Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23
  24#define DM_MSG_PREFIX "table"
  25
  26#define MAX_DEPTH 16
  27#define NODE_SIZE L1_CACHE_BYTES
  28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  30
  31struct dm_table {
  32	struct mapped_device *md;
  33	unsigned type;
  34
  35	/* btree table */
  36	unsigned int depth;
  37	unsigned int counts[MAX_DEPTH];	/* in nodes */
  38	sector_t *index[MAX_DEPTH];
  39
  40	unsigned int num_targets;
  41	unsigned int num_allocated;
  42	sector_t *highs;
  43	struct dm_target *targets;
  44
  45	struct target_type *immutable_target_type;
  46	unsigned integrity_supported:1;
  47	unsigned singleton:1;
  48
  49	/*
  50	 * Indicates the rw permissions for the new logical
  51	 * device.  This should be a combination of FMODE_READ
  52	 * and FMODE_WRITE.
  53	 */
  54	fmode_t mode;
  55
  56	/* a list of devices used by this table */
  57	struct list_head devices;
  58
  59	/* events get handed up using this callback */
  60	void (*event_fn)(void *);
  61	void *event_context;
  62
  63	struct dm_md_mempools *mempools;
  64
  65	struct list_head target_callbacks;
  66};
  67
  68/*
  69 * Similar to ceiling(log_size(n))
  70 */
  71static unsigned int int_log(unsigned int n, unsigned int base)
  72{
  73	int result = 0;
  74
  75	while (n > 1) {
  76		n = dm_div_up(n, base);
  77		result++;
  78	}
  79
  80	return result;
  81}
  82
  83/*
  84 * Calculate the index of the child node of the n'th node k'th key.
  85 */
  86static inline unsigned int get_child(unsigned int n, unsigned int k)
  87{
  88	return (n * CHILDREN_PER_NODE) + k;
  89}
  90
  91/*
  92 * Return the n'th node of level l from table t.
  93 */
  94static inline sector_t *get_node(struct dm_table *t,
  95				 unsigned int l, unsigned int n)
  96{
  97	return t->index[l] + (n * KEYS_PER_NODE);
  98}
  99
 100/*
 101 * Return the highest key that you could lookup from the n'th
 102 * node on level l of the btree.
 103 */
 104static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 105{
 106	for (; l < t->depth - 1; l++)
 107		n = get_child(n, CHILDREN_PER_NODE - 1);
 108
 109	if (n >= t->counts[l])
 110		return (sector_t) - 1;
 111
 112	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 113}
 114
 115/*
 116 * Fills in a level of the btree based on the highs of the level
 117 * below it.
 118 */
 119static int setup_btree_index(unsigned int l, struct dm_table *t)
 120{
 121	unsigned int n, k;
 122	sector_t *node;
 123
 124	for (n = 0U; n < t->counts[l]; n++) {
 125		node = get_node(t, l, n);
 126
 127		for (k = 0U; k < KEYS_PER_NODE; k++)
 128			node[k] = high(t, l + 1, get_child(n, k));
 129	}
 130
 131	return 0;
 132}
 133
 134void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 135{
 136	unsigned long size;
 137	void *addr;
 138
 139	/*
 140	 * Check that we're not going to overflow.
 141	 */
 142	if (nmemb > (ULONG_MAX / elem_size))
 143		return NULL;
 144
 145	size = nmemb * elem_size;
 146	addr = vzalloc(size);
 147
 148	return addr;
 149}
 150EXPORT_SYMBOL(dm_vcalloc);
 151
 152/*
 153 * highs, and targets are managed as dynamic arrays during a
 154 * table load.
 155 */
 156static int alloc_targets(struct dm_table *t, unsigned int num)
 157{
 158	sector_t *n_highs;
 159	struct dm_target *n_targets;
 160
 161	/*
 162	 * Allocate both the target array and offset array at once.
 163	 * Append an empty entry to catch sectors beyond the end of
 164	 * the device.
 165	 */
 166	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 167					  sizeof(sector_t));
 168	if (!n_highs)
 169		return -ENOMEM;
 170
 171	n_targets = (struct dm_target *) (n_highs + num);
 172
 173	memset(n_highs, -1, sizeof(*n_highs) * num);
 174	vfree(t->highs);
 175
 176	t->num_allocated = num;
 177	t->highs = n_highs;
 178	t->targets = n_targets;
 179
 180	return 0;
 181}
 182
 183int dm_table_create(struct dm_table **result, fmode_t mode,
 184		    unsigned num_targets, struct mapped_device *md)
 185{
 186	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 187
 188	if (!t)
 189		return -ENOMEM;
 190
 191	INIT_LIST_HEAD(&t->devices);
 192	INIT_LIST_HEAD(&t->target_callbacks);
 193
 194	if (!num_targets)
 195		num_targets = KEYS_PER_NODE;
 196
 197	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 198
 199	if (!num_targets) {
 200		kfree(t);
 201		return -ENOMEM;
 202	}
 203
 204	if (alloc_targets(t, num_targets)) {
 205		kfree(t);
 206		return -ENOMEM;
 207	}
 208
 209	t->mode = mode;
 210	t->md = md;
 211	*result = t;
 212	return 0;
 213}
 214
 215static void free_devices(struct list_head *devices, struct mapped_device *md)
 216{
 217	struct list_head *tmp, *next;
 218
 219	list_for_each_safe(tmp, next, devices) {
 220		struct dm_dev_internal *dd =
 221		    list_entry(tmp, struct dm_dev_internal, list);
 222		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 223		       dm_device_name(md), dd->dm_dev->name);
 224		dm_put_table_device(md, dd->dm_dev);
 225		kfree(dd);
 226	}
 227}
 228
 229void dm_table_destroy(struct dm_table *t)
 230{
 231	unsigned int i;
 232
 233	if (!t)
 234		return;
 235
 236	/* free the indexes */
 237	if (t->depth >= 2)
 238		vfree(t->index[t->depth - 2]);
 239
 240	/* free the targets */
 241	for (i = 0; i < t->num_targets; i++) {
 242		struct dm_target *tgt = t->targets + i;
 243
 244		if (tgt->type->dtr)
 245			tgt->type->dtr(tgt);
 246
 247		dm_put_target_type(tgt->type);
 248	}
 249
 250	vfree(t->highs);
 251
 252	/* free the device list */
 253	free_devices(&t->devices, t->md);
 254
 255	dm_free_md_mempools(t->mempools);
 256
 257	kfree(t);
 258}
 259
 260/*
 261 * See if we've already got a device in the list.
 262 */
 263static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 264{
 265	struct dm_dev_internal *dd;
 266
 267	list_for_each_entry (dd, l, list)
 268		if (dd->dm_dev->bdev->bd_dev == dev)
 269			return dd;
 270
 271	return NULL;
 272}
 273
 274/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275 * If possible, this checks an area of a destination device is invalid.
 276 */
 277static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 278				  sector_t start, sector_t len, void *data)
 279{
 280	struct request_queue *q;
 281	struct queue_limits *limits = data;
 282	struct block_device *bdev = dev->bdev;
 283	sector_t dev_size =
 284		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 285	unsigned short logical_block_size_sectors =
 286		limits->logical_block_size >> SECTOR_SHIFT;
 287	char b[BDEVNAME_SIZE];
 288
 289	/*
 290	 * Some devices exist without request functions,
 291	 * such as loop devices not yet bound to backing files.
 292	 * Forbid the use of such devices.
 293	 */
 294	q = bdev_get_queue(bdev);
 295	if (!q || !q->make_request_fn) {
 296		DMWARN("%s: %s is not yet initialised: "
 297		       "start=%llu, len=%llu, dev_size=%llu",
 298		       dm_device_name(ti->table->md), bdevname(bdev, b),
 299		       (unsigned long long)start,
 300		       (unsigned long long)len,
 301		       (unsigned long long)dev_size);
 302		return 1;
 303	}
 304
 305	if (!dev_size)
 306		return 0;
 307
 308	if ((start >= dev_size) || (start + len > dev_size)) {
 309		DMWARN("%s: %s too small for target: "
 310		       "start=%llu, len=%llu, dev_size=%llu",
 311		       dm_device_name(ti->table->md), bdevname(bdev, b),
 312		       (unsigned long long)start,
 313		       (unsigned long long)len,
 314		       (unsigned long long)dev_size);
 315		return 1;
 316	}
 317
 318	if (logical_block_size_sectors <= 1)
 319		return 0;
 320
 321	if (start & (logical_block_size_sectors - 1)) {
 322		DMWARN("%s: start=%llu not aligned to h/w "
 323		       "logical block size %u of %s",
 324		       dm_device_name(ti->table->md),
 325		       (unsigned long long)start,
 326		       limits->logical_block_size, bdevname(bdev, b));
 327		return 1;
 328	}
 329
 330	if (len & (logical_block_size_sectors - 1)) {
 331		DMWARN("%s: len=%llu not aligned to h/w "
 332		       "logical block size %u of %s",
 333		       dm_device_name(ti->table->md),
 334		       (unsigned long long)len,
 335		       limits->logical_block_size, bdevname(bdev, b));
 336		return 1;
 337	}
 338
 339	return 0;
 340}
 341
 342/*
 343 * This upgrades the mode on an already open dm_dev, being
 344 * careful to leave things as they were if we fail to reopen the
 345 * device and not to touch the existing bdev field in case
 346 * it is accessed concurrently inside dm_table_any_congested().
 347 */
 348static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 349			struct mapped_device *md)
 350{
 351	int r;
 352	struct dm_dev *old_dev, *new_dev;
 353
 354	old_dev = dd->dm_dev;
 355
 356	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 357				dd->dm_dev->mode | new_mode, &new_dev);
 
 
 358	if (r)
 359		return r;
 360
 361	dd->dm_dev = new_dev;
 362	dm_put_table_device(md, old_dev);
 363
 364	return 0;
 365}
 366
 367/*
 368 * Convert the path to a device
 369 */
 370dev_t dm_get_dev_t(const char *path)
 371{
 372	dev_t uninitialized_var(dev);
 373	struct block_device *bdev;
 374
 375	bdev = lookup_bdev(path);
 376	if (IS_ERR(bdev))
 377		dev = name_to_dev_t(path);
 378	else {
 379		dev = bdev->bd_dev;
 380		bdput(bdev);
 381	}
 382
 383	return dev;
 384}
 385EXPORT_SYMBOL_GPL(dm_get_dev_t);
 386
 387/*
 388 * Add a device to the list, or just increment the usage count if
 389 * it's already present.
 390 */
 391int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 392		  struct dm_dev **result)
 393{
 394	int r;
 395	dev_t dev;
 396	struct dm_dev_internal *dd;
 
 397	struct dm_table *t = ti->table;
 
 398
 399	BUG_ON(!t);
 400
 401	dev = dm_get_dev_t(path);
 402	if (!dev)
 403		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 404
 405	dd = find_device(&t->devices, dev);
 406	if (!dd) {
 407		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 408		if (!dd)
 409			return -ENOMEM;
 410
 411		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 
 
 
 412			kfree(dd);
 413			return r;
 414		}
 415
 
 
 416		atomic_set(&dd->count, 0);
 417		list_add(&dd->list, &t->devices);
 418
 419	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 420		r = upgrade_mode(dd, mode, t->md);
 421		if (r)
 422			return r;
 423	}
 424	atomic_inc(&dd->count);
 425
 426	*result = dd->dm_dev;
 427	return 0;
 428}
 429EXPORT_SYMBOL(dm_get_device);
 430
 431static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 432				sector_t start, sector_t len, void *data)
 433{
 434	struct queue_limits *limits = data;
 435	struct block_device *bdev = dev->bdev;
 436	struct request_queue *q = bdev_get_queue(bdev);
 437	char b[BDEVNAME_SIZE];
 438
 439	if (unlikely(!q)) {
 440		DMWARN("%s: Cannot set limits for nonexistent device %s",
 441		       dm_device_name(ti->table->md), bdevname(bdev, b));
 442		return 0;
 443	}
 444
 445	if (bdev_stack_limits(limits, bdev, start) < 0)
 446		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 447		       "physical_block_size=%u, logical_block_size=%u, "
 448		       "alignment_offset=%u, start=%llu",
 449		       dm_device_name(ti->table->md), bdevname(bdev, b),
 450		       q->limits.physical_block_size,
 451		       q->limits.logical_block_size,
 452		       q->limits.alignment_offset,
 453		       (unsigned long long) start << SECTOR_SHIFT);
 454
 
 
 
 
 
 
 
 
 455	return 0;
 456}
 
 457
 458/*
 459 * Decrement a device's use count and remove it if necessary.
 460 */
 461void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 462{
 463	int found = 0;
 464	struct list_head *devices = &ti->table->devices;
 465	struct dm_dev_internal *dd;
 466
 467	list_for_each_entry(dd, devices, list) {
 468		if (dd->dm_dev == d) {
 469			found = 1;
 470			break;
 471		}
 472	}
 473	if (!found) {
 474		DMWARN("%s: device %s not in table devices list",
 475		       dm_device_name(ti->table->md), d->name);
 476		return;
 477	}
 478	if (atomic_dec_and_test(&dd->count)) {
 479		dm_put_table_device(ti->table->md, d);
 480		list_del(&dd->list);
 481		kfree(dd);
 482	}
 483}
 484EXPORT_SYMBOL(dm_put_device);
 485
 486/*
 487 * Checks to see if the target joins onto the end of the table.
 488 */
 489static int adjoin(struct dm_table *table, struct dm_target *ti)
 490{
 491	struct dm_target *prev;
 492
 493	if (!table->num_targets)
 494		return !ti->begin;
 495
 496	prev = &table->targets[table->num_targets - 1];
 497	return (ti->begin == (prev->begin + prev->len));
 498}
 499
 500/*
 501 * Used to dynamically allocate the arg array.
 502 *
 503 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 504 * process messages even if some device is suspended. These messages have a
 505 * small fixed number of arguments.
 506 *
 507 * On the other hand, dm-switch needs to process bulk data using messages and
 508 * excessive use of GFP_NOIO could cause trouble.
 509 */
 510static char **realloc_argv(unsigned *array_size, char **old_argv)
 511{
 512	char **argv;
 513	unsigned new_size;
 514	gfp_t gfp;
 515
 516	if (*array_size) {
 517		new_size = *array_size * 2;
 518		gfp = GFP_KERNEL;
 519	} else {
 520		new_size = 8;
 521		gfp = GFP_NOIO;
 522	}
 523	argv = kmalloc(new_size * sizeof(*argv), gfp);
 524	if (argv) {
 525		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 526		*array_size = new_size;
 527	}
 528
 529	kfree(old_argv);
 530	return argv;
 531}
 532
 533/*
 534 * Destructively splits up the argument list to pass to ctr.
 535 */
 536int dm_split_args(int *argc, char ***argvp, char *input)
 537{
 538	char *start, *end = input, *out, **argv = NULL;
 539	unsigned array_size = 0;
 540
 541	*argc = 0;
 542
 543	if (!input) {
 544		*argvp = NULL;
 545		return 0;
 546	}
 547
 548	argv = realloc_argv(&array_size, argv);
 549	if (!argv)
 550		return -ENOMEM;
 551
 552	while (1) {
 553		/* Skip whitespace */
 554		start = skip_spaces(end);
 555
 556		if (!*start)
 557			break;	/* success, we hit the end */
 558
 559		/* 'out' is used to remove any back-quotes */
 560		end = out = start;
 561		while (*end) {
 562			/* Everything apart from '\0' can be quoted */
 563			if (*end == '\\' && *(end + 1)) {
 564				*out++ = *(end + 1);
 565				end += 2;
 566				continue;
 567			}
 568
 569			if (isspace(*end))
 570				break;	/* end of token */
 571
 572			*out++ = *end++;
 573		}
 574
 575		/* have we already filled the array ? */
 576		if ((*argc + 1) > array_size) {
 577			argv = realloc_argv(&array_size, argv);
 578			if (!argv)
 579				return -ENOMEM;
 580		}
 581
 582		/* we know this is whitespace */
 583		if (*end)
 584			end++;
 585
 586		/* terminate the string and put it in the array */
 587		*out = '\0';
 588		argv[*argc] = start;
 589		(*argc)++;
 590	}
 591
 592	*argvp = argv;
 593	return 0;
 594}
 595
 596/*
 597 * Impose necessary and sufficient conditions on a devices's table such
 598 * that any incoming bio which respects its logical_block_size can be
 599 * processed successfully.  If it falls across the boundary between
 600 * two or more targets, the size of each piece it gets split into must
 601 * be compatible with the logical_block_size of the target processing it.
 602 */
 603static int validate_hardware_logical_block_alignment(struct dm_table *table,
 604						 struct queue_limits *limits)
 605{
 606	/*
 607	 * This function uses arithmetic modulo the logical_block_size
 608	 * (in units of 512-byte sectors).
 609	 */
 610	unsigned short device_logical_block_size_sects =
 611		limits->logical_block_size >> SECTOR_SHIFT;
 612
 613	/*
 614	 * Offset of the start of the next table entry, mod logical_block_size.
 615	 */
 616	unsigned short next_target_start = 0;
 617
 618	/*
 619	 * Given an aligned bio that extends beyond the end of a
 620	 * target, how many sectors must the next target handle?
 621	 */
 622	unsigned short remaining = 0;
 623
 624	struct dm_target *uninitialized_var(ti);
 625	struct queue_limits ti_limits;
 626	unsigned i = 0;
 627
 628	/*
 629	 * Check each entry in the table in turn.
 630	 */
 631	while (i < dm_table_get_num_targets(table)) {
 632		ti = dm_table_get_target(table, i++);
 633
 634		blk_set_stacking_limits(&ti_limits);
 635
 636		/* combine all target devices' limits */
 637		if (ti->type->iterate_devices)
 638			ti->type->iterate_devices(ti, dm_set_device_limits,
 639						  &ti_limits);
 640
 641		/*
 642		 * If the remaining sectors fall entirely within this
 643		 * table entry are they compatible with its logical_block_size?
 644		 */
 645		if (remaining < ti->len &&
 646		    remaining & ((ti_limits.logical_block_size >>
 647				  SECTOR_SHIFT) - 1))
 648			break;	/* Error */
 649
 650		next_target_start =
 651		    (unsigned short) ((next_target_start + ti->len) &
 652				      (device_logical_block_size_sects - 1));
 653		remaining = next_target_start ?
 654		    device_logical_block_size_sects - next_target_start : 0;
 655	}
 656
 657	if (remaining) {
 658		DMWARN("%s: table line %u (start sect %llu len %llu) "
 659		       "not aligned to h/w logical block size %u",
 660		       dm_device_name(table->md), i,
 661		       (unsigned long long) ti->begin,
 662		       (unsigned long long) ti->len,
 663		       limits->logical_block_size);
 664		return -EINVAL;
 665	}
 666
 667	return 0;
 668}
 669
 670int dm_table_add_target(struct dm_table *t, const char *type,
 671			sector_t start, sector_t len, char *params)
 672{
 673	int r = -EINVAL, argc;
 674	char **argv;
 675	struct dm_target *tgt;
 676
 677	if (t->singleton) {
 678		DMERR("%s: target type %s must appear alone in table",
 679		      dm_device_name(t->md), t->targets->type->name);
 680		return -EINVAL;
 681	}
 682
 683	BUG_ON(t->num_targets >= t->num_allocated);
 684
 685	tgt = t->targets + t->num_targets;
 686	memset(tgt, 0, sizeof(*tgt));
 687
 688	if (!len) {
 689		DMERR("%s: zero-length target", dm_device_name(t->md));
 690		return -EINVAL;
 691	}
 692
 693	tgt->type = dm_get_target_type(type);
 694	if (!tgt->type) {
 695		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 696		      type);
 697		return -EINVAL;
 698	}
 699
 700	if (dm_target_needs_singleton(tgt->type)) {
 701		if (t->num_targets) {
 702			DMERR("%s: target type %s must appear alone in table",
 703			      dm_device_name(t->md), type);
 704			return -EINVAL;
 705		}
 706		t->singleton = 1;
 707	}
 708
 709	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 710		DMERR("%s: target type %s may not be included in read-only tables",
 711		      dm_device_name(t->md), type);
 712		return -EINVAL;
 713	}
 714
 715	if (t->immutable_target_type) {
 716		if (t->immutable_target_type != tgt->type) {
 717			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 718			      dm_device_name(t->md), t->immutable_target_type->name);
 719			return -EINVAL;
 720		}
 721	} else if (dm_target_is_immutable(tgt->type)) {
 722		if (t->num_targets) {
 723			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 724			      dm_device_name(t->md), tgt->type->name);
 725			return -EINVAL;
 726		}
 727		t->immutable_target_type = tgt->type;
 728	}
 729
 730	tgt->table = t;
 731	tgt->begin = start;
 732	tgt->len = len;
 733	tgt->error = "Unknown error";
 734
 735	/*
 736	 * Does this target adjoin the previous one ?
 737	 */
 738	if (!adjoin(t, tgt)) {
 739		tgt->error = "Gap in table";
 740		r = -EINVAL;
 741		goto bad;
 742	}
 743
 744	r = dm_split_args(&argc, &argv, params);
 745	if (r) {
 746		tgt->error = "couldn't split parameters (insufficient memory)";
 747		goto bad;
 748	}
 749
 750	r = tgt->type->ctr(tgt, argc, argv);
 751	kfree(argv);
 752	if (r)
 753		goto bad;
 754
 755	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 756
 757	if (!tgt->num_discard_bios && tgt->discards_supported)
 758		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 759		       dm_device_name(t->md), type);
 760
 761	return 0;
 762
 763 bad:
 764	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 765	dm_put_target_type(tgt->type);
 766	return r;
 767}
 768
 769/*
 770 * Target argument parsing helpers.
 771 */
 772static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 773			     unsigned *value, char **error, unsigned grouped)
 774{
 775	const char *arg_str = dm_shift_arg(arg_set);
 776	char dummy;
 777
 778	if (!arg_str ||
 779	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 780	    (*value < arg->min) ||
 781	    (*value > arg->max) ||
 782	    (grouped && arg_set->argc < *value)) {
 783		*error = arg->error;
 784		return -EINVAL;
 785	}
 786
 787	return 0;
 788}
 789
 790int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 791		unsigned *value, char **error)
 792{
 793	return validate_next_arg(arg, arg_set, value, error, 0);
 794}
 795EXPORT_SYMBOL(dm_read_arg);
 796
 797int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 798		      unsigned *value, char **error)
 799{
 800	return validate_next_arg(arg, arg_set, value, error, 1);
 801}
 802EXPORT_SYMBOL(dm_read_arg_group);
 803
 804const char *dm_shift_arg(struct dm_arg_set *as)
 805{
 806	char *r;
 807
 808	if (as->argc) {
 809		as->argc--;
 810		r = *as->argv;
 811		as->argv++;
 812		return r;
 813	}
 814
 815	return NULL;
 816}
 817EXPORT_SYMBOL(dm_shift_arg);
 818
 819void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 820{
 821	BUG_ON(as->argc < num_args);
 822	as->argc -= num_args;
 823	as->argv += num_args;
 824}
 825EXPORT_SYMBOL(dm_consume_args);
 826
 827static bool __table_type_request_based(unsigned table_type)
 828{
 829	return (table_type == DM_TYPE_REQUEST_BASED ||
 830		table_type == DM_TYPE_MQ_REQUEST_BASED);
 831}
 832
 833static int dm_table_set_type(struct dm_table *t)
 834{
 835	unsigned i;
 836	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 837	bool use_blk_mq = false;
 838	struct dm_target *tgt;
 839	struct dm_dev_internal *dd;
 840	struct list_head *devices;
 841	unsigned live_md_type = dm_get_md_type(t->md);
 842
 843	for (i = 0; i < t->num_targets; i++) {
 844		tgt = t->targets + i;
 845		if (dm_target_hybrid(tgt))
 846			hybrid = 1;
 847		else if (dm_target_request_based(tgt))
 848			request_based = 1;
 849		else
 850			bio_based = 1;
 851
 852		if (bio_based && request_based) {
 853			DMWARN("Inconsistent table: different target types"
 854			       " can't be mixed up");
 855			return -EINVAL;
 856		}
 857	}
 858
 859	if (hybrid && !bio_based && !request_based) {
 860		/*
 861		 * The targets can work either way.
 862		 * Determine the type from the live device.
 863		 * Default to bio-based if device is new.
 864		 */
 865		if (__table_type_request_based(live_md_type))
 
 866			request_based = 1;
 867		else
 868			bio_based = 1;
 869	}
 870
 871	if (bio_based) {
 872		/* We must use this table as bio-based */
 873		t->type = DM_TYPE_BIO_BASED;
 874		return 0;
 875	}
 876
 877	BUG_ON(!request_based); /* No targets in this table */
 878
 
 
 
 
 
 
 
 
 
 
 879	/*
 880	 * Request-based dm supports only tables that have a single target now.
 881	 * To support multiple targets, request splitting support is needed,
 882	 * and that needs lots of changes in the block-layer.
 883	 * (e.g. request completion process for partial completion.)
 884	 */
 885	if (t->num_targets > 1) {
 886		DMWARN("Request-based dm doesn't support multiple targets yet");
 887		return -EINVAL;
 888	}
 889
 890	/* Non-request-stackable devices can't be used for request-based dm */
 891	devices = dm_table_get_devices(t);
 892	list_for_each_entry(dd, devices, list) {
 893		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
 894
 895		if (!blk_queue_stackable(q)) {
 896			DMERR("table load rejected: including"
 897			      " non-request-stackable devices");
 898			return -EINVAL;
 899		}
 900
 901		if (q->mq_ops)
 902			use_blk_mq = true;
 903	}
 904
 905	if (use_blk_mq) {
 906		/* verify _all_ devices in the table are blk-mq devices */
 907		list_for_each_entry(dd, devices, list)
 908			if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
 909				DMERR("table load rejected: not all devices"
 910				      " are blk-mq request-stackable");
 911				return -EINVAL;
 912			}
 913		t->type = DM_TYPE_MQ_REQUEST_BASED;
 914
 915	} else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
 916		/* inherit live MD type */
 917		t->type = live_md_type;
 918
 919	} else
 920		t->type = DM_TYPE_REQUEST_BASED;
 921
 922	return 0;
 923}
 924
 925unsigned dm_table_get_type(struct dm_table *t)
 926{
 927	return t->type;
 928}
 929
 930struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 931{
 932	return t->immutable_target_type;
 933}
 934
 935struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 936{
 937	/* Immutable target is implicitly a singleton */
 938	if (t->num_targets > 1 ||
 939	    !dm_target_is_immutable(t->targets[0].type))
 940		return NULL;
 941
 942	return t->targets;
 943}
 944
 945struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
 946{
 947	struct dm_target *uninitialized_var(ti);
 948	unsigned i = 0;
 949
 950	while (i < dm_table_get_num_targets(t)) {
 951		ti = dm_table_get_target(t, i++);
 952		if (dm_target_is_wildcard(ti->type))
 953			return ti;
 954	}
 955
 956	return NULL;
 957}
 958
 959bool dm_table_request_based(struct dm_table *t)
 960{
 961	return __table_type_request_based(dm_table_get_type(t));
 962}
 963
 964bool dm_table_mq_request_based(struct dm_table *t)
 965{
 966	return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
 967}
 968
 969static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
 970{
 971	unsigned type = dm_table_get_type(t);
 972	unsigned per_io_data_size = 0;
 973	struct dm_target *tgt;
 974	unsigned i;
 975
 976	if (unlikely(type == DM_TYPE_NONE)) {
 977		DMWARN("no table type is set, can't allocate mempools");
 978		return -EINVAL;
 979	}
 980
 981	if (type == DM_TYPE_BIO_BASED)
 982		for (i = 0; i < t->num_targets; i++) {
 983			tgt = t->targets + i;
 984			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
 985		}
 986
 987	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
 988	if (!t->mempools)
 989		return -ENOMEM;
 990
 991	return 0;
 992}
 993
 994void dm_table_free_md_mempools(struct dm_table *t)
 995{
 996	dm_free_md_mempools(t->mempools);
 997	t->mempools = NULL;
 998}
 999
1000struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1001{
1002	return t->mempools;
1003}
1004
1005static int setup_indexes(struct dm_table *t)
1006{
1007	int i;
1008	unsigned int total = 0;
1009	sector_t *indexes;
1010
1011	/* allocate the space for *all* the indexes */
1012	for (i = t->depth - 2; i >= 0; i--) {
1013		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1014		total += t->counts[i];
1015	}
1016
1017	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1018	if (!indexes)
1019		return -ENOMEM;
1020
1021	/* set up internal nodes, bottom-up */
1022	for (i = t->depth - 2; i >= 0; i--) {
1023		t->index[i] = indexes;
1024		indexes += (KEYS_PER_NODE * t->counts[i]);
1025		setup_btree_index(i, t);
1026	}
1027
1028	return 0;
1029}
1030
1031/*
1032 * Builds the btree to index the map.
1033 */
1034static int dm_table_build_index(struct dm_table *t)
1035{
1036	int r = 0;
1037	unsigned int leaf_nodes;
1038
1039	/* how many indexes will the btree have ? */
1040	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1041	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1042
1043	/* leaf layer has already been set up */
1044	t->counts[t->depth - 1] = leaf_nodes;
1045	t->index[t->depth - 1] = t->highs;
1046
1047	if (t->depth >= 2)
1048		r = setup_indexes(t);
1049
1050	return r;
1051}
1052
1053static bool integrity_profile_exists(struct gendisk *disk)
1054{
1055	return !!blk_get_integrity(disk);
1056}
1057
1058/*
1059 * Get a disk whose integrity profile reflects the table's profile.
 
 
 
1060 * Returns NULL if integrity support was inconsistent or unavailable.
1061 */
1062static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
 
1063{
1064	struct list_head *devices = dm_table_get_devices(t);
1065	struct dm_dev_internal *dd = NULL;
1066	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1067
1068	list_for_each_entry(dd, devices, list) {
1069		template_disk = dd->dm_dev->bdev->bd_disk;
1070		if (!integrity_profile_exists(template_disk))
1071			goto no_integrity;
 
 
1072		else if (prev_disk &&
1073			 blk_integrity_compare(prev_disk, template_disk) < 0)
1074			goto no_integrity;
1075		prev_disk = template_disk;
1076	}
1077
1078	return template_disk;
1079
1080no_integrity:
1081	if (prev_disk)
1082		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1083		       dm_device_name(t->md),
1084		       prev_disk->disk_name,
1085		       template_disk->disk_name);
1086	return NULL;
1087}
1088
1089/*
1090 * Register the mapped device for blk_integrity support if the
1091 * underlying devices have an integrity profile.  But all devices may
1092 * not have matching profiles (checking all devices isn't reliable
1093 * during table load because this table may use other DM device(s) which
1094 * must be resumed before they will have an initialized integity
1095 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1096 * profile validation: First pass during table load, final pass during
1097 * resume.
1098 */
1099static int dm_table_register_integrity(struct dm_table *t)
1100{
1101	struct mapped_device *md = t->md;
1102	struct gendisk *template_disk = NULL;
1103
1104	template_disk = dm_table_get_integrity_disk(t);
1105	if (!template_disk)
1106		return 0;
1107
1108	if (!integrity_profile_exists(dm_disk(md))) {
1109		t->integrity_supported = 1;
1110		/*
1111		 * Register integrity profile during table load; we can do
1112		 * this because the final profile must match during resume.
1113		 */
1114		blk_integrity_register(dm_disk(md),
1115				       blk_get_integrity(template_disk));
1116		return 0;
1117	}
1118
1119	/*
1120	 * If DM device already has an initialized integrity
1121	 * profile the new profile should not conflict.
1122	 */
1123	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
 
1124		DMWARN("%s: conflict with existing integrity profile: "
1125		       "%s profile mismatch",
1126		       dm_device_name(t->md),
1127		       template_disk->disk_name);
1128		return 1;
1129	}
1130
1131	/* Preserve existing integrity profile */
1132	t->integrity_supported = 1;
1133	return 0;
1134}
1135
1136/*
1137 * Prepares the table for use by building the indices,
1138 * setting the type, and allocating mempools.
1139 */
1140int dm_table_complete(struct dm_table *t)
1141{
1142	int r;
1143
1144	r = dm_table_set_type(t);
1145	if (r) {
1146		DMERR("unable to set table type");
1147		return r;
1148	}
1149
1150	r = dm_table_build_index(t);
1151	if (r) {
1152		DMERR("unable to build btrees");
1153		return r;
1154	}
1155
1156	r = dm_table_register_integrity(t);
1157	if (r) {
1158		DMERR("could not register integrity profile.");
1159		return r;
1160	}
1161
1162	r = dm_table_alloc_md_mempools(t, t->md);
1163	if (r)
1164		DMERR("unable to allocate mempools");
1165
1166	return r;
1167}
1168
1169static DEFINE_MUTEX(_event_lock);
1170void dm_table_event_callback(struct dm_table *t,
1171			     void (*fn)(void *), void *context)
1172{
1173	mutex_lock(&_event_lock);
1174	t->event_fn = fn;
1175	t->event_context = context;
1176	mutex_unlock(&_event_lock);
1177}
1178
1179void dm_table_event(struct dm_table *t)
1180{
1181	/*
1182	 * You can no longer call dm_table_event() from interrupt
1183	 * context, use a bottom half instead.
1184	 */
1185	BUG_ON(in_interrupt());
1186
1187	mutex_lock(&_event_lock);
1188	if (t->event_fn)
1189		t->event_fn(t->event_context);
1190	mutex_unlock(&_event_lock);
1191}
1192EXPORT_SYMBOL(dm_table_event);
1193
1194sector_t dm_table_get_size(struct dm_table *t)
1195{
1196	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1197}
1198EXPORT_SYMBOL(dm_table_get_size);
1199
1200struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1201{
1202	if (index >= t->num_targets)
1203		return NULL;
1204
1205	return t->targets + index;
1206}
1207
1208/*
1209 * Search the btree for the correct target.
1210 *
1211 * Caller should check returned pointer with dm_target_is_valid()
1212 * to trap I/O beyond end of device.
1213 */
1214struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1215{
1216	unsigned int l, n = 0, k = 0;
1217	sector_t *node;
1218
1219	for (l = 0; l < t->depth; l++) {
1220		n = get_child(n, k);
1221		node = get_node(t, l, n);
1222
1223		for (k = 0; k < KEYS_PER_NODE; k++)
1224			if (node[k] >= sector)
1225				break;
1226	}
1227
1228	return &t->targets[(KEYS_PER_NODE * n) + k];
1229}
1230
1231static int count_device(struct dm_target *ti, struct dm_dev *dev,
1232			sector_t start, sector_t len, void *data)
1233{
1234	unsigned *num_devices = data;
1235
1236	(*num_devices)++;
1237
1238	return 0;
1239}
1240
1241/*
1242 * Check whether a table has no data devices attached using each
1243 * target's iterate_devices method.
1244 * Returns false if the result is unknown because a target doesn't
1245 * support iterate_devices.
1246 */
1247bool dm_table_has_no_data_devices(struct dm_table *table)
1248{
1249	struct dm_target *uninitialized_var(ti);
1250	unsigned i = 0, num_devices = 0;
1251
1252	while (i < dm_table_get_num_targets(table)) {
1253		ti = dm_table_get_target(table, i++);
1254
1255		if (!ti->type->iterate_devices)
1256			return false;
1257
1258		ti->type->iterate_devices(ti, count_device, &num_devices);
1259		if (num_devices)
1260			return false;
1261	}
1262
1263	return true;
1264}
1265
1266/*
1267 * Establish the new table's queue_limits and validate them.
1268 */
1269int dm_calculate_queue_limits(struct dm_table *table,
1270			      struct queue_limits *limits)
1271{
1272	struct dm_target *uninitialized_var(ti);
1273	struct queue_limits ti_limits;
1274	unsigned i = 0;
1275
1276	blk_set_stacking_limits(limits);
1277
1278	while (i < dm_table_get_num_targets(table)) {
1279		blk_set_stacking_limits(&ti_limits);
1280
1281		ti = dm_table_get_target(table, i++);
1282
1283		if (!ti->type->iterate_devices)
1284			goto combine_limits;
1285
1286		/*
1287		 * Combine queue limits of all the devices this target uses.
1288		 */
1289		ti->type->iterate_devices(ti, dm_set_device_limits,
1290					  &ti_limits);
1291
1292		/* Set I/O hints portion of queue limits */
1293		if (ti->type->io_hints)
1294			ti->type->io_hints(ti, &ti_limits);
1295
1296		/*
1297		 * Check each device area is consistent with the target's
1298		 * overall queue limits.
1299		 */
1300		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1301					      &ti_limits))
1302			return -EINVAL;
1303
1304combine_limits:
1305		/*
1306		 * Merge this target's queue limits into the overall limits
1307		 * for the table.
1308		 */
1309		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1310			DMWARN("%s: adding target device "
1311			       "(start sect %llu len %llu) "
1312			       "caused an alignment inconsistency",
1313			       dm_device_name(table->md),
1314			       (unsigned long long) ti->begin,
1315			       (unsigned long long) ti->len);
1316	}
1317
1318	return validate_hardware_logical_block_alignment(table, limits);
1319}
1320
1321/*
1322 * Verify that all devices have an integrity profile that matches the
1323 * DM device's registered integrity profile.  If the profiles don't
1324 * match then unregister the DM device's integrity profile.
 
 
1325 */
1326static void dm_table_verify_integrity(struct dm_table *t)
1327{
1328	struct gendisk *template_disk = NULL;
1329
1330	if (t->integrity_supported) {
1331		/*
1332		 * Verify that the original integrity profile
1333		 * matches all the devices in this table.
1334		 */
1335		template_disk = dm_table_get_integrity_disk(t);
1336		if (template_disk &&
1337		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1338			return;
1339	}
1340
1341	if (integrity_profile_exists(dm_disk(t->md))) {
 
 
 
 
 
 
 
1342		DMWARN("%s: unable to establish an integrity profile",
1343		       dm_device_name(t->md));
1344		blk_integrity_unregister(dm_disk(t->md));
1345	}
1346}
1347
1348static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1349				sector_t start, sector_t len, void *data)
1350{
1351	unsigned flush = (*(unsigned *)data);
1352	struct request_queue *q = bdev_get_queue(dev->bdev);
1353
1354	return q && (q->flush_flags & flush);
1355}
1356
1357static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1358{
1359	struct dm_target *ti;
1360	unsigned i = 0;
1361
1362	/*
1363	 * Require at least one underlying device to support flushes.
1364	 * t->devices includes internal dm devices such as mirror logs
1365	 * so we need to use iterate_devices here, which targets
1366	 * supporting flushes must provide.
1367	 */
1368	while (i < dm_table_get_num_targets(t)) {
1369		ti = dm_table_get_target(t, i++);
1370
1371		if (!ti->num_flush_bios)
1372			continue;
1373
1374		if (ti->flush_supported)
1375			return true;
1376
1377		if (ti->type->iterate_devices &&
1378		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1379			return true;
1380	}
1381
1382	return false;
1383}
1384
1385static bool dm_table_discard_zeroes_data(struct dm_table *t)
1386{
1387	struct dm_target *ti;
1388	unsigned i = 0;
1389
1390	/* Ensure that all targets supports discard_zeroes_data. */
1391	while (i < dm_table_get_num_targets(t)) {
1392		ti = dm_table_get_target(t, i++);
1393
1394		if (ti->discard_zeroes_data_unsupported)
1395			return false;
1396	}
1397
1398	return true;
1399}
1400
1401static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1402			    sector_t start, sector_t len, void *data)
1403{
1404	struct request_queue *q = bdev_get_queue(dev->bdev);
1405
1406	return q && blk_queue_nonrot(q);
1407}
1408
1409static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1410			     sector_t start, sector_t len, void *data)
1411{
1412	struct request_queue *q = bdev_get_queue(dev->bdev);
1413
1414	return q && !blk_queue_add_random(q);
1415}
1416
1417static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1418				   sector_t start, sector_t len, void *data)
1419{
1420	struct request_queue *q = bdev_get_queue(dev->bdev);
1421
1422	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1423}
1424
1425static bool dm_table_all_devices_attribute(struct dm_table *t,
1426					   iterate_devices_callout_fn func)
1427{
1428	struct dm_target *ti;
1429	unsigned i = 0;
1430
1431	while (i < dm_table_get_num_targets(t)) {
1432		ti = dm_table_get_target(t, i++);
1433
1434		if (!ti->type->iterate_devices ||
1435		    !ti->type->iterate_devices(ti, func, NULL))
1436			return false;
1437	}
1438
1439	return true;
1440}
1441
1442static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1443					 sector_t start, sector_t len, void *data)
1444{
1445	struct request_queue *q = bdev_get_queue(dev->bdev);
1446
1447	return q && !q->limits.max_write_same_sectors;
1448}
1449
1450static bool dm_table_supports_write_same(struct dm_table *t)
1451{
1452	struct dm_target *ti;
1453	unsigned i = 0;
1454
1455	while (i < dm_table_get_num_targets(t)) {
1456		ti = dm_table_get_target(t, i++);
1457
1458		if (!ti->num_write_same_bios)
1459			return false;
1460
1461		if (!ti->type->iterate_devices ||
1462		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1463			return false;
1464	}
1465
1466	return true;
1467}
1468
1469static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1470				  sector_t start, sector_t len, void *data)
1471{
1472	struct request_queue *q = bdev_get_queue(dev->bdev);
1473
1474	return q && blk_queue_discard(q);
1475}
1476
1477static bool dm_table_supports_discards(struct dm_table *t)
1478{
1479	struct dm_target *ti;
1480	unsigned i = 0;
1481
1482	/*
1483	 * Unless any target used by the table set discards_supported,
1484	 * require at least one underlying device to support discards.
1485	 * t->devices includes internal dm devices such as mirror logs
1486	 * so we need to use iterate_devices here, which targets
1487	 * supporting discard selectively must provide.
1488	 */
1489	while (i < dm_table_get_num_targets(t)) {
1490		ti = dm_table_get_target(t, i++);
1491
1492		if (!ti->num_discard_bios)
1493			continue;
1494
1495		if (ti->discards_supported)
1496			return true;
1497
1498		if (ti->type->iterate_devices &&
1499		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1500			return true;
1501	}
1502
1503	return false;
1504}
1505
1506void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1507			       struct queue_limits *limits)
1508{
1509	unsigned flush = 0;
1510
1511	/*
1512	 * Copy table's limits to the DM device's request_queue
1513	 */
1514	q->limits = *limits;
1515
1516	if (!dm_table_supports_discards(t))
1517		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1518	else
1519		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1520
1521	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1522		flush |= REQ_FLUSH;
1523		if (dm_table_supports_flush(t, REQ_FUA))
1524			flush |= REQ_FUA;
1525	}
1526	blk_queue_flush(q, flush);
1527
1528	if (!dm_table_discard_zeroes_data(t))
1529		q->limits.discard_zeroes_data = 0;
1530
1531	/* Ensure that all underlying devices are non-rotational. */
1532	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1533		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1534	else
1535		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1536
1537	if (!dm_table_supports_write_same(t))
1538		q->limits.max_write_same_sectors = 0;
1539
1540	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1541		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1542	else
1543		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1544
1545	dm_table_verify_integrity(t);
1546
1547	/*
1548	 * Determine whether or not this queue's I/O timings contribute
1549	 * to the entropy pool, Only request-based targets use this.
1550	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1551	 * have it set.
1552	 */
1553	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1554		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1555
1556	/*
1557	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1558	 * visible to other CPUs because, once the flag is set, incoming bios
1559	 * are processed by request-based dm, which refers to the queue
1560	 * settings.
1561	 * Until the flag set, bios are passed to bio-based dm and queued to
1562	 * md->deferred where queue settings are not needed yet.
1563	 * Those bios are passed to request-based dm at the resume time.
1564	 */
1565	smp_mb();
1566	if (dm_table_request_based(t))
1567		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1568}
1569
1570unsigned int dm_table_get_num_targets(struct dm_table *t)
1571{
1572	return t->num_targets;
1573}
1574
1575struct list_head *dm_table_get_devices(struct dm_table *t)
1576{
1577	return &t->devices;
1578}
1579
1580fmode_t dm_table_get_mode(struct dm_table *t)
1581{
1582	return t->mode;
1583}
1584EXPORT_SYMBOL(dm_table_get_mode);
1585
1586enum suspend_mode {
1587	PRESUSPEND,
1588	PRESUSPEND_UNDO,
1589	POSTSUSPEND,
1590};
1591
1592static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1593{
1594	int i = t->num_targets;
1595	struct dm_target *ti = t->targets;
1596
1597	while (i--) {
1598		switch (mode) {
1599		case PRESUSPEND:
1600			if (ti->type->presuspend)
1601				ti->type->presuspend(ti);
1602			break;
1603		case PRESUSPEND_UNDO:
1604			if (ti->type->presuspend_undo)
1605				ti->type->presuspend_undo(ti);
1606			break;
1607		case POSTSUSPEND:
1608			if (ti->type->postsuspend)
1609				ti->type->postsuspend(ti);
1610			break;
1611		}
 
1612		ti++;
1613	}
1614}
1615
1616void dm_table_presuspend_targets(struct dm_table *t)
1617{
1618	if (!t)
1619		return;
1620
1621	suspend_targets(t, PRESUSPEND);
1622}
1623
1624void dm_table_presuspend_undo_targets(struct dm_table *t)
1625{
1626	if (!t)
1627		return;
1628
1629	suspend_targets(t, PRESUSPEND_UNDO);
1630}
1631
1632void dm_table_postsuspend_targets(struct dm_table *t)
1633{
1634	if (!t)
1635		return;
1636
1637	suspend_targets(t, POSTSUSPEND);
1638}
1639
1640int dm_table_resume_targets(struct dm_table *t)
1641{
1642	int i, r = 0;
1643
1644	for (i = 0; i < t->num_targets; i++) {
1645		struct dm_target *ti = t->targets + i;
1646
1647		if (!ti->type->preresume)
1648			continue;
1649
1650		r = ti->type->preresume(ti);
1651		if (r) {
1652			DMERR("%s: %s: preresume failed, error = %d",
1653			      dm_device_name(t->md), ti->type->name, r);
1654			return r;
1655		}
1656	}
1657
1658	for (i = 0; i < t->num_targets; i++) {
1659		struct dm_target *ti = t->targets + i;
1660
1661		if (ti->type->resume)
1662			ti->type->resume(ti);
1663	}
1664
1665	return 0;
1666}
1667
1668void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1669{
1670	list_add(&cb->list, &t->target_callbacks);
1671}
1672EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1673
1674int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1675{
1676	struct dm_dev_internal *dd;
1677	struct list_head *devices = dm_table_get_devices(t);
1678	struct dm_target_callbacks *cb;
1679	int r = 0;
1680
1681	list_for_each_entry(dd, devices, list) {
1682		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1683		char b[BDEVNAME_SIZE];
1684
1685		if (likely(q))
1686			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1687		else
1688			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1689				     dm_device_name(t->md),
1690				     bdevname(dd->dm_dev->bdev, b));
1691	}
1692
1693	list_for_each_entry(cb, &t->target_callbacks, list)
1694		if (cb->congested_fn)
1695			r |= cb->congested_fn(cb, bdi_bits);
1696
1697	return r;
1698}
1699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700struct mapped_device *dm_table_get_md(struct dm_table *t)
1701{
1702	return t->md;
1703}
1704EXPORT_SYMBOL(dm_table_get_md);
1705
1706void dm_table_run_md_queue_async(struct dm_table *t)
1707{
1708	struct mapped_device *md;
1709	struct request_queue *queue;
1710	unsigned long flags;
1711
1712	if (!dm_table_request_based(t))
1713		return;
1714
1715	md = dm_table_get_md(t);
1716	queue = dm_get_md_queue(md);
1717	if (queue) {
1718		if (queue->mq_ops)
1719			blk_mq_run_hw_queues(queue, true);
1720		else {
1721			spin_lock_irqsave(queue->queue_lock, flags);
1722			blk_run_queue_async(queue);
1723			spin_unlock_irqrestore(queue->queue_lock, flags);
1724		}
1725	}
1726}
1727EXPORT_SYMBOL(dm_table_run_md_queue_async);
1728
v3.15
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
 
 
  21
  22#define DM_MSG_PREFIX "table"
  23
  24#define MAX_DEPTH 16
  25#define NODE_SIZE L1_CACHE_BYTES
  26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  28
  29struct dm_table {
  30	struct mapped_device *md;
  31	unsigned type;
  32
  33	/* btree table */
  34	unsigned int depth;
  35	unsigned int counts[MAX_DEPTH];	/* in nodes */
  36	sector_t *index[MAX_DEPTH];
  37
  38	unsigned int num_targets;
  39	unsigned int num_allocated;
  40	sector_t *highs;
  41	struct dm_target *targets;
  42
  43	struct target_type *immutable_target_type;
  44	unsigned integrity_supported:1;
  45	unsigned singleton:1;
  46
  47	/*
  48	 * Indicates the rw permissions for the new logical
  49	 * device.  This should be a combination of FMODE_READ
  50	 * and FMODE_WRITE.
  51	 */
  52	fmode_t mode;
  53
  54	/* a list of devices used by this table */
  55	struct list_head devices;
  56
  57	/* events get handed up using this callback */
  58	void (*event_fn)(void *);
  59	void *event_context;
  60
  61	struct dm_md_mempools *mempools;
  62
  63	struct list_head target_callbacks;
  64};
  65
  66/*
  67 * Similar to ceiling(log_size(n))
  68 */
  69static unsigned int int_log(unsigned int n, unsigned int base)
  70{
  71	int result = 0;
  72
  73	while (n > 1) {
  74		n = dm_div_up(n, base);
  75		result++;
  76	}
  77
  78	return result;
  79}
  80
  81/*
  82 * Calculate the index of the child node of the n'th node k'th key.
  83 */
  84static inline unsigned int get_child(unsigned int n, unsigned int k)
  85{
  86	return (n * CHILDREN_PER_NODE) + k;
  87}
  88
  89/*
  90 * Return the n'th node of level l from table t.
  91 */
  92static inline sector_t *get_node(struct dm_table *t,
  93				 unsigned int l, unsigned int n)
  94{
  95	return t->index[l] + (n * KEYS_PER_NODE);
  96}
  97
  98/*
  99 * Return the highest key that you could lookup from the n'th
 100 * node on level l of the btree.
 101 */
 102static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 103{
 104	for (; l < t->depth - 1; l++)
 105		n = get_child(n, CHILDREN_PER_NODE - 1);
 106
 107	if (n >= t->counts[l])
 108		return (sector_t) - 1;
 109
 110	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 111}
 112
 113/*
 114 * Fills in a level of the btree based on the highs of the level
 115 * below it.
 116 */
 117static int setup_btree_index(unsigned int l, struct dm_table *t)
 118{
 119	unsigned int n, k;
 120	sector_t *node;
 121
 122	for (n = 0U; n < t->counts[l]; n++) {
 123		node = get_node(t, l, n);
 124
 125		for (k = 0U; k < KEYS_PER_NODE; k++)
 126			node[k] = high(t, l + 1, get_child(n, k));
 127	}
 128
 129	return 0;
 130}
 131
 132void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 133{
 134	unsigned long size;
 135	void *addr;
 136
 137	/*
 138	 * Check that we're not going to overflow.
 139	 */
 140	if (nmemb > (ULONG_MAX / elem_size))
 141		return NULL;
 142
 143	size = nmemb * elem_size;
 144	addr = vzalloc(size);
 145
 146	return addr;
 147}
 148EXPORT_SYMBOL(dm_vcalloc);
 149
 150/*
 151 * highs, and targets are managed as dynamic arrays during a
 152 * table load.
 153 */
 154static int alloc_targets(struct dm_table *t, unsigned int num)
 155{
 156	sector_t *n_highs;
 157	struct dm_target *n_targets;
 158
 159	/*
 160	 * Allocate both the target array and offset array at once.
 161	 * Append an empty entry to catch sectors beyond the end of
 162	 * the device.
 163	 */
 164	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 165					  sizeof(sector_t));
 166	if (!n_highs)
 167		return -ENOMEM;
 168
 169	n_targets = (struct dm_target *) (n_highs + num);
 170
 171	memset(n_highs, -1, sizeof(*n_highs) * num);
 172	vfree(t->highs);
 173
 174	t->num_allocated = num;
 175	t->highs = n_highs;
 176	t->targets = n_targets;
 177
 178	return 0;
 179}
 180
 181int dm_table_create(struct dm_table **result, fmode_t mode,
 182		    unsigned num_targets, struct mapped_device *md)
 183{
 184	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 185
 186	if (!t)
 187		return -ENOMEM;
 188
 189	INIT_LIST_HEAD(&t->devices);
 190	INIT_LIST_HEAD(&t->target_callbacks);
 191
 192	if (!num_targets)
 193		num_targets = KEYS_PER_NODE;
 194
 195	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 196
 197	if (!num_targets) {
 198		kfree(t);
 199		return -ENOMEM;
 200	}
 201
 202	if (alloc_targets(t, num_targets)) {
 203		kfree(t);
 204		return -ENOMEM;
 205	}
 206
 207	t->mode = mode;
 208	t->md = md;
 209	*result = t;
 210	return 0;
 211}
 212
 213static void free_devices(struct list_head *devices)
 214{
 215	struct list_head *tmp, *next;
 216
 217	list_for_each_safe(tmp, next, devices) {
 218		struct dm_dev_internal *dd =
 219		    list_entry(tmp, struct dm_dev_internal, list);
 220		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
 221		       dd->dm_dev.name);
 
 222		kfree(dd);
 223	}
 224}
 225
 226void dm_table_destroy(struct dm_table *t)
 227{
 228	unsigned int i;
 229
 230	if (!t)
 231		return;
 232
 233	/* free the indexes */
 234	if (t->depth >= 2)
 235		vfree(t->index[t->depth - 2]);
 236
 237	/* free the targets */
 238	for (i = 0; i < t->num_targets; i++) {
 239		struct dm_target *tgt = t->targets + i;
 240
 241		if (tgt->type->dtr)
 242			tgt->type->dtr(tgt);
 243
 244		dm_put_target_type(tgt->type);
 245	}
 246
 247	vfree(t->highs);
 248
 249	/* free the device list */
 250	free_devices(&t->devices);
 251
 252	dm_free_md_mempools(t->mempools);
 253
 254	kfree(t);
 255}
 256
 257/*
 258 * See if we've already got a device in the list.
 259 */
 260static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 261{
 262	struct dm_dev_internal *dd;
 263
 264	list_for_each_entry (dd, l, list)
 265		if (dd->dm_dev.bdev->bd_dev == dev)
 266			return dd;
 267
 268	return NULL;
 269}
 270
 271/*
 272 * Open a device so we can use it as a map destination.
 273 */
 274static int open_dev(struct dm_dev_internal *d, dev_t dev,
 275		    struct mapped_device *md)
 276{
 277	static char *_claim_ptr = "I belong to device-mapper";
 278	struct block_device *bdev;
 279
 280	int r;
 281
 282	BUG_ON(d->dm_dev.bdev);
 283
 284	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 285	if (IS_ERR(bdev))
 286		return PTR_ERR(bdev);
 287
 288	r = bd_link_disk_holder(bdev, dm_disk(md));
 289	if (r) {
 290		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
 291		return r;
 292	}
 293
 294	d->dm_dev.bdev = bdev;
 295	return 0;
 296}
 297
 298/*
 299 * Close a device that we've been using.
 300 */
 301static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
 302{
 303	if (!d->dm_dev.bdev)
 304		return;
 305
 306	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
 307	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
 308	d->dm_dev.bdev = NULL;
 309}
 310
 311/*
 312 * If possible, this checks an area of a destination device is invalid.
 313 */
 314static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 315				  sector_t start, sector_t len, void *data)
 316{
 317	struct request_queue *q;
 318	struct queue_limits *limits = data;
 319	struct block_device *bdev = dev->bdev;
 320	sector_t dev_size =
 321		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 322	unsigned short logical_block_size_sectors =
 323		limits->logical_block_size >> SECTOR_SHIFT;
 324	char b[BDEVNAME_SIZE];
 325
 326	/*
 327	 * Some devices exist without request functions,
 328	 * such as loop devices not yet bound to backing files.
 329	 * Forbid the use of such devices.
 330	 */
 331	q = bdev_get_queue(bdev);
 332	if (!q || !q->make_request_fn) {
 333		DMWARN("%s: %s is not yet initialised: "
 334		       "start=%llu, len=%llu, dev_size=%llu",
 335		       dm_device_name(ti->table->md), bdevname(bdev, b),
 336		       (unsigned long long)start,
 337		       (unsigned long long)len,
 338		       (unsigned long long)dev_size);
 339		return 1;
 340	}
 341
 342	if (!dev_size)
 343		return 0;
 344
 345	if ((start >= dev_size) || (start + len > dev_size)) {
 346		DMWARN("%s: %s too small for target: "
 347		       "start=%llu, len=%llu, dev_size=%llu",
 348		       dm_device_name(ti->table->md), bdevname(bdev, b),
 349		       (unsigned long long)start,
 350		       (unsigned long long)len,
 351		       (unsigned long long)dev_size);
 352		return 1;
 353	}
 354
 355	if (logical_block_size_sectors <= 1)
 356		return 0;
 357
 358	if (start & (logical_block_size_sectors - 1)) {
 359		DMWARN("%s: start=%llu not aligned to h/w "
 360		       "logical block size %u of %s",
 361		       dm_device_name(ti->table->md),
 362		       (unsigned long long)start,
 363		       limits->logical_block_size, bdevname(bdev, b));
 364		return 1;
 365	}
 366
 367	if (len & (logical_block_size_sectors - 1)) {
 368		DMWARN("%s: len=%llu not aligned to h/w "
 369		       "logical block size %u of %s",
 370		       dm_device_name(ti->table->md),
 371		       (unsigned long long)len,
 372		       limits->logical_block_size, bdevname(bdev, b));
 373		return 1;
 374	}
 375
 376	return 0;
 377}
 378
 379/*
 380 * This upgrades the mode on an already open dm_dev, being
 381 * careful to leave things as they were if we fail to reopen the
 382 * device and not to touch the existing bdev field in case
 383 * it is accessed concurrently inside dm_table_any_congested().
 384 */
 385static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 386			struct mapped_device *md)
 387{
 388	int r;
 389	struct dm_dev_internal dd_new, dd_old;
 390
 391	dd_new = dd_old = *dd;
 392
 393	dd_new.dm_dev.mode |= new_mode;
 394	dd_new.dm_dev.bdev = NULL;
 395
 396	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
 397	if (r)
 398		return r;
 399
 400	dd->dm_dev.mode |= new_mode;
 401	close_dev(&dd_old, md);
 402
 403	return 0;
 404}
 405
 406/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407 * Add a device to the list, or just increment the usage count if
 408 * it's already present.
 409 */
 410int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 411		  struct dm_dev **result)
 412{
 413	int r;
 414	dev_t uninitialized_var(dev);
 415	struct dm_dev_internal *dd;
 416	unsigned int major, minor;
 417	struct dm_table *t = ti->table;
 418	char dummy;
 419
 420	BUG_ON(!t);
 421
 422	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 423		/* Extract the major/minor numbers */
 424		dev = MKDEV(major, minor);
 425		if (MAJOR(dev) != major || MINOR(dev) != minor)
 426			return -EOVERFLOW;
 427	} else {
 428		/* convert the path to a device */
 429		struct block_device *bdev = lookup_bdev(path);
 430
 431		if (IS_ERR(bdev))
 432			return PTR_ERR(bdev);
 433		dev = bdev->bd_dev;
 434		bdput(bdev);
 435	}
 436
 437	dd = find_device(&t->devices, dev);
 438	if (!dd) {
 439		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 440		if (!dd)
 441			return -ENOMEM;
 442
 443		dd->dm_dev.mode = mode;
 444		dd->dm_dev.bdev = NULL;
 445
 446		if ((r = open_dev(dd, dev, t->md))) {
 447			kfree(dd);
 448			return r;
 449		}
 450
 451		format_dev_t(dd->dm_dev.name, dev);
 452
 453		atomic_set(&dd->count, 0);
 454		list_add(&dd->list, &t->devices);
 455
 456	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
 457		r = upgrade_mode(dd, mode, t->md);
 458		if (r)
 459			return r;
 460	}
 461	atomic_inc(&dd->count);
 462
 463	*result = &dd->dm_dev;
 464	return 0;
 465}
 466EXPORT_SYMBOL(dm_get_device);
 467
 468int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 469			 sector_t start, sector_t len, void *data)
 470{
 471	struct queue_limits *limits = data;
 472	struct block_device *bdev = dev->bdev;
 473	struct request_queue *q = bdev_get_queue(bdev);
 474	char b[BDEVNAME_SIZE];
 475
 476	if (unlikely(!q)) {
 477		DMWARN("%s: Cannot set limits for nonexistent device %s",
 478		       dm_device_name(ti->table->md), bdevname(bdev, b));
 479		return 0;
 480	}
 481
 482	if (bdev_stack_limits(limits, bdev, start) < 0)
 483		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 484		       "physical_block_size=%u, logical_block_size=%u, "
 485		       "alignment_offset=%u, start=%llu",
 486		       dm_device_name(ti->table->md), bdevname(bdev, b),
 487		       q->limits.physical_block_size,
 488		       q->limits.logical_block_size,
 489		       q->limits.alignment_offset,
 490		       (unsigned long long) start << SECTOR_SHIFT);
 491
 492	/*
 493	 * Check if merge fn is supported.
 494	 * If not we'll force DM to use PAGE_SIZE or
 495	 * smaller I/O, just to be safe.
 496	 */
 497	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
 498		blk_limits_max_hw_sectors(limits,
 499					  (unsigned int) (PAGE_SIZE >> 9));
 500	return 0;
 501}
 502EXPORT_SYMBOL_GPL(dm_set_device_limits);
 503
 504/*
 505 * Decrement a device's use count and remove it if necessary.
 506 */
 507void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 508{
 509	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
 510						  dm_dev);
 
 511
 
 
 
 
 
 
 
 
 
 
 
 512	if (atomic_dec_and_test(&dd->count)) {
 513		close_dev(dd, ti->table->md);
 514		list_del(&dd->list);
 515		kfree(dd);
 516	}
 517}
 518EXPORT_SYMBOL(dm_put_device);
 519
 520/*
 521 * Checks to see if the target joins onto the end of the table.
 522 */
 523static int adjoin(struct dm_table *table, struct dm_target *ti)
 524{
 525	struct dm_target *prev;
 526
 527	if (!table->num_targets)
 528		return !ti->begin;
 529
 530	prev = &table->targets[table->num_targets - 1];
 531	return (ti->begin == (prev->begin + prev->len));
 532}
 533
 534/*
 535 * Used to dynamically allocate the arg array.
 536 *
 537 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 538 * process messages even if some device is suspended. These messages have a
 539 * small fixed number of arguments.
 540 *
 541 * On the other hand, dm-switch needs to process bulk data using messages and
 542 * excessive use of GFP_NOIO could cause trouble.
 543 */
 544static char **realloc_argv(unsigned *array_size, char **old_argv)
 545{
 546	char **argv;
 547	unsigned new_size;
 548	gfp_t gfp;
 549
 550	if (*array_size) {
 551		new_size = *array_size * 2;
 552		gfp = GFP_KERNEL;
 553	} else {
 554		new_size = 8;
 555		gfp = GFP_NOIO;
 556	}
 557	argv = kmalloc(new_size * sizeof(*argv), gfp);
 558	if (argv) {
 559		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 560		*array_size = new_size;
 561	}
 562
 563	kfree(old_argv);
 564	return argv;
 565}
 566
 567/*
 568 * Destructively splits up the argument list to pass to ctr.
 569 */
 570int dm_split_args(int *argc, char ***argvp, char *input)
 571{
 572	char *start, *end = input, *out, **argv = NULL;
 573	unsigned array_size = 0;
 574
 575	*argc = 0;
 576
 577	if (!input) {
 578		*argvp = NULL;
 579		return 0;
 580	}
 581
 582	argv = realloc_argv(&array_size, argv);
 583	if (!argv)
 584		return -ENOMEM;
 585
 586	while (1) {
 587		/* Skip whitespace */
 588		start = skip_spaces(end);
 589
 590		if (!*start)
 591			break;	/* success, we hit the end */
 592
 593		/* 'out' is used to remove any back-quotes */
 594		end = out = start;
 595		while (*end) {
 596			/* Everything apart from '\0' can be quoted */
 597			if (*end == '\\' && *(end + 1)) {
 598				*out++ = *(end + 1);
 599				end += 2;
 600				continue;
 601			}
 602
 603			if (isspace(*end))
 604				break;	/* end of token */
 605
 606			*out++ = *end++;
 607		}
 608
 609		/* have we already filled the array ? */
 610		if ((*argc + 1) > array_size) {
 611			argv = realloc_argv(&array_size, argv);
 612			if (!argv)
 613				return -ENOMEM;
 614		}
 615
 616		/* we know this is whitespace */
 617		if (*end)
 618			end++;
 619
 620		/* terminate the string and put it in the array */
 621		*out = '\0';
 622		argv[*argc] = start;
 623		(*argc)++;
 624	}
 625
 626	*argvp = argv;
 627	return 0;
 628}
 629
 630/*
 631 * Impose necessary and sufficient conditions on a devices's table such
 632 * that any incoming bio which respects its logical_block_size can be
 633 * processed successfully.  If it falls across the boundary between
 634 * two or more targets, the size of each piece it gets split into must
 635 * be compatible with the logical_block_size of the target processing it.
 636 */
 637static int validate_hardware_logical_block_alignment(struct dm_table *table,
 638						 struct queue_limits *limits)
 639{
 640	/*
 641	 * This function uses arithmetic modulo the logical_block_size
 642	 * (in units of 512-byte sectors).
 643	 */
 644	unsigned short device_logical_block_size_sects =
 645		limits->logical_block_size >> SECTOR_SHIFT;
 646
 647	/*
 648	 * Offset of the start of the next table entry, mod logical_block_size.
 649	 */
 650	unsigned short next_target_start = 0;
 651
 652	/*
 653	 * Given an aligned bio that extends beyond the end of a
 654	 * target, how many sectors must the next target handle?
 655	 */
 656	unsigned short remaining = 0;
 657
 658	struct dm_target *uninitialized_var(ti);
 659	struct queue_limits ti_limits;
 660	unsigned i = 0;
 661
 662	/*
 663	 * Check each entry in the table in turn.
 664	 */
 665	while (i < dm_table_get_num_targets(table)) {
 666		ti = dm_table_get_target(table, i++);
 667
 668		blk_set_stacking_limits(&ti_limits);
 669
 670		/* combine all target devices' limits */
 671		if (ti->type->iterate_devices)
 672			ti->type->iterate_devices(ti, dm_set_device_limits,
 673						  &ti_limits);
 674
 675		/*
 676		 * If the remaining sectors fall entirely within this
 677		 * table entry are they compatible with its logical_block_size?
 678		 */
 679		if (remaining < ti->len &&
 680		    remaining & ((ti_limits.logical_block_size >>
 681				  SECTOR_SHIFT) - 1))
 682			break;	/* Error */
 683
 684		next_target_start =
 685		    (unsigned short) ((next_target_start + ti->len) &
 686				      (device_logical_block_size_sects - 1));
 687		remaining = next_target_start ?
 688		    device_logical_block_size_sects - next_target_start : 0;
 689	}
 690
 691	if (remaining) {
 692		DMWARN("%s: table line %u (start sect %llu len %llu) "
 693		       "not aligned to h/w logical block size %u",
 694		       dm_device_name(table->md), i,
 695		       (unsigned long long) ti->begin,
 696		       (unsigned long long) ti->len,
 697		       limits->logical_block_size);
 698		return -EINVAL;
 699	}
 700
 701	return 0;
 702}
 703
 704int dm_table_add_target(struct dm_table *t, const char *type,
 705			sector_t start, sector_t len, char *params)
 706{
 707	int r = -EINVAL, argc;
 708	char **argv;
 709	struct dm_target *tgt;
 710
 711	if (t->singleton) {
 712		DMERR("%s: target type %s must appear alone in table",
 713		      dm_device_name(t->md), t->targets->type->name);
 714		return -EINVAL;
 715	}
 716
 717	BUG_ON(t->num_targets >= t->num_allocated);
 718
 719	tgt = t->targets + t->num_targets;
 720	memset(tgt, 0, sizeof(*tgt));
 721
 722	if (!len) {
 723		DMERR("%s: zero-length target", dm_device_name(t->md));
 724		return -EINVAL;
 725	}
 726
 727	tgt->type = dm_get_target_type(type);
 728	if (!tgt->type) {
 729		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 730		      type);
 731		return -EINVAL;
 732	}
 733
 734	if (dm_target_needs_singleton(tgt->type)) {
 735		if (t->num_targets) {
 736			DMERR("%s: target type %s must appear alone in table",
 737			      dm_device_name(t->md), type);
 738			return -EINVAL;
 739		}
 740		t->singleton = 1;
 741	}
 742
 743	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 744		DMERR("%s: target type %s may not be included in read-only tables",
 745		      dm_device_name(t->md), type);
 746		return -EINVAL;
 747	}
 748
 749	if (t->immutable_target_type) {
 750		if (t->immutable_target_type != tgt->type) {
 751			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 752			      dm_device_name(t->md), t->immutable_target_type->name);
 753			return -EINVAL;
 754		}
 755	} else if (dm_target_is_immutable(tgt->type)) {
 756		if (t->num_targets) {
 757			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 758			      dm_device_name(t->md), tgt->type->name);
 759			return -EINVAL;
 760		}
 761		t->immutable_target_type = tgt->type;
 762	}
 763
 764	tgt->table = t;
 765	tgt->begin = start;
 766	tgt->len = len;
 767	tgt->error = "Unknown error";
 768
 769	/*
 770	 * Does this target adjoin the previous one ?
 771	 */
 772	if (!adjoin(t, tgt)) {
 773		tgt->error = "Gap in table";
 774		r = -EINVAL;
 775		goto bad;
 776	}
 777
 778	r = dm_split_args(&argc, &argv, params);
 779	if (r) {
 780		tgt->error = "couldn't split parameters (insufficient memory)";
 781		goto bad;
 782	}
 783
 784	r = tgt->type->ctr(tgt, argc, argv);
 785	kfree(argv);
 786	if (r)
 787		goto bad;
 788
 789	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 790
 791	if (!tgt->num_discard_bios && tgt->discards_supported)
 792		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 793		       dm_device_name(t->md), type);
 794
 795	return 0;
 796
 797 bad:
 798	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 799	dm_put_target_type(tgt->type);
 800	return r;
 801}
 802
 803/*
 804 * Target argument parsing helpers.
 805 */
 806static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 807			     unsigned *value, char **error, unsigned grouped)
 808{
 809	const char *arg_str = dm_shift_arg(arg_set);
 810	char dummy;
 811
 812	if (!arg_str ||
 813	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 814	    (*value < arg->min) ||
 815	    (*value > arg->max) ||
 816	    (grouped && arg_set->argc < *value)) {
 817		*error = arg->error;
 818		return -EINVAL;
 819	}
 820
 821	return 0;
 822}
 823
 824int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 825		unsigned *value, char **error)
 826{
 827	return validate_next_arg(arg, arg_set, value, error, 0);
 828}
 829EXPORT_SYMBOL(dm_read_arg);
 830
 831int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 832		      unsigned *value, char **error)
 833{
 834	return validate_next_arg(arg, arg_set, value, error, 1);
 835}
 836EXPORT_SYMBOL(dm_read_arg_group);
 837
 838const char *dm_shift_arg(struct dm_arg_set *as)
 839{
 840	char *r;
 841
 842	if (as->argc) {
 843		as->argc--;
 844		r = *as->argv;
 845		as->argv++;
 846		return r;
 847	}
 848
 849	return NULL;
 850}
 851EXPORT_SYMBOL(dm_shift_arg);
 852
 853void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 854{
 855	BUG_ON(as->argc < num_args);
 856	as->argc -= num_args;
 857	as->argv += num_args;
 858}
 859EXPORT_SYMBOL(dm_consume_args);
 860
 
 
 
 
 
 
 861static int dm_table_set_type(struct dm_table *t)
 862{
 863	unsigned i;
 864	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 
 865	struct dm_target *tgt;
 866	struct dm_dev_internal *dd;
 867	struct list_head *devices;
 868	unsigned live_md_type;
 869
 870	for (i = 0; i < t->num_targets; i++) {
 871		tgt = t->targets + i;
 872		if (dm_target_hybrid(tgt))
 873			hybrid = 1;
 874		else if (dm_target_request_based(tgt))
 875			request_based = 1;
 876		else
 877			bio_based = 1;
 878
 879		if (bio_based && request_based) {
 880			DMWARN("Inconsistent table: different target types"
 881			       " can't be mixed up");
 882			return -EINVAL;
 883		}
 884	}
 885
 886	if (hybrid && !bio_based && !request_based) {
 887		/*
 888		 * The targets can work either way.
 889		 * Determine the type from the live device.
 890		 * Default to bio-based if device is new.
 891		 */
 892		live_md_type = dm_get_md_type(t->md);
 893		if (live_md_type == DM_TYPE_REQUEST_BASED)
 894			request_based = 1;
 895		else
 896			bio_based = 1;
 897	}
 898
 899	if (bio_based) {
 900		/* We must use this table as bio-based */
 901		t->type = DM_TYPE_BIO_BASED;
 902		return 0;
 903	}
 904
 905	BUG_ON(!request_based); /* No targets in this table */
 906
 907	/* Non-request-stackable devices can't be used for request-based dm */
 908	devices = dm_table_get_devices(t);
 909	list_for_each_entry(dd, devices, list) {
 910		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
 911			DMWARN("table load rejected: including"
 912			       " non-request-stackable devices");
 913			return -EINVAL;
 914		}
 915	}
 916
 917	/*
 918	 * Request-based dm supports only tables that have a single target now.
 919	 * To support multiple targets, request splitting support is needed,
 920	 * and that needs lots of changes in the block-layer.
 921	 * (e.g. request completion process for partial completion.)
 922	 */
 923	if (t->num_targets > 1) {
 924		DMWARN("Request-based dm doesn't support multiple targets yet");
 925		return -EINVAL;
 926	}
 927
 928	t->type = DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929
 930	return 0;
 931}
 932
 933unsigned dm_table_get_type(struct dm_table *t)
 934{
 935	return t->type;
 936}
 937
 938struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 939{
 940	return t->immutable_target_type;
 941}
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943bool dm_table_request_based(struct dm_table *t)
 944{
 945	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 946}
 947
 948static int dm_table_alloc_md_mempools(struct dm_table *t)
 949{
 950	unsigned type = dm_table_get_type(t);
 951	unsigned per_bio_data_size = 0;
 952	struct dm_target *tgt;
 953	unsigned i;
 954
 955	if (unlikely(type == DM_TYPE_NONE)) {
 956		DMWARN("no table type is set, can't allocate mempools");
 957		return -EINVAL;
 958	}
 959
 960	if (type == DM_TYPE_BIO_BASED)
 961		for (i = 0; i < t->num_targets; i++) {
 962			tgt = t->targets + i;
 963			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
 964		}
 965
 966	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
 967	if (!t->mempools)
 968		return -ENOMEM;
 969
 970	return 0;
 971}
 972
 973void dm_table_free_md_mempools(struct dm_table *t)
 974{
 975	dm_free_md_mempools(t->mempools);
 976	t->mempools = NULL;
 977}
 978
 979struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
 980{
 981	return t->mempools;
 982}
 983
 984static int setup_indexes(struct dm_table *t)
 985{
 986	int i;
 987	unsigned int total = 0;
 988	sector_t *indexes;
 989
 990	/* allocate the space for *all* the indexes */
 991	for (i = t->depth - 2; i >= 0; i--) {
 992		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
 993		total += t->counts[i];
 994	}
 995
 996	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
 997	if (!indexes)
 998		return -ENOMEM;
 999
1000	/* set up internal nodes, bottom-up */
1001	for (i = t->depth - 2; i >= 0; i--) {
1002		t->index[i] = indexes;
1003		indexes += (KEYS_PER_NODE * t->counts[i]);
1004		setup_btree_index(i, t);
1005	}
1006
1007	return 0;
1008}
1009
1010/*
1011 * Builds the btree to index the map.
1012 */
1013static int dm_table_build_index(struct dm_table *t)
1014{
1015	int r = 0;
1016	unsigned int leaf_nodes;
1017
1018	/* how many indexes will the btree have ? */
1019	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1020	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1021
1022	/* leaf layer has already been set up */
1023	t->counts[t->depth - 1] = leaf_nodes;
1024	t->index[t->depth - 1] = t->highs;
1025
1026	if (t->depth >= 2)
1027		r = setup_indexes(t);
1028
1029	return r;
1030}
1031
 
 
 
 
 
1032/*
1033 * Get a disk whose integrity profile reflects the table's profile.
1034 * If %match_all is true, all devices' profiles must match.
1035 * If %match_all is false, all devices must at least have an
1036 * allocated integrity profile; but uninitialized is ok.
1037 * Returns NULL if integrity support was inconsistent or unavailable.
1038 */
1039static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1040						    bool match_all)
1041{
1042	struct list_head *devices = dm_table_get_devices(t);
1043	struct dm_dev_internal *dd = NULL;
1044	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1045
1046	list_for_each_entry(dd, devices, list) {
1047		template_disk = dd->dm_dev.bdev->bd_disk;
1048		if (!blk_get_integrity(template_disk))
1049			goto no_integrity;
1050		if (!match_all && !blk_integrity_is_initialized(template_disk))
1051			continue; /* skip uninitialized profiles */
1052		else if (prev_disk &&
1053			 blk_integrity_compare(prev_disk, template_disk) < 0)
1054			goto no_integrity;
1055		prev_disk = template_disk;
1056	}
1057
1058	return template_disk;
1059
1060no_integrity:
1061	if (prev_disk)
1062		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1063		       dm_device_name(t->md),
1064		       prev_disk->disk_name,
1065		       template_disk->disk_name);
1066	return NULL;
1067}
1068
1069/*
1070 * Register the mapped device for blk_integrity support if
1071 * the underlying devices have an integrity profile.  But all devices
1072 * may not have matching profiles (checking all devices isn't reliable
1073 * during table load because this table may use other DM device(s) which
1074 * must be resumed before they will have an initialized integity profile).
1075 * Stacked DM devices force a 2 stage integrity profile validation:
1076 * 1 - during load, validate all initialized integrity profiles match
1077 * 2 - during resume, validate all integrity profiles match
1078 */
1079static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1080{
 
1081	struct gendisk *template_disk = NULL;
1082
1083	template_disk = dm_table_get_integrity_disk(t, false);
1084	if (!template_disk)
1085		return 0;
1086
1087	if (!blk_integrity_is_initialized(dm_disk(md))) {
1088		t->integrity_supported = 1;
1089		return blk_integrity_register(dm_disk(md), NULL);
 
 
 
 
 
 
1090	}
1091
1092	/*
1093	 * If DM device already has an initalized integrity
1094	 * profile the new profile should not conflict.
1095	 */
1096	if (blk_integrity_is_initialized(template_disk) &&
1097	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1098		DMWARN("%s: conflict with existing integrity profile: "
1099		       "%s profile mismatch",
1100		       dm_device_name(t->md),
1101		       template_disk->disk_name);
1102		return 1;
1103	}
1104
1105	/* Preserve existing initialized integrity profile */
1106	t->integrity_supported = 1;
1107	return 0;
1108}
1109
1110/*
1111 * Prepares the table for use by building the indices,
1112 * setting the type, and allocating mempools.
1113 */
1114int dm_table_complete(struct dm_table *t)
1115{
1116	int r;
1117
1118	r = dm_table_set_type(t);
1119	if (r) {
1120		DMERR("unable to set table type");
1121		return r;
1122	}
1123
1124	r = dm_table_build_index(t);
1125	if (r) {
1126		DMERR("unable to build btrees");
1127		return r;
1128	}
1129
1130	r = dm_table_prealloc_integrity(t, t->md);
1131	if (r) {
1132		DMERR("could not register integrity profile.");
1133		return r;
1134	}
1135
1136	r = dm_table_alloc_md_mempools(t);
1137	if (r)
1138		DMERR("unable to allocate mempools");
1139
1140	return r;
1141}
1142
1143static DEFINE_MUTEX(_event_lock);
1144void dm_table_event_callback(struct dm_table *t,
1145			     void (*fn)(void *), void *context)
1146{
1147	mutex_lock(&_event_lock);
1148	t->event_fn = fn;
1149	t->event_context = context;
1150	mutex_unlock(&_event_lock);
1151}
1152
1153void dm_table_event(struct dm_table *t)
1154{
1155	/*
1156	 * You can no longer call dm_table_event() from interrupt
1157	 * context, use a bottom half instead.
1158	 */
1159	BUG_ON(in_interrupt());
1160
1161	mutex_lock(&_event_lock);
1162	if (t->event_fn)
1163		t->event_fn(t->event_context);
1164	mutex_unlock(&_event_lock);
1165}
1166EXPORT_SYMBOL(dm_table_event);
1167
1168sector_t dm_table_get_size(struct dm_table *t)
1169{
1170	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1171}
1172EXPORT_SYMBOL(dm_table_get_size);
1173
1174struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1175{
1176	if (index >= t->num_targets)
1177		return NULL;
1178
1179	return t->targets + index;
1180}
1181
1182/*
1183 * Search the btree for the correct target.
1184 *
1185 * Caller should check returned pointer with dm_target_is_valid()
1186 * to trap I/O beyond end of device.
1187 */
1188struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1189{
1190	unsigned int l, n = 0, k = 0;
1191	sector_t *node;
1192
1193	for (l = 0; l < t->depth; l++) {
1194		n = get_child(n, k);
1195		node = get_node(t, l, n);
1196
1197		for (k = 0; k < KEYS_PER_NODE; k++)
1198			if (node[k] >= sector)
1199				break;
1200	}
1201
1202	return &t->targets[(KEYS_PER_NODE * n) + k];
1203}
1204
1205static int count_device(struct dm_target *ti, struct dm_dev *dev,
1206			sector_t start, sector_t len, void *data)
1207{
1208	unsigned *num_devices = data;
1209
1210	(*num_devices)++;
1211
1212	return 0;
1213}
1214
1215/*
1216 * Check whether a table has no data devices attached using each
1217 * target's iterate_devices method.
1218 * Returns false if the result is unknown because a target doesn't
1219 * support iterate_devices.
1220 */
1221bool dm_table_has_no_data_devices(struct dm_table *table)
1222{
1223	struct dm_target *uninitialized_var(ti);
1224	unsigned i = 0, num_devices = 0;
1225
1226	while (i < dm_table_get_num_targets(table)) {
1227		ti = dm_table_get_target(table, i++);
1228
1229		if (!ti->type->iterate_devices)
1230			return false;
1231
1232		ti->type->iterate_devices(ti, count_device, &num_devices);
1233		if (num_devices)
1234			return false;
1235	}
1236
1237	return true;
1238}
1239
1240/*
1241 * Establish the new table's queue_limits and validate them.
1242 */
1243int dm_calculate_queue_limits(struct dm_table *table,
1244			      struct queue_limits *limits)
1245{
1246	struct dm_target *uninitialized_var(ti);
1247	struct queue_limits ti_limits;
1248	unsigned i = 0;
1249
1250	blk_set_stacking_limits(limits);
1251
1252	while (i < dm_table_get_num_targets(table)) {
1253		blk_set_stacking_limits(&ti_limits);
1254
1255		ti = dm_table_get_target(table, i++);
1256
1257		if (!ti->type->iterate_devices)
1258			goto combine_limits;
1259
1260		/*
1261		 * Combine queue limits of all the devices this target uses.
1262		 */
1263		ti->type->iterate_devices(ti, dm_set_device_limits,
1264					  &ti_limits);
1265
1266		/* Set I/O hints portion of queue limits */
1267		if (ti->type->io_hints)
1268			ti->type->io_hints(ti, &ti_limits);
1269
1270		/*
1271		 * Check each device area is consistent with the target's
1272		 * overall queue limits.
1273		 */
1274		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1275					      &ti_limits))
1276			return -EINVAL;
1277
1278combine_limits:
1279		/*
1280		 * Merge this target's queue limits into the overall limits
1281		 * for the table.
1282		 */
1283		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1284			DMWARN("%s: adding target device "
1285			       "(start sect %llu len %llu) "
1286			       "caused an alignment inconsistency",
1287			       dm_device_name(table->md),
1288			       (unsigned long long) ti->begin,
1289			       (unsigned long long) ti->len);
1290	}
1291
1292	return validate_hardware_logical_block_alignment(table, limits);
1293}
1294
1295/*
1296 * Set the integrity profile for this device if all devices used have
1297 * matching profiles.  We're quite deep in the resume path but still
1298 * don't know if all devices (particularly DM devices this device
1299 * may be stacked on) have matching profiles.  Even if the profiles
1300 * don't match we have no way to fail (to resume) at this point.
1301 */
1302static void dm_table_set_integrity(struct dm_table *t)
1303{
1304	struct gendisk *template_disk = NULL;
1305
1306	if (!blk_get_integrity(dm_disk(t->md)))
1307		return;
 
 
 
 
 
 
 
 
1308
1309	template_disk = dm_table_get_integrity_disk(t, true);
1310	if (template_disk)
1311		blk_integrity_register(dm_disk(t->md),
1312				       blk_get_integrity(template_disk));
1313	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1314		DMWARN("%s: device no longer has a valid integrity profile",
1315		       dm_device_name(t->md));
1316	else
1317		DMWARN("%s: unable to establish an integrity profile",
1318		       dm_device_name(t->md));
 
 
1319}
1320
1321static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1322				sector_t start, sector_t len, void *data)
1323{
1324	unsigned flush = (*(unsigned *)data);
1325	struct request_queue *q = bdev_get_queue(dev->bdev);
1326
1327	return q && (q->flush_flags & flush);
1328}
1329
1330static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1331{
1332	struct dm_target *ti;
1333	unsigned i = 0;
1334
1335	/*
1336	 * Require at least one underlying device to support flushes.
1337	 * t->devices includes internal dm devices such as mirror logs
1338	 * so we need to use iterate_devices here, which targets
1339	 * supporting flushes must provide.
1340	 */
1341	while (i < dm_table_get_num_targets(t)) {
1342		ti = dm_table_get_target(t, i++);
1343
1344		if (!ti->num_flush_bios)
1345			continue;
1346
1347		if (ti->flush_supported)
1348			return 1;
1349
1350		if (ti->type->iterate_devices &&
1351		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1352			return 1;
1353	}
1354
1355	return 0;
1356}
1357
1358static bool dm_table_discard_zeroes_data(struct dm_table *t)
1359{
1360	struct dm_target *ti;
1361	unsigned i = 0;
1362
1363	/* Ensure that all targets supports discard_zeroes_data. */
1364	while (i < dm_table_get_num_targets(t)) {
1365		ti = dm_table_get_target(t, i++);
1366
1367		if (ti->discard_zeroes_data_unsupported)
1368			return 0;
1369	}
1370
1371	return 1;
1372}
1373
1374static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1375			    sector_t start, sector_t len, void *data)
1376{
1377	struct request_queue *q = bdev_get_queue(dev->bdev);
1378
1379	return q && blk_queue_nonrot(q);
1380}
1381
1382static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1383			     sector_t start, sector_t len, void *data)
1384{
1385	struct request_queue *q = bdev_get_queue(dev->bdev);
1386
1387	return q && !blk_queue_add_random(q);
1388}
1389
 
 
 
 
 
 
 
 
1390static bool dm_table_all_devices_attribute(struct dm_table *t,
1391					   iterate_devices_callout_fn func)
1392{
1393	struct dm_target *ti;
1394	unsigned i = 0;
1395
1396	while (i < dm_table_get_num_targets(t)) {
1397		ti = dm_table_get_target(t, i++);
1398
1399		if (!ti->type->iterate_devices ||
1400		    !ti->type->iterate_devices(ti, func, NULL))
1401			return 0;
1402	}
1403
1404	return 1;
1405}
1406
1407static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1408					 sector_t start, sector_t len, void *data)
1409{
1410	struct request_queue *q = bdev_get_queue(dev->bdev);
1411
1412	return q && !q->limits.max_write_same_sectors;
1413}
1414
1415static bool dm_table_supports_write_same(struct dm_table *t)
1416{
1417	struct dm_target *ti;
1418	unsigned i = 0;
1419
1420	while (i < dm_table_get_num_targets(t)) {
1421		ti = dm_table_get_target(t, i++);
1422
1423		if (!ti->num_write_same_bios)
1424			return false;
1425
1426		if (!ti->type->iterate_devices ||
1427		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1428			return false;
1429	}
1430
1431	return true;
1432}
1433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1435			       struct queue_limits *limits)
1436{
1437	unsigned flush = 0;
1438
1439	/*
1440	 * Copy table's limits to the DM device's request_queue
1441	 */
1442	q->limits = *limits;
1443
1444	if (!dm_table_supports_discards(t))
1445		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1446	else
1447		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1448
1449	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1450		flush |= REQ_FLUSH;
1451		if (dm_table_supports_flush(t, REQ_FUA))
1452			flush |= REQ_FUA;
1453	}
1454	blk_queue_flush(q, flush);
1455
1456	if (!dm_table_discard_zeroes_data(t))
1457		q->limits.discard_zeroes_data = 0;
1458
1459	/* Ensure that all underlying devices are non-rotational. */
1460	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1461		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1462	else
1463		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1464
1465	if (!dm_table_supports_write_same(t))
1466		q->limits.max_write_same_sectors = 0;
1467
1468	dm_table_set_integrity(t);
 
 
 
 
 
1469
1470	/*
1471	 * Determine whether or not this queue's I/O timings contribute
1472	 * to the entropy pool, Only request-based targets use this.
1473	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1474	 * have it set.
1475	 */
1476	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1477		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1478
1479	/*
1480	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1481	 * visible to other CPUs because, once the flag is set, incoming bios
1482	 * are processed by request-based dm, which refers to the queue
1483	 * settings.
1484	 * Until the flag set, bios are passed to bio-based dm and queued to
1485	 * md->deferred where queue settings are not needed yet.
1486	 * Those bios are passed to request-based dm at the resume time.
1487	 */
1488	smp_mb();
1489	if (dm_table_request_based(t))
1490		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1491}
1492
1493unsigned int dm_table_get_num_targets(struct dm_table *t)
1494{
1495	return t->num_targets;
1496}
1497
1498struct list_head *dm_table_get_devices(struct dm_table *t)
1499{
1500	return &t->devices;
1501}
1502
1503fmode_t dm_table_get_mode(struct dm_table *t)
1504{
1505	return t->mode;
1506}
1507EXPORT_SYMBOL(dm_table_get_mode);
1508
1509static void suspend_targets(struct dm_table *t, unsigned postsuspend)
 
 
 
 
 
 
1510{
1511	int i = t->num_targets;
1512	struct dm_target *ti = t->targets;
1513
1514	while (i--) {
1515		if (postsuspend) {
 
 
 
 
 
 
 
 
 
1516			if (ti->type->postsuspend)
1517				ti->type->postsuspend(ti);
1518		} else if (ti->type->presuspend)
1519			ti->type->presuspend(ti);
1520
1521		ti++;
1522	}
1523}
1524
1525void dm_table_presuspend_targets(struct dm_table *t)
1526{
1527	if (!t)
1528		return;
1529
1530	suspend_targets(t, 0);
 
 
 
 
 
 
 
 
1531}
1532
1533void dm_table_postsuspend_targets(struct dm_table *t)
1534{
1535	if (!t)
1536		return;
1537
1538	suspend_targets(t, 1);
1539}
1540
1541int dm_table_resume_targets(struct dm_table *t)
1542{
1543	int i, r = 0;
1544
1545	for (i = 0; i < t->num_targets; i++) {
1546		struct dm_target *ti = t->targets + i;
1547
1548		if (!ti->type->preresume)
1549			continue;
1550
1551		r = ti->type->preresume(ti);
1552		if (r) {
1553			DMERR("%s: %s: preresume failed, error = %d",
1554			      dm_device_name(t->md), ti->type->name, r);
1555			return r;
1556		}
1557	}
1558
1559	for (i = 0; i < t->num_targets; i++) {
1560		struct dm_target *ti = t->targets + i;
1561
1562		if (ti->type->resume)
1563			ti->type->resume(ti);
1564	}
1565
1566	return 0;
1567}
1568
1569void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1570{
1571	list_add(&cb->list, &t->target_callbacks);
1572}
1573EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1574
1575int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1576{
1577	struct dm_dev_internal *dd;
1578	struct list_head *devices = dm_table_get_devices(t);
1579	struct dm_target_callbacks *cb;
1580	int r = 0;
1581
1582	list_for_each_entry(dd, devices, list) {
1583		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1584		char b[BDEVNAME_SIZE];
1585
1586		if (likely(q))
1587			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1588		else
1589			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1590				     dm_device_name(t->md),
1591				     bdevname(dd->dm_dev.bdev, b));
1592	}
1593
1594	list_for_each_entry(cb, &t->target_callbacks, list)
1595		if (cb->congested_fn)
1596			r |= cb->congested_fn(cb, bdi_bits);
1597
1598	return r;
1599}
1600
1601int dm_table_any_busy_target(struct dm_table *t)
1602{
1603	unsigned i;
1604	struct dm_target *ti;
1605
1606	for (i = 0; i < t->num_targets; i++) {
1607		ti = t->targets + i;
1608		if (ti->type->busy && ti->type->busy(ti))
1609			return 1;
1610	}
1611
1612	return 0;
1613}
1614
1615struct mapped_device *dm_table_get_md(struct dm_table *t)
1616{
1617	return t->md;
1618}
1619EXPORT_SYMBOL(dm_table_get_md);
1620
1621void dm_table_run_md_queue_async(struct dm_table *t)
1622{
1623	struct mapped_device *md;
1624	struct request_queue *queue;
1625	unsigned long flags;
1626
1627	if (!dm_table_request_based(t))
1628		return;
1629
1630	md = dm_table_get_md(t);
1631	queue = dm_get_md_queue(md);
1632	if (queue) {
1633		spin_lock_irqsave(queue->queue_lock, flags);
1634		blk_run_queue_async(queue);
1635		spin_unlock_irqrestore(queue->queue_lock, flags);
 
 
 
 
1636	}
1637}
1638EXPORT_SYMBOL(dm_table_run_md_queue_async);
1639
1640static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1641				  sector_t start, sector_t len, void *data)
1642{
1643	struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645	return q && blk_queue_discard(q);
1646}
1647
1648bool dm_table_supports_discards(struct dm_table *t)
1649{
1650	struct dm_target *ti;
1651	unsigned i = 0;
1652
1653	/*
1654	 * Unless any target used by the table set discards_supported,
1655	 * require at least one underlying device to support discards.
1656	 * t->devices includes internal dm devices such as mirror logs
1657	 * so we need to use iterate_devices here, which targets
1658	 * supporting discard selectively must provide.
1659	 */
1660	while (i < dm_table_get_num_targets(t)) {
1661		ti = dm_table_get_target(t, i++);
1662
1663		if (!ti->num_discard_bios)
1664			continue;
1665
1666		if (ti->discards_supported)
1667			return 1;
1668
1669		if (ti->type->iterate_devices &&
1670		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1671			return 1;
1672	}
1673
1674	return 0;
1675}