Linux Audio

Check our new training course

Loading...
v4.6
   1/**************************************************************************
   2 *
   3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27
  28#include "vmwgfx_drv.h"
  29#include <drm/vmwgfx_drm.h>
  30#include <drm/ttm/ttm_object.h>
  31#include <drm/ttm/ttm_placement.h>
  32#include <drm/drmP.h>
  33#include "vmwgfx_resource_priv.h"
  34#include "vmwgfx_binding.h"
  35
  36#define VMW_RES_EVICT_ERR_COUNT 10
  37
  38struct vmw_user_dma_buffer {
  39	struct ttm_prime_object prime;
  40	struct vmw_dma_buffer dma;
  41};
  42
  43struct vmw_bo_user_rep {
  44	uint32_t handle;
  45	uint64_t map_handle;
  46};
  47
  48struct vmw_stream {
  49	struct vmw_resource res;
  50	uint32_t stream_id;
  51};
  52
  53struct vmw_user_stream {
  54	struct ttm_base_object base;
  55	struct vmw_stream stream;
  56};
  57
  58
  59static uint64_t vmw_user_stream_size;
  60
  61static const struct vmw_res_func vmw_stream_func = {
  62	.res_type = vmw_res_stream,
  63	.needs_backup = false,
  64	.may_evict = false,
  65	.type_name = "video streams",
  66	.backup_placement = NULL,
  67	.create = NULL,
  68	.destroy = NULL,
  69	.bind = NULL,
  70	.unbind = NULL
  71};
  72
  73static inline struct vmw_dma_buffer *
  74vmw_dma_buffer(struct ttm_buffer_object *bo)
  75{
  76	return container_of(bo, struct vmw_dma_buffer, base);
  77}
  78
  79static inline struct vmw_user_dma_buffer *
  80vmw_user_dma_buffer(struct ttm_buffer_object *bo)
  81{
  82	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
  83	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
  84}
  85
  86struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
  87{
  88	kref_get(&res->kref);
  89	return res;
  90}
  91
  92struct vmw_resource *
  93vmw_resource_reference_unless_doomed(struct vmw_resource *res)
  94{
  95	return kref_get_unless_zero(&res->kref) ? res : NULL;
  96}
  97
  98/**
  99 * vmw_resource_release_id - release a resource id to the id manager.
 100 *
 101 * @res: Pointer to the resource.
 102 *
 103 * Release the resource id to the resource id manager and set it to -1
 104 */
 105void vmw_resource_release_id(struct vmw_resource *res)
 106{
 107	struct vmw_private *dev_priv = res->dev_priv;
 108	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 109
 110	write_lock(&dev_priv->resource_lock);
 111	if (res->id != -1)
 112		idr_remove(idr, res->id);
 113	res->id = -1;
 114	write_unlock(&dev_priv->resource_lock);
 115}
 116
 117static void vmw_resource_release(struct kref *kref)
 118{
 119	struct vmw_resource *res =
 120	    container_of(kref, struct vmw_resource, kref);
 121	struct vmw_private *dev_priv = res->dev_priv;
 122	int id;
 123	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 124
 125	write_lock(&dev_priv->resource_lock);
 126	res->avail = false;
 127	list_del_init(&res->lru_head);
 128	write_unlock(&dev_priv->resource_lock);
 129	if (res->backup) {
 130		struct ttm_buffer_object *bo = &res->backup->base;
 131
 132		ttm_bo_reserve(bo, false, false, false, NULL);
 133		if (!list_empty(&res->mob_head) &&
 134		    res->func->unbind != NULL) {
 135			struct ttm_validate_buffer val_buf;
 136
 137			val_buf.bo = bo;
 138			val_buf.shared = false;
 139			res->func->unbind(res, false, &val_buf);
 140		}
 141		res->backup_dirty = false;
 142		list_del_init(&res->mob_head);
 143		ttm_bo_unreserve(bo);
 144		vmw_dmabuf_unreference(&res->backup);
 145	}
 146
 147	if (likely(res->hw_destroy != NULL)) {
 
 148		mutex_lock(&dev_priv->binding_mutex);
 149		vmw_binding_res_list_kill(&res->binding_head);
 150		mutex_unlock(&dev_priv->binding_mutex);
 151		res->hw_destroy(res);
 152	}
 153
 154	id = res->id;
 155	if (res->res_free != NULL)
 156		res->res_free(res);
 157	else
 158		kfree(res);
 159
 160	write_lock(&dev_priv->resource_lock);
 
 161	if (id != -1)
 162		idr_remove(idr, id);
 163	write_unlock(&dev_priv->resource_lock);
 164}
 165
 166void vmw_resource_unreference(struct vmw_resource **p_res)
 167{
 168	struct vmw_resource *res = *p_res;
 
 169
 170	*p_res = NULL;
 
 171	kref_put(&res->kref, vmw_resource_release);
 
 172}
 173
 174
 175/**
 176 * vmw_resource_alloc_id - release a resource id to the id manager.
 177 *
 178 * @res: Pointer to the resource.
 179 *
 180 * Allocate the lowest free resource from the resource manager, and set
 181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
 182 */
 183int vmw_resource_alloc_id(struct vmw_resource *res)
 184{
 185	struct vmw_private *dev_priv = res->dev_priv;
 186	int ret;
 187	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 188
 189	BUG_ON(res->id != -1);
 190
 191	idr_preload(GFP_KERNEL);
 192	write_lock(&dev_priv->resource_lock);
 193
 194	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
 195	if (ret >= 0)
 196		res->id = ret;
 197
 198	write_unlock(&dev_priv->resource_lock);
 199	idr_preload_end();
 200	return ret < 0 ? ret : 0;
 201}
 202
 203/**
 204 * vmw_resource_init - initialize a struct vmw_resource
 205 *
 206 * @dev_priv:       Pointer to a device private struct.
 207 * @res:            The struct vmw_resource to initialize.
 208 * @obj_type:       Resource object type.
 209 * @delay_id:       Boolean whether to defer device id allocation until
 210 *                  the first validation.
 211 * @res_free:       Resource destructor.
 212 * @func:           Resource function table.
 213 */
 214int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
 215		      bool delay_id,
 216		      void (*res_free) (struct vmw_resource *res),
 217		      const struct vmw_res_func *func)
 218{
 219	kref_init(&res->kref);
 220	res->hw_destroy = NULL;
 221	res->res_free = res_free;
 222	res->avail = false;
 223	res->dev_priv = dev_priv;
 224	res->func = func;
 225	INIT_LIST_HEAD(&res->lru_head);
 226	INIT_LIST_HEAD(&res->mob_head);
 227	INIT_LIST_HEAD(&res->binding_head);
 228	res->id = -1;
 229	res->backup = NULL;
 230	res->backup_offset = 0;
 231	res->backup_dirty = false;
 232	res->res_dirty = false;
 233	if (delay_id)
 234		return 0;
 235	else
 236		return vmw_resource_alloc_id(res);
 237}
 238
 239/**
 240 * vmw_resource_activate
 241 *
 242 * @res:        Pointer to the newly created resource
 243 * @hw_destroy: Destroy function. NULL if none.
 244 *
 245 * Activate a resource after the hardware has been made aware of it.
 246 * Set tye destroy function to @destroy. Typically this frees the
 247 * resource and destroys the hardware resources associated with it.
 248 * Activate basically means that the function vmw_resource_lookup will
 249 * find it.
 250 */
 251void vmw_resource_activate(struct vmw_resource *res,
 252			   void (*hw_destroy) (struct vmw_resource *))
 253{
 254	struct vmw_private *dev_priv = res->dev_priv;
 255
 256	write_lock(&dev_priv->resource_lock);
 257	res->avail = true;
 258	res->hw_destroy = hw_destroy;
 259	write_unlock(&dev_priv->resource_lock);
 260}
 261
 262static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
 263						struct idr *idr, int id)
 264{
 265	struct vmw_resource *res;
 266
 267	read_lock(&dev_priv->resource_lock);
 268	res = idr_find(idr, id);
 269	if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
 
 
 270		res = NULL;
 271
 272	read_unlock(&dev_priv->resource_lock);
 273
 274	if (unlikely(res == NULL))
 275		return NULL;
 276
 277	return res;
 278}
 279
 280/**
 281 * vmw_user_resource_lookup_handle - lookup a struct resource from a
 282 * TTM user-space handle and perform basic type checks
 283 *
 284 * @dev_priv:     Pointer to a device private struct
 285 * @tfile:        Pointer to a struct ttm_object_file identifying the caller
 286 * @handle:       The TTM user-space handle
 287 * @converter:    Pointer to an object describing the resource type
 288 * @p_res:        On successful return the location pointed to will contain
 289 *                a pointer to a refcounted struct vmw_resource.
 290 *
 291 * If the handle can't be found or is associated with an incorrect resource
 292 * type, -EINVAL will be returned.
 293 */
 294int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
 295				    struct ttm_object_file *tfile,
 296				    uint32_t handle,
 297				    const struct vmw_user_resource_conv
 298				    *converter,
 299				    struct vmw_resource **p_res)
 300{
 301	struct ttm_base_object *base;
 302	struct vmw_resource *res;
 303	int ret = -EINVAL;
 304
 305	base = ttm_base_object_lookup(tfile, handle);
 306	if (unlikely(base == NULL))
 307		return -EINVAL;
 308
 309	if (unlikely(ttm_base_object_type(base) != converter->object_type))
 310		goto out_bad_resource;
 311
 312	res = converter->base_obj_to_res(base);
 313
 314	read_lock(&dev_priv->resource_lock);
 315	if (!res->avail || res->res_free != converter->res_free) {
 316		read_unlock(&dev_priv->resource_lock);
 317		goto out_bad_resource;
 318	}
 319
 320	kref_get(&res->kref);
 321	read_unlock(&dev_priv->resource_lock);
 322
 323	*p_res = res;
 324	ret = 0;
 325
 326out_bad_resource:
 327	ttm_base_object_unref(&base);
 328
 329	return ret;
 330}
 331
 332/**
 333 * Helper function that looks either a surface or dmabuf.
 334 *
 335 * The pointer this pointed at by out_surf and out_buf needs to be null.
 336 */
 337int vmw_user_lookup_handle(struct vmw_private *dev_priv,
 338			   struct ttm_object_file *tfile,
 339			   uint32_t handle,
 340			   struct vmw_surface **out_surf,
 341			   struct vmw_dma_buffer **out_buf)
 342{
 343	struct vmw_resource *res;
 344	int ret;
 345
 346	BUG_ON(*out_surf || *out_buf);
 347
 348	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
 349					      user_surface_converter,
 350					      &res);
 351	if (!ret) {
 352		*out_surf = vmw_res_to_srf(res);
 353		return 0;
 354	}
 355
 356	*out_surf = NULL;
 357	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
 358	return ret;
 359}
 360
 361/**
 362 * Buffer management.
 363 */
 364
 365/**
 366 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
 367 *
 368 * @dev_priv: Pointer to a struct vmw_private identifying the device.
 369 * @size: The requested buffer size.
 370 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
 371 */
 372static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
 373				  bool user)
 374{
 375	static size_t struct_size, user_struct_size;
 376	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 377	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
 378
 379	if (unlikely(struct_size == 0)) {
 380		size_t backend_size = ttm_round_pot(vmw_tt_size);
 381
 382		struct_size = backend_size +
 383			ttm_round_pot(sizeof(struct vmw_dma_buffer));
 384		user_struct_size = backend_size +
 385			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
 386	}
 387
 388	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
 389		page_array_size +=
 390			ttm_round_pot(num_pages * sizeof(dma_addr_t));
 391
 392	return ((user) ? user_struct_size : struct_size) +
 393		page_array_size;
 394}
 395
 396void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
 397{
 398	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
 399
 400	kfree(vmw_bo);
 401}
 402
 403static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
 404{
 405	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
 406
 407	ttm_prime_object_kfree(vmw_user_bo, prime);
 408}
 409
 410int vmw_dmabuf_init(struct vmw_private *dev_priv,
 411		    struct vmw_dma_buffer *vmw_bo,
 412		    size_t size, struct ttm_placement *placement,
 413		    bool interruptible,
 414		    void (*bo_free) (struct ttm_buffer_object *bo))
 415{
 416	struct ttm_bo_device *bdev = &dev_priv->bdev;
 417	size_t acc_size;
 418	int ret;
 419	bool user = (bo_free == &vmw_user_dmabuf_destroy);
 420
 421	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
 422
 423	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
 424	memset(vmw_bo, 0, sizeof(*vmw_bo));
 425
 426	INIT_LIST_HEAD(&vmw_bo->res_list);
 427
 428	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
 429			  ttm_bo_type_device, placement,
 430			  0, interruptible,
 431			  NULL, acc_size, NULL, NULL, bo_free);
 432	return ret;
 433}
 434
 435static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
 436{
 437	struct vmw_user_dma_buffer *vmw_user_bo;
 438	struct ttm_base_object *base = *p_base;
 439	struct ttm_buffer_object *bo;
 440
 441	*p_base = NULL;
 442
 443	if (unlikely(base == NULL))
 444		return;
 445
 446	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
 447				   prime.base);
 448	bo = &vmw_user_bo->dma.base;
 449	ttm_bo_unref(&bo);
 450}
 451
 452static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
 453					    enum ttm_ref_type ref_type)
 454{
 455	struct vmw_user_dma_buffer *user_bo;
 456	user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
 457
 458	switch (ref_type) {
 459	case TTM_REF_SYNCCPU_WRITE:
 460		ttm_bo_synccpu_write_release(&user_bo->dma.base);
 461		break;
 462	default:
 463		BUG();
 464	}
 465}
 466
 467/**
 468 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
 469 *
 470 * @dev_priv: Pointer to a struct device private.
 471 * @tfile: Pointer to a struct ttm_object_file on which to register the user
 472 * object.
 473 * @size: Size of the dma buffer.
 474 * @shareable: Boolean whether the buffer is shareable with other open files.
 475 * @handle: Pointer to where the handle value should be assigned.
 476 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
 477 * should be assigned.
 478 */
 479int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
 480			  struct ttm_object_file *tfile,
 481			  uint32_t size,
 482			  bool shareable,
 483			  uint32_t *handle,
 484			  struct vmw_dma_buffer **p_dma_buf,
 485			  struct ttm_base_object **p_base)
 486{
 487	struct vmw_user_dma_buffer *user_bo;
 488	struct ttm_buffer_object *tmp;
 489	int ret;
 490
 491	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
 492	if (unlikely(user_bo == NULL)) {
 493		DRM_ERROR("Failed to allocate a buffer.\n");
 494		return -ENOMEM;
 495	}
 496
 497	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
 498			      (dev_priv->has_mob) ?
 499			      &vmw_sys_placement :
 500			      &vmw_vram_sys_placement, true,
 501			      &vmw_user_dmabuf_destroy);
 502	if (unlikely(ret != 0))
 503		return ret;
 504
 505	tmp = ttm_bo_reference(&user_bo->dma.base);
 506	ret = ttm_prime_object_init(tfile,
 507				    size,
 508				    &user_bo->prime,
 509				    shareable,
 510				    ttm_buffer_type,
 511				    &vmw_user_dmabuf_release,
 512				    &vmw_user_dmabuf_ref_obj_release);
 513	if (unlikely(ret != 0)) {
 514		ttm_bo_unref(&tmp);
 515		goto out_no_base_object;
 516	}
 517
 518	*p_dma_buf = &user_bo->dma;
 519	if (p_base) {
 520		*p_base = &user_bo->prime.base;
 521		kref_get(&(*p_base)->refcount);
 522	}
 523	*handle = user_bo->prime.base.hash.key;
 524
 525out_no_base_object:
 526	return ret;
 527}
 528
 529/**
 530 * vmw_user_dmabuf_verify_access - verify access permissions on this
 531 * buffer object.
 532 *
 533 * @bo: Pointer to the buffer object being accessed
 534 * @tfile: Identifying the caller.
 535 */
 536int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
 537				  struct ttm_object_file *tfile)
 538{
 539	struct vmw_user_dma_buffer *vmw_user_bo;
 540
 541	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
 542		return -EPERM;
 543
 544	vmw_user_bo = vmw_user_dma_buffer(bo);
 545
 546	/* Check that the caller has opened the object. */
 547	if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
 548		return 0;
 549
 550	DRM_ERROR("Could not grant buffer access.\n");
 551	return -EPERM;
 552}
 553
 554/**
 555 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
 556 * access, idling previous GPU operations on the buffer and optionally
 557 * blocking it for further command submissions.
 558 *
 559 * @user_bo: Pointer to the buffer object being grabbed for CPU access
 560 * @tfile: Identifying the caller.
 561 * @flags: Flags indicating how the grab should be performed.
 562 *
 563 * A blocking grab will be automatically released when @tfile is closed.
 564 */
 565static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
 566					struct ttm_object_file *tfile,
 567					uint32_t flags)
 568{
 569	struct ttm_buffer_object *bo = &user_bo->dma.base;
 570	bool existed;
 571	int ret;
 572
 573	if (flags & drm_vmw_synccpu_allow_cs) {
 574		bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
 575		long lret;
 576
 577		if (nonblock)
 578			return reservation_object_test_signaled_rcu(bo->resv, true) ? 0 : -EBUSY;
 579
 580		lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, MAX_SCHEDULE_TIMEOUT);
 581		if (!lret)
 582			return -EBUSY;
 583		else if (lret < 0)
 584			return lret;
 585		return 0;
 586	}
 587
 588	ret = ttm_bo_synccpu_write_grab
 589		(bo, !!(flags & drm_vmw_synccpu_dontblock));
 590	if (unlikely(ret != 0))
 591		return ret;
 592
 593	ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
 594				 TTM_REF_SYNCCPU_WRITE, &existed);
 595	if (ret != 0 || existed)
 596		ttm_bo_synccpu_write_release(&user_bo->dma.base);
 597
 598	return ret;
 599}
 600
 601/**
 602 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
 603 * and unblock command submission on the buffer if blocked.
 604 *
 605 * @handle: Handle identifying the buffer object.
 606 * @tfile: Identifying the caller.
 607 * @flags: Flags indicating the type of release.
 608 */
 609static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
 610					   struct ttm_object_file *tfile,
 611					   uint32_t flags)
 612{
 613	if (!(flags & drm_vmw_synccpu_allow_cs))
 614		return ttm_ref_object_base_unref(tfile, handle,
 615						 TTM_REF_SYNCCPU_WRITE);
 616
 617	return 0;
 618}
 619
 620/**
 621 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
 622 * functionality.
 623 *
 624 * @dev: Identifies the drm device.
 625 * @data: Pointer to the ioctl argument.
 626 * @file_priv: Identifies the caller.
 627 *
 628 * This function checks the ioctl arguments for validity and calls the
 629 * relevant synccpu functions.
 630 */
 631int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
 632				  struct drm_file *file_priv)
 633{
 634	struct drm_vmw_synccpu_arg *arg =
 635		(struct drm_vmw_synccpu_arg *) data;
 636	struct vmw_dma_buffer *dma_buf;
 637	struct vmw_user_dma_buffer *user_bo;
 638	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 639	struct ttm_base_object *buffer_base;
 640	int ret;
 641
 642	if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
 643	    || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
 644			       drm_vmw_synccpu_dontblock |
 645			       drm_vmw_synccpu_allow_cs)) != 0) {
 646		DRM_ERROR("Illegal synccpu flags.\n");
 647		return -EINVAL;
 648	}
 649
 650	switch (arg->op) {
 651	case drm_vmw_synccpu_grab:
 652		ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
 653					     &buffer_base);
 654		if (unlikely(ret != 0))
 655			return ret;
 656
 657		user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
 658				       dma);
 659		ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
 660		vmw_dmabuf_unreference(&dma_buf);
 661		ttm_base_object_unref(&buffer_base);
 662		if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
 663			     ret != -EBUSY)) {
 664			DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
 665				  (unsigned int) arg->handle);
 666			return ret;
 667		}
 668		break;
 669	case drm_vmw_synccpu_release:
 670		ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
 671						      arg->flags);
 672		if (unlikely(ret != 0)) {
 673			DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
 674				  (unsigned int) arg->handle);
 675			return ret;
 676		}
 677		break;
 678	default:
 679		DRM_ERROR("Invalid synccpu operation.\n");
 680		return -EINVAL;
 681	}
 682
 683	return 0;
 684}
 685
 686int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
 687			   struct drm_file *file_priv)
 688{
 689	struct vmw_private *dev_priv = vmw_priv(dev);
 690	union drm_vmw_alloc_dmabuf_arg *arg =
 691	    (union drm_vmw_alloc_dmabuf_arg *)data;
 692	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
 693	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
 694	struct vmw_dma_buffer *dma_buf;
 695	uint32_t handle;
 696	int ret;
 697
 698	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
 699	if (unlikely(ret != 0))
 700		return ret;
 701
 702	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
 703				    req->size, false, &handle, &dma_buf,
 704				    NULL);
 705	if (unlikely(ret != 0))
 706		goto out_no_dmabuf;
 707
 708	rep->handle = handle;
 709	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
 710	rep->cur_gmr_id = handle;
 711	rep->cur_gmr_offset = 0;
 712
 713	vmw_dmabuf_unreference(&dma_buf);
 714
 715out_no_dmabuf:
 716	ttm_read_unlock(&dev_priv->reservation_sem);
 717
 718	return ret;
 719}
 720
 721int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
 722			   struct drm_file *file_priv)
 723{
 724	struct drm_vmw_unref_dmabuf_arg *arg =
 725	    (struct drm_vmw_unref_dmabuf_arg *)data;
 726
 727	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
 728					 arg->handle,
 729					 TTM_REF_USAGE);
 730}
 731
 732int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
 733			   uint32_t handle, struct vmw_dma_buffer **out,
 734			   struct ttm_base_object **p_base)
 735{
 736	struct vmw_user_dma_buffer *vmw_user_bo;
 737	struct ttm_base_object *base;
 738
 739	base = ttm_base_object_lookup(tfile, handle);
 740	if (unlikely(base == NULL)) {
 741		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
 742		       (unsigned long)handle);
 743		return -ESRCH;
 744	}
 745
 746	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
 747		ttm_base_object_unref(&base);
 748		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
 749		       (unsigned long)handle);
 750		return -EINVAL;
 751	}
 752
 753	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
 754				   prime.base);
 755	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
 756	if (p_base)
 757		*p_base = base;
 758	else
 759		ttm_base_object_unref(&base);
 760	*out = &vmw_user_bo->dma;
 761
 762	return 0;
 763}
 764
 765int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
 766			      struct vmw_dma_buffer *dma_buf,
 767			      uint32_t *handle)
 768{
 769	struct vmw_user_dma_buffer *user_bo;
 770
 771	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
 772		return -EINVAL;
 773
 774	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
 775
 776	*handle = user_bo->prime.base.hash.key;
 777	return ttm_ref_object_add(tfile, &user_bo->prime.base,
 778				  TTM_REF_USAGE, NULL);
 779}
 780
 781/*
 782 * Stream management
 783 */
 784
 785static void vmw_stream_destroy(struct vmw_resource *res)
 786{
 787	struct vmw_private *dev_priv = res->dev_priv;
 788	struct vmw_stream *stream;
 789	int ret;
 790
 791	DRM_INFO("%s: unref\n", __func__);
 792	stream = container_of(res, struct vmw_stream, res);
 793
 794	ret = vmw_overlay_unref(dev_priv, stream->stream_id);
 795	WARN_ON(ret != 0);
 796}
 797
 798static int vmw_stream_init(struct vmw_private *dev_priv,
 799			   struct vmw_stream *stream,
 800			   void (*res_free) (struct vmw_resource *res))
 801{
 802	struct vmw_resource *res = &stream->res;
 803	int ret;
 804
 805	ret = vmw_resource_init(dev_priv, res, false, res_free,
 806				&vmw_stream_func);
 807
 808	if (unlikely(ret != 0)) {
 809		if (res_free == NULL)
 810			kfree(stream);
 811		else
 812			res_free(&stream->res);
 813		return ret;
 814	}
 815
 816	ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
 817	if (ret) {
 818		vmw_resource_unreference(&res);
 819		return ret;
 820	}
 821
 822	DRM_INFO("%s: claimed\n", __func__);
 823
 824	vmw_resource_activate(&stream->res, vmw_stream_destroy);
 825	return 0;
 826}
 827
 828static void vmw_user_stream_free(struct vmw_resource *res)
 829{
 830	struct vmw_user_stream *stream =
 831	    container_of(res, struct vmw_user_stream, stream.res);
 832	struct vmw_private *dev_priv = res->dev_priv;
 833
 834	ttm_base_object_kfree(stream, base);
 835	ttm_mem_global_free(vmw_mem_glob(dev_priv),
 836			    vmw_user_stream_size);
 837}
 838
 839/**
 840 * This function is called when user space has no more references on the
 841 * base object. It releases the base-object's reference on the resource object.
 842 */
 843
 844static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
 845{
 846	struct ttm_base_object *base = *p_base;
 847	struct vmw_user_stream *stream =
 848	    container_of(base, struct vmw_user_stream, base);
 849	struct vmw_resource *res = &stream->stream.res;
 850
 851	*p_base = NULL;
 852	vmw_resource_unreference(&res);
 853}
 854
 855int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
 856			   struct drm_file *file_priv)
 857{
 858	struct vmw_private *dev_priv = vmw_priv(dev);
 859	struct vmw_resource *res;
 860	struct vmw_user_stream *stream;
 861	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
 862	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 863	struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
 864	int ret = 0;
 865
 866
 867	res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
 868	if (unlikely(res == NULL))
 869		return -EINVAL;
 870
 871	if (res->res_free != &vmw_user_stream_free) {
 872		ret = -EINVAL;
 873		goto out;
 874	}
 875
 876	stream = container_of(res, struct vmw_user_stream, stream.res);
 877	if (stream->base.tfile != tfile) {
 878		ret = -EINVAL;
 879		goto out;
 880	}
 881
 882	ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
 883out:
 884	vmw_resource_unreference(&res);
 885	return ret;
 886}
 887
 888int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
 889			   struct drm_file *file_priv)
 890{
 891	struct vmw_private *dev_priv = vmw_priv(dev);
 892	struct vmw_user_stream *stream;
 893	struct vmw_resource *res;
 894	struct vmw_resource *tmp;
 895	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
 896	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 897	int ret;
 898
 899	/*
 900	 * Approximate idr memory usage with 128 bytes. It will be limited
 901	 * by maximum number_of streams anyway?
 902	 */
 903
 904	if (unlikely(vmw_user_stream_size == 0))
 905		vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
 906
 907	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
 908	if (unlikely(ret != 0))
 909		return ret;
 910
 911	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
 912				   vmw_user_stream_size,
 913				   false, true);
 914	ttm_read_unlock(&dev_priv->reservation_sem);
 915	if (unlikely(ret != 0)) {
 916		if (ret != -ERESTARTSYS)
 917			DRM_ERROR("Out of graphics memory for stream"
 918				  " creation.\n");
 919
 920		goto out_ret;
 921	}
 922
 
 923	stream = kmalloc(sizeof(*stream), GFP_KERNEL);
 924	if (unlikely(stream == NULL)) {
 925		ttm_mem_global_free(vmw_mem_glob(dev_priv),
 926				    vmw_user_stream_size);
 927		ret = -ENOMEM;
 928		goto out_ret;
 929	}
 930
 931	res = &stream->stream.res;
 932	stream->base.shareable = false;
 933	stream->base.tfile = NULL;
 934
 935	/*
 936	 * From here on, the destructor takes over resource freeing.
 937	 */
 938
 939	ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
 940	if (unlikely(ret != 0))
 941		goto out_ret;
 942
 943	tmp = vmw_resource_reference(res);
 944	ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
 945				   &vmw_user_stream_base_release, NULL);
 946
 947	if (unlikely(ret != 0)) {
 948		vmw_resource_unreference(&tmp);
 949		goto out_err;
 950	}
 951
 952	arg->stream_id = res->id;
 953out_err:
 954	vmw_resource_unreference(&res);
 955out_ret:
 
 956	return ret;
 957}
 958
 959int vmw_user_stream_lookup(struct vmw_private *dev_priv,
 960			   struct ttm_object_file *tfile,
 961			   uint32_t *inout_id, struct vmw_resource **out)
 962{
 963	struct vmw_user_stream *stream;
 964	struct vmw_resource *res;
 965	int ret;
 966
 967	res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
 968				  *inout_id);
 969	if (unlikely(res == NULL))
 970		return -EINVAL;
 971
 972	if (res->res_free != &vmw_user_stream_free) {
 973		ret = -EINVAL;
 974		goto err_ref;
 975	}
 976
 977	stream = container_of(res, struct vmw_user_stream, stream.res);
 978	if (stream->base.tfile != tfile) {
 979		ret = -EPERM;
 980		goto err_ref;
 981	}
 982
 983	*inout_id = stream->stream.stream_id;
 984	*out = res;
 985	return 0;
 986err_ref:
 987	vmw_resource_unreference(&res);
 988	return ret;
 989}
 990
 991
 992/**
 993 * vmw_dumb_create - Create a dumb kms buffer
 994 *
 995 * @file_priv: Pointer to a struct drm_file identifying the caller.
 996 * @dev: Pointer to the drm device.
 997 * @args: Pointer to a struct drm_mode_create_dumb structure
 998 *
 999 * This is a driver callback for the core drm create_dumb functionality.
1000 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
1001 * that the arguments have a different format.
1002 */
1003int vmw_dumb_create(struct drm_file *file_priv,
1004		    struct drm_device *dev,
1005		    struct drm_mode_create_dumb *args)
1006{
1007	struct vmw_private *dev_priv = vmw_priv(dev);
1008	struct vmw_dma_buffer *dma_buf;
1009	int ret;
1010
1011	args->pitch = args->width * ((args->bpp + 7) / 8);
1012	args->size = args->pitch * args->height;
1013
1014	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1015	if (unlikely(ret != 0))
1016		return ret;
1017
1018	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1019				    args->size, false, &args->handle,
1020				    &dma_buf, NULL);
1021	if (unlikely(ret != 0))
1022		goto out_no_dmabuf;
1023
1024	vmw_dmabuf_unreference(&dma_buf);
1025out_no_dmabuf:
1026	ttm_read_unlock(&dev_priv->reservation_sem);
1027	return ret;
1028}
1029
1030/**
1031 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1032 *
1033 * @file_priv: Pointer to a struct drm_file identifying the caller.
1034 * @dev: Pointer to the drm device.
1035 * @handle: Handle identifying the dumb buffer.
1036 * @offset: The address space offset returned.
1037 *
1038 * This is a driver callback for the core drm dumb_map_offset functionality.
1039 */
1040int vmw_dumb_map_offset(struct drm_file *file_priv,
1041			struct drm_device *dev, uint32_t handle,
1042			uint64_t *offset)
1043{
1044	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1045	struct vmw_dma_buffer *out_buf;
1046	int ret;
1047
1048	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
1049	if (ret != 0)
1050		return -EINVAL;
1051
1052	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1053	vmw_dmabuf_unreference(&out_buf);
1054	return 0;
1055}
1056
1057/**
1058 * vmw_dumb_destroy - Destroy a dumb boffer
1059 *
1060 * @file_priv: Pointer to a struct drm_file identifying the caller.
1061 * @dev: Pointer to the drm device.
1062 * @handle: Handle identifying the dumb buffer.
1063 *
1064 * This is a driver callback for the core drm dumb_destroy functionality.
1065 */
1066int vmw_dumb_destroy(struct drm_file *file_priv,
1067		     struct drm_device *dev,
1068		     uint32_t handle)
1069{
1070	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1071					 handle, TTM_REF_USAGE);
1072}
1073
1074/**
1075 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1076 *
1077 * @res:            The resource for which to allocate a backup buffer.
1078 * @interruptible:  Whether any sleeps during allocation should be
1079 *                  performed while interruptible.
1080 */
1081static int vmw_resource_buf_alloc(struct vmw_resource *res,
1082				  bool interruptible)
1083{
1084	unsigned long size =
1085		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1086	struct vmw_dma_buffer *backup;
1087	int ret;
1088
1089	if (likely(res->backup)) {
1090		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1091		return 0;
1092	}
1093
1094	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1095	if (unlikely(backup == NULL))
1096		return -ENOMEM;
1097
1098	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1099			      res->func->backup_placement,
1100			      interruptible,
1101			      &vmw_dmabuf_bo_free);
1102	if (unlikely(ret != 0))
1103		goto out_no_dmabuf;
1104
1105	res->backup = backup;
1106
1107out_no_dmabuf:
1108	return ret;
1109}
1110
1111/**
1112 * vmw_resource_do_validate - Make a resource up-to-date and visible
1113 *                            to the device.
1114 *
1115 * @res:            The resource to make visible to the device.
1116 * @val_buf:        Information about a buffer possibly
1117 *                  containing backup data if a bind operation is needed.
1118 *
1119 * On hardware resource shortage, this function returns -EBUSY and
1120 * should be retried once resources have been freed up.
1121 */
1122static int vmw_resource_do_validate(struct vmw_resource *res,
1123				    struct ttm_validate_buffer *val_buf)
1124{
1125	int ret = 0;
1126	const struct vmw_res_func *func = res->func;
1127
1128	if (unlikely(res->id == -1)) {
1129		ret = func->create(res);
1130		if (unlikely(ret != 0))
1131			return ret;
1132	}
1133
1134	if (func->bind &&
1135	    ((func->needs_backup && list_empty(&res->mob_head) &&
1136	      val_buf->bo != NULL) ||
1137	     (!func->needs_backup && val_buf->bo != NULL))) {
1138		ret = func->bind(res, val_buf);
1139		if (unlikely(ret != 0))
1140			goto out_bind_failed;
1141		if (func->needs_backup)
1142			list_add_tail(&res->mob_head, &res->backup->res_list);
1143	}
1144
1145	/*
1146	 * Only do this on write operations, and move to
1147	 * vmw_resource_unreserve if it can be called after
1148	 * backup buffers have been unreserved. Otherwise
1149	 * sort out locking.
1150	 */
1151	res->res_dirty = true;
1152
1153	return 0;
1154
1155out_bind_failed:
1156	func->destroy(res);
1157
1158	return ret;
1159}
1160
1161/**
1162 * vmw_resource_unreserve - Unreserve a resource previously reserved for
1163 * command submission.
1164 *
1165 * @res:               Pointer to the struct vmw_resource to unreserve.
1166 * @switch_backup:     Backup buffer has been switched.
1167 * @new_backup:        Pointer to new backup buffer if command submission
1168 *                     switched. May be NULL.
1169 * @new_backup_offset: New backup offset if @switch_backup is true.
1170 *
1171 * Currently unreserving a resource means putting it back on the device's
1172 * resource lru list, so that it can be evicted if necessary.
1173 */
1174void vmw_resource_unreserve(struct vmw_resource *res,
1175			    bool switch_backup,
1176			    struct vmw_dma_buffer *new_backup,
1177			    unsigned long new_backup_offset)
1178{
1179	struct vmw_private *dev_priv = res->dev_priv;
1180
1181	if (!list_empty(&res->lru_head))
1182		return;
1183
1184	if (switch_backup && new_backup != res->backup) {
 
1185		if (res->backup) {
1186			lockdep_assert_held(&res->backup->base.resv->lock.base);
1187			list_del_init(&res->mob_head);
1188			vmw_dmabuf_unreference(&res->backup);
1189		}
1190
1191		if (new_backup) {
1192			res->backup = vmw_dmabuf_reference(new_backup);
1193			lockdep_assert_held(&new_backup->base.resv->lock.base);
1194			list_add_tail(&res->mob_head, &new_backup->res_list);
1195		} else {
1196			res->backup = NULL;
1197		}
1198	}
1199	if (switch_backup)
1200		res->backup_offset = new_backup_offset;
1201
1202	if (!res->func->may_evict || res->id == -1 || res->pin_count)
1203		return;
1204
1205	write_lock(&dev_priv->resource_lock);
1206	list_add_tail(&res->lru_head,
1207		      &res->dev_priv->res_lru[res->func->res_type]);
1208	write_unlock(&dev_priv->resource_lock);
1209}
1210
1211/**
1212 * vmw_resource_check_buffer - Check whether a backup buffer is needed
1213 *                             for a resource and in that case, allocate
1214 *                             one, reserve and validate it.
1215 *
1216 * @res:            The resource for which to allocate a backup buffer.
1217 * @interruptible:  Whether any sleeps during allocation should be
1218 *                  performed while interruptible.
1219 * @val_buf:        On successful return contains data about the
1220 *                  reserved and validated backup buffer.
1221 */
1222static int
1223vmw_resource_check_buffer(struct vmw_resource *res,
1224			  bool interruptible,
1225			  struct ttm_validate_buffer *val_buf)
1226{
1227	struct list_head val_list;
1228	bool backup_dirty = false;
1229	int ret;
1230
1231	if (unlikely(res->backup == NULL)) {
1232		ret = vmw_resource_buf_alloc(res, interruptible);
1233		if (unlikely(ret != 0))
1234			return ret;
1235	}
1236
1237	INIT_LIST_HEAD(&val_list);
1238	val_buf->bo = ttm_bo_reference(&res->backup->base);
1239	val_buf->shared = false;
1240	list_add_tail(&val_buf->head, &val_list);
1241	ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1242	if (unlikely(ret != 0))
1243		goto out_no_reserve;
1244
1245	if (res->func->needs_backup && list_empty(&res->mob_head))
1246		return 0;
1247
1248	backup_dirty = res->backup_dirty;
1249	ret = ttm_bo_validate(&res->backup->base,
1250			      res->func->backup_placement,
1251			      true, false);
1252
1253	if (unlikely(ret != 0))
1254		goto out_no_validate;
1255
1256	return 0;
1257
1258out_no_validate:
1259	ttm_eu_backoff_reservation(NULL, &val_list);
1260out_no_reserve:
1261	ttm_bo_unref(&val_buf->bo);
1262	if (backup_dirty)
1263		vmw_dmabuf_unreference(&res->backup);
1264
1265	return ret;
1266}
1267
1268/**
1269 * vmw_resource_reserve - Reserve a resource for command submission
1270 *
1271 * @res:            The resource to reserve.
1272 *
1273 * This function takes the resource off the LRU list and make sure
1274 * a backup buffer is present for guest-backed resources. However,
1275 * the buffer may not be bound to the resource at this point.
1276 *
1277 */
1278int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1279			 bool no_backup)
1280{
1281	struct vmw_private *dev_priv = res->dev_priv;
1282	int ret;
1283
1284	write_lock(&dev_priv->resource_lock);
1285	list_del_init(&res->lru_head);
1286	write_unlock(&dev_priv->resource_lock);
1287
1288	if (res->func->needs_backup && res->backup == NULL &&
1289	    !no_backup) {
1290		ret = vmw_resource_buf_alloc(res, interruptible);
1291		if (unlikely(ret != 0)) {
1292			DRM_ERROR("Failed to allocate a backup buffer "
1293				  "of size %lu. bytes\n",
1294				  (unsigned long) res->backup_size);
1295			return ret;
1296		}
1297	}
1298
1299	return 0;
1300}
1301
1302/**
1303 * vmw_resource_backoff_reservation - Unreserve and unreference a
1304 *                                    backup buffer
1305 *.
1306 * @val_buf:        Backup buffer information.
1307 */
1308static void
1309vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1310{
1311	struct list_head val_list;
1312
1313	if (likely(val_buf->bo == NULL))
1314		return;
1315
1316	INIT_LIST_HEAD(&val_list);
1317	list_add_tail(&val_buf->head, &val_list);
1318	ttm_eu_backoff_reservation(NULL, &val_list);
1319	ttm_bo_unref(&val_buf->bo);
1320}
1321
1322/**
1323 * vmw_resource_do_evict - Evict a resource, and transfer its data
1324 *                         to a backup buffer.
1325 *
1326 * @res:            The resource to evict.
1327 * @interruptible:  Whether to wait interruptible.
1328 */
1329static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1330{
1331	struct ttm_validate_buffer val_buf;
1332	const struct vmw_res_func *func = res->func;
1333	int ret;
1334
1335	BUG_ON(!func->may_evict);
1336
1337	val_buf.bo = NULL;
1338	val_buf.shared = false;
1339	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1340	if (unlikely(ret != 0))
1341		return ret;
1342
1343	if (unlikely(func->unbind != NULL &&
1344		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1345		ret = func->unbind(res, res->res_dirty, &val_buf);
1346		if (unlikely(ret != 0))
1347			goto out_no_unbind;
1348		list_del_init(&res->mob_head);
1349	}
1350	ret = func->destroy(res);
1351	res->backup_dirty = true;
1352	res->res_dirty = false;
1353out_no_unbind:
1354	vmw_resource_backoff_reservation(&val_buf);
1355
1356	return ret;
1357}
1358
1359
1360/**
1361 * vmw_resource_validate - Make a resource up-to-date and visible
1362 *                         to the device.
1363 *
1364 * @res:            The resource to make visible to the device.
1365 *
1366 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1367 * be reserved and validated.
1368 * On hardware resource shortage, this function will repeatedly evict
1369 * resources of the same type until the validation succeeds.
1370 */
1371int vmw_resource_validate(struct vmw_resource *res)
1372{
1373	int ret;
1374	struct vmw_resource *evict_res;
1375	struct vmw_private *dev_priv = res->dev_priv;
1376	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1377	struct ttm_validate_buffer val_buf;
1378	unsigned err_count = 0;
1379
1380	if (!res->func->create)
1381		return 0;
1382
1383	val_buf.bo = NULL;
1384	val_buf.shared = false;
1385	if (res->backup)
1386		val_buf.bo = &res->backup->base;
1387	do {
1388		ret = vmw_resource_do_validate(res, &val_buf);
1389		if (likely(ret != -EBUSY))
1390			break;
1391
1392		write_lock(&dev_priv->resource_lock);
1393		if (list_empty(lru_list) || !res->func->may_evict) {
1394			DRM_ERROR("Out of device device resources "
1395				  "for %s.\n", res->func->type_name);
1396			ret = -EBUSY;
1397			write_unlock(&dev_priv->resource_lock);
1398			break;
1399		}
1400
1401		evict_res = vmw_resource_reference
1402			(list_first_entry(lru_list, struct vmw_resource,
1403					  lru_head));
1404		list_del_init(&evict_res->lru_head);
1405
1406		write_unlock(&dev_priv->resource_lock);
1407
1408		ret = vmw_resource_do_evict(evict_res, true);
1409		if (unlikely(ret != 0)) {
1410			write_lock(&dev_priv->resource_lock);
1411			list_add_tail(&evict_res->lru_head, lru_list);
1412			write_unlock(&dev_priv->resource_lock);
1413			if (ret == -ERESTARTSYS ||
1414			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1415				vmw_resource_unreference(&evict_res);
1416				goto out_no_validate;
1417			}
1418		}
1419
1420		vmw_resource_unreference(&evict_res);
1421	} while (1);
1422
1423	if (unlikely(ret != 0))
1424		goto out_no_validate;
1425	else if (!res->func->needs_backup && res->backup) {
1426		list_del_init(&res->mob_head);
1427		vmw_dmabuf_unreference(&res->backup);
1428	}
1429
1430	return 0;
1431
1432out_no_validate:
1433	return ret;
1434}
1435
1436/**
1437 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1438 *                       object without unreserving it.
1439 *
1440 * @bo:             Pointer to the struct ttm_buffer_object to fence.
1441 * @fence:          Pointer to the fence. If NULL, this function will
1442 *                  insert a fence into the command stream..
1443 *
1444 * Contrary to the ttm_eu version of this function, it takes only
1445 * a single buffer object instead of a list, and it also doesn't
1446 * unreserve the buffer object, which needs to be done separately.
1447 */
1448void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1449			 struct vmw_fence_obj *fence)
1450{
1451	struct ttm_bo_device *bdev = bo->bdev;
1452
 
1453	struct vmw_private *dev_priv =
1454		container_of(bdev, struct vmw_private, bdev);
1455
1456	if (fence == NULL) {
1457		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1458		reservation_object_add_excl_fence(bo->resv, &fence->base);
1459		fence_put(&fence->base);
1460	} else
1461		reservation_object_add_excl_fence(bo->resv, &fence->base);
 
 
 
 
 
 
 
 
1462}
1463
1464/**
1465 * vmw_resource_move_notify - TTM move_notify_callback
1466 *
1467 * @bo: The TTM buffer object about to move.
1468 * @mem: The struct ttm_mem_reg indicating to what memory
1469 *       region the move is taking place.
1470 *
1471 * Evicts the Guest Backed hardware resource if the backup
1472 * buffer is being moved out of MOB memory.
1473 * Note that this function should not race with the resource
1474 * validation code as long as it accesses only members of struct
1475 * resource that remain static while bo::res is !NULL and
1476 * while we have @bo reserved. struct resource::backup is *not* a
1477 * static member. The resource validation code will take care
1478 * to set @bo::res to NULL, while having @bo reserved when the
1479 * buffer is no longer bound to the resource, so @bo:res can be
1480 * used to determine whether there is a need to unbind and whether
1481 * it is safe to unbind.
1482 */
1483void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1484			      struct ttm_mem_reg *mem)
1485{
1486	struct vmw_dma_buffer *dma_buf;
1487
1488	if (mem == NULL)
1489		return;
1490
1491	if (bo->destroy != vmw_dmabuf_bo_free &&
1492	    bo->destroy != vmw_user_dmabuf_destroy)
1493		return;
1494
1495	dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1496
1497	if (mem->mem_type != VMW_PL_MOB) {
1498		struct vmw_resource *res, *n;
 
1499		struct ttm_validate_buffer val_buf;
1500
1501		val_buf.bo = bo;
1502		val_buf.shared = false;
1503
1504		list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1505
1506			if (unlikely(res->func->unbind == NULL))
1507				continue;
1508
1509			(void) res->func->unbind(res, true, &val_buf);
1510			res->backup_dirty = true;
1511			res->res_dirty = false;
1512			list_del_init(&res->mob_head);
1513		}
1514
 
1515		(void) ttm_bo_wait(bo, false, false, false);
 
1516	}
1517}
1518
1519
1520
1521/**
1522 * vmw_query_readback_all - Read back cached query states
1523 *
1524 * @dx_query_mob: Buffer containing the DX query MOB
1525 *
1526 * Read back cached states from the device if they exist.  This function
1527 * assumings binding_mutex is held.
1528 */
1529int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1530{
1531	struct vmw_resource *dx_query_ctx;
1532	struct vmw_private *dev_priv;
1533	struct {
1534		SVGA3dCmdHeader header;
1535		SVGA3dCmdDXReadbackAllQuery body;
1536	} *cmd;
1537
1538
1539	/* No query bound, so do nothing */
1540	if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1541		return 0;
1542
1543	dx_query_ctx = dx_query_mob->dx_query_ctx;
1544	dev_priv     = dx_query_ctx->dev_priv;
1545
1546	cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1547	if (unlikely(cmd == NULL)) {
1548		DRM_ERROR("Failed reserving FIFO space for "
1549			  "query MOB read back.\n");
1550		return -ENOMEM;
1551	}
1552
1553	cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1554	cmd->header.size = sizeof(cmd->body);
1555	cmd->body.cid    = dx_query_ctx->id;
1556
1557	vmw_fifo_commit(dev_priv, sizeof(*cmd));
1558
1559	/* Triggers a rebind the next time affected context is bound */
1560	dx_query_mob->dx_query_ctx = NULL;
1561
1562	return 0;
1563}
1564
1565
1566
1567/**
1568 * vmw_query_move_notify - Read back cached query states
1569 *
1570 * @bo: The TTM buffer object about to move.
1571 * @mem: The memory region @bo is moving to.
1572 *
1573 * Called before the query MOB is swapped out to read back cached query
1574 * states from the device.
1575 */
1576void vmw_query_move_notify(struct ttm_buffer_object *bo,
1577			   struct ttm_mem_reg *mem)
1578{
1579	struct vmw_dma_buffer *dx_query_mob;
1580	struct ttm_bo_device *bdev = bo->bdev;
1581	struct vmw_private *dev_priv;
1582
1583
1584	dev_priv = container_of(bdev, struct vmw_private, bdev);
1585
1586	mutex_lock(&dev_priv->binding_mutex);
1587
1588	dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1589	if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1590		mutex_unlock(&dev_priv->binding_mutex);
1591		return;
1592	}
1593
1594	/* If BO is being moved from MOB to system memory */
1595	if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1596		struct vmw_fence_obj *fence;
1597
1598		(void) vmw_query_readback_all(dx_query_mob);
1599		mutex_unlock(&dev_priv->binding_mutex);
1600
1601		/* Create a fence and attach the BO to it */
1602		(void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1603		vmw_fence_single_bo(bo, fence);
1604
1605		if (fence != NULL)
1606			vmw_fence_obj_unreference(&fence);
1607
1608		(void) ttm_bo_wait(bo, false, false, false);
1609	} else
1610		mutex_unlock(&dev_priv->binding_mutex);
1611
1612}
1613
1614/**
1615 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1616 *
1617 * @res:            The resource being queried.
1618 */
1619bool vmw_resource_needs_backup(const struct vmw_resource *res)
1620{
1621	return res->func->needs_backup;
1622}
1623
1624/**
1625 * vmw_resource_evict_type - Evict all resources of a specific type
1626 *
1627 * @dev_priv:       Pointer to a device private struct
1628 * @type:           The resource type to evict
1629 *
1630 * To avoid thrashing starvation or as part of the hibernation sequence,
1631 * try to evict all evictable resources of a specific type.
1632 */
1633static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1634				    enum vmw_res_type type)
1635{
1636	struct list_head *lru_list = &dev_priv->res_lru[type];
1637	struct vmw_resource *evict_res;
1638	unsigned err_count = 0;
1639	int ret;
1640
1641	do {
1642		write_lock(&dev_priv->resource_lock);
1643
1644		if (list_empty(lru_list))
1645			goto out_unlock;
1646
1647		evict_res = vmw_resource_reference(
1648			list_first_entry(lru_list, struct vmw_resource,
1649					 lru_head));
1650		list_del_init(&evict_res->lru_head);
1651		write_unlock(&dev_priv->resource_lock);
1652
1653		ret = vmw_resource_do_evict(evict_res, false);
1654		if (unlikely(ret != 0)) {
1655			write_lock(&dev_priv->resource_lock);
1656			list_add_tail(&evict_res->lru_head, lru_list);
1657			write_unlock(&dev_priv->resource_lock);
1658			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1659				vmw_resource_unreference(&evict_res);
1660				return;
1661			}
1662		}
1663
1664		vmw_resource_unreference(&evict_res);
1665	} while (1);
1666
1667out_unlock:
1668	write_unlock(&dev_priv->resource_lock);
1669}
1670
1671/**
1672 * vmw_resource_evict_all - Evict all evictable resources
1673 *
1674 * @dev_priv:       Pointer to a device private struct
1675 *
1676 * To avoid thrashing starvation or as part of the hibernation sequence,
1677 * evict all evictable resources. In particular this means that all
1678 * guest-backed resources that are registered with the device are
1679 * evicted and the OTable becomes clean.
1680 */
1681void vmw_resource_evict_all(struct vmw_private *dev_priv)
1682{
1683	enum vmw_res_type type;
1684
1685	mutex_lock(&dev_priv->cmdbuf_mutex);
1686
1687	for (type = 0; type < vmw_res_max; ++type)
1688		vmw_resource_evict_type(dev_priv, type);
1689
1690	mutex_unlock(&dev_priv->cmdbuf_mutex);
1691}
1692
1693/**
1694 * vmw_resource_pin - Add a pin reference on a resource
1695 *
1696 * @res: The resource to add a pin reference on
1697 *
1698 * This function adds a pin reference, and if needed validates the resource.
1699 * Having a pin reference means that the resource can never be evicted, and
1700 * its id will never change as long as there is a pin reference.
1701 * This function returns 0 on success and a negative error code on failure.
1702 */
1703int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1704{
1705	struct vmw_private *dev_priv = res->dev_priv;
1706	int ret;
1707
1708	ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1709	mutex_lock(&dev_priv->cmdbuf_mutex);
1710	ret = vmw_resource_reserve(res, interruptible, false);
1711	if (ret)
1712		goto out_no_reserve;
1713
1714	if (res->pin_count == 0) {
1715		struct vmw_dma_buffer *vbo = NULL;
1716
1717		if (res->backup) {
1718			vbo = res->backup;
1719
1720			ttm_bo_reserve(&vbo->base, interruptible, false, false,
1721				       NULL);
1722			if (!vbo->pin_count) {
1723				ret = ttm_bo_validate
1724					(&vbo->base,
1725					 res->func->backup_placement,
1726					 interruptible, false);
1727				if (ret) {
1728					ttm_bo_unreserve(&vbo->base);
1729					goto out_no_validate;
1730				}
1731			}
1732
1733			/* Do we really need to pin the MOB as well? */
1734			vmw_bo_pin_reserved(vbo, true);
1735		}
1736		ret = vmw_resource_validate(res);
1737		if (vbo)
1738			ttm_bo_unreserve(&vbo->base);
1739		if (ret)
1740			goto out_no_validate;
1741	}
1742	res->pin_count++;
1743
1744out_no_validate:
1745	vmw_resource_unreserve(res, false, NULL, 0UL);
1746out_no_reserve:
1747	mutex_unlock(&dev_priv->cmdbuf_mutex);
1748	ttm_write_unlock(&dev_priv->reservation_sem);
1749
1750	return ret;
1751}
1752
1753/**
1754 * vmw_resource_unpin - Remove a pin reference from a resource
1755 *
1756 * @res: The resource to remove a pin reference from
1757 *
1758 * Having a pin reference means that the resource can never be evicted, and
1759 * its id will never change as long as there is a pin reference.
1760 */
1761void vmw_resource_unpin(struct vmw_resource *res)
1762{
1763	struct vmw_private *dev_priv = res->dev_priv;
1764	int ret;
1765
1766	ttm_read_lock(&dev_priv->reservation_sem, false);
1767	mutex_lock(&dev_priv->cmdbuf_mutex);
1768
1769	ret = vmw_resource_reserve(res, false, true);
1770	WARN_ON(ret);
1771
1772	WARN_ON(res->pin_count == 0);
1773	if (--res->pin_count == 0 && res->backup) {
1774		struct vmw_dma_buffer *vbo = res->backup;
1775
1776		ttm_bo_reserve(&vbo->base, false, false, false, NULL);
1777		vmw_bo_pin_reserved(vbo, false);
1778		ttm_bo_unreserve(&vbo->base);
1779	}
1780
1781	vmw_resource_unreserve(res, false, NULL, 0UL);
1782
1783	mutex_unlock(&dev_priv->cmdbuf_mutex);
1784	ttm_read_unlock(&dev_priv->reservation_sem);
1785}
1786
1787/**
1788 * vmw_res_type - Return the resource type
1789 *
1790 * @res: Pointer to the resource
1791 */
1792enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1793{
1794	return res->func->res_type;
1795}
v3.15
   1/**************************************************************************
   2 *
   3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27
  28#include "vmwgfx_drv.h"
  29#include <drm/vmwgfx_drm.h>
  30#include <drm/ttm/ttm_object.h>
  31#include <drm/ttm/ttm_placement.h>
  32#include <drm/drmP.h>
  33#include "vmwgfx_resource_priv.h"
 
  34
  35#define VMW_RES_EVICT_ERR_COUNT 10
  36
  37struct vmw_user_dma_buffer {
  38	struct ttm_prime_object prime;
  39	struct vmw_dma_buffer dma;
  40};
  41
  42struct vmw_bo_user_rep {
  43	uint32_t handle;
  44	uint64_t map_handle;
  45};
  46
  47struct vmw_stream {
  48	struct vmw_resource res;
  49	uint32_t stream_id;
  50};
  51
  52struct vmw_user_stream {
  53	struct ttm_base_object base;
  54	struct vmw_stream stream;
  55};
  56
  57
  58static uint64_t vmw_user_stream_size;
  59
  60static const struct vmw_res_func vmw_stream_func = {
  61	.res_type = vmw_res_stream,
  62	.needs_backup = false,
  63	.may_evict = false,
  64	.type_name = "video streams",
  65	.backup_placement = NULL,
  66	.create = NULL,
  67	.destroy = NULL,
  68	.bind = NULL,
  69	.unbind = NULL
  70};
  71
  72static inline struct vmw_dma_buffer *
  73vmw_dma_buffer(struct ttm_buffer_object *bo)
  74{
  75	return container_of(bo, struct vmw_dma_buffer, base);
  76}
  77
  78static inline struct vmw_user_dma_buffer *
  79vmw_user_dma_buffer(struct ttm_buffer_object *bo)
  80{
  81	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
  82	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
  83}
  84
  85struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
  86{
  87	kref_get(&res->kref);
  88	return res;
  89}
  90
  91struct vmw_resource *
  92vmw_resource_reference_unless_doomed(struct vmw_resource *res)
  93{
  94	return kref_get_unless_zero(&res->kref) ? res : NULL;
  95}
  96
  97/**
  98 * vmw_resource_release_id - release a resource id to the id manager.
  99 *
 100 * @res: Pointer to the resource.
 101 *
 102 * Release the resource id to the resource id manager and set it to -1
 103 */
 104void vmw_resource_release_id(struct vmw_resource *res)
 105{
 106	struct vmw_private *dev_priv = res->dev_priv;
 107	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 108
 109	write_lock(&dev_priv->resource_lock);
 110	if (res->id != -1)
 111		idr_remove(idr, res->id);
 112	res->id = -1;
 113	write_unlock(&dev_priv->resource_lock);
 114}
 115
 116static void vmw_resource_release(struct kref *kref)
 117{
 118	struct vmw_resource *res =
 119	    container_of(kref, struct vmw_resource, kref);
 120	struct vmw_private *dev_priv = res->dev_priv;
 121	int id;
 122	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 123
 
 124	res->avail = false;
 125	list_del_init(&res->lru_head);
 126	write_unlock(&dev_priv->resource_lock);
 127	if (res->backup) {
 128		struct ttm_buffer_object *bo = &res->backup->base;
 129
 130		ttm_bo_reserve(bo, false, false, false, 0);
 131		if (!list_empty(&res->mob_head) &&
 132		    res->func->unbind != NULL) {
 133			struct ttm_validate_buffer val_buf;
 134
 135			val_buf.bo = bo;
 
 136			res->func->unbind(res, false, &val_buf);
 137		}
 138		res->backup_dirty = false;
 139		list_del_init(&res->mob_head);
 140		ttm_bo_unreserve(bo);
 141		vmw_dmabuf_unreference(&res->backup);
 142	}
 143
 144	if (likely(res->hw_destroy != NULL)) {
 145		res->hw_destroy(res);
 146		mutex_lock(&dev_priv->binding_mutex);
 147		vmw_context_binding_res_list_kill(&res->binding_head);
 148		mutex_unlock(&dev_priv->binding_mutex);
 
 149	}
 150
 151	id = res->id;
 152	if (res->res_free != NULL)
 153		res->res_free(res);
 154	else
 155		kfree(res);
 156
 157	write_lock(&dev_priv->resource_lock);
 158
 159	if (id != -1)
 160		idr_remove(idr, id);
 
 161}
 162
 163void vmw_resource_unreference(struct vmw_resource **p_res)
 164{
 165	struct vmw_resource *res = *p_res;
 166	struct vmw_private *dev_priv = res->dev_priv;
 167
 168	*p_res = NULL;
 169	write_lock(&dev_priv->resource_lock);
 170	kref_put(&res->kref, vmw_resource_release);
 171	write_unlock(&dev_priv->resource_lock);
 172}
 173
 174
 175/**
 176 * vmw_resource_alloc_id - release a resource id to the id manager.
 177 *
 178 * @res: Pointer to the resource.
 179 *
 180 * Allocate the lowest free resource from the resource manager, and set
 181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
 182 */
 183int vmw_resource_alloc_id(struct vmw_resource *res)
 184{
 185	struct vmw_private *dev_priv = res->dev_priv;
 186	int ret;
 187	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 188
 189	BUG_ON(res->id != -1);
 190
 191	idr_preload(GFP_KERNEL);
 192	write_lock(&dev_priv->resource_lock);
 193
 194	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
 195	if (ret >= 0)
 196		res->id = ret;
 197
 198	write_unlock(&dev_priv->resource_lock);
 199	idr_preload_end();
 200	return ret < 0 ? ret : 0;
 201}
 202
 203/**
 204 * vmw_resource_init - initialize a struct vmw_resource
 205 *
 206 * @dev_priv:       Pointer to a device private struct.
 207 * @res:            The struct vmw_resource to initialize.
 208 * @obj_type:       Resource object type.
 209 * @delay_id:       Boolean whether to defer device id allocation until
 210 *                  the first validation.
 211 * @res_free:       Resource destructor.
 212 * @func:           Resource function table.
 213 */
 214int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
 215		      bool delay_id,
 216		      void (*res_free) (struct vmw_resource *res),
 217		      const struct vmw_res_func *func)
 218{
 219	kref_init(&res->kref);
 220	res->hw_destroy = NULL;
 221	res->res_free = res_free;
 222	res->avail = false;
 223	res->dev_priv = dev_priv;
 224	res->func = func;
 225	INIT_LIST_HEAD(&res->lru_head);
 226	INIT_LIST_HEAD(&res->mob_head);
 227	INIT_LIST_HEAD(&res->binding_head);
 228	res->id = -1;
 229	res->backup = NULL;
 230	res->backup_offset = 0;
 231	res->backup_dirty = false;
 232	res->res_dirty = false;
 233	if (delay_id)
 234		return 0;
 235	else
 236		return vmw_resource_alloc_id(res);
 237}
 238
 239/**
 240 * vmw_resource_activate
 241 *
 242 * @res:        Pointer to the newly created resource
 243 * @hw_destroy: Destroy function. NULL if none.
 244 *
 245 * Activate a resource after the hardware has been made aware of it.
 246 * Set tye destroy function to @destroy. Typically this frees the
 247 * resource and destroys the hardware resources associated with it.
 248 * Activate basically means that the function vmw_resource_lookup will
 249 * find it.
 250 */
 251void vmw_resource_activate(struct vmw_resource *res,
 252			   void (*hw_destroy) (struct vmw_resource *))
 253{
 254	struct vmw_private *dev_priv = res->dev_priv;
 255
 256	write_lock(&dev_priv->resource_lock);
 257	res->avail = true;
 258	res->hw_destroy = hw_destroy;
 259	write_unlock(&dev_priv->resource_lock);
 260}
 261
 262struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
 263					 struct idr *idr, int id)
 264{
 265	struct vmw_resource *res;
 266
 267	read_lock(&dev_priv->resource_lock);
 268	res = idr_find(idr, id);
 269	if (res && res->avail)
 270		kref_get(&res->kref);
 271	else
 272		res = NULL;
 
 273	read_unlock(&dev_priv->resource_lock);
 274
 275	if (unlikely(res == NULL))
 276		return NULL;
 277
 278	return res;
 279}
 280
 281/**
 282 * vmw_user_resource_lookup_handle - lookup a struct resource from a
 283 * TTM user-space handle and perform basic type checks
 284 *
 285 * @dev_priv:     Pointer to a device private struct
 286 * @tfile:        Pointer to a struct ttm_object_file identifying the caller
 287 * @handle:       The TTM user-space handle
 288 * @converter:    Pointer to an object describing the resource type
 289 * @p_res:        On successful return the location pointed to will contain
 290 *                a pointer to a refcounted struct vmw_resource.
 291 *
 292 * If the handle can't be found or is associated with an incorrect resource
 293 * type, -EINVAL will be returned.
 294 */
 295int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
 296				    struct ttm_object_file *tfile,
 297				    uint32_t handle,
 298				    const struct vmw_user_resource_conv
 299				    *converter,
 300				    struct vmw_resource **p_res)
 301{
 302	struct ttm_base_object *base;
 303	struct vmw_resource *res;
 304	int ret = -EINVAL;
 305
 306	base = ttm_base_object_lookup(tfile, handle);
 307	if (unlikely(base == NULL))
 308		return -EINVAL;
 309
 310	if (unlikely(ttm_base_object_type(base) != converter->object_type))
 311		goto out_bad_resource;
 312
 313	res = converter->base_obj_to_res(base);
 314
 315	read_lock(&dev_priv->resource_lock);
 316	if (!res->avail || res->res_free != converter->res_free) {
 317		read_unlock(&dev_priv->resource_lock);
 318		goto out_bad_resource;
 319	}
 320
 321	kref_get(&res->kref);
 322	read_unlock(&dev_priv->resource_lock);
 323
 324	*p_res = res;
 325	ret = 0;
 326
 327out_bad_resource:
 328	ttm_base_object_unref(&base);
 329
 330	return ret;
 331}
 332
 333/**
 334 * Helper function that looks either a surface or dmabuf.
 335 *
 336 * The pointer this pointed at by out_surf and out_buf needs to be null.
 337 */
 338int vmw_user_lookup_handle(struct vmw_private *dev_priv,
 339			   struct ttm_object_file *tfile,
 340			   uint32_t handle,
 341			   struct vmw_surface **out_surf,
 342			   struct vmw_dma_buffer **out_buf)
 343{
 344	struct vmw_resource *res;
 345	int ret;
 346
 347	BUG_ON(*out_surf || *out_buf);
 348
 349	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
 350					      user_surface_converter,
 351					      &res);
 352	if (!ret) {
 353		*out_surf = vmw_res_to_srf(res);
 354		return 0;
 355	}
 356
 357	*out_surf = NULL;
 358	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
 359	return ret;
 360}
 361
 362/**
 363 * Buffer management.
 364 */
 365
 366/**
 367 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
 368 *
 369 * @dev_priv: Pointer to a struct vmw_private identifying the device.
 370 * @size: The requested buffer size.
 371 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
 372 */
 373static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
 374				  bool user)
 375{
 376	static size_t struct_size, user_struct_size;
 377	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 378	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
 379
 380	if (unlikely(struct_size == 0)) {
 381		size_t backend_size = ttm_round_pot(vmw_tt_size);
 382
 383		struct_size = backend_size +
 384			ttm_round_pot(sizeof(struct vmw_dma_buffer));
 385		user_struct_size = backend_size +
 386			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
 387	}
 388
 389	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
 390		page_array_size +=
 391			ttm_round_pot(num_pages * sizeof(dma_addr_t));
 392
 393	return ((user) ? user_struct_size : struct_size) +
 394		page_array_size;
 395}
 396
 397void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
 398{
 399	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
 400
 401	kfree(vmw_bo);
 402}
 403
 404static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
 405{
 406	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
 407
 408	ttm_prime_object_kfree(vmw_user_bo, prime);
 409}
 410
 411int vmw_dmabuf_init(struct vmw_private *dev_priv,
 412		    struct vmw_dma_buffer *vmw_bo,
 413		    size_t size, struct ttm_placement *placement,
 414		    bool interruptible,
 415		    void (*bo_free) (struct ttm_buffer_object *bo))
 416{
 417	struct ttm_bo_device *bdev = &dev_priv->bdev;
 418	size_t acc_size;
 419	int ret;
 420	bool user = (bo_free == &vmw_user_dmabuf_destroy);
 421
 422	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
 423
 424	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
 425	memset(vmw_bo, 0, sizeof(*vmw_bo));
 426
 427	INIT_LIST_HEAD(&vmw_bo->res_list);
 428
 429	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
 430			  ttm_bo_type_device, placement,
 431			  0, interruptible,
 432			  NULL, acc_size, NULL, bo_free);
 433	return ret;
 434}
 435
 436static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
 437{
 438	struct vmw_user_dma_buffer *vmw_user_bo;
 439	struct ttm_base_object *base = *p_base;
 440	struct ttm_buffer_object *bo;
 441
 442	*p_base = NULL;
 443
 444	if (unlikely(base == NULL))
 445		return;
 446
 447	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
 448				   prime.base);
 449	bo = &vmw_user_bo->dma.base;
 450	ttm_bo_unref(&bo);
 451}
 452
 453static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
 454					    enum ttm_ref_type ref_type)
 455{
 456	struct vmw_user_dma_buffer *user_bo;
 457	user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
 458
 459	switch (ref_type) {
 460	case TTM_REF_SYNCCPU_WRITE:
 461		ttm_bo_synccpu_write_release(&user_bo->dma.base);
 462		break;
 463	default:
 464		BUG();
 465	}
 466}
 467
 468/**
 469 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
 470 *
 471 * @dev_priv: Pointer to a struct device private.
 472 * @tfile: Pointer to a struct ttm_object_file on which to register the user
 473 * object.
 474 * @size: Size of the dma buffer.
 475 * @shareable: Boolean whether the buffer is shareable with other open files.
 476 * @handle: Pointer to where the handle value should be assigned.
 477 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
 478 * should be assigned.
 479 */
 480int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
 481			  struct ttm_object_file *tfile,
 482			  uint32_t size,
 483			  bool shareable,
 484			  uint32_t *handle,
 485			  struct vmw_dma_buffer **p_dma_buf)
 
 486{
 487	struct vmw_user_dma_buffer *user_bo;
 488	struct ttm_buffer_object *tmp;
 489	int ret;
 490
 491	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
 492	if (unlikely(user_bo == NULL)) {
 493		DRM_ERROR("Failed to allocate a buffer.\n");
 494		return -ENOMEM;
 495	}
 496
 497	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
 498			      (dev_priv->has_mob) ?
 499			      &vmw_sys_placement :
 500			      &vmw_vram_sys_placement, true,
 501			      &vmw_user_dmabuf_destroy);
 502	if (unlikely(ret != 0))
 503		return ret;
 504
 505	tmp = ttm_bo_reference(&user_bo->dma.base);
 506	ret = ttm_prime_object_init(tfile,
 507				    size,
 508				    &user_bo->prime,
 509				    shareable,
 510				    ttm_buffer_type,
 511				    &vmw_user_dmabuf_release,
 512				    &vmw_user_dmabuf_ref_obj_release);
 513	if (unlikely(ret != 0)) {
 514		ttm_bo_unref(&tmp);
 515		goto out_no_base_object;
 516	}
 517
 518	*p_dma_buf = &user_bo->dma;
 
 
 
 
 519	*handle = user_bo->prime.base.hash.key;
 520
 521out_no_base_object:
 522	return ret;
 523}
 524
 525/**
 526 * vmw_user_dmabuf_verify_access - verify access permissions on this
 527 * buffer object.
 528 *
 529 * @bo: Pointer to the buffer object being accessed
 530 * @tfile: Identifying the caller.
 531 */
 532int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
 533				  struct ttm_object_file *tfile)
 534{
 535	struct vmw_user_dma_buffer *vmw_user_bo;
 536
 537	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
 538		return -EPERM;
 539
 540	vmw_user_bo = vmw_user_dma_buffer(bo);
 541
 542	/* Check that the caller has opened the object. */
 543	if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
 544		return 0;
 545
 546	DRM_ERROR("Could not grant buffer access.\n");
 547	return -EPERM;
 548}
 549
 550/**
 551 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
 552 * access, idling previous GPU operations on the buffer and optionally
 553 * blocking it for further command submissions.
 554 *
 555 * @user_bo: Pointer to the buffer object being grabbed for CPU access
 556 * @tfile: Identifying the caller.
 557 * @flags: Flags indicating how the grab should be performed.
 558 *
 559 * A blocking grab will be automatically released when @tfile is closed.
 560 */
 561static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
 562					struct ttm_object_file *tfile,
 563					uint32_t flags)
 564{
 565	struct ttm_buffer_object *bo = &user_bo->dma.base;
 566	bool existed;
 567	int ret;
 568
 569	if (flags & drm_vmw_synccpu_allow_cs) {
 570		struct ttm_bo_device *bdev = bo->bdev;
 
 571
 572		spin_lock(&bdev->fence_lock);
 573		ret = ttm_bo_wait(bo, false, true,
 574				  !!(flags & drm_vmw_synccpu_dontblock));
 575		spin_unlock(&bdev->fence_lock);
 576		return ret;
 
 
 
 
 577	}
 578
 579	ret = ttm_bo_synccpu_write_grab
 580		(bo, !!(flags & drm_vmw_synccpu_dontblock));
 581	if (unlikely(ret != 0))
 582		return ret;
 583
 584	ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
 585				 TTM_REF_SYNCCPU_WRITE, &existed);
 586	if (ret != 0 || existed)
 587		ttm_bo_synccpu_write_release(&user_bo->dma.base);
 588
 589	return ret;
 590}
 591
 592/**
 593 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
 594 * and unblock command submission on the buffer if blocked.
 595 *
 596 * @handle: Handle identifying the buffer object.
 597 * @tfile: Identifying the caller.
 598 * @flags: Flags indicating the type of release.
 599 */
 600static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
 601					   struct ttm_object_file *tfile,
 602					   uint32_t flags)
 603{
 604	if (!(flags & drm_vmw_synccpu_allow_cs))
 605		return ttm_ref_object_base_unref(tfile, handle,
 606						 TTM_REF_SYNCCPU_WRITE);
 607
 608	return 0;
 609}
 610
 611/**
 612 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
 613 * functionality.
 614 *
 615 * @dev: Identifies the drm device.
 616 * @data: Pointer to the ioctl argument.
 617 * @file_priv: Identifies the caller.
 618 *
 619 * This function checks the ioctl arguments for validity and calls the
 620 * relevant synccpu functions.
 621 */
 622int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
 623				  struct drm_file *file_priv)
 624{
 625	struct drm_vmw_synccpu_arg *arg =
 626		(struct drm_vmw_synccpu_arg *) data;
 627	struct vmw_dma_buffer *dma_buf;
 628	struct vmw_user_dma_buffer *user_bo;
 629	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 
 630	int ret;
 631
 632	if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
 633	    || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
 634			       drm_vmw_synccpu_dontblock |
 635			       drm_vmw_synccpu_allow_cs)) != 0) {
 636		DRM_ERROR("Illegal synccpu flags.\n");
 637		return -EINVAL;
 638	}
 639
 640	switch (arg->op) {
 641	case drm_vmw_synccpu_grab:
 642		ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf);
 
 643		if (unlikely(ret != 0))
 644			return ret;
 645
 646		user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
 647				       dma);
 648		ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
 649		vmw_dmabuf_unreference(&dma_buf);
 
 650		if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
 651			     ret != -EBUSY)) {
 652			DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
 653				  (unsigned int) arg->handle);
 654			return ret;
 655		}
 656		break;
 657	case drm_vmw_synccpu_release:
 658		ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
 659						      arg->flags);
 660		if (unlikely(ret != 0)) {
 661			DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
 662				  (unsigned int) arg->handle);
 663			return ret;
 664		}
 665		break;
 666	default:
 667		DRM_ERROR("Invalid synccpu operation.\n");
 668		return -EINVAL;
 669	}
 670
 671	return 0;
 672}
 673
 674int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
 675			   struct drm_file *file_priv)
 676{
 677	struct vmw_private *dev_priv = vmw_priv(dev);
 678	union drm_vmw_alloc_dmabuf_arg *arg =
 679	    (union drm_vmw_alloc_dmabuf_arg *)data;
 680	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
 681	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
 682	struct vmw_dma_buffer *dma_buf;
 683	uint32_t handle;
 684	int ret;
 685
 686	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
 687	if (unlikely(ret != 0))
 688		return ret;
 689
 690	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
 691				    req->size, false, &handle, &dma_buf);
 
 692	if (unlikely(ret != 0))
 693		goto out_no_dmabuf;
 694
 695	rep->handle = handle;
 696	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
 697	rep->cur_gmr_id = handle;
 698	rep->cur_gmr_offset = 0;
 699
 700	vmw_dmabuf_unreference(&dma_buf);
 701
 702out_no_dmabuf:
 703	ttm_read_unlock(&dev_priv->reservation_sem);
 704
 705	return ret;
 706}
 707
 708int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
 709			   struct drm_file *file_priv)
 710{
 711	struct drm_vmw_unref_dmabuf_arg *arg =
 712	    (struct drm_vmw_unref_dmabuf_arg *)data;
 713
 714	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
 715					 arg->handle,
 716					 TTM_REF_USAGE);
 717}
 718
 719int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
 720			   uint32_t handle, struct vmw_dma_buffer **out)
 
 721{
 722	struct vmw_user_dma_buffer *vmw_user_bo;
 723	struct ttm_base_object *base;
 724
 725	base = ttm_base_object_lookup(tfile, handle);
 726	if (unlikely(base == NULL)) {
 727		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
 728		       (unsigned long)handle);
 729		return -ESRCH;
 730	}
 731
 732	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
 733		ttm_base_object_unref(&base);
 734		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
 735		       (unsigned long)handle);
 736		return -EINVAL;
 737	}
 738
 739	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
 740				   prime.base);
 741	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
 742	ttm_base_object_unref(&base);
 
 
 
 743	*out = &vmw_user_bo->dma;
 744
 745	return 0;
 746}
 747
 748int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
 749			      struct vmw_dma_buffer *dma_buf,
 750			      uint32_t *handle)
 751{
 752	struct vmw_user_dma_buffer *user_bo;
 753
 754	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
 755		return -EINVAL;
 756
 757	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
 758
 759	*handle = user_bo->prime.base.hash.key;
 760	return ttm_ref_object_add(tfile, &user_bo->prime.base,
 761				  TTM_REF_USAGE, NULL);
 762}
 763
 764/*
 765 * Stream management
 766 */
 767
 768static void vmw_stream_destroy(struct vmw_resource *res)
 769{
 770	struct vmw_private *dev_priv = res->dev_priv;
 771	struct vmw_stream *stream;
 772	int ret;
 773
 774	DRM_INFO("%s: unref\n", __func__);
 775	stream = container_of(res, struct vmw_stream, res);
 776
 777	ret = vmw_overlay_unref(dev_priv, stream->stream_id);
 778	WARN_ON(ret != 0);
 779}
 780
 781static int vmw_stream_init(struct vmw_private *dev_priv,
 782			   struct vmw_stream *stream,
 783			   void (*res_free) (struct vmw_resource *res))
 784{
 785	struct vmw_resource *res = &stream->res;
 786	int ret;
 787
 788	ret = vmw_resource_init(dev_priv, res, false, res_free,
 789				&vmw_stream_func);
 790
 791	if (unlikely(ret != 0)) {
 792		if (res_free == NULL)
 793			kfree(stream);
 794		else
 795			res_free(&stream->res);
 796		return ret;
 797	}
 798
 799	ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
 800	if (ret) {
 801		vmw_resource_unreference(&res);
 802		return ret;
 803	}
 804
 805	DRM_INFO("%s: claimed\n", __func__);
 806
 807	vmw_resource_activate(&stream->res, vmw_stream_destroy);
 808	return 0;
 809}
 810
 811static void vmw_user_stream_free(struct vmw_resource *res)
 812{
 813	struct vmw_user_stream *stream =
 814	    container_of(res, struct vmw_user_stream, stream.res);
 815	struct vmw_private *dev_priv = res->dev_priv;
 816
 817	ttm_base_object_kfree(stream, base);
 818	ttm_mem_global_free(vmw_mem_glob(dev_priv),
 819			    vmw_user_stream_size);
 820}
 821
 822/**
 823 * This function is called when user space has no more references on the
 824 * base object. It releases the base-object's reference on the resource object.
 825 */
 826
 827static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
 828{
 829	struct ttm_base_object *base = *p_base;
 830	struct vmw_user_stream *stream =
 831	    container_of(base, struct vmw_user_stream, base);
 832	struct vmw_resource *res = &stream->stream.res;
 833
 834	*p_base = NULL;
 835	vmw_resource_unreference(&res);
 836}
 837
 838int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
 839			   struct drm_file *file_priv)
 840{
 841	struct vmw_private *dev_priv = vmw_priv(dev);
 842	struct vmw_resource *res;
 843	struct vmw_user_stream *stream;
 844	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
 845	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 846	struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
 847	int ret = 0;
 848
 849
 850	res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
 851	if (unlikely(res == NULL))
 852		return -EINVAL;
 853
 854	if (res->res_free != &vmw_user_stream_free) {
 855		ret = -EINVAL;
 856		goto out;
 857	}
 858
 859	stream = container_of(res, struct vmw_user_stream, stream.res);
 860	if (stream->base.tfile != tfile) {
 861		ret = -EINVAL;
 862		goto out;
 863	}
 864
 865	ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
 866out:
 867	vmw_resource_unreference(&res);
 868	return ret;
 869}
 870
 871int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
 872			   struct drm_file *file_priv)
 873{
 874	struct vmw_private *dev_priv = vmw_priv(dev);
 875	struct vmw_user_stream *stream;
 876	struct vmw_resource *res;
 877	struct vmw_resource *tmp;
 878	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
 879	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 880	int ret;
 881
 882	/*
 883	 * Approximate idr memory usage with 128 bytes. It will be limited
 884	 * by maximum number_of streams anyway?
 885	 */
 886
 887	if (unlikely(vmw_user_stream_size == 0))
 888		vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
 889
 890	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
 891	if (unlikely(ret != 0))
 892		return ret;
 893
 894	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
 895				   vmw_user_stream_size,
 896				   false, true);
 
 897	if (unlikely(ret != 0)) {
 898		if (ret != -ERESTARTSYS)
 899			DRM_ERROR("Out of graphics memory for stream"
 900				  " creation.\n");
 901		goto out_unlock;
 
 902	}
 903
 904
 905	stream = kmalloc(sizeof(*stream), GFP_KERNEL);
 906	if (unlikely(stream == NULL)) {
 907		ttm_mem_global_free(vmw_mem_glob(dev_priv),
 908				    vmw_user_stream_size);
 909		ret = -ENOMEM;
 910		goto out_unlock;
 911	}
 912
 913	res = &stream->stream.res;
 914	stream->base.shareable = false;
 915	stream->base.tfile = NULL;
 916
 917	/*
 918	 * From here on, the destructor takes over resource freeing.
 919	 */
 920
 921	ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
 922	if (unlikely(ret != 0))
 923		goto out_unlock;
 924
 925	tmp = vmw_resource_reference(res);
 926	ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
 927				   &vmw_user_stream_base_release, NULL);
 928
 929	if (unlikely(ret != 0)) {
 930		vmw_resource_unreference(&tmp);
 931		goto out_err;
 932	}
 933
 934	arg->stream_id = res->id;
 935out_err:
 936	vmw_resource_unreference(&res);
 937out_unlock:
 938	ttm_read_unlock(&dev_priv->reservation_sem);
 939	return ret;
 940}
 941
 942int vmw_user_stream_lookup(struct vmw_private *dev_priv,
 943			   struct ttm_object_file *tfile,
 944			   uint32_t *inout_id, struct vmw_resource **out)
 945{
 946	struct vmw_user_stream *stream;
 947	struct vmw_resource *res;
 948	int ret;
 949
 950	res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
 951				  *inout_id);
 952	if (unlikely(res == NULL))
 953		return -EINVAL;
 954
 955	if (res->res_free != &vmw_user_stream_free) {
 956		ret = -EINVAL;
 957		goto err_ref;
 958	}
 959
 960	stream = container_of(res, struct vmw_user_stream, stream.res);
 961	if (stream->base.tfile != tfile) {
 962		ret = -EPERM;
 963		goto err_ref;
 964	}
 965
 966	*inout_id = stream->stream.stream_id;
 967	*out = res;
 968	return 0;
 969err_ref:
 970	vmw_resource_unreference(&res);
 971	return ret;
 972}
 973
 974
 975/**
 976 * vmw_dumb_create - Create a dumb kms buffer
 977 *
 978 * @file_priv: Pointer to a struct drm_file identifying the caller.
 979 * @dev: Pointer to the drm device.
 980 * @args: Pointer to a struct drm_mode_create_dumb structure
 981 *
 982 * This is a driver callback for the core drm create_dumb functionality.
 983 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
 984 * that the arguments have a different format.
 985 */
 986int vmw_dumb_create(struct drm_file *file_priv,
 987		    struct drm_device *dev,
 988		    struct drm_mode_create_dumb *args)
 989{
 990	struct vmw_private *dev_priv = vmw_priv(dev);
 991	struct vmw_dma_buffer *dma_buf;
 992	int ret;
 993
 994	args->pitch = args->width * ((args->bpp + 7) / 8);
 995	args->size = args->pitch * args->height;
 996
 997	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
 998	if (unlikely(ret != 0))
 999		return ret;
1000
1001	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1002				    args->size, false, &args->handle,
1003				    &dma_buf);
1004	if (unlikely(ret != 0))
1005		goto out_no_dmabuf;
1006
1007	vmw_dmabuf_unreference(&dma_buf);
1008out_no_dmabuf:
1009	ttm_read_unlock(&dev_priv->reservation_sem);
1010	return ret;
1011}
1012
1013/**
1014 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1015 *
1016 * @file_priv: Pointer to a struct drm_file identifying the caller.
1017 * @dev: Pointer to the drm device.
1018 * @handle: Handle identifying the dumb buffer.
1019 * @offset: The address space offset returned.
1020 *
1021 * This is a driver callback for the core drm dumb_map_offset functionality.
1022 */
1023int vmw_dumb_map_offset(struct drm_file *file_priv,
1024			struct drm_device *dev, uint32_t handle,
1025			uint64_t *offset)
1026{
1027	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1028	struct vmw_dma_buffer *out_buf;
1029	int ret;
1030
1031	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
1032	if (ret != 0)
1033		return -EINVAL;
1034
1035	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1036	vmw_dmabuf_unreference(&out_buf);
1037	return 0;
1038}
1039
1040/**
1041 * vmw_dumb_destroy - Destroy a dumb boffer
1042 *
1043 * @file_priv: Pointer to a struct drm_file identifying the caller.
1044 * @dev: Pointer to the drm device.
1045 * @handle: Handle identifying the dumb buffer.
1046 *
1047 * This is a driver callback for the core drm dumb_destroy functionality.
1048 */
1049int vmw_dumb_destroy(struct drm_file *file_priv,
1050		     struct drm_device *dev,
1051		     uint32_t handle)
1052{
1053	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1054					 handle, TTM_REF_USAGE);
1055}
1056
1057/**
1058 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1059 *
1060 * @res:            The resource for which to allocate a backup buffer.
1061 * @interruptible:  Whether any sleeps during allocation should be
1062 *                  performed while interruptible.
1063 */
1064static int vmw_resource_buf_alloc(struct vmw_resource *res,
1065				  bool interruptible)
1066{
1067	unsigned long size =
1068		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1069	struct vmw_dma_buffer *backup;
1070	int ret;
1071
1072	if (likely(res->backup)) {
1073		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1074		return 0;
1075	}
1076
1077	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1078	if (unlikely(backup == NULL))
1079		return -ENOMEM;
1080
1081	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1082			      res->func->backup_placement,
1083			      interruptible,
1084			      &vmw_dmabuf_bo_free);
1085	if (unlikely(ret != 0))
1086		goto out_no_dmabuf;
1087
1088	res->backup = backup;
1089
1090out_no_dmabuf:
1091	return ret;
1092}
1093
1094/**
1095 * vmw_resource_do_validate - Make a resource up-to-date and visible
1096 *                            to the device.
1097 *
1098 * @res:            The resource to make visible to the device.
1099 * @val_buf:        Information about a buffer possibly
1100 *                  containing backup data if a bind operation is needed.
1101 *
1102 * On hardware resource shortage, this function returns -EBUSY and
1103 * should be retried once resources have been freed up.
1104 */
1105static int vmw_resource_do_validate(struct vmw_resource *res,
1106				    struct ttm_validate_buffer *val_buf)
1107{
1108	int ret = 0;
1109	const struct vmw_res_func *func = res->func;
1110
1111	if (unlikely(res->id == -1)) {
1112		ret = func->create(res);
1113		if (unlikely(ret != 0))
1114			return ret;
1115	}
1116
1117	if (func->bind &&
1118	    ((func->needs_backup && list_empty(&res->mob_head) &&
1119	      val_buf->bo != NULL) ||
1120	     (!func->needs_backup && val_buf->bo != NULL))) {
1121		ret = func->bind(res, val_buf);
1122		if (unlikely(ret != 0))
1123			goto out_bind_failed;
1124		if (func->needs_backup)
1125			list_add_tail(&res->mob_head, &res->backup->res_list);
1126	}
1127
1128	/*
1129	 * Only do this on write operations, and move to
1130	 * vmw_resource_unreserve if it can be called after
1131	 * backup buffers have been unreserved. Otherwise
1132	 * sort out locking.
1133	 */
1134	res->res_dirty = true;
1135
1136	return 0;
1137
1138out_bind_failed:
1139	func->destroy(res);
1140
1141	return ret;
1142}
1143
1144/**
1145 * vmw_resource_unreserve - Unreserve a resource previously reserved for
1146 * command submission.
1147 *
1148 * @res:               Pointer to the struct vmw_resource to unreserve.
 
1149 * @new_backup:        Pointer to new backup buffer if command submission
1150 *                     switched.
1151 * @new_backup_offset: New backup offset if @new_backup is !NULL.
1152 *
1153 * Currently unreserving a resource means putting it back on the device's
1154 * resource lru list, so that it can be evicted if necessary.
1155 */
1156void vmw_resource_unreserve(struct vmw_resource *res,
 
1157			    struct vmw_dma_buffer *new_backup,
1158			    unsigned long new_backup_offset)
1159{
1160	struct vmw_private *dev_priv = res->dev_priv;
1161
1162	if (!list_empty(&res->lru_head))
1163		return;
1164
1165	if (new_backup && new_backup != res->backup) {
1166
1167		if (res->backup) {
1168			lockdep_assert_held(&res->backup->base.resv->lock.base);
1169			list_del_init(&res->mob_head);
1170			vmw_dmabuf_unreference(&res->backup);
1171		}
1172
1173		res->backup = vmw_dmabuf_reference(new_backup);
1174		lockdep_assert_held(&new_backup->base.resv->lock.base);
1175		list_add_tail(&res->mob_head, &new_backup->res_list);
 
 
 
 
1176	}
1177	if (new_backup)
1178		res->backup_offset = new_backup_offset;
1179
1180	if (!res->func->may_evict || res->id == -1)
1181		return;
1182
1183	write_lock(&dev_priv->resource_lock);
1184	list_add_tail(&res->lru_head,
1185		      &res->dev_priv->res_lru[res->func->res_type]);
1186	write_unlock(&dev_priv->resource_lock);
1187}
1188
1189/**
1190 * vmw_resource_check_buffer - Check whether a backup buffer is needed
1191 *                             for a resource and in that case, allocate
1192 *                             one, reserve and validate it.
1193 *
1194 * @res:            The resource for which to allocate a backup buffer.
1195 * @interruptible:  Whether any sleeps during allocation should be
1196 *                  performed while interruptible.
1197 * @val_buf:        On successful return contains data about the
1198 *                  reserved and validated backup buffer.
1199 */
1200static int
1201vmw_resource_check_buffer(struct vmw_resource *res,
1202			  bool interruptible,
1203			  struct ttm_validate_buffer *val_buf)
1204{
1205	struct list_head val_list;
1206	bool backup_dirty = false;
1207	int ret;
1208
1209	if (unlikely(res->backup == NULL)) {
1210		ret = vmw_resource_buf_alloc(res, interruptible);
1211		if (unlikely(ret != 0))
1212			return ret;
1213	}
1214
1215	INIT_LIST_HEAD(&val_list);
1216	val_buf->bo = ttm_bo_reference(&res->backup->base);
 
1217	list_add_tail(&val_buf->head, &val_list);
1218	ret = ttm_eu_reserve_buffers(NULL, &val_list);
1219	if (unlikely(ret != 0))
1220		goto out_no_reserve;
1221
1222	if (res->func->needs_backup && list_empty(&res->mob_head))
1223		return 0;
1224
1225	backup_dirty = res->backup_dirty;
1226	ret = ttm_bo_validate(&res->backup->base,
1227			      res->func->backup_placement,
1228			      true, false);
1229
1230	if (unlikely(ret != 0))
1231		goto out_no_validate;
1232
1233	return 0;
1234
1235out_no_validate:
1236	ttm_eu_backoff_reservation(NULL, &val_list);
1237out_no_reserve:
1238	ttm_bo_unref(&val_buf->bo);
1239	if (backup_dirty)
1240		vmw_dmabuf_unreference(&res->backup);
1241
1242	return ret;
1243}
1244
1245/**
1246 * vmw_resource_reserve - Reserve a resource for command submission
1247 *
1248 * @res:            The resource to reserve.
1249 *
1250 * This function takes the resource off the LRU list and make sure
1251 * a backup buffer is present for guest-backed resources. However,
1252 * the buffer may not be bound to the resource at this point.
1253 *
1254 */
1255int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
 
1256{
1257	struct vmw_private *dev_priv = res->dev_priv;
1258	int ret;
1259
1260	write_lock(&dev_priv->resource_lock);
1261	list_del_init(&res->lru_head);
1262	write_unlock(&dev_priv->resource_lock);
1263
1264	if (res->func->needs_backup && res->backup == NULL &&
1265	    !no_backup) {
1266		ret = vmw_resource_buf_alloc(res, true);
1267		if (unlikely(ret != 0))
 
 
 
1268			return ret;
 
1269	}
1270
1271	return 0;
1272}
1273
1274/**
1275 * vmw_resource_backoff_reservation - Unreserve and unreference a
1276 *                                    backup buffer
1277 *.
1278 * @val_buf:        Backup buffer information.
1279 */
1280static void
1281vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1282{
1283	struct list_head val_list;
1284
1285	if (likely(val_buf->bo == NULL))
1286		return;
1287
1288	INIT_LIST_HEAD(&val_list);
1289	list_add_tail(&val_buf->head, &val_list);
1290	ttm_eu_backoff_reservation(NULL, &val_list);
1291	ttm_bo_unref(&val_buf->bo);
1292}
1293
1294/**
1295 * vmw_resource_do_evict - Evict a resource, and transfer its data
1296 *                         to a backup buffer.
1297 *
1298 * @res:            The resource to evict.
1299 * @interruptible:  Whether to wait interruptible.
1300 */
1301int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1302{
1303	struct ttm_validate_buffer val_buf;
1304	const struct vmw_res_func *func = res->func;
1305	int ret;
1306
1307	BUG_ON(!func->may_evict);
1308
1309	val_buf.bo = NULL;
 
1310	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1311	if (unlikely(ret != 0))
1312		return ret;
1313
1314	if (unlikely(func->unbind != NULL &&
1315		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1316		ret = func->unbind(res, res->res_dirty, &val_buf);
1317		if (unlikely(ret != 0))
1318			goto out_no_unbind;
1319		list_del_init(&res->mob_head);
1320	}
1321	ret = func->destroy(res);
1322	res->backup_dirty = true;
1323	res->res_dirty = false;
1324out_no_unbind:
1325	vmw_resource_backoff_reservation(&val_buf);
1326
1327	return ret;
1328}
1329
1330
1331/**
1332 * vmw_resource_validate - Make a resource up-to-date and visible
1333 *                         to the device.
1334 *
1335 * @res:            The resource to make visible to the device.
1336 *
1337 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1338 * be reserved and validated.
1339 * On hardware resource shortage, this function will repeatedly evict
1340 * resources of the same type until the validation succeeds.
1341 */
1342int vmw_resource_validate(struct vmw_resource *res)
1343{
1344	int ret;
1345	struct vmw_resource *evict_res;
1346	struct vmw_private *dev_priv = res->dev_priv;
1347	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1348	struct ttm_validate_buffer val_buf;
1349	unsigned err_count = 0;
1350
1351	if (likely(!res->func->may_evict))
1352		return 0;
1353
1354	val_buf.bo = NULL;
 
1355	if (res->backup)
1356		val_buf.bo = &res->backup->base;
1357	do {
1358		ret = vmw_resource_do_validate(res, &val_buf);
1359		if (likely(ret != -EBUSY))
1360			break;
1361
1362		write_lock(&dev_priv->resource_lock);
1363		if (list_empty(lru_list) || !res->func->may_evict) {
1364			DRM_ERROR("Out of device device resources "
1365				  "for %s.\n", res->func->type_name);
1366			ret = -EBUSY;
1367			write_unlock(&dev_priv->resource_lock);
1368			break;
1369		}
1370
1371		evict_res = vmw_resource_reference
1372			(list_first_entry(lru_list, struct vmw_resource,
1373					  lru_head));
1374		list_del_init(&evict_res->lru_head);
1375
1376		write_unlock(&dev_priv->resource_lock);
1377
1378		ret = vmw_resource_do_evict(evict_res, true);
1379		if (unlikely(ret != 0)) {
1380			write_lock(&dev_priv->resource_lock);
1381			list_add_tail(&evict_res->lru_head, lru_list);
1382			write_unlock(&dev_priv->resource_lock);
1383			if (ret == -ERESTARTSYS ||
1384			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1385				vmw_resource_unreference(&evict_res);
1386				goto out_no_validate;
1387			}
1388		}
1389
1390		vmw_resource_unreference(&evict_res);
1391	} while (1);
1392
1393	if (unlikely(ret != 0))
1394		goto out_no_validate;
1395	else if (!res->func->needs_backup && res->backup) {
1396		list_del_init(&res->mob_head);
1397		vmw_dmabuf_unreference(&res->backup);
1398	}
1399
1400	return 0;
1401
1402out_no_validate:
1403	return ret;
1404}
1405
1406/**
1407 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1408 *                       object without unreserving it.
1409 *
1410 * @bo:             Pointer to the struct ttm_buffer_object to fence.
1411 * @fence:          Pointer to the fence. If NULL, this function will
1412 *                  insert a fence into the command stream..
1413 *
1414 * Contrary to the ttm_eu version of this function, it takes only
1415 * a single buffer object instead of a list, and it also doesn't
1416 * unreserve the buffer object, which needs to be done separately.
1417 */
1418void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1419			 struct vmw_fence_obj *fence)
1420{
1421	struct ttm_bo_device *bdev = bo->bdev;
1422	struct ttm_bo_driver *driver = bdev->driver;
1423	struct vmw_fence_obj *old_fence_obj;
1424	struct vmw_private *dev_priv =
1425		container_of(bdev, struct vmw_private, bdev);
1426
1427	if (fence == NULL)
1428		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1429	else
1430		driver->sync_obj_ref(fence);
1431
1432	spin_lock(&bdev->fence_lock);
1433
1434	old_fence_obj = bo->sync_obj;
1435	bo->sync_obj = fence;
1436
1437	spin_unlock(&bdev->fence_lock);
1438
1439	if (old_fence_obj)
1440		vmw_fence_obj_unreference(&old_fence_obj);
1441}
1442
1443/**
1444 * vmw_resource_move_notify - TTM move_notify_callback
1445 *
1446 * @bo:             The TTM buffer object about to move.
1447 * @mem:            The truct ttm_mem_reg indicating to what memory
1448 *                  region the move is taking place.
1449 *
1450 * Evicts the Guest Backed hardware resource if the backup
1451 * buffer is being moved out of MOB memory.
1452 * Note that this function should not race with the resource
1453 * validation code as long as it accesses only members of struct
1454 * resource that remain static while bo::res is !NULL and
1455 * while we have @bo reserved. struct resource::backup is *not* a
1456 * static member. The resource validation code will take care
1457 * to set @bo::res to NULL, while having @bo reserved when the
1458 * buffer is no longer bound to the resource, so @bo:res can be
1459 * used to determine whether there is a need to unbind and whether
1460 * it is safe to unbind.
1461 */
1462void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1463			      struct ttm_mem_reg *mem)
1464{
1465	struct vmw_dma_buffer *dma_buf;
1466
1467	if (mem == NULL)
1468		return;
1469
1470	if (bo->destroy != vmw_dmabuf_bo_free &&
1471	    bo->destroy != vmw_user_dmabuf_destroy)
1472		return;
1473
1474	dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1475
1476	if (mem->mem_type != VMW_PL_MOB) {
1477		struct vmw_resource *res, *n;
1478		struct ttm_bo_device *bdev = bo->bdev;
1479		struct ttm_validate_buffer val_buf;
1480
1481		val_buf.bo = bo;
 
1482
1483		list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1484
1485			if (unlikely(res->func->unbind == NULL))
1486				continue;
1487
1488			(void) res->func->unbind(res, true, &val_buf);
1489			res->backup_dirty = true;
1490			res->res_dirty = false;
1491			list_del_init(&res->mob_head);
1492		}
1493
1494		spin_lock(&bdev->fence_lock);
1495		(void) ttm_bo_wait(bo, false, false, false);
1496		spin_unlock(&bdev->fence_lock);
1497	}
1498}
1499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500/**
1501 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1502 *
1503 * @res:            The resource being queried.
1504 */
1505bool vmw_resource_needs_backup(const struct vmw_resource *res)
1506{
1507	return res->func->needs_backup;
1508}
1509
1510/**
1511 * vmw_resource_evict_type - Evict all resources of a specific type
1512 *
1513 * @dev_priv:       Pointer to a device private struct
1514 * @type:           The resource type to evict
1515 *
1516 * To avoid thrashing starvation or as part of the hibernation sequence,
1517 * try to evict all evictable resources of a specific type.
1518 */
1519static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1520				    enum vmw_res_type type)
1521{
1522	struct list_head *lru_list = &dev_priv->res_lru[type];
1523	struct vmw_resource *evict_res;
1524	unsigned err_count = 0;
1525	int ret;
1526
1527	do {
1528		write_lock(&dev_priv->resource_lock);
1529
1530		if (list_empty(lru_list))
1531			goto out_unlock;
1532
1533		evict_res = vmw_resource_reference(
1534			list_first_entry(lru_list, struct vmw_resource,
1535					 lru_head));
1536		list_del_init(&evict_res->lru_head);
1537		write_unlock(&dev_priv->resource_lock);
1538
1539		ret = vmw_resource_do_evict(evict_res, false);
1540		if (unlikely(ret != 0)) {
1541			write_lock(&dev_priv->resource_lock);
1542			list_add_tail(&evict_res->lru_head, lru_list);
1543			write_unlock(&dev_priv->resource_lock);
1544			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1545				vmw_resource_unreference(&evict_res);
1546				return;
1547			}
1548		}
1549
1550		vmw_resource_unreference(&evict_res);
1551	} while (1);
1552
1553out_unlock:
1554	write_unlock(&dev_priv->resource_lock);
1555}
1556
1557/**
1558 * vmw_resource_evict_all - Evict all evictable resources
1559 *
1560 * @dev_priv:       Pointer to a device private struct
1561 *
1562 * To avoid thrashing starvation or as part of the hibernation sequence,
1563 * evict all evictable resources. In particular this means that all
1564 * guest-backed resources that are registered with the device are
1565 * evicted and the OTable becomes clean.
1566 */
1567void vmw_resource_evict_all(struct vmw_private *dev_priv)
1568{
1569	enum vmw_res_type type;
1570
1571	mutex_lock(&dev_priv->cmdbuf_mutex);
1572
1573	for (type = 0; type < vmw_res_max; ++type)
1574		vmw_resource_evict_type(dev_priv, type);
1575
1576	mutex_unlock(&dev_priv->cmdbuf_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577}