Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Core registration and callback routines for MTD
   3 * drivers and users.
   4 *
   5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   6 * Copyright © 2006      Red Hat UK Limited 
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  21 *
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/ptrace.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/timer.h>
  30#include <linux/major.h>
  31#include <linux/fs.h>
  32#include <linux/err.h>
  33#include <linux/ioctl.h>
  34#include <linux/init.h>
  35#include <linux/of.h>
  36#include <linux/proc_fs.h>
  37#include <linux/idr.h>
  38#include <linux/backing-dev.h>
  39#include <linux/gfp.h>
  40#include <linux/slab.h>
  41#include <linux/reboot.h>
  42#include <linux/kconfig.h>
  43
  44#include <linux/mtd/mtd.h>
  45#include <linux/mtd/partitions.h>
  46
  47#include "mtdcore.h"
  48
  49static struct backing_dev_info mtd_bdi = {
 
 
 
 
 
  50};
  51
  52#ifdef CONFIG_PM_SLEEP
  53
  54static int mtd_cls_suspend(struct device *dev)
  55{
  56	struct mtd_info *mtd = dev_get_drvdata(dev);
  57
  58	return mtd ? mtd_suspend(mtd) : 0;
  59}
  60
  61static int mtd_cls_resume(struct device *dev)
  62{
  63	struct mtd_info *mtd = dev_get_drvdata(dev);
  64
  65	if (mtd)
  66		mtd_resume(mtd);
  67	return 0;
  68}
 
 
 
 
 
 
  69
  70static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  71#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  72#else
  73#define MTD_CLS_PM_OPS NULL
  74#endif
  75
  76static struct class mtd_class = {
  77	.name = "mtd",
  78	.owner = THIS_MODULE,
  79	.pm = MTD_CLS_PM_OPS,
 
  80};
  81
  82static DEFINE_IDR(mtd_idr);
  83
  84/* These are exported solely for the purpose of mtd_blkdevs.c. You
  85   should not use them for _anything_ else */
  86DEFINE_MUTEX(mtd_table_mutex);
  87EXPORT_SYMBOL_GPL(mtd_table_mutex);
  88
  89struct mtd_info *__mtd_next_device(int i)
  90{
  91	return idr_get_next(&mtd_idr, &i);
  92}
  93EXPORT_SYMBOL_GPL(__mtd_next_device);
  94
  95static LIST_HEAD(mtd_notifiers);
  96
  97
  98#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  99
 100/* REVISIT once MTD uses the driver model better, whoever allocates
 101 * the mtd_info will probably want to use the release() hook...
 102 */
 103static void mtd_release(struct device *dev)
 104{
 105	struct mtd_info *mtd = dev_get_drvdata(dev);
 106	dev_t index = MTD_DEVT(mtd->index);
 107
 108	/* remove /dev/mtdXro node */
 109	device_destroy(&mtd_class, index + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110}
 111
 112static ssize_t mtd_type_show(struct device *dev,
 113		struct device_attribute *attr, char *buf)
 114{
 115	struct mtd_info *mtd = dev_get_drvdata(dev);
 116	char *type;
 117
 118	switch (mtd->type) {
 119	case MTD_ABSENT:
 120		type = "absent";
 121		break;
 122	case MTD_RAM:
 123		type = "ram";
 124		break;
 125	case MTD_ROM:
 126		type = "rom";
 127		break;
 128	case MTD_NORFLASH:
 129		type = "nor";
 130		break;
 131	case MTD_NANDFLASH:
 132		type = "nand";
 133		break;
 134	case MTD_DATAFLASH:
 135		type = "dataflash";
 136		break;
 137	case MTD_UBIVOLUME:
 138		type = "ubi";
 139		break;
 140	case MTD_MLCNANDFLASH:
 141		type = "mlc-nand";
 142		break;
 143	default:
 144		type = "unknown";
 145	}
 146
 147	return snprintf(buf, PAGE_SIZE, "%s\n", type);
 148}
 149static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
 150
 151static ssize_t mtd_flags_show(struct device *dev,
 152		struct device_attribute *attr, char *buf)
 153{
 154	struct mtd_info *mtd = dev_get_drvdata(dev);
 155
 156	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
 157
 158}
 159static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
 160
 161static ssize_t mtd_size_show(struct device *dev,
 162		struct device_attribute *attr, char *buf)
 163{
 164	struct mtd_info *mtd = dev_get_drvdata(dev);
 165
 166	return snprintf(buf, PAGE_SIZE, "%llu\n",
 167		(unsigned long long)mtd->size);
 168
 169}
 170static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
 171
 172static ssize_t mtd_erasesize_show(struct device *dev,
 173		struct device_attribute *attr, char *buf)
 174{
 175	struct mtd_info *mtd = dev_get_drvdata(dev);
 176
 177	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
 178
 179}
 180static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
 181
 182static ssize_t mtd_writesize_show(struct device *dev,
 183		struct device_attribute *attr, char *buf)
 184{
 185	struct mtd_info *mtd = dev_get_drvdata(dev);
 186
 187	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
 188
 189}
 190static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
 191
 192static ssize_t mtd_subpagesize_show(struct device *dev,
 193		struct device_attribute *attr, char *buf)
 194{
 195	struct mtd_info *mtd = dev_get_drvdata(dev);
 196	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 197
 198	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
 199
 200}
 201static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
 202
 203static ssize_t mtd_oobsize_show(struct device *dev,
 204		struct device_attribute *attr, char *buf)
 205{
 206	struct mtd_info *mtd = dev_get_drvdata(dev);
 207
 208	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 209
 210}
 211static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
 212
 213static ssize_t mtd_numeraseregions_show(struct device *dev,
 214		struct device_attribute *attr, char *buf)
 215{
 216	struct mtd_info *mtd = dev_get_drvdata(dev);
 217
 218	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
 219
 220}
 221static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
 222	NULL);
 223
 224static ssize_t mtd_name_show(struct device *dev,
 225		struct device_attribute *attr, char *buf)
 226{
 227	struct mtd_info *mtd = dev_get_drvdata(dev);
 228
 229	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 230
 231}
 232static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 233
 234static ssize_t mtd_ecc_strength_show(struct device *dev,
 235				     struct device_attribute *attr, char *buf)
 236{
 237	struct mtd_info *mtd = dev_get_drvdata(dev);
 238
 239	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
 240}
 241static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
 242
 243static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 244					  struct device_attribute *attr,
 245					  char *buf)
 246{
 247	struct mtd_info *mtd = dev_get_drvdata(dev);
 248
 249	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
 250}
 251
 252static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 253					   struct device_attribute *attr,
 254					   const char *buf, size_t count)
 255{
 256	struct mtd_info *mtd = dev_get_drvdata(dev);
 257	unsigned int bitflip_threshold;
 258	int retval;
 259
 260	retval = kstrtouint(buf, 0, &bitflip_threshold);
 261	if (retval)
 262		return retval;
 263
 264	mtd->bitflip_threshold = bitflip_threshold;
 265	return count;
 266}
 267static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
 268		   mtd_bitflip_threshold_show,
 269		   mtd_bitflip_threshold_store);
 270
 271static ssize_t mtd_ecc_step_size_show(struct device *dev,
 272		struct device_attribute *attr, char *buf)
 273{
 274	struct mtd_info *mtd = dev_get_drvdata(dev);
 275
 276	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
 277
 278}
 279static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
 280
 281static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
 282		struct device_attribute *attr, char *buf)
 283{
 284	struct mtd_info *mtd = dev_get_drvdata(dev);
 285	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 286
 287	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
 288}
 289static DEVICE_ATTR(corrected_bits, S_IRUGO,
 290		   mtd_ecc_stats_corrected_show, NULL);
 291
 292static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
 293		struct device_attribute *attr, char *buf)
 294{
 295	struct mtd_info *mtd = dev_get_drvdata(dev);
 296	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 297
 298	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
 299}
 300static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
 301
 302static ssize_t mtd_badblocks_show(struct device *dev,
 303		struct device_attribute *attr, char *buf)
 304{
 305	struct mtd_info *mtd = dev_get_drvdata(dev);
 306	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 307
 308	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
 309}
 310static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
 311
 312static ssize_t mtd_bbtblocks_show(struct device *dev,
 313		struct device_attribute *attr, char *buf)
 314{
 315	struct mtd_info *mtd = dev_get_drvdata(dev);
 316	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 317
 318	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
 319}
 320static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
 321
 322static struct attribute *mtd_attrs[] = {
 323	&dev_attr_type.attr,
 324	&dev_attr_flags.attr,
 325	&dev_attr_size.attr,
 326	&dev_attr_erasesize.attr,
 327	&dev_attr_writesize.attr,
 328	&dev_attr_subpagesize.attr,
 329	&dev_attr_oobsize.attr,
 330	&dev_attr_numeraseregions.attr,
 331	&dev_attr_name.attr,
 332	&dev_attr_ecc_strength.attr,
 333	&dev_attr_ecc_step_size.attr,
 334	&dev_attr_corrected_bits.attr,
 335	&dev_attr_ecc_failures.attr,
 336	&dev_attr_bad_blocks.attr,
 337	&dev_attr_bbt_blocks.attr,
 338	&dev_attr_bitflip_threshold.attr,
 339	NULL,
 340};
 341ATTRIBUTE_GROUPS(mtd);
 342
 343static struct device_type mtd_devtype = {
 344	.name		= "mtd",
 345	.groups		= mtd_groups,
 346	.release	= mtd_release,
 347};
 348
 349#ifndef CONFIG_MMU
 350unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
 351{
 352	switch (mtd->type) {
 353	case MTD_RAM:
 354		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 355			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
 356	case MTD_ROM:
 357		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 358			NOMMU_MAP_READ;
 359	default:
 360		return NOMMU_MAP_COPY;
 361	}
 362}
 363EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
 364#endif
 365
 366static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
 367			       void *cmd)
 368{
 369	struct mtd_info *mtd;
 370
 371	mtd = container_of(n, struct mtd_info, reboot_notifier);
 372	mtd->_reboot(mtd);
 373
 374	return NOTIFY_DONE;
 375}
 376
 377/**
 378 *	add_mtd_device - register an MTD device
 379 *	@mtd: pointer to new MTD device info structure
 380 *
 381 *	Add a device to the list of MTD devices present in the system, and
 382 *	notify each currently active MTD 'user' of its arrival. Returns
 383 *	zero on success or non-zero on failure.
 
 384 */
 385
 386int add_mtd_device(struct mtd_info *mtd)
 387{
 388	struct mtd_notifier *not;
 389	int i, error;
 390
 391	/*
 392	 * May occur, for instance, on buggy drivers which call
 393	 * mtd_device_parse_register() multiple times on the same master MTD,
 394	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
 395	 */
 396	if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
 397		return -EEXIST;
 398
 399	mtd->backing_dev_info = &mtd_bdi;
 
 
 
 
 400
 401	BUG_ON(mtd->writesize == 0);
 402	mutex_lock(&mtd_table_mutex);
 403
 404	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 405	if (i < 0) {
 406		error = i;
 407		goto fail_locked;
 408	}
 409
 410	mtd->index = i;
 411	mtd->usecount = 0;
 412
 413	/* default value if not set by driver */
 414	if (mtd->bitflip_threshold == 0)
 415		mtd->bitflip_threshold = mtd->ecc_strength;
 416
 417	if (is_power_of_2(mtd->erasesize))
 418		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 419	else
 420		mtd->erasesize_shift = 0;
 421
 422	if (is_power_of_2(mtd->writesize))
 423		mtd->writesize_shift = ffs(mtd->writesize) - 1;
 424	else
 425		mtd->writesize_shift = 0;
 426
 427	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 428	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 429
 430	/* Some chips always power up locked. Unlock them now */
 431	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 432		error = mtd_unlock(mtd, 0, mtd->size);
 433		if (error && error != -EOPNOTSUPP)
 434			printk(KERN_WARNING
 435			       "%s: unlock failed, writes may not work\n",
 436			       mtd->name);
 437		/* Ignore unlock failures? */
 438		error = 0;
 439	}
 440
 441	/* Caller should have set dev.parent to match the
 442	 * physical device, if appropriate.
 443	 */
 444	mtd->dev.type = &mtd_devtype;
 445	mtd->dev.class = &mtd_class;
 446	mtd->dev.devt = MTD_DEVT(i);
 447	dev_set_name(&mtd->dev, "mtd%d", i);
 448	dev_set_drvdata(&mtd->dev, mtd);
 449	of_node_get(mtd_get_of_node(mtd));
 450	error = device_register(&mtd->dev);
 451	if (error)
 452		goto fail_added;
 453
 454	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
 455		      "mtd%dro", i);
 
 
 456
 457	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 458	/* No need to get a refcount on the module containing
 459	   the notifier, since we hold the mtd_table_mutex */
 460	list_for_each_entry(not, &mtd_notifiers, list)
 461		not->add(mtd);
 462
 463	mutex_unlock(&mtd_table_mutex);
 464	/* We _know_ we aren't being removed, because
 465	   our caller is still holding us here. So none
 466	   of this try_ nonsense, and no bitching about it
 467	   either. :) */
 468	__module_get(THIS_MODULE);
 469	return 0;
 470
 471fail_added:
 472	of_node_put(mtd_get_of_node(mtd));
 473	idr_remove(&mtd_idr, i);
 474fail_locked:
 475	mutex_unlock(&mtd_table_mutex);
 476	return error;
 477}
 478
 479/**
 480 *	del_mtd_device - unregister an MTD device
 481 *	@mtd: pointer to MTD device info structure
 482 *
 483 *	Remove a device from the list of MTD devices present in the system,
 484 *	and notify each currently active MTD 'user' of its departure.
 485 *	Returns zero on success or 1 on failure, which currently will happen
 486 *	if the requested device does not appear to be present in the list.
 487 */
 488
 489int del_mtd_device(struct mtd_info *mtd)
 490{
 491	int ret;
 492	struct mtd_notifier *not;
 493
 494	mutex_lock(&mtd_table_mutex);
 495
 496	if (idr_find(&mtd_idr, mtd->index) != mtd) {
 497		ret = -ENODEV;
 498		goto out_error;
 499	}
 500
 501	/* No need to get a refcount on the module containing
 502		the notifier, since we hold the mtd_table_mutex */
 503	list_for_each_entry(not, &mtd_notifiers, list)
 504		not->remove(mtd);
 505
 506	if (mtd->usecount) {
 507		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 508		       mtd->index, mtd->name, mtd->usecount);
 509		ret = -EBUSY;
 510	} else {
 511		device_unregister(&mtd->dev);
 512
 513		idr_remove(&mtd_idr, mtd->index);
 514		of_node_put(mtd_get_of_node(mtd));
 515
 516		module_put(THIS_MODULE);
 517		ret = 0;
 518	}
 519
 520out_error:
 521	mutex_unlock(&mtd_table_mutex);
 522	return ret;
 523}
 524
 525static int mtd_add_device_partitions(struct mtd_info *mtd,
 526				     struct mtd_partitions *parts)
 527{
 528	const struct mtd_partition *real_parts = parts->parts;
 529	int nbparts = parts->nr_parts;
 530	int ret;
 531
 532	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
 533		ret = add_mtd_device(mtd);
 534		if (ret)
 535			return ret;
 536	}
 537
 538	if (nbparts > 0) {
 539		ret = add_mtd_partitions(mtd, real_parts, nbparts);
 540		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
 541			del_mtd_device(mtd);
 542		return ret;
 543	}
 544
 545	return 0;
 546}
 547
 548/*
 549 * Set a few defaults based on the parent devices, if not provided by the
 550 * driver
 551 */
 552static void mtd_set_dev_defaults(struct mtd_info *mtd)
 553{
 554	if (mtd->dev.parent) {
 555		if (!mtd->owner && mtd->dev.parent->driver)
 556			mtd->owner = mtd->dev.parent->driver->owner;
 557		if (!mtd->name)
 558			mtd->name = dev_name(mtd->dev.parent);
 559	} else {
 560		pr_debug("mtd device won't show a device symlink in sysfs\n");
 561	}
 562}
 563
 564/**
 565 * mtd_device_parse_register - parse partitions and register an MTD device.
 566 *
 567 * @mtd: the MTD device to register
 568 * @types: the list of MTD partition probes to try, see
 569 *         'parse_mtd_partitions()' for more information
 570 * @parser_data: MTD partition parser-specific data
 571 * @parts: fallback partition information to register, if parsing fails;
 572 *         only valid if %nr_parts > %0
 573 * @nr_parts: the number of partitions in parts, if zero then the full
 574 *            MTD device is registered if no partition info is found
 575 *
 576 * This function aggregates MTD partitions parsing (done by
 577 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 578 * basically follows the most common pattern found in many MTD drivers:
 579 *
 580 * * It first tries to probe partitions on MTD device @mtd using parsers
 581 *   specified in @types (if @types is %NULL, then the default list of parsers
 582 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 583 *   found this functions tries to fallback to information specified in
 584 *   @parts/@nr_parts.
 585 * * If any partitioning info was found, this function registers the found
 586 *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
 587 *   as a whole is registered first.
 588 * * If no partitions were found this function just registers the MTD device
 589 *   @mtd and exits.
 590 *
 591 * Returns zero in case of success and a negative error code in case of failure.
 592 */
 593int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 594			      struct mtd_part_parser_data *parser_data,
 595			      const struct mtd_partition *parts,
 596			      int nr_parts)
 597{
 598	struct mtd_partitions parsed;
 599	int ret;
 600
 601	mtd_set_dev_defaults(mtd);
 602
 603	memset(&parsed, 0, sizeof(parsed));
 604
 605	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
 606	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
 607		/* Fall back to driver-provided partitions */
 608		parsed = (struct mtd_partitions){
 609			.parts		= parts,
 610			.nr_parts	= nr_parts,
 611		};
 612	} else if (ret < 0) {
 613		/* Didn't come up with parsed OR fallback partitions */
 614		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
 615			ret);
 616		/* Don't abort on errors; we can still use unpartitioned MTD */
 617		memset(&parsed, 0, sizeof(parsed));
 618	}
 619
 620	ret = mtd_add_device_partitions(mtd, &parsed);
 621	if (ret)
 622		goto out;
 623
 624	/*
 625	 * FIXME: some drivers unfortunately call this function more than once.
 626	 * So we have to check if we've already assigned the reboot notifier.
 627	 *
 628	 * Generally, we can make multiple calls work for most cases, but it
 629	 * does cause problems with parse_mtd_partitions() above (e.g.,
 630	 * cmdlineparts will register partitions more than once).
 631	 */
 632	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
 633		  "MTD already registered\n");
 634	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
 635		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
 636		register_reboot_notifier(&mtd->reboot_notifier);
 637	}
 638
 639out:
 640	/* Cleanup any parsed partitions */
 641	mtd_part_parser_cleanup(&parsed);
 642	return ret;
 643}
 644EXPORT_SYMBOL_GPL(mtd_device_parse_register);
 645
 646/**
 647 * mtd_device_unregister - unregister an existing MTD device.
 648 *
 649 * @master: the MTD device to unregister.  This will unregister both the master
 650 *          and any partitions if registered.
 651 */
 652int mtd_device_unregister(struct mtd_info *master)
 653{
 654	int err;
 655
 656	if (master->_reboot)
 657		unregister_reboot_notifier(&master->reboot_notifier);
 658
 659	err = del_mtd_partitions(master);
 660	if (err)
 661		return err;
 662
 663	if (!device_is_registered(&master->dev))
 664		return 0;
 665
 666	return del_mtd_device(master);
 667}
 668EXPORT_SYMBOL_GPL(mtd_device_unregister);
 669
 670/**
 671 *	register_mtd_user - register a 'user' of MTD devices.
 672 *	@new: pointer to notifier info structure
 673 *
 674 *	Registers a pair of callbacks function to be called upon addition
 675 *	or removal of MTD devices. Causes the 'add' callback to be immediately
 676 *	invoked for each MTD device currently present in the system.
 677 */
 678void register_mtd_user (struct mtd_notifier *new)
 679{
 680	struct mtd_info *mtd;
 681
 682	mutex_lock(&mtd_table_mutex);
 683
 684	list_add(&new->list, &mtd_notifiers);
 685
 686	__module_get(THIS_MODULE);
 687
 688	mtd_for_each_device(mtd)
 689		new->add(mtd);
 690
 691	mutex_unlock(&mtd_table_mutex);
 692}
 693EXPORT_SYMBOL_GPL(register_mtd_user);
 694
 695/**
 696 *	unregister_mtd_user - unregister a 'user' of MTD devices.
 697 *	@old: pointer to notifier info structure
 698 *
 699 *	Removes a callback function pair from the list of 'users' to be
 700 *	notified upon addition or removal of MTD devices. Causes the
 701 *	'remove' callback to be immediately invoked for each MTD device
 702 *	currently present in the system.
 703 */
 704int unregister_mtd_user (struct mtd_notifier *old)
 705{
 706	struct mtd_info *mtd;
 707
 708	mutex_lock(&mtd_table_mutex);
 709
 710	module_put(THIS_MODULE);
 711
 712	mtd_for_each_device(mtd)
 713		old->remove(mtd);
 714
 715	list_del(&old->list);
 716	mutex_unlock(&mtd_table_mutex);
 717	return 0;
 718}
 719EXPORT_SYMBOL_GPL(unregister_mtd_user);
 720
 721/**
 722 *	get_mtd_device - obtain a validated handle for an MTD device
 723 *	@mtd: last known address of the required MTD device
 724 *	@num: internal device number of the required MTD device
 725 *
 726 *	Given a number and NULL address, return the num'th entry in the device
 727 *	table, if any.	Given an address and num == -1, search the device table
 728 *	for a device with that address and return if it's still present. Given
 729 *	both, return the num'th driver only if its address matches. Return
 730 *	error code if not.
 731 */
 732struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
 733{
 734	struct mtd_info *ret = NULL, *other;
 735	int err = -ENODEV;
 736
 737	mutex_lock(&mtd_table_mutex);
 738
 739	if (num == -1) {
 740		mtd_for_each_device(other) {
 741			if (other == mtd) {
 742				ret = mtd;
 743				break;
 744			}
 745		}
 746	} else if (num >= 0) {
 747		ret = idr_find(&mtd_idr, num);
 748		if (mtd && mtd != ret)
 749			ret = NULL;
 750	}
 751
 752	if (!ret) {
 753		ret = ERR_PTR(err);
 754		goto out;
 755	}
 756
 757	err = __get_mtd_device(ret);
 758	if (err)
 759		ret = ERR_PTR(err);
 760out:
 761	mutex_unlock(&mtd_table_mutex);
 762	return ret;
 763}
 764EXPORT_SYMBOL_GPL(get_mtd_device);
 765
 766
 767int __get_mtd_device(struct mtd_info *mtd)
 768{
 769	int err;
 770
 771	if (!try_module_get(mtd->owner))
 772		return -ENODEV;
 773
 774	if (mtd->_get_device) {
 775		err = mtd->_get_device(mtd);
 776
 777		if (err) {
 778			module_put(mtd->owner);
 779			return err;
 780		}
 781	}
 782	mtd->usecount++;
 783	return 0;
 784}
 785EXPORT_SYMBOL_GPL(__get_mtd_device);
 786
 787/**
 788 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
 789 *	device name
 790 *	@name: MTD device name to open
 791 *
 792 * 	This function returns MTD device description structure in case of
 793 * 	success and an error code in case of failure.
 794 */
 795struct mtd_info *get_mtd_device_nm(const char *name)
 796{
 797	int err = -ENODEV;
 798	struct mtd_info *mtd = NULL, *other;
 799
 800	mutex_lock(&mtd_table_mutex);
 801
 802	mtd_for_each_device(other) {
 803		if (!strcmp(name, other->name)) {
 804			mtd = other;
 805			break;
 806		}
 807	}
 808
 809	if (!mtd)
 810		goto out_unlock;
 811
 812	err = __get_mtd_device(mtd);
 813	if (err)
 814		goto out_unlock;
 815
 816	mutex_unlock(&mtd_table_mutex);
 817	return mtd;
 818
 819out_unlock:
 820	mutex_unlock(&mtd_table_mutex);
 821	return ERR_PTR(err);
 822}
 823EXPORT_SYMBOL_GPL(get_mtd_device_nm);
 824
 825void put_mtd_device(struct mtd_info *mtd)
 826{
 827	mutex_lock(&mtd_table_mutex);
 828	__put_mtd_device(mtd);
 829	mutex_unlock(&mtd_table_mutex);
 830
 831}
 832EXPORT_SYMBOL_GPL(put_mtd_device);
 833
 834void __put_mtd_device(struct mtd_info *mtd)
 835{
 836	--mtd->usecount;
 837	BUG_ON(mtd->usecount < 0);
 838
 839	if (mtd->_put_device)
 840		mtd->_put_device(mtd);
 841
 842	module_put(mtd->owner);
 843}
 844EXPORT_SYMBOL_GPL(__put_mtd_device);
 845
 846/*
 847 * Erase is an asynchronous operation.  Device drivers are supposed
 848 * to call instr->callback() whenever the operation completes, even
 849 * if it completes with a failure.
 850 * Callers are supposed to pass a callback function and wait for it
 851 * to be called before writing to the block.
 852 */
 853int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
 854{
 855	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
 856		return -EINVAL;
 857	if (!(mtd->flags & MTD_WRITEABLE))
 858		return -EROFS;
 859	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
 860	if (!instr->len) {
 861		instr->state = MTD_ERASE_DONE;
 862		mtd_erase_callback(instr);
 863		return 0;
 864	}
 865	return mtd->_erase(mtd, instr);
 866}
 867EXPORT_SYMBOL_GPL(mtd_erase);
 868
 869/*
 870 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
 871 */
 872int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 873	      void **virt, resource_size_t *phys)
 874{
 875	*retlen = 0;
 876	*virt = NULL;
 877	if (phys)
 878		*phys = 0;
 879	if (!mtd->_point)
 880		return -EOPNOTSUPP;
 881	if (from < 0 || from >= mtd->size || len > mtd->size - from)
 882		return -EINVAL;
 883	if (!len)
 884		return 0;
 885	return mtd->_point(mtd, from, len, retlen, virt, phys);
 886}
 887EXPORT_SYMBOL_GPL(mtd_point);
 888
 889/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
 890int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 891{
 892	if (!mtd->_point)
 893		return -EOPNOTSUPP;
 894	if (from < 0 || from >= mtd->size || len > mtd->size - from)
 895		return -EINVAL;
 896	if (!len)
 897		return 0;
 898	return mtd->_unpoint(mtd, from, len);
 899}
 900EXPORT_SYMBOL_GPL(mtd_unpoint);
 901
 902/*
 903 * Allow NOMMU mmap() to directly map the device (if not NULL)
 904 * - return the address to which the offset maps
 905 * - return -ENOSYS to indicate refusal to do the mapping
 906 */
 907unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
 908				    unsigned long offset, unsigned long flags)
 909{
 910	if (!mtd->_get_unmapped_area)
 911		return -EOPNOTSUPP;
 912	if (offset >= mtd->size || len > mtd->size - offset)
 913		return -EINVAL;
 914	return mtd->_get_unmapped_area(mtd, len, offset, flags);
 915}
 916EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
 917
 918int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 919	     u_char *buf)
 920{
 921	int ret_code;
 922	*retlen = 0;
 923	if (from < 0 || from >= mtd->size || len > mtd->size - from)
 924		return -EINVAL;
 925	if (!len)
 926		return 0;
 927
 928	/*
 929	 * In the absence of an error, drivers return a non-negative integer
 930	 * representing the maximum number of bitflips that were corrected on
 931	 * any one ecc region (if applicable; zero otherwise).
 932	 */
 933	ret_code = mtd->_read(mtd, from, len, retlen, buf);
 934	if (unlikely(ret_code < 0))
 935		return ret_code;
 936	if (mtd->ecc_strength == 0)
 937		return 0;	/* device lacks ecc */
 938	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
 939}
 940EXPORT_SYMBOL_GPL(mtd_read);
 941
 942int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 943	      const u_char *buf)
 944{
 945	*retlen = 0;
 946	if (to < 0 || to >= mtd->size || len > mtd->size - to)
 947		return -EINVAL;
 948	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
 949		return -EROFS;
 950	if (!len)
 951		return 0;
 952	return mtd->_write(mtd, to, len, retlen, buf);
 953}
 954EXPORT_SYMBOL_GPL(mtd_write);
 955
 956/*
 957 * In blackbox flight recorder like scenarios we want to make successful writes
 958 * in interrupt context. panic_write() is only intended to be called when its
 959 * known the kernel is about to panic and we need the write to succeed. Since
 960 * the kernel is not going to be running for much longer, this function can
 961 * break locks and delay to ensure the write succeeds (but not sleep).
 962 */
 963int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 964		    const u_char *buf)
 965{
 966	*retlen = 0;
 967	if (!mtd->_panic_write)
 968		return -EOPNOTSUPP;
 969	if (to < 0 || to >= mtd->size || len > mtd->size - to)
 970		return -EINVAL;
 971	if (!(mtd->flags & MTD_WRITEABLE))
 972		return -EROFS;
 973	if (!len)
 974		return 0;
 975	return mtd->_panic_write(mtd, to, len, retlen, buf);
 976}
 977EXPORT_SYMBOL_GPL(mtd_panic_write);
 978
 979int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
 980{
 981	int ret_code;
 982	ops->retlen = ops->oobretlen = 0;
 983	if (!mtd->_read_oob)
 984		return -EOPNOTSUPP;
 985	/*
 986	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
 987	 * similar to mtd->_read(), returning a non-negative integer
 988	 * representing max bitflips. In other cases, mtd->_read_oob() may
 989	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
 990	 */
 991	ret_code = mtd->_read_oob(mtd, from, ops);
 992	if (unlikely(ret_code < 0))
 993		return ret_code;
 994	if (mtd->ecc_strength == 0)
 995		return 0;	/* device lacks ecc */
 996	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
 997}
 998EXPORT_SYMBOL_GPL(mtd_read_oob);
 999
1000/*
1001 * Method to access the protection register area, present in some flash
1002 * devices. The user data is one time programmable but the factory data is read
1003 * only.
1004 */
1005int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1006			   struct otp_info *buf)
1007{
1008	if (!mtd->_get_fact_prot_info)
1009		return -EOPNOTSUPP;
1010	if (!len)
1011		return 0;
1012	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1013}
1014EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1015
1016int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1017			   size_t *retlen, u_char *buf)
1018{
1019	*retlen = 0;
1020	if (!mtd->_read_fact_prot_reg)
1021		return -EOPNOTSUPP;
1022	if (!len)
1023		return 0;
1024	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1025}
1026EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1027
1028int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1029			   struct otp_info *buf)
1030{
1031	if (!mtd->_get_user_prot_info)
1032		return -EOPNOTSUPP;
1033	if (!len)
1034		return 0;
1035	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1036}
1037EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1038
1039int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1040			   size_t *retlen, u_char *buf)
1041{
1042	*retlen = 0;
1043	if (!mtd->_read_user_prot_reg)
1044		return -EOPNOTSUPP;
1045	if (!len)
1046		return 0;
1047	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1048}
1049EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1050
1051int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1052			    size_t *retlen, u_char *buf)
1053{
1054	int ret;
1055
1056	*retlen = 0;
1057	if (!mtd->_write_user_prot_reg)
1058		return -EOPNOTSUPP;
1059	if (!len)
1060		return 0;
1061	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1062	if (ret)
1063		return ret;
1064
1065	/*
1066	 * If no data could be written at all, we are out of memory and
1067	 * must return -ENOSPC.
1068	 */
1069	return (*retlen) ? 0 : -ENOSPC;
1070}
1071EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1072
1073int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1074{
1075	if (!mtd->_lock_user_prot_reg)
1076		return -EOPNOTSUPP;
1077	if (!len)
1078		return 0;
1079	return mtd->_lock_user_prot_reg(mtd, from, len);
1080}
1081EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1082
1083/* Chip-supported device locking */
1084int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1085{
1086	if (!mtd->_lock)
1087		return -EOPNOTSUPP;
1088	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1089		return -EINVAL;
1090	if (!len)
1091		return 0;
1092	return mtd->_lock(mtd, ofs, len);
1093}
1094EXPORT_SYMBOL_GPL(mtd_lock);
1095
1096int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1097{
1098	if (!mtd->_unlock)
1099		return -EOPNOTSUPP;
1100	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1101		return -EINVAL;
1102	if (!len)
1103		return 0;
1104	return mtd->_unlock(mtd, ofs, len);
1105}
1106EXPORT_SYMBOL_GPL(mtd_unlock);
1107
1108int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1109{
1110	if (!mtd->_is_locked)
1111		return -EOPNOTSUPP;
1112	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1113		return -EINVAL;
1114	if (!len)
1115		return 0;
1116	return mtd->_is_locked(mtd, ofs, len);
1117}
1118EXPORT_SYMBOL_GPL(mtd_is_locked);
1119
1120int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1121{
1122	if (ofs < 0 || ofs >= mtd->size)
1123		return -EINVAL;
1124	if (!mtd->_block_isreserved)
1125		return 0;
1126	return mtd->_block_isreserved(mtd, ofs);
1127}
1128EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1129
1130int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1131{
1132	if (ofs < 0 || ofs >= mtd->size)
1133		return -EINVAL;
1134	if (!mtd->_block_isbad)
1135		return 0;
 
 
1136	return mtd->_block_isbad(mtd, ofs);
1137}
1138EXPORT_SYMBOL_GPL(mtd_block_isbad);
1139
1140int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1141{
1142	if (!mtd->_block_markbad)
1143		return -EOPNOTSUPP;
1144	if (ofs < 0 || ofs >= mtd->size)
1145		return -EINVAL;
1146	if (!(mtd->flags & MTD_WRITEABLE))
1147		return -EROFS;
1148	return mtd->_block_markbad(mtd, ofs);
1149}
1150EXPORT_SYMBOL_GPL(mtd_block_markbad);
1151
1152/*
1153 * default_mtd_writev - the default writev method
1154 * @mtd: mtd device description object pointer
1155 * @vecs: the vectors to write
1156 * @count: count of vectors in @vecs
1157 * @to: the MTD device offset to write to
1158 * @retlen: on exit contains the count of bytes written to the MTD device.
1159 *
1160 * This function returns zero in case of success and a negative error code in
1161 * case of failure.
1162 */
1163static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1164			      unsigned long count, loff_t to, size_t *retlen)
1165{
1166	unsigned long i;
1167	size_t totlen = 0, thislen;
1168	int ret = 0;
1169
1170	for (i = 0; i < count; i++) {
1171		if (!vecs[i].iov_len)
1172			continue;
1173		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1174				vecs[i].iov_base);
1175		totlen += thislen;
1176		if (ret || thislen != vecs[i].iov_len)
1177			break;
1178		to += vecs[i].iov_len;
1179	}
1180	*retlen = totlen;
1181	return ret;
1182}
1183
1184/*
1185 * mtd_writev - the vector-based MTD write method
1186 * @mtd: mtd device description object pointer
1187 * @vecs: the vectors to write
1188 * @count: count of vectors in @vecs
1189 * @to: the MTD device offset to write to
1190 * @retlen: on exit contains the count of bytes written to the MTD device.
1191 *
1192 * This function returns zero in case of success and a negative error code in
1193 * case of failure.
1194 */
1195int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1196	       unsigned long count, loff_t to, size_t *retlen)
1197{
1198	*retlen = 0;
1199	if (!(mtd->flags & MTD_WRITEABLE))
1200		return -EROFS;
1201	if (!mtd->_writev)
1202		return default_mtd_writev(mtd, vecs, count, to, retlen);
1203	return mtd->_writev(mtd, vecs, count, to, retlen);
1204}
1205EXPORT_SYMBOL_GPL(mtd_writev);
1206
1207/**
1208 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1209 * @mtd: mtd device description object pointer
1210 * @size: a pointer to the ideal or maximum size of the allocation, points
1211 *        to the actual allocation size on success.
1212 *
1213 * This routine attempts to allocate a contiguous kernel buffer up to
1214 * the specified size, backing off the size of the request exponentially
1215 * until the request succeeds or until the allocation size falls below
1216 * the system page size. This attempts to make sure it does not adversely
1217 * impact system performance, so when allocating more than one page, we
1218 * ask the memory allocator to avoid re-trying, swapping, writing back
1219 * or performing I/O.
1220 *
1221 * Note, this function also makes sure that the allocated buffer is aligned to
1222 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1223 *
1224 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1225 * to handle smaller (i.e. degraded) buffer allocations under low- or
1226 * fragmented-memory situations where such reduced allocations, from a
1227 * requested ideal, are allowed.
1228 *
1229 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1230 */
1231void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1232{
1233	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
 
1234	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1235	void *kbuf;
1236
1237	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1238
1239	while (*size > min_alloc) {
1240		kbuf = kmalloc(*size, flags);
1241		if (kbuf)
1242			return kbuf;
1243
1244		*size >>= 1;
1245		*size = ALIGN(*size, mtd->writesize);
1246	}
1247
1248	/*
1249	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1250	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1251	 */
1252	return kmalloc(*size, GFP_KERNEL);
1253}
1254EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1255
1256#ifdef CONFIG_PROC_FS
1257
1258/*====================================================================*/
1259/* Support for /proc/mtd */
1260
1261static int mtd_proc_show(struct seq_file *m, void *v)
1262{
1263	struct mtd_info *mtd;
1264
1265	seq_puts(m, "dev:    size   erasesize  name\n");
1266	mutex_lock(&mtd_table_mutex);
1267	mtd_for_each_device(mtd) {
1268		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1269			   mtd->index, (unsigned long long)mtd->size,
1270			   mtd->erasesize, mtd->name);
1271	}
1272	mutex_unlock(&mtd_table_mutex);
1273	return 0;
1274}
1275
1276static int mtd_proc_open(struct inode *inode, struct file *file)
1277{
1278	return single_open(file, mtd_proc_show, NULL);
1279}
1280
1281static const struct file_operations mtd_proc_ops = {
1282	.open		= mtd_proc_open,
1283	.read		= seq_read,
1284	.llseek		= seq_lseek,
1285	.release	= single_release,
1286};
1287#endif /* CONFIG_PROC_FS */
1288
1289/*====================================================================*/
1290/* Init code */
1291
1292static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1293{
1294	int ret;
1295
1296	ret = bdi_init(bdi);
1297	if (!ret)
1298		ret = bdi_register(bdi, NULL, "%s", name);
1299
1300	if (ret)
1301		bdi_destroy(bdi);
1302
1303	return ret;
1304}
1305
1306static struct proc_dir_entry *proc_mtd;
1307
1308static int __init init_mtd(void)
1309{
1310	int ret;
1311
1312	ret = class_register(&mtd_class);
1313	if (ret)
1314		goto err_reg;
1315
1316	ret = mtd_bdi_init(&mtd_bdi, "mtd");
 
 
 
 
 
 
 
 
1317	if (ret)
1318		goto err_bdi;
1319
1320	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1321
1322	ret = init_mtdchar();
1323	if (ret)
1324		goto out_procfs;
1325
1326	return 0;
1327
1328out_procfs:
1329	if (proc_mtd)
1330		remove_proc_entry("mtd", NULL);
1331err_bdi:
 
 
 
 
1332	class_unregister(&mtd_class);
1333err_reg:
1334	pr_err("Error registering mtd class or bdi: %d\n", ret);
1335	return ret;
1336}
1337
1338static void __exit cleanup_mtd(void)
1339{
1340	cleanup_mtdchar();
1341	if (proc_mtd)
1342		remove_proc_entry("mtd", NULL);
1343	class_unregister(&mtd_class);
1344	bdi_destroy(&mtd_bdi);
1345	idr_destroy(&mtd_idr);
 
1346}
1347
1348module_init(init_mtd);
1349module_exit(cleanup_mtd);
1350
1351MODULE_LICENSE("GPL");
1352MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1353MODULE_DESCRIPTION("Core MTD registration and access routines");
v3.15
   1/*
   2 * Core registration and callback routines for MTD
   3 * drivers and users.
   4 *
   5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   6 * Copyright © 2006      Red Hat UK Limited 
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  21 *
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/ptrace.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/timer.h>
  30#include <linux/major.h>
  31#include <linux/fs.h>
  32#include <linux/err.h>
  33#include <linux/ioctl.h>
  34#include <linux/init.h>
 
  35#include <linux/proc_fs.h>
  36#include <linux/idr.h>
  37#include <linux/backing-dev.h>
  38#include <linux/gfp.h>
  39#include <linux/slab.h>
 
 
  40
  41#include <linux/mtd/mtd.h>
  42#include <linux/mtd/partitions.h>
  43
  44#include "mtdcore.h"
  45
  46/*
  47 * backing device capabilities for non-mappable devices (such as NAND flash)
  48 * - permits private mappings, copies are taken of the data
  49 */
  50static struct backing_dev_info mtd_bdi_unmappable = {
  51	.capabilities	= BDI_CAP_MAP_COPY,
  52};
  53
  54/*
  55 * backing device capabilities for R/O mappable devices (such as ROM)
  56 * - permits private mappings, copies are taken of the data
  57 * - permits non-writable shared mappings
  58 */
  59static struct backing_dev_info mtd_bdi_ro_mappable = {
  60	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  61			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
  62};
 
 
 
  63
  64/*
  65 * backing device capabilities for writable mappable devices (such as RAM)
  66 * - permits private mappings, copies are taken of the data
  67 * - permits non-writable shared mappings
  68 */
  69static struct backing_dev_info mtd_bdi_rw_mappable = {
  70	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  71			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
  72			   BDI_CAP_WRITE_MAP),
  73};
  74
  75static int mtd_cls_suspend(struct device *dev, pm_message_t state);
  76static int mtd_cls_resume(struct device *dev);
 
 
 
  77
  78static struct class mtd_class = {
  79	.name = "mtd",
  80	.owner = THIS_MODULE,
  81	.suspend = mtd_cls_suspend,
  82	.resume = mtd_cls_resume,
  83};
  84
  85static DEFINE_IDR(mtd_idr);
  86
  87/* These are exported solely for the purpose of mtd_blkdevs.c. You
  88   should not use them for _anything_ else */
  89DEFINE_MUTEX(mtd_table_mutex);
  90EXPORT_SYMBOL_GPL(mtd_table_mutex);
  91
  92struct mtd_info *__mtd_next_device(int i)
  93{
  94	return idr_get_next(&mtd_idr, &i);
  95}
  96EXPORT_SYMBOL_GPL(__mtd_next_device);
  97
  98static LIST_HEAD(mtd_notifiers);
  99
 100
 101#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
 102
 103/* REVISIT once MTD uses the driver model better, whoever allocates
 104 * the mtd_info will probably want to use the release() hook...
 105 */
 106static void mtd_release(struct device *dev)
 107{
 108	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
 109	dev_t index = MTD_DEVT(mtd->index);
 110
 111	/* remove /dev/mtdXro node if needed */
 112	if (index)
 113		device_destroy(&mtd_class, index + 1);
 114}
 115
 116static int mtd_cls_suspend(struct device *dev, pm_message_t state)
 117{
 118	struct mtd_info *mtd = dev_get_drvdata(dev);
 119
 120	return mtd ? mtd_suspend(mtd) : 0;
 121}
 122
 123static int mtd_cls_resume(struct device *dev)
 124{
 125	struct mtd_info *mtd = dev_get_drvdata(dev);
 126
 127	if (mtd)
 128		mtd_resume(mtd);
 129	return 0;
 130}
 131
 132static ssize_t mtd_type_show(struct device *dev,
 133		struct device_attribute *attr, char *buf)
 134{
 135	struct mtd_info *mtd = dev_get_drvdata(dev);
 136	char *type;
 137
 138	switch (mtd->type) {
 139	case MTD_ABSENT:
 140		type = "absent";
 141		break;
 142	case MTD_RAM:
 143		type = "ram";
 144		break;
 145	case MTD_ROM:
 146		type = "rom";
 147		break;
 148	case MTD_NORFLASH:
 149		type = "nor";
 150		break;
 151	case MTD_NANDFLASH:
 152		type = "nand";
 153		break;
 154	case MTD_DATAFLASH:
 155		type = "dataflash";
 156		break;
 157	case MTD_UBIVOLUME:
 158		type = "ubi";
 159		break;
 160	case MTD_MLCNANDFLASH:
 161		type = "mlc-nand";
 162		break;
 163	default:
 164		type = "unknown";
 165	}
 166
 167	return snprintf(buf, PAGE_SIZE, "%s\n", type);
 168}
 169static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
 170
 171static ssize_t mtd_flags_show(struct device *dev,
 172		struct device_attribute *attr, char *buf)
 173{
 174	struct mtd_info *mtd = dev_get_drvdata(dev);
 175
 176	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
 177
 178}
 179static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
 180
 181static ssize_t mtd_size_show(struct device *dev,
 182		struct device_attribute *attr, char *buf)
 183{
 184	struct mtd_info *mtd = dev_get_drvdata(dev);
 185
 186	return snprintf(buf, PAGE_SIZE, "%llu\n",
 187		(unsigned long long)mtd->size);
 188
 189}
 190static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
 191
 192static ssize_t mtd_erasesize_show(struct device *dev,
 193		struct device_attribute *attr, char *buf)
 194{
 195	struct mtd_info *mtd = dev_get_drvdata(dev);
 196
 197	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
 198
 199}
 200static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
 201
 202static ssize_t mtd_writesize_show(struct device *dev,
 203		struct device_attribute *attr, char *buf)
 204{
 205	struct mtd_info *mtd = dev_get_drvdata(dev);
 206
 207	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
 208
 209}
 210static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
 211
 212static ssize_t mtd_subpagesize_show(struct device *dev,
 213		struct device_attribute *attr, char *buf)
 214{
 215	struct mtd_info *mtd = dev_get_drvdata(dev);
 216	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 217
 218	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
 219
 220}
 221static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
 222
 223static ssize_t mtd_oobsize_show(struct device *dev,
 224		struct device_attribute *attr, char *buf)
 225{
 226	struct mtd_info *mtd = dev_get_drvdata(dev);
 227
 228	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 229
 230}
 231static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
 232
 233static ssize_t mtd_numeraseregions_show(struct device *dev,
 234		struct device_attribute *attr, char *buf)
 235{
 236	struct mtd_info *mtd = dev_get_drvdata(dev);
 237
 238	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
 239
 240}
 241static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
 242	NULL);
 243
 244static ssize_t mtd_name_show(struct device *dev,
 245		struct device_attribute *attr, char *buf)
 246{
 247	struct mtd_info *mtd = dev_get_drvdata(dev);
 248
 249	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 250
 251}
 252static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 253
 254static ssize_t mtd_ecc_strength_show(struct device *dev,
 255				     struct device_attribute *attr, char *buf)
 256{
 257	struct mtd_info *mtd = dev_get_drvdata(dev);
 258
 259	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
 260}
 261static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
 262
 263static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 264					  struct device_attribute *attr,
 265					  char *buf)
 266{
 267	struct mtd_info *mtd = dev_get_drvdata(dev);
 268
 269	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
 270}
 271
 272static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 273					   struct device_attribute *attr,
 274					   const char *buf, size_t count)
 275{
 276	struct mtd_info *mtd = dev_get_drvdata(dev);
 277	unsigned int bitflip_threshold;
 278	int retval;
 279
 280	retval = kstrtouint(buf, 0, &bitflip_threshold);
 281	if (retval)
 282		return retval;
 283
 284	mtd->bitflip_threshold = bitflip_threshold;
 285	return count;
 286}
 287static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
 288		   mtd_bitflip_threshold_show,
 289		   mtd_bitflip_threshold_store);
 290
 291static ssize_t mtd_ecc_step_size_show(struct device *dev,
 292		struct device_attribute *attr, char *buf)
 293{
 294	struct mtd_info *mtd = dev_get_drvdata(dev);
 295
 296	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
 297
 298}
 299static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
 300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301static struct attribute *mtd_attrs[] = {
 302	&dev_attr_type.attr,
 303	&dev_attr_flags.attr,
 304	&dev_attr_size.attr,
 305	&dev_attr_erasesize.attr,
 306	&dev_attr_writesize.attr,
 307	&dev_attr_subpagesize.attr,
 308	&dev_attr_oobsize.attr,
 309	&dev_attr_numeraseregions.attr,
 310	&dev_attr_name.attr,
 311	&dev_attr_ecc_strength.attr,
 312	&dev_attr_ecc_step_size.attr,
 
 
 
 
 313	&dev_attr_bitflip_threshold.attr,
 314	NULL,
 315};
 316ATTRIBUTE_GROUPS(mtd);
 317
 318static struct device_type mtd_devtype = {
 319	.name		= "mtd",
 320	.groups		= mtd_groups,
 321	.release	= mtd_release,
 322};
 323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324/**
 325 *	add_mtd_device - register an MTD device
 326 *	@mtd: pointer to new MTD device info structure
 327 *
 328 *	Add a device to the list of MTD devices present in the system, and
 329 *	notify each currently active MTD 'user' of its arrival. Returns
 330 *	zero on success or 1 on failure, which currently will only happen
 331 *	if there is insufficient memory or a sysfs error.
 332 */
 333
 334int add_mtd_device(struct mtd_info *mtd)
 335{
 336	struct mtd_notifier *not;
 337	int i, error;
 338
 339	if (!mtd->backing_dev_info) {
 340		switch (mtd->type) {
 341		case MTD_RAM:
 342			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
 343			break;
 344		case MTD_ROM:
 345			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
 346			break;
 347		default:
 348			mtd->backing_dev_info = &mtd_bdi_unmappable;
 349			break;
 350		}
 351	}
 352
 353	BUG_ON(mtd->writesize == 0);
 354	mutex_lock(&mtd_table_mutex);
 355
 356	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 357	if (i < 0)
 
 358		goto fail_locked;
 
 359
 360	mtd->index = i;
 361	mtd->usecount = 0;
 362
 363	/* default value if not set by driver */
 364	if (mtd->bitflip_threshold == 0)
 365		mtd->bitflip_threshold = mtd->ecc_strength;
 366
 367	if (is_power_of_2(mtd->erasesize))
 368		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 369	else
 370		mtd->erasesize_shift = 0;
 371
 372	if (is_power_of_2(mtd->writesize))
 373		mtd->writesize_shift = ffs(mtd->writesize) - 1;
 374	else
 375		mtd->writesize_shift = 0;
 376
 377	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 378	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 379
 380	/* Some chips always power up locked. Unlock them now */
 381	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 382		error = mtd_unlock(mtd, 0, mtd->size);
 383		if (error && error != -EOPNOTSUPP)
 384			printk(KERN_WARNING
 385			       "%s: unlock failed, writes may not work\n",
 386			       mtd->name);
 
 
 387	}
 388
 389	/* Caller should have set dev.parent to match the
 390	 * physical device.
 391	 */
 392	mtd->dev.type = &mtd_devtype;
 393	mtd->dev.class = &mtd_class;
 394	mtd->dev.devt = MTD_DEVT(i);
 395	dev_set_name(&mtd->dev, "mtd%d", i);
 396	dev_set_drvdata(&mtd->dev, mtd);
 397	if (device_register(&mtd->dev) != 0)
 
 
 398		goto fail_added;
 399
 400	if (MTD_DEVT(i))
 401		device_create(&mtd_class, mtd->dev.parent,
 402			      MTD_DEVT(i) + 1,
 403			      NULL, "mtd%dro", i);
 404
 405	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 406	/* No need to get a refcount on the module containing
 407	   the notifier, since we hold the mtd_table_mutex */
 408	list_for_each_entry(not, &mtd_notifiers, list)
 409		not->add(mtd);
 410
 411	mutex_unlock(&mtd_table_mutex);
 412	/* We _know_ we aren't being removed, because
 413	   our caller is still holding us here. So none
 414	   of this try_ nonsense, and no bitching about it
 415	   either. :) */
 416	__module_get(THIS_MODULE);
 417	return 0;
 418
 419fail_added:
 
 420	idr_remove(&mtd_idr, i);
 421fail_locked:
 422	mutex_unlock(&mtd_table_mutex);
 423	return 1;
 424}
 425
 426/**
 427 *	del_mtd_device - unregister an MTD device
 428 *	@mtd: pointer to MTD device info structure
 429 *
 430 *	Remove a device from the list of MTD devices present in the system,
 431 *	and notify each currently active MTD 'user' of its departure.
 432 *	Returns zero on success or 1 on failure, which currently will happen
 433 *	if the requested device does not appear to be present in the list.
 434 */
 435
 436int del_mtd_device(struct mtd_info *mtd)
 437{
 438	int ret;
 439	struct mtd_notifier *not;
 440
 441	mutex_lock(&mtd_table_mutex);
 442
 443	if (idr_find(&mtd_idr, mtd->index) != mtd) {
 444		ret = -ENODEV;
 445		goto out_error;
 446	}
 447
 448	/* No need to get a refcount on the module containing
 449		the notifier, since we hold the mtd_table_mutex */
 450	list_for_each_entry(not, &mtd_notifiers, list)
 451		not->remove(mtd);
 452
 453	if (mtd->usecount) {
 454		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 455		       mtd->index, mtd->name, mtd->usecount);
 456		ret = -EBUSY;
 457	} else {
 458		device_unregister(&mtd->dev);
 459
 460		idr_remove(&mtd_idr, mtd->index);
 
 461
 462		module_put(THIS_MODULE);
 463		ret = 0;
 464	}
 465
 466out_error:
 467	mutex_unlock(&mtd_table_mutex);
 468	return ret;
 469}
 470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471/**
 472 * mtd_device_parse_register - parse partitions and register an MTD device.
 473 *
 474 * @mtd: the MTD device to register
 475 * @types: the list of MTD partition probes to try, see
 476 *         'parse_mtd_partitions()' for more information
 477 * @parser_data: MTD partition parser-specific data
 478 * @parts: fallback partition information to register, if parsing fails;
 479 *         only valid if %nr_parts > %0
 480 * @nr_parts: the number of partitions in parts, if zero then the full
 481 *            MTD device is registered if no partition info is found
 482 *
 483 * This function aggregates MTD partitions parsing (done by
 484 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 485 * basically follows the most common pattern found in many MTD drivers:
 486 *
 487 * * It first tries to probe partitions on MTD device @mtd using parsers
 488 *   specified in @types (if @types is %NULL, then the default list of parsers
 489 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 490 *   found this functions tries to fallback to information specified in
 491 *   @parts/@nr_parts.
 492 * * If any partitioning info was found, this function registers the found
 493 *   partitions.
 
 494 * * If no partitions were found this function just registers the MTD device
 495 *   @mtd and exits.
 496 *
 497 * Returns zero in case of success and a negative error code in case of failure.
 498 */
 499int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 500			      struct mtd_part_parser_data *parser_data,
 501			      const struct mtd_partition *parts,
 502			      int nr_parts)
 503{
 504	int err;
 505	struct mtd_partition *real_parts;
 
 
 
 
 506
 507	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
 508	if (err <= 0 && nr_parts && parts) {
 509		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
 510				     GFP_KERNEL);
 511		if (!real_parts)
 512			err = -ENOMEM;
 513		else
 514			err = nr_parts;
 
 
 
 
 
 515	}
 516
 517	if (err > 0) {
 518		err = add_mtd_partitions(mtd, real_parts, err);
 519		kfree(real_parts);
 520	} else if (err == 0) {
 521		err = add_mtd_device(mtd);
 522		if (err == 1)
 523			err = -ENODEV;
 
 
 
 
 
 
 
 
 
 
 524	}
 525
 526	return err;
 
 
 
 527}
 528EXPORT_SYMBOL_GPL(mtd_device_parse_register);
 529
 530/**
 531 * mtd_device_unregister - unregister an existing MTD device.
 532 *
 533 * @master: the MTD device to unregister.  This will unregister both the master
 534 *          and any partitions if registered.
 535 */
 536int mtd_device_unregister(struct mtd_info *master)
 537{
 538	int err;
 539
 
 
 
 540	err = del_mtd_partitions(master);
 541	if (err)
 542		return err;
 543
 544	if (!device_is_registered(&master->dev))
 545		return 0;
 546
 547	return del_mtd_device(master);
 548}
 549EXPORT_SYMBOL_GPL(mtd_device_unregister);
 550
 551/**
 552 *	register_mtd_user - register a 'user' of MTD devices.
 553 *	@new: pointer to notifier info structure
 554 *
 555 *	Registers a pair of callbacks function to be called upon addition
 556 *	or removal of MTD devices. Causes the 'add' callback to be immediately
 557 *	invoked for each MTD device currently present in the system.
 558 */
 559void register_mtd_user (struct mtd_notifier *new)
 560{
 561	struct mtd_info *mtd;
 562
 563	mutex_lock(&mtd_table_mutex);
 564
 565	list_add(&new->list, &mtd_notifiers);
 566
 567	__module_get(THIS_MODULE);
 568
 569	mtd_for_each_device(mtd)
 570		new->add(mtd);
 571
 572	mutex_unlock(&mtd_table_mutex);
 573}
 574EXPORT_SYMBOL_GPL(register_mtd_user);
 575
 576/**
 577 *	unregister_mtd_user - unregister a 'user' of MTD devices.
 578 *	@old: pointer to notifier info structure
 579 *
 580 *	Removes a callback function pair from the list of 'users' to be
 581 *	notified upon addition or removal of MTD devices. Causes the
 582 *	'remove' callback to be immediately invoked for each MTD device
 583 *	currently present in the system.
 584 */
 585int unregister_mtd_user (struct mtd_notifier *old)
 586{
 587	struct mtd_info *mtd;
 588
 589	mutex_lock(&mtd_table_mutex);
 590
 591	module_put(THIS_MODULE);
 592
 593	mtd_for_each_device(mtd)
 594		old->remove(mtd);
 595
 596	list_del(&old->list);
 597	mutex_unlock(&mtd_table_mutex);
 598	return 0;
 599}
 600EXPORT_SYMBOL_GPL(unregister_mtd_user);
 601
 602/**
 603 *	get_mtd_device - obtain a validated handle for an MTD device
 604 *	@mtd: last known address of the required MTD device
 605 *	@num: internal device number of the required MTD device
 606 *
 607 *	Given a number and NULL address, return the num'th entry in the device
 608 *	table, if any.	Given an address and num == -1, search the device table
 609 *	for a device with that address and return if it's still present. Given
 610 *	both, return the num'th driver only if its address matches. Return
 611 *	error code if not.
 612 */
 613struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
 614{
 615	struct mtd_info *ret = NULL, *other;
 616	int err = -ENODEV;
 617
 618	mutex_lock(&mtd_table_mutex);
 619
 620	if (num == -1) {
 621		mtd_for_each_device(other) {
 622			if (other == mtd) {
 623				ret = mtd;
 624				break;
 625			}
 626		}
 627	} else if (num >= 0) {
 628		ret = idr_find(&mtd_idr, num);
 629		if (mtd && mtd != ret)
 630			ret = NULL;
 631	}
 632
 633	if (!ret) {
 634		ret = ERR_PTR(err);
 635		goto out;
 636	}
 637
 638	err = __get_mtd_device(ret);
 639	if (err)
 640		ret = ERR_PTR(err);
 641out:
 642	mutex_unlock(&mtd_table_mutex);
 643	return ret;
 644}
 645EXPORT_SYMBOL_GPL(get_mtd_device);
 646
 647
 648int __get_mtd_device(struct mtd_info *mtd)
 649{
 650	int err;
 651
 652	if (!try_module_get(mtd->owner))
 653		return -ENODEV;
 654
 655	if (mtd->_get_device) {
 656		err = mtd->_get_device(mtd);
 657
 658		if (err) {
 659			module_put(mtd->owner);
 660			return err;
 661		}
 662	}
 663	mtd->usecount++;
 664	return 0;
 665}
 666EXPORT_SYMBOL_GPL(__get_mtd_device);
 667
 668/**
 669 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
 670 *	device name
 671 *	@name: MTD device name to open
 672 *
 673 * 	This function returns MTD device description structure in case of
 674 * 	success and an error code in case of failure.
 675 */
 676struct mtd_info *get_mtd_device_nm(const char *name)
 677{
 678	int err = -ENODEV;
 679	struct mtd_info *mtd = NULL, *other;
 680
 681	mutex_lock(&mtd_table_mutex);
 682
 683	mtd_for_each_device(other) {
 684		if (!strcmp(name, other->name)) {
 685			mtd = other;
 686			break;
 687		}
 688	}
 689
 690	if (!mtd)
 691		goto out_unlock;
 692
 693	err = __get_mtd_device(mtd);
 694	if (err)
 695		goto out_unlock;
 696
 697	mutex_unlock(&mtd_table_mutex);
 698	return mtd;
 699
 700out_unlock:
 701	mutex_unlock(&mtd_table_mutex);
 702	return ERR_PTR(err);
 703}
 704EXPORT_SYMBOL_GPL(get_mtd_device_nm);
 705
 706void put_mtd_device(struct mtd_info *mtd)
 707{
 708	mutex_lock(&mtd_table_mutex);
 709	__put_mtd_device(mtd);
 710	mutex_unlock(&mtd_table_mutex);
 711
 712}
 713EXPORT_SYMBOL_GPL(put_mtd_device);
 714
 715void __put_mtd_device(struct mtd_info *mtd)
 716{
 717	--mtd->usecount;
 718	BUG_ON(mtd->usecount < 0);
 719
 720	if (mtd->_put_device)
 721		mtd->_put_device(mtd);
 722
 723	module_put(mtd->owner);
 724}
 725EXPORT_SYMBOL_GPL(__put_mtd_device);
 726
 727/*
 728 * Erase is an asynchronous operation.  Device drivers are supposed
 729 * to call instr->callback() whenever the operation completes, even
 730 * if it completes with a failure.
 731 * Callers are supposed to pass a callback function and wait for it
 732 * to be called before writing to the block.
 733 */
 734int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
 735{
 736	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
 737		return -EINVAL;
 738	if (!(mtd->flags & MTD_WRITEABLE))
 739		return -EROFS;
 740	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
 741	if (!instr->len) {
 742		instr->state = MTD_ERASE_DONE;
 743		mtd_erase_callback(instr);
 744		return 0;
 745	}
 746	return mtd->_erase(mtd, instr);
 747}
 748EXPORT_SYMBOL_GPL(mtd_erase);
 749
 750/*
 751 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
 752 */
 753int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 754	      void **virt, resource_size_t *phys)
 755{
 756	*retlen = 0;
 757	*virt = NULL;
 758	if (phys)
 759		*phys = 0;
 760	if (!mtd->_point)
 761		return -EOPNOTSUPP;
 762	if (from < 0 || from > mtd->size || len > mtd->size - from)
 763		return -EINVAL;
 764	if (!len)
 765		return 0;
 766	return mtd->_point(mtd, from, len, retlen, virt, phys);
 767}
 768EXPORT_SYMBOL_GPL(mtd_point);
 769
 770/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
 771int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 772{
 773	if (!mtd->_point)
 774		return -EOPNOTSUPP;
 775	if (from < 0 || from > mtd->size || len > mtd->size - from)
 776		return -EINVAL;
 777	if (!len)
 778		return 0;
 779	return mtd->_unpoint(mtd, from, len);
 780}
 781EXPORT_SYMBOL_GPL(mtd_unpoint);
 782
 783/*
 784 * Allow NOMMU mmap() to directly map the device (if not NULL)
 785 * - return the address to which the offset maps
 786 * - return -ENOSYS to indicate refusal to do the mapping
 787 */
 788unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
 789				    unsigned long offset, unsigned long flags)
 790{
 791	if (!mtd->_get_unmapped_area)
 792		return -EOPNOTSUPP;
 793	if (offset > mtd->size || len > mtd->size - offset)
 794		return -EINVAL;
 795	return mtd->_get_unmapped_area(mtd, len, offset, flags);
 796}
 797EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
 798
 799int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 800	     u_char *buf)
 801{
 802	int ret_code;
 803	*retlen = 0;
 804	if (from < 0 || from > mtd->size || len > mtd->size - from)
 805		return -EINVAL;
 806	if (!len)
 807		return 0;
 808
 809	/*
 810	 * In the absence of an error, drivers return a non-negative integer
 811	 * representing the maximum number of bitflips that were corrected on
 812	 * any one ecc region (if applicable; zero otherwise).
 813	 */
 814	ret_code = mtd->_read(mtd, from, len, retlen, buf);
 815	if (unlikely(ret_code < 0))
 816		return ret_code;
 817	if (mtd->ecc_strength == 0)
 818		return 0;	/* device lacks ecc */
 819	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
 820}
 821EXPORT_SYMBOL_GPL(mtd_read);
 822
 823int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 824	      const u_char *buf)
 825{
 826	*retlen = 0;
 827	if (to < 0 || to > mtd->size || len > mtd->size - to)
 828		return -EINVAL;
 829	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
 830		return -EROFS;
 831	if (!len)
 832		return 0;
 833	return mtd->_write(mtd, to, len, retlen, buf);
 834}
 835EXPORT_SYMBOL_GPL(mtd_write);
 836
 837/*
 838 * In blackbox flight recorder like scenarios we want to make successful writes
 839 * in interrupt context. panic_write() is only intended to be called when its
 840 * known the kernel is about to panic and we need the write to succeed. Since
 841 * the kernel is not going to be running for much longer, this function can
 842 * break locks and delay to ensure the write succeeds (but not sleep).
 843 */
 844int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
 845		    const u_char *buf)
 846{
 847	*retlen = 0;
 848	if (!mtd->_panic_write)
 849		return -EOPNOTSUPP;
 850	if (to < 0 || to > mtd->size || len > mtd->size - to)
 851		return -EINVAL;
 852	if (!(mtd->flags & MTD_WRITEABLE))
 853		return -EROFS;
 854	if (!len)
 855		return 0;
 856	return mtd->_panic_write(mtd, to, len, retlen, buf);
 857}
 858EXPORT_SYMBOL_GPL(mtd_panic_write);
 859
 860int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
 861{
 862	int ret_code;
 863	ops->retlen = ops->oobretlen = 0;
 864	if (!mtd->_read_oob)
 865		return -EOPNOTSUPP;
 866	/*
 867	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
 868	 * similar to mtd->_read(), returning a non-negative integer
 869	 * representing max bitflips. In other cases, mtd->_read_oob() may
 870	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
 871	 */
 872	ret_code = mtd->_read_oob(mtd, from, ops);
 873	if (unlikely(ret_code < 0))
 874		return ret_code;
 875	if (mtd->ecc_strength == 0)
 876		return 0;	/* device lacks ecc */
 877	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
 878}
 879EXPORT_SYMBOL_GPL(mtd_read_oob);
 880
 881/*
 882 * Method to access the protection register area, present in some flash
 883 * devices. The user data is one time programmable but the factory data is read
 884 * only.
 885 */
 886int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
 887			   struct otp_info *buf)
 888{
 889	if (!mtd->_get_fact_prot_info)
 890		return -EOPNOTSUPP;
 891	if (!len)
 892		return 0;
 893	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
 894}
 895EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
 896
 897int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
 898			   size_t *retlen, u_char *buf)
 899{
 900	*retlen = 0;
 901	if (!mtd->_read_fact_prot_reg)
 902		return -EOPNOTSUPP;
 903	if (!len)
 904		return 0;
 905	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
 906}
 907EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
 908
 909int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
 910			   struct otp_info *buf)
 911{
 912	if (!mtd->_get_user_prot_info)
 913		return -EOPNOTSUPP;
 914	if (!len)
 915		return 0;
 916	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
 917}
 918EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
 919
 920int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
 921			   size_t *retlen, u_char *buf)
 922{
 923	*retlen = 0;
 924	if (!mtd->_read_user_prot_reg)
 925		return -EOPNOTSUPP;
 926	if (!len)
 927		return 0;
 928	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
 929}
 930EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
 931
 932int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
 933			    size_t *retlen, u_char *buf)
 934{
 935	int ret;
 936
 937	*retlen = 0;
 938	if (!mtd->_write_user_prot_reg)
 939		return -EOPNOTSUPP;
 940	if (!len)
 941		return 0;
 942	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
 943	if (ret)
 944		return ret;
 945
 946	/*
 947	 * If no data could be written at all, we are out of memory and
 948	 * must return -ENOSPC.
 949	 */
 950	return (*retlen) ? 0 : -ENOSPC;
 951}
 952EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
 953
 954int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
 955{
 956	if (!mtd->_lock_user_prot_reg)
 957		return -EOPNOTSUPP;
 958	if (!len)
 959		return 0;
 960	return mtd->_lock_user_prot_reg(mtd, from, len);
 961}
 962EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
 963
 964/* Chip-supported device locking */
 965int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 966{
 967	if (!mtd->_lock)
 968		return -EOPNOTSUPP;
 969	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
 970		return -EINVAL;
 971	if (!len)
 972		return 0;
 973	return mtd->_lock(mtd, ofs, len);
 974}
 975EXPORT_SYMBOL_GPL(mtd_lock);
 976
 977int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 978{
 979	if (!mtd->_unlock)
 980		return -EOPNOTSUPP;
 981	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
 982		return -EINVAL;
 983	if (!len)
 984		return 0;
 985	return mtd->_unlock(mtd, ofs, len);
 986}
 987EXPORT_SYMBOL_GPL(mtd_unlock);
 988
 989int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 990{
 991	if (!mtd->_is_locked)
 992		return -EOPNOTSUPP;
 993	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
 994		return -EINVAL;
 995	if (!len)
 996		return 0;
 997	return mtd->_is_locked(mtd, ofs, len);
 998}
 999EXPORT_SYMBOL_GPL(mtd_is_locked);
1000
 
 
 
 
 
 
 
 
 
 
1001int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1002{
 
 
1003	if (!mtd->_block_isbad)
1004		return 0;
1005	if (ofs < 0 || ofs > mtd->size)
1006		return -EINVAL;
1007	return mtd->_block_isbad(mtd, ofs);
1008}
1009EXPORT_SYMBOL_GPL(mtd_block_isbad);
1010
1011int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1012{
1013	if (!mtd->_block_markbad)
1014		return -EOPNOTSUPP;
1015	if (ofs < 0 || ofs > mtd->size)
1016		return -EINVAL;
1017	if (!(mtd->flags & MTD_WRITEABLE))
1018		return -EROFS;
1019	return mtd->_block_markbad(mtd, ofs);
1020}
1021EXPORT_SYMBOL_GPL(mtd_block_markbad);
1022
1023/*
1024 * default_mtd_writev - the default writev method
1025 * @mtd: mtd device description object pointer
1026 * @vecs: the vectors to write
1027 * @count: count of vectors in @vecs
1028 * @to: the MTD device offset to write to
1029 * @retlen: on exit contains the count of bytes written to the MTD device.
1030 *
1031 * This function returns zero in case of success and a negative error code in
1032 * case of failure.
1033 */
1034static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1035			      unsigned long count, loff_t to, size_t *retlen)
1036{
1037	unsigned long i;
1038	size_t totlen = 0, thislen;
1039	int ret = 0;
1040
1041	for (i = 0; i < count; i++) {
1042		if (!vecs[i].iov_len)
1043			continue;
1044		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1045				vecs[i].iov_base);
1046		totlen += thislen;
1047		if (ret || thislen != vecs[i].iov_len)
1048			break;
1049		to += vecs[i].iov_len;
1050	}
1051	*retlen = totlen;
1052	return ret;
1053}
1054
1055/*
1056 * mtd_writev - the vector-based MTD write method
1057 * @mtd: mtd device description object pointer
1058 * @vecs: the vectors to write
1059 * @count: count of vectors in @vecs
1060 * @to: the MTD device offset to write to
1061 * @retlen: on exit contains the count of bytes written to the MTD device.
1062 *
1063 * This function returns zero in case of success and a negative error code in
1064 * case of failure.
1065 */
1066int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1067	       unsigned long count, loff_t to, size_t *retlen)
1068{
1069	*retlen = 0;
1070	if (!(mtd->flags & MTD_WRITEABLE))
1071		return -EROFS;
1072	if (!mtd->_writev)
1073		return default_mtd_writev(mtd, vecs, count, to, retlen);
1074	return mtd->_writev(mtd, vecs, count, to, retlen);
1075}
1076EXPORT_SYMBOL_GPL(mtd_writev);
1077
1078/**
1079 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1080 * @mtd: mtd device description object pointer
1081 * @size: a pointer to the ideal or maximum size of the allocation, points
1082 *        to the actual allocation size on success.
1083 *
1084 * This routine attempts to allocate a contiguous kernel buffer up to
1085 * the specified size, backing off the size of the request exponentially
1086 * until the request succeeds or until the allocation size falls below
1087 * the system page size. This attempts to make sure it does not adversely
1088 * impact system performance, so when allocating more than one page, we
1089 * ask the memory allocator to avoid re-trying, swapping, writing back
1090 * or performing I/O.
1091 *
1092 * Note, this function also makes sure that the allocated buffer is aligned to
1093 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1094 *
1095 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1096 * to handle smaller (i.e. degraded) buffer allocations under low- or
1097 * fragmented-memory situations where such reduced allocations, from a
1098 * requested ideal, are allowed.
1099 *
1100 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1101 */
1102void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1103{
1104	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1105		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1106	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1107	void *kbuf;
1108
1109	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1110
1111	while (*size > min_alloc) {
1112		kbuf = kmalloc(*size, flags);
1113		if (kbuf)
1114			return kbuf;
1115
1116		*size >>= 1;
1117		*size = ALIGN(*size, mtd->writesize);
1118	}
1119
1120	/*
1121	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1122	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1123	 */
1124	return kmalloc(*size, GFP_KERNEL);
1125}
1126EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1127
1128#ifdef CONFIG_PROC_FS
1129
1130/*====================================================================*/
1131/* Support for /proc/mtd */
1132
1133static int mtd_proc_show(struct seq_file *m, void *v)
1134{
1135	struct mtd_info *mtd;
1136
1137	seq_puts(m, "dev:    size   erasesize  name\n");
1138	mutex_lock(&mtd_table_mutex);
1139	mtd_for_each_device(mtd) {
1140		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1141			   mtd->index, (unsigned long long)mtd->size,
1142			   mtd->erasesize, mtd->name);
1143	}
1144	mutex_unlock(&mtd_table_mutex);
1145	return 0;
1146}
1147
1148static int mtd_proc_open(struct inode *inode, struct file *file)
1149{
1150	return single_open(file, mtd_proc_show, NULL);
1151}
1152
1153static const struct file_operations mtd_proc_ops = {
1154	.open		= mtd_proc_open,
1155	.read		= seq_read,
1156	.llseek		= seq_lseek,
1157	.release	= single_release,
1158};
1159#endif /* CONFIG_PROC_FS */
1160
1161/*====================================================================*/
1162/* Init code */
1163
1164static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1165{
1166	int ret;
1167
1168	ret = bdi_init(bdi);
1169	if (!ret)
1170		ret = bdi_register(bdi, NULL, "%s", name);
1171
1172	if (ret)
1173		bdi_destroy(bdi);
1174
1175	return ret;
1176}
1177
1178static struct proc_dir_entry *proc_mtd;
1179
1180static int __init init_mtd(void)
1181{
1182	int ret;
1183
1184	ret = class_register(&mtd_class);
1185	if (ret)
1186		goto err_reg;
1187
1188	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1189	if (ret)
1190		goto err_bdi1;
1191
1192	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1193	if (ret)
1194		goto err_bdi2;
1195
1196	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1197	if (ret)
1198		goto err_bdi3;
1199
1200	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1201
1202	ret = init_mtdchar();
1203	if (ret)
1204		goto out_procfs;
1205
1206	return 0;
1207
1208out_procfs:
1209	if (proc_mtd)
1210		remove_proc_entry("mtd", NULL);
1211err_bdi3:
1212	bdi_destroy(&mtd_bdi_ro_mappable);
1213err_bdi2:
1214	bdi_destroy(&mtd_bdi_unmappable);
1215err_bdi1:
1216	class_unregister(&mtd_class);
1217err_reg:
1218	pr_err("Error registering mtd class or bdi: %d\n", ret);
1219	return ret;
1220}
1221
1222static void __exit cleanup_mtd(void)
1223{
1224	cleanup_mtdchar();
1225	if (proc_mtd)
1226		remove_proc_entry("mtd", NULL);
1227	class_unregister(&mtd_class);
1228	bdi_destroy(&mtd_bdi_unmappable);
1229	bdi_destroy(&mtd_bdi_ro_mappable);
1230	bdi_destroy(&mtd_bdi_rw_mappable);
1231}
1232
1233module_init(init_mtd);
1234module_exit(cleanup_mtd);
1235
1236MODULE_LICENSE("GPL");
1237MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1238MODULE_DESCRIPTION("Core MTD registration and access routines");