Loading...
1/*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19/*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45#include <linux/bitops.h>
46#include <linux/clk.h>
47#include <linux/completion.h>
48#include <linux/delay.h>
49#include <linux/dma-mapping.h>
50#include <linux/dmaengine.h>
51#include <linux/mmc/card.h>
52#include <linux/mmc/core.h>
53#include <linux/mmc/host.h>
54#include <linux/mmc/mmc.h>
55#include <linux/mmc/sdio.h>
56#include <linux/mmc/sh_mmcif.h>
57#include <linux/mmc/slot-gpio.h>
58#include <linux/mod_devicetable.h>
59#include <linux/mutex.h>
60#include <linux/of_device.h>
61#include <linux/pagemap.h>
62#include <linux/platform_device.h>
63#include <linux/pm_qos.h>
64#include <linux/pm_runtime.h>
65#include <linux/sh_dma.h>
66#include <linux/spinlock.h>
67#include <linux/module.h>
68
69#define DRIVER_NAME "sh_mmcif"
70#define DRIVER_VERSION "2010-04-28"
71
72/* CE_CMD_SET */
73#define CMD_MASK 0x3f000000
74#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
75#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
77#define CMD_SET_RBSY (1 << 21) /* R1b */
78#define CMD_SET_CCSEN (1 << 20)
79#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
80#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
81#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
82#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
83#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
84#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
85#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
86#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
87#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
88#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
90#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
91#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
92#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
93#define CMD_SET_CCSH (1 << 5)
94#define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
95#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
96#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
97#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
98
99/* CE_CMD_CTRL */
100#define CMD_CTRL_BREAK (1 << 0)
101
102/* CE_BLOCK_SET */
103#define BLOCK_SIZE_MASK 0x0000ffff
104
105/* CE_INT */
106#define INT_CCSDE (1 << 29)
107#define INT_CMD12DRE (1 << 26)
108#define INT_CMD12RBE (1 << 25)
109#define INT_CMD12CRE (1 << 24)
110#define INT_DTRANE (1 << 23)
111#define INT_BUFRE (1 << 22)
112#define INT_BUFWEN (1 << 21)
113#define INT_BUFREN (1 << 20)
114#define INT_CCSRCV (1 << 19)
115#define INT_RBSYE (1 << 17)
116#define INT_CRSPE (1 << 16)
117#define INT_CMDVIO (1 << 15)
118#define INT_BUFVIO (1 << 14)
119#define INT_WDATERR (1 << 11)
120#define INT_RDATERR (1 << 10)
121#define INT_RIDXERR (1 << 9)
122#define INT_RSPERR (1 << 8)
123#define INT_CCSTO (1 << 5)
124#define INT_CRCSTO (1 << 4)
125#define INT_WDATTO (1 << 3)
126#define INT_RDATTO (1 << 2)
127#define INT_RBSYTO (1 << 1)
128#define INT_RSPTO (1 << 0)
129#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
132 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133
134#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137
138#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139
140/* CE_INT_MASK */
141#define MASK_ALL 0x00000000
142#define MASK_MCCSDE (1 << 29)
143#define MASK_MCMD12DRE (1 << 26)
144#define MASK_MCMD12RBE (1 << 25)
145#define MASK_MCMD12CRE (1 << 24)
146#define MASK_MDTRANE (1 << 23)
147#define MASK_MBUFRE (1 << 22)
148#define MASK_MBUFWEN (1 << 21)
149#define MASK_MBUFREN (1 << 20)
150#define MASK_MCCSRCV (1 << 19)
151#define MASK_MRBSYE (1 << 17)
152#define MASK_MCRSPE (1 << 16)
153#define MASK_MCMDVIO (1 << 15)
154#define MASK_MBUFVIO (1 << 14)
155#define MASK_MWDATERR (1 << 11)
156#define MASK_MRDATERR (1 << 10)
157#define MASK_MRIDXERR (1 << 9)
158#define MASK_MRSPERR (1 << 8)
159#define MASK_MCCSTO (1 << 5)
160#define MASK_MCRCSTO (1 << 4)
161#define MASK_MWDATTO (1 << 3)
162#define MASK_MRDATTO (1 << 2)
163#define MASK_MRBSYTO (1 << 1)
164#define MASK_MRSPTO (1 << 0)
165
166#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 MASK_MCRCSTO | MASK_MWDATTO | \
169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170
171#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
172 MASK_MBUFREN | MASK_MBUFWEN | \
173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
174 MASK_MCMD12RBE | MASK_MCMD12CRE)
175
176/* CE_HOST_STS1 */
177#define STS1_CMDSEQ (1 << 31)
178
179/* CE_HOST_STS2 */
180#define STS2_CRCSTE (1 << 31)
181#define STS2_CRC16E (1 << 30)
182#define STS2_AC12CRCE (1 << 29)
183#define STS2_RSPCRC7E (1 << 28)
184#define STS2_CRCSTEBE (1 << 27)
185#define STS2_RDATEBE (1 << 26)
186#define STS2_AC12REBE (1 << 25)
187#define STS2_RSPEBE (1 << 24)
188#define STS2_AC12IDXE (1 << 23)
189#define STS2_RSPIDXE (1 << 22)
190#define STS2_CCSTO (1 << 15)
191#define STS2_RDATTO (1 << 14)
192#define STS2_DATBSYTO (1 << 13)
193#define STS2_CRCSTTO (1 << 12)
194#define STS2_AC12BSYTO (1 << 11)
195#define STS2_RSPBSYTO (1 << 10)
196#define STS2_AC12RSPTO (1 << 9)
197#define STS2_RSPTO (1 << 8)
198#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
201 STS2_DATBSYTO | STS2_CRCSTTO | \
202 STS2_AC12BSYTO | STS2_RSPBSYTO | \
203 STS2_AC12RSPTO | STS2_RSPTO)
204
205#define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
206#define CLKDEV_MMC_DATA 20000000 /* 20MHz */
207#define CLKDEV_INIT 400000 /* 400 KHz */
208
209enum sh_mmcif_state {
210 STATE_IDLE,
211 STATE_REQUEST,
212 STATE_IOS,
213 STATE_TIMEOUT,
214};
215
216enum sh_mmcif_wait_for {
217 MMCIF_WAIT_FOR_REQUEST,
218 MMCIF_WAIT_FOR_CMD,
219 MMCIF_WAIT_FOR_MREAD,
220 MMCIF_WAIT_FOR_MWRITE,
221 MMCIF_WAIT_FOR_READ,
222 MMCIF_WAIT_FOR_WRITE,
223 MMCIF_WAIT_FOR_READ_END,
224 MMCIF_WAIT_FOR_WRITE_END,
225 MMCIF_WAIT_FOR_STOP,
226};
227
228/*
229 * difference for each SoC
230 */
231struct sh_mmcif_host {
232 struct mmc_host *mmc;
233 struct mmc_request *mrq;
234 struct platform_device *pd;
235 struct clk *clk;
236 int bus_width;
237 unsigned char timing;
238 bool sd_error;
239 bool dying;
240 long timeout;
241 void __iomem *addr;
242 u32 *pio_ptr;
243 spinlock_t lock; /* protect sh_mmcif_host::state */
244 enum sh_mmcif_state state;
245 enum sh_mmcif_wait_for wait_for;
246 struct delayed_work timeout_work;
247 size_t blocksize;
248 int sg_idx;
249 int sg_blkidx;
250 bool power;
251 bool card_present;
252 bool ccs_enable; /* Command Completion Signal support */
253 bool clk_ctrl2_enable;
254 struct mutex thread_lock;
255 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
256
257 /* DMA support */
258 struct dma_chan *chan_rx;
259 struct dma_chan *chan_tx;
260 struct completion dma_complete;
261 bool dma_active;
262};
263
264static const struct of_device_id sh_mmcif_of_match[] = {
265 { .compatible = "renesas,sh-mmcif" },
266 { }
267};
268MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
269
270#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
271
272static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
273 unsigned int reg, u32 val)
274{
275 writel(val | readl(host->addr + reg), host->addr + reg);
276}
277
278static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
279 unsigned int reg, u32 val)
280{
281 writel(~val & readl(host->addr + reg), host->addr + reg);
282}
283
284static void sh_mmcif_dma_complete(void *arg)
285{
286 struct sh_mmcif_host *host = arg;
287 struct mmc_request *mrq = host->mrq;
288 struct device *dev = sh_mmcif_host_to_dev(host);
289
290 dev_dbg(dev, "Command completed\n");
291
292 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
293 dev_name(dev)))
294 return;
295
296 complete(&host->dma_complete);
297}
298
299static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
300{
301 struct mmc_data *data = host->mrq->data;
302 struct scatterlist *sg = data->sg;
303 struct dma_async_tx_descriptor *desc = NULL;
304 struct dma_chan *chan = host->chan_rx;
305 struct device *dev = sh_mmcif_host_to_dev(host);
306 dma_cookie_t cookie = -EINVAL;
307 int ret;
308
309 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
310 DMA_FROM_DEVICE);
311 if (ret > 0) {
312 host->dma_active = true;
313 desc = dmaengine_prep_slave_sg(chan, sg, ret,
314 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
315 }
316
317 if (desc) {
318 desc->callback = sh_mmcif_dma_complete;
319 desc->callback_param = host;
320 cookie = dmaengine_submit(desc);
321 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
322 dma_async_issue_pending(chan);
323 }
324 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
325 __func__, data->sg_len, ret, cookie);
326
327 if (!desc) {
328 /* DMA failed, fall back to PIO */
329 if (ret >= 0)
330 ret = -EIO;
331 host->chan_rx = NULL;
332 host->dma_active = false;
333 dma_release_channel(chan);
334 /* Free the Tx channel too */
335 chan = host->chan_tx;
336 if (chan) {
337 host->chan_tx = NULL;
338 dma_release_channel(chan);
339 }
340 dev_warn(dev,
341 "DMA failed: %d, falling back to PIO\n", ret);
342 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
343 }
344
345 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
346 desc, cookie, data->sg_len);
347}
348
349static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
350{
351 struct mmc_data *data = host->mrq->data;
352 struct scatterlist *sg = data->sg;
353 struct dma_async_tx_descriptor *desc = NULL;
354 struct dma_chan *chan = host->chan_tx;
355 struct device *dev = sh_mmcif_host_to_dev(host);
356 dma_cookie_t cookie = -EINVAL;
357 int ret;
358
359 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
360 DMA_TO_DEVICE);
361 if (ret > 0) {
362 host->dma_active = true;
363 desc = dmaengine_prep_slave_sg(chan, sg, ret,
364 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
365 }
366
367 if (desc) {
368 desc->callback = sh_mmcif_dma_complete;
369 desc->callback_param = host;
370 cookie = dmaengine_submit(desc);
371 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
372 dma_async_issue_pending(chan);
373 }
374 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
375 __func__, data->sg_len, ret, cookie);
376
377 if (!desc) {
378 /* DMA failed, fall back to PIO */
379 if (ret >= 0)
380 ret = -EIO;
381 host->chan_tx = NULL;
382 host->dma_active = false;
383 dma_release_channel(chan);
384 /* Free the Rx channel too */
385 chan = host->chan_rx;
386 if (chan) {
387 host->chan_rx = NULL;
388 dma_release_channel(chan);
389 }
390 dev_warn(dev,
391 "DMA failed: %d, falling back to PIO\n", ret);
392 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
393 }
394
395 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
396 desc, cookie);
397}
398
399static struct dma_chan *
400sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
401{
402 dma_cap_mask_t mask;
403
404 dma_cap_zero(mask);
405 dma_cap_set(DMA_SLAVE, mask);
406 if (slave_id <= 0)
407 return NULL;
408
409 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
410}
411
412static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
413 struct dma_chan *chan,
414 enum dma_transfer_direction direction)
415{
416 struct resource *res;
417 struct dma_slave_config cfg = { 0, };
418
419 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
420 cfg.direction = direction;
421
422 if (direction == DMA_DEV_TO_MEM) {
423 cfg.src_addr = res->start + MMCIF_CE_DATA;
424 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
425 } else {
426 cfg.dst_addr = res->start + MMCIF_CE_DATA;
427 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
428 }
429
430 return dmaengine_slave_config(chan, &cfg);
431}
432
433static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
434{
435 struct device *dev = sh_mmcif_host_to_dev(host);
436 host->dma_active = false;
437
438 /* We can only either use DMA for both Tx and Rx or not use it at all */
439 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
440 struct sh_mmcif_plat_data *pdata = dev->platform_data;
441
442 host->chan_tx = sh_mmcif_request_dma_pdata(host,
443 pdata->slave_id_tx);
444 host->chan_rx = sh_mmcif_request_dma_pdata(host,
445 pdata->slave_id_rx);
446 } else {
447 host->chan_tx = dma_request_slave_channel(dev, "tx");
448 host->chan_rx = dma_request_slave_channel(dev, "rx");
449 }
450 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
451 host->chan_rx);
452
453 if (!host->chan_tx || !host->chan_rx ||
454 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
455 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
456 goto error;
457
458 return;
459
460error:
461 if (host->chan_tx)
462 dma_release_channel(host->chan_tx);
463 if (host->chan_rx)
464 dma_release_channel(host->chan_rx);
465 host->chan_tx = host->chan_rx = NULL;
466}
467
468static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
469{
470 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
471 /* Descriptors are freed automatically */
472 if (host->chan_tx) {
473 struct dma_chan *chan = host->chan_tx;
474 host->chan_tx = NULL;
475 dma_release_channel(chan);
476 }
477 if (host->chan_rx) {
478 struct dma_chan *chan = host->chan_rx;
479 host->chan_rx = NULL;
480 dma_release_channel(chan);
481 }
482
483 host->dma_active = false;
484}
485
486static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
487{
488 struct device *dev = sh_mmcif_host_to_dev(host);
489 struct sh_mmcif_plat_data *p = dev->platform_data;
490 bool sup_pclk = p ? p->sup_pclk : false;
491 unsigned int current_clk = clk_get_rate(host->clk);
492 unsigned int clkdiv;
493
494 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
495 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
496
497 if (!clk)
498 return;
499
500 if (host->clkdiv_map) {
501 unsigned int freq, best_freq, myclk, div, diff_min, diff;
502 int i;
503
504 clkdiv = 0;
505 diff_min = ~0;
506 best_freq = 0;
507 for (i = 31; i >= 0; i--) {
508 if (!((1 << i) & host->clkdiv_map))
509 continue;
510
511 /*
512 * clk = parent_freq / div
513 * -> parent_freq = clk x div
514 */
515
516 div = 1 << (i + 1);
517 freq = clk_round_rate(host->clk, clk * div);
518 myclk = freq / div;
519 diff = (myclk > clk) ? myclk - clk : clk - myclk;
520
521 if (diff <= diff_min) {
522 best_freq = freq;
523 clkdiv = i;
524 diff_min = diff;
525 }
526 }
527
528 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
529 (best_freq / (1 << (clkdiv + 1))), clk,
530 best_freq, clkdiv);
531
532 clk_set_rate(host->clk, best_freq);
533 clkdiv = clkdiv << 16;
534 } else if (sup_pclk && clk == current_clk) {
535 clkdiv = CLK_SUP_PCLK;
536 } else {
537 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
538 }
539
540 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
541 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
542}
543
544static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
545{
546 u32 tmp;
547
548 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
549
550 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
551 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
552 if (host->ccs_enable)
553 tmp |= SCCSTO_29;
554 if (host->clk_ctrl2_enable)
555 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
556 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
557 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
558 /* byte swap on */
559 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
560}
561
562static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
563{
564 struct device *dev = sh_mmcif_host_to_dev(host);
565 u32 state1, state2;
566 int ret, timeout;
567
568 host->sd_error = false;
569
570 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
571 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
572 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
573 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
574
575 if (state1 & STS1_CMDSEQ) {
576 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
577 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
578 for (timeout = 10000000; timeout; timeout--) {
579 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
580 & STS1_CMDSEQ))
581 break;
582 mdelay(1);
583 }
584 if (!timeout) {
585 dev_err(dev,
586 "Forced end of command sequence timeout err\n");
587 return -EIO;
588 }
589 sh_mmcif_sync_reset(host);
590 dev_dbg(dev, "Forced end of command sequence\n");
591 return -EIO;
592 }
593
594 if (state2 & STS2_CRC_ERR) {
595 dev_err(dev, " CRC error: state %u, wait %u\n",
596 host->state, host->wait_for);
597 ret = -EIO;
598 } else if (state2 & STS2_TIMEOUT_ERR) {
599 dev_err(dev, " Timeout: state %u, wait %u\n",
600 host->state, host->wait_for);
601 ret = -ETIMEDOUT;
602 } else {
603 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
604 host->state, host->wait_for);
605 ret = -EIO;
606 }
607 return ret;
608}
609
610static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
611{
612 struct mmc_data *data = host->mrq->data;
613
614 host->sg_blkidx += host->blocksize;
615
616 /* data->sg->length must be a multiple of host->blocksize? */
617 BUG_ON(host->sg_blkidx > data->sg->length);
618
619 if (host->sg_blkidx == data->sg->length) {
620 host->sg_blkidx = 0;
621 if (++host->sg_idx < data->sg_len)
622 host->pio_ptr = sg_virt(++data->sg);
623 } else {
624 host->pio_ptr = p;
625 }
626
627 return host->sg_idx != data->sg_len;
628}
629
630static void sh_mmcif_single_read(struct sh_mmcif_host *host,
631 struct mmc_request *mrq)
632{
633 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
634 BLOCK_SIZE_MASK) + 3;
635
636 host->wait_for = MMCIF_WAIT_FOR_READ;
637
638 /* buf read enable */
639 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
640}
641
642static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
643{
644 struct device *dev = sh_mmcif_host_to_dev(host);
645 struct mmc_data *data = host->mrq->data;
646 u32 *p = sg_virt(data->sg);
647 int i;
648
649 if (host->sd_error) {
650 data->error = sh_mmcif_error_manage(host);
651 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
652 return false;
653 }
654
655 for (i = 0; i < host->blocksize / 4; i++)
656 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
657
658 /* buffer read end */
659 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
660 host->wait_for = MMCIF_WAIT_FOR_READ_END;
661
662 return true;
663}
664
665static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
666 struct mmc_request *mrq)
667{
668 struct mmc_data *data = mrq->data;
669
670 if (!data->sg_len || !data->sg->length)
671 return;
672
673 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
674 BLOCK_SIZE_MASK;
675
676 host->wait_for = MMCIF_WAIT_FOR_MREAD;
677 host->sg_idx = 0;
678 host->sg_blkidx = 0;
679 host->pio_ptr = sg_virt(data->sg);
680
681 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
682}
683
684static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
685{
686 struct device *dev = sh_mmcif_host_to_dev(host);
687 struct mmc_data *data = host->mrq->data;
688 u32 *p = host->pio_ptr;
689 int i;
690
691 if (host->sd_error) {
692 data->error = sh_mmcif_error_manage(host);
693 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
694 return false;
695 }
696
697 BUG_ON(!data->sg->length);
698
699 for (i = 0; i < host->blocksize / 4; i++)
700 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
701
702 if (!sh_mmcif_next_block(host, p))
703 return false;
704
705 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
706
707 return true;
708}
709
710static void sh_mmcif_single_write(struct sh_mmcif_host *host,
711 struct mmc_request *mrq)
712{
713 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
714 BLOCK_SIZE_MASK) + 3;
715
716 host->wait_for = MMCIF_WAIT_FOR_WRITE;
717
718 /* buf write enable */
719 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
720}
721
722static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
723{
724 struct device *dev = sh_mmcif_host_to_dev(host);
725 struct mmc_data *data = host->mrq->data;
726 u32 *p = sg_virt(data->sg);
727 int i;
728
729 if (host->sd_error) {
730 data->error = sh_mmcif_error_manage(host);
731 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
732 return false;
733 }
734
735 for (i = 0; i < host->blocksize / 4; i++)
736 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
737
738 /* buffer write end */
739 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
740 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
741
742 return true;
743}
744
745static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
746 struct mmc_request *mrq)
747{
748 struct mmc_data *data = mrq->data;
749
750 if (!data->sg_len || !data->sg->length)
751 return;
752
753 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
754 BLOCK_SIZE_MASK;
755
756 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
757 host->sg_idx = 0;
758 host->sg_blkidx = 0;
759 host->pio_ptr = sg_virt(data->sg);
760
761 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
762}
763
764static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
765{
766 struct device *dev = sh_mmcif_host_to_dev(host);
767 struct mmc_data *data = host->mrq->data;
768 u32 *p = host->pio_ptr;
769 int i;
770
771 if (host->sd_error) {
772 data->error = sh_mmcif_error_manage(host);
773 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
774 return false;
775 }
776
777 BUG_ON(!data->sg->length);
778
779 for (i = 0; i < host->blocksize / 4; i++)
780 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
781
782 if (!sh_mmcif_next_block(host, p))
783 return false;
784
785 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
786
787 return true;
788}
789
790static void sh_mmcif_get_response(struct sh_mmcif_host *host,
791 struct mmc_command *cmd)
792{
793 if (cmd->flags & MMC_RSP_136) {
794 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
795 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
796 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
797 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
798 } else
799 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
800}
801
802static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
803 struct mmc_command *cmd)
804{
805 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
806}
807
808static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
809 struct mmc_request *mrq)
810{
811 struct device *dev = sh_mmcif_host_to_dev(host);
812 struct mmc_data *data = mrq->data;
813 struct mmc_command *cmd = mrq->cmd;
814 u32 opc = cmd->opcode;
815 u32 tmp = 0;
816
817 /* Response Type check */
818 switch (mmc_resp_type(cmd)) {
819 case MMC_RSP_NONE:
820 tmp |= CMD_SET_RTYP_NO;
821 break;
822 case MMC_RSP_R1:
823 case MMC_RSP_R1B:
824 case MMC_RSP_R3:
825 tmp |= CMD_SET_RTYP_6B;
826 break;
827 case MMC_RSP_R2:
828 tmp |= CMD_SET_RTYP_17B;
829 break;
830 default:
831 dev_err(dev, "Unsupported response type.\n");
832 break;
833 }
834 switch (opc) {
835 /* RBSY */
836 case MMC_SLEEP_AWAKE:
837 case MMC_SWITCH:
838 case MMC_STOP_TRANSMISSION:
839 case MMC_SET_WRITE_PROT:
840 case MMC_CLR_WRITE_PROT:
841 case MMC_ERASE:
842 tmp |= CMD_SET_RBSY;
843 break;
844 }
845 /* WDAT / DATW */
846 if (data) {
847 tmp |= CMD_SET_WDAT;
848 switch (host->bus_width) {
849 case MMC_BUS_WIDTH_1:
850 tmp |= CMD_SET_DATW_1;
851 break;
852 case MMC_BUS_WIDTH_4:
853 tmp |= CMD_SET_DATW_4;
854 break;
855 case MMC_BUS_WIDTH_8:
856 tmp |= CMD_SET_DATW_8;
857 break;
858 default:
859 dev_err(dev, "Unsupported bus width.\n");
860 break;
861 }
862 switch (host->timing) {
863 case MMC_TIMING_MMC_DDR52:
864 /*
865 * MMC core will only set this timing, if the host
866 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
867 * capability. MMCIF implementations with this
868 * capability, e.g. sh73a0, will have to set it
869 * in their platform data.
870 */
871 tmp |= CMD_SET_DARS;
872 break;
873 }
874 }
875 /* DWEN */
876 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
877 tmp |= CMD_SET_DWEN;
878 /* CMLTE/CMD12EN */
879 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
880 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
881 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
882 data->blocks << 16);
883 }
884 /* RIDXC[1:0] check bits */
885 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
886 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
887 tmp |= CMD_SET_RIDXC_BITS;
888 /* RCRC7C[1:0] check bits */
889 if (opc == MMC_SEND_OP_COND)
890 tmp |= CMD_SET_CRC7C_BITS;
891 /* RCRC7C[1:0] internal CRC7 */
892 if (opc == MMC_ALL_SEND_CID ||
893 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
894 tmp |= CMD_SET_CRC7C_INTERNAL;
895
896 return (opc << 24) | tmp;
897}
898
899static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
900 struct mmc_request *mrq, u32 opc)
901{
902 struct device *dev = sh_mmcif_host_to_dev(host);
903
904 switch (opc) {
905 case MMC_READ_MULTIPLE_BLOCK:
906 sh_mmcif_multi_read(host, mrq);
907 return 0;
908 case MMC_WRITE_MULTIPLE_BLOCK:
909 sh_mmcif_multi_write(host, mrq);
910 return 0;
911 case MMC_WRITE_BLOCK:
912 sh_mmcif_single_write(host, mrq);
913 return 0;
914 case MMC_READ_SINGLE_BLOCK:
915 case MMC_SEND_EXT_CSD:
916 sh_mmcif_single_read(host, mrq);
917 return 0;
918 default:
919 dev_err(dev, "Unsupported CMD%d\n", opc);
920 return -EINVAL;
921 }
922}
923
924static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
925 struct mmc_request *mrq)
926{
927 struct mmc_command *cmd = mrq->cmd;
928 u32 opc = cmd->opcode;
929 u32 mask;
930 unsigned long flags;
931
932 switch (opc) {
933 /* response busy check */
934 case MMC_SLEEP_AWAKE:
935 case MMC_SWITCH:
936 case MMC_STOP_TRANSMISSION:
937 case MMC_SET_WRITE_PROT:
938 case MMC_CLR_WRITE_PROT:
939 case MMC_ERASE:
940 mask = MASK_START_CMD | MASK_MRBSYE;
941 break;
942 default:
943 mask = MASK_START_CMD | MASK_MCRSPE;
944 break;
945 }
946
947 if (host->ccs_enable)
948 mask |= MASK_MCCSTO;
949
950 if (mrq->data) {
951 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
952 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
953 mrq->data->blksz);
954 }
955 opc = sh_mmcif_set_cmd(host, mrq);
956
957 if (host->ccs_enable)
958 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
959 else
960 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
961 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
962 /* set arg */
963 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
964 /* set cmd */
965 spin_lock_irqsave(&host->lock, flags);
966 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
967
968 host->wait_for = MMCIF_WAIT_FOR_CMD;
969 schedule_delayed_work(&host->timeout_work, host->timeout);
970 spin_unlock_irqrestore(&host->lock, flags);
971}
972
973static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
974 struct mmc_request *mrq)
975{
976 struct device *dev = sh_mmcif_host_to_dev(host);
977
978 switch (mrq->cmd->opcode) {
979 case MMC_READ_MULTIPLE_BLOCK:
980 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
981 break;
982 case MMC_WRITE_MULTIPLE_BLOCK:
983 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
984 break;
985 default:
986 dev_err(dev, "unsupported stop cmd\n");
987 mrq->stop->error = sh_mmcif_error_manage(host);
988 return;
989 }
990
991 host->wait_for = MMCIF_WAIT_FOR_STOP;
992}
993
994static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
995{
996 struct sh_mmcif_host *host = mmc_priv(mmc);
997 struct device *dev = sh_mmcif_host_to_dev(host);
998 unsigned long flags;
999
1000 spin_lock_irqsave(&host->lock, flags);
1001 if (host->state != STATE_IDLE) {
1002 dev_dbg(dev, "%s() rejected, state %u\n",
1003 __func__, host->state);
1004 spin_unlock_irqrestore(&host->lock, flags);
1005 mrq->cmd->error = -EAGAIN;
1006 mmc_request_done(mmc, mrq);
1007 return;
1008 }
1009
1010 host->state = STATE_REQUEST;
1011 spin_unlock_irqrestore(&host->lock, flags);
1012
1013 switch (mrq->cmd->opcode) {
1014 /* MMCIF does not support SD/SDIO command */
1015 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
1016 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
1017 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
1018 break;
1019 case MMC_APP_CMD:
1020 case SD_IO_RW_DIRECT:
1021 host->state = STATE_IDLE;
1022 mrq->cmd->error = -ETIMEDOUT;
1023 mmc_request_done(mmc, mrq);
1024 return;
1025 default:
1026 break;
1027 }
1028
1029 host->mrq = mrq;
1030
1031 sh_mmcif_start_cmd(host, mrq);
1032}
1033
1034static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1035{
1036 struct device *dev = sh_mmcif_host_to_dev(host);
1037
1038 if (host->mmc->f_max) {
1039 unsigned int f_max, f_min = 0, f_min_old;
1040
1041 f_max = host->mmc->f_max;
1042 for (f_min_old = f_max; f_min_old > 2;) {
1043 f_min = clk_round_rate(host->clk, f_min_old / 2);
1044 if (f_min == f_min_old)
1045 break;
1046 f_min_old = f_min;
1047 }
1048
1049 /*
1050 * This driver assumes this SoC is R-Car Gen2 or later
1051 */
1052 host->clkdiv_map = 0x3ff;
1053
1054 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1055 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1056 } else {
1057 unsigned int clk = clk_get_rate(host->clk);
1058
1059 host->mmc->f_max = clk / 2;
1060 host->mmc->f_min = clk / 512;
1061 }
1062
1063 dev_dbg(dev, "clk max/min = %d/%d\n",
1064 host->mmc->f_max, host->mmc->f_min);
1065}
1066
1067static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
1068{
1069 struct mmc_host *mmc = host->mmc;
1070
1071 if (!IS_ERR(mmc->supply.vmmc))
1072 /* Errors ignored... */
1073 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1074 ios->power_mode ? ios->vdd : 0);
1075}
1076
1077static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1078{
1079 struct sh_mmcif_host *host = mmc_priv(mmc);
1080 struct device *dev = sh_mmcif_host_to_dev(host);
1081 unsigned long flags;
1082
1083 spin_lock_irqsave(&host->lock, flags);
1084 if (host->state != STATE_IDLE) {
1085 dev_dbg(dev, "%s() rejected, state %u\n",
1086 __func__, host->state);
1087 spin_unlock_irqrestore(&host->lock, flags);
1088 return;
1089 }
1090
1091 host->state = STATE_IOS;
1092 spin_unlock_irqrestore(&host->lock, flags);
1093
1094 if (ios->power_mode == MMC_POWER_UP) {
1095 if (!host->card_present) {
1096 /* See if we also get DMA */
1097 sh_mmcif_request_dma(host);
1098 host->card_present = true;
1099 }
1100 sh_mmcif_set_power(host, ios);
1101 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1102 /* clock stop */
1103 sh_mmcif_clock_control(host, 0);
1104 if (ios->power_mode == MMC_POWER_OFF) {
1105 if (host->card_present) {
1106 sh_mmcif_release_dma(host);
1107 host->card_present = false;
1108 }
1109 }
1110 if (host->power) {
1111 pm_runtime_put_sync(dev);
1112 clk_disable_unprepare(host->clk);
1113 host->power = false;
1114 if (ios->power_mode == MMC_POWER_OFF)
1115 sh_mmcif_set_power(host, ios);
1116 }
1117 host->state = STATE_IDLE;
1118 return;
1119 }
1120
1121 if (ios->clock) {
1122 if (!host->power) {
1123 clk_prepare_enable(host->clk);
1124
1125 pm_runtime_get_sync(dev);
1126 host->power = true;
1127 sh_mmcif_sync_reset(host);
1128 }
1129 sh_mmcif_clock_control(host, ios->clock);
1130 }
1131
1132 host->timing = ios->timing;
1133 host->bus_width = ios->bus_width;
1134 host->state = STATE_IDLE;
1135}
1136
1137static int sh_mmcif_get_cd(struct mmc_host *mmc)
1138{
1139 struct sh_mmcif_host *host = mmc_priv(mmc);
1140 struct device *dev = sh_mmcif_host_to_dev(host);
1141 struct sh_mmcif_plat_data *p = dev->platform_data;
1142 int ret = mmc_gpio_get_cd(mmc);
1143
1144 if (ret >= 0)
1145 return ret;
1146
1147 if (!p || !p->get_cd)
1148 return -ENOSYS;
1149 else
1150 return p->get_cd(host->pd);
1151}
1152
1153static struct mmc_host_ops sh_mmcif_ops = {
1154 .request = sh_mmcif_request,
1155 .set_ios = sh_mmcif_set_ios,
1156 .get_cd = sh_mmcif_get_cd,
1157};
1158
1159static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1160{
1161 struct mmc_command *cmd = host->mrq->cmd;
1162 struct mmc_data *data = host->mrq->data;
1163 struct device *dev = sh_mmcif_host_to_dev(host);
1164 long time;
1165
1166 if (host->sd_error) {
1167 switch (cmd->opcode) {
1168 case MMC_ALL_SEND_CID:
1169 case MMC_SELECT_CARD:
1170 case MMC_APP_CMD:
1171 cmd->error = -ETIMEDOUT;
1172 break;
1173 default:
1174 cmd->error = sh_mmcif_error_manage(host);
1175 break;
1176 }
1177 dev_dbg(dev, "CMD%d error %d\n",
1178 cmd->opcode, cmd->error);
1179 host->sd_error = false;
1180 return false;
1181 }
1182 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1183 cmd->error = 0;
1184 return false;
1185 }
1186
1187 sh_mmcif_get_response(host, cmd);
1188
1189 if (!data)
1190 return false;
1191
1192 /*
1193 * Completion can be signalled from DMA callback and error, so, have to
1194 * reset here, before setting .dma_active
1195 */
1196 init_completion(&host->dma_complete);
1197
1198 if (data->flags & MMC_DATA_READ) {
1199 if (host->chan_rx)
1200 sh_mmcif_start_dma_rx(host);
1201 } else {
1202 if (host->chan_tx)
1203 sh_mmcif_start_dma_tx(host);
1204 }
1205
1206 if (!host->dma_active) {
1207 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1208 return !data->error;
1209 }
1210
1211 /* Running in the IRQ thread, can sleep */
1212 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1213 host->timeout);
1214
1215 if (data->flags & MMC_DATA_READ)
1216 dma_unmap_sg(host->chan_rx->device->dev,
1217 data->sg, data->sg_len,
1218 DMA_FROM_DEVICE);
1219 else
1220 dma_unmap_sg(host->chan_tx->device->dev,
1221 data->sg, data->sg_len,
1222 DMA_TO_DEVICE);
1223
1224 if (host->sd_error) {
1225 dev_err(host->mmc->parent,
1226 "Error IRQ while waiting for DMA completion!\n");
1227 /* Woken up by an error IRQ: abort DMA */
1228 data->error = sh_mmcif_error_manage(host);
1229 } else if (!time) {
1230 dev_err(host->mmc->parent, "DMA timeout!\n");
1231 data->error = -ETIMEDOUT;
1232 } else if (time < 0) {
1233 dev_err(host->mmc->parent,
1234 "wait_for_completion_...() error %ld!\n", time);
1235 data->error = time;
1236 }
1237 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1238 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1239 host->dma_active = false;
1240
1241 if (data->error) {
1242 data->bytes_xfered = 0;
1243 /* Abort DMA */
1244 if (data->flags & MMC_DATA_READ)
1245 dmaengine_terminate_all(host->chan_rx);
1246 else
1247 dmaengine_terminate_all(host->chan_tx);
1248 }
1249
1250 return false;
1251}
1252
1253static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1254{
1255 struct sh_mmcif_host *host = dev_id;
1256 struct mmc_request *mrq;
1257 struct device *dev = sh_mmcif_host_to_dev(host);
1258 bool wait = false;
1259 unsigned long flags;
1260 int wait_work;
1261
1262 spin_lock_irqsave(&host->lock, flags);
1263 wait_work = host->wait_for;
1264 spin_unlock_irqrestore(&host->lock, flags);
1265
1266 cancel_delayed_work_sync(&host->timeout_work);
1267
1268 mutex_lock(&host->thread_lock);
1269
1270 mrq = host->mrq;
1271 if (!mrq) {
1272 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1273 host->state, host->wait_for);
1274 mutex_unlock(&host->thread_lock);
1275 return IRQ_HANDLED;
1276 }
1277
1278 /*
1279 * All handlers return true, if processing continues, and false, if the
1280 * request has to be completed - successfully or not
1281 */
1282 switch (wait_work) {
1283 case MMCIF_WAIT_FOR_REQUEST:
1284 /* We're too late, the timeout has already kicked in */
1285 mutex_unlock(&host->thread_lock);
1286 return IRQ_HANDLED;
1287 case MMCIF_WAIT_FOR_CMD:
1288 /* Wait for data? */
1289 wait = sh_mmcif_end_cmd(host);
1290 break;
1291 case MMCIF_WAIT_FOR_MREAD:
1292 /* Wait for more data? */
1293 wait = sh_mmcif_mread_block(host);
1294 break;
1295 case MMCIF_WAIT_FOR_READ:
1296 /* Wait for data end? */
1297 wait = sh_mmcif_read_block(host);
1298 break;
1299 case MMCIF_WAIT_FOR_MWRITE:
1300 /* Wait data to write? */
1301 wait = sh_mmcif_mwrite_block(host);
1302 break;
1303 case MMCIF_WAIT_FOR_WRITE:
1304 /* Wait for data end? */
1305 wait = sh_mmcif_write_block(host);
1306 break;
1307 case MMCIF_WAIT_FOR_STOP:
1308 if (host->sd_error) {
1309 mrq->stop->error = sh_mmcif_error_manage(host);
1310 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1311 break;
1312 }
1313 sh_mmcif_get_cmd12response(host, mrq->stop);
1314 mrq->stop->error = 0;
1315 break;
1316 case MMCIF_WAIT_FOR_READ_END:
1317 case MMCIF_WAIT_FOR_WRITE_END:
1318 if (host->sd_error) {
1319 mrq->data->error = sh_mmcif_error_manage(host);
1320 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1321 }
1322 break;
1323 default:
1324 BUG();
1325 }
1326
1327 if (wait) {
1328 schedule_delayed_work(&host->timeout_work, host->timeout);
1329 /* Wait for more data */
1330 mutex_unlock(&host->thread_lock);
1331 return IRQ_HANDLED;
1332 }
1333
1334 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1335 struct mmc_data *data = mrq->data;
1336 if (!mrq->cmd->error && data && !data->error)
1337 data->bytes_xfered =
1338 data->blocks * data->blksz;
1339
1340 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1341 sh_mmcif_stop_cmd(host, mrq);
1342 if (!mrq->stop->error) {
1343 schedule_delayed_work(&host->timeout_work, host->timeout);
1344 mutex_unlock(&host->thread_lock);
1345 return IRQ_HANDLED;
1346 }
1347 }
1348 }
1349
1350 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1351 host->state = STATE_IDLE;
1352 host->mrq = NULL;
1353 mmc_request_done(host->mmc, mrq);
1354
1355 mutex_unlock(&host->thread_lock);
1356
1357 return IRQ_HANDLED;
1358}
1359
1360static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1361{
1362 struct sh_mmcif_host *host = dev_id;
1363 struct device *dev = sh_mmcif_host_to_dev(host);
1364 u32 state, mask;
1365
1366 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1367 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1368 if (host->ccs_enable)
1369 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1370 else
1371 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1372 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1373
1374 if (state & ~MASK_CLEAN)
1375 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1376 state);
1377
1378 if (state & INT_ERR_STS || state & ~INT_ALL) {
1379 host->sd_error = true;
1380 dev_dbg(dev, "int err state = 0x%08x\n", state);
1381 }
1382 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1383 if (!host->mrq)
1384 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1385 if (!host->dma_active)
1386 return IRQ_WAKE_THREAD;
1387 else if (host->sd_error)
1388 sh_mmcif_dma_complete(host);
1389 } else {
1390 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1391 }
1392
1393 return IRQ_HANDLED;
1394}
1395
1396static void sh_mmcif_timeout_work(struct work_struct *work)
1397{
1398 struct delayed_work *d = to_delayed_work(work);
1399 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1400 struct mmc_request *mrq = host->mrq;
1401 struct device *dev = sh_mmcif_host_to_dev(host);
1402 unsigned long flags;
1403
1404 if (host->dying)
1405 /* Don't run after mmc_remove_host() */
1406 return;
1407
1408 spin_lock_irqsave(&host->lock, flags);
1409 if (host->state == STATE_IDLE) {
1410 spin_unlock_irqrestore(&host->lock, flags);
1411 return;
1412 }
1413
1414 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1415 host->wait_for, mrq->cmd->opcode);
1416
1417 host->state = STATE_TIMEOUT;
1418 spin_unlock_irqrestore(&host->lock, flags);
1419
1420 /*
1421 * Handle races with cancel_delayed_work(), unless
1422 * cancel_delayed_work_sync() is used
1423 */
1424 switch (host->wait_for) {
1425 case MMCIF_WAIT_FOR_CMD:
1426 mrq->cmd->error = sh_mmcif_error_manage(host);
1427 break;
1428 case MMCIF_WAIT_FOR_STOP:
1429 mrq->stop->error = sh_mmcif_error_manage(host);
1430 break;
1431 case MMCIF_WAIT_FOR_MREAD:
1432 case MMCIF_WAIT_FOR_MWRITE:
1433 case MMCIF_WAIT_FOR_READ:
1434 case MMCIF_WAIT_FOR_WRITE:
1435 case MMCIF_WAIT_FOR_READ_END:
1436 case MMCIF_WAIT_FOR_WRITE_END:
1437 mrq->data->error = sh_mmcif_error_manage(host);
1438 break;
1439 default:
1440 BUG();
1441 }
1442
1443 host->state = STATE_IDLE;
1444 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1445 host->mrq = NULL;
1446 mmc_request_done(host->mmc, mrq);
1447}
1448
1449static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1450{
1451 struct device *dev = sh_mmcif_host_to_dev(host);
1452 struct sh_mmcif_plat_data *pd = dev->platform_data;
1453 struct mmc_host *mmc = host->mmc;
1454
1455 mmc_regulator_get_supply(mmc);
1456
1457 if (!pd)
1458 return;
1459
1460 if (!mmc->ocr_avail)
1461 mmc->ocr_avail = pd->ocr;
1462 else if (pd->ocr)
1463 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1464}
1465
1466static int sh_mmcif_probe(struct platform_device *pdev)
1467{
1468 int ret = 0, irq[2];
1469 struct mmc_host *mmc;
1470 struct sh_mmcif_host *host;
1471 struct device *dev = &pdev->dev;
1472 struct sh_mmcif_plat_data *pd = dev->platform_data;
1473 struct resource *res;
1474 void __iomem *reg;
1475 const char *name;
1476
1477 irq[0] = platform_get_irq(pdev, 0);
1478 irq[1] = platform_get_irq(pdev, 1);
1479 if (irq[0] < 0) {
1480 dev_err(dev, "Get irq error\n");
1481 return -ENXIO;
1482 }
1483
1484 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1485 reg = devm_ioremap_resource(dev, res);
1486 if (IS_ERR(reg))
1487 return PTR_ERR(reg);
1488
1489 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1490 if (!mmc)
1491 return -ENOMEM;
1492
1493 ret = mmc_of_parse(mmc);
1494 if (ret < 0)
1495 goto err_host;
1496
1497 host = mmc_priv(mmc);
1498 host->mmc = mmc;
1499 host->addr = reg;
1500 host->timeout = msecs_to_jiffies(10000);
1501 host->ccs_enable = !pd || !pd->ccs_unsupported;
1502 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1503
1504 host->pd = pdev;
1505
1506 spin_lock_init(&host->lock);
1507
1508 mmc->ops = &sh_mmcif_ops;
1509 sh_mmcif_init_ocr(host);
1510
1511 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1512 if (pd && pd->caps)
1513 mmc->caps |= pd->caps;
1514 mmc->max_segs = 32;
1515 mmc->max_blk_size = 512;
1516 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1517 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1518 mmc->max_seg_size = mmc->max_req_size;
1519
1520 platform_set_drvdata(pdev, host);
1521
1522 pm_runtime_enable(dev);
1523 host->power = false;
1524
1525 host->clk = devm_clk_get(dev, NULL);
1526 if (IS_ERR(host->clk)) {
1527 ret = PTR_ERR(host->clk);
1528 dev_err(dev, "cannot get clock: %d\n", ret);
1529 goto err_pm;
1530 }
1531
1532 ret = clk_prepare_enable(host->clk);
1533 if (ret < 0)
1534 goto err_pm;
1535
1536 sh_mmcif_clk_setup(host);
1537
1538 ret = pm_runtime_resume(dev);
1539 if (ret < 0)
1540 goto err_clk;
1541
1542 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1543
1544 sh_mmcif_sync_reset(host);
1545 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1546
1547 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1548 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1549 sh_mmcif_irqt, 0, name, host);
1550 if (ret) {
1551 dev_err(dev, "request_irq error (%s)\n", name);
1552 goto err_clk;
1553 }
1554 if (irq[1] >= 0) {
1555 ret = devm_request_threaded_irq(dev, irq[1],
1556 sh_mmcif_intr, sh_mmcif_irqt,
1557 0, "sh_mmc:int", host);
1558 if (ret) {
1559 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1560 goto err_clk;
1561 }
1562 }
1563
1564 if (pd && pd->use_cd_gpio) {
1565 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1566 if (ret < 0)
1567 goto err_clk;
1568 }
1569
1570 mutex_init(&host->thread_lock);
1571
1572 ret = mmc_add_host(mmc);
1573 if (ret < 0)
1574 goto err_clk;
1575
1576 dev_pm_qos_expose_latency_limit(dev, 100);
1577
1578 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1579 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1580 clk_get_rate(host->clk) / 1000000UL);
1581
1582 clk_disable_unprepare(host->clk);
1583 return ret;
1584
1585err_clk:
1586 clk_disable_unprepare(host->clk);
1587err_pm:
1588 pm_runtime_disable(dev);
1589err_host:
1590 mmc_free_host(mmc);
1591 return ret;
1592}
1593
1594static int sh_mmcif_remove(struct platform_device *pdev)
1595{
1596 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1597
1598 host->dying = true;
1599 clk_prepare_enable(host->clk);
1600 pm_runtime_get_sync(&pdev->dev);
1601
1602 dev_pm_qos_hide_latency_limit(&pdev->dev);
1603
1604 mmc_remove_host(host->mmc);
1605 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1606
1607 /*
1608 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1609 * mmc_remove_host() call above. But swapping order doesn't help either
1610 * (a query on the linux-mmc mailing list didn't bring any replies).
1611 */
1612 cancel_delayed_work_sync(&host->timeout_work);
1613
1614 clk_disable_unprepare(host->clk);
1615 mmc_free_host(host->mmc);
1616 pm_runtime_put_sync(&pdev->dev);
1617 pm_runtime_disable(&pdev->dev);
1618
1619 return 0;
1620}
1621
1622#ifdef CONFIG_PM_SLEEP
1623static int sh_mmcif_suspend(struct device *dev)
1624{
1625 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1626
1627 pm_runtime_get_sync(dev);
1628 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1629 pm_runtime_put(dev);
1630
1631 return 0;
1632}
1633
1634static int sh_mmcif_resume(struct device *dev)
1635{
1636 return 0;
1637}
1638#endif
1639
1640static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1641 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1642};
1643
1644static struct platform_driver sh_mmcif_driver = {
1645 .probe = sh_mmcif_probe,
1646 .remove = sh_mmcif_remove,
1647 .driver = {
1648 .name = DRIVER_NAME,
1649 .pm = &sh_mmcif_dev_pm_ops,
1650 .of_match_table = sh_mmcif_of_match,
1651 },
1652};
1653
1654module_platform_driver(sh_mmcif_driver);
1655
1656MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1657MODULE_LICENSE("GPL");
1658MODULE_ALIAS("platform:" DRIVER_NAME);
1659MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1/*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19/*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45#include <linux/bitops.h>
46#include <linux/clk.h>
47#include <linux/completion.h>
48#include <linux/delay.h>
49#include <linux/dma-mapping.h>
50#include <linux/dmaengine.h>
51#include <linux/mmc/card.h>
52#include <linux/mmc/core.h>
53#include <linux/mmc/host.h>
54#include <linux/mmc/mmc.h>
55#include <linux/mmc/sdio.h>
56#include <linux/mmc/sh_mmcif.h>
57#include <linux/mmc/slot-gpio.h>
58#include <linux/mod_devicetable.h>
59#include <linux/mutex.h>
60#include <linux/pagemap.h>
61#include <linux/platform_device.h>
62#include <linux/pm_qos.h>
63#include <linux/pm_runtime.h>
64#include <linux/sh_dma.h>
65#include <linux/spinlock.h>
66#include <linux/module.h>
67
68#define DRIVER_NAME "sh_mmcif"
69#define DRIVER_VERSION "2010-04-28"
70
71/* CE_CMD_SET */
72#define CMD_MASK 0x3f000000
73#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
74#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
76#define CMD_SET_RBSY (1 << 21) /* R1b */
77#define CMD_SET_CCSEN (1 << 20)
78#define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
79#define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
80#define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
81#define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
82#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
83#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
84#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
85#define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
86#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
87#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88#define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
89#define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
90#define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
91#define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
92#define CMD_SET_CCSH (1 << 5)
93#define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
94#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
95#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
96#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
97
98/* CE_CMD_CTRL */
99#define CMD_CTRL_BREAK (1 << 0)
100
101/* CE_BLOCK_SET */
102#define BLOCK_SIZE_MASK 0x0000ffff
103
104/* CE_INT */
105#define INT_CCSDE (1 << 29)
106#define INT_CMD12DRE (1 << 26)
107#define INT_CMD12RBE (1 << 25)
108#define INT_CMD12CRE (1 << 24)
109#define INT_DTRANE (1 << 23)
110#define INT_BUFRE (1 << 22)
111#define INT_BUFWEN (1 << 21)
112#define INT_BUFREN (1 << 20)
113#define INT_CCSRCV (1 << 19)
114#define INT_RBSYE (1 << 17)
115#define INT_CRSPE (1 << 16)
116#define INT_CMDVIO (1 << 15)
117#define INT_BUFVIO (1 << 14)
118#define INT_WDATERR (1 << 11)
119#define INT_RDATERR (1 << 10)
120#define INT_RIDXERR (1 << 9)
121#define INT_RSPERR (1 << 8)
122#define INT_CCSTO (1 << 5)
123#define INT_CRCSTO (1 << 4)
124#define INT_WDATTO (1 << 3)
125#define INT_RDATTO (1 << 2)
126#define INT_RBSYTO (1 << 1)
127#define INT_RSPTO (1 << 0)
128#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
129 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
131 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132
133#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
134 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136
137#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138
139/* CE_INT_MASK */
140#define MASK_ALL 0x00000000
141#define MASK_MCCSDE (1 << 29)
142#define MASK_MCMD12DRE (1 << 26)
143#define MASK_MCMD12RBE (1 << 25)
144#define MASK_MCMD12CRE (1 << 24)
145#define MASK_MDTRANE (1 << 23)
146#define MASK_MBUFRE (1 << 22)
147#define MASK_MBUFWEN (1 << 21)
148#define MASK_MBUFREN (1 << 20)
149#define MASK_MCCSRCV (1 << 19)
150#define MASK_MRBSYE (1 << 17)
151#define MASK_MCRSPE (1 << 16)
152#define MASK_MCMDVIO (1 << 15)
153#define MASK_MBUFVIO (1 << 14)
154#define MASK_MWDATERR (1 << 11)
155#define MASK_MRDATERR (1 << 10)
156#define MASK_MRIDXERR (1 << 9)
157#define MASK_MRSPERR (1 << 8)
158#define MASK_MCCSTO (1 << 5)
159#define MASK_MCRCSTO (1 << 4)
160#define MASK_MWDATTO (1 << 3)
161#define MASK_MRDATTO (1 << 2)
162#define MASK_MRBSYTO (1 << 1)
163#define MASK_MRSPTO (1 << 0)
164
165#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 MASK_MCRCSTO | MASK_MWDATTO | \
168 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169
170#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
171 MASK_MBUFREN | MASK_MBUFWEN | \
172 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
173 MASK_MCMD12RBE | MASK_MCMD12CRE)
174
175/* CE_HOST_STS1 */
176#define STS1_CMDSEQ (1 << 31)
177
178/* CE_HOST_STS2 */
179#define STS2_CRCSTE (1 << 31)
180#define STS2_CRC16E (1 << 30)
181#define STS2_AC12CRCE (1 << 29)
182#define STS2_RSPCRC7E (1 << 28)
183#define STS2_CRCSTEBE (1 << 27)
184#define STS2_RDATEBE (1 << 26)
185#define STS2_AC12REBE (1 << 25)
186#define STS2_RSPEBE (1 << 24)
187#define STS2_AC12IDXE (1 << 23)
188#define STS2_RSPIDXE (1 << 22)
189#define STS2_CCSTO (1 << 15)
190#define STS2_RDATTO (1 << 14)
191#define STS2_DATBSYTO (1 << 13)
192#define STS2_CRCSTTO (1 << 12)
193#define STS2_AC12BSYTO (1 << 11)
194#define STS2_RSPBSYTO (1 << 10)
195#define STS2_AC12RSPTO (1 << 9)
196#define STS2_RSPTO (1 << 8)
197#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
198 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
200 STS2_DATBSYTO | STS2_CRCSTTO | \
201 STS2_AC12BSYTO | STS2_RSPBSYTO | \
202 STS2_AC12RSPTO | STS2_RSPTO)
203
204#define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
205#define CLKDEV_MMC_DATA 20000000 /* 20MHz */
206#define CLKDEV_INIT 400000 /* 400 KHz */
207
208enum mmcif_state {
209 STATE_IDLE,
210 STATE_REQUEST,
211 STATE_IOS,
212 STATE_TIMEOUT,
213};
214
215enum mmcif_wait_for {
216 MMCIF_WAIT_FOR_REQUEST,
217 MMCIF_WAIT_FOR_CMD,
218 MMCIF_WAIT_FOR_MREAD,
219 MMCIF_WAIT_FOR_MWRITE,
220 MMCIF_WAIT_FOR_READ,
221 MMCIF_WAIT_FOR_WRITE,
222 MMCIF_WAIT_FOR_READ_END,
223 MMCIF_WAIT_FOR_WRITE_END,
224 MMCIF_WAIT_FOR_STOP,
225};
226
227struct sh_mmcif_host {
228 struct mmc_host *mmc;
229 struct mmc_request *mrq;
230 struct platform_device *pd;
231 struct clk *hclk;
232 unsigned int clk;
233 int bus_width;
234 unsigned char timing;
235 bool sd_error;
236 bool dying;
237 long timeout;
238 void __iomem *addr;
239 u32 *pio_ptr;
240 spinlock_t lock; /* protect sh_mmcif_host::state */
241 enum mmcif_state state;
242 enum mmcif_wait_for wait_for;
243 struct delayed_work timeout_work;
244 size_t blocksize;
245 int sg_idx;
246 int sg_blkidx;
247 bool power;
248 bool card_present;
249 bool ccs_enable; /* Command Completion Signal support */
250 bool clk_ctrl2_enable;
251 struct mutex thread_lock;
252
253 /* DMA support */
254 struct dma_chan *chan_rx;
255 struct dma_chan *chan_tx;
256 struct completion dma_complete;
257 bool dma_active;
258};
259
260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 unsigned int reg, u32 val)
262{
263 writel(val | readl(host->addr + reg), host->addr + reg);
264}
265
266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 unsigned int reg, u32 val)
268{
269 writel(~val & readl(host->addr + reg), host->addr + reg);
270}
271
272static void mmcif_dma_complete(void *arg)
273{
274 struct sh_mmcif_host *host = arg;
275 struct mmc_request *mrq = host->mrq;
276
277 dev_dbg(&host->pd->dev, "Command completed\n");
278
279 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 dev_name(&host->pd->dev)))
281 return;
282
283 complete(&host->dma_complete);
284}
285
286static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287{
288 struct mmc_data *data = host->mrq->data;
289 struct scatterlist *sg = data->sg;
290 struct dma_async_tx_descriptor *desc = NULL;
291 struct dma_chan *chan = host->chan_rx;
292 dma_cookie_t cookie = -EINVAL;
293 int ret;
294
295 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296 DMA_FROM_DEVICE);
297 if (ret > 0) {
298 host->dma_active = true;
299 desc = dmaengine_prep_slave_sg(chan, sg, ret,
300 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301 }
302
303 if (desc) {
304 desc->callback = mmcif_dma_complete;
305 desc->callback_param = host;
306 cookie = dmaengine_submit(desc);
307 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308 dma_async_issue_pending(chan);
309 }
310 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311 __func__, data->sg_len, ret, cookie);
312
313 if (!desc) {
314 /* DMA failed, fall back to PIO */
315 if (ret >= 0)
316 ret = -EIO;
317 host->chan_rx = NULL;
318 host->dma_active = false;
319 dma_release_channel(chan);
320 /* Free the Tx channel too */
321 chan = host->chan_tx;
322 if (chan) {
323 host->chan_tx = NULL;
324 dma_release_channel(chan);
325 }
326 dev_warn(&host->pd->dev,
327 "DMA failed: %d, falling back to PIO\n", ret);
328 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329 }
330
331 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332 desc, cookie, data->sg_len);
333}
334
335static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336{
337 struct mmc_data *data = host->mrq->data;
338 struct scatterlist *sg = data->sg;
339 struct dma_async_tx_descriptor *desc = NULL;
340 struct dma_chan *chan = host->chan_tx;
341 dma_cookie_t cookie = -EINVAL;
342 int ret;
343
344 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 DMA_TO_DEVICE);
346 if (ret > 0) {
347 host->dma_active = true;
348 desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350 }
351
352 if (desc) {
353 desc->callback = mmcif_dma_complete;
354 desc->callback_param = host;
355 cookie = dmaengine_submit(desc);
356 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 dma_async_issue_pending(chan);
358 }
359 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360 __func__, data->sg_len, ret, cookie);
361
362 if (!desc) {
363 /* DMA failed, fall back to PIO */
364 if (ret >= 0)
365 ret = -EIO;
366 host->chan_tx = NULL;
367 host->dma_active = false;
368 dma_release_channel(chan);
369 /* Free the Rx channel too */
370 chan = host->chan_rx;
371 if (chan) {
372 host->chan_rx = NULL;
373 dma_release_channel(chan);
374 }
375 dev_warn(&host->pd->dev,
376 "DMA failed: %d, falling back to PIO\n", ret);
377 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378 }
379
380 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381 desc, cookie);
382}
383
384static struct dma_chan *
385sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386 struct sh_mmcif_plat_data *pdata,
387 enum dma_transfer_direction direction)
388{
389 struct dma_slave_config cfg;
390 struct dma_chan *chan;
391 unsigned int slave_id;
392 struct resource *res;
393 dma_cap_mask_t mask;
394 int ret;
395
396 dma_cap_zero(mask);
397 dma_cap_set(DMA_SLAVE, mask);
398
399 if (pdata)
400 slave_id = direction == DMA_MEM_TO_DEV
401 ? pdata->slave_id_tx : pdata->slave_id_rx;
402 else
403 slave_id = 0;
404
405 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
406 (void *)(unsigned long)slave_id, &host->pd->dev,
407 direction == DMA_MEM_TO_DEV ? "tx" : "rx");
408
409 dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
410 direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
411
412 if (!chan)
413 return NULL;
414
415 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
416
417 /* In the OF case the driver will get the slave ID from the DT */
418 cfg.slave_id = slave_id;
419 cfg.direction = direction;
420 cfg.dst_addr = res->start + MMCIF_CE_DATA;
421 cfg.src_addr = 0;
422 ret = dmaengine_slave_config(chan, &cfg);
423 if (ret < 0) {
424 dma_release_channel(chan);
425 return NULL;
426 }
427
428 return chan;
429}
430
431static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
432 struct sh_mmcif_plat_data *pdata)
433{
434 host->dma_active = false;
435
436 if (pdata) {
437 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
438 return;
439 } else if (!host->pd->dev.of_node) {
440 return;
441 }
442
443 /* We can only either use DMA for both Tx and Rx or not use it at all */
444 host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
445 if (!host->chan_tx)
446 return;
447
448 host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
449 if (!host->chan_rx) {
450 dma_release_channel(host->chan_tx);
451 host->chan_tx = NULL;
452 }
453}
454
455static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
456{
457 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
458 /* Descriptors are freed automatically */
459 if (host->chan_tx) {
460 struct dma_chan *chan = host->chan_tx;
461 host->chan_tx = NULL;
462 dma_release_channel(chan);
463 }
464 if (host->chan_rx) {
465 struct dma_chan *chan = host->chan_rx;
466 host->chan_rx = NULL;
467 dma_release_channel(chan);
468 }
469
470 host->dma_active = false;
471}
472
473static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
474{
475 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
476 bool sup_pclk = p ? p->sup_pclk : false;
477
478 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
479 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
480
481 if (!clk)
482 return;
483 if (sup_pclk && clk == host->clk)
484 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
485 else
486 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
487 ((fls(DIV_ROUND_UP(host->clk,
488 clk) - 1) - 1) << 16));
489
490 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
491}
492
493static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
494{
495 u32 tmp;
496
497 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
498
499 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
500 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
501 if (host->ccs_enable)
502 tmp |= SCCSTO_29;
503 if (host->clk_ctrl2_enable)
504 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
505 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
506 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
507 /* byte swap on */
508 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
509}
510
511static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
512{
513 u32 state1, state2;
514 int ret, timeout;
515
516 host->sd_error = false;
517
518 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
519 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
520 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
521 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
522
523 if (state1 & STS1_CMDSEQ) {
524 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
525 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
526 for (timeout = 10000000; timeout; timeout--) {
527 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
528 & STS1_CMDSEQ))
529 break;
530 mdelay(1);
531 }
532 if (!timeout) {
533 dev_err(&host->pd->dev,
534 "Forced end of command sequence timeout err\n");
535 return -EIO;
536 }
537 sh_mmcif_sync_reset(host);
538 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
539 return -EIO;
540 }
541
542 if (state2 & STS2_CRC_ERR) {
543 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
544 host->state, host->wait_for);
545 ret = -EIO;
546 } else if (state2 & STS2_TIMEOUT_ERR) {
547 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
548 host->state, host->wait_for);
549 ret = -ETIMEDOUT;
550 } else {
551 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
552 host->state, host->wait_for);
553 ret = -EIO;
554 }
555 return ret;
556}
557
558static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
559{
560 struct mmc_data *data = host->mrq->data;
561
562 host->sg_blkidx += host->blocksize;
563
564 /* data->sg->length must be a multiple of host->blocksize? */
565 BUG_ON(host->sg_blkidx > data->sg->length);
566
567 if (host->sg_blkidx == data->sg->length) {
568 host->sg_blkidx = 0;
569 if (++host->sg_idx < data->sg_len)
570 host->pio_ptr = sg_virt(++data->sg);
571 } else {
572 host->pio_ptr = p;
573 }
574
575 return host->sg_idx != data->sg_len;
576}
577
578static void sh_mmcif_single_read(struct sh_mmcif_host *host,
579 struct mmc_request *mrq)
580{
581 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
582 BLOCK_SIZE_MASK) + 3;
583
584 host->wait_for = MMCIF_WAIT_FOR_READ;
585
586 /* buf read enable */
587 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
588}
589
590static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
591{
592 struct mmc_data *data = host->mrq->data;
593 u32 *p = sg_virt(data->sg);
594 int i;
595
596 if (host->sd_error) {
597 data->error = sh_mmcif_error_manage(host);
598 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
599 return false;
600 }
601
602 for (i = 0; i < host->blocksize / 4; i++)
603 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
604
605 /* buffer read end */
606 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
607 host->wait_for = MMCIF_WAIT_FOR_READ_END;
608
609 return true;
610}
611
612static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
613 struct mmc_request *mrq)
614{
615 struct mmc_data *data = mrq->data;
616
617 if (!data->sg_len || !data->sg->length)
618 return;
619
620 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
621 BLOCK_SIZE_MASK;
622
623 host->wait_for = MMCIF_WAIT_FOR_MREAD;
624 host->sg_idx = 0;
625 host->sg_blkidx = 0;
626 host->pio_ptr = sg_virt(data->sg);
627
628 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
629}
630
631static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
632{
633 struct mmc_data *data = host->mrq->data;
634 u32 *p = host->pio_ptr;
635 int i;
636
637 if (host->sd_error) {
638 data->error = sh_mmcif_error_manage(host);
639 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
640 return false;
641 }
642
643 BUG_ON(!data->sg->length);
644
645 for (i = 0; i < host->blocksize / 4; i++)
646 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
647
648 if (!sh_mmcif_next_block(host, p))
649 return false;
650
651 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
652
653 return true;
654}
655
656static void sh_mmcif_single_write(struct sh_mmcif_host *host,
657 struct mmc_request *mrq)
658{
659 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
660 BLOCK_SIZE_MASK) + 3;
661
662 host->wait_for = MMCIF_WAIT_FOR_WRITE;
663
664 /* buf write enable */
665 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
666}
667
668static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
669{
670 struct mmc_data *data = host->mrq->data;
671 u32 *p = sg_virt(data->sg);
672 int i;
673
674 if (host->sd_error) {
675 data->error = sh_mmcif_error_manage(host);
676 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
677 return false;
678 }
679
680 for (i = 0; i < host->blocksize / 4; i++)
681 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
682
683 /* buffer write end */
684 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
685 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
686
687 return true;
688}
689
690static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
691 struct mmc_request *mrq)
692{
693 struct mmc_data *data = mrq->data;
694
695 if (!data->sg_len || !data->sg->length)
696 return;
697
698 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
699 BLOCK_SIZE_MASK;
700
701 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
702 host->sg_idx = 0;
703 host->sg_blkidx = 0;
704 host->pio_ptr = sg_virt(data->sg);
705
706 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
707}
708
709static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
710{
711 struct mmc_data *data = host->mrq->data;
712 u32 *p = host->pio_ptr;
713 int i;
714
715 if (host->sd_error) {
716 data->error = sh_mmcif_error_manage(host);
717 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
718 return false;
719 }
720
721 BUG_ON(!data->sg->length);
722
723 for (i = 0; i < host->blocksize / 4; i++)
724 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
725
726 if (!sh_mmcif_next_block(host, p))
727 return false;
728
729 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
730
731 return true;
732}
733
734static void sh_mmcif_get_response(struct sh_mmcif_host *host,
735 struct mmc_command *cmd)
736{
737 if (cmd->flags & MMC_RSP_136) {
738 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
739 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
740 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
741 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
742 } else
743 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
744}
745
746static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
747 struct mmc_command *cmd)
748{
749 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
750}
751
752static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
753 struct mmc_request *mrq)
754{
755 struct mmc_data *data = mrq->data;
756 struct mmc_command *cmd = mrq->cmd;
757 u32 opc = cmd->opcode;
758 u32 tmp = 0;
759
760 /* Response Type check */
761 switch (mmc_resp_type(cmd)) {
762 case MMC_RSP_NONE:
763 tmp |= CMD_SET_RTYP_NO;
764 break;
765 case MMC_RSP_R1:
766 case MMC_RSP_R1B:
767 case MMC_RSP_R3:
768 tmp |= CMD_SET_RTYP_6B;
769 break;
770 case MMC_RSP_R2:
771 tmp |= CMD_SET_RTYP_17B;
772 break;
773 default:
774 dev_err(&host->pd->dev, "Unsupported response type.\n");
775 break;
776 }
777 switch (opc) {
778 /* RBSY */
779 case MMC_SLEEP_AWAKE:
780 case MMC_SWITCH:
781 case MMC_STOP_TRANSMISSION:
782 case MMC_SET_WRITE_PROT:
783 case MMC_CLR_WRITE_PROT:
784 case MMC_ERASE:
785 tmp |= CMD_SET_RBSY;
786 break;
787 }
788 /* WDAT / DATW */
789 if (data) {
790 tmp |= CMD_SET_WDAT;
791 switch (host->bus_width) {
792 case MMC_BUS_WIDTH_1:
793 tmp |= CMD_SET_DATW_1;
794 break;
795 case MMC_BUS_WIDTH_4:
796 tmp |= CMD_SET_DATW_4;
797 break;
798 case MMC_BUS_WIDTH_8:
799 tmp |= CMD_SET_DATW_8;
800 break;
801 default:
802 dev_err(&host->pd->dev, "Unsupported bus width.\n");
803 break;
804 }
805 switch (host->timing) {
806 case MMC_TIMING_UHS_DDR50:
807 /*
808 * MMC core will only set this timing, if the host
809 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
810 * implementations with this capability, e.g. sh73a0,
811 * will have to set it in their platform data.
812 */
813 tmp |= CMD_SET_DARS;
814 break;
815 }
816 }
817 /* DWEN */
818 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
819 tmp |= CMD_SET_DWEN;
820 /* CMLTE/CMD12EN */
821 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
822 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
823 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
824 data->blocks << 16);
825 }
826 /* RIDXC[1:0] check bits */
827 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
828 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
829 tmp |= CMD_SET_RIDXC_BITS;
830 /* RCRC7C[1:0] check bits */
831 if (opc == MMC_SEND_OP_COND)
832 tmp |= CMD_SET_CRC7C_BITS;
833 /* RCRC7C[1:0] internal CRC7 */
834 if (opc == MMC_ALL_SEND_CID ||
835 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
836 tmp |= CMD_SET_CRC7C_INTERNAL;
837
838 return (opc << 24) | tmp;
839}
840
841static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
842 struct mmc_request *mrq, u32 opc)
843{
844 switch (opc) {
845 case MMC_READ_MULTIPLE_BLOCK:
846 sh_mmcif_multi_read(host, mrq);
847 return 0;
848 case MMC_WRITE_MULTIPLE_BLOCK:
849 sh_mmcif_multi_write(host, mrq);
850 return 0;
851 case MMC_WRITE_BLOCK:
852 sh_mmcif_single_write(host, mrq);
853 return 0;
854 case MMC_READ_SINGLE_BLOCK:
855 case MMC_SEND_EXT_CSD:
856 sh_mmcif_single_read(host, mrq);
857 return 0;
858 default:
859 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
860 return -EINVAL;
861 }
862}
863
864static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
865 struct mmc_request *mrq)
866{
867 struct mmc_command *cmd = mrq->cmd;
868 u32 opc = cmd->opcode;
869 u32 mask;
870
871 switch (opc) {
872 /* response busy check */
873 case MMC_SLEEP_AWAKE:
874 case MMC_SWITCH:
875 case MMC_STOP_TRANSMISSION:
876 case MMC_SET_WRITE_PROT:
877 case MMC_CLR_WRITE_PROT:
878 case MMC_ERASE:
879 mask = MASK_START_CMD | MASK_MRBSYE;
880 break;
881 default:
882 mask = MASK_START_CMD | MASK_MCRSPE;
883 break;
884 }
885
886 if (host->ccs_enable)
887 mask |= MASK_MCCSTO;
888
889 if (mrq->data) {
890 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
891 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
892 mrq->data->blksz);
893 }
894 opc = sh_mmcif_set_cmd(host, mrq);
895
896 if (host->ccs_enable)
897 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
898 else
899 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
900 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
901 /* set arg */
902 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
903 /* set cmd */
904 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
905
906 host->wait_for = MMCIF_WAIT_FOR_CMD;
907 schedule_delayed_work(&host->timeout_work, host->timeout);
908}
909
910static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
911 struct mmc_request *mrq)
912{
913 switch (mrq->cmd->opcode) {
914 case MMC_READ_MULTIPLE_BLOCK:
915 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
916 break;
917 case MMC_WRITE_MULTIPLE_BLOCK:
918 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
919 break;
920 default:
921 dev_err(&host->pd->dev, "unsupported stop cmd\n");
922 mrq->stop->error = sh_mmcif_error_manage(host);
923 return;
924 }
925
926 host->wait_for = MMCIF_WAIT_FOR_STOP;
927}
928
929static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
930{
931 struct sh_mmcif_host *host = mmc_priv(mmc);
932 unsigned long flags;
933
934 spin_lock_irqsave(&host->lock, flags);
935 if (host->state != STATE_IDLE) {
936 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
937 spin_unlock_irqrestore(&host->lock, flags);
938 mrq->cmd->error = -EAGAIN;
939 mmc_request_done(mmc, mrq);
940 return;
941 }
942
943 host->state = STATE_REQUEST;
944 spin_unlock_irqrestore(&host->lock, flags);
945
946 switch (mrq->cmd->opcode) {
947 /* MMCIF does not support SD/SDIO command */
948 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
949 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
950 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
951 break;
952 case MMC_APP_CMD:
953 case SD_IO_RW_DIRECT:
954 host->state = STATE_IDLE;
955 mrq->cmd->error = -ETIMEDOUT;
956 mmc_request_done(mmc, mrq);
957 return;
958 default:
959 break;
960 }
961
962 host->mrq = mrq;
963
964 sh_mmcif_start_cmd(host, mrq);
965}
966
967static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
968{
969 int ret = clk_prepare_enable(host->hclk);
970
971 if (!ret) {
972 host->clk = clk_get_rate(host->hclk);
973 host->mmc->f_max = host->clk / 2;
974 host->mmc->f_min = host->clk / 512;
975 }
976
977 return ret;
978}
979
980static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
981{
982 struct mmc_host *mmc = host->mmc;
983
984 if (!IS_ERR(mmc->supply.vmmc))
985 /* Errors ignored... */
986 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
987 ios->power_mode ? ios->vdd : 0);
988}
989
990static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
991{
992 struct sh_mmcif_host *host = mmc_priv(mmc);
993 unsigned long flags;
994
995 spin_lock_irqsave(&host->lock, flags);
996 if (host->state != STATE_IDLE) {
997 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
998 spin_unlock_irqrestore(&host->lock, flags);
999 return;
1000 }
1001
1002 host->state = STATE_IOS;
1003 spin_unlock_irqrestore(&host->lock, flags);
1004
1005 if (ios->power_mode == MMC_POWER_UP) {
1006 if (!host->card_present) {
1007 /* See if we also get DMA */
1008 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1009 host->card_present = true;
1010 }
1011 sh_mmcif_set_power(host, ios);
1012 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1013 /* clock stop */
1014 sh_mmcif_clock_control(host, 0);
1015 if (ios->power_mode == MMC_POWER_OFF) {
1016 if (host->card_present) {
1017 sh_mmcif_release_dma(host);
1018 host->card_present = false;
1019 }
1020 }
1021 if (host->power) {
1022 pm_runtime_put_sync(&host->pd->dev);
1023 clk_disable_unprepare(host->hclk);
1024 host->power = false;
1025 if (ios->power_mode == MMC_POWER_OFF)
1026 sh_mmcif_set_power(host, ios);
1027 }
1028 host->state = STATE_IDLE;
1029 return;
1030 }
1031
1032 if (ios->clock) {
1033 if (!host->power) {
1034 sh_mmcif_clk_update(host);
1035 pm_runtime_get_sync(&host->pd->dev);
1036 host->power = true;
1037 sh_mmcif_sync_reset(host);
1038 }
1039 sh_mmcif_clock_control(host, ios->clock);
1040 }
1041
1042 host->timing = ios->timing;
1043 host->bus_width = ios->bus_width;
1044 host->state = STATE_IDLE;
1045}
1046
1047static int sh_mmcif_get_cd(struct mmc_host *mmc)
1048{
1049 struct sh_mmcif_host *host = mmc_priv(mmc);
1050 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1051 int ret = mmc_gpio_get_cd(mmc);
1052
1053 if (ret >= 0)
1054 return ret;
1055
1056 if (!p || !p->get_cd)
1057 return -ENOSYS;
1058 else
1059 return p->get_cd(host->pd);
1060}
1061
1062static struct mmc_host_ops sh_mmcif_ops = {
1063 .request = sh_mmcif_request,
1064 .set_ios = sh_mmcif_set_ios,
1065 .get_cd = sh_mmcif_get_cd,
1066};
1067
1068static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1069{
1070 struct mmc_command *cmd = host->mrq->cmd;
1071 struct mmc_data *data = host->mrq->data;
1072 long time;
1073
1074 if (host->sd_error) {
1075 switch (cmd->opcode) {
1076 case MMC_ALL_SEND_CID:
1077 case MMC_SELECT_CARD:
1078 case MMC_APP_CMD:
1079 cmd->error = -ETIMEDOUT;
1080 break;
1081 default:
1082 cmd->error = sh_mmcif_error_manage(host);
1083 break;
1084 }
1085 dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1086 cmd->opcode, cmd->error);
1087 host->sd_error = false;
1088 return false;
1089 }
1090 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1091 cmd->error = 0;
1092 return false;
1093 }
1094
1095 sh_mmcif_get_response(host, cmd);
1096
1097 if (!data)
1098 return false;
1099
1100 /*
1101 * Completion can be signalled from DMA callback and error, so, have to
1102 * reset here, before setting .dma_active
1103 */
1104 init_completion(&host->dma_complete);
1105
1106 if (data->flags & MMC_DATA_READ) {
1107 if (host->chan_rx)
1108 sh_mmcif_start_dma_rx(host);
1109 } else {
1110 if (host->chan_tx)
1111 sh_mmcif_start_dma_tx(host);
1112 }
1113
1114 if (!host->dma_active) {
1115 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1116 return !data->error;
1117 }
1118
1119 /* Running in the IRQ thread, can sleep */
1120 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1121 host->timeout);
1122
1123 if (data->flags & MMC_DATA_READ)
1124 dma_unmap_sg(host->chan_rx->device->dev,
1125 data->sg, data->sg_len,
1126 DMA_FROM_DEVICE);
1127 else
1128 dma_unmap_sg(host->chan_tx->device->dev,
1129 data->sg, data->sg_len,
1130 DMA_TO_DEVICE);
1131
1132 if (host->sd_error) {
1133 dev_err(host->mmc->parent,
1134 "Error IRQ while waiting for DMA completion!\n");
1135 /* Woken up by an error IRQ: abort DMA */
1136 data->error = sh_mmcif_error_manage(host);
1137 } else if (!time) {
1138 dev_err(host->mmc->parent, "DMA timeout!\n");
1139 data->error = -ETIMEDOUT;
1140 } else if (time < 0) {
1141 dev_err(host->mmc->parent,
1142 "wait_for_completion_...() error %ld!\n", time);
1143 data->error = time;
1144 }
1145 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1146 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1147 host->dma_active = false;
1148
1149 if (data->error) {
1150 data->bytes_xfered = 0;
1151 /* Abort DMA */
1152 if (data->flags & MMC_DATA_READ)
1153 dmaengine_terminate_all(host->chan_rx);
1154 else
1155 dmaengine_terminate_all(host->chan_tx);
1156 }
1157
1158 return false;
1159}
1160
1161static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1162{
1163 struct sh_mmcif_host *host = dev_id;
1164 struct mmc_request *mrq;
1165 bool wait = false;
1166
1167 cancel_delayed_work_sync(&host->timeout_work);
1168
1169 mutex_lock(&host->thread_lock);
1170
1171 mrq = host->mrq;
1172 if (!mrq) {
1173 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1174 host->state, host->wait_for);
1175 mutex_unlock(&host->thread_lock);
1176 return IRQ_HANDLED;
1177 }
1178
1179 /*
1180 * All handlers return true, if processing continues, and false, if the
1181 * request has to be completed - successfully or not
1182 */
1183 switch (host->wait_for) {
1184 case MMCIF_WAIT_FOR_REQUEST:
1185 /* We're too late, the timeout has already kicked in */
1186 mutex_unlock(&host->thread_lock);
1187 return IRQ_HANDLED;
1188 case MMCIF_WAIT_FOR_CMD:
1189 /* Wait for data? */
1190 wait = sh_mmcif_end_cmd(host);
1191 break;
1192 case MMCIF_WAIT_FOR_MREAD:
1193 /* Wait for more data? */
1194 wait = sh_mmcif_mread_block(host);
1195 break;
1196 case MMCIF_WAIT_FOR_READ:
1197 /* Wait for data end? */
1198 wait = sh_mmcif_read_block(host);
1199 break;
1200 case MMCIF_WAIT_FOR_MWRITE:
1201 /* Wait data to write? */
1202 wait = sh_mmcif_mwrite_block(host);
1203 break;
1204 case MMCIF_WAIT_FOR_WRITE:
1205 /* Wait for data end? */
1206 wait = sh_mmcif_write_block(host);
1207 break;
1208 case MMCIF_WAIT_FOR_STOP:
1209 if (host->sd_error) {
1210 mrq->stop->error = sh_mmcif_error_manage(host);
1211 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1212 break;
1213 }
1214 sh_mmcif_get_cmd12response(host, mrq->stop);
1215 mrq->stop->error = 0;
1216 break;
1217 case MMCIF_WAIT_FOR_READ_END:
1218 case MMCIF_WAIT_FOR_WRITE_END:
1219 if (host->sd_error) {
1220 mrq->data->error = sh_mmcif_error_manage(host);
1221 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1222 }
1223 break;
1224 default:
1225 BUG();
1226 }
1227
1228 if (wait) {
1229 schedule_delayed_work(&host->timeout_work, host->timeout);
1230 /* Wait for more data */
1231 mutex_unlock(&host->thread_lock);
1232 return IRQ_HANDLED;
1233 }
1234
1235 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1236 struct mmc_data *data = mrq->data;
1237 if (!mrq->cmd->error && data && !data->error)
1238 data->bytes_xfered =
1239 data->blocks * data->blksz;
1240
1241 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1242 sh_mmcif_stop_cmd(host, mrq);
1243 if (!mrq->stop->error) {
1244 schedule_delayed_work(&host->timeout_work, host->timeout);
1245 mutex_unlock(&host->thread_lock);
1246 return IRQ_HANDLED;
1247 }
1248 }
1249 }
1250
1251 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1252 host->state = STATE_IDLE;
1253 host->mrq = NULL;
1254 mmc_request_done(host->mmc, mrq);
1255
1256 mutex_unlock(&host->thread_lock);
1257
1258 return IRQ_HANDLED;
1259}
1260
1261static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1262{
1263 struct sh_mmcif_host *host = dev_id;
1264 u32 state, mask;
1265
1266 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1267 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1268 if (host->ccs_enable)
1269 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1270 else
1271 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1272 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1273
1274 if (state & ~MASK_CLEAN)
1275 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1276 state);
1277
1278 if (state & INT_ERR_STS || state & ~INT_ALL) {
1279 host->sd_error = true;
1280 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1281 }
1282 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1283 if (!host->mrq)
1284 dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1285 if (!host->dma_active)
1286 return IRQ_WAKE_THREAD;
1287 else if (host->sd_error)
1288 mmcif_dma_complete(host);
1289 } else {
1290 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1291 }
1292
1293 return IRQ_HANDLED;
1294}
1295
1296static void mmcif_timeout_work(struct work_struct *work)
1297{
1298 struct delayed_work *d = container_of(work, struct delayed_work, work);
1299 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1300 struct mmc_request *mrq = host->mrq;
1301 unsigned long flags;
1302
1303 if (host->dying)
1304 /* Don't run after mmc_remove_host() */
1305 return;
1306
1307 dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1308 host->wait_for, mrq->cmd->opcode);
1309
1310 spin_lock_irqsave(&host->lock, flags);
1311 if (host->state == STATE_IDLE) {
1312 spin_unlock_irqrestore(&host->lock, flags);
1313 return;
1314 }
1315
1316 host->state = STATE_TIMEOUT;
1317 spin_unlock_irqrestore(&host->lock, flags);
1318
1319 /*
1320 * Handle races with cancel_delayed_work(), unless
1321 * cancel_delayed_work_sync() is used
1322 */
1323 switch (host->wait_for) {
1324 case MMCIF_WAIT_FOR_CMD:
1325 mrq->cmd->error = sh_mmcif_error_manage(host);
1326 break;
1327 case MMCIF_WAIT_FOR_STOP:
1328 mrq->stop->error = sh_mmcif_error_manage(host);
1329 break;
1330 case MMCIF_WAIT_FOR_MREAD:
1331 case MMCIF_WAIT_FOR_MWRITE:
1332 case MMCIF_WAIT_FOR_READ:
1333 case MMCIF_WAIT_FOR_WRITE:
1334 case MMCIF_WAIT_FOR_READ_END:
1335 case MMCIF_WAIT_FOR_WRITE_END:
1336 mrq->data->error = sh_mmcif_error_manage(host);
1337 break;
1338 default:
1339 BUG();
1340 }
1341
1342 host->state = STATE_IDLE;
1343 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1344 host->mrq = NULL;
1345 mmc_request_done(host->mmc, mrq);
1346}
1347
1348static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1349{
1350 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1351 struct mmc_host *mmc = host->mmc;
1352
1353 mmc_regulator_get_supply(mmc);
1354
1355 if (!pd)
1356 return;
1357
1358 if (!mmc->ocr_avail)
1359 mmc->ocr_avail = pd->ocr;
1360 else if (pd->ocr)
1361 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1362}
1363
1364static int sh_mmcif_probe(struct platform_device *pdev)
1365{
1366 int ret = 0, irq[2];
1367 struct mmc_host *mmc;
1368 struct sh_mmcif_host *host;
1369 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1370 struct resource *res;
1371 void __iomem *reg;
1372 const char *name;
1373
1374 irq[0] = platform_get_irq(pdev, 0);
1375 irq[1] = platform_get_irq(pdev, 1);
1376 if (irq[0] < 0) {
1377 dev_err(&pdev->dev, "Get irq error\n");
1378 return -ENXIO;
1379 }
1380 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1381 if (!res) {
1382 dev_err(&pdev->dev, "platform_get_resource error.\n");
1383 return -ENXIO;
1384 }
1385 reg = ioremap(res->start, resource_size(res));
1386 if (!reg) {
1387 dev_err(&pdev->dev, "ioremap error.\n");
1388 return -ENOMEM;
1389 }
1390
1391 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1392 if (!mmc) {
1393 ret = -ENOMEM;
1394 goto ealloch;
1395 }
1396
1397 ret = mmc_of_parse(mmc);
1398 if (ret < 0)
1399 goto eofparse;
1400
1401 host = mmc_priv(mmc);
1402 host->mmc = mmc;
1403 host->addr = reg;
1404 host->timeout = msecs_to_jiffies(1000);
1405 host->ccs_enable = !pd || !pd->ccs_unsupported;
1406 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1407
1408 host->pd = pdev;
1409
1410 spin_lock_init(&host->lock);
1411
1412 mmc->ops = &sh_mmcif_ops;
1413 sh_mmcif_init_ocr(host);
1414
1415 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1416 if (pd && pd->caps)
1417 mmc->caps |= pd->caps;
1418 mmc->max_segs = 32;
1419 mmc->max_blk_size = 512;
1420 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1421 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1422 mmc->max_seg_size = mmc->max_req_size;
1423
1424 platform_set_drvdata(pdev, host);
1425
1426 pm_runtime_enable(&pdev->dev);
1427 host->power = false;
1428
1429 host->hclk = clk_get(&pdev->dev, NULL);
1430 if (IS_ERR(host->hclk)) {
1431 ret = PTR_ERR(host->hclk);
1432 dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1433 goto eclkget;
1434 }
1435 ret = sh_mmcif_clk_update(host);
1436 if (ret < 0)
1437 goto eclkupdate;
1438
1439 ret = pm_runtime_resume(&pdev->dev);
1440 if (ret < 0)
1441 goto eresume;
1442
1443 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1444
1445 sh_mmcif_sync_reset(host);
1446 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1447
1448 name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1449 ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
1450 if (ret) {
1451 dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1452 goto ereqirq0;
1453 }
1454 if (irq[1] >= 0) {
1455 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1456 0, "sh_mmc:int", host);
1457 if (ret) {
1458 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1459 goto ereqirq1;
1460 }
1461 }
1462
1463 if (pd && pd->use_cd_gpio) {
1464 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1465 if (ret < 0)
1466 goto erqcd;
1467 }
1468
1469 mutex_init(&host->thread_lock);
1470
1471 clk_disable_unprepare(host->hclk);
1472 ret = mmc_add_host(mmc);
1473 if (ret < 0)
1474 goto emmcaddh;
1475
1476 dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1477
1478 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1479 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1480 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1481 return ret;
1482
1483emmcaddh:
1484erqcd:
1485 if (irq[1] >= 0)
1486 free_irq(irq[1], host);
1487ereqirq1:
1488 free_irq(irq[0], host);
1489ereqirq0:
1490 pm_runtime_suspend(&pdev->dev);
1491eresume:
1492 clk_disable_unprepare(host->hclk);
1493eclkupdate:
1494 clk_put(host->hclk);
1495eclkget:
1496 pm_runtime_disable(&pdev->dev);
1497eofparse:
1498 mmc_free_host(mmc);
1499ealloch:
1500 iounmap(reg);
1501 return ret;
1502}
1503
1504static int sh_mmcif_remove(struct platform_device *pdev)
1505{
1506 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1507 int irq[2];
1508
1509 host->dying = true;
1510 clk_prepare_enable(host->hclk);
1511 pm_runtime_get_sync(&pdev->dev);
1512
1513 dev_pm_qos_hide_latency_limit(&pdev->dev);
1514
1515 mmc_remove_host(host->mmc);
1516 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1517
1518 /*
1519 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1520 * mmc_remove_host() call above. But swapping order doesn't help either
1521 * (a query on the linux-mmc mailing list didn't bring any replies).
1522 */
1523 cancel_delayed_work_sync(&host->timeout_work);
1524
1525 if (host->addr)
1526 iounmap(host->addr);
1527
1528 irq[0] = platform_get_irq(pdev, 0);
1529 irq[1] = platform_get_irq(pdev, 1);
1530
1531 free_irq(irq[0], host);
1532 if (irq[1] >= 0)
1533 free_irq(irq[1], host);
1534
1535 clk_disable_unprepare(host->hclk);
1536 mmc_free_host(host->mmc);
1537 pm_runtime_put_sync(&pdev->dev);
1538 pm_runtime_disable(&pdev->dev);
1539
1540 return 0;
1541}
1542
1543#ifdef CONFIG_PM_SLEEP
1544static int sh_mmcif_suspend(struct device *dev)
1545{
1546 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1547
1548 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1549
1550 return 0;
1551}
1552
1553static int sh_mmcif_resume(struct device *dev)
1554{
1555 return 0;
1556}
1557#endif
1558
1559static const struct of_device_id mmcif_of_match[] = {
1560 { .compatible = "renesas,sh-mmcif" },
1561 { }
1562};
1563MODULE_DEVICE_TABLE(of, mmcif_of_match);
1564
1565static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1566 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1567};
1568
1569static struct platform_driver sh_mmcif_driver = {
1570 .probe = sh_mmcif_probe,
1571 .remove = sh_mmcif_remove,
1572 .driver = {
1573 .name = DRIVER_NAME,
1574 .pm = &sh_mmcif_dev_pm_ops,
1575 .owner = THIS_MODULE,
1576 .of_match_table = mmcif_of_match,
1577 },
1578};
1579
1580module_platform_driver(sh_mmcif_driver);
1581
1582MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1583MODULE_LICENSE("GPL");
1584MODULE_ALIAS("platform:" DRIVER_NAME);
1585MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");