can_change_mtu);
629
630/*
631 * Common open function when the device gets opened.
632 *
633 * This function should be called in the open function of the device
634 * driver.
635 */
636int open_candev(struct net_device *dev)
637{
638	struct can_priv *priv = netdev_priv(dev);
639
640	if (!priv->bittiming.bitrate) {
641		netdev_err(dev, "bit-timing not yet defined\n");
642		return -EINVAL;
643	}
644
645	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
646	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
647	    (!priv->data_bittiming.bitrate ||
648	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
649		netdev_err(dev, "incorrect/missing data bit-timing\n");
650		return -EINVAL;
651	}
652
653	/* Switch carrier on if device was stopped while in bus-off state */
654	if (!netif_carrier_ok(dev))
655		netif_carrier_on(dev);
656
657	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
658
659	return 0;
660}
661EXPORT_SYMBOL_GPL(open_candev);
662
663/*
664 * Common close function for cleanup before the device gets closed.
665 *
666 * This function should be called in the close function of the device
667 * driver.
668 */
669void close_candev(struct net_device *dev)
670{
671	struct can_priv *priv = netdev_priv(dev);
672
673	del_timer_sync(&priv->restart_timer);
674	can_flush_echo_skb(dev);
675}
676EXPORT_SYMBOL_GPL(close_candev);
677
678/*
679 * CAN netlink interface
680 */
681static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
682	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
683	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
684	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
685	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
686	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
687	[IFLA_CAN_BITTIMING_CONST]
688				= { .len = sizeof(struct can_bittiming_const) },
689	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
690	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
691	[IFLA_CAN_DATA_BITTIMING]
692				= { .len = sizeof(struct can_bittiming) },
693	[IFLA_CAN_DATA_BITTIMING_CONST]
694				= { .len = sizeof(struct can_bittiming_const) },
695};
696
697static int can_changelink(struct net_device *dev,
698			  struct nlattr *tb[], struct nlattr *data[])
699{
700	struct can_priv *priv = netdev_priv(dev);
701	int err;
702
703	/* We need synchronization with dev->stop() */
704	ASSERT_RTNL();
705
706	if (data[IFLA_CAN_BITTIMING]) {
707		struct can_bittiming bt;
708
709		/* Do not allow changing bittiming while running */
710		if (dev->flags & IFF_UP)
711			return -EBUSY;
712		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
713		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
714		if (err)
715			return err;
716		memcpy(&priv->bittiming, &bt, sizeof(bt));
717
718		if (priv->do_set_bittiming) {
719			/* Finally, set the bit-timing registers */
720			err = priv->do_set_bittiming(dev);
721			if (err)
722				return err;
723		}
724	}
725
726	if (data[IFLA_CAN_CTRLMODE]) {
727		struct can_ctrlmode *cm;
728
729		/* Do not allow changing controller mode while running */
730		if (dev->flags & IFF_UP)
731			return -EBUSY;
732		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
733		if (cm->flags & ~priv->ctrlmode_supported)
 
 
734			return -EOPNOTSUPP;
 
 
735		priv->ctrlmode &= ~cm->mask;
736		priv->ctrlmode |= cm->flags;
737
738		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
739		if (priv->ctrlmode & CAN_CTRLMODE_FD)
740			dev->mtu = CANFD_MTU;
741		else
742			dev->mtu = CAN_MTU;
743	}
744
745	if (data[IFLA_CAN_RESTART_MS]) {
746		/* Do not allow changing restart delay while running */
747		if (dev->flags & IFF_UP)
748			return -EBUSY;
749		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
750	}
751
752	if (data[IFLA_CAN_RESTART]) {
753		/* Do not allow a restart while not running */
754		if (!(dev->flags & IFF_UP))
755			return -EINVAL;
756		err = can_restart_now(dev);
757		if (err)
758			return err;
759	}
760
761	if (data[IFLA_CAN_DATA_BITTIMING]) {
762		struct can_bittiming dbt;
763
764		/* Do not allow changing bittiming while running */
765		if (dev->flags & IFF_UP)
766			return -EBUSY;
767		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
768		       sizeof(dbt));
769		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
770		if (err)
771			return err;
772		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
773
774		if (priv->do_set_data_bittiming) {
775			/* Finally, set the bit-timing registers */
776			err = priv->do_set_data_bittiming(dev);
777			if (err)
778				return err;
779		}
780	}
781
782	return 0;
783}
784
785static size_t can_get_size(const struct net_device *dev)
786{
787	struct can_priv *priv = netdev_priv(dev);
788	size_t size = 0;
789
790	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
791		size += nla_total_size(sizeof(struct can_bittiming));
792	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
793		size += nla_total_size(sizeof(struct can_bittiming_const));
794	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
795	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
796	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
797	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
798	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
799		size += nla_total_size(sizeof(struct can_berr_counter));
800	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
801		size += nla_total_size(sizeof(struct can_bittiming));
802	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
803		size += nla_total_size(sizeof(struct can_bittiming_const));
804
805	return size;
806}
807
808static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
809{
810	struct can_priv *priv = netdev_priv(dev);
811	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
812	struct can_berr_counter bec;
813	enum can_state state = priv->state;
814
815	if (priv->do_get_state)
816		priv->do_get_state(dev, &state);
817
818	if ((priv->bittiming.bitrate &&
819	     nla_put(skb, IFLA_CAN_BITTIMING,
820		     sizeof(priv->bittiming), &priv->bittiming)) ||
821
822	    (priv->bittiming_const &&
823	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
824		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
825
826	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
827	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
828	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
829	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
830
831	    (priv->do_get_berr_counter &&
832	     !priv->do_get_berr_counter(dev, &bec) &&
833	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
834
835	    (priv->data_bittiming.bitrate &&
836	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
837		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
838
839	    (priv->data_bittiming_const &&
840	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
841		     sizeof(*priv->data_bittiming_const),
842		     priv->data_bittiming_const)))
843		return -EMSGSIZE;
844
845	return 0;
846}
847
848static size_t can_get_xstats_size(const struct net_device *dev)
849{
850	return sizeof(struct can_device_stats);
851}
852
853static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
854{
855	struct can_priv *priv = netdev_priv(dev);
856
857	if (nla_put(skb, IFLA_INFO_XSTATS,
858		    sizeof(priv->can_stats), &priv->can_stats))
859		goto nla_put_failure;
860	return 0;
861
862nla_put_failure:
863	return -EMSGSIZE;
864}
865
866static int can_newlink(struct net *src_net, struct net_device *dev,
867		       struct nlattr *tb[], struct nlattr *data[])
868{
869	return -EOPNOTSUPP;
870}
871
872static struct rtnl_link_ops can_link_ops __read_mostly = {
873	.kind		= "can",
874	.maxtype	= IFLA_CAN_MAX,
875	.policy		= can_policy,
876	.setup		= can_setup,
877	.newlink	= can_newlink,
878	.changelink	= can_changelink,
879	.get_size	= can_get_size,
880	.fill_info	= can_fill_info,
881	.get_xstats_size = can_get_xstats_size,
882	.fill_xstats	= can_fill_xstats,
883};
884
885/*
886 * Register the CAN network device
887 */
888int register_candev(struct net_device *dev)
889{
890	dev->rtnl_link_ops = &can_link_ops;
891	return register_netdev(dev);
892}
893EXPORT_SYMBOL_GPL(register_candev);
894
895/*
896 * Unregister the CAN network device
897 */
898void unregister_candev(struct net_device *dev)
899{
900	unregister_netdev(dev);
901}
902EXPORT_SYMBOL_GPL(unregister_candev);
903
904/*
905 * Test if a network device is a candev based device
906 * and return the can_priv* if so.
907 */
908struct can_priv *safe_candev_priv(struct net_device *dev)
909{
910	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
911		return NULL;
912
913	return netdev_priv(dev);
914}
915EXPORT_SYMBOL_GPL(safe_candev_priv);
916
917static __init int can_dev_init(void)
918{
919	int err;
920
921	can_led_notifier_init();
922
923	err = rtnl_link_register(&can_link_ops);
924	if (!err)
925		printk(KERN_INFO MOD_DESC "\n");
926
927	return err;
928}
929module_init(can_dev_init);
930
931static __exit void can_dev_exit(void)
932{
933	rtnl_link_unregister(&can_link_ops);
934
935	can_led_notifier_exit();
936}
937module_exit(can_dev_exit);
938
939MODULE_ALIAS_RTNL_LINK("can");