Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/kernel.h>
  2
  3#include <linux/string.h>
  4#include <linux/bitops.h>
  5#include <linux/smp.h>
  6#include <linux/sched.h>
  7#include <linux/thread_info.h>
  8#include <linux/module.h>
  9#include <linux/uaccess.h>
 10
 11#include <asm/cpufeature.h>
 12#include <asm/pgtable.h>
 13#include <asm/msr.h>
 14#include <asm/bugs.h>
 15#include <asm/cpu.h>
 16
 17#ifdef CONFIG_X86_64
 18#include <linux/topology.h>
 19#endif
 20
 21#include "cpu.h"
 22
 23#ifdef CONFIG_X86_LOCAL_APIC
 24#include <asm/mpspec.h>
 25#include <asm/apic.h>
 26#endif
 27
 28static void early_init_intel(struct cpuinfo_x86 *c)
 29{
 30	u64 misc_enable;
 31
 32	/* Unmask CPUID levels if masked: */
 33	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 34		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
 35				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
 36			c->cpuid_level = cpuid_eax(0);
 37			get_cpu_cap(c);
 38		}
 39	}
 40
 41	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 42		(c->x86 == 0x6 && c->x86_model >= 0x0e))
 43		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 44
 45	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
 46		unsigned lower_word;
 47
 48		wrmsr(MSR_IA32_UCODE_REV, 0, 0);
 49		/* Required by the SDM */
 50		sync_core();
 51		rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
 52	}
 53
 54	/*
 55	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
 56	 *
 57	 * A race condition between speculative fetches and invalidating
 58	 * a large page.  This is worked around in microcode, but we
 59	 * need the microcode to have already been loaded... so if it is
 60	 * not, recommend a BIOS update and disable large pages.
 61	 */
 62	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
 63	    c->microcode < 0x20e) {
 64		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
 65		clear_cpu_cap(c, X86_FEATURE_PSE);
 66	}
 67
 68#ifdef CONFIG_X86_64
 69	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 70#else
 71	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 72	if (c->x86 == 15 && c->x86_cache_alignment == 64)
 73		c->x86_cache_alignment = 128;
 74#endif
 75
 76	/* CPUID workaround for 0F33/0F34 CPU */
 77	if (c->x86 == 0xF && c->x86_model == 0x3
 78	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
 79		c->x86_phys_bits = 36;
 80
 81	/*
 82	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 83	 * with P/T states and does not stop in deep C-states.
 84	 *
 85	 * It is also reliable across cores and sockets. (but not across
 86	 * cabinets - we turn it off in that case explicitly.)
 87	 */
 88	if (c->x86_power & (1 << 8)) {
 89		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 90		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 91		if (!check_tsc_unstable())
 92			set_sched_clock_stable();
 93	}
 94
 95	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
 96	if (c->x86 == 6) {
 97		switch (c->x86_model) {
 98		case 0x27:	/* Penwell */
 99		case 0x35:	/* Cloverview */
100		case 0x4a:	/* Merrifield */
101			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
102			break;
103		default:
104			break;
105		}
106	}
107
108	/*
109	 * There is a known erratum on Pentium III and Core Solo
110	 * and Core Duo CPUs.
111	 * " Page with PAT set to WC while associated MTRR is UC
112	 *   may consolidate to UC "
113	 * Because of this erratum, it is better to stick with
114	 * setting WC in MTRR rather than using PAT on these CPUs.
115	 *
116	 * Enable PAT WC only on P4, Core 2 or later CPUs.
117	 */
118	if (c->x86 == 6 && c->x86_model < 15)
119		clear_cpu_cap(c, X86_FEATURE_PAT);
120
121#ifdef CONFIG_KMEMCHECK
122	/*
123	 * P4s have a "fast strings" feature which causes single-
124	 * stepping REP instructions to only generate a #DB on
125	 * cache-line boundaries.
126	 *
127	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
128	 * (model 2) with the same problem.
129	 */
130	if (c->x86 == 15)
131		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
132				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
133			pr_info("kmemcheck: Disabling fast string operations\n");
134#endif
135
136	/*
137	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
138	 * clear the fast string and enhanced fast string CPU capabilities.
139	 */
140	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
141		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
142		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
143			pr_info("Disabled fast string operations\n");
144			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
145			setup_clear_cpu_cap(X86_FEATURE_ERMS);
146		}
147	}
148
149	/*
150	 * Intel Quark Core DevMan_001.pdf section 6.4.11
151	 * "The operating system also is required to invalidate (i.e., flush)
152	 *  the TLB when any changes are made to any of the page table entries.
153	 *  The operating system must reload CR3 to cause the TLB to be flushed"
154	 *
155	 * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
156	 * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
157	 * to be modified
158	 */
159	if (c->x86 == 5 && c->x86_model == 9) {
160		pr_info("Disabling PGE capability bit\n");
161		setup_clear_cpu_cap(X86_FEATURE_PGE);
162	}
163
164	if (c->cpuid_level >= 0x00000001) {
165		u32 eax, ebx, ecx, edx;
166
167		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
168		/*
169		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
170		 * apicids which are reserved per package. Store the resulting
171		 * shift value for the package management code.
172		 */
173		if (edx & (1U << 28))
174			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
175	}
176}
177
178#ifdef CONFIG_X86_32
179/*
180 *	Early probe support logic for ppro memory erratum #50
181 *
182 *	This is called before we do cpu ident work
183 */
184
185int ppro_with_ram_bug(void)
186{
187	/* Uses data from early_cpu_detect now */
188	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
189	    boot_cpu_data.x86 == 6 &&
190	    boot_cpu_data.x86_model == 1 &&
191	    boot_cpu_data.x86_mask < 8) {
192		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
193		return 1;
194	}
195	return 0;
196}
197
198static void intel_smp_check(struct cpuinfo_x86 *c)
199{
200	/* calling is from identify_secondary_cpu() ? */
201	if (!c->cpu_index)
202		return;
203
204	/*
205	 * Mask B, Pentium, but not Pentium MMX
206	 */
207	if (c->x86 == 5 &&
208	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
209	    c->x86_model <= 3) {
210		/*
211		 * Remember we have B step Pentia with bugs
212		 */
213		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
214				    "with B stepping processors.\n");
215	}
216}
217
218static int forcepae;
219static int __init forcepae_setup(char *__unused)
220{
221	forcepae = 1;
222	return 1;
223}
224__setup("forcepae", forcepae_setup);
225
226static void intel_workarounds(struct cpuinfo_x86 *c)
227{
228#ifdef CONFIG_X86_F00F_BUG
229	/*
230	 * All models of Pentium and Pentium with MMX technology CPUs
231	 * have the F0 0F bug, which lets nonprivileged users lock up the
232	 * system. Announce that the fault handler will be checking for it.
233	 * The Quark is also family 5, but does not have the same bug.
234	 */
235	clear_cpu_bug(c, X86_BUG_F00F);
236	if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
237		static int f00f_workaround_enabled;
238
239		set_cpu_bug(c, X86_BUG_F00F);
240		if (!f00f_workaround_enabled) {
241			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
242			f00f_workaround_enabled = 1;
243		}
244	}
245#endif
246
247	/*
248	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
249	 * model 3 mask 3
250	 */
251	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
252		clear_cpu_cap(c, X86_FEATURE_SEP);
253
254	/*
255	 * PAE CPUID issue: many Pentium M report no PAE but may have a
256	 * functionally usable PAE implementation.
257	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
258	 */
259	if (forcepae) {
260		pr_warn("PAE forced!\n");
261		set_cpu_cap(c, X86_FEATURE_PAE);
262		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
263	}
264
265	/*
266	 * P4 Xeon errata 037 workaround.
267	 * Hardware prefetcher may cause stale data to be loaded into the cache.
268	 */
269	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
270		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
271				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
272		    > 0) {
273			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
274			pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
275		}
276	}
277
278	/*
279	 * See if we have a good local APIC by checking for buggy Pentia,
280	 * i.e. all B steppings and the C2 stepping of P54C when using their
281	 * integrated APIC (see 11AP erratum in "Pentium Processor
282	 * Specification Update").
283	 */
284	if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
285	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
286		set_cpu_bug(c, X86_BUG_11AP);
287
288
289#ifdef CONFIG_X86_INTEL_USERCOPY
290	/*
291	 * Set up the preferred alignment for movsl bulk memory moves
292	 */
293	switch (c->x86) {
294	case 4:		/* 486: untested */
295		break;
296	case 5:		/* Old Pentia: untested */
297		break;
298	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
299		movsl_mask.mask = 7;
300		break;
301	case 15:	/* P4 is OK down to 8-byte alignment */
302		movsl_mask.mask = 7;
303		break;
304	}
305#endif
306
307	intel_smp_check(c);
308}
309#else
310static void intel_workarounds(struct cpuinfo_x86 *c)
311{
312}
313#endif
314
315static void srat_detect_node(struct cpuinfo_x86 *c)
316{
317#ifdef CONFIG_NUMA
318	unsigned node;
319	int cpu = smp_processor_id();
320
321	/* Don't do the funky fallback heuristics the AMD version employs
322	   for now. */
323	node = numa_cpu_node(cpu);
324	if (node == NUMA_NO_NODE || !node_online(node)) {
325		/* reuse the value from init_cpu_to_node() */
326		node = cpu_to_node(cpu);
327	}
328	numa_set_node(cpu, node);
329#endif
330}
331
332/*
333 * find out the number of processor cores on the die
334 */
335static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
336{
337	unsigned int eax, ebx, ecx, edx;
338
339	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
340		return 1;
341
342	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
343	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
344	if (eax & 0x1f)
345		return (eax >> 26) + 1;
346	else
347		return 1;
348}
349
350static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
351{
352	/* Intel VMX MSR indicated features */
353#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
354#define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
355#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
356#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
357#define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
358#define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
359
360	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
361
362	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
363	clear_cpu_cap(c, X86_FEATURE_VNMI);
364	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
365	clear_cpu_cap(c, X86_FEATURE_EPT);
366	clear_cpu_cap(c, X86_FEATURE_VPID);
367
368	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
369	msr_ctl = vmx_msr_high | vmx_msr_low;
370	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
371		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
372	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
373		set_cpu_cap(c, X86_FEATURE_VNMI);
374	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
375		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
376		      vmx_msr_low, vmx_msr_high);
377		msr_ctl2 = vmx_msr_high | vmx_msr_low;
378		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
379		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
380			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
381		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
382			set_cpu_cap(c, X86_FEATURE_EPT);
383		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
384			set_cpu_cap(c, X86_FEATURE_VPID);
385	}
386}
387
388static void init_intel_energy_perf(struct cpuinfo_x86 *c)
389{
390	u64 epb;
391
392	/*
393	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
394	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
395	 */
396	if (!cpu_has(c, X86_FEATURE_EPB))
397		return;
398
399	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
400	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
401		return;
402
403	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
404	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
405	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
406	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
407}
408
409static void intel_bsp_resume(struct cpuinfo_x86 *c)
410{
411	/*
412	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
413	 * so reinitialize it properly like during bootup:
414	 */
415	init_intel_energy_perf(c);
416}
417
418static void init_intel(struct cpuinfo_x86 *c)
419{
420	unsigned int l2 = 0;
421
422	early_init_intel(c);
423
424	intel_workarounds(c);
425
426	/*
427	 * Detect the extended topology information if available. This
428	 * will reinitialise the initial_apicid which will be used
429	 * in init_intel_cacheinfo()
430	 */
431	detect_extended_topology(c);
432
433	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
434		/*
435		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
436		 * detection.
437		 */
438		c->x86_max_cores = intel_num_cpu_cores(c);
439#ifdef CONFIG_X86_32
440		detect_ht(c);
441#endif
442	}
443
444	l2 = init_intel_cacheinfo(c);
445
446	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
447	if (l2 == 0) {
448		cpu_detect_cache_sizes(c);
449		l2 = c->x86_cache_size;
450	}
451
452	if (c->cpuid_level > 9) {
453		unsigned eax = cpuid_eax(10);
454		/* Check for version and the number of counters */
455		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
456			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
457	}
458
459	if (cpu_has_xmm2)
460		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
461
462	if (boot_cpu_has(X86_FEATURE_DS)) {
463		unsigned int l1;
464		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
465		if (!(l1 & (1<<11)))
466			set_cpu_cap(c, X86_FEATURE_BTS);
467		if (!(l1 & (1<<12)))
468			set_cpu_cap(c, X86_FEATURE_PEBS);
469	}
470
471	if (c->x86 == 6 && cpu_has_clflush &&
472	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
473		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
474
475#ifdef CONFIG_X86_64
476	if (c->x86 == 15)
477		c->x86_cache_alignment = c->x86_clflush_size * 2;
478	if (c->x86 == 6)
479		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
480#else
481	/*
482	 * Names for the Pentium II/Celeron processors
483	 * detectable only by also checking the cache size.
484	 * Dixon is NOT a Celeron.
485	 */
486	if (c->x86 == 6) {
487		char *p = NULL;
488
489		switch (c->x86_model) {
490		case 5:
491			if (l2 == 0)
492				p = "Celeron (Covington)";
493			else if (l2 == 256)
494				p = "Mobile Pentium II (Dixon)";
495			break;
496
497		case 6:
498			if (l2 == 128)
499				p = "Celeron (Mendocino)";
500			else if (c->x86_mask == 0 || c->x86_mask == 5)
501				p = "Celeron-A";
502			break;
503
504		case 8:
505			if (l2 == 128)
506				p = "Celeron (Coppermine)";
507			break;
508		}
509
510		if (p)
511			strcpy(c->x86_model_id, p);
512	}
513
514	if (c->x86 == 15)
515		set_cpu_cap(c, X86_FEATURE_P4);
516	if (c->x86 == 6)
517		set_cpu_cap(c, X86_FEATURE_P3);
518#endif
519
 
 
 
 
 
 
 
 
 
 
 
520	/* Work around errata */
521	srat_detect_node(c);
522
523	if (cpu_has(c, X86_FEATURE_VMX))
524		detect_vmx_virtcap(c);
525
526	init_intel_energy_perf(c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527}
528
529#ifdef CONFIG_X86_32
530static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
531{
532	/*
533	 * Intel PIII Tualatin. This comes in two flavours.
534	 * One has 256kb of cache, the other 512. We have no way
535	 * to determine which, so we use a boottime override
536	 * for the 512kb model, and assume 256 otherwise.
537	 */
538	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
539		size = 256;
540
541	/*
542	 * Intel Quark SoC X1000 contains a 4-way set associative
543	 * 16K cache with a 16 byte cache line and 256 lines per tag
544	 */
545	if ((c->x86 == 5) && (c->x86_model == 9))
546		size = 16;
547	return size;
548}
549#endif
550
551#define TLB_INST_4K	0x01
552#define TLB_INST_4M	0x02
553#define TLB_INST_2M_4M	0x03
554
555#define TLB_INST_ALL	0x05
556#define TLB_INST_1G	0x06
557
558#define TLB_DATA_4K	0x11
559#define TLB_DATA_4M	0x12
560#define TLB_DATA_2M_4M	0x13
561#define TLB_DATA_4K_4M	0x14
562
563#define TLB_DATA_1G	0x16
564
565#define TLB_DATA0_4K	0x21
566#define TLB_DATA0_4M	0x22
567#define TLB_DATA0_2M_4M	0x23
568
569#define STLB_4K		0x41
570#define STLB_4K_2M	0x42
571
572static const struct _tlb_table intel_tlb_table[] = {
573	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
574	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
575	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
576	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
577	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
578	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
579	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
580	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
581	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
582	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
583	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
584	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
585	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
586	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
587	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
588	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
589	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
590	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
591	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
592	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
593	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
594	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
595	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
596	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
597	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
598	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
599	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
600	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
601	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
602	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
603	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
604	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
605	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
606	{ 0x00, 0, 0 }
607};
608
609static void intel_tlb_lookup(const unsigned char desc)
610{
611	unsigned char k;
612	if (desc == 0)
613		return;
614
615	/* look up this descriptor in the table */
616	for (k = 0; intel_tlb_table[k].descriptor != desc && \
617			intel_tlb_table[k].descriptor != 0; k++)
618		;
619
620	if (intel_tlb_table[k].tlb_type == 0)
621		return;
622
623	switch (intel_tlb_table[k].tlb_type) {
624	case STLB_4K:
625		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
626			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
627		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
628			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
629		break;
630	case STLB_4K_2M:
631		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
632			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
633		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
634			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
635		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
636			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
637		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
638			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
639		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
640			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
641		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
642			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
643		break;
644	case TLB_INST_ALL:
645		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
646			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
647		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
648			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
649		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
650			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
651		break;
652	case TLB_INST_4K:
653		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
654			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
655		break;
656	case TLB_INST_4M:
657		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
658			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
659		break;
660	case TLB_INST_2M_4M:
661		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
662			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
663		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
664			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
665		break;
666	case TLB_DATA_4K:
667	case TLB_DATA0_4K:
668		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
669			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
670		break;
671	case TLB_DATA_4M:
672	case TLB_DATA0_4M:
673		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
674			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
675		break;
676	case TLB_DATA_2M_4M:
677	case TLB_DATA0_2M_4M:
678		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
679			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
680		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
681			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
682		break;
683	case TLB_DATA_4K_4M:
684		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
685			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
686		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
687			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
688		break;
689	case TLB_DATA_1G:
690		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
691			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
692		break;
693	}
694}
695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
696static void intel_detect_tlb(struct cpuinfo_x86 *c)
697{
698	int i, j, n;
699	unsigned int regs[4];
700	unsigned char *desc = (unsigned char *)regs;
701
702	if (c->cpuid_level < 2)
703		return;
704
705	/* Number of times to iterate */
706	n = cpuid_eax(2) & 0xFF;
707
708	for (i = 0 ; i < n ; i++) {
709		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
710
711		/* If bit 31 is set, this is an unknown format */
712		for (j = 0 ; j < 3 ; j++)
713			if (regs[j] & (1 << 31))
714				regs[j] = 0;
715
716		/* Byte 0 is level count, not a descriptor */
717		for (j = 1 ; j < 16 ; j++)
718			intel_tlb_lookup(desc[j]);
719	}
 
720}
721
722static const struct cpu_dev intel_cpu_dev = {
723	.c_vendor	= "Intel",
724	.c_ident	= { "GenuineIntel" },
725#ifdef CONFIG_X86_32
726	.legacy_models = {
727		{ .family = 4, .model_names =
728		  {
729			  [0] = "486 DX-25/33",
730			  [1] = "486 DX-50",
731			  [2] = "486 SX",
732			  [3] = "486 DX/2",
733			  [4] = "486 SL",
734			  [5] = "486 SX/2",
735			  [7] = "486 DX/2-WB",
736			  [8] = "486 DX/4",
737			  [9] = "486 DX/4-WB"
738		  }
739		},
740		{ .family = 5, .model_names =
741		  {
742			  [0] = "Pentium 60/66 A-step",
743			  [1] = "Pentium 60/66",
744			  [2] = "Pentium 75 - 200",
745			  [3] = "OverDrive PODP5V83",
746			  [4] = "Pentium MMX",
747			  [7] = "Mobile Pentium 75 - 200",
748			  [8] = "Mobile Pentium MMX",
749			  [9] = "Quark SoC X1000",
750		  }
751		},
752		{ .family = 6, .model_names =
753		  {
754			  [0] = "Pentium Pro A-step",
755			  [1] = "Pentium Pro",
756			  [3] = "Pentium II (Klamath)",
757			  [4] = "Pentium II (Deschutes)",
758			  [5] = "Pentium II (Deschutes)",
759			  [6] = "Mobile Pentium II",
760			  [7] = "Pentium III (Katmai)",
761			  [8] = "Pentium III (Coppermine)",
762			  [10] = "Pentium III (Cascades)",
763			  [11] = "Pentium III (Tualatin)",
764		  }
765		},
766		{ .family = 15, .model_names =
767		  {
768			  [0] = "Pentium 4 (Unknown)",
769			  [1] = "Pentium 4 (Willamette)",
770			  [2] = "Pentium 4 (Northwood)",
771			  [4] = "Pentium 4 (Foster)",
772			  [5] = "Pentium 4 (Foster)",
773		  }
774		},
775	},
776	.legacy_cache_size = intel_size_cache,
777#endif
778	.c_detect_tlb	= intel_detect_tlb,
779	.c_early_init   = early_init_intel,
780	.c_init		= init_intel,
781	.c_bsp_resume	= intel_bsp_resume,
782	.c_x86_vendor	= X86_VENDOR_INTEL,
783};
784
785cpu_dev_register(intel_cpu_dev);
786
v3.15
  1#include <linux/kernel.h>
  2
  3#include <linux/string.h>
  4#include <linux/bitops.h>
  5#include <linux/smp.h>
  6#include <linux/sched.h>
  7#include <linux/thread_info.h>
  8#include <linux/module.h>
  9#include <linux/uaccess.h>
 10
 11#include <asm/processor.h>
 12#include <asm/pgtable.h>
 13#include <asm/msr.h>
 14#include <asm/bugs.h>
 15#include <asm/cpu.h>
 16
 17#ifdef CONFIG_X86_64
 18#include <linux/topology.h>
 19#endif
 20
 21#include "cpu.h"
 22
 23#ifdef CONFIG_X86_LOCAL_APIC
 24#include <asm/mpspec.h>
 25#include <asm/apic.h>
 26#endif
 27
 28static void early_init_intel(struct cpuinfo_x86 *c)
 29{
 30	u64 misc_enable;
 31
 32	/* Unmask CPUID levels if masked: */
 33	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 34		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
 35				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
 36			c->cpuid_level = cpuid_eax(0);
 37			get_cpu_cap(c);
 38		}
 39	}
 40
 41	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 42		(c->x86 == 0x6 && c->x86_model >= 0x0e))
 43		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 44
 45	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
 46		unsigned lower_word;
 47
 48		wrmsr(MSR_IA32_UCODE_REV, 0, 0);
 49		/* Required by the SDM */
 50		sync_core();
 51		rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
 52	}
 53
 54	/*
 55	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
 56	 *
 57	 * A race condition between speculative fetches and invalidating
 58	 * a large page.  This is worked around in microcode, but we
 59	 * need the microcode to have already been loaded... so if it is
 60	 * not, recommend a BIOS update and disable large pages.
 61	 */
 62	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
 63	    c->microcode < 0x20e) {
 64		printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
 65		clear_cpu_cap(c, X86_FEATURE_PSE);
 66	}
 67
 68#ifdef CONFIG_X86_64
 69	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 70#else
 71	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 72	if (c->x86 == 15 && c->x86_cache_alignment == 64)
 73		c->x86_cache_alignment = 128;
 74#endif
 75
 76	/* CPUID workaround for 0F33/0F34 CPU */
 77	if (c->x86 == 0xF && c->x86_model == 0x3
 78	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
 79		c->x86_phys_bits = 36;
 80
 81	/*
 82	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 83	 * with P/T states and does not stop in deep C-states.
 84	 *
 85	 * It is also reliable across cores and sockets. (but not across
 86	 * cabinets - we turn it off in that case explicitly.)
 87	 */
 88	if (c->x86_power & (1 << 8)) {
 89		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 90		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 91		if (!check_tsc_unstable())
 92			set_sched_clock_stable();
 93	}
 94
 95	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
 96	if (c->x86 == 6) {
 97		switch (c->x86_model) {
 98		case 0x27:	/* Penwell */
 99		case 0x35:	/* Cloverview */
 
100			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
101			break;
102		default:
103			break;
104		}
105	}
106
107	/*
108	 * There is a known erratum on Pentium III and Core Solo
109	 * and Core Duo CPUs.
110	 * " Page with PAT set to WC while associated MTRR is UC
111	 *   may consolidate to UC "
112	 * Because of this erratum, it is better to stick with
113	 * setting WC in MTRR rather than using PAT on these CPUs.
114	 *
115	 * Enable PAT WC only on P4, Core 2 or later CPUs.
116	 */
117	if (c->x86 == 6 && c->x86_model < 15)
118		clear_cpu_cap(c, X86_FEATURE_PAT);
119
120#ifdef CONFIG_KMEMCHECK
121	/*
122	 * P4s have a "fast strings" feature which causes single-
123	 * stepping REP instructions to only generate a #DB on
124	 * cache-line boundaries.
125	 *
126	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
127	 * (model 2) with the same problem.
128	 */
129	if (c->x86 == 15)
130		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
131				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
132			pr_info("kmemcheck: Disabling fast string operations\n");
133#endif
134
135	/*
136	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
137	 * clear the fast string and enhanced fast string CPU capabilities.
138	 */
139	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
140		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
141		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
142			printk(KERN_INFO "Disabled fast string operations\n");
143			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
144			setup_clear_cpu_cap(X86_FEATURE_ERMS);
145		}
146	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147}
148
149#ifdef CONFIG_X86_32
150/*
151 *	Early probe support logic for ppro memory erratum #50
152 *
153 *	This is called before we do cpu ident work
154 */
155
156int ppro_with_ram_bug(void)
157{
158	/* Uses data from early_cpu_detect now */
159	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
160	    boot_cpu_data.x86 == 6 &&
161	    boot_cpu_data.x86_model == 1 &&
162	    boot_cpu_data.x86_mask < 8) {
163		printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
164		return 1;
165	}
166	return 0;
167}
168
169static void intel_smp_check(struct cpuinfo_x86 *c)
170{
171	/* calling is from identify_secondary_cpu() ? */
172	if (!c->cpu_index)
173		return;
174
175	/*
176	 * Mask B, Pentium, but not Pentium MMX
177	 */
178	if (c->x86 == 5 &&
179	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
180	    c->x86_model <= 3) {
181		/*
182		 * Remember we have B step Pentia with bugs
183		 */
184		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
185				    "with B stepping processors.\n");
186	}
187}
188
189static int forcepae;
190static int __init forcepae_setup(char *__unused)
191{
192	forcepae = 1;
193	return 1;
194}
195__setup("forcepae", forcepae_setup);
196
197static void intel_workarounds(struct cpuinfo_x86 *c)
198{
199#ifdef CONFIG_X86_F00F_BUG
200	/*
201	 * All current models of Pentium and Pentium with MMX technology CPUs
202	 * have the F0 0F bug, which lets nonprivileged users lock up the
203	 * system. Announce that the fault handler will be checking for it.
 
204	 */
205	clear_cpu_bug(c, X86_BUG_F00F);
206	if (!paravirt_enabled() && c->x86 == 5) {
207		static int f00f_workaround_enabled;
208
209		set_cpu_bug(c, X86_BUG_F00F);
210		if (!f00f_workaround_enabled) {
211			printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
212			f00f_workaround_enabled = 1;
213		}
214	}
215#endif
216
217	/*
218	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
219	 * model 3 mask 3
220	 */
221	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
222		clear_cpu_cap(c, X86_FEATURE_SEP);
223
224	/*
225	 * PAE CPUID issue: many Pentium M report no PAE but may have a
226	 * functionally usable PAE implementation.
227	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
228	 */
229	if (forcepae) {
230		printk(KERN_WARNING "PAE forced!\n");
231		set_cpu_cap(c, X86_FEATURE_PAE);
232		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
233	}
234
235	/*
236	 * P4 Xeon errata 037 workaround.
237	 * Hardware prefetcher may cause stale data to be loaded into the cache.
238	 */
239	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
240		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
241				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
242		    > 0) {
243			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
244			pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
245		}
246	}
247
248	/*
249	 * See if we have a good local APIC by checking for buggy Pentia,
250	 * i.e. all B steppings and the C2 stepping of P54C when using their
251	 * integrated APIC (see 11AP erratum in "Pentium Processor
252	 * Specification Update").
253	 */
254	if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
255	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
256		set_cpu_cap(c, X86_FEATURE_11AP);
257
258
259#ifdef CONFIG_X86_INTEL_USERCOPY
260	/*
261	 * Set up the preferred alignment for movsl bulk memory moves
262	 */
263	switch (c->x86) {
264	case 4:		/* 486: untested */
265		break;
266	case 5:		/* Old Pentia: untested */
267		break;
268	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
269		movsl_mask.mask = 7;
270		break;
271	case 15:	/* P4 is OK down to 8-byte alignment */
272		movsl_mask.mask = 7;
273		break;
274	}
275#endif
276
277	intel_smp_check(c);
278}
279#else
280static void intel_workarounds(struct cpuinfo_x86 *c)
281{
282}
283#endif
284
285static void srat_detect_node(struct cpuinfo_x86 *c)
286{
287#ifdef CONFIG_NUMA
288	unsigned node;
289	int cpu = smp_processor_id();
290
291	/* Don't do the funky fallback heuristics the AMD version employs
292	   for now. */
293	node = numa_cpu_node(cpu);
294	if (node == NUMA_NO_NODE || !node_online(node)) {
295		/* reuse the value from init_cpu_to_node() */
296		node = cpu_to_node(cpu);
297	}
298	numa_set_node(cpu, node);
299#endif
300}
301
302/*
303 * find out the number of processor cores on the die
304 */
305static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
306{
307	unsigned int eax, ebx, ecx, edx;
308
309	if (c->cpuid_level < 4)
310		return 1;
311
312	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
313	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
314	if (eax & 0x1f)
315		return (eax >> 26) + 1;
316	else
317		return 1;
318}
319
320static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
321{
322	/* Intel VMX MSR indicated features */
323#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
324#define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
325#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
326#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
327#define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
328#define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
329
330	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
331
332	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
333	clear_cpu_cap(c, X86_FEATURE_VNMI);
334	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
335	clear_cpu_cap(c, X86_FEATURE_EPT);
336	clear_cpu_cap(c, X86_FEATURE_VPID);
337
338	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
339	msr_ctl = vmx_msr_high | vmx_msr_low;
340	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
341		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
342	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
343		set_cpu_cap(c, X86_FEATURE_VNMI);
344	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
345		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
346		      vmx_msr_low, vmx_msr_high);
347		msr_ctl2 = vmx_msr_high | vmx_msr_low;
348		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
349		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
350			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
351		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
352			set_cpu_cap(c, X86_FEATURE_EPT);
353		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
354			set_cpu_cap(c, X86_FEATURE_VPID);
355	}
356}
357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358static void init_intel(struct cpuinfo_x86 *c)
359{
360	unsigned int l2 = 0;
361
362	early_init_intel(c);
363
364	intel_workarounds(c);
365
366	/*
367	 * Detect the extended topology information if available. This
368	 * will reinitialise the initial_apicid which will be used
369	 * in init_intel_cacheinfo()
370	 */
371	detect_extended_topology(c);
372
 
 
 
 
 
 
 
 
 
 
 
373	l2 = init_intel_cacheinfo(c);
 
 
 
 
 
 
 
374	if (c->cpuid_level > 9) {
375		unsigned eax = cpuid_eax(10);
376		/* Check for version and the number of counters */
377		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
378			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
379	}
380
381	if (cpu_has_xmm2)
382		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
383	if (cpu_has_ds) {
 
384		unsigned int l1;
385		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
386		if (!(l1 & (1<<11)))
387			set_cpu_cap(c, X86_FEATURE_BTS);
388		if (!(l1 & (1<<12)))
389			set_cpu_cap(c, X86_FEATURE_PEBS);
390	}
391
392	if (c->x86 == 6 && cpu_has_clflush &&
393	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
394		set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
395
396#ifdef CONFIG_X86_64
397	if (c->x86 == 15)
398		c->x86_cache_alignment = c->x86_clflush_size * 2;
399	if (c->x86 == 6)
400		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
401#else
402	/*
403	 * Names for the Pentium II/Celeron processors
404	 * detectable only by also checking the cache size.
405	 * Dixon is NOT a Celeron.
406	 */
407	if (c->x86 == 6) {
408		char *p = NULL;
409
410		switch (c->x86_model) {
411		case 5:
412			if (l2 == 0)
413				p = "Celeron (Covington)";
414			else if (l2 == 256)
415				p = "Mobile Pentium II (Dixon)";
416			break;
417
418		case 6:
419			if (l2 == 128)
420				p = "Celeron (Mendocino)";
421			else if (c->x86_mask == 0 || c->x86_mask == 5)
422				p = "Celeron-A";
423			break;
424
425		case 8:
426			if (l2 == 128)
427				p = "Celeron (Coppermine)";
428			break;
429		}
430
431		if (p)
432			strcpy(c->x86_model_id, p);
433	}
434
435	if (c->x86 == 15)
436		set_cpu_cap(c, X86_FEATURE_P4);
437	if (c->x86 == 6)
438		set_cpu_cap(c, X86_FEATURE_P3);
439#endif
440
441	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
442		/*
443		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
444		 * detection.
445		 */
446		c->x86_max_cores = intel_num_cpu_cores(c);
447#ifdef CONFIG_X86_32
448		detect_ht(c);
449#endif
450	}
451
452	/* Work around errata */
453	srat_detect_node(c);
454
455	if (cpu_has(c, X86_FEATURE_VMX))
456		detect_vmx_virtcap(c);
457
458	/*
459	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
460	 * x86_energy_perf_policy(8) is available to change it at run-time
461	 */
462	if (cpu_has(c, X86_FEATURE_EPB)) {
463		u64 epb;
464
465		rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
466		if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
467			printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
468				" Set to 'normal', was 'performance'\n"
469				"ENERGY_PERF_BIAS: View and update with"
470				" x86_energy_perf_policy(8)\n");
471			epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
472			wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
473		}
474	}
475}
476
477#ifdef CONFIG_X86_32
478static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
479{
480	/*
481	 * Intel PIII Tualatin. This comes in two flavours.
482	 * One has 256kb of cache, the other 512. We have no way
483	 * to determine which, so we use a boottime override
484	 * for the 512kb model, and assume 256 otherwise.
485	 */
486	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
487		size = 256;
 
 
 
 
 
 
 
488	return size;
489}
490#endif
491
492#define TLB_INST_4K	0x01
493#define TLB_INST_4M	0x02
494#define TLB_INST_2M_4M	0x03
495
496#define TLB_INST_ALL	0x05
497#define TLB_INST_1G	0x06
498
499#define TLB_DATA_4K	0x11
500#define TLB_DATA_4M	0x12
501#define TLB_DATA_2M_4M	0x13
502#define TLB_DATA_4K_4M	0x14
503
504#define TLB_DATA_1G	0x16
505
506#define TLB_DATA0_4K	0x21
507#define TLB_DATA0_4M	0x22
508#define TLB_DATA0_2M_4M	0x23
509
510#define STLB_4K		0x41
511#define STLB_4K_2M	0x42
512
513static const struct _tlb_table intel_tlb_table[] = {
514	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
515	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
516	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
517	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
518	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
519	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
520	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
521	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
522	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
523	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
524	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
525	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
526	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
527	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
528	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
529	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
530	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
531	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
532	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
533	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
534	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
535	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
536	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
537	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
538	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
539	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
540	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set ssociative" },
541	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set ssociative" },
542	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
543	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
544	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
545	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
546	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
547	{ 0x00, 0, 0 }
548};
549
550static void intel_tlb_lookup(const unsigned char desc)
551{
552	unsigned char k;
553	if (desc == 0)
554		return;
555
556	/* look up this descriptor in the table */
557	for (k = 0; intel_tlb_table[k].descriptor != desc && \
558			intel_tlb_table[k].descriptor != 0; k++)
559		;
560
561	if (intel_tlb_table[k].tlb_type == 0)
562		return;
563
564	switch (intel_tlb_table[k].tlb_type) {
565	case STLB_4K:
566		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
567			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
568		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
569			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
570		break;
571	case STLB_4K_2M:
572		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
573			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
574		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
575			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
576		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
577			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
578		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
579			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
580		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
581			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
582		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
583			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
584		break;
585	case TLB_INST_ALL:
586		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
587			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
588		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
589			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
590		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
591			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
592		break;
593	case TLB_INST_4K:
594		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
595			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
596		break;
597	case TLB_INST_4M:
598		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
599			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
600		break;
601	case TLB_INST_2M_4M:
602		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
603			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
604		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
605			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
606		break;
607	case TLB_DATA_4K:
608	case TLB_DATA0_4K:
609		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
610			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
611		break;
612	case TLB_DATA_4M:
613	case TLB_DATA0_4M:
614		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
615			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
616		break;
617	case TLB_DATA_2M_4M:
618	case TLB_DATA0_2M_4M:
619		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
620			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
621		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
622			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
623		break;
624	case TLB_DATA_4K_4M:
625		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
626			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
627		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
628			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
629		break;
630	case TLB_DATA_1G:
631		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
632			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
633		break;
634	}
635}
636
637static void intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
638{
639	switch ((c->x86 << 8) + c->x86_model) {
640	case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
641	case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
642	case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
643	case 0x61d: /* six-core 45 nm xeon "Dunnington" */
644		tlb_flushall_shift = -1;
645		break;
646	case 0x63a: /* Ivybridge */
647		tlb_flushall_shift = 2;
648		break;
649	case 0x61a: /* 45 nm nehalem, "Bloomfield" */
650	case 0x61e: /* 45 nm nehalem, "Lynnfield" */
651	case 0x625: /* 32 nm nehalem, "Clarkdale" */
652	case 0x62c: /* 32 nm nehalem, "Gulftown" */
653	case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
654	case 0x62f: /* 32 nm Xeon E7 */
655	case 0x62a: /* SandyBridge */
656	case 0x62d: /* SandyBridge, "Romely-EP" */
657	default:
658		tlb_flushall_shift = 6;
659	}
660}
661
662static void intel_detect_tlb(struct cpuinfo_x86 *c)
663{
664	int i, j, n;
665	unsigned int regs[4];
666	unsigned char *desc = (unsigned char *)regs;
667
668	if (c->cpuid_level < 2)
669		return;
670
671	/* Number of times to iterate */
672	n = cpuid_eax(2) & 0xFF;
673
674	for (i = 0 ; i < n ; i++) {
675		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
676
677		/* If bit 31 is set, this is an unknown format */
678		for (j = 0 ; j < 3 ; j++)
679			if (regs[j] & (1 << 31))
680				regs[j] = 0;
681
682		/* Byte 0 is level count, not a descriptor */
683		for (j = 1 ; j < 16 ; j++)
684			intel_tlb_lookup(desc[j]);
685	}
686	intel_tlb_flushall_shift_set(c);
687}
688
689static const struct cpu_dev intel_cpu_dev = {
690	.c_vendor	= "Intel",
691	.c_ident	= { "GenuineIntel" },
692#ifdef CONFIG_X86_32
693	.legacy_models = {
694		{ .family = 4, .model_names =
695		  {
696			  [0] = "486 DX-25/33",
697			  [1] = "486 DX-50",
698			  [2] = "486 SX",
699			  [3] = "486 DX/2",
700			  [4] = "486 SL",
701			  [5] = "486 SX/2",
702			  [7] = "486 DX/2-WB",
703			  [8] = "486 DX/4",
704			  [9] = "486 DX/4-WB"
705		  }
706		},
707		{ .family = 5, .model_names =
708		  {
709			  [0] = "Pentium 60/66 A-step",
710			  [1] = "Pentium 60/66",
711			  [2] = "Pentium 75 - 200",
712			  [3] = "OverDrive PODP5V83",
713			  [4] = "Pentium MMX",
714			  [7] = "Mobile Pentium 75 - 200",
715			  [8] = "Mobile Pentium MMX"
 
716		  }
717		},
718		{ .family = 6, .model_names =
719		  {
720			  [0] = "Pentium Pro A-step",
721			  [1] = "Pentium Pro",
722			  [3] = "Pentium II (Klamath)",
723			  [4] = "Pentium II (Deschutes)",
724			  [5] = "Pentium II (Deschutes)",
725			  [6] = "Mobile Pentium II",
726			  [7] = "Pentium III (Katmai)",
727			  [8] = "Pentium III (Coppermine)",
728			  [10] = "Pentium III (Cascades)",
729			  [11] = "Pentium III (Tualatin)",
730		  }
731		},
732		{ .family = 15, .model_names =
733		  {
734			  [0] = "Pentium 4 (Unknown)",
735			  [1] = "Pentium 4 (Willamette)",
736			  [2] = "Pentium 4 (Northwood)",
737			  [4] = "Pentium 4 (Foster)",
738			  [5] = "Pentium 4 (Foster)",
739		  }
740		},
741	},
742	.legacy_cache_size = intel_size_cache,
743#endif
744	.c_detect_tlb	= intel_detect_tlb,
745	.c_early_init   = early_init_intel,
746	.c_init		= init_intel,
 
747	.c_x86_vendor	= X86_VENDOR_INTEL,
748};
749
750cpu_dev_register(intel_cpu_dev);
751