Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * unaligned.c: Unaligned load/store trap handling with special
  3 *              cases for the kernel to do them more quickly.
  4 *
  5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9
 10#include <linux/jiffies.h>
 11#include <linux/kernel.h>
 12#include <linux/sched.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <asm/asi.h>
 16#include <asm/ptrace.h>
 17#include <asm/pstate.h>
 18#include <asm/processor.h>
 19#include <asm/uaccess.h>
 20#include <linux/smp.h>
 21#include <linux/bitops.h>
 22#include <linux/perf_event.h>
 23#include <linux/ratelimit.h>
 24#include <linux/context_tracking.h>
 25#include <asm/fpumacro.h>
 26#include <asm/cacheflush.h>
 27#include <asm/setup.h>
 28
 29#include "entry.h"
 30#include "kernel.h"
 31
 32enum direction {
 33	load,    /* ld, ldd, ldh, ldsh */
 34	store,   /* st, std, sth, stsh */
 35	both,    /* Swap, ldstub, cas, ... */
 36	fpld,
 37	fpst,
 38	invalid,
 39};
 40
 41static inline enum direction decode_direction(unsigned int insn)
 42{
 43	unsigned long tmp = (insn >> 21) & 1;
 44
 45	if (!tmp)
 46		return load;
 47	else {
 48		switch ((insn>>19)&0xf) {
 49		case 15: /* swap* */
 50			return both;
 51		default:
 52			return store;
 53		}
 54	}
 55}
 56
 57/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
 58static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
 59{
 60	unsigned int tmp;
 61
 62	tmp = ((insn >> 19) & 0xf);
 63	if (tmp == 11 || tmp == 14) /* ldx/stx */
 64		return 8;
 65	tmp &= 3;
 66	if (!tmp)
 67		return 4;
 68	else if (tmp == 3)
 69		return 16;	/* ldd/std - Although it is actually 8 */
 70	else if (tmp == 2)
 71		return 2;
 72	else {
 73		printk("Impossible unaligned trap. insn=%08x\n", insn);
 74		die_if_kernel("Byte sized unaligned access?!?!", regs);
 75
 76		/* GCC should never warn that control reaches the end
 77		 * of this function without returning a value because
 78		 * die_if_kernel() is marked with attribute 'noreturn'.
 79		 * Alas, some versions do...
 80		 */
 81
 82		return 0;
 83	}
 84}
 85
 86static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
 87{
 88	if (insn & 0x800000) {
 89		if (insn & 0x2000)
 90			return (unsigned char)(regs->tstate >> 24);	/* %asi */
 91		else
 92			return (unsigned char)(insn >> 5);		/* imm_asi */
 93	} else
 94		return ASI_P;
 95}
 96
 97/* 0x400000 = signed, 0 = unsigned */
 98static inline int decode_signedness(unsigned int insn)
 99{
100	return (insn & 0x400000);
101}
102
103static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
104				       unsigned int rd, int from_kernel)
105{
106	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
107		if (from_kernel != 0)
108			__asm__ __volatile__("flushw");
109		else
110			flushw_user();
111	}
112}
113
114static inline long sign_extend_imm13(long imm)
115{
116	return imm << 51 >> 51;
117}
118
119static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
120{
121	unsigned long value, fp;
122	
123	if (reg < 16)
124		return (!reg ? 0 : regs->u_regs[reg]);
125
126	fp = regs->u_regs[UREG_FP];
127
128	if (regs->tstate & TSTATE_PRIV) {
129		struct reg_window *win;
130		win = (struct reg_window *)(fp + STACK_BIAS);
131		value = win->locals[reg - 16];
132	} else if (!test_thread_64bit_stack(fp)) {
133		struct reg_window32 __user *win32;
134		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
135		get_user(value, &win32->locals[reg - 16]);
136	} else {
137		struct reg_window __user *win;
138		win = (struct reg_window __user *)(fp + STACK_BIAS);
139		get_user(value, &win->locals[reg - 16]);
140	}
141	return value;
142}
143
144static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
145{
146	unsigned long fp;
147
148	if (reg < 16)
149		return &regs->u_regs[reg];
150
151	fp = regs->u_regs[UREG_FP];
152
153	if (regs->tstate & TSTATE_PRIV) {
154		struct reg_window *win;
155		win = (struct reg_window *)(fp + STACK_BIAS);
156		return &win->locals[reg - 16];
157	} else if (!test_thread_64bit_stack(fp)) {
158		struct reg_window32 *win32;
159		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
160		return (unsigned long *)&win32->locals[reg - 16];
161	} else {
162		struct reg_window *win;
163		win = (struct reg_window *)(fp + STACK_BIAS);
164		return &win->locals[reg - 16];
165	}
166}
167
168unsigned long compute_effective_address(struct pt_regs *regs,
169					unsigned int insn, unsigned int rd)
170{
171	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
172	unsigned int rs1 = (insn >> 14) & 0x1f;
173	unsigned int rs2 = insn & 0x1f;
174	unsigned long addr;
175
176	if (insn & 0x2000) {
177		maybe_flush_windows(rs1, 0, rd, from_kernel);
178		addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
179	} else {
180		maybe_flush_windows(rs1, rs2, rd, from_kernel);
181		addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
182	}
183
184	if (!from_kernel && test_thread_flag(TIF_32BIT))
185		addr &= 0xffffffff;
186
187	return addr;
188}
189
190/* This is just to make gcc think die_if_kernel does return... */
191static void __used unaligned_panic(char *str, struct pt_regs *regs)
192{
193	die_if_kernel(str, regs);
194}
195
196extern int do_int_load(unsigned long *dest_reg, int size,
197		       unsigned long *saddr, int is_signed, int asi);
198	
199extern int __do_int_store(unsigned long *dst_addr, int size,
200			  unsigned long src_val, int asi);
201
202static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
203			       struct pt_regs *regs, int asi, int orig_asi)
204{
205	unsigned long zero = 0;
206	unsigned long *src_val_p = &zero;
207	unsigned long src_val;
208
209	if (size == 16) {
210		size = 8;
211		zero = (((long)(reg_num ?
212		        (unsigned int)fetch_reg(reg_num, regs) : 0)) << 32) |
213			(unsigned int)fetch_reg(reg_num + 1, regs);
214	} else if (reg_num) {
215		src_val_p = fetch_reg_addr(reg_num, regs);
216	}
217	src_val = *src_val_p;
218	if (unlikely(asi != orig_asi)) {
219		switch (size) {
220		case 2:
221			src_val = swab16(src_val);
222			break;
223		case 4:
224			src_val = swab32(src_val);
225			break;
226		case 8:
227			src_val = swab64(src_val);
228			break;
229		case 16:
230		default:
231			BUG();
232			break;
233		}
234	}
235	return __do_int_store(dst_addr, size, src_val, asi);
236}
237
238static inline void advance(struct pt_regs *regs)
239{
240	regs->tpc   = regs->tnpc;
241	regs->tnpc += 4;
242	if (test_thread_flag(TIF_32BIT)) {
243		regs->tpc &= 0xffffffff;
244		regs->tnpc &= 0xffffffff;
245	}
246}
247
248static inline int floating_point_load_or_store_p(unsigned int insn)
249{
250	return (insn >> 24) & 1;
251}
252
253static inline int ok_for_kernel(unsigned int insn)
254{
255	return !floating_point_load_or_store_p(insn);
256}
257
258static void kernel_mna_trap_fault(int fixup_tstate_asi)
259{
260	struct pt_regs *regs = current_thread_info()->kern_una_regs;
261	unsigned int insn = current_thread_info()->kern_una_insn;
262	const struct exception_table_entry *entry;
263
264	entry = search_exception_tables(regs->tpc);
265	if (!entry) {
266		unsigned long address;
267
268		address = compute_effective_address(regs, insn,
269						    ((insn >> 25) & 0x1f));
270        	if (address < PAGE_SIZE) {
271                	printk(KERN_ALERT "Unable to handle kernel NULL "
272			       "pointer dereference in mna handler");
273        	} else
274                	printk(KERN_ALERT "Unable to handle kernel paging "
275			       "request in mna handler");
276	        printk(KERN_ALERT " at virtual address %016lx\n",address);
277		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
278			(current->mm ? CTX_HWBITS(current->mm->context) :
279			CTX_HWBITS(current->active_mm->context)));
280		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
281			(current->mm ? (unsigned long) current->mm->pgd :
282			(unsigned long) current->active_mm->pgd));
283	        die_if_kernel("Oops", regs);
284		/* Not reached */
285	}
286	regs->tpc = entry->fixup;
287	regs->tnpc = regs->tpc + 4;
288
289	if (fixup_tstate_asi) {
290		regs->tstate &= ~TSTATE_ASI;
291		regs->tstate |= (ASI_AIUS << 24UL);
292	}
293}
294
295static void log_unaligned(struct pt_regs *regs)
296{
297	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
298
299	if (__ratelimit(&ratelimit)) {
300		printk("Kernel unaligned access at TPC[%lx] %pS\n",
301		       regs->tpc, (void *) regs->tpc);
302	}
303}
304
305asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
306{
307	enum direction dir = decode_direction(insn);
308	int size = decode_access_size(regs, insn);
309	int orig_asi, asi;
310
311	current_thread_info()->kern_una_regs = regs;
312	current_thread_info()->kern_una_insn = insn;
313
314	orig_asi = asi = decode_asi(insn, regs);
315
316	/* If this is a {get,put}_user() on an unaligned userspace pointer,
317	 * just signal a fault and do not log the event.
318	 */
319	if (asi == ASI_AIUS) {
320		kernel_mna_trap_fault(0);
321		return;
322	}
323
324	log_unaligned(regs);
325
326	if (!ok_for_kernel(insn) || dir == both) {
327		printk("Unsupported unaligned load/store trap for kernel "
328		       "at <%016lx>.\n", regs->tpc);
329		unaligned_panic("Kernel does fpu/atomic "
330				"unaligned load/store.", regs);
331
332		kernel_mna_trap_fault(0);
333	} else {
334		unsigned long addr, *reg_addr;
335		int err;
336
337		addr = compute_effective_address(regs, insn,
338						 ((insn >> 25) & 0x1f));
339		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
340		switch (asi) {
341		case ASI_NL:
342		case ASI_AIUPL:
343		case ASI_AIUSL:
344		case ASI_PL:
345		case ASI_SL:
346		case ASI_PNFL:
347		case ASI_SNFL:
348			asi &= ~0x08;
349			break;
350		}
351		switch (dir) {
352		case load:
353			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
354			err = do_int_load(reg_addr, size,
355					  (unsigned long *) addr,
356					  decode_signedness(insn), asi);
357			if (likely(!err) && unlikely(asi != orig_asi)) {
358				unsigned long val_in = *reg_addr;
359				switch (size) {
360				case 2:
361					val_in = swab16(val_in);
362					break;
363				case 4:
364					val_in = swab32(val_in);
365					break;
366				case 8:
367					val_in = swab64(val_in);
368					break;
369				case 16:
370				default:
371					BUG();
372					break;
373				}
374				*reg_addr = val_in;
375			}
376			break;
377
378		case store:
379			err = do_int_store(((insn>>25)&0x1f), size,
380					   (unsigned long *) addr, regs,
381					   asi, orig_asi);
382			break;
383
384		default:
385			panic("Impossible kernel unaligned trap.");
386			/* Not reached... */
387		}
388		if (unlikely(err))
389			kernel_mna_trap_fault(1);
390		else
391			advance(regs);
392	}
393}
394
395int handle_popc(u32 insn, struct pt_regs *regs)
396{
397	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
398	int ret, rd = ((insn >> 25) & 0x1f);
399	u64 value;
400	                        
401	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
402	if (insn & 0x2000) {
403		maybe_flush_windows(0, 0, rd, from_kernel);
404		value = sign_extend_imm13(insn);
405	} else {
406		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
407		value = fetch_reg(insn & 0x1f, regs);
408	}
409	ret = hweight64(value);
410	if (rd < 16) {
411		if (rd)
412			regs->u_regs[rd] = ret;
413	} else {
414		unsigned long fp = regs->u_regs[UREG_FP];
415
416		if (!test_thread_64bit_stack(fp)) {
417			struct reg_window32 __user *win32;
418			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
419			put_user(ret, &win32->locals[rd - 16]);
420		} else {
421			struct reg_window __user *win;
422			win = (struct reg_window __user *)(fp + STACK_BIAS);
423			put_user(ret, &win->locals[rd - 16]);
424		}
425	}
426	advance(regs);
427	return 1;
428}
429
430extern void do_fpother(struct pt_regs *regs);
431extern void do_privact(struct pt_regs *regs);
432extern void sun4v_data_access_exception(struct pt_regs *regs,
433					unsigned long addr,
434					unsigned long type_ctx);
435
436int handle_ldf_stq(u32 insn, struct pt_regs *regs)
437{
438	unsigned long addr = compute_effective_address(regs, insn, 0);
439	int freg;
440	struct fpustate *f = FPUSTATE;
441	int asi = decode_asi(insn, regs);
442	int flag;
443
444	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
445
446	save_and_clear_fpu();
447	current_thread_info()->xfsr[0] &= ~0x1c000;
 
 
 
 
 
448	if (insn & 0x200000) {
449		/* STQ */
450		u64 first = 0, second = 0;
451		
452		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
453		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
454		if (freg & 3) {
455			current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
456			do_fpother(regs);
457			return 0;
458		}
459		if (current_thread_info()->fpsaved[0] & flag) {
460			first = *(u64 *)&f->regs[freg];
461			second = *(u64 *)&f->regs[freg+2];
462		}
463		if (asi < 0x80) {
464			do_privact(regs);
465			return 1;
466		}
467		switch (asi) {
468		case ASI_P:
469		case ASI_S: break;
470		case ASI_PL:
471		case ASI_SL: 
472			{
473				/* Need to convert endians */
474				u64 tmp = __swab64p(&first);
475				
476				first = __swab64p(&second);
477				second = tmp;
478				break;
479			}
480		default:
481			if (tlb_type == hypervisor)
482				sun4v_data_access_exception(regs, addr, 0);
483			else
484				spitfire_data_access_exception(regs, 0, addr);
485			return 1;
486		}
487		if (put_user (first >> 32, (u32 __user *)addr) ||
488		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
489		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
490		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
491			if (tlb_type == hypervisor)
492				sun4v_data_access_exception(regs, addr, 0);
493			else
494				spitfire_data_access_exception(regs, 0, addr);
495		    	return 1;
496		}
497	} else {
498		/* LDF, LDDF, LDQF */
499		u32 data[4] __attribute__ ((aligned(8)));
500		int size, i;
501		int err;
502
503		if (asi < 0x80) {
504			do_privact(regs);
505			return 1;
506		} else if (asi > ASI_SNFL) {
507			if (tlb_type == hypervisor)
508				sun4v_data_access_exception(regs, addr, 0);
509			else
510				spitfire_data_access_exception(regs, 0, addr);
511			return 1;
512		}
513		switch (insn & 0x180000) {
514		case 0x000000: size = 1; break;
515		case 0x100000: size = 4; break;
516		default: size = 2; break;
517		}
518		if (size == 1)
519			freg = (insn >> 25) & 0x1f;
520		else
521			freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
522		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
523
524		for (i = 0; i < size; i++)
525			data[i] = 0;
526		
527		err = get_user (data[0], (u32 __user *) addr);
528		if (!err) {
529			for (i = 1; i < size; i++)
530				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
531		}
532		if (err && !(asi & 0x2 /* NF */)) {
533			if (tlb_type == hypervisor)
534				sun4v_data_access_exception(regs, addr, 0);
535			else
536				spitfire_data_access_exception(regs, 0, addr);
537			return 1;
538		}
539		if (asi & 0x8) /* Little */ {
540			u64 tmp;
541
542			switch (size) {
543			case 1: data[0] = le32_to_cpup(data + 0); break;
544			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
545				break;
546			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
547				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
548				*(u64 *)(data + 2) = tmp;
549				break;
550			}
551		}
552		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
553			current_thread_info()->fpsaved[0] = FPRS_FEF;
554			current_thread_info()->gsr[0] = 0;
555		}
556		if (!(current_thread_info()->fpsaved[0] & flag)) {
557			if (freg < 32)
558				memset(f->regs, 0, 32*sizeof(u32));
559			else
560				memset(f->regs+32, 0, 32*sizeof(u32));
561		}
562		memcpy(f->regs + freg, data, size * 4);
563		current_thread_info()->fpsaved[0] |= flag;
564	}
565	advance(regs);
566	return 1;
567}
568
569void handle_ld_nf(u32 insn, struct pt_regs *regs)
570{
571	int rd = ((insn >> 25) & 0x1f);
572	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
573	unsigned long *reg;
574	                        
575	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
576
577	maybe_flush_windows(0, 0, rd, from_kernel);
578	reg = fetch_reg_addr(rd, regs);
579	if (from_kernel || rd < 16) {
580		reg[0] = 0;
581		if ((insn & 0x780000) == 0x180000)
582			reg[1] = 0;
583	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
584		put_user(0, (int __user *) reg);
585		if ((insn & 0x780000) == 0x180000)
586			put_user(0, ((int __user *) reg) + 1);
587	} else {
588		put_user(0, (unsigned long __user *) reg);
589		if ((insn & 0x780000) == 0x180000)
590			put_user(0, (unsigned long __user *) reg + 1);
591	}
592	advance(regs);
593}
594
595void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
596{
597	enum ctx_state prev_state = exception_enter();
598	unsigned long pc = regs->tpc;
599	unsigned long tstate = regs->tstate;
600	u32 insn;
601	u64 value;
602	u8 freg;
603	int flag;
604	struct fpustate *f = FPUSTATE;
605
606	if (tstate & TSTATE_PRIV)
607		die_if_kernel("lddfmna from kernel", regs);
608	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
609	if (test_thread_flag(TIF_32BIT))
610		pc = (u32)pc;
611	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
612		int asi = decode_asi(insn, regs);
613		u32 first, second;
614		int err;
615
616		if ((asi > ASI_SNFL) ||
617		    (asi < ASI_P))
618			goto daex;
619		first = second = 0;
620		err = get_user(first, (u32 __user *)sfar);
621		if (!err)
622			err = get_user(second, (u32 __user *)(sfar + 4));
623		if (err) {
624			if (!(asi & 0x2))
625				goto daex;
626			first = second = 0;
627		}
628		save_and_clear_fpu();
629		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
630		value = (((u64)first) << 32) | second;
631		if (asi & 0x8) /* Little */
632			value = __swab64p(&value);
633		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
634		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
635			current_thread_info()->fpsaved[0] = FPRS_FEF;
636			current_thread_info()->gsr[0] = 0;
637		}
638		if (!(current_thread_info()->fpsaved[0] & flag)) {
639			if (freg < 32)
640				memset(f->regs, 0, 32*sizeof(u32));
641			else
642				memset(f->regs+32, 0, 32*sizeof(u32));
643		}
644		*(u64 *)(f->regs + freg) = value;
645		current_thread_info()->fpsaved[0] |= flag;
646	} else {
647daex:
648		if (tlb_type == hypervisor)
649			sun4v_data_access_exception(regs, sfar, sfsr);
650		else
651			spitfire_data_access_exception(regs, sfsr, sfar);
652		goto out;
653	}
654	advance(regs);
655out:
656	exception_exit(prev_state);
657}
658
659void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
660{
661	enum ctx_state prev_state = exception_enter();
662	unsigned long pc = regs->tpc;
663	unsigned long tstate = regs->tstate;
664	u32 insn;
665	u64 value;
666	u8 freg;
667	int flag;
668	struct fpustate *f = FPUSTATE;
669
670	if (tstate & TSTATE_PRIV)
671		die_if_kernel("stdfmna from kernel", regs);
672	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
673	if (test_thread_flag(TIF_32BIT))
674		pc = (u32)pc;
675	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
676		int asi = decode_asi(insn, regs);
677		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
678		value = 0;
679		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
680		if ((asi > ASI_SNFL) ||
681		    (asi < ASI_P))
682			goto daex;
683		save_and_clear_fpu();
684		if (current_thread_info()->fpsaved[0] & flag)
685			value = *(u64 *)&f->regs[freg];
686		switch (asi) {
687		case ASI_P:
688		case ASI_S: break;
689		case ASI_PL:
690		case ASI_SL: 
691			value = __swab64p(&value); break;
692		default: goto daex;
693		}
694		if (put_user (value >> 32, (u32 __user *) sfar) ||
695		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
696			goto daex;
697	} else {
698daex:
699		if (tlb_type == hypervisor)
700			sun4v_data_access_exception(regs, sfar, sfsr);
701		else
702			spitfire_data_access_exception(regs, sfsr, sfar);
703		goto out;
704	}
705	advance(regs);
706out:
707	exception_exit(prev_state);
708}
v3.15
  1/*
  2 * unaligned.c: Unaligned load/store trap handling with special
  3 *              cases for the kernel to do them more quickly.
  4 *
  5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7 */
  8
  9
 10#include <linux/jiffies.h>
 11#include <linux/kernel.h>
 12#include <linux/sched.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <asm/asi.h>
 16#include <asm/ptrace.h>
 17#include <asm/pstate.h>
 18#include <asm/processor.h>
 19#include <asm/uaccess.h>
 20#include <linux/smp.h>
 21#include <linux/bitops.h>
 22#include <linux/perf_event.h>
 23#include <linux/ratelimit.h>
 24#include <linux/context_tracking.h>
 25#include <asm/fpumacro.h>
 26#include <asm/cacheflush.h>
 
 27
 28#include "entry.h"
 
 29
 30enum direction {
 31	load,    /* ld, ldd, ldh, ldsh */
 32	store,   /* st, std, sth, stsh */
 33	both,    /* Swap, ldstub, cas, ... */
 34	fpld,
 35	fpst,
 36	invalid,
 37};
 38
 39static inline enum direction decode_direction(unsigned int insn)
 40{
 41	unsigned long tmp = (insn >> 21) & 1;
 42
 43	if (!tmp)
 44		return load;
 45	else {
 46		switch ((insn>>19)&0xf) {
 47		case 15: /* swap* */
 48			return both;
 49		default:
 50			return store;
 51		}
 52	}
 53}
 54
 55/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
 56static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
 57{
 58	unsigned int tmp;
 59
 60	tmp = ((insn >> 19) & 0xf);
 61	if (tmp == 11 || tmp == 14) /* ldx/stx */
 62		return 8;
 63	tmp &= 3;
 64	if (!tmp)
 65		return 4;
 66	else if (tmp == 3)
 67		return 16;	/* ldd/std - Although it is actually 8 */
 68	else if (tmp == 2)
 69		return 2;
 70	else {
 71		printk("Impossible unaligned trap. insn=%08x\n", insn);
 72		die_if_kernel("Byte sized unaligned access?!?!", regs);
 73
 74		/* GCC should never warn that control reaches the end
 75		 * of this function without returning a value because
 76		 * die_if_kernel() is marked with attribute 'noreturn'.
 77		 * Alas, some versions do...
 78		 */
 79
 80		return 0;
 81	}
 82}
 83
 84static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
 85{
 86	if (insn & 0x800000) {
 87		if (insn & 0x2000)
 88			return (unsigned char)(regs->tstate >> 24);	/* %asi */
 89		else
 90			return (unsigned char)(insn >> 5);		/* imm_asi */
 91	} else
 92		return ASI_P;
 93}
 94
 95/* 0x400000 = signed, 0 = unsigned */
 96static inline int decode_signedness(unsigned int insn)
 97{
 98	return (insn & 0x400000);
 99}
100
101static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
102				       unsigned int rd, int from_kernel)
103{
104	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
105		if (from_kernel != 0)
106			__asm__ __volatile__("flushw");
107		else
108			flushw_user();
109	}
110}
111
112static inline long sign_extend_imm13(long imm)
113{
114	return imm << 51 >> 51;
115}
116
117static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
118{
119	unsigned long value, fp;
120	
121	if (reg < 16)
122		return (!reg ? 0 : regs->u_regs[reg]);
123
124	fp = regs->u_regs[UREG_FP];
125
126	if (regs->tstate & TSTATE_PRIV) {
127		struct reg_window *win;
128		win = (struct reg_window *)(fp + STACK_BIAS);
129		value = win->locals[reg - 16];
130	} else if (!test_thread_64bit_stack(fp)) {
131		struct reg_window32 __user *win32;
132		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
133		get_user(value, &win32->locals[reg - 16]);
134	} else {
135		struct reg_window __user *win;
136		win = (struct reg_window __user *)(fp + STACK_BIAS);
137		get_user(value, &win->locals[reg - 16]);
138	}
139	return value;
140}
141
142static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
143{
144	unsigned long fp;
145
146	if (reg < 16)
147		return &regs->u_regs[reg];
148
149	fp = regs->u_regs[UREG_FP];
150
151	if (regs->tstate & TSTATE_PRIV) {
152		struct reg_window *win;
153		win = (struct reg_window *)(fp + STACK_BIAS);
154		return &win->locals[reg - 16];
155	} else if (!test_thread_64bit_stack(fp)) {
156		struct reg_window32 *win32;
157		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
158		return (unsigned long *)&win32->locals[reg - 16];
159	} else {
160		struct reg_window *win;
161		win = (struct reg_window *)(fp + STACK_BIAS);
162		return &win->locals[reg - 16];
163	}
164}
165
166unsigned long compute_effective_address(struct pt_regs *regs,
167					unsigned int insn, unsigned int rd)
168{
169	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
170	unsigned int rs1 = (insn >> 14) & 0x1f;
171	unsigned int rs2 = insn & 0x1f;
172	unsigned long addr;
173
174	if (insn & 0x2000) {
175		maybe_flush_windows(rs1, 0, rd, from_kernel);
176		addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
177	} else {
178		maybe_flush_windows(rs1, rs2, rd, from_kernel);
179		addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
180	}
181
182	if (!from_kernel && test_thread_flag(TIF_32BIT))
183		addr &= 0xffffffff;
184
185	return addr;
186}
187
188/* This is just to make gcc think die_if_kernel does return... */
189static void __used unaligned_panic(char *str, struct pt_regs *regs)
190{
191	die_if_kernel(str, regs);
192}
193
194extern int do_int_load(unsigned long *dest_reg, int size,
195		       unsigned long *saddr, int is_signed, int asi);
196	
197extern int __do_int_store(unsigned long *dst_addr, int size,
198			  unsigned long src_val, int asi);
199
200static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
201			       struct pt_regs *regs, int asi, int orig_asi)
202{
203	unsigned long zero = 0;
204	unsigned long *src_val_p = &zero;
205	unsigned long src_val;
206
207	if (size == 16) {
208		size = 8;
209		zero = (((long)(reg_num ?
210		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
211			(unsigned)fetch_reg(reg_num + 1, regs);
212	} else if (reg_num) {
213		src_val_p = fetch_reg_addr(reg_num, regs);
214	}
215	src_val = *src_val_p;
216	if (unlikely(asi != orig_asi)) {
217		switch (size) {
218		case 2:
219			src_val = swab16(src_val);
220			break;
221		case 4:
222			src_val = swab32(src_val);
223			break;
224		case 8:
225			src_val = swab64(src_val);
226			break;
227		case 16:
228		default:
229			BUG();
230			break;
231		}
232	}
233	return __do_int_store(dst_addr, size, src_val, asi);
234}
235
236static inline void advance(struct pt_regs *regs)
237{
238	regs->tpc   = regs->tnpc;
239	regs->tnpc += 4;
240	if (test_thread_flag(TIF_32BIT)) {
241		regs->tpc &= 0xffffffff;
242		regs->tnpc &= 0xffffffff;
243	}
244}
245
246static inline int floating_point_load_or_store_p(unsigned int insn)
247{
248	return (insn >> 24) & 1;
249}
250
251static inline int ok_for_kernel(unsigned int insn)
252{
253	return !floating_point_load_or_store_p(insn);
254}
255
256static void kernel_mna_trap_fault(int fixup_tstate_asi)
257{
258	struct pt_regs *regs = current_thread_info()->kern_una_regs;
259	unsigned int insn = current_thread_info()->kern_una_insn;
260	const struct exception_table_entry *entry;
261
262	entry = search_exception_tables(regs->tpc);
263	if (!entry) {
264		unsigned long address;
265
266		address = compute_effective_address(regs, insn,
267						    ((insn >> 25) & 0x1f));
268        	if (address < PAGE_SIZE) {
269                	printk(KERN_ALERT "Unable to handle kernel NULL "
270			       "pointer dereference in mna handler");
271        	} else
272                	printk(KERN_ALERT "Unable to handle kernel paging "
273			       "request in mna handler");
274	        printk(KERN_ALERT " at virtual address %016lx\n",address);
275		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
276			(current->mm ? CTX_HWBITS(current->mm->context) :
277			CTX_HWBITS(current->active_mm->context)));
278		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
279			(current->mm ? (unsigned long) current->mm->pgd :
280			(unsigned long) current->active_mm->pgd));
281	        die_if_kernel("Oops", regs);
282		/* Not reached */
283	}
284	regs->tpc = entry->fixup;
285	regs->tnpc = regs->tpc + 4;
286
287	if (fixup_tstate_asi) {
288		regs->tstate &= ~TSTATE_ASI;
289		regs->tstate |= (ASI_AIUS << 24UL);
290	}
291}
292
293static void log_unaligned(struct pt_regs *regs)
294{
295	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
296
297	if (__ratelimit(&ratelimit)) {
298		printk("Kernel unaligned access at TPC[%lx] %pS\n",
299		       regs->tpc, (void *) regs->tpc);
300	}
301}
302
303asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
304{
305	enum direction dir = decode_direction(insn);
306	int size = decode_access_size(regs, insn);
307	int orig_asi, asi;
308
309	current_thread_info()->kern_una_regs = regs;
310	current_thread_info()->kern_una_insn = insn;
311
312	orig_asi = asi = decode_asi(insn, regs);
313
314	/* If this is a {get,put}_user() on an unaligned userspace pointer,
315	 * just signal a fault and do not log the event.
316	 */
317	if (asi == ASI_AIUS) {
318		kernel_mna_trap_fault(0);
319		return;
320	}
321
322	log_unaligned(regs);
323
324	if (!ok_for_kernel(insn) || dir == both) {
325		printk("Unsupported unaligned load/store trap for kernel "
326		       "at <%016lx>.\n", regs->tpc);
327		unaligned_panic("Kernel does fpu/atomic "
328				"unaligned load/store.", regs);
329
330		kernel_mna_trap_fault(0);
331	} else {
332		unsigned long addr, *reg_addr;
333		int err;
334
335		addr = compute_effective_address(regs, insn,
336						 ((insn >> 25) & 0x1f));
337		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
338		switch (asi) {
339		case ASI_NL:
340		case ASI_AIUPL:
341		case ASI_AIUSL:
342		case ASI_PL:
343		case ASI_SL:
344		case ASI_PNFL:
345		case ASI_SNFL:
346			asi &= ~0x08;
347			break;
348		}
349		switch (dir) {
350		case load:
351			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
352			err = do_int_load(reg_addr, size,
353					  (unsigned long *) addr,
354					  decode_signedness(insn), asi);
355			if (likely(!err) && unlikely(asi != orig_asi)) {
356				unsigned long val_in = *reg_addr;
357				switch (size) {
358				case 2:
359					val_in = swab16(val_in);
360					break;
361				case 4:
362					val_in = swab32(val_in);
363					break;
364				case 8:
365					val_in = swab64(val_in);
366					break;
367				case 16:
368				default:
369					BUG();
370					break;
371				}
372				*reg_addr = val_in;
373			}
374			break;
375
376		case store:
377			err = do_int_store(((insn>>25)&0x1f), size,
378					   (unsigned long *) addr, regs,
379					   asi, orig_asi);
380			break;
381
382		default:
383			panic("Impossible kernel unaligned trap.");
384			/* Not reached... */
385		}
386		if (unlikely(err))
387			kernel_mna_trap_fault(1);
388		else
389			advance(regs);
390	}
391}
392
393int handle_popc(u32 insn, struct pt_regs *regs)
394{
395	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
396	int ret, rd = ((insn >> 25) & 0x1f);
397	u64 value;
398	                        
399	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
400	if (insn & 0x2000) {
401		maybe_flush_windows(0, 0, rd, from_kernel);
402		value = sign_extend_imm13(insn);
403	} else {
404		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
405		value = fetch_reg(insn & 0x1f, regs);
406	}
407	ret = hweight64(value);
408	if (rd < 16) {
409		if (rd)
410			regs->u_regs[rd] = ret;
411	} else {
412		unsigned long fp = regs->u_regs[UREG_FP];
413
414		if (!test_thread_64bit_stack(fp)) {
415			struct reg_window32 __user *win32;
416			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
417			put_user(ret, &win32->locals[rd - 16]);
418		} else {
419			struct reg_window __user *win;
420			win = (struct reg_window __user *)(fp + STACK_BIAS);
421			put_user(ret, &win->locals[rd - 16]);
422		}
423	}
424	advance(regs);
425	return 1;
426}
427
428extern void do_fpother(struct pt_regs *regs);
429extern void do_privact(struct pt_regs *regs);
430extern void sun4v_data_access_exception(struct pt_regs *regs,
431					unsigned long addr,
432					unsigned long type_ctx);
433
434int handle_ldf_stq(u32 insn, struct pt_regs *regs)
435{
436	unsigned long addr = compute_effective_address(regs, insn, 0);
437	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
438	struct fpustate *f = FPUSTATE;
439	int asi = decode_asi(insn, regs);
440	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
441
442	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
443
444	save_and_clear_fpu();
445	current_thread_info()->xfsr[0] &= ~0x1c000;
446	if (freg & 3) {
447		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
448		do_fpother(regs);
449		return 0;
450	}
451	if (insn & 0x200000) {
452		/* STQ */
453		u64 first = 0, second = 0;
454		
 
 
 
 
 
 
 
455		if (current_thread_info()->fpsaved[0] & flag) {
456			first = *(u64 *)&f->regs[freg];
457			second = *(u64 *)&f->regs[freg+2];
458		}
459		if (asi < 0x80) {
460			do_privact(regs);
461			return 1;
462		}
463		switch (asi) {
464		case ASI_P:
465		case ASI_S: break;
466		case ASI_PL:
467		case ASI_SL: 
468			{
469				/* Need to convert endians */
470				u64 tmp = __swab64p(&first);
471				
472				first = __swab64p(&second);
473				second = tmp;
474				break;
475			}
476		default:
477			if (tlb_type == hypervisor)
478				sun4v_data_access_exception(regs, addr, 0);
479			else
480				spitfire_data_access_exception(regs, 0, addr);
481			return 1;
482		}
483		if (put_user (first >> 32, (u32 __user *)addr) ||
484		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
485		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
486		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
487			if (tlb_type == hypervisor)
488				sun4v_data_access_exception(regs, addr, 0);
489			else
490				spitfire_data_access_exception(regs, 0, addr);
491		    	return 1;
492		}
493	} else {
494		/* LDF, LDDF, LDQF */
495		u32 data[4] __attribute__ ((aligned(8)));
496		int size, i;
497		int err;
498
499		if (asi < 0x80) {
500			do_privact(regs);
501			return 1;
502		} else if (asi > ASI_SNFL) {
503			if (tlb_type == hypervisor)
504				sun4v_data_access_exception(regs, addr, 0);
505			else
506				spitfire_data_access_exception(regs, 0, addr);
507			return 1;
508		}
509		switch (insn & 0x180000) {
510		case 0x000000: size = 1; break;
511		case 0x100000: size = 4; break;
512		default: size = 2; break;
513		}
 
 
 
 
 
 
514		for (i = 0; i < size; i++)
515			data[i] = 0;
516		
517		err = get_user (data[0], (u32 __user *) addr);
518		if (!err) {
519			for (i = 1; i < size; i++)
520				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
521		}
522		if (err && !(asi & 0x2 /* NF */)) {
523			if (tlb_type == hypervisor)
524				sun4v_data_access_exception(regs, addr, 0);
525			else
526				spitfire_data_access_exception(regs, 0, addr);
527			return 1;
528		}
529		if (asi & 0x8) /* Little */ {
530			u64 tmp;
531
532			switch (size) {
533			case 1: data[0] = le32_to_cpup(data + 0); break;
534			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
535				break;
536			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
537				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
538				*(u64 *)(data + 2) = tmp;
539				break;
540			}
541		}
542		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
543			current_thread_info()->fpsaved[0] = FPRS_FEF;
544			current_thread_info()->gsr[0] = 0;
545		}
546		if (!(current_thread_info()->fpsaved[0] & flag)) {
547			if (freg < 32)
548				memset(f->regs, 0, 32*sizeof(u32));
549			else
550				memset(f->regs+32, 0, 32*sizeof(u32));
551		}
552		memcpy(f->regs + freg, data, size * 4);
553		current_thread_info()->fpsaved[0] |= flag;
554	}
555	advance(regs);
556	return 1;
557}
558
559void handle_ld_nf(u32 insn, struct pt_regs *regs)
560{
561	int rd = ((insn >> 25) & 0x1f);
562	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
563	unsigned long *reg;
564	                        
565	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
566
567	maybe_flush_windows(0, 0, rd, from_kernel);
568	reg = fetch_reg_addr(rd, regs);
569	if (from_kernel || rd < 16) {
570		reg[0] = 0;
571		if ((insn & 0x780000) == 0x180000)
572			reg[1] = 0;
573	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
574		put_user(0, (int __user *) reg);
575		if ((insn & 0x780000) == 0x180000)
576			put_user(0, ((int __user *) reg) + 1);
577	} else {
578		put_user(0, (unsigned long __user *) reg);
579		if ((insn & 0x780000) == 0x180000)
580			put_user(0, (unsigned long __user *) reg + 1);
581	}
582	advance(regs);
583}
584
585void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
586{
587	enum ctx_state prev_state = exception_enter();
588	unsigned long pc = regs->tpc;
589	unsigned long tstate = regs->tstate;
590	u32 insn;
591	u64 value;
592	u8 freg;
593	int flag;
594	struct fpustate *f = FPUSTATE;
595
596	if (tstate & TSTATE_PRIV)
597		die_if_kernel("lddfmna from kernel", regs);
598	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
599	if (test_thread_flag(TIF_32BIT))
600		pc = (u32)pc;
601	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
602		int asi = decode_asi(insn, regs);
603		u32 first, second;
604		int err;
605
606		if ((asi > ASI_SNFL) ||
607		    (asi < ASI_P))
608			goto daex;
609		first = second = 0;
610		err = get_user(first, (u32 __user *)sfar);
611		if (!err)
612			err = get_user(second, (u32 __user *)(sfar + 4));
613		if (err) {
614			if (!(asi & 0x2))
615				goto daex;
616			first = second = 0;
617		}
618		save_and_clear_fpu();
619		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
620		value = (((u64)first) << 32) | second;
621		if (asi & 0x8) /* Little */
622			value = __swab64p(&value);
623		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
624		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
625			current_thread_info()->fpsaved[0] = FPRS_FEF;
626			current_thread_info()->gsr[0] = 0;
627		}
628		if (!(current_thread_info()->fpsaved[0] & flag)) {
629			if (freg < 32)
630				memset(f->regs, 0, 32*sizeof(u32));
631			else
632				memset(f->regs+32, 0, 32*sizeof(u32));
633		}
634		*(u64 *)(f->regs + freg) = value;
635		current_thread_info()->fpsaved[0] |= flag;
636	} else {
637daex:
638		if (tlb_type == hypervisor)
639			sun4v_data_access_exception(regs, sfar, sfsr);
640		else
641			spitfire_data_access_exception(regs, sfsr, sfar);
642		goto out;
643	}
644	advance(regs);
645out:
646	exception_exit(prev_state);
647}
648
649void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
650{
651	enum ctx_state prev_state = exception_enter();
652	unsigned long pc = regs->tpc;
653	unsigned long tstate = regs->tstate;
654	u32 insn;
655	u64 value;
656	u8 freg;
657	int flag;
658	struct fpustate *f = FPUSTATE;
659
660	if (tstate & TSTATE_PRIV)
661		die_if_kernel("stdfmna from kernel", regs);
662	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
663	if (test_thread_flag(TIF_32BIT))
664		pc = (u32)pc;
665	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
666		int asi = decode_asi(insn, regs);
667		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
668		value = 0;
669		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
670		if ((asi > ASI_SNFL) ||
671		    (asi < ASI_P))
672			goto daex;
673		save_and_clear_fpu();
674		if (current_thread_info()->fpsaved[0] & flag)
675			value = *(u64 *)&f->regs[freg];
676		switch (asi) {
677		case ASI_P:
678		case ASI_S: break;
679		case ASI_PL:
680		case ASI_SL: 
681			value = __swab64p(&value); break;
682		default: goto daex;
683		}
684		if (put_user (value >> 32, (u32 __user *) sfar) ||
685		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
686			goto daex;
687	} else {
688daex:
689		if (tlb_type == hypervisor)
690			sun4v_data_access_exception(regs, sfar, sfsr);
691		else
692			spitfire_data_access_exception(regs, sfsr, sfar);
693		goto out;
694	}
695	advance(regs);
696out:
697	exception_exit(prev_state);
698}