Loading...
1/* arch/sparc64/kernel/traps.c
2 *
3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
5 */
6
7/*
8 * I like traps on v9, :))))
9 */
10
11#include <linux/module.h>
12#include <linux/sched.h>
13#include <linux/linkage.h>
14#include <linux/kernel.h>
15#include <linux/signal.h>
16#include <linux/smp.h>
17#include <linux/mm.h>
18#include <linux/init.h>
19#include <linux/kdebug.h>
20#include <linux/ftrace.h>
21#include <linux/reboot.h>
22#include <linux/gfp.h>
23#include <linux/context_tracking.h>
24
25#include <asm/smp.h>
26#include <asm/delay.h>
27#include <asm/ptrace.h>
28#include <asm/oplib.h>
29#include <asm/page.h>
30#include <asm/pgtable.h>
31#include <asm/unistd.h>
32#include <asm/uaccess.h>
33#include <asm/fpumacro.h>
34#include <asm/lsu.h>
35#include <asm/dcu.h>
36#include <asm/estate.h>
37#include <asm/chafsr.h>
38#include <asm/sfafsr.h>
39#include <asm/psrcompat.h>
40#include <asm/processor.h>
41#include <asm/timer.h>
42#include <asm/head.h>
43#include <asm/prom.h>
44#include <asm/memctrl.h>
45#include <asm/cacheflush.h>
46#include <asm/setup.h>
47
48#include "entry.h"
49#include "kernel.h"
50#include "kstack.h"
51
52/* When an irrecoverable trap occurs at tl > 0, the trap entry
53 * code logs the trap state registers at every level in the trap
54 * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout
55 * is as follows:
56 */
57struct tl1_traplog {
58 struct {
59 unsigned long tstate;
60 unsigned long tpc;
61 unsigned long tnpc;
62 unsigned long tt;
63 } trapstack[4];
64 unsigned long tl;
65};
66
67static void dump_tl1_traplog(struct tl1_traplog *p)
68{
69 int i, limit;
70
71 printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
72 "dumping track stack.\n", p->tl);
73
74 limit = (tlb_type == hypervisor) ? 2 : 4;
75 for (i = 0; i < limit; i++) {
76 printk(KERN_EMERG
77 "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
78 "TNPC[%016lx] TT[%lx]\n",
79 i + 1,
80 p->trapstack[i].tstate, p->trapstack[i].tpc,
81 p->trapstack[i].tnpc, p->trapstack[i].tt);
82 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
83 }
84}
85
86void bad_trap(struct pt_regs *regs, long lvl)
87{
88 char buffer[32];
89 siginfo_t info;
90
91 if (notify_die(DIE_TRAP, "bad trap", regs,
92 0, lvl, SIGTRAP) == NOTIFY_STOP)
93 return;
94
95 if (lvl < 0x100) {
96 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
97 die_if_kernel(buffer, regs);
98 }
99
100 lvl -= 0x100;
101 if (regs->tstate & TSTATE_PRIV) {
102 sprintf(buffer, "Kernel bad sw trap %lx", lvl);
103 die_if_kernel(buffer, regs);
104 }
105 if (test_thread_flag(TIF_32BIT)) {
106 regs->tpc &= 0xffffffff;
107 regs->tnpc &= 0xffffffff;
108 }
109 info.si_signo = SIGILL;
110 info.si_errno = 0;
111 info.si_code = ILL_ILLTRP;
112 info.si_addr = (void __user *)regs->tpc;
113 info.si_trapno = lvl;
114 force_sig_info(SIGILL, &info, current);
115}
116
117void bad_trap_tl1(struct pt_regs *regs, long lvl)
118{
119 char buffer[32];
120
121 if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
122 0, lvl, SIGTRAP) == NOTIFY_STOP)
123 return;
124
125 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
126
127 sprintf (buffer, "Bad trap %lx at tl>0", lvl);
128 die_if_kernel (buffer, regs);
129}
130
131#ifdef CONFIG_DEBUG_BUGVERBOSE
132void do_BUG(const char *file, int line)
133{
134 bust_spinlocks(1);
135 printk("kernel BUG at %s:%d!\n", file, line);
136}
137EXPORT_SYMBOL(do_BUG);
138#endif
139
140static DEFINE_SPINLOCK(dimm_handler_lock);
141static dimm_printer_t dimm_handler;
142
143static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
144{
145 unsigned long flags;
146 int ret = -ENODEV;
147
148 spin_lock_irqsave(&dimm_handler_lock, flags);
149 if (dimm_handler) {
150 ret = dimm_handler(synd_code, paddr, buf, buflen);
151 } else if (tlb_type == spitfire) {
152 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
153 ret = -EINVAL;
154 else
155 ret = 0;
156 } else
157 ret = -ENODEV;
158 spin_unlock_irqrestore(&dimm_handler_lock, flags);
159
160 return ret;
161}
162
163int register_dimm_printer(dimm_printer_t func)
164{
165 unsigned long flags;
166 int ret = 0;
167
168 spin_lock_irqsave(&dimm_handler_lock, flags);
169 if (!dimm_handler)
170 dimm_handler = func;
171 else
172 ret = -EEXIST;
173 spin_unlock_irqrestore(&dimm_handler_lock, flags);
174
175 return ret;
176}
177EXPORT_SYMBOL_GPL(register_dimm_printer);
178
179void unregister_dimm_printer(dimm_printer_t func)
180{
181 unsigned long flags;
182
183 spin_lock_irqsave(&dimm_handler_lock, flags);
184 if (dimm_handler == func)
185 dimm_handler = NULL;
186 spin_unlock_irqrestore(&dimm_handler_lock, flags);
187}
188EXPORT_SYMBOL_GPL(unregister_dimm_printer);
189
190void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
191{
192 enum ctx_state prev_state = exception_enter();
193 siginfo_t info;
194
195 if (notify_die(DIE_TRAP, "instruction access exception", regs,
196 0, 0x8, SIGTRAP) == NOTIFY_STOP)
197 goto out;
198
199 if (regs->tstate & TSTATE_PRIV) {
200 printk("spitfire_insn_access_exception: SFSR[%016lx] "
201 "SFAR[%016lx], going.\n", sfsr, sfar);
202 die_if_kernel("Iax", regs);
203 }
204 if (test_thread_flag(TIF_32BIT)) {
205 regs->tpc &= 0xffffffff;
206 regs->tnpc &= 0xffffffff;
207 }
208 info.si_signo = SIGSEGV;
209 info.si_errno = 0;
210 info.si_code = SEGV_MAPERR;
211 info.si_addr = (void __user *)regs->tpc;
212 info.si_trapno = 0;
213 force_sig_info(SIGSEGV, &info, current);
214out:
215 exception_exit(prev_state);
216}
217
218void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
219{
220 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
221 0, 0x8, SIGTRAP) == NOTIFY_STOP)
222 return;
223
224 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
225 spitfire_insn_access_exception(regs, sfsr, sfar);
226}
227
228void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
229{
230 unsigned short type = (type_ctx >> 16);
231 unsigned short ctx = (type_ctx & 0xffff);
232 siginfo_t info;
233
234 if (notify_die(DIE_TRAP, "instruction access exception", regs,
235 0, 0x8, SIGTRAP) == NOTIFY_STOP)
236 return;
237
238 if (regs->tstate & TSTATE_PRIV) {
239 printk("sun4v_insn_access_exception: ADDR[%016lx] "
240 "CTX[%04x] TYPE[%04x], going.\n",
241 addr, ctx, type);
242 die_if_kernel("Iax", regs);
243 }
244
245 if (test_thread_flag(TIF_32BIT)) {
246 regs->tpc &= 0xffffffff;
247 regs->tnpc &= 0xffffffff;
248 }
249 info.si_signo = SIGSEGV;
250 info.si_errno = 0;
251 info.si_code = SEGV_MAPERR;
252 info.si_addr = (void __user *) addr;
253 info.si_trapno = 0;
254 force_sig_info(SIGSEGV, &info, current);
255}
256
257void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
258{
259 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
260 0, 0x8, SIGTRAP) == NOTIFY_STOP)
261 return;
262
263 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
264 sun4v_insn_access_exception(regs, addr, type_ctx);
265}
266
267void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
268{
269 enum ctx_state prev_state = exception_enter();
270 siginfo_t info;
271
272 if (notify_die(DIE_TRAP, "data access exception", regs,
273 0, 0x30, SIGTRAP) == NOTIFY_STOP)
274 goto out;
275
276 if (regs->tstate & TSTATE_PRIV) {
277 /* Test if this comes from uaccess places. */
278 const struct exception_table_entry *entry;
279
280 entry = search_exception_tables(regs->tpc);
281 if (entry) {
282 /* Ouch, somebody is trying VM hole tricks on us... */
283#ifdef DEBUG_EXCEPTIONS
284 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
285 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
286 regs->tpc, entry->fixup);
287#endif
288 regs->tpc = entry->fixup;
289 regs->tnpc = regs->tpc + 4;
290 goto out;
291 }
292 /* Shit... */
293 printk("spitfire_data_access_exception: SFSR[%016lx] "
294 "SFAR[%016lx], going.\n", sfsr, sfar);
295 die_if_kernel("Dax", regs);
296 }
297
298 info.si_signo = SIGSEGV;
299 info.si_errno = 0;
300 info.si_code = SEGV_MAPERR;
301 info.si_addr = (void __user *)sfar;
302 info.si_trapno = 0;
303 force_sig_info(SIGSEGV, &info, current);
304out:
305 exception_exit(prev_state);
306}
307
308void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
309{
310 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
311 0, 0x30, SIGTRAP) == NOTIFY_STOP)
312 return;
313
314 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
315 spitfire_data_access_exception(regs, sfsr, sfar);
316}
317
318void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
319{
320 unsigned short type = (type_ctx >> 16);
321 unsigned short ctx = (type_ctx & 0xffff);
322 siginfo_t info;
323
324 if (notify_die(DIE_TRAP, "data access exception", regs,
325 0, 0x8, SIGTRAP) == NOTIFY_STOP)
326 return;
327
328 if (regs->tstate & TSTATE_PRIV) {
329 /* Test if this comes from uaccess places. */
330 const struct exception_table_entry *entry;
331
332 entry = search_exception_tables(regs->tpc);
333 if (entry) {
334 /* Ouch, somebody is trying VM hole tricks on us... */
335#ifdef DEBUG_EXCEPTIONS
336 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
337 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
338 regs->tpc, entry->fixup);
339#endif
340 regs->tpc = entry->fixup;
341 regs->tnpc = regs->tpc + 4;
342 return;
343 }
344 printk("sun4v_data_access_exception: ADDR[%016lx] "
345 "CTX[%04x] TYPE[%04x], going.\n",
346 addr, ctx, type);
347 die_if_kernel("Dax", regs);
348 }
349
350 if (test_thread_flag(TIF_32BIT)) {
351 regs->tpc &= 0xffffffff;
352 regs->tnpc &= 0xffffffff;
353 }
354 info.si_signo = SIGSEGV;
355 info.si_errno = 0;
356 info.si_code = SEGV_MAPERR;
357 info.si_addr = (void __user *) addr;
358 info.si_trapno = 0;
359 force_sig_info(SIGSEGV, &info, current);
360}
361
362void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
363{
364 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
365 0, 0x8, SIGTRAP) == NOTIFY_STOP)
366 return;
367
368 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
369 sun4v_data_access_exception(regs, addr, type_ctx);
370}
371
372#ifdef CONFIG_PCI
373#include "pci_impl.h"
374#endif
375
376/* When access exceptions happen, we must do this. */
377static void spitfire_clean_and_reenable_l1_caches(void)
378{
379 unsigned long va;
380
381 if (tlb_type != spitfire)
382 BUG();
383
384 /* Clean 'em. */
385 for (va = 0; va < (PAGE_SIZE << 1); va += 32) {
386 spitfire_put_icache_tag(va, 0x0);
387 spitfire_put_dcache_tag(va, 0x0);
388 }
389
390 /* Re-enable in LSU. */
391 __asm__ __volatile__("flush %%g6\n\t"
392 "membar #Sync\n\t"
393 "stxa %0, [%%g0] %1\n\t"
394 "membar #Sync"
395 : /* no outputs */
396 : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
397 LSU_CONTROL_IM | LSU_CONTROL_DM),
398 "i" (ASI_LSU_CONTROL)
399 : "memory");
400}
401
402static void spitfire_enable_estate_errors(void)
403{
404 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
405 "membar #Sync"
406 : /* no outputs */
407 : "r" (ESTATE_ERR_ALL),
408 "i" (ASI_ESTATE_ERROR_EN));
409}
410
411static char ecc_syndrome_table[] = {
412 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
413 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
414 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
415 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
416 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
417 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
418 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
419 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
420 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
421 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
422 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
423 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
424 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
425 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
426 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
427 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
428 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
429 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
430 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
431 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
432 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
433 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
434 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
435 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
436 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
437 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
438 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
439 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
440 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
441 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
442 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
443 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
444};
445
446static char *syndrome_unknown = "<Unknown>";
447
448static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
449{
450 unsigned short scode;
451 char memmod_str[64], *p;
452
453 if (udbl & bit) {
454 scode = ecc_syndrome_table[udbl & 0xff];
455 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
456 p = syndrome_unknown;
457 else
458 p = memmod_str;
459 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
460 "Memory Module \"%s\"\n",
461 smp_processor_id(), scode, p);
462 }
463
464 if (udbh & bit) {
465 scode = ecc_syndrome_table[udbh & 0xff];
466 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
467 p = syndrome_unknown;
468 else
469 p = memmod_str;
470 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
471 "Memory Module \"%s\"\n",
472 smp_processor_id(), scode, p);
473 }
474
475}
476
477static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
478{
479
480 printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
481 "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
482 smp_processor_id(), afsr, afar, udbl, udbh, tl1);
483
484 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
485
486 /* We always log it, even if someone is listening for this
487 * trap.
488 */
489 notify_die(DIE_TRAP, "Correctable ECC Error", regs,
490 0, TRAP_TYPE_CEE, SIGTRAP);
491
492 /* The Correctable ECC Error trap does not disable I/D caches. So
493 * we only have to restore the ESTATE Error Enable register.
494 */
495 spitfire_enable_estate_errors();
496}
497
498static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
499{
500 siginfo_t info;
501
502 printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
503 "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
504 smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
505
506 /* XXX add more human friendly logging of the error status
507 * XXX as is implemented for cheetah
508 */
509
510 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
511
512 /* We always log it, even if someone is listening for this
513 * trap.
514 */
515 notify_die(DIE_TRAP, "Uncorrectable Error", regs,
516 0, tt, SIGTRAP);
517
518 if (regs->tstate & TSTATE_PRIV) {
519 if (tl1)
520 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
521 die_if_kernel("UE", regs);
522 }
523
524 /* XXX need more intelligent processing here, such as is implemented
525 * XXX for cheetah errors, in fact if the E-cache still holds the
526 * XXX line with bad parity this will loop
527 */
528
529 spitfire_clean_and_reenable_l1_caches();
530 spitfire_enable_estate_errors();
531
532 if (test_thread_flag(TIF_32BIT)) {
533 regs->tpc &= 0xffffffff;
534 regs->tnpc &= 0xffffffff;
535 }
536 info.si_signo = SIGBUS;
537 info.si_errno = 0;
538 info.si_code = BUS_OBJERR;
539 info.si_addr = (void *)0;
540 info.si_trapno = 0;
541 force_sig_info(SIGBUS, &info, current);
542}
543
544void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
545{
546 unsigned long afsr, tt, udbh, udbl;
547 int tl1;
548
549 afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
550 tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
551 tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
552 udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
553 udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
554
555#ifdef CONFIG_PCI
556 if (tt == TRAP_TYPE_DAE &&
557 pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
558 spitfire_clean_and_reenable_l1_caches();
559 spitfire_enable_estate_errors();
560
561 pci_poke_faulted = 1;
562 regs->tnpc = regs->tpc + 4;
563 return;
564 }
565#endif
566
567 if (afsr & SFAFSR_UE)
568 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
569
570 if (tt == TRAP_TYPE_CEE) {
571 /* Handle the case where we took a CEE trap, but ACK'd
572 * only the UE state in the UDB error registers.
573 */
574 if (afsr & SFAFSR_UE) {
575 if (udbh & UDBE_CE) {
576 __asm__ __volatile__(
577 "stxa %0, [%1] %2\n\t"
578 "membar #Sync"
579 : /* no outputs */
580 : "r" (udbh & UDBE_CE),
581 "r" (0x0), "i" (ASI_UDB_ERROR_W));
582 }
583 if (udbl & UDBE_CE) {
584 __asm__ __volatile__(
585 "stxa %0, [%1] %2\n\t"
586 "membar #Sync"
587 : /* no outputs */
588 : "r" (udbl & UDBE_CE),
589 "r" (0x18), "i" (ASI_UDB_ERROR_W));
590 }
591 }
592
593 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
594 }
595}
596
597int cheetah_pcache_forced_on;
598
599void cheetah_enable_pcache(void)
600{
601 unsigned long dcr;
602
603 printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
604 smp_processor_id());
605
606 __asm__ __volatile__("ldxa [%%g0] %1, %0"
607 : "=r" (dcr)
608 : "i" (ASI_DCU_CONTROL_REG));
609 dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
610 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
611 "membar #Sync"
612 : /* no outputs */
613 : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
614}
615
616/* Cheetah error trap handling. */
617static unsigned long ecache_flush_physbase;
618static unsigned long ecache_flush_linesize;
619static unsigned long ecache_flush_size;
620
621/* This table is ordered in priority of errors and matches the
622 * AFAR overwrite policy as well.
623 */
624
625struct afsr_error_table {
626 unsigned long mask;
627 const char *name;
628};
629
630static const char CHAFSR_PERR_msg[] =
631 "System interface protocol error";
632static const char CHAFSR_IERR_msg[] =
633 "Internal processor error";
634static const char CHAFSR_ISAP_msg[] =
635 "System request parity error on incoming address";
636static const char CHAFSR_UCU_msg[] =
637 "Uncorrectable E-cache ECC error for ifetch/data";
638static const char CHAFSR_UCC_msg[] =
639 "SW Correctable E-cache ECC error for ifetch/data";
640static const char CHAFSR_UE_msg[] =
641 "Uncorrectable system bus data ECC error for read";
642static const char CHAFSR_EDU_msg[] =
643 "Uncorrectable E-cache ECC error for stmerge/blkld";
644static const char CHAFSR_EMU_msg[] =
645 "Uncorrectable system bus MTAG error";
646static const char CHAFSR_WDU_msg[] =
647 "Uncorrectable E-cache ECC error for writeback";
648static const char CHAFSR_CPU_msg[] =
649 "Uncorrectable ECC error for copyout";
650static const char CHAFSR_CE_msg[] =
651 "HW corrected system bus data ECC error for read";
652static const char CHAFSR_EDC_msg[] =
653 "HW corrected E-cache ECC error for stmerge/blkld";
654static const char CHAFSR_EMC_msg[] =
655 "HW corrected system bus MTAG ECC error";
656static const char CHAFSR_WDC_msg[] =
657 "HW corrected E-cache ECC error for writeback";
658static const char CHAFSR_CPC_msg[] =
659 "HW corrected ECC error for copyout";
660static const char CHAFSR_TO_msg[] =
661 "Unmapped error from system bus";
662static const char CHAFSR_BERR_msg[] =
663 "Bus error response from system bus";
664static const char CHAFSR_IVC_msg[] =
665 "HW corrected system bus data ECC error for ivec read";
666static const char CHAFSR_IVU_msg[] =
667 "Uncorrectable system bus data ECC error for ivec read";
668static struct afsr_error_table __cheetah_error_table[] = {
669 { CHAFSR_PERR, CHAFSR_PERR_msg },
670 { CHAFSR_IERR, CHAFSR_IERR_msg },
671 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
672 { CHAFSR_UCU, CHAFSR_UCU_msg },
673 { CHAFSR_UCC, CHAFSR_UCC_msg },
674 { CHAFSR_UE, CHAFSR_UE_msg },
675 { CHAFSR_EDU, CHAFSR_EDU_msg },
676 { CHAFSR_EMU, CHAFSR_EMU_msg },
677 { CHAFSR_WDU, CHAFSR_WDU_msg },
678 { CHAFSR_CPU, CHAFSR_CPU_msg },
679 { CHAFSR_CE, CHAFSR_CE_msg },
680 { CHAFSR_EDC, CHAFSR_EDC_msg },
681 { CHAFSR_EMC, CHAFSR_EMC_msg },
682 { CHAFSR_WDC, CHAFSR_WDC_msg },
683 { CHAFSR_CPC, CHAFSR_CPC_msg },
684 { CHAFSR_TO, CHAFSR_TO_msg },
685 { CHAFSR_BERR, CHAFSR_BERR_msg },
686 /* These two do not update the AFAR. */
687 { CHAFSR_IVC, CHAFSR_IVC_msg },
688 { CHAFSR_IVU, CHAFSR_IVU_msg },
689 { 0, NULL },
690};
691static const char CHPAFSR_DTO_msg[] =
692 "System bus unmapped error for prefetch/storequeue-read";
693static const char CHPAFSR_DBERR_msg[] =
694 "System bus error for prefetch/storequeue-read";
695static const char CHPAFSR_THCE_msg[] =
696 "Hardware corrected E-cache Tag ECC error";
697static const char CHPAFSR_TSCE_msg[] =
698 "SW handled correctable E-cache Tag ECC error";
699static const char CHPAFSR_TUE_msg[] =
700 "Uncorrectable E-cache Tag ECC error";
701static const char CHPAFSR_DUE_msg[] =
702 "System bus uncorrectable data ECC error due to prefetch/store-fill";
703static struct afsr_error_table __cheetah_plus_error_table[] = {
704 { CHAFSR_PERR, CHAFSR_PERR_msg },
705 { CHAFSR_IERR, CHAFSR_IERR_msg },
706 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
707 { CHAFSR_UCU, CHAFSR_UCU_msg },
708 { CHAFSR_UCC, CHAFSR_UCC_msg },
709 { CHAFSR_UE, CHAFSR_UE_msg },
710 { CHAFSR_EDU, CHAFSR_EDU_msg },
711 { CHAFSR_EMU, CHAFSR_EMU_msg },
712 { CHAFSR_WDU, CHAFSR_WDU_msg },
713 { CHAFSR_CPU, CHAFSR_CPU_msg },
714 { CHAFSR_CE, CHAFSR_CE_msg },
715 { CHAFSR_EDC, CHAFSR_EDC_msg },
716 { CHAFSR_EMC, CHAFSR_EMC_msg },
717 { CHAFSR_WDC, CHAFSR_WDC_msg },
718 { CHAFSR_CPC, CHAFSR_CPC_msg },
719 { CHAFSR_TO, CHAFSR_TO_msg },
720 { CHAFSR_BERR, CHAFSR_BERR_msg },
721 { CHPAFSR_DTO, CHPAFSR_DTO_msg },
722 { CHPAFSR_DBERR, CHPAFSR_DBERR_msg },
723 { CHPAFSR_THCE, CHPAFSR_THCE_msg },
724 { CHPAFSR_TSCE, CHPAFSR_TSCE_msg },
725 { CHPAFSR_TUE, CHPAFSR_TUE_msg },
726 { CHPAFSR_DUE, CHPAFSR_DUE_msg },
727 /* These two do not update the AFAR. */
728 { CHAFSR_IVC, CHAFSR_IVC_msg },
729 { CHAFSR_IVU, CHAFSR_IVU_msg },
730 { 0, NULL },
731};
732static const char JPAFSR_JETO_msg[] =
733 "System interface protocol error, hw timeout caused";
734static const char JPAFSR_SCE_msg[] =
735 "Parity error on system snoop results";
736static const char JPAFSR_JEIC_msg[] =
737 "System interface protocol error, illegal command detected";
738static const char JPAFSR_JEIT_msg[] =
739 "System interface protocol error, illegal ADTYPE detected";
740static const char JPAFSR_OM_msg[] =
741 "Out of range memory error has occurred";
742static const char JPAFSR_ETP_msg[] =
743 "Parity error on L2 cache tag SRAM";
744static const char JPAFSR_UMS_msg[] =
745 "Error due to unsupported store";
746static const char JPAFSR_RUE_msg[] =
747 "Uncorrectable ECC error from remote cache/memory";
748static const char JPAFSR_RCE_msg[] =
749 "Correctable ECC error from remote cache/memory";
750static const char JPAFSR_BP_msg[] =
751 "JBUS parity error on returned read data";
752static const char JPAFSR_WBP_msg[] =
753 "JBUS parity error on data for writeback or block store";
754static const char JPAFSR_FRC_msg[] =
755 "Foreign read to DRAM incurring correctable ECC error";
756static const char JPAFSR_FRU_msg[] =
757 "Foreign read to DRAM incurring uncorrectable ECC error";
758static struct afsr_error_table __jalapeno_error_table[] = {
759 { JPAFSR_JETO, JPAFSR_JETO_msg },
760 { JPAFSR_SCE, JPAFSR_SCE_msg },
761 { JPAFSR_JEIC, JPAFSR_JEIC_msg },
762 { JPAFSR_JEIT, JPAFSR_JEIT_msg },
763 { CHAFSR_PERR, CHAFSR_PERR_msg },
764 { CHAFSR_IERR, CHAFSR_IERR_msg },
765 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
766 { CHAFSR_UCU, CHAFSR_UCU_msg },
767 { CHAFSR_UCC, CHAFSR_UCC_msg },
768 { CHAFSR_UE, CHAFSR_UE_msg },
769 { CHAFSR_EDU, CHAFSR_EDU_msg },
770 { JPAFSR_OM, JPAFSR_OM_msg },
771 { CHAFSR_WDU, CHAFSR_WDU_msg },
772 { CHAFSR_CPU, CHAFSR_CPU_msg },
773 { CHAFSR_CE, CHAFSR_CE_msg },
774 { CHAFSR_EDC, CHAFSR_EDC_msg },
775 { JPAFSR_ETP, JPAFSR_ETP_msg },
776 { CHAFSR_WDC, CHAFSR_WDC_msg },
777 { CHAFSR_CPC, CHAFSR_CPC_msg },
778 { CHAFSR_TO, CHAFSR_TO_msg },
779 { CHAFSR_BERR, CHAFSR_BERR_msg },
780 { JPAFSR_UMS, JPAFSR_UMS_msg },
781 { JPAFSR_RUE, JPAFSR_RUE_msg },
782 { JPAFSR_RCE, JPAFSR_RCE_msg },
783 { JPAFSR_BP, JPAFSR_BP_msg },
784 { JPAFSR_WBP, JPAFSR_WBP_msg },
785 { JPAFSR_FRC, JPAFSR_FRC_msg },
786 { JPAFSR_FRU, JPAFSR_FRU_msg },
787 /* These two do not update the AFAR. */
788 { CHAFSR_IVU, CHAFSR_IVU_msg },
789 { 0, NULL },
790};
791static struct afsr_error_table *cheetah_error_table;
792static unsigned long cheetah_afsr_errors;
793
794struct cheetah_err_info *cheetah_error_log;
795
796static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
797{
798 struct cheetah_err_info *p;
799 int cpu = smp_processor_id();
800
801 if (!cheetah_error_log)
802 return NULL;
803
804 p = cheetah_error_log + (cpu * 2);
805 if ((afsr & CHAFSR_TL1) != 0UL)
806 p++;
807
808 return p;
809}
810
811extern unsigned int tl0_icpe[], tl1_icpe[];
812extern unsigned int tl0_dcpe[], tl1_dcpe[];
813extern unsigned int tl0_fecc[], tl1_fecc[];
814extern unsigned int tl0_cee[], tl1_cee[];
815extern unsigned int tl0_iae[], tl1_iae[];
816extern unsigned int tl0_dae[], tl1_dae[];
817extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
818extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
819extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
820extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
821extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
822
823void __init cheetah_ecache_flush_init(void)
824{
825 unsigned long largest_size, smallest_linesize, order, ver;
826 int i, sz;
827
828 /* Scan all cpu device tree nodes, note two values:
829 * 1) largest E-cache size
830 * 2) smallest E-cache line size
831 */
832 largest_size = 0UL;
833 smallest_linesize = ~0UL;
834
835 for (i = 0; i < NR_CPUS; i++) {
836 unsigned long val;
837
838 val = cpu_data(i).ecache_size;
839 if (!val)
840 continue;
841
842 if (val > largest_size)
843 largest_size = val;
844
845 val = cpu_data(i).ecache_line_size;
846 if (val < smallest_linesize)
847 smallest_linesize = val;
848
849 }
850
851 if (largest_size == 0UL || smallest_linesize == ~0UL) {
852 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
853 "parameters.\n");
854 prom_halt();
855 }
856
857 ecache_flush_size = (2 * largest_size);
858 ecache_flush_linesize = smallest_linesize;
859
860 ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
861
862 if (ecache_flush_physbase == ~0UL) {
863 prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
864 "contiguous physical memory.\n",
865 ecache_flush_size);
866 prom_halt();
867 }
868
869 /* Now allocate error trap reporting scoreboard. */
870 sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
871 for (order = 0; order < MAX_ORDER; order++) {
872 if ((PAGE_SIZE << order) >= sz)
873 break;
874 }
875 cheetah_error_log = (struct cheetah_err_info *)
876 __get_free_pages(GFP_KERNEL, order);
877 if (!cheetah_error_log) {
878 prom_printf("cheetah_ecache_flush_init: Failed to allocate "
879 "error logging scoreboard (%d bytes).\n", sz);
880 prom_halt();
881 }
882 memset(cheetah_error_log, 0, PAGE_SIZE << order);
883
884 /* Mark all AFSRs as invalid so that the trap handler will
885 * log new new information there.
886 */
887 for (i = 0; i < 2 * NR_CPUS; i++)
888 cheetah_error_log[i].afsr = CHAFSR_INVALID;
889
890 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
891 if ((ver >> 32) == __JALAPENO_ID ||
892 (ver >> 32) == __SERRANO_ID) {
893 cheetah_error_table = &__jalapeno_error_table[0];
894 cheetah_afsr_errors = JPAFSR_ERRORS;
895 } else if ((ver >> 32) == 0x003e0015) {
896 cheetah_error_table = &__cheetah_plus_error_table[0];
897 cheetah_afsr_errors = CHPAFSR_ERRORS;
898 } else {
899 cheetah_error_table = &__cheetah_error_table[0];
900 cheetah_afsr_errors = CHAFSR_ERRORS;
901 }
902
903 /* Now patch trap tables. */
904 memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
905 memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
906 memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
907 memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
908 memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
909 memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
910 memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
911 memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
912 if (tlb_type == cheetah_plus) {
913 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
914 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
915 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
916 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
917 }
918 flushi(PAGE_OFFSET);
919}
920
921static void cheetah_flush_ecache(void)
922{
923 unsigned long flush_base = ecache_flush_physbase;
924 unsigned long flush_linesize = ecache_flush_linesize;
925 unsigned long flush_size = ecache_flush_size;
926
927 __asm__ __volatile__("1: subcc %0, %4, %0\n\t"
928 " bne,pt %%xcc, 1b\n\t"
929 " ldxa [%2 + %0] %3, %%g0\n\t"
930 : "=&r" (flush_size)
931 : "0" (flush_size), "r" (flush_base),
932 "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
933}
934
935static void cheetah_flush_ecache_line(unsigned long physaddr)
936{
937 unsigned long alias;
938
939 physaddr &= ~(8UL - 1UL);
940 physaddr = (ecache_flush_physbase +
941 (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
942 alias = physaddr + (ecache_flush_size >> 1UL);
943 __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
944 "ldxa [%1] %2, %%g0\n\t"
945 "membar #Sync"
946 : /* no outputs */
947 : "r" (physaddr), "r" (alias),
948 "i" (ASI_PHYS_USE_EC));
949}
950
951/* Unfortunately, the diagnostic access to the I-cache tags we need to
952 * use to clear the thing interferes with I-cache coherency transactions.
953 *
954 * So we must only flush the I-cache when it is disabled.
955 */
956static void __cheetah_flush_icache(void)
957{
958 unsigned int icache_size, icache_line_size;
959 unsigned long addr;
960
961 icache_size = local_cpu_data().icache_size;
962 icache_line_size = local_cpu_data().icache_line_size;
963
964 /* Clear the valid bits in all the tags. */
965 for (addr = 0; addr < icache_size; addr += icache_line_size) {
966 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
967 "membar #Sync"
968 : /* no outputs */
969 : "r" (addr | (2 << 3)),
970 "i" (ASI_IC_TAG));
971 }
972}
973
974static void cheetah_flush_icache(void)
975{
976 unsigned long dcu_save;
977
978 /* Save current DCU, disable I-cache. */
979 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
980 "or %0, %2, %%g1\n\t"
981 "stxa %%g1, [%%g0] %1\n\t"
982 "membar #Sync"
983 : "=r" (dcu_save)
984 : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
985 : "g1");
986
987 __cheetah_flush_icache();
988
989 /* Restore DCU register */
990 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
991 "membar #Sync"
992 : /* no outputs */
993 : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
994}
995
996static void cheetah_flush_dcache(void)
997{
998 unsigned int dcache_size, dcache_line_size;
999 unsigned long addr;
1000
1001 dcache_size = local_cpu_data().dcache_size;
1002 dcache_line_size = local_cpu_data().dcache_line_size;
1003
1004 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1005 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1006 "membar #Sync"
1007 : /* no outputs */
1008 : "r" (addr), "i" (ASI_DCACHE_TAG));
1009 }
1010}
1011
1012/* In order to make the even parity correct we must do two things.
1013 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1014 * Next, we clear out all 32-bytes of data for that line. Data of
1015 * all-zero + tag parity value of zero == correct parity.
1016 */
1017static void cheetah_plus_zap_dcache_parity(void)
1018{
1019 unsigned int dcache_size, dcache_line_size;
1020 unsigned long addr;
1021
1022 dcache_size = local_cpu_data().dcache_size;
1023 dcache_line_size = local_cpu_data().dcache_line_size;
1024
1025 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1026 unsigned long tag = (addr >> 14);
1027 unsigned long line;
1028
1029 __asm__ __volatile__("membar #Sync\n\t"
1030 "stxa %0, [%1] %2\n\t"
1031 "membar #Sync"
1032 : /* no outputs */
1033 : "r" (tag), "r" (addr),
1034 "i" (ASI_DCACHE_UTAG));
1035 for (line = addr; line < addr + dcache_line_size; line += 8)
1036 __asm__ __volatile__("membar #Sync\n\t"
1037 "stxa %%g0, [%0] %1\n\t"
1038 "membar #Sync"
1039 : /* no outputs */
1040 : "r" (line),
1041 "i" (ASI_DCACHE_DATA));
1042 }
1043}
1044
1045/* Conversion tables used to frob Cheetah AFSR syndrome values into
1046 * something palatable to the memory controller driver get_unumber
1047 * routine.
1048 */
1049#define MT0 137
1050#define MT1 138
1051#define MT2 139
1052#define NONE 254
1053#define MTC0 140
1054#define MTC1 141
1055#define MTC2 142
1056#define MTC3 143
1057#define C0 128
1058#define C1 129
1059#define C2 130
1060#define C3 131
1061#define C4 132
1062#define C5 133
1063#define C6 134
1064#define C7 135
1065#define C8 136
1066#define M2 144
1067#define M3 145
1068#define M4 146
1069#define M 147
1070static unsigned char cheetah_ecc_syntab[] = {
1071/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1072/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1073/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1074/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1075/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1076/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1077/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1078/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1079/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1080/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1081/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1082/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1083/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1084/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1085/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1086/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1087/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1088/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1089/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1090/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1091/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1092/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1093/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1094/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1095/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1096/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1097/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1098/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1099/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1100/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1101/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1102/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1103};
1104static unsigned char cheetah_mtag_syntab[] = {
1105 NONE, MTC0,
1106 MTC1, NONE,
1107 MTC2, NONE,
1108 NONE, MT0,
1109 MTC3, NONE,
1110 NONE, MT1,
1111 NONE, MT2,
1112 NONE, NONE
1113};
1114
1115/* Return the highest priority error conditon mentioned. */
1116static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1117{
1118 unsigned long tmp = 0;
1119 int i;
1120
1121 for (i = 0; cheetah_error_table[i].mask; i++) {
1122 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1123 return tmp;
1124 }
1125 return tmp;
1126}
1127
1128static const char *cheetah_get_string(unsigned long bit)
1129{
1130 int i;
1131
1132 for (i = 0; cheetah_error_table[i].mask; i++) {
1133 if ((bit & cheetah_error_table[i].mask) != 0UL)
1134 return cheetah_error_table[i].name;
1135 }
1136 return "???";
1137}
1138
1139static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1140 unsigned long afsr, unsigned long afar, int recoverable)
1141{
1142 unsigned long hipri;
1143 char unum[256];
1144
1145 printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1146 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1147 afsr, afar,
1148 (afsr & CHAFSR_TL1) ? 1 : 0);
1149 printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1150 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1151 regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1152 printk("%s" "ERROR(%d): ",
1153 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1154 printk("TPC<%pS>\n", (void *) regs->tpc);
1155 printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n",
1156 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1157 (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1158 (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1159 (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1160 (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1161 hipri = cheetah_get_hipri(afsr);
1162 printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1163 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1164 hipri, cheetah_get_string(hipri));
1165
1166 /* Try to get unumber if relevant. */
1167#define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \
1168 CHAFSR_CPC | CHAFSR_CPU | \
1169 CHAFSR_UE | CHAFSR_CE | \
1170 CHAFSR_EDC | CHAFSR_EDU | \
1171 CHAFSR_UCC | CHAFSR_UCU | \
1172 CHAFSR_WDU | CHAFSR_WDC)
1173#define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU)
1174 if (afsr & ESYND_ERRORS) {
1175 int syndrome;
1176 int ret;
1177
1178 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1179 syndrome = cheetah_ecc_syntab[syndrome];
1180 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1181 if (ret != -1)
1182 printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1183 (recoverable ? KERN_WARNING : KERN_CRIT),
1184 smp_processor_id(), unum);
1185 } else if (afsr & MSYND_ERRORS) {
1186 int syndrome;
1187 int ret;
1188
1189 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1190 syndrome = cheetah_mtag_syntab[syndrome];
1191 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1192 if (ret != -1)
1193 printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1194 (recoverable ? KERN_WARNING : KERN_CRIT),
1195 smp_processor_id(), unum);
1196 }
1197
1198 /* Now dump the cache snapshots. */
1199 printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1200 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1201 (int) info->dcache_index,
1202 info->dcache_tag,
1203 info->dcache_utag,
1204 info->dcache_stag);
1205 printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1206 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1207 info->dcache_data[0],
1208 info->dcache_data[1],
1209 info->dcache_data[2],
1210 info->dcache_data[3]);
1211 printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1212 "u[%016llx] l[%016llx]\n",
1213 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1214 (int) info->icache_index,
1215 info->icache_tag,
1216 info->icache_utag,
1217 info->icache_stag,
1218 info->icache_upper,
1219 info->icache_lower);
1220 printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1221 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1222 info->icache_data[0],
1223 info->icache_data[1],
1224 info->icache_data[2],
1225 info->icache_data[3]);
1226 printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1227 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1228 info->icache_data[4],
1229 info->icache_data[5],
1230 info->icache_data[6],
1231 info->icache_data[7]);
1232 printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1233 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1234 (int) info->ecache_index, info->ecache_tag);
1235 printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1236 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1237 info->ecache_data[0],
1238 info->ecache_data[1],
1239 info->ecache_data[2],
1240 info->ecache_data[3]);
1241
1242 afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1243 while (afsr != 0UL) {
1244 unsigned long bit = cheetah_get_hipri(afsr);
1245
1246 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1247 (recoverable ? KERN_WARNING : KERN_CRIT),
1248 bit, cheetah_get_string(bit));
1249
1250 afsr &= ~bit;
1251 }
1252
1253 if (!recoverable)
1254 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1255}
1256
1257static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1258{
1259 unsigned long afsr, afar;
1260 int ret = 0;
1261
1262 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1263 : "=r" (afsr)
1264 : "i" (ASI_AFSR));
1265 if ((afsr & cheetah_afsr_errors) != 0) {
1266 if (logp != NULL) {
1267 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1268 : "=r" (afar)
1269 : "i" (ASI_AFAR));
1270 logp->afsr = afsr;
1271 logp->afar = afar;
1272 }
1273 ret = 1;
1274 }
1275 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1276 "membar #Sync\n\t"
1277 : : "r" (afsr), "i" (ASI_AFSR));
1278
1279 return ret;
1280}
1281
1282void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1283{
1284 struct cheetah_err_info local_snapshot, *p;
1285 int recoverable;
1286
1287 /* Flush E-cache */
1288 cheetah_flush_ecache();
1289
1290 p = cheetah_get_error_log(afsr);
1291 if (!p) {
1292 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1293 afsr, afar);
1294 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1295 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1296 prom_halt();
1297 }
1298
1299 /* Grab snapshot of logged error. */
1300 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1301
1302 /* If the current trap snapshot does not match what the
1303 * trap handler passed along into our args, big trouble.
1304 * In such a case, mark the local copy as invalid.
1305 *
1306 * Else, it matches and we mark the afsr in the non-local
1307 * copy as invalid so we may log new error traps there.
1308 */
1309 if (p->afsr != afsr || p->afar != afar)
1310 local_snapshot.afsr = CHAFSR_INVALID;
1311 else
1312 p->afsr = CHAFSR_INVALID;
1313
1314 cheetah_flush_icache();
1315 cheetah_flush_dcache();
1316
1317 /* Re-enable I-cache/D-cache */
1318 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1319 "or %%g1, %1, %%g1\n\t"
1320 "stxa %%g1, [%%g0] %0\n\t"
1321 "membar #Sync"
1322 : /* no outputs */
1323 : "i" (ASI_DCU_CONTROL_REG),
1324 "i" (DCU_DC | DCU_IC)
1325 : "g1");
1326
1327 /* Re-enable error reporting */
1328 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1329 "or %%g1, %1, %%g1\n\t"
1330 "stxa %%g1, [%%g0] %0\n\t"
1331 "membar #Sync"
1332 : /* no outputs */
1333 : "i" (ASI_ESTATE_ERROR_EN),
1334 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1335 : "g1");
1336
1337 /* Decide if we can continue after handling this trap and
1338 * logging the error.
1339 */
1340 recoverable = 1;
1341 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1342 recoverable = 0;
1343
1344 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1345 * error was logged while we had error reporting traps disabled.
1346 */
1347 if (cheetah_recheck_errors(&local_snapshot)) {
1348 unsigned long new_afsr = local_snapshot.afsr;
1349
1350 /* If we got a new asynchronous error, die... */
1351 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1352 CHAFSR_WDU | CHAFSR_CPU |
1353 CHAFSR_IVU | CHAFSR_UE |
1354 CHAFSR_BERR | CHAFSR_TO))
1355 recoverable = 0;
1356 }
1357
1358 /* Log errors. */
1359 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1360
1361 if (!recoverable)
1362 panic("Irrecoverable Fast-ECC error trap.\n");
1363
1364 /* Flush E-cache to kick the error trap handlers out. */
1365 cheetah_flush_ecache();
1366}
1367
1368/* Try to fix a correctable error by pushing the line out from
1369 * the E-cache. Recheck error reporting registers to see if the
1370 * problem is intermittent.
1371 */
1372static int cheetah_fix_ce(unsigned long physaddr)
1373{
1374 unsigned long orig_estate;
1375 unsigned long alias1, alias2;
1376 int ret;
1377
1378 /* Make sure correctable error traps are disabled. */
1379 __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t"
1380 "andn %0, %1, %%g1\n\t"
1381 "stxa %%g1, [%%g0] %2\n\t"
1382 "membar #Sync"
1383 : "=&r" (orig_estate)
1384 : "i" (ESTATE_ERROR_CEEN),
1385 "i" (ASI_ESTATE_ERROR_EN)
1386 : "g1");
1387
1388 /* We calculate alias addresses that will force the
1389 * cache line in question out of the E-cache. Then
1390 * we bring it back in with an atomic instruction so
1391 * that we get it in some modified/exclusive state,
1392 * then we displace it again to try and get proper ECC
1393 * pushed back into the system.
1394 */
1395 physaddr &= ~(8UL - 1UL);
1396 alias1 = (ecache_flush_physbase +
1397 (physaddr & ((ecache_flush_size >> 1) - 1)));
1398 alias2 = alias1 + (ecache_flush_size >> 1);
1399 __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t"
1400 "ldxa [%1] %3, %%g0\n\t"
1401 "casxa [%2] %3, %%g0, %%g0\n\t"
1402 "ldxa [%0] %3, %%g0\n\t"
1403 "ldxa [%1] %3, %%g0\n\t"
1404 "membar #Sync"
1405 : /* no outputs */
1406 : "r" (alias1), "r" (alias2),
1407 "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1408
1409 /* Did that trigger another error? */
1410 if (cheetah_recheck_errors(NULL)) {
1411 /* Try one more time. */
1412 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1413 "membar #Sync"
1414 : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1415 if (cheetah_recheck_errors(NULL))
1416 ret = 2;
1417 else
1418 ret = 1;
1419 } else {
1420 /* No new error, intermittent problem. */
1421 ret = 0;
1422 }
1423
1424 /* Restore error enables. */
1425 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1426 "membar #Sync"
1427 : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1428
1429 return ret;
1430}
1431
1432/* Return non-zero if PADDR is a valid physical memory address. */
1433static int cheetah_check_main_memory(unsigned long paddr)
1434{
1435 unsigned long vaddr = PAGE_OFFSET + paddr;
1436
1437 if (vaddr > (unsigned long) high_memory)
1438 return 0;
1439
1440 return kern_addr_valid(vaddr);
1441}
1442
1443void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1444{
1445 struct cheetah_err_info local_snapshot, *p;
1446 int recoverable, is_memory;
1447
1448 p = cheetah_get_error_log(afsr);
1449 if (!p) {
1450 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1451 afsr, afar);
1452 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1453 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1454 prom_halt();
1455 }
1456
1457 /* Grab snapshot of logged error. */
1458 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1459
1460 /* If the current trap snapshot does not match what the
1461 * trap handler passed along into our args, big trouble.
1462 * In such a case, mark the local copy as invalid.
1463 *
1464 * Else, it matches and we mark the afsr in the non-local
1465 * copy as invalid so we may log new error traps there.
1466 */
1467 if (p->afsr != afsr || p->afar != afar)
1468 local_snapshot.afsr = CHAFSR_INVALID;
1469 else
1470 p->afsr = CHAFSR_INVALID;
1471
1472 is_memory = cheetah_check_main_memory(afar);
1473
1474 if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1475 /* XXX Might want to log the results of this operation
1476 * XXX somewhere... -DaveM
1477 */
1478 cheetah_fix_ce(afar);
1479 }
1480
1481 {
1482 int flush_all, flush_line;
1483
1484 flush_all = flush_line = 0;
1485 if ((afsr & CHAFSR_EDC) != 0UL) {
1486 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1487 flush_line = 1;
1488 else
1489 flush_all = 1;
1490 } else if ((afsr & CHAFSR_CPC) != 0UL) {
1491 if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1492 flush_line = 1;
1493 else
1494 flush_all = 1;
1495 }
1496
1497 /* Trap handler only disabled I-cache, flush it. */
1498 cheetah_flush_icache();
1499
1500 /* Re-enable I-cache */
1501 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1502 "or %%g1, %1, %%g1\n\t"
1503 "stxa %%g1, [%%g0] %0\n\t"
1504 "membar #Sync"
1505 : /* no outputs */
1506 : "i" (ASI_DCU_CONTROL_REG),
1507 "i" (DCU_IC)
1508 : "g1");
1509
1510 if (flush_all)
1511 cheetah_flush_ecache();
1512 else if (flush_line)
1513 cheetah_flush_ecache_line(afar);
1514 }
1515
1516 /* Re-enable error reporting */
1517 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1518 "or %%g1, %1, %%g1\n\t"
1519 "stxa %%g1, [%%g0] %0\n\t"
1520 "membar #Sync"
1521 : /* no outputs */
1522 : "i" (ASI_ESTATE_ERROR_EN),
1523 "i" (ESTATE_ERROR_CEEN)
1524 : "g1");
1525
1526 /* Decide if we can continue after handling this trap and
1527 * logging the error.
1528 */
1529 recoverable = 1;
1530 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1531 recoverable = 0;
1532
1533 /* Re-check AFSR/AFAR */
1534 (void) cheetah_recheck_errors(&local_snapshot);
1535
1536 /* Log errors. */
1537 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1538
1539 if (!recoverable)
1540 panic("Irrecoverable Correctable-ECC error trap.\n");
1541}
1542
1543void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1544{
1545 struct cheetah_err_info local_snapshot, *p;
1546 int recoverable, is_memory;
1547
1548#ifdef CONFIG_PCI
1549 /* Check for the special PCI poke sequence. */
1550 if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1551 cheetah_flush_icache();
1552 cheetah_flush_dcache();
1553
1554 /* Re-enable I-cache/D-cache */
1555 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1556 "or %%g1, %1, %%g1\n\t"
1557 "stxa %%g1, [%%g0] %0\n\t"
1558 "membar #Sync"
1559 : /* no outputs */
1560 : "i" (ASI_DCU_CONTROL_REG),
1561 "i" (DCU_DC | DCU_IC)
1562 : "g1");
1563
1564 /* Re-enable error reporting */
1565 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1566 "or %%g1, %1, %%g1\n\t"
1567 "stxa %%g1, [%%g0] %0\n\t"
1568 "membar #Sync"
1569 : /* no outputs */
1570 : "i" (ASI_ESTATE_ERROR_EN),
1571 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1572 : "g1");
1573
1574 (void) cheetah_recheck_errors(NULL);
1575
1576 pci_poke_faulted = 1;
1577 regs->tpc += 4;
1578 regs->tnpc = regs->tpc + 4;
1579 return;
1580 }
1581#endif
1582
1583 p = cheetah_get_error_log(afsr);
1584 if (!p) {
1585 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1586 afsr, afar);
1587 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1588 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1589 prom_halt();
1590 }
1591
1592 /* Grab snapshot of logged error. */
1593 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1594
1595 /* If the current trap snapshot does not match what the
1596 * trap handler passed along into our args, big trouble.
1597 * In such a case, mark the local copy as invalid.
1598 *
1599 * Else, it matches and we mark the afsr in the non-local
1600 * copy as invalid so we may log new error traps there.
1601 */
1602 if (p->afsr != afsr || p->afar != afar)
1603 local_snapshot.afsr = CHAFSR_INVALID;
1604 else
1605 p->afsr = CHAFSR_INVALID;
1606
1607 is_memory = cheetah_check_main_memory(afar);
1608
1609 {
1610 int flush_all, flush_line;
1611
1612 flush_all = flush_line = 0;
1613 if ((afsr & CHAFSR_EDU) != 0UL) {
1614 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1615 flush_line = 1;
1616 else
1617 flush_all = 1;
1618 } else if ((afsr & CHAFSR_BERR) != 0UL) {
1619 if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1620 flush_line = 1;
1621 else
1622 flush_all = 1;
1623 }
1624
1625 cheetah_flush_icache();
1626 cheetah_flush_dcache();
1627
1628 /* Re-enable I/D caches */
1629 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1630 "or %%g1, %1, %%g1\n\t"
1631 "stxa %%g1, [%%g0] %0\n\t"
1632 "membar #Sync"
1633 : /* no outputs */
1634 : "i" (ASI_DCU_CONTROL_REG),
1635 "i" (DCU_IC | DCU_DC)
1636 : "g1");
1637
1638 if (flush_all)
1639 cheetah_flush_ecache();
1640 else if (flush_line)
1641 cheetah_flush_ecache_line(afar);
1642 }
1643
1644 /* Re-enable error reporting */
1645 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1646 "or %%g1, %1, %%g1\n\t"
1647 "stxa %%g1, [%%g0] %0\n\t"
1648 "membar #Sync"
1649 : /* no outputs */
1650 : "i" (ASI_ESTATE_ERROR_EN),
1651 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1652 : "g1");
1653
1654 /* Decide if we can continue after handling this trap and
1655 * logging the error.
1656 */
1657 recoverable = 1;
1658 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1659 recoverable = 0;
1660
1661 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1662 * error was logged while we had error reporting traps disabled.
1663 */
1664 if (cheetah_recheck_errors(&local_snapshot)) {
1665 unsigned long new_afsr = local_snapshot.afsr;
1666
1667 /* If we got a new asynchronous error, die... */
1668 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1669 CHAFSR_WDU | CHAFSR_CPU |
1670 CHAFSR_IVU | CHAFSR_UE |
1671 CHAFSR_BERR | CHAFSR_TO))
1672 recoverable = 0;
1673 }
1674
1675 /* Log errors. */
1676 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1677
1678 /* "Recoverable" here means we try to yank the page from ever
1679 * being newly used again. This depends upon a few things:
1680 * 1) Must be main memory, and AFAR must be valid.
1681 * 2) If we trapped from user, OK.
1682 * 3) Else, if we trapped from kernel we must find exception
1683 * table entry (ie. we have to have been accessing user
1684 * space).
1685 *
1686 * If AFAR is not in main memory, or we trapped from kernel
1687 * and cannot find an exception table entry, it is unacceptable
1688 * to try and continue.
1689 */
1690 if (recoverable && is_memory) {
1691 if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1692 /* OK, usermode access. */
1693 recoverable = 1;
1694 } else {
1695 const struct exception_table_entry *entry;
1696
1697 entry = search_exception_tables(regs->tpc);
1698 if (entry) {
1699 /* OK, kernel access to userspace. */
1700 recoverable = 1;
1701
1702 } else {
1703 /* BAD, privileged state is corrupted. */
1704 recoverable = 0;
1705 }
1706
1707 if (recoverable) {
1708 if (pfn_valid(afar >> PAGE_SHIFT))
1709 get_page(pfn_to_page(afar >> PAGE_SHIFT));
1710 else
1711 recoverable = 0;
1712
1713 /* Only perform fixup if we still have a
1714 * recoverable condition.
1715 */
1716 if (recoverable) {
1717 regs->tpc = entry->fixup;
1718 regs->tnpc = regs->tpc + 4;
1719 }
1720 }
1721 }
1722 } else {
1723 recoverable = 0;
1724 }
1725
1726 if (!recoverable)
1727 panic("Irrecoverable deferred error trap.\n");
1728}
1729
1730/* Handle a D/I cache parity error trap. TYPE is encoded as:
1731 *
1732 * Bit0: 0=dcache,1=icache
1733 * Bit1: 0=recoverable,1=unrecoverable
1734 *
1735 * The hardware has disabled both the I-cache and D-cache in
1736 * the %dcr register.
1737 */
1738void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1739{
1740 if (type & 0x1)
1741 __cheetah_flush_icache();
1742 else
1743 cheetah_plus_zap_dcache_parity();
1744 cheetah_flush_dcache();
1745
1746 /* Re-enable I-cache/D-cache */
1747 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1748 "or %%g1, %1, %%g1\n\t"
1749 "stxa %%g1, [%%g0] %0\n\t"
1750 "membar #Sync"
1751 : /* no outputs */
1752 : "i" (ASI_DCU_CONTROL_REG),
1753 "i" (DCU_DC | DCU_IC)
1754 : "g1");
1755
1756 if (type & 0x2) {
1757 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1758 smp_processor_id(),
1759 (type & 0x1) ? 'I' : 'D',
1760 regs->tpc);
1761 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1762 panic("Irrecoverable Cheetah+ parity error.");
1763 }
1764
1765 printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1766 smp_processor_id(),
1767 (type & 0x1) ? 'I' : 'D',
1768 regs->tpc);
1769 printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1770}
1771
1772struct sun4v_error_entry {
1773 /* Unique error handle */
1774/*0x00*/u64 err_handle;
1775
1776 /* %stick value at the time of the error */
1777/*0x08*/u64 err_stick;
1778
1779/*0x10*/u8 reserved_1[3];
1780
1781 /* Error type */
1782/*0x13*/u8 err_type;
1783#define SUN4V_ERR_TYPE_UNDEFINED 0
1784#define SUN4V_ERR_TYPE_UNCORRECTED_RES 1
1785#define SUN4V_ERR_TYPE_PRECISE_NONRES 2
1786#define SUN4V_ERR_TYPE_DEFERRED_NONRES 3
1787#define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4
1788#define SUN4V_ERR_TYPE_DUMP_CORE 5
1789#define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6
1790#define SUN4V_ERR_TYPE_NUM 7
1791
1792 /* Error attributes */
1793/*0x14*/u32 err_attrs;
1794#define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001
1795#define SUN4V_ERR_ATTRS_MEMORY 0x00000002
1796#define SUN4V_ERR_ATTRS_PIO 0x00000004
1797#define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008
1798#define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010
1799#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020
1800#define SUN4V_ERR_ATTRS_ASR 0x00000040
1801#define SUN4V_ERR_ATTRS_ASI 0x00000080
1802#define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100
1803#define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600
1804#define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9
1805#define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000
1806#define SUN4V_ERR_ATTRS_MODE_SHFT 24
1807#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000
1808
1809#define SUN4V_ERR_SPSTATE_FAULTED 0
1810#define SUN4V_ERR_SPSTATE_AVAILABLE 1
1811#define SUN4V_ERR_SPSTATE_NOT_PRESENT 2
1812
1813#define SUN4V_ERR_MODE_USER 1
1814#define SUN4V_ERR_MODE_PRIV 2
1815
1816 /* Real address of the memory region or PIO transaction */
1817/*0x18*/u64 err_raddr;
1818
1819 /* Size of the operation triggering the error, in bytes */
1820/*0x20*/u32 err_size;
1821
1822 /* ID of the CPU */
1823/*0x24*/u16 err_cpu;
1824
1825 /* Grace periof for shutdown, in seconds */
1826/*0x26*/u16 err_secs;
1827
1828 /* Value of the %asi register */
1829/*0x28*/u8 err_asi;
1830
1831/*0x29*/u8 reserved_2;
1832
1833 /* Value of the ASR register number */
1834/*0x2a*/u16 err_asr;
1835#define SUN4V_ERR_ASR_VALID 0x8000
1836
1837/*0x2c*/u32 reserved_3;
1838/*0x30*/u64 reserved_4;
1839/*0x38*/u64 reserved_5;
1840};
1841
1842static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1843static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1844
1845static const char *sun4v_err_type_to_str(u8 type)
1846{
1847 static const char *types[SUN4V_ERR_TYPE_NUM] = {
1848 "undefined",
1849 "uncorrected resumable",
1850 "precise nonresumable",
1851 "deferred nonresumable",
1852 "shutdown request",
1853 "dump core",
1854 "SP state change",
1855 };
1856
1857 if (type < SUN4V_ERR_TYPE_NUM)
1858 return types[type];
1859
1860 return "unknown";
1861}
1862
1863static void sun4v_emit_err_attr_strings(u32 attrs)
1864{
1865 static const char *attr_names[] = {
1866 "processor",
1867 "memory",
1868 "PIO",
1869 "int-registers",
1870 "fpu-registers",
1871 "shutdown-request",
1872 "ASR",
1873 "ASI",
1874 "priv-reg",
1875 };
1876 static const char *sp_states[] = {
1877 "sp-faulted",
1878 "sp-available",
1879 "sp-not-present",
1880 "sp-state-reserved",
1881 };
1882 static const char *modes[] = {
1883 "mode-reserved0",
1884 "user",
1885 "priv",
1886 "mode-reserved1",
1887 };
1888 u32 sp_state, mode;
1889 int i;
1890
1891 for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1892 if (attrs & (1U << i)) {
1893 const char *s = attr_names[i];
1894
1895 pr_cont("%s ", s);
1896 }
1897 }
1898
1899 sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1900 SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1901 pr_cont("%s ", sp_states[sp_state]);
1902
1903 mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1904 SUN4V_ERR_ATTRS_MODE_SHFT);
1905 pr_cont("%s ", modes[mode]);
1906
1907 if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1908 pr_cont("res-queue-full ");
1909}
1910
1911/* When the report contains a real-address of "-1" it means that the
1912 * hardware did not provide the address. So we compute the effective
1913 * address of the load or store instruction at regs->tpc and report
1914 * that. Usually when this happens it's a PIO and in such a case we
1915 * are using physical addresses with bypass ASIs anyways, so what we
1916 * report here is exactly what we want.
1917 */
1918static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1919{
1920 unsigned int insn;
1921 u64 addr;
1922
1923 if (!(regs->tstate & TSTATE_PRIV))
1924 return;
1925
1926 insn = *(unsigned int *) regs->tpc;
1927
1928 addr = compute_effective_address(regs, insn, 0);
1929
1930 printk("%s: insn effective address [0x%016llx]\n",
1931 pfx, addr);
1932}
1933
1934static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1935 int cpu, const char *pfx, atomic_t *ocnt)
1936{
1937 u64 *raw_ptr = (u64 *) ent;
1938 u32 attrs;
1939 int cnt;
1940
1941 printk("%s: Reporting on cpu %d\n", pfx, cpu);
1942 printk("%s: TPC [0x%016lx] <%pS>\n",
1943 pfx, regs->tpc, (void *) regs->tpc);
1944
1945 printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1946 pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1947 printk("%s: %016llx:%016llx:%016llx:%016llx]\n",
1948 pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1949
1950 printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1951 pfx, ent->err_handle, ent->err_stick);
1952
1953 printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1954
1955 attrs = ent->err_attrs;
1956 printk("%s: attrs [0x%08x] < ", pfx, attrs);
1957 sun4v_emit_err_attr_strings(attrs);
1958 pr_cont(">\n");
1959
1960 /* Various fields in the error report are only valid if
1961 * certain attribute bits are set.
1962 */
1963 if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1964 SUN4V_ERR_ATTRS_PIO |
1965 SUN4V_ERR_ATTRS_ASI)) {
1966 printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1967
1968 if (ent->err_raddr == ~(u64)0)
1969 sun4v_report_real_raddr(pfx, regs);
1970 }
1971
1972 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
1973 printk("%s: size [0x%x]\n", pfx, ent->err_size);
1974
1975 if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
1976 SUN4V_ERR_ATTRS_INT_REGISTERS |
1977 SUN4V_ERR_ATTRS_FPU_REGISTERS |
1978 SUN4V_ERR_ATTRS_PRIV_REG))
1979 printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
1980
1981 if (attrs & SUN4V_ERR_ATTRS_ASI)
1982 printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
1983
1984 if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
1985 SUN4V_ERR_ATTRS_FPU_REGISTERS |
1986 SUN4V_ERR_ATTRS_PRIV_REG)) &&
1987 (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
1988 printk("%s: reg [0x%04x]\n",
1989 pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
1990
1991 show_regs(regs);
1992
1993 if ((cnt = atomic_read(ocnt)) != 0) {
1994 atomic_set(ocnt, 0);
1995 wmb();
1996 printk("%s: Queue overflowed %d times.\n",
1997 pfx, cnt);
1998 }
1999}
2000
2001/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2002 * Log the event and clear the first word of the entry.
2003 */
2004void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2005{
2006 enum ctx_state prev_state = exception_enter();
2007 struct sun4v_error_entry *ent, local_copy;
2008 struct trap_per_cpu *tb;
2009 unsigned long paddr;
2010 int cpu;
2011
2012 cpu = get_cpu();
2013
2014 tb = &trap_block[cpu];
2015 paddr = tb->resum_kernel_buf_pa + offset;
2016 ent = __va(paddr);
2017
2018 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2019
2020 /* We have a local copy now, so release the entry. */
2021 ent->err_handle = 0;
2022 wmb();
2023
2024 put_cpu();
2025
2026 if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2027 /* We should really take the seconds field of
2028 * the error report and use it for the shutdown
2029 * invocation, but for now do the same thing we
2030 * do for a DS shutdown request.
2031 */
2032 pr_info("Shutdown request, %u seconds...\n",
2033 local_copy.err_secs);
2034 orderly_poweroff(true);
2035 goto out;
2036 }
2037
2038 sun4v_log_error(regs, &local_copy, cpu,
2039 KERN_ERR "RESUMABLE ERROR",
2040 &sun4v_resum_oflow_cnt);
2041out:
2042 exception_exit(prev_state);
2043}
2044
2045/* If we try to printk() we'll probably make matters worse, by trying
2046 * to retake locks this cpu already holds or causing more errors. So
2047 * just bump a counter, and we'll report these counter bumps above.
2048 */
2049void sun4v_resum_overflow(struct pt_regs *regs)
2050{
2051 atomic_inc(&sun4v_resum_oflow_cnt);
2052}
2053
2054/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2055 * Log the event, clear the first word of the entry, and die.
2056 */
2057void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2058{
2059 struct sun4v_error_entry *ent, local_copy;
2060 struct trap_per_cpu *tb;
2061 unsigned long paddr;
2062 int cpu;
2063
2064 cpu = get_cpu();
2065
2066 tb = &trap_block[cpu];
2067 paddr = tb->nonresum_kernel_buf_pa + offset;
2068 ent = __va(paddr);
2069
2070 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2071
2072 /* We have a local copy now, so release the entry. */
2073 ent->err_handle = 0;
2074 wmb();
2075
2076 put_cpu();
2077
2078#ifdef CONFIG_PCI
2079 /* Check for the special PCI poke sequence. */
2080 if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2081 pci_poke_faulted = 1;
2082 regs->tpc += 4;
2083 regs->tnpc = regs->tpc + 4;
2084 return;
2085 }
2086#endif
2087
2088 sun4v_log_error(regs, &local_copy, cpu,
2089 KERN_EMERG "NON-RESUMABLE ERROR",
2090 &sun4v_nonresum_oflow_cnt);
2091
2092 panic("Non-resumable error.");
2093}
2094
2095/* If we try to printk() we'll probably make matters worse, by trying
2096 * to retake locks this cpu already holds or causing more errors. So
2097 * just bump a counter, and we'll report these counter bumps above.
2098 */
2099void sun4v_nonresum_overflow(struct pt_regs *regs)
2100{
2101 /* XXX Actually even this can make not that much sense. Perhaps
2102 * XXX we should just pull the plug and panic directly from here?
2103 */
2104 atomic_inc(&sun4v_nonresum_oflow_cnt);
2105}
2106
2107static void sun4v_tlb_error(struct pt_regs *regs)
2108{
2109 die_if_kernel("TLB/TSB error", regs);
2110}
2111
2112unsigned long sun4v_err_itlb_vaddr;
2113unsigned long sun4v_err_itlb_ctx;
2114unsigned long sun4v_err_itlb_pte;
2115unsigned long sun4v_err_itlb_error;
2116
2117void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2118{
2119 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2120
2121 printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2122 regs->tpc, tl);
2123 printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2124 printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2125 printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2126 (void *) regs->u_regs[UREG_I7]);
2127 printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2128 "pte[%lx] error[%lx]\n",
2129 sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2130 sun4v_err_itlb_pte, sun4v_err_itlb_error);
2131
2132 sun4v_tlb_error(regs);
2133}
2134
2135unsigned long sun4v_err_dtlb_vaddr;
2136unsigned long sun4v_err_dtlb_ctx;
2137unsigned long sun4v_err_dtlb_pte;
2138unsigned long sun4v_err_dtlb_error;
2139
2140void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2141{
2142 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2143
2144 printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2145 regs->tpc, tl);
2146 printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2147 printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2148 printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2149 (void *) regs->u_regs[UREG_I7]);
2150 printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2151 "pte[%lx] error[%lx]\n",
2152 sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2153 sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2154
2155 sun4v_tlb_error(regs);
2156}
2157
2158void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2159{
2160 printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2161 err, op);
2162}
2163
2164void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2165{
2166 printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2167 err, op);
2168}
2169
2170static void do_fpe_common(struct pt_regs *regs)
2171{
2172 if (regs->tstate & TSTATE_PRIV) {
2173 regs->tpc = regs->tnpc;
2174 regs->tnpc += 4;
2175 } else {
2176 unsigned long fsr = current_thread_info()->xfsr[0];
2177 siginfo_t info;
2178
2179 if (test_thread_flag(TIF_32BIT)) {
2180 regs->tpc &= 0xffffffff;
2181 regs->tnpc &= 0xffffffff;
2182 }
2183 info.si_signo = SIGFPE;
2184 info.si_errno = 0;
2185 info.si_addr = (void __user *)regs->tpc;
2186 info.si_trapno = 0;
2187 info.si_code = __SI_FAULT;
2188 if ((fsr & 0x1c000) == (1 << 14)) {
2189 if (fsr & 0x10)
2190 info.si_code = FPE_FLTINV;
2191 else if (fsr & 0x08)
2192 info.si_code = FPE_FLTOVF;
2193 else if (fsr & 0x04)
2194 info.si_code = FPE_FLTUND;
2195 else if (fsr & 0x02)
2196 info.si_code = FPE_FLTDIV;
2197 else if (fsr & 0x01)
2198 info.si_code = FPE_FLTRES;
2199 }
2200 force_sig_info(SIGFPE, &info, current);
2201 }
2202}
2203
2204void do_fpieee(struct pt_regs *regs)
2205{
2206 enum ctx_state prev_state = exception_enter();
2207
2208 if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2209 0, 0x24, SIGFPE) == NOTIFY_STOP)
2210 goto out;
2211
2212 do_fpe_common(regs);
2213out:
2214 exception_exit(prev_state);
2215}
2216
2217void do_fpother(struct pt_regs *regs)
2218{
2219 enum ctx_state prev_state = exception_enter();
2220 struct fpustate *f = FPUSTATE;
2221 int ret = 0;
2222
2223 if (notify_die(DIE_TRAP, "fpu exception other", regs,
2224 0, 0x25, SIGFPE) == NOTIFY_STOP)
2225 goto out;
2226
2227 switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2228 case (2 << 14): /* unfinished_FPop */
2229 case (3 << 14): /* unimplemented_FPop */
2230 ret = do_mathemu(regs, f, false);
2231 break;
2232 }
2233 if (ret)
2234 goto out;
2235 do_fpe_common(regs);
2236out:
2237 exception_exit(prev_state);
2238}
2239
2240void do_tof(struct pt_regs *regs)
2241{
2242 enum ctx_state prev_state = exception_enter();
2243 siginfo_t info;
2244
2245 if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2246 0, 0x26, SIGEMT) == NOTIFY_STOP)
2247 goto out;
2248
2249 if (regs->tstate & TSTATE_PRIV)
2250 die_if_kernel("Penguin overflow trap from kernel mode", regs);
2251 if (test_thread_flag(TIF_32BIT)) {
2252 regs->tpc &= 0xffffffff;
2253 regs->tnpc &= 0xffffffff;
2254 }
2255 info.si_signo = SIGEMT;
2256 info.si_errno = 0;
2257 info.si_code = EMT_TAGOVF;
2258 info.si_addr = (void __user *)regs->tpc;
2259 info.si_trapno = 0;
2260 force_sig_info(SIGEMT, &info, current);
2261out:
2262 exception_exit(prev_state);
2263}
2264
2265void do_div0(struct pt_regs *regs)
2266{
2267 enum ctx_state prev_state = exception_enter();
2268 siginfo_t info;
2269
2270 if (notify_die(DIE_TRAP, "integer division by zero", regs,
2271 0, 0x28, SIGFPE) == NOTIFY_STOP)
2272 goto out;
2273
2274 if (regs->tstate & TSTATE_PRIV)
2275 die_if_kernel("TL0: Kernel divide by zero.", regs);
2276 if (test_thread_flag(TIF_32BIT)) {
2277 regs->tpc &= 0xffffffff;
2278 regs->tnpc &= 0xffffffff;
2279 }
2280 info.si_signo = SIGFPE;
2281 info.si_errno = 0;
2282 info.si_code = FPE_INTDIV;
2283 info.si_addr = (void __user *)regs->tpc;
2284 info.si_trapno = 0;
2285 force_sig_info(SIGFPE, &info, current);
2286out:
2287 exception_exit(prev_state);
2288}
2289
2290static void instruction_dump(unsigned int *pc)
2291{
2292 int i;
2293
2294 if ((((unsigned long) pc) & 3))
2295 return;
2296
2297 printk("Instruction DUMP:");
2298 for (i = -3; i < 6; i++)
2299 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2300 printk("\n");
2301}
2302
2303static void user_instruction_dump(unsigned int __user *pc)
2304{
2305 int i;
2306 unsigned int buf[9];
2307
2308 if ((((unsigned long) pc) & 3))
2309 return;
2310
2311 if (copy_from_user(buf, pc - 3, sizeof(buf)))
2312 return;
2313
2314 printk("Instruction DUMP:");
2315 for (i = 0; i < 9; i++)
2316 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2317 printk("\n");
2318}
2319
2320void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2321{
2322 unsigned long fp, ksp;
2323 struct thread_info *tp;
2324 int count = 0;
2325#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2326 int graph = 0;
2327#endif
2328
2329 ksp = (unsigned long) _ksp;
2330 if (!tsk)
2331 tsk = current;
2332 tp = task_thread_info(tsk);
2333 if (ksp == 0UL) {
2334 if (tsk == current)
2335 asm("mov %%fp, %0" : "=r" (ksp));
2336 else
2337 ksp = tp->ksp;
2338 }
2339 if (tp == current_thread_info())
2340 flushw_all();
2341
2342 fp = ksp + STACK_BIAS;
2343
2344 printk("Call Trace:\n");
2345 do {
2346 struct sparc_stackf *sf;
2347 struct pt_regs *regs;
2348 unsigned long pc;
2349
2350 if (!kstack_valid(tp, fp))
2351 break;
2352 sf = (struct sparc_stackf *) fp;
2353 regs = (struct pt_regs *) (sf + 1);
2354
2355 if (kstack_is_trap_frame(tp, regs)) {
2356 if (!(regs->tstate & TSTATE_PRIV))
2357 break;
2358 pc = regs->tpc;
2359 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2360 } else {
2361 pc = sf->callers_pc;
2362 fp = (unsigned long)sf->fp + STACK_BIAS;
2363 }
2364
2365 printk(" [%016lx] %pS\n", pc, (void *) pc);
2366#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2367 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2368 int index = tsk->curr_ret_stack;
2369 if (tsk->ret_stack && index >= graph) {
2370 pc = tsk->ret_stack[index - graph].ret;
2371 printk(" [%016lx] %pS\n", pc, (void *) pc);
2372 graph++;
2373 }
2374 }
2375#endif
2376 } while (++count < 16);
2377}
2378
2379static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2380{
2381 unsigned long fp = rw->ins[6];
2382
2383 if (!fp)
2384 return NULL;
2385
2386 return (struct reg_window *) (fp + STACK_BIAS);
2387}
2388
2389void __noreturn die_if_kernel(char *str, struct pt_regs *regs)
2390{
2391 static int die_counter;
2392 int count = 0;
2393
2394 /* Amuse the user. */
2395 printk(
2396" \\|/ ____ \\|/\n"
2397" \"@'/ .. \\`@\"\n"
2398" /_| \\__/ |_\\\n"
2399" \\__U_/\n");
2400
2401 printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2402 notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2403 __asm__ __volatile__("flushw");
2404 show_regs(regs);
2405 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2406 if (regs->tstate & TSTATE_PRIV) {
2407 struct thread_info *tp = current_thread_info();
2408 struct reg_window *rw = (struct reg_window *)
2409 (regs->u_regs[UREG_FP] + STACK_BIAS);
2410
2411 /* Stop the back trace when we hit userland or we
2412 * find some badly aligned kernel stack.
2413 */
2414 while (rw &&
2415 count++ < 30 &&
2416 kstack_valid(tp, (unsigned long) rw)) {
2417 printk("Caller[%016lx]: %pS\n", rw->ins[7],
2418 (void *) rw->ins[7]);
2419
2420 rw = kernel_stack_up(rw);
2421 }
2422 instruction_dump ((unsigned int *) regs->tpc);
2423 } else {
2424 if (test_thread_flag(TIF_32BIT)) {
2425 regs->tpc &= 0xffffffff;
2426 regs->tnpc &= 0xffffffff;
2427 }
2428 user_instruction_dump ((unsigned int __user *) regs->tpc);
2429 }
2430 if (panic_on_oops)
2431 panic("Fatal exception");
2432 if (regs->tstate & TSTATE_PRIV)
2433 do_exit(SIGKILL);
2434 do_exit(SIGSEGV);
2435}
2436EXPORT_SYMBOL(die_if_kernel);
2437
2438#define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
2439#define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19))
2440
2441void do_illegal_instruction(struct pt_regs *regs)
2442{
2443 enum ctx_state prev_state = exception_enter();
2444 unsigned long pc = regs->tpc;
2445 unsigned long tstate = regs->tstate;
2446 u32 insn;
2447 siginfo_t info;
2448
2449 if (notify_die(DIE_TRAP, "illegal instruction", regs,
2450 0, 0x10, SIGILL) == NOTIFY_STOP)
2451 goto out;
2452
2453 if (tstate & TSTATE_PRIV)
2454 die_if_kernel("Kernel illegal instruction", regs);
2455 if (test_thread_flag(TIF_32BIT))
2456 pc = (u32)pc;
2457 if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2458 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2459 if (handle_popc(insn, regs))
2460 goto out;
2461 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2462 if (handle_ldf_stq(insn, regs))
2463 goto out;
2464 } else if (tlb_type == hypervisor) {
2465 if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2466 if (!vis_emul(regs, insn))
2467 goto out;
2468 } else {
2469 struct fpustate *f = FPUSTATE;
2470
2471 /* On UltraSPARC T2 and later, FPU insns which
2472 * are not implemented in HW signal an illegal
2473 * instruction trap and do not set the FP Trap
2474 * Trap in the %fsr to unimplemented_FPop.
2475 */
2476 if (do_mathemu(regs, f, true))
2477 goto out;
2478 }
2479 }
2480 }
2481 info.si_signo = SIGILL;
2482 info.si_errno = 0;
2483 info.si_code = ILL_ILLOPC;
2484 info.si_addr = (void __user *)pc;
2485 info.si_trapno = 0;
2486 force_sig_info(SIGILL, &info, current);
2487out:
2488 exception_exit(prev_state);
2489}
2490
2491void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2492{
2493 enum ctx_state prev_state = exception_enter();
2494 siginfo_t info;
2495
2496 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2497 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2498 goto out;
2499
2500 if (regs->tstate & TSTATE_PRIV) {
2501 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2502 goto out;
2503 }
2504 info.si_signo = SIGBUS;
2505 info.si_errno = 0;
2506 info.si_code = BUS_ADRALN;
2507 info.si_addr = (void __user *)sfar;
2508 info.si_trapno = 0;
2509 force_sig_info(SIGBUS, &info, current);
2510out:
2511 exception_exit(prev_state);
2512}
2513
2514void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2515{
2516 siginfo_t info;
2517
2518 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2519 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2520 return;
2521
2522 if (regs->tstate & TSTATE_PRIV) {
2523 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2524 return;
2525 }
2526 info.si_signo = SIGBUS;
2527 info.si_errno = 0;
2528 info.si_code = BUS_ADRALN;
2529 info.si_addr = (void __user *) addr;
2530 info.si_trapno = 0;
2531 force_sig_info(SIGBUS, &info, current);
2532}
2533
2534void do_privop(struct pt_regs *regs)
2535{
2536 enum ctx_state prev_state = exception_enter();
2537 siginfo_t info;
2538
2539 if (notify_die(DIE_TRAP, "privileged operation", regs,
2540 0, 0x11, SIGILL) == NOTIFY_STOP)
2541 goto out;
2542
2543 if (test_thread_flag(TIF_32BIT)) {
2544 regs->tpc &= 0xffffffff;
2545 regs->tnpc &= 0xffffffff;
2546 }
2547 info.si_signo = SIGILL;
2548 info.si_errno = 0;
2549 info.si_code = ILL_PRVOPC;
2550 info.si_addr = (void __user *)regs->tpc;
2551 info.si_trapno = 0;
2552 force_sig_info(SIGILL, &info, current);
2553out:
2554 exception_exit(prev_state);
2555}
2556
2557void do_privact(struct pt_regs *regs)
2558{
2559 do_privop(regs);
2560}
2561
2562/* Trap level 1 stuff or other traps we should never see... */
2563void do_cee(struct pt_regs *regs)
2564{
2565 exception_enter();
2566 die_if_kernel("TL0: Cache Error Exception", regs);
2567}
2568
2569void do_div0_tl1(struct pt_regs *regs)
2570{
2571 exception_enter();
2572 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2573 die_if_kernel("TL1: DIV0 Exception", regs);
2574}
2575
2576void do_fpieee_tl1(struct pt_regs *regs)
2577{
2578 exception_enter();
2579 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2580 die_if_kernel("TL1: FPU IEEE Exception", regs);
2581}
2582
2583void do_fpother_tl1(struct pt_regs *regs)
2584{
2585 exception_enter();
2586 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2587 die_if_kernel("TL1: FPU Other Exception", regs);
2588}
2589
2590void do_ill_tl1(struct pt_regs *regs)
2591{
2592 exception_enter();
2593 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2594 die_if_kernel("TL1: Illegal Instruction Exception", regs);
2595}
2596
2597void do_irq_tl1(struct pt_regs *regs)
2598{
2599 exception_enter();
2600 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2601 die_if_kernel("TL1: IRQ Exception", regs);
2602}
2603
2604void do_lddfmna_tl1(struct pt_regs *regs)
2605{
2606 exception_enter();
2607 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2608 die_if_kernel("TL1: LDDF Exception", regs);
2609}
2610
2611void do_stdfmna_tl1(struct pt_regs *regs)
2612{
2613 exception_enter();
2614 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2615 die_if_kernel("TL1: STDF Exception", regs);
2616}
2617
2618void do_paw(struct pt_regs *regs)
2619{
2620 exception_enter();
2621 die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2622}
2623
2624void do_paw_tl1(struct pt_regs *regs)
2625{
2626 exception_enter();
2627 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2628 die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2629}
2630
2631void do_vaw(struct pt_regs *regs)
2632{
2633 exception_enter();
2634 die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2635}
2636
2637void do_vaw_tl1(struct pt_regs *regs)
2638{
2639 exception_enter();
2640 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2641 die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2642}
2643
2644void do_tof_tl1(struct pt_regs *regs)
2645{
2646 exception_enter();
2647 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2648 die_if_kernel("TL1: Tag Overflow Exception", regs);
2649}
2650
2651void do_getpsr(struct pt_regs *regs)
2652{
2653 regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2654 regs->tpc = regs->tnpc;
2655 regs->tnpc += 4;
2656 if (test_thread_flag(TIF_32BIT)) {
2657 regs->tpc &= 0xffffffff;
2658 regs->tnpc &= 0xffffffff;
2659 }
2660}
2661
2662struct trap_per_cpu trap_block[NR_CPUS];
2663EXPORT_SYMBOL(trap_block);
2664
2665/* This can get invoked before sched_init() so play it super safe
2666 * and use hard_smp_processor_id().
2667 */
2668void notrace init_cur_cpu_trap(struct thread_info *t)
2669{
2670 int cpu = hard_smp_processor_id();
2671 struct trap_per_cpu *p = &trap_block[cpu];
2672
2673 p->thread = t;
2674 p->pgd_paddr = 0;
2675}
2676
2677extern void thread_info_offsets_are_bolixed_dave(void);
2678extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2679extern void tsb_config_offsets_are_bolixed_dave(void);
2680
2681/* Only invoked on boot processor. */
2682void __init trap_init(void)
2683{
2684 /* Compile time sanity check. */
2685 BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2686 TI_FLAGS != offsetof(struct thread_info, flags) ||
2687 TI_CPU != offsetof(struct thread_info, cpu) ||
2688 TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2689 TI_KSP != offsetof(struct thread_info, ksp) ||
2690 TI_FAULT_ADDR != offsetof(struct thread_info,
2691 fault_address) ||
2692 TI_KREGS != offsetof(struct thread_info, kregs) ||
2693 TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2694 TI_REG_WINDOW != offsetof(struct thread_info,
2695 reg_window) ||
2696 TI_RWIN_SPTRS != offsetof(struct thread_info,
2697 rwbuf_stkptrs) ||
2698 TI_GSR != offsetof(struct thread_info, gsr) ||
2699 TI_XFSR != offsetof(struct thread_info, xfsr) ||
2700 TI_PRE_COUNT != offsetof(struct thread_info,
2701 preempt_count) ||
2702 TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2703 TI_CURRENT_DS != offsetof(struct thread_info,
2704 current_ds) ||
2705 TI_KUNA_REGS != offsetof(struct thread_info,
2706 kern_una_regs) ||
2707 TI_KUNA_INSN != offsetof(struct thread_info,
2708 kern_una_insn) ||
2709 TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2710 (TI_FPREGS & (64 - 1)));
2711
2712 BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2713 thread) ||
2714 (TRAP_PER_CPU_PGD_PADDR !=
2715 offsetof(struct trap_per_cpu, pgd_paddr)) ||
2716 (TRAP_PER_CPU_CPU_MONDO_PA !=
2717 offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2718 (TRAP_PER_CPU_DEV_MONDO_PA !=
2719 offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2720 (TRAP_PER_CPU_RESUM_MONDO_PA !=
2721 offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2722 (TRAP_PER_CPU_RESUM_KBUF_PA !=
2723 offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2724 (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2725 offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2726 (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2727 offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2728 (TRAP_PER_CPU_FAULT_INFO !=
2729 offsetof(struct trap_per_cpu, fault_info)) ||
2730 (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2731 offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2732 (TRAP_PER_CPU_CPU_LIST_PA !=
2733 offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2734 (TRAP_PER_CPU_TSB_HUGE !=
2735 offsetof(struct trap_per_cpu, tsb_huge)) ||
2736 (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2737 offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2738 (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2739 offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2740 (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2741 offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2742 (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2743 offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2744 (TRAP_PER_CPU_RESUM_QMASK !=
2745 offsetof(struct trap_per_cpu, resum_qmask)) ||
2746 (TRAP_PER_CPU_NONRESUM_QMASK !=
2747 offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2748 (TRAP_PER_CPU_PER_CPU_BASE !=
2749 offsetof(struct trap_per_cpu, __per_cpu_base)));
2750
2751 BUILD_BUG_ON((TSB_CONFIG_TSB !=
2752 offsetof(struct tsb_config, tsb)) ||
2753 (TSB_CONFIG_RSS_LIMIT !=
2754 offsetof(struct tsb_config, tsb_rss_limit)) ||
2755 (TSB_CONFIG_NENTRIES !=
2756 offsetof(struct tsb_config, tsb_nentries)) ||
2757 (TSB_CONFIG_REG_VAL !=
2758 offsetof(struct tsb_config, tsb_reg_val)) ||
2759 (TSB_CONFIG_MAP_VADDR !=
2760 offsetof(struct tsb_config, tsb_map_vaddr)) ||
2761 (TSB_CONFIG_MAP_PTE !=
2762 offsetof(struct tsb_config, tsb_map_pte)));
2763
2764 /* Attach to the address space of init_task. On SMP we
2765 * do this in smp.c:smp_callin for other cpus.
2766 */
2767 atomic_inc(&init_mm.mm_count);
2768 current->active_mm = &init_mm;
2769}
1/* arch/sparc64/kernel/traps.c
2 *
3 * Copyright (C) 1995,1997,2008,2009,2012 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1997,1999,2000 Jakub Jelinek (jakub@redhat.com)
5 */
6
7/*
8 * I like traps on v9, :))))
9 */
10
11#include <linux/module.h>
12#include <linux/sched.h>
13#include <linux/linkage.h>
14#include <linux/kernel.h>
15#include <linux/signal.h>
16#include <linux/smp.h>
17#include <linux/mm.h>
18#include <linux/init.h>
19#include <linux/kdebug.h>
20#include <linux/ftrace.h>
21#include <linux/reboot.h>
22#include <linux/gfp.h>
23#include <linux/context_tracking.h>
24
25#include <asm/smp.h>
26#include <asm/delay.h>
27#include <asm/ptrace.h>
28#include <asm/oplib.h>
29#include <asm/page.h>
30#include <asm/pgtable.h>
31#include <asm/unistd.h>
32#include <asm/uaccess.h>
33#include <asm/fpumacro.h>
34#include <asm/lsu.h>
35#include <asm/dcu.h>
36#include <asm/estate.h>
37#include <asm/chafsr.h>
38#include <asm/sfafsr.h>
39#include <asm/psrcompat.h>
40#include <asm/processor.h>
41#include <asm/timer.h>
42#include <asm/head.h>
43#include <asm/prom.h>
44#include <asm/memctrl.h>
45#include <asm/cacheflush.h>
46
47#include "entry.h"
48#include "kstack.h"
49
50/* When an irrecoverable trap occurs at tl > 0, the trap entry
51 * code logs the trap state registers at every level in the trap
52 * stack. It is found at (pt_regs + sizeof(pt_regs)) and the layout
53 * is as follows:
54 */
55struct tl1_traplog {
56 struct {
57 unsigned long tstate;
58 unsigned long tpc;
59 unsigned long tnpc;
60 unsigned long tt;
61 } trapstack[4];
62 unsigned long tl;
63};
64
65static void dump_tl1_traplog(struct tl1_traplog *p)
66{
67 int i, limit;
68
69 printk(KERN_EMERG "TRAPLOG: Error at trap level 0x%lx, "
70 "dumping track stack.\n", p->tl);
71
72 limit = (tlb_type == hypervisor) ? 2 : 4;
73 for (i = 0; i < limit; i++) {
74 printk(KERN_EMERG
75 "TRAPLOG: Trap level %d TSTATE[%016lx] TPC[%016lx] "
76 "TNPC[%016lx] TT[%lx]\n",
77 i + 1,
78 p->trapstack[i].tstate, p->trapstack[i].tpc,
79 p->trapstack[i].tnpc, p->trapstack[i].tt);
80 printk("TRAPLOG: TPC<%pS>\n", (void *) p->trapstack[i].tpc);
81 }
82}
83
84void bad_trap(struct pt_regs *regs, long lvl)
85{
86 char buffer[32];
87 siginfo_t info;
88
89 if (notify_die(DIE_TRAP, "bad trap", regs,
90 0, lvl, SIGTRAP) == NOTIFY_STOP)
91 return;
92
93 if (lvl < 0x100) {
94 sprintf(buffer, "Bad hw trap %lx at tl0\n", lvl);
95 die_if_kernel(buffer, regs);
96 }
97
98 lvl -= 0x100;
99 if (regs->tstate & TSTATE_PRIV) {
100 sprintf(buffer, "Kernel bad sw trap %lx", lvl);
101 die_if_kernel(buffer, regs);
102 }
103 if (test_thread_flag(TIF_32BIT)) {
104 regs->tpc &= 0xffffffff;
105 regs->tnpc &= 0xffffffff;
106 }
107 info.si_signo = SIGILL;
108 info.si_errno = 0;
109 info.si_code = ILL_ILLTRP;
110 info.si_addr = (void __user *)regs->tpc;
111 info.si_trapno = lvl;
112 force_sig_info(SIGILL, &info, current);
113}
114
115void bad_trap_tl1(struct pt_regs *regs, long lvl)
116{
117 char buffer[32];
118
119 if (notify_die(DIE_TRAP_TL1, "bad trap tl1", regs,
120 0, lvl, SIGTRAP) == NOTIFY_STOP)
121 return;
122
123 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
124
125 sprintf (buffer, "Bad trap %lx at tl>0", lvl);
126 die_if_kernel (buffer, regs);
127}
128
129#ifdef CONFIG_DEBUG_BUGVERBOSE
130void do_BUG(const char *file, int line)
131{
132 bust_spinlocks(1);
133 printk("kernel BUG at %s:%d!\n", file, line);
134}
135EXPORT_SYMBOL(do_BUG);
136#endif
137
138static DEFINE_SPINLOCK(dimm_handler_lock);
139static dimm_printer_t dimm_handler;
140
141static int sprintf_dimm(int synd_code, unsigned long paddr, char *buf, int buflen)
142{
143 unsigned long flags;
144 int ret = -ENODEV;
145
146 spin_lock_irqsave(&dimm_handler_lock, flags);
147 if (dimm_handler) {
148 ret = dimm_handler(synd_code, paddr, buf, buflen);
149 } else if (tlb_type == spitfire) {
150 if (prom_getunumber(synd_code, paddr, buf, buflen) == -1)
151 ret = -EINVAL;
152 else
153 ret = 0;
154 } else
155 ret = -ENODEV;
156 spin_unlock_irqrestore(&dimm_handler_lock, flags);
157
158 return ret;
159}
160
161int register_dimm_printer(dimm_printer_t func)
162{
163 unsigned long flags;
164 int ret = 0;
165
166 spin_lock_irqsave(&dimm_handler_lock, flags);
167 if (!dimm_handler)
168 dimm_handler = func;
169 else
170 ret = -EEXIST;
171 spin_unlock_irqrestore(&dimm_handler_lock, flags);
172
173 return ret;
174}
175EXPORT_SYMBOL_GPL(register_dimm_printer);
176
177void unregister_dimm_printer(dimm_printer_t func)
178{
179 unsigned long flags;
180
181 spin_lock_irqsave(&dimm_handler_lock, flags);
182 if (dimm_handler == func)
183 dimm_handler = NULL;
184 spin_unlock_irqrestore(&dimm_handler_lock, flags);
185}
186EXPORT_SYMBOL_GPL(unregister_dimm_printer);
187
188void spitfire_insn_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
189{
190 enum ctx_state prev_state = exception_enter();
191 siginfo_t info;
192
193 if (notify_die(DIE_TRAP, "instruction access exception", regs,
194 0, 0x8, SIGTRAP) == NOTIFY_STOP)
195 goto out;
196
197 if (regs->tstate & TSTATE_PRIV) {
198 printk("spitfire_insn_access_exception: SFSR[%016lx] "
199 "SFAR[%016lx], going.\n", sfsr, sfar);
200 die_if_kernel("Iax", regs);
201 }
202 if (test_thread_flag(TIF_32BIT)) {
203 regs->tpc &= 0xffffffff;
204 regs->tnpc &= 0xffffffff;
205 }
206 info.si_signo = SIGSEGV;
207 info.si_errno = 0;
208 info.si_code = SEGV_MAPERR;
209 info.si_addr = (void __user *)regs->tpc;
210 info.si_trapno = 0;
211 force_sig_info(SIGSEGV, &info, current);
212out:
213 exception_exit(prev_state);
214}
215
216void spitfire_insn_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
217{
218 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
219 0, 0x8, SIGTRAP) == NOTIFY_STOP)
220 return;
221
222 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
223 spitfire_insn_access_exception(regs, sfsr, sfar);
224}
225
226void sun4v_insn_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
227{
228 unsigned short type = (type_ctx >> 16);
229 unsigned short ctx = (type_ctx & 0xffff);
230 siginfo_t info;
231
232 if (notify_die(DIE_TRAP, "instruction access exception", regs,
233 0, 0x8, SIGTRAP) == NOTIFY_STOP)
234 return;
235
236 if (regs->tstate & TSTATE_PRIV) {
237 printk("sun4v_insn_access_exception: ADDR[%016lx] "
238 "CTX[%04x] TYPE[%04x], going.\n",
239 addr, ctx, type);
240 die_if_kernel("Iax", regs);
241 }
242
243 if (test_thread_flag(TIF_32BIT)) {
244 regs->tpc &= 0xffffffff;
245 regs->tnpc &= 0xffffffff;
246 }
247 info.si_signo = SIGSEGV;
248 info.si_errno = 0;
249 info.si_code = SEGV_MAPERR;
250 info.si_addr = (void __user *) addr;
251 info.si_trapno = 0;
252 force_sig_info(SIGSEGV, &info, current);
253}
254
255void sun4v_insn_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
256{
257 if (notify_die(DIE_TRAP_TL1, "instruction access exception tl1", regs,
258 0, 0x8, SIGTRAP) == NOTIFY_STOP)
259 return;
260
261 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
262 sun4v_insn_access_exception(regs, addr, type_ctx);
263}
264
265void spitfire_data_access_exception(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
266{
267 enum ctx_state prev_state = exception_enter();
268 siginfo_t info;
269
270 if (notify_die(DIE_TRAP, "data access exception", regs,
271 0, 0x30, SIGTRAP) == NOTIFY_STOP)
272 goto out;
273
274 if (regs->tstate & TSTATE_PRIV) {
275 /* Test if this comes from uaccess places. */
276 const struct exception_table_entry *entry;
277
278 entry = search_exception_tables(regs->tpc);
279 if (entry) {
280 /* Ouch, somebody is trying VM hole tricks on us... */
281#ifdef DEBUG_EXCEPTIONS
282 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
283 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
284 regs->tpc, entry->fixup);
285#endif
286 regs->tpc = entry->fixup;
287 regs->tnpc = regs->tpc + 4;
288 goto out;
289 }
290 /* Shit... */
291 printk("spitfire_data_access_exception: SFSR[%016lx] "
292 "SFAR[%016lx], going.\n", sfsr, sfar);
293 die_if_kernel("Dax", regs);
294 }
295
296 info.si_signo = SIGSEGV;
297 info.si_errno = 0;
298 info.si_code = SEGV_MAPERR;
299 info.si_addr = (void __user *)sfar;
300 info.si_trapno = 0;
301 force_sig_info(SIGSEGV, &info, current);
302out:
303 exception_exit(prev_state);
304}
305
306void spitfire_data_access_exception_tl1(struct pt_regs *regs, unsigned long sfsr, unsigned long sfar)
307{
308 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
309 0, 0x30, SIGTRAP) == NOTIFY_STOP)
310 return;
311
312 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
313 spitfire_data_access_exception(regs, sfsr, sfar);
314}
315
316void sun4v_data_access_exception(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
317{
318 unsigned short type = (type_ctx >> 16);
319 unsigned short ctx = (type_ctx & 0xffff);
320 siginfo_t info;
321
322 if (notify_die(DIE_TRAP, "data access exception", regs,
323 0, 0x8, SIGTRAP) == NOTIFY_STOP)
324 return;
325
326 if (regs->tstate & TSTATE_PRIV) {
327 /* Test if this comes from uaccess places. */
328 const struct exception_table_entry *entry;
329
330 entry = search_exception_tables(regs->tpc);
331 if (entry) {
332 /* Ouch, somebody is trying VM hole tricks on us... */
333#ifdef DEBUG_EXCEPTIONS
334 printk("Exception: PC<%016lx> faddr<UNKNOWN>\n", regs->tpc);
335 printk("EX_TABLE: insn<%016lx> fixup<%016lx>\n",
336 regs->tpc, entry->fixup);
337#endif
338 regs->tpc = entry->fixup;
339 regs->tnpc = regs->tpc + 4;
340 return;
341 }
342 printk("sun4v_data_access_exception: ADDR[%016lx] "
343 "CTX[%04x] TYPE[%04x], going.\n",
344 addr, ctx, type);
345 die_if_kernel("Dax", regs);
346 }
347
348 if (test_thread_flag(TIF_32BIT)) {
349 regs->tpc &= 0xffffffff;
350 regs->tnpc &= 0xffffffff;
351 }
352 info.si_signo = SIGSEGV;
353 info.si_errno = 0;
354 info.si_code = SEGV_MAPERR;
355 info.si_addr = (void __user *) addr;
356 info.si_trapno = 0;
357 force_sig_info(SIGSEGV, &info, current);
358}
359
360void sun4v_data_access_exception_tl1(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
361{
362 if (notify_die(DIE_TRAP_TL1, "data access exception tl1", regs,
363 0, 0x8, SIGTRAP) == NOTIFY_STOP)
364 return;
365
366 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
367 sun4v_data_access_exception(regs, addr, type_ctx);
368}
369
370#ifdef CONFIG_PCI
371#include "pci_impl.h"
372#endif
373
374/* When access exceptions happen, we must do this. */
375static void spitfire_clean_and_reenable_l1_caches(void)
376{
377 unsigned long va;
378
379 if (tlb_type != spitfire)
380 BUG();
381
382 /* Clean 'em. */
383 for (va = 0; va < (PAGE_SIZE << 1); va += 32) {
384 spitfire_put_icache_tag(va, 0x0);
385 spitfire_put_dcache_tag(va, 0x0);
386 }
387
388 /* Re-enable in LSU. */
389 __asm__ __volatile__("flush %%g6\n\t"
390 "membar #Sync\n\t"
391 "stxa %0, [%%g0] %1\n\t"
392 "membar #Sync"
393 : /* no outputs */
394 : "r" (LSU_CONTROL_IC | LSU_CONTROL_DC |
395 LSU_CONTROL_IM | LSU_CONTROL_DM),
396 "i" (ASI_LSU_CONTROL)
397 : "memory");
398}
399
400static void spitfire_enable_estate_errors(void)
401{
402 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
403 "membar #Sync"
404 : /* no outputs */
405 : "r" (ESTATE_ERR_ALL),
406 "i" (ASI_ESTATE_ERROR_EN));
407}
408
409static char ecc_syndrome_table[] = {
410 0x4c, 0x40, 0x41, 0x48, 0x42, 0x48, 0x48, 0x49,
411 0x43, 0x48, 0x48, 0x49, 0x48, 0x49, 0x49, 0x4a,
412 0x44, 0x48, 0x48, 0x20, 0x48, 0x39, 0x4b, 0x48,
413 0x48, 0x25, 0x31, 0x48, 0x28, 0x48, 0x48, 0x2c,
414 0x45, 0x48, 0x48, 0x21, 0x48, 0x3d, 0x04, 0x48,
415 0x48, 0x4b, 0x35, 0x48, 0x2d, 0x48, 0x48, 0x29,
416 0x48, 0x00, 0x01, 0x48, 0x0a, 0x48, 0x48, 0x4b,
417 0x0f, 0x48, 0x48, 0x4b, 0x48, 0x49, 0x49, 0x48,
418 0x46, 0x48, 0x48, 0x2a, 0x48, 0x3b, 0x27, 0x48,
419 0x48, 0x4b, 0x33, 0x48, 0x22, 0x48, 0x48, 0x2e,
420 0x48, 0x19, 0x1d, 0x48, 0x1b, 0x4a, 0x48, 0x4b,
421 0x1f, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
422 0x48, 0x4b, 0x24, 0x48, 0x07, 0x48, 0x48, 0x36,
423 0x4b, 0x48, 0x48, 0x3e, 0x48, 0x30, 0x38, 0x48,
424 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x16, 0x48,
425 0x48, 0x12, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
426 0x47, 0x48, 0x48, 0x2f, 0x48, 0x3f, 0x4b, 0x48,
427 0x48, 0x06, 0x37, 0x48, 0x23, 0x48, 0x48, 0x2b,
428 0x48, 0x05, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x32,
429 0x26, 0x48, 0x48, 0x3a, 0x48, 0x34, 0x3c, 0x48,
430 0x48, 0x11, 0x15, 0x48, 0x13, 0x4a, 0x48, 0x4b,
431 0x17, 0x48, 0x4a, 0x4b, 0x48, 0x4b, 0x4b, 0x48,
432 0x49, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x1e, 0x48,
433 0x48, 0x1a, 0x4b, 0x48, 0x49, 0x48, 0x48, 0x4b,
434 0x48, 0x08, 0x0d, 0x48, 0x02, 0x48, 0x48, 0x49,
435 0x03, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x4b, 0x48,
436 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x10, 0x48,
437 0x48, 0x14, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
438 0x49, 0x48, 0x48, 0x49, 0x48, 0x4b, 0x18, 0x48,
439 0x48, 0x1c, 0x4b, 0x48, 0x4b, 0x48, 0x48, 0x4b,
440 0x4a, 0x0c, 0x09, 0x48, 0x0e, 0x48, 0x48, 0x4b,
441 0x0b, 0x48, 0x48, 0x4b, 0x48, 0x4b, 0x4b, 0x4a
442};
443
444static char *syndrome_unknown = "<Unknown>";
445
446static void spitfire_log_udb_syndrome(unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long bit)
447{
448 unsigned short scode;
449 char memmod_str[64], *p;
450
451 if (udbl & bit) {
452 scode = ecc_syndrome_table[udbl & 0xff];
453 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
454 p = syndrome_unknown;
455 else
456 p = memmod_str;
457 printk(KERN_WARNING "CPU[%d]: UDBL Syndrome[%x] "
458 "Memory Module \"%s\"\n",
459 smp_processor_id(), scode, p);
460 }
461
462 if (udbh & bit) {
463 scode = ecc_syndrome_table[udbh & 0xff];
464 if (sprintf_dimm(scode, afar, memmod_str, sizeof(memmod_str)) < 0)
465 p = syndrome_unknown;
466 else
467 p = memmod_str;
468 printk(KERN_WARNING "CPU[%d]: UDBH Syndrome[%x] "
469 "Memory Module \"%s\"\n",
470 smp_processor_id(), scode, p);
471 }
472
473}
474
475static void spitfire_cee_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, int tl1, struct pt_regs *regs)
476{
477
478 printk(KERN_WARNING "CPU[%d]: Correctable ECC Error "
479 "AFSR[%lx] AFAR[%016lx] UDBL[%lx] UDBH[%lx] TL>1[%d]\n",
480 smp_processor_id(), afsr, afar, udbl, udbh, tl1);
481
482 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_CE);
483
484 /* We always log it, even if someone is listening for this
485 * trap.
486 */
487 notify_die(DIE_TRAP, "Correctable ECC Error", regs,
488 0, TRAP_TYPE_CEE, SIGTRAP);
489
490 /* The Correctable ECC Error trap does not disable I/D caches. So
491 * we only have to restore the ESTATE Error Enable register.
492 */
493 spitfire_enable_estate_errors();
494}
495
496static void spitfire_ue_log(unsigned long afsr, unsigned long afar, unsigned long udbh, unsigned long udbl, unsigned long tt, int tl1, struct pt_regs *regs)
497{
498 siginfo_t info;
499
500 printk(KERN_WARNING "CPU[%d]: Uncorrectable Error AFSR[%lx] "
501 "AFAR[%lx] UDBL[%lx] UDBH[%ld] TT[%lx] TL>1[%d]\n",
502 smp_processor_id(), afsr, afar, udbl, udbh, tt, tl1);
503
504 /* XXX add more human friendly logging of the error status
505 * XXX as is implemented for cheetah
506 */
507
508 spitfire_log_udb_syndrome(afar, udbh, udbl, UDBE_UE);
509
510 /* We always log it, even if someone is listening for this
511 * trap.
512 */
513 notify_die(DIE_TRAP, "Uncorrectable Error", regs,
514 0, tt, SIGTRAP);
515
516 if (regs->tstate & TSTATE_PRIV) {
517 if (tl1)
518 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
519 die_if_kernel("UE", regs);
520 }
521
522 /* XXX need more intelligent processing here, such as is implemented
523 * XXX for cheetah errors, in fact if the E-cache still holds the
524 * XXX line with bad parity this will loop
525 */
526
527 spitfire_clean_and_reenable_l1_caches();
528 spitfire_enable_estate_errors();
529
530 if (test_thread_flag(TIF_32BIT)) {
531 regs->tpc &= 0xffffffff;
532 regs->tnpc &= 0xffffffff;
533 }
534 info.si_signo = SIGBUS;
535 info.si_errno = 0;
536 info.si_code = BUS_OBJERR;
537 info.si_addr = (void *)0;
538 info.si_trapno = 0;
539 force_sig_info(SIGBUS, &info, current);
540}
541
542void spitfire_access_error(struct pt_regs *regs, unsigned long status_encoded, unsigned long afar)
543{
544 unsigned long afsr, tt, udbh, udbl;
545 int tl1;
546
547 afsr = (status_encoded & SFSTAT_AFSR_MASK) >> SFSTAT_AFSR_SHIFT;
548 tt = (status_encoded & SFSTAT_TRAP_TYPE) >> SFSTAT_TRAP_TYPE_SHIFT;
549 tl1 = (status_encoded & SFSTAT_TL_GT_ONE) ? 1 : 0;
550 udbl = (status_encoded & SFSTAT_UDBL_MASK) >> SFSTAT_UDBL_SHIFT;
551 udbh = (status_encoded & SFSTAT_UDBH_MASK) >> SFSTAT_UDBH_SHIFT;
552
553#ifdef CONFIG_PCI
554 if (tt == TRAP_TYPE_DAE &&
555 pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
556 spitfire_clean_and_reenable_l1_caches();
557 spitfire_enable_estate_errors();
558
559 pci_poke_faulted = 1;
560 regs->tnpc = regs->tpc + 4;
561 return;
562 }
563#endif
564
565 if (afsr & SFAFSR_UE)
566 spitfire_ue_log(afsr, afar, udbh, udbl, tt, tl1, regs);
567
568 if (tt == TRAP_TYPE_CEE) {
569 /* Handle the case where we took a CEE trap, but ACK'd
570 * only the UE state in the UDB error registers.
571 */
572 if (afsr & SFAFSR_UE) {
573 if (udbh & UDBE_CE) {
574 __asm__ __volatile__(
575 "stxa %0, [%1] %2\n\t"
576 "membar #Sync"
577 : /* no outputs */
578 : "r" (udbh & UDBE_CE),
579 "r" (0x0), "i" (ASI_UDB_ERROR_W));
580 }
581 if (udbl & UDBE_CE) {
582 __asm__ __volatile__(
583 "stxa %0, [%1] %2\n\t"
584 "membar #Sync"
585 : /* no outputs */
586 : "r" (udbl & UDBE_CE),
587 "r" (0x18), "i" (ASI_UDB_ERROR_W));
588 }
589 }
590
591 spitfire_cee_log(afsr, afar, udbh, udbl, tl1, regs);
592 }
593}
594
595int cheetah_pcache_forced_on;
596
597void cheetah_enable_pcache(void)
598{
599 unsigned long dcr;
600
601 printk("CHEETAH: Enabling P-Cache on cpu %d.\n",
602 smp_processor_id());
603
604 __asm__ __volatile__("ldxa [%%g0] %1, %0"
605 : "=r" (dcr)
606 : "i" (ASI_DCU_CONTROL_REG));
607 dcr |= (DCU_PE | DCU_HPE | DCU_SPE | DCU_SL);
608 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
609 "membar #Sync"
610 : /* no outputs */
611 : "r" (dcr), "i" (ASI_DCU_CONTROL_REG));
612}
613
614/* Cheetah error trap handling. */
615static unsigned long ecache_flush_physbase;
616static unsigned long ecache_flush_linesize;
617static unsigned long ecache_flush_size;
618
619/* This table is ordered in priority of errors and matches the
620 * AFAR overwrite policy as well.
621 */
622
623struct afsr_error_table {
624 unsigned long mask;
625 const char *name;
626};
627
628static const char CHAFSR_PERR_msg[] =
629 "System interface protocol error";
630static const char CHAFSR_IERR_msg[] =
631 "Internal processor error";
632static const char CHAFSR_ISAP_msg[] =
633 "System request parity error on incoming address";
634static const char CHAFSR_UCU_msg[] =
635 "Uncorrectable E-cache ECC error for ifetch/data";
636static const char CHAFSR_UCC_msg[] =
637 "SW Correctable E-cache ECC error for ifetch/data";
638static const char CHAFSR_UE_msg[] =
639 "Uncorrectable system bus data ECC error for read";
640static const char CHAFSR_EDU_msg[] =
641 "Uncorrectable E-cache ECC error for stmerge/blkld";
642static const char CHAFSR_EMU_msg[] =
643 "Uncorrectable system bus MTAG error";
644static const char CHAFSR_WDU_msg[] =
645 "Uncorrectable E-cache ECC error for writeback";
646static const char CHAFSR_CPU_msg[] =
647 "Uncorrectable ECC error for copyout";
648static const char CHAFSR_CE_msg[] =
649 "HW corrected system bus data ECC error for read";
650static const char CHAFSR_EDC_msg[] =
651 "HW corrected E-cache ECC error for stmerge/blkld";
652static const char CHAFSR_EMC_msg[] =
653 "HW corrected system bus MTAG ECC error";
654static const char CHAFSR_WDC_msg[] =
655 "HW corrected E-cache ECC error for writeback";
656static const char CHAFSR_CPC_msg[] =
657 "HW corrected ECC error for copyout";
658static const char CHAFSR_TO_msg[] =
659 "Unmapped error from system bus";
660static const char CHAFSR_BERR_msg[] =
661 "Bus error response from system bus";
662static const char CHAFSR_IVC_msg[] =
663 "HW corrected system bus data ECC error for ivec read";
664static const char CHAFSR_IVU_msg[] =
665 "Uncorrectable system bus data ECC error for ivec read";
666static struct afsr_error_table __cheetah_error_table[] = {
667 { CHAFSR_PERR, CHAFSR_PERR_msg },
668 { CHAFSR_IERR, CHAFSR_IERR_msg },
669 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
670 { CHAFSR_UCU, CHAFSR_UCU_msg },
671 { CHAFSR_UCC, CHAFSR_UCC_msg },
672 { CHAFSR_UE, CHAFSR_UE_msg },
673 { CHAFSR_EDU, CHAFSR_EDU_msg },
674 { CHAFSR_EMU, CHAFSR_EMU_msg },
675 { CHAFSR_WDU, CHAFSR_WDU_msg },
676 { CHAFSR_CPU, CHAFSR_CPU_msg },
677 { CHAFSR_CE, CHAFSR_CE_msg },
678 { CHAFSR_EDC, CHAFSR_EDC_msg },
679 { CHAFSR_EMC, CHAFSR_EMC_msg },
680 { CHAFSR_WDC, CHAFSR_WDC_msg },
681 { CHAFSR_CPC, CHAFSR_CPC_msg },
682 { CHAFSR_TO, CHAFSR_TO_msg },
683 { CHAFSR_BERR, CHAFSR_BERR_msg },
684 /* These two do not update the AFAR. */
685 { CHAFSR_IVC, CHAFSR_IVC_msg },
686 { CHAFSR_IVU, CHAFSR_IVU_msg },
687 { 0, NULL },
688};
689static const char CHPAFSR_DTO_msg[] =
690 "System bus unmapped error for prefetch/storequeue-read";
691static const char CHPAFSR_DBERR_msg[] =
692 "System bus error for prefetch/storequeue-read";
693static const char CHPAFSR_THCE_msg[] =
694 "Hardware corrected E-cache Tag ECC error";
695static const char CHPAFSR_TSCE_msg[] =
696 "SW handled correctable E-cache Tag ECC error";
697static const char CHPAFSR_TUE_msg[] =
698 "Uncorrectable E-cache Tag ECC error";
699static const char CHPAFSR_DUE_msg[] =
700 "System bus uncorrectable data ECC error due to prefetch/store-fill";
701static struct afsr_error_table __cheetah_plus_error_table[] = {
702 { CHAFSR_PERR, CHAFSR_PERR_msg },
703 { CHAFSR_IERR, CHAFSR_IERR_msg },
704 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
705 { CHAFSR_UCU, CHAFSR_UCU_msg },
706 { CHAFSR_UCC, CHAFSR_UCC_msg },
707 { CHAFSR_UE, CHAFSR_UE_msg },
708 { CHAFSR_EDU, CHAFSR_EDU_msg },
709 { CHAFSR_EMU, CHAFSR_EMU_msg },
710 { CHAFSR_WDU, CHAFSR_WDU_msg },
711 { CHAFSR_CPU, CHAFSR_CPU_msg },
712 { CHAFSR_CE, CHAFSR_CE_msg },
713 { CHAFSR_EDC, CHAFSR_EDC_msg },
714 { CHAFSR_EMC, CHAFSR_EMC_msg },
715 { CHAFSR_WDC, CHAFSR_WDC_msg },
716 { CHAFSR_CPC, CHAFSR_CPC_msg },
717 { CHAFSR_TO, CHAFSR_TO_msg },
718 { CHAFSR_BERR, CHAFSR_BERR_msg },
719 { CHPAFSR_DTO, CHPAFSR_DTO_msg },
720 { CHPAFSR_DBERR, CHPAFSR_DBERR_msg },
721 { CHPAFSR_THCE, CHPAFSR_THCE_msg },
722 { CHPAFSR_TSCE, CHPAFSR_TSCE_msg },
723 { CHPAFSR_TUE, CHPAFSR_TUE_msg },
724 { CHPAFSR_DUE, CHPAFSR_DUE_msg },
725 /* These two do not update the AFAR. */
726 { CHAFSR_IVC, CHAFSR_IVC_msg },
727 { CHAFSR_IVU, CHAFSR_IVU_msg },
728 { 0, NULL },
729};
730static const char JPAFSR_JETO_msg[] =
731 "System interface protocol error, hw timeout caused";
732static const char JPAFSR_SCE_msg[] =
733 "Parity error on system snoop results";
734static const char JPAFSR_JEIC_msg[] =
735 "System interface protocol error, illegal command detected";
736static const char JPAFSR_JEIT_msg[] =
737 "System interface protocol error, illegal ADTYPE detected";
738static const char JPAFSR_OM_msg[] =
739 "Out of range memory error has occurred";
740static const char JPAFSR_ETP_msg[] =
741 "Parity error on L2 cache tag SRAM";
742static const char JPAFSR_UMS_msg[] =
743 "Error due to unsupported store";
744static const char JPAFSR_RUE_msg[] =
745 "Uncorrectable ECC error from remote cache/memory";
746static const char JPAFSR_RCE_msg[] =
747 "Correctable ECC error from remote cache/memory";
748static const char JPAFSR_BP_msg[] =
749 "JBUS parity error on returned read data";
750static const char JPAFSR_WBP_msg[] =
751 "JBUS parity error on data for writeback or block store";
752static const char JPAFSR_FRC_msg[] =
753 "Foreign read to DRAM incurring correctable ECC error";
754static const char JPAFSR_FRU_msg[] =
755 "Foreign read to DRAM incurring uncorrectable ECC error";
756static struct afsr_error_table __jalapeno_error_table[] = {
757 { JPAFSR_JETO, JPAFSR_JETO_msg },
758 { JPAFSR_SCE, JPAFSR_SCE_msg },
759 { JPAFSR_JEIC, JPAFSR_JEIC_msg },
760 { JPAFSR_JEIT, JPAFSR_JEIT_msg },
761 { CHAFSR_PERR, CHAFSR_PERR_msg },
762 { CHAFSR_IERR, CHAFSR_IERR_msg },
763 { CHAFSR_ISAP, CHAFSR_ISAP_msg },
764 { CHAFSR_UCU, CHAFSR_UCU_msg },
765 { CHAFSR_UCC, CHAFSR_UCC_msg },
766 { CHAFSR_UE, CHAFSR_UE_msg },
767 { CHAFSR_EDU, CHAFSR_EDU_msg },
768 { JPAFSR_OM, JPAFSR_OM_msg },
769 { CHAFSR_WDU, CHAFSR_WDU_msg },
770 { CHAFSR_CPU, CHAFSR_CPU_msg },
771 { CHAFSR_CE, CHAFSR_CE_msg },
772 { CHAFSR_EDC, CHAFSR_EDC_msg },
773 { JPAFSR_ETP, JPAFSR_ETP_msg },
774 { CHAFSR_WDC, CHAFSR_WDC_msg },
775 { CHAFSR_CPC, CHAFSR_CPC_msg },
776 { CHAFSR_TO, CHAFSR_TO_msg },
777 { CHAFSR_BERR, CHAFSR_BERR_msg },
778 { JPAFSR_UMS, JPAFSR_UMS_msg },
779 { JPAFSR_RUE, JPAFSR_RUE_msg },
780 { JPAFSR_RCE, JPAFSR_RCE_msg },
781 { JPAFSR_BP, JPAFSR_BP_msg },
782 { JPAFSR_WBP, JPAFSR_WBP_msg },
783 { JPAFSR_FRC, JPAFSR_FRC_msg },
784 { JPAFSR_FRU, JPAFSR_FRU_msg },
785 /* These two do not update the AFAR. */
786 { CHAFSR_IVU, CHAFSR_IVU_msg },
787 { 0, NULL },
788};
789static struct afsr_error_table *cheetah_error_table;
790static unsigned long cheetah_afsr_errors;
791
792struct cheetah_err_info *cheetah_error_log;
793
794static inline struct cheetah_err_info *cheetah_get_error_log(unsigned long afsr)
795{
796 struct cheetah_err_info *p;
797 int cpu = smp_processor_id();
798
799 if (!cheetah_error_log)
800 return NULL;
801
802 p = cheetah_error_log + (cpu * 2);
803 if ((afsr & CHAFSR_TL1) != 0UL)
804 p++;
805
806 return p;
807}
808
809extern unsigned int tl0_icpe[], tl1_icpe[];
810extern unsigned int tl0_dcpe[], tl1_dcpe[];
811extern unsigned int tl0_fecc[], tl1_fecc[];
812extern unsigned int tl0_cee[], tl1_cee[];
813extern unsigned int tl0_iae[], tl1_iae[];
814extern unsigned int tl0_dae[], tl1_dae[];
815extern unsigned int cheetah_plus_icpe_trap_vector[], cheetah_plus_icpe_trap_vector_tl1[];
816extern unsigned int cheetah_plus_dcpe_trap_vector[], cheetah_plus_dcpe_trap_vector_tl1[];
817extern unsigned int cheetah_fecc_trap_vector[], cheetah_fecc_trap_vector_tl1[];
818extern unsigned int cheetah_cee_trap_vector[], cheetah_cee_trap_vector_tl1[];
819extern unsigned int cheetah_deferred_trap_vector[], cheetah_deferred_trap_vector_tl1[];
820
821void __init cheetah_ecache_flush_init(void)
822{
823 unsigned long largest_size, smallest_linesize, order, ver;
824 int i, sz;
825
826 /* Scan all cpu device tree nodes, note two values:
827 * 1) largest E-cache size
828 * 2) smallest E-cache line size
829 */
830 largest_size = 0UL;
831 smallest_linesize = ~0UL;
832
833 for (i = 0; i < NR_CPUS; i++) {
834 unsigned long val;
835
836 val = cpu_data(i).ecache_size;
837 if (!val)
838 continue;
839
840 if (val > largest_size)
841 largest_size = val;
842
843 val = cpu_data(i).ecache_line_size;
844 if (val < smallest_linesize)
845 smallest_linesize = val;
846
847 }
848
849 if (largest_size == 0UL || smallest_linesize == ~0UL) {
850 prom_printf("cheetah_ecache_flush_init: Cannot probe cpu E-cache "
851 "parameters.\n");
852 prom_halt();
853 }
854
855 ecache_flush_size = (2 * largest_size);
856 ecache_flush_linesize = smallest_linesize;
857
858 ecache_flush_physbase = find_ecache_flush_span(ecache_flush_size);
859
860 if (ecache_flush_physbase == ~0UL) {
861 prom_printf("cheetah_ecache_flush_init: Cannot find %ld byte "
862 "contiguous physical memory.\n",
863 ecache_flush_size);
864 prom_halt();
865 }
866
867 /* Now allocate error trap reporting scoreboard. */
868 sz = NR_CPUS * (2 * sizeof(struct cheetah_err_info));
869 for (order = 0; order < MAX_ORDER; order++) {
870 if ((PAGE_SIZE << order) >= sz)
871 break;
872 }
873 cheetah_error_log = (struct cheetah_err_info *)
874 __get_free_pages(GFP_KERNEL, order);
875 if (!cheetah_error_log) {
876 prom_printf("cheetah_ecache_flush_init: Failed to allocate "
877 "error logging scoreboard (%d bytes).\n", sz);
878 prom_halt();
879 }
880 memset(cheetah_error_log, 0, PAGE_SIZE << order);
881
882 /* Mark all AFSRs as invalid so that the trap handler will
883 * log new new information there.
884 */
885 for (i = 0; i < 2 * NR_CPUS; i++)
886 cheetah_error_log[i].afsr = CHAFSR_INVALID;
887
888 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
889 if ((ver >> 32) == __JALAPENO_ID ||
890 (ver >> 32) == __SERRANO_ID) {
891 cheetah_error_table = &__jalapeno_error_table[0];
892 cheetah_afsr_errors = JPAFSR_ERRORS;
893 } else if ((ver >> 32) == 0x003e0015) {
894 cheetah_error_table = &__cheetah_plus_error_table[0];
895 cheetah_afsr_errors = CHPAFSR_ERRORS;
896 } else {
897 cheetah_error_table = &__cheetah_error_table[0];
898 cheetah_afsr_errors = CHAFSR_ERRORS;
899 }
900
901 /* Now patch trap tables. */
902 memcpy(tl0_fecc, cheetah_fecc_trap_vector, (8 * 4));
903 memcpy(tl1_fecc, cheetah_fecc_trap_vector_tl1, (8 * 4));
904 memcpy(tl0_cee, cheetah_cee_trap_vector, (8 * 4));
905 memcpy(tl1_cee, cheetah_cee_trap_vector_tl1, (8 * 4));
906 memcpy(tl0_iae, cheetah_deferred_trap_vector, (8 * 4));
907 memcpy(tl1_iae, cheetah_deferred_trap_vector_tl1, (8 * 4));
908 memcpy(tl0_dae, cheetah_deferred_trap_vector, (8 * 4));
909 memcpy(tl1_dae, cheetah_deferred_trap_vector_tl1, (8 * 4));
910 if (tlb_type == cheetah_plus) {
911 memcpy(tl0_dcpe, cheetah_plus_dcpe_trap_vector, (8 * 4));
912 memcpy(tl1_dcpe, cheetah_plus_dcpe_trap_vector_tl1, (8 * 4));
913 memcpy(tl0_icpe, cheetah_plus_icpe_trap_vector, (8 * 4));
914 memcpy(tl1_icpe, cheetah_plus_icpe_trap_vector_tl1, (8 * 4));
915 }
916 flushi(PAGE_OFFSET);
917}
918
919static void cheetah_flush_ecache(void)
920{
921 unsigned long flush_base = ecache_flush_physbase;
922 unsigned long flush_linesize = ecache_flush_linesize;
923 unsigned long flush_size = ecache_flush_size;
924
925 __asm__ __volatile__("1: subcc %0, %4, %0\n\t"
926 " bne,pt %%xcc, 1b\n\t"
927 " ldxa [%2 + %0] %3, %%g0\n\t"
928 : "=&r" (flush_size)
929 : "0" (flush_size), "r" (flush_base),
930 "i" (ASI_PHYS_USE_EC), "r" (flush_linesize));
931}
932
933static void cheetah_flush_ecache_line(unsigned long physaddr)
934{
935 unsigned long alias;
936
937 physaddr &= ~(8UL - 1UL);
938 physaddr = (ecache_flush_physbase +
939 (physaddr & ((ecache_flush_size>>1UL) - 1UL)));
940 alias = physaddr + (ecache_flush_size >> 1UL);
941 __asm__ __volatile__("ldxa [%0] %2, %%g0\n\t"
942 "ldxa [%1] %2, %%g0\n\t"
943 "membar #Sync"
944 : /* no outputs */
945 : "r" (physaddr), "r" (alias),
946 "i" (ASI_PHYS_USE_EC));
947}
948
949/* Unfortunately, the diagnostic access to the I-cache tags we need to
950 * use to clear the thing interferes with I-cache coherency transactions.
951 *
952 * So we must only flush the I-cache when it is disabled.
953 */
954static void __cheetah_flush_icache(void)
955{
956 unsigned int icache_size, icache_line_size;
957 unsigned long addr;
958
959 icache_size = local_cpu_data().icache_size;
960 icache_line_size = local_cpu_data().icache_line_size;
961
962 /* Clear the valid bits in all the tags. */
963 for (addr = 0; addr < icache_size; addr += icache_line_size) {
964 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
965 "membar #Sync"
966 : /* no outputs */
967 : "r" (addr | (2 << 3)),
968 "i" (ASI_IC_TAG));
969 }
970}
971
972static void cheetah_flush_icache(void)
973{
974 unsigned long dcu_save;
975
976 /* Save current DCU, disable I-cache. */
977 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
978 "or %0, %2, %%g1\n\t"
979 "stxa %%g1, [%%g0] %1\n\t"
980 "membar #Sync"
981 : "=r" (dcu_save)
982 : "i" (ASI_DCU_CONTROL_REG), "i" (DCU_IC)
983 : "g1");
984
985 __cheetah_flush_icache();
986
987 /* Restore DCU register */
988 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
989 "membar #Sync"
990 : /* no outputs */
991 : "r" (dcu_save), "i" (ASI_DCU_CONTROL_REG));
992}
993
994static void cheetah_flush_dcache(void)
995{
996 unsigned int dcache_size, dcache_line_size;
997 unsigned long addr;
998
999 dcache_size = local_cpu_data().dcache_size;
1000 dcache_line_size = local_cpu_data().dcache_line_size;
1001
1002 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1003 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1004 "membar #Sync"
1005 : /* no outputs */
1006 : "r" (addr), "i" (ASI_DCACHE_TAG));
1007 }
1008}
1009
1010/* In order to make the even parity correct we must do two things.
1011 * First, we clear DC_data_parity and set DC_utag to an appropriate value.
1012 * Next, we clear out all 32-bytes of data for that line. Data of
1013 * all-zero + tag parity value of zero == correct parity.
1014 */
1015static void cheetah_plus_zap_dcache_parity(void)
1016{
1017 unsigned int dcache_size, dcache_line_size;
1018 unsigned long addr;
1019
1020 dcache_size = local_cpu_data().dcache_size;
1021 dcache_line_size = local_cpu_data().dcache_line_size;
1022
1023 for (addr = 0; addr < dcache_size; addr += dcache_line_size) {
1024 unsigned long tag = (addr >> 14);
1025 unsigned long line;
1026
1027 __asm__ __volatile__("membar #Sync\n\t"
1028 "stxa %0, [%1] %2\n\t"
1029 "membar #Sync"
1030 : /* no outputs */
1031 : "r" (tag), "r" (addr),
1032 "i" (ASI_DCACHE_UTAG));
1033 for (line = addr; line < addr + dcache_line_size; line += 8)
1034 __asm__ __volatile__("membar #Sync\n\t"
1035 "stxa %%g0, [%0] %1\n\t"
1036 "membar #Sync"
1037 : /* no outputs */
1038 : "r" (line),
1039 "i" (ASI_DCACHE_DATA));
1040 }
1041}
1042
1043/* Conversion tables used to frob Cheetah AFSR syndrome values into
1044 * something palatable to the memory controller driver get_unumber
1045 * routine.
1046 */
1047#define MT0 137
1048#define MT1 138
1049#define MT2 139
1050#define NONE 254
1051#define MTC0 140
1052#define MTC1 141
1053#define MTC2 142
1054#define MTC3 143
1055#define C0 128
1056#define C1 129
1057#define C2 130
1058#define C3 131
1059#define C4 132
1060#define C5 133
1061#define C6 134
1062#define C7 135
1063#define C8 136
1064#define M2 144
1065#define M3 145
1066#define M4 146
1067#define M 147
1068static unsigned char cheetah_ecc_syntab[] = {
1069/*00*/NONE, C0, C1, M2, C2, M2, M3, 47, C3, M2, M2, 53, M2, 41, 29, M,
1070/*01*/C4, M, M, 50, M2, 38, 25, M2, M2, 33, 24, M2, 11, M, M2, 16,
1071/*02*/C5, M, M, 46, M2, 37, 19, M2, M, 31, 32, M, 7, M2, M2, 10,
1072/*03*/M2, 40, 13, M2, 59, M, M2, 66, M, M2, M2, 0, M2, 67, 71, M,
1073/*04*/C6, M, M, 43, M, 36, 18, M, M2, 49, 15, M, 63, M2, M2, 6,
1074/*05*/M2, 44, 28, M2, M, M2, M2, 52, 68, M2, M2, 62, M2, M3, M3, M4,
1075/*06*/M2, 26, 106, M2, 64, M, M2, 2, 120, M, M2, M3, M, M3, M3, M4,
1076/*07*/116, M2, M2, M3, M2, M3, M, M4, M2, 58, 54, M2, M, M4, M4, M3,
1077/*08*/C7, M2, M, 42, M, 35, 17, M2, M, 45, 14, M2, 21, M2, M2, 5,
1078/*09*/M, 27, M, M, 99, M, M, 3, 114, M2, M2, 20, M2, M3, M3, M,
1079/*0a*/M2, 23, 113, M2, 112, M2, M, 51, 95, M, M2, M3, M2, M3, M3, M2,
1080/*0b*/103, M, M2, M3, M2, M3, M3, M4, M2, 48, M, M, 73, M2, M, M3,
1081/*0c*/M2, 22, 110, M2, 109, M2, M, 9, 108, M2, M, M3, M2, M3, M3, M,
1082/*0d*/102, M2, M, M, M2, M3, M3, M, M2, M3, M3, M2, M, M4, M, M3,
1083/*0e*/98, M, M2, M3, M2, M, M3, M4, M2, M3, M3, M4, M3, M, M, M,
1084/*0f*/M2, M3, M3, M, M3, M, M, M, 56, M4, M, M3, M4, M, M, M,
1085/*10*/C8, M, M2, 39, M, 34, 105, M2, M, 30, 104, M, 101, M, M, 4,
1086/*11*/M, M, 100, M, 83, M, M2, 12, 87, M, M, 57, M2, M, M3, M,
1087/*12*/M2, 97, 82, M2, 78, M2, M2, 1, 96, M, M, M, M, M, M3, M2,
1088/*13*/94, M, M2, M3, M2, M, M3, M, M2, M, 79, M, 69, M, M4, M,
1089/*14*/M2, 93, 92, M, 91, M, M2, 8, 90, M2, M2, M, M, M, M, M4,
1090/*15*/89, M, M, M3, M2, M3, M3, M, M, M, M3, M2, M3, M2, M, M3,
1091/*16*/86, M, M2, M3, M2, M, M3, M, M2, M, M3, M, M3, M, M, M3,
1092/*17*/M, M, M3, M2, M3, M2, M4, M, 60, M, M2, M3, M4, M, M, M2,
1093/*18*/M2, 88, 85, M2, 84, M, M2, 55, 81, M2, M2, M3, M2, M3, M3, M4,
1094/*19*/77, M, M, M, M2, M3, M, M, M2, M3, M3, M4, M3, M2, M, M,
1095/*1a*/74, M, M2, M3, M, M, M3, M, M, M, M3, M, M3, M, M4, M3,
1096/*1b*/M2, 70, 107, M4, 65, M2, M2, M, 127, M, M, M, M2, M3, M3, M,
1097/*1c*/80, M2, M2, 72, M, 119, 118, M, M2, 126, 76, M, 125, M, M4, M3,
1098/*1d*/M2, 115, 124, M, 75, M, M, M3, 61, M, M4, M, M4, M, M, M,
1099/*1e*/M, 123, 122, M4, 121, M4, M, M3, 117, M2, M2, M3, M4, M3, M, M,
1100/*1f*/111, M, M, M, M4, M3, M3, M, M, M, M3, M, M3, M2, M, M
1101};
1102static unsigned char cheetah_mtag_syntab[] = {
1103 NONE, MTC0,
1104 MTC1, NONE,
1105 MTC2, NONE,
1106 NONE, MT0,
1107 MTC3, NONE,
1108 NONE, MT1,
1109 NONE, MT2,
1110 NONE, NONE
1111};
1112
1113/* Return the highest priority error conditon mentioned. */
1114static inline unsigned long cheetah_get_hipri(unsigned long afsr)
1115{
1116 unsigned long tmp = 0;
1117 int i;
1118
1119 for (i = 0; cheetah_error_table[i].mask; i++) {
1120 if ((tmp = (afsr & cheetah_error_table[i].mask)) != 0UL)
1121 return tmp;
1122 }
1123 return tmp;
1124}
1125
1126static const char *cheetah_get_string(unsigned long bit)
1127{
1128 int i;
1129
1130 for (i = 0; cheetah_error_table[i].mask; i++) {
1131 if ((bit & cheetah_error_table[i].mask) != 0UL)
1132 return cheetah_error_table[i].name;
1133 }
1134 return "???";
1135}
1136
1137static void cheetah_log_errors(struct pt_regs *regs, struct cheetah_err_info *info,
1138 unsigned long afsr, unsigned long afar, int recoverable)
1139{
1140 unsigned long hipri;
1141 char unum[256];
1142
1143 printk("%s" "ERROR(%d): Cheetah error trap taken afsr[%016lx] afar[%016lx] TL1(%d)\n",
1144 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1145 afsr, afar,
1146 (afsr & CHAFSR_TL1) ? 1 : 0);
1147 printk("%s" "ERROR(%d): TPC[%lx] TNPC[%lx] O7[%lx] TSTATE[%lx]\n",
1148 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1149 regs->tpc, regs->tnpc, regs->u_regs[UREG_I7], regs->tstate);
1150 printk("%s" "ERROR(%d): ",
1151 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id());
1152 printk("TPC<%pS>\n", (void *) regs->tpc);
1153 printk("%s" "ERROR(%d): M_SYND(%lx), E_SYND(%lx)%s%s\n",
1154 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1155 (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT,
1156 (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT,
1157 (afsr & CHAFSR_ME) ? ", Multiple Errors" : "",
1158 (afsr & CHAFSR_PRIV) ? ", Privileged" : "");
1159 hipri = cheetah_get_hipri(afsr);
1160 printk("%s" "ERROR(%d): Highest priority error (%016lx) \"%s\"\n",
1161 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1162 hipri, cheetah_get_string(hipri));
1163
1164 /* Try to get unumber if relevant. */
1165#define ESYND_ERRORS (CHAFSR_IVC | CHAFSR_IVU | \
1166 CHAFSR_CPC | CHAFSR_CPU | \
1167 CHAFSR_UE | CHAFSR_CE | \
1168 CHAFSR_EDC | CHAFSR_EDU | \
1169 CHAFSR_UCC | CHAFSR_UCU | \
1170 CHAFSR_WDU | CHAFSR_WDC)
1171#define MSYND_ERRORS (CHAFSR_EMC | CHAFSR_EMU)
1172 if (afsr & ESYND_ERRORS) {
1173 int syndrome;
1174 int ret;
1175
1176 syndrome = (afsr & CHAFSR_E_SYNDROME) >> CHAFSR_E_SYNDROME_SHIFT;
1177 syndrome = cheetah_ecc_syntab[syndrome];
1178 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1179 if (ret != -1)
1180 printk("%s" "ERROR(%d): AFAR E-syndrome [%s]\n",
1181 (recoverable ? KERN_WARNING : KERN_CRIT),
1182 smp_processor_id(), unum);
1183 } else if (afsr & MSYND_ERRORS) {
1184 int syndrome;
1185 int ret;
1186
1187 syndrome = (afsr & CHAFSR_M_SYNDROME) >> CHAFSR_M_SYNDROME_SHIFT;
1188 syndrome = cheetah_mtag_syntab[syndrome];
1189 ret = sprintf_dimm(syndrome, afar, unum, sizeof(unum));
1190 if (ret != -1)
1191 printk("%s" "ERROR(%d): AFAR M-syndrome [%s]\n",
1192 (recoverable ? KERN_WARNING : KERN_CRIT),
1193 smp_processor_id(), unum);
1194 }
1195
1196 /* Now dump the cache snapshots. */
1197 printk("%s" "ERROR(%d): D-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx]\n",
1198 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1199 (int) info->dcache_index,
1200 info->dcache_tag,
1201 info->dcache_utag,
1202 info->dcache_stag);
1203 printk("%s" "ERROR(%d): D-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1204 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1205 info->dcache_data[0],
1206 info->dcache_data[1],
1207 info->dcache_data[2],
1208 info->dcache_data[3]);
1209 printk("%s" "ERROR(%d): I-cache idx[%x] tag[%016llx] utag[%016llx] stag[%016llx] "
1210 "u[%016llx] l[%016llx]\n",
1211 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1212 (int) info->icache_index,
1213 info->icache_tag,
1214 info->icache_utag,
1215 info->icache_stag,
1216 info->icache_upper,
1217 info->icache_lower);
1218 printk("%s" "ERROR(%d): I-cache INSN0[%016llx] INSN1[%016llx] INSN2[%016llx] INSN3[%016llx]\n",
1219 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1220 info->icache_data[0],
1221 info->icache_data[1],
1222 info->icache_data[2],
1223 info->icache_data[3]);
1224 printk("%s" "ERROR(%d): I-cache INSN4[%016llx] INSN5[%016llx] INSN6[%016llx] INSN7[%016llx]\n",
1225 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1226 info->icache_data[4],
1227 info->icache_data[5],
1228 info->icache_data[6],
1229 info->icache_data[7]);
1230 printk("%s" "ERROR(%d): E-cache idx[%x] tag[%016llx]\n",
1231 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1232 (int) info->ecache_index, info->ecache_tag);
1233 printk("%s" "ERROR(%d): E-cache data0[%016llx] data1[%016llx] data2[%016llx] data3[%016llx]\n",
1234 (recoverable ? KERN_WARNING : KERN_CRIT), smp_processor_id(),
1235 info->ecache_data[0],
1236 info->ecache_data[1],
1237 info->ecache_data[2],
1238 info->ecache_data[3]);
1239
1240 afsr = (afsr & ~hipri) & cheetah_afsr_errors;
1241 while (afsr != 0UL) {
1242 unsigned long bit = cheetah_get_hipri(afsr);
1243
1244 printk("%s" "ERROR: Multiple-error (%016lx) \"%s\"\n",
1245 (recoverable ? KERN_WARNING : KERN_CRIT),
1246 bit, cheetah_get_string(bit));
1247
1248 afsr &= ~bit;
1249 }
1250
1251 if (!recoverable)
1252 printk(KERN_CRIT "ERROR: This condition is not recoverable.\n");
1253}
1254
1255static int cheetah_recheck_errors(struct cheetah_err_info *logp)
1256{
1257 unsigned long afsr, afar;
1258 int ret = 0;
1259
1260 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1261 : "=r" (afsr)
1262 : "i" (ASI_AFSR));
1263 if ((afsr & cheetah_afsr_errors) != 0) {
1264 if (logp != NULL) {
1265 __asm__ __volatile__("ldxa [%%g0] %1, %0\n\t"
1266 : "=r" (afar)
1267 : "i" (ASI_AFAR));
1268 logp->afsr = afsr;
1269 logp->afar = afar;
1270 }
1271 ret = 1;
1272 }
1273 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1274 "membar #Sync\n\t"
1275 : : "r" (afsr), "i" (ASI_AFSR));
1276
1277 return ret;
1278}
1279
1280void cheetah_fecc_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1281{
1282 struct cheetah_err_info local_snapshot, *p;
1283 int recoverable;
1284
1285 /* Flush E-cache */
1286 cheetah_flush_ecache();
1287
1288 p = cheetah_get_error_log(afsr);
1289 if (!p) {
1290 prom_printf("ERROR: Early Fast-ECC error afsr[%016lx] afar[%016lx]\n",
1291 afsr, afar);
1292 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1293 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1294 prom_halt();
1295 }
1296
1297 /* Grab snapshot of logged error. */
1298 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1299
1300 /* If the current trap snapshot does not match what the
1301 * trap handler passed along into our args, big trouble.
1302 * In such a case, mark the local copy as invalid.
1303 *
1304 * Else, it matches and we mark the afsr in the non-local
1305 * copy as invalid so we may log new error traps there.
1306 */
1307 if (p->afsr != afsr || p->afar != afar)
1308 local_snapshot.afsr = CHAFSR_INVALID;
1309 else
1310 p->afsr = CHAFSR_INVALID;
1311
1312 cheetah_flush_icache();
1313 cheetah_flush_dcache();
1314
1315 /* Re-enable I-cache/D-cache */
1316 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1317 "or %%g1, %1, %%g1\n\t"
1318 "stxa %%g1, [%%g0] %0\n\t"
1319 "membar #Sync"
1320 : /* no outputs */
1321 : "i" (ASI_DCU_CONTROL_REG),
1322 "i" (DCU_DC | DCU_IC)
1323 : "g1");
1324
1325 /* Re-enable error reporting */
1326 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1327 "or %%g1, %1, %%g1\n\t"
1328 "stxa %%g1, [%%g0] %0\n\t"
1329 "membar #Sync"
1330 : /* no outputs */
1331 : "i" (ASI_ESTATE_ERROR_EN),
1332 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1333 : "g1");
1334
1335 /* Decide if we can continue after handling this trap and
1336 * logging the error.
1337 */
1338 recoverable = 1;
1339 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1340 recoverable = 0;
1341
1342 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1343 * error was logged while we had error reporting traps disabled.
1344 */
1345 if (cheetah_recheck_errors(&local_snapshot)) {
1346 unsigned long new_afsr = local_snapshot.afsr;
1347
1348 /* If we got a new asynchronous error, die... */
1349 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1350 CHAFSR_WDU | CHAFSR_CPU |
1351 CHAFSR_IVU | CHAFSR_UE |
1352 CHAFSR_BERR | CHAFSR_TO))
1353 recoverable = 0;
1354 }
1355
1356 /* Log errors. */
1357 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1358
1359 if (!recoverable)
1360 panic("Irrecoverable Fast-ECC error trap.\n");
1361
1362 /* Flush E-cache to kick the error trap handlers out. */
1363 cheetah_flush_ecache();
1364}
1365
1366/* Try to fix a correctable error by pushing the line out from
1367 * the E-cache. Recheck error reporting registers to see if the
1368 * problem is intermittent.
1369 */
1370static int cheetah_fix_ce(unsigned long physaddr)
1371{
1372 unsigned long orig_estate;
1373 unsigned long alias1, alias2;
1374 int ret;
1375
1376 /* Make sure correctable error traps are disabled. */
1377 __asm__ __volatile__("ldxa [%%g0] %2, %0\n\t"
1378 "andn %0, %1, %%g1\n\t"
1379 "stxa %%g1, [%%g0] %2\n\t"
1380 "membar #Sync"
1381 : "=&r" (orig_estate)
1382 : "i" (ESTATE_ERROR_CEEN),
1383 "i" (ASI_ESTATE_ERROR_EN)
1384 : "g1");
1385
1386 /* We calculate alias addresses that will force the
1387 * cache line in question out of the E-cache. Then
1388 * we bring it back in with an atomic instruction so
1389 * that we get it in some modified/exclusive state,
1390 * then we displace it again to try and get proper ECC
1391 * pushed back into the system.
1392 */
1393 physaddr &= ~(8UL - 1UL);
1394 alias1 = (ecache_flush_physbase +
1395 (physaddr & ((ecache_flush_size >> 1) - 1)));
1396 alias2 = alias1 + (ecache_flush_size >> 1);
1397 __asm__ __volatile__("ldxa [%0] %3, %%g0\n\t"
1398 "ldxa [%1] %3, %%g0\n\t"
1399 "casxa [%2] %3, %%g0, %%g0\n\t"
1400 "ldxa [%0] %3, %%g0\n\t"
1401 "ldxa [%1] %3, %%g0\n\t"
1402 "membar #Sync"
1403 : /* no outputs */
1404 : "r" (alias1), "r" (alias2),
1405 "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1406
1407 /* Did that trigger another error? */
1408 if (cheetah_recheck_errors(NULL)) {
1409 /* Try one more time. */
1410 __asm__ __volatile__("ldxa [%0] %1, %%g0\n\t"
1411 "membar #Sync"
1412 : : "r" (physaddr), "i" (ASI_PHYS_USE_EC));
1413 if (cheetah_recheck_errors(NULL))
1414 ret = 2;
1415 else
1416 ret = 1;
1417 } else {
1418 /* No new error, intermittent problem. */
1419 ret = 0;
1420 }
1421
1422 /* Restore error enables. */
1423 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
1424 "membar #Sync"
1425 : : "r" (orig_estate), "i" (ASI_ESTATE_ERROR_EN));
1426
1427 return ret;
1428}
1429
1430/* Return non-zero if PADDR is a valid physical memory address. */
1431static int cheetah_check_main_memory(unsigned long paddr)
1432{
1433 unsigned long vaddr = PAGE_OFFSET + paddr;
1434
1435 if (vaddr > (unsigned long) high_memory)
1436 return 0;
1437
1438 return kern_addr_valid(vaddr);
1439}
1440
1441void cheetah_cee_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1442{
1443 struct cheetah_err_info local_snapshot, *p;
1444 int recoverable, is_memory;
1445
1446 p = cheetah_get_error_log(afsr);
1447 if (!p) {
1448 prom_printf("ERROR: Early CEE error afsr[%016lx] afar[%016lx]\n",
1449 afsr, afar);
1450 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1451 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1452 prom_halt();
1453 }
1454
1455 /* Grab snapshot of logged error. */
1456 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1457
1458 /* If the current trap snapshot does not match what the
1459 * trap handler passed along into our args, big trouble.
1460 * In such a case, mark the local copy as invalid.
1461 *
1462 * Else, it matches and we mark the afsr in the non-local
1463 * copy as invalid so we may log new error traps there.
1464 */
1465 if (p->afsr != afsr || p->afar != afar)
1466 local_snapshot.afsr = CHAFSR_INVALID;
1467 else
1468 p->afsr = CHAFSR_INVALID;
1469
1470 is_memory = cheetah_check_main_memory(afar);
1471
1472 if (is_memory && (afsr & CHAFSR_CE) != 0UL) {
1473 /* XXX Might want to log the results of this operation
1474 * XXX somewhere... -DaveM
1475 */
1476 cheetah_fix_ce(afar);
1477 }
1478
1479 {
1480 int flush_all, flush_line;
1481
1482 flush_all = flush_line = 0;
1483 if ((afsr & CHAFSR_EDC) != 0UL) {
1484 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDC)
1485 flush_line = 1;
1486 else
1487 flush_all = 1;
1488 } else if ((afsr & CHAFSR_CPC) != 0UL) {
1489 if ((afsr & cheetah_afsr_errors) == CHAFSR_CPC)
1490 flush_line = 1;
1491 else
1492 flush_all = 1;
1493 }
1494
1495 /* Trap handler only disabled I-cache, flush it. */
1496 cheetah_flush_icache();
1497
1498 /* Re-enable I-cache */
1499 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1500 "or %%g1, %1, %%g1\n\t"
1501 "stxa %%g1, [%%g0] %0\n\t"
1502 "membar #Sync"
1503 : /* no outputs */
1504 : "i" (ASI_DCU_CONTROL_REG),
1505 "i" (DCU_IC)
1506 : "g1");
1507
1508 if (flush_all)
1509 cheetah_flush_ecache();
1510 else if (flush_line)
1511 cheetah_flush_ecache_line(afar);
1512 }
1513
1514 /* Re-enable error reporting */
1515 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1516 "or %%g1, %1, %%g1\n\t"
1517 "stxa %%g1, [%%g0] %0\n\t"
1518 "membar #Sync"
1519 : /* no outputs */
1520 : "i" (ASI_ESTATE_ERROR_EN),
1521 "i" (ESTATE_ERROR_CEEN)
1522 : "g1");
1523
1524 /* Decide if we can continue after handling this trap and
1525 * logging the error.
1526 */
1527 recoverable = 1;
1528 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1529 recoverable = 0;
1530
1531 /* Re-check AFSR/AFAR */
1532 (void) cheetah_recheck_errors(&local_snapshot);
1533
1534 /* Log errors. */
1535 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1536
1537 if (!recoverable)
1538 panic("Irrecoverable Correctable-ECC error trap.\n");
1539}
1540
1541void cheetah_deferred_handler(struct pt_regs *regs, unsigned long afsr, unsigned long afar)
1542{
1543 struct cheetah_err_info local_snapshot, *p;
1544 int recoverable, is_memory;
1545
1546#ifdef CONFIG_PCI
1547 /* Check for the special PCI poke sequence. */
1548 if (pci_poke_in_progress && pci_poke_cpu == smp_processor_id()) {
1549 cheetah_flush_icache();
1550 cheetah_flush_dcache();
1551
1552 /* Re-enable I-cache/D-cache */
1553 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1554 "or %%g1, %1, %%g1\n\t"
1555 "stxa %%g1, [%%g0] %0\n\t"
1556 "membar #Sync"
1557 : /* no outputs */
1558 : "i" (ASI_DCU_CONTROL_REG),
1559 "i" (DCU_DC | DCU_IC)
1560 : "g1");
1561
1562 /* Re-enable error reporting */
1563 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1564 "or %%g1, %1, %%g1\n\t"
1565 "stxa %%g1, [%%g0] %0\n\t"
1566 "membar #Sync"
1567 : /* no outputs */
1568 : "i" (ASI_ESTATE_ERROR_EN),
1569 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1570 : "g1");
1571
1572 (void) cheetah_recheck_errors(NULL);
1573
1574 pci_poke_faulted = 1;
1575 regs->tpc += 4;
1576 regs->tnpc = regs->tpc + 4;
1577 return;
1578 }
1579#endif
1580
1581 p = cheetah_get_error_log(afsr);
1582 if (!p) {
1583 prom_printf("ERROR: Early deferred error afsr[%016lx] afar[%016lx]\n",
1584 afsr, afar);
1585 prom_printf("ERROR: CPU(%d) TPC[%016lx] TNPC[%016lx] TSTATE[%016lx]\n",
1586 smp_processor_id(), regs->tpc, regs->tnpc, regs->tstate);
1587 prom_halt();
1588 }
1589
1590 /* Grab snapshot of logged error. */
1591 memcpy(&local_snapshot, p, sizeof(local_snapshot));
1592
1593 /* If the current trap snapshot does not match what the
1594 * trap handler passed along into our args, big trouble.
1595 * In such a case, mark the local copy as invalid.
1596 *
1597 * Else, it matches and we mark the afsr in the non-local
1598 * copy as invalid so we may log new error traps there.
1599 */
1600 if (p->afsr != afsr || p->afar != afar)
1601 local_snapshot.afsr = CHAFSR_INVALID;
1602 else
1603 p->afsr = CHAFSR_INVALID;
1604
1605 is_memory = cheetah_check_main_memory(afar);
1606
1607 {
1608 int flush_all, flush_line;
1609
1610 flush_all = flush_line = 0;
1611 if ((afsr & CHAFSR_EDU) != 0UL) {
1612 if ((afsr & cheetah_afsr_errors) == CHAFSR_EDU)
1613 flush_line = 1;
1614 else
1615 flush_all = 1;
1616 } else if ((afsr & CHAFSR_BERR) != 0UL) {
1617 if ((afsr & cheetah_afsr_errors) == CHAFSR_BERR)
1618 flush_line = 1;
1619 else
1620 flush_all = 1;
1621 }
1622
1623 cheetah_flush_icache();
1624 cheetah_flush_dcache();
1625
1626 /* Re-enable I/D caches */
1627 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1628 "or %%g1, %1, %%g1\n\t"
1629 "stxa %%g1, [%%g0] %0\n\t"
1630 "membar #Sync"
1631 : /* no outputs */
1632 : "i" (ASI_DCU_CONTROL_REG),
1633 "i" (DCU_IC | DCU_DC)
1634 : "g1");
1635
1636 if (flush_all)
1637 cheetah_flush_ecache();
1638 else if (flush_line)
1639 cheetah_flush_ecache_line(afar);
1640 }
1641
1642 /* Re-enable error reporting */
1643 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1644 "or %%g1, %1, %%g1\n\t"
1645 "stxa %%g1, [%%g0] %0\n\t"
1646 "membar #Sync"
1647 : /* no outputs */
1648 : "i" (ASI_ESTATE_ERROR_EN),
1649 "i" (ESTATE_ERROR_NCEEN | ESTATE_ERROR_CEEN)
1650 : "g1");
1651
1652 /* Decide if we can continue after handling this trap and
1653 * logging the error.
1654 */
1655 recoverable = 1;
1656 if (afsr & (CHAFSR_PERR | CHAFSR_IERR | CHAFSR_ISAP))
1657 recoverable = 0;
1658
1659 /* Re-check AFSR/AFAR. What we are looking for here is whether a new
1660 * error was logged while we had error reporting traps disabled.
1661 */
1662 if (cheetah_recheck_errors(&local_snapshot)) {
1663 unsigned long new_afsr = local_snapshot.afsr;
1664
1665 /* If we got a new asynchronous error, die... */
1666 if (new_afsr & (CHAFSR_EMU | CHAFSR_EDU |
1667 CHAFSR_WDU | CHAFSR_CPU |
1668 CHAFSR_IVU | CHAFSR_UE |
1669 CHAFSR_BERR | CHAFSR_TO))
1670 recoverable = 0;
1671 }
1672
1673 /* Log errors. */
1674 cheetah_log_errors(regs, &local_snapshot, afsr, afar, recoverable);
1675
1676 /* "Recoverable" here means we try to yank the page from ever
1677 * being newly used again. This depends upon a few things:
1678 * 1) Must be main memory, and AFAR must be valid.
1679 * 2) If we trapped from user, OK.
1680 * 3) Else, if we trapped from kernel we must find exception
1681 * table entry (ie. we have to have been accessing user
1682 * space).
1683 *
1684 * If AFAR is not in main memory, or we trapped from kernel
1685 * and cannot find an exception table entry, it is unacceptable
1686 * to try and continue.
1687 */
1688 if (recoverable && is_memory) {
1689 if ((regs->tstate & TSTATE_PRIV) == 0UL) {
1690 /* OK, usermode access. */
1691 recoverable = 1;
1692 } else {
1693 const struct exception_table_entry *entry;
1694
1695 entry = search_exception_tables(regs->tpc);
1696 if (entry) {
1697 /* OK, kernel access to userspace. */
1698 recoverable = 1;
1699
1700 } else {
1701 /* BAD, privileged state is corrupted. */
1702 recoverable = 0;
1703 }
1704
1705 if (recoverable) {
1706 if (pfn_valid(afar >> PAGE_SHIFT))
1707 get_page(pfn_to_page(afar >> PAGE_SHIFT));
1708 else
1709 recoverable = 0;
1710
1711 /* Only perform fixup if we still have a
1712 * recoverable condition.
1713 */
1714 if (recoverable) {
1715 regs->tpc = entry->fixup;
1716 regs->tnpc = regs->tpc + 4;
1717 }
1718 }
1719 }
1720 } else {
1721 recoverable = 0;
1722 }
1723
1724 if (!recoverable)
1725 panic("Irrecoverable deferred error trap.\n");
1726}
1727
1728/* Handle a D/I cache parity error trap. TYPE is encoded as:
1729 *
1730 * Bit0: 0=dcache,1=icache
1731 * Bit1: 0=recoverable,1=unrecoverable
1732 *
1733 * The hardware has disabled both the I-cache and D-cache in
1734 * the %dcr register.
1735 */
1736void cheetah_plus_parity_error(int type, struct pt_regs *regs)
1737{
1738 if (type & 0x1)
1739 __cheetah_flush_icache();
1740 else
1741 cheetah_plus_zap_dcache_parity();
1742 cheetah_flush_dcache();
1743
1744 /* Re-enable I-cache/D-cache */
1745 __asm__ __volatile__("ldxa [%%g0] %0, %%g1\n\t"
1746 "or %%g1, %1, %%g1\n\t"
1747 "stxa %%g1, [%%g0] %0\n\t"
1748 "membar #Sync"
1749 : /* no outputs */
1750 : "i" (ASI_DCU_CONTROL_REG),
1751 "i" (DCU_DC | DCU_IC)
1752 : "g1");
1753
1754 if (type & 0x2) {
1755 printk(KERN_EMERG "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1756 smp_processor_id(),
1757 (type & 0x1) ? 'I' : 'D',
1758 regs->tpc);
1759 printk(KERN_EMERG "TPC<%pS>\n", (void *) regs->tpc);
1760 panic("Irrecoverable Cheetah+ parity error.");
1761 }
1762
1763 printk(KERN_WARNING "CPU[%d]: Cheetah+ %c-cache parity error at TPC[%016lx]\n",
1764 smp_processor_id(),
1765 (type & 0x1) ? 'I' : 'D',
1766 regs->tpc);
1767 printk(KERN_WARNING "TPC<%pS>\n", (void *) regs->tpc);
1768}
1769
1770struct sun4v_error_entry {
1771 /* Unique error handle */
1772/*0x00*/u64 err_handle;
1773
1774 /* %stick value at the time of the error */
1775/*0x08*/u64 err_stick;
1776
1777/*0x10*/u8 reserved_1[3];
1778
1779 /* Error type */
1780/*0x13*/u8 err_type;
1781#define SUN4V_ERR_TYPE_UNDEFINED 0
1782#define SUN4V_ERR_TYPE_UNCORRECTED_RES 1
1783#define SUN4V_ERR_TYPE_PRECISE_NONRES 2
1784#define SUN4V_ERR_TYPE_DEFERRED_NONRES 3
1785#define SUN4V_ERR_TYPE_SHUTDOWN_RQST 4
1786#define SUN4V_ERR_TYPE_DUMP_CORE 5
1787#define SUN4V_ERR_TYPE_SP_STATE_CHANGE 6
1788#define SUN4V_ERR_TYPE_NUM 7
1789
1790 /* Error attributes */
1791/*0x14*/u32 err_attrs;
1792#define SUN4V_ERR_ATTRS_PROCESSOR 0x00000001
1793#define SUN4V_ERR_ATTRS_MEMORY 0x00000002
1794#define SUN4V_ERR_ATTRS_PIO 0x00000004
1795#define SUN4V_ERR_ATTRS_INT_REGISTERS 0x00000008
1796#define SUN4V_ERR_ATTRS_FPU_REGISTERS 0x00000010
1797#define SUN4V_ERR_ATTRS_SHUTDOWN_RQST 0x00000020
1798#define SUN4V_ERR_ATTRS_ASR 0x00000040
1799#define SUN4V_ERR_ATTRS_ASI 0x00000080
1800#define SUN4V_ERR_ATTRS_PRIV_REG 0x00000100
1801#define SUN4V_ERR_ATTRS_SPSTATE_MSK 0x00000600
1802#define SUN4V_ERR_ATTRS_SPSTATE_SHFT 9
1803#define SUN4V_ERR_ATTRS_MODE_MSK 0x03000000
1804#define SUN4V_ERR_ATTRS_MODE_SHFT 24
1805#define SUN4V_ERR_ATTRS_RES_QUEUE_FULL 0x80000000
1806
1807#define SUN4V_ERR_SPSTATE_FAULTED 0
1808#define SUN4V_ERR_SPSTATE_AVAILABLE 1
1809#define SUN4V_ERR_SPSTATE_NOT_PRESENT 2
1810
1811#define SUN4V_ERR_MODE_USER 1
1812#define SUN4V_ERR_MODE_PRIV 2
1813
1814 /* Real address of the memory region or PIO transaction */
1815/*0x18*/u64 err_raddr;
1816
1817 /* Size of the operation triggering the error, in bytes */
1818/*0x20*/u32 err_size;
1819
1820 /* ID of the CPU */
1821/*0x24*/u16 err_cpu;
1822
1823 /* Grace periof for shutdown, in seconds */
1824/*0x26*/u16 err_secs;
1825
1826 /* Value of the %asi register */
1827/*0x28*/u8 err_asi;
1828
1829/*0x29*/u8 reserved_2;
1830
1831 /* Value of the ASR register number */
1832/*0x2a*/u16 err_asr;
1833#define SUN4V_ERR_ASR_VALID 0x8000
1834
1835/*0x2c*/u32 reserved_3;
1836/*0x30*/u64 reserved_4;
1837/*0x38*/u64 reserved_5;
1838};
1839
1840static atomic_t sun4v_resum_oflow_cnt = ATOMIC_INIT(0);
1841static atomic_t sun4v_nonresum_oflow_cnt = ATOMIC_INIT(0);
1842
1843static const char *sun4v_err_type_to_str(u8 type)
1844{
1845 static const char *types[SUN4V_ERR_TYPE_NUM] = {
1846 "undefined",
1847 "uncorrected resumable",
1848 "precise nonresumable",
1849 "deferred nonresumable",
1850 "shutdown request",
1851 "dump core",
1852 "SP state change",
1853 };
1854
1855 if (type < SUN4V_ERR_TYPE_NUM)
1856 return types[type];
1857
1858 return "unknown";
1859}
1860
1861static void sun4v_emit_err_attr_strings(u32 attrs)
1862{
1863 static const char *attr_names[] = {
1864 "processor",
1865 "memory",
1866 "PIO",
1867 "int-registers",
1868 "fpu-registers",
1869 "shutdown-request",
1870 "ASR",
1871 "ASI",
1872 "priv-reg",
1873 };
1874 static const char *sp_states[] = {
1875 "sp-faulted",
1876 "sp-available",
1877 "sp-not-present",
1878 "sp-state-reserved",
1879 };
1880 static const char *modes[] = {
1881 "mode-reserved0",
1882 "user",
1883 "priv",
1884 "mode-reserved1",
1885 };
1886 u32 sp_state, mode;
1887 int i;
1888
1889 for (i = 0; i < ARRAY_SIZE(attr_names); i++) {
1890 if (attrs & (1U << i)) {
1891 const char *s = attr_names[i];
1892
1893 pr_cont("%s ", s);
1894 }
1895 }
1896
1897 sp_state = ((attrs & SUN4V_ERR_ATTRS_SPSTATE_MSK) >>
1898 SUN4V_ERR_ATTRS_SPSTATE_SHFT);
1899 pr_cont("%s ", sp_states[sp_state]);
1900
1901 mode = ((attrs & SUN4V_ERR_ATTRS_MODE_MSK) >>
1902 SUN4V_ERR_ATTRS_MODE_SHFT);
1903 pr_cont("%s ", modes[mode]);
1904
1905 if (attrs & SUN4V_ERR_ATTRS_RES_QUEUE_FULL)
1906 pr_cont("res-queue-full ");
1907}
1908
1909/* When the report contains a real-address of "-1" it means that the
1910 * hardware did not provide the address. So we compute the effective
1911 * address of the load or store instruction at regs->tpc and report
1912 * that. Usually when this happens it's a PIO and in such a case we
1913 * are using physical addresses with bypass ASIs anyways, so what we
1914 * report here is exactly what we want.
1915 */
1916static void sun4v_report_real_raddr(const char *pfx, struct pt_regs *regs)
1917{
1918 unsigned int insn;
1919 u64 addr;
1920
1921 if (!(regs->tstate & TSTATE_PRIV))
1922 return;
1923
1924 insn = *(unsigned int *) regs->tpc;
1925
1926 addr = compute_effective_address(regs, insn, 0);
1927
1928 printk("%s: insn effective address [0x%016llx]\n",
1929 pfx, addr);
1930}
1931
1932static void sun4v_log_error(struct pt_regs *regs, struct sun4v_error_entry *ent,
1933 int cpu, const char *pfx, atomic_t *ocnt)
1934{
1935 u64 *raw_ptr = (u64 *) ent;
1936 u32 attrs;
1937 int cnt;
1938
1939 printk("%s: Reporting on cpu %d\n", pfx, cpu);
1940 printk("%s: TPC [0x%016lx] <%pS>\n",
1941 pfx, regs->tpc, (void *) regs->tpc);
1942
1943 printk("%s: RAW [%016llx:%016llx:%016llx:%016llx\n",
1944 pfx, raw_ptr[0], raw_ptr[1], raw_ptr[2], raw_ptr[3]);
1945 printk("%s: %016llx:%016llx:%016llx:%016llx]\n",
1946 pfx, raw_ptr[4], raw_ptr[5], raw_ptr[6], raw_ptr[7]);
1947
1948 printk("%s: handle [0x%016llx] stick [0x%016llx]\n",
1949 pfx, ent->err_handle, ent->err_stick);
1950
1951 printk("%s: type [%s]\n", pfx, sun4v_err_type_to_str(ent->err_type));
1952
1953 attrs = ent->err_attrs;
1954 printk("%s: attrs [0x%08x] < ", pfx, attrs);
1955 sun4v_emit_err_attr_strings(attrs);
1956 pr_cont(">\n");
1957
1958 /* Various fields in the error report are only valid if
1959 * certain attribute bits are set.
1960 */
1961 if (attrs & (SUN4V_ERR_ATTRS_MEMORY |
1962 SUN4V_ERR_ATTRS_PIO |
1963 SUN4V_ERR_ATTRS_ASI)) {
1964 printk("%s: raddr [0x%016llx]\n", pfx, ent->err_raddr);
1965
1966 if (ent->err_raddr == ~(u64)0)
1967 sun4v_report_real_raddr(pfx, regs);
1968 }
1969
1970 if (attrs & (SUN4V_ERR_ATTRS_MEMORY | SUN4V_ERR_ATTRS_ASI))
1971 printk("%s: size [0x%x]\n", pfx, ent->err_size);
1972
1973 if (attrs & (SUN4V_ERR_ATTRS_PROCESSOR |
1974 SUN4V_ERR_ATTRS_INT_REGISTERS |
1975 SUN4V_ERR_ATTRS_FPU_REGISTERS |
1976 SUN4V_ERR_ATTRS_PRIV_REG))
1977 printk("%s: cpu[%u]\n", pfx, ent->err_cpu);
1978
1979 if (attrs & SUN4V_ERR_ATTRS_ASI)
1980 printk("%s: asi [0x%02x]\n", pfx, ent->err_asi);
1981
1982 if ((attrs & (SUN4V_ERR_ATTRS_INT_REGISTERS |
1983 SUN4V_ERR_ATTRS_FPU_REGISTERS |
1984 SUN4V_ERR_ATTRS_PRIV_REG)) &&
1985 (ent->err_asr & SUN4V_ERR_ASR_VALID) != 0)
1986 printk("%s: reg [0x%04x]\n",
1987 pfx, ent->err_asr & ~SUN4V_ERR_ASR_VALID);
1988
1989 show_regs(regs);
1990
1991 if ((cnt = atomic_read(ocnt)) != 0) {
1992 atomic_set(ocnt, 0);
1993 wmb();
1994 printk("%s: Queue overflowed %d times.\n",
1995 pfx, cnt);
1996 }
1997}
1998
1999/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2000 * Log the event and clear the first word of the entry.
2001 */
2002void sun4v_resum_error(struct pt_regs *regs, unsigned long offset)
2003{
2004 enum ctx_state prev_state = exception_enter();
2005 struct sun4v_error_entry *ent, local_copy;
2006 struct trap_per_cpu *tb;
2007 unsigned long paddr;
2008 int cpu;
2009
2010 cpu = get_cpu();
2011
2012 tb = &trap_block[cpu];
2013 paddr = tb->resum_kernel_buf_pa + offset;
2014 ent = __va(paddr);
2015
2016 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2017
2018 /* We have a local copy now, so release the entry. */
2019 ent->err_handle = 0;
2020 wmb();
2021
2022 put_cpu();
2023
2024 if (local_copy.err_type == SUN4V_ERR_TYPE_SHUTDOWN_RQST) {
2025 /* We should really take the seconds field of
2026 * the error report and use it for the shutdown
2027 * invocation, but for now do the same thing we
2028 * do for a DS shutdown request.
2029 */
2030 pr_info("Shutdown request, %u seconds...\n",
2031 local_copy.err_secs);
2032 orderly_poweroff(true);
2033 goto out;
2034 }
2035
2036 sun4v_log_error(regs, &local_copy, cpu,
2037 KERN_ERR "RESUMABLE ERROR",
2038 &sun4v_resum_oflow_cnt);
2039out:
2040 exception_exit(prev_state);
2041}
2042
2043/* If we try to printk() we'll probably make matters worse, by trying
2044 * to retake locks this cpu already holds or causing more errors. So
2045 * just bump a counter, and we'll report these counter bumps above.
2046 */
2047void sun4v_resum_overflow(struct pt_regs *regs)
2048{
2049 atomic_inc(&sun4v_resum_oflow_cnt);
2050}
2051
2052/* We run with %pil set to PIL_NORMAL_MAX and PSTATE_IE enabled in %pstate.
2053 * Log the event, clear the first word of the entry, and die.
2054 */
2055void sun4v_nonresum_error(struct pt_regs *regs, unsigned long offset)
2056{
2057 struct sun4v_error_entry *ent, local_copy;
2058 struct trap_per_cpu *tb;
2059 unsigned long paddr;
2060 int cpu;
2061
2062 cpu = get_cpu();
2063
2064 tb = &trap_block[cpu];
2065 paddr = tb->nonresum_kernel_buf_pa + offset;
2066 ent = __va(paddr);
2067
2068 memcpy(&local_copy, ent, sizeof(struct sun4v_error_entry));
2069
2070 /* We have a local copy now, so release the entry. */
2071 ent->err_handle = 0;
2072 wmb();
2073
2074 put_cpu();
2075
2076#ifdef CONFIG_PCI
2077 /* Check for the special PCI poke sequence. */
2078 if (pci_poke_in_progress && pci_poke_cpu == cpu) {
2079 pci_poke_faulted = 1;
2080 regs->tpc += 4;
2081 regs->tnpc = regs->tpc + 4;
2082 return;
2083 }
2084#endif
2085
2086 sun4v_log_error(regs, &local_copy, cpu,
2087 KERN_EMERG "NON-RESUMABLE ERROR",
2088 &sun4v_nonresum_oflow_cnt);
2089
2090 panic("Non-resumable error.");
2091}
2092
2093/* If we try to printk() we'll probably make matters worse, by trying
2094 * to retake locks this cpu already holds or causing more errors. So
2095 * just bump a counter, and we'll report these counter bumps above.
2096 */
2097void sun4v_nonresum_overflow(struct pt_regs *regs)
2098{
2099 /* XXX Actually even this can make not that much sense. Perhaps
2100 * XXX we should just pull the plug and panic directly from here?
2101 */
2102 atomic_inc(&sun4v_nonresum_oflow_cnt);
2103}
2104
2105unsigned long sun4v_err_itlb_vaddr;
2106unsigned long sun4v_err_itlb_ctx;
2107unsigned long sun4v_err_itlb_pte;
2108unsigned long sun4v_err_itlb_error;
2109
2110void sun4v_itlb_error_report(struct pt_regs *regs, int tl)
2111{
2112 if (tl > 1)
2113 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2114
2115 printk(KERN_EMERG "SUN4V-ITLB: Error at TPC[%lx], tl %d\n",
2116 regs->tpc, tl);
2117 printk(KERN_EMERG "SUN4V-ITLB: TPC<%pS>\n", (void *) regs->tpc);
2118 printk(KERN_EMERG "SUN4V-ITLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2119 printk(KERN_EMERG "SUN4V-ITLB: O7<%pS>\n",
2120 (void *) regs->u_regs[UREG_I7]);
2121 printk(KERN_EMERG "SUN4V-ITLB: vaddr[%lx] ctx[%lx] "
2122 "pte[%lx] error[%lx]\n",
2123 sun4v_err_itlb_vaddr, sun4v_err_itlb_ctx,
2124 sun4v_err_itlb_pte, sun4v_err_itlb_error);
2125
2126 prom_halt();
2127}
2128
2129unsigned long sun4v_err_dtlb_vaddr;
2130unsigned long sun4v_err_dtlb_ctx;
2131unsigned long sun4v_err_dtlb_pte;
2132unsigned long sun4v_err_dtlb_error;
2133
2134void sun4v_dtlb_error_report(struct pt_regs *regs, int tl)
2135{
2136 if (tl > 1)
2137 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2138
2139 printk(KERN_EMERG "SUN4V-DTLB: Error at TPC[%lx], tl %d\n",
2140 regs->tpc, tl);
2141 printk(KERN_EMERG "SUN4V-DTLB: TPC<%pS>\n", (void *) regs->tpc);
2142 printk(KERN_EMERG "SUN4V-DTLB: O7[%lx]\n", regs->u_regs[UREG_I7]);
2143 printk(KERN_EMERG "SUN4V-DTLB: O7<%pS>\n",
2144 (void *) regs->u_regs[UREG_I7]);
2145 printk(KERN_EMERG "SUN4V-DTLB: vaddr[%lx] ctx[%lx] "
2146 "pte[%lx] error[%lx]\n",
2147 sun4v_err_dtlb_vaddr, sun4v_err_dtlb_ctx,
2148 sun4v_err_dtlb_pte, sun4v_err_dtlb_error);
2149
2150 prom_halt();
2151}
2152
2153void hypervisor_tlbop_error(unsigned long err, unsigned long op)
2154{
2155 printk(KERN_CRIT "SUN4V: TLB hv call error %lu for op %lu\n",
2156 err, op);
2157}
2158
2159void hypervisor_tlbop_error_xcall(unsigned long err, unsigned long op)
2160{
2161 printk(KERN_CRIT "SUN4V: XCALL TLB hv call error %lu for op %lu\n",
2162 err, op);
2163}
2164
2165static void do_fpe_common(struct pt_regs *regs)
2166{
2167 if (regs->tstate & TSTATE_PRIV) {
2168 regs->tpc = regs->tnpc;
2169 regs->tnpc += 4;
2170 } else {
2171 unsigned long fsr = current_thread_info()->xfsr[0];
2172 siginfo_t info;
2173
2174 if (test_thread_flag(TIF_32BIT)) {
2175 regs->tpc &= 0xffffffff;
2176 regs->tnpc &= 0xffffffff;
2177 }
2178 info.si_signo = SIGFPE;
2179 info.si_errno = 0;
2180 info.si_addr = (void __user *)regs->tpc;
2181 info.si_trapno = 0;
2182 info.si_code = __SI_FAULT;
2183 if ((fsr & 0x1c000) == (1 << 14)) {
2184 if (fsr & 0x10)
2185 info.si_code = FPE_FLTINV;
2186 else if (fsr & 0x08)
2187 info.si_code = FPE_FLTOVF;
2188 else if (fsr & 0x04)
2189 info.si_code = FPE_FLTUND;
2190 else if (fsr & 0x02)
2191 info.si_code = FPE_FLTDIV;
2192 else if (fsr & 0x01)
2193 info.si_code = FPE_FLTRES;
2194 }
2195 force_sig_info(SIGFPE, &info, current);
2196 }
2197}
2198
2199void do_fpieee(struct pt_regs *regs)
2200{
2201 enum ctx_state prev_state = exception_enter();
2202
2203 if (notify_die(DIE_TRAP, "fpu exception ieee", regs,
2204 0, 0x24, SIGFPE) == NOTIFY_STOP)
2205 goto out;
2206
2207 do_fpe_common(regs);
2208out:
2209 exception_exit(prev_state);
2210}
2211
2212extern int do_mathemu(struct pt_regs *, struct fpustate *, bool);
2213
2214void do_fpother(struct pt_regs *regs)
2215{
2216 enum ctx_state prev_state = exception_enter();
2217 struct fpustate *f = FPUSTATE;
2218 int ret = 0;
2219
2220 if (notify_die(DIE_TRAP, "fpu exception other", regs,
2221 0, 0x25, SIGFPE) == NOTIFY_STOP)
2222 goto out;
2223
2224 switch ((current_thread_info()->xfsr[0] & 0x1c000)) {
2225 case (2 << 14): /* unfinished_FPop */
2226 case (3 << 14): /* unimplemented_FPop */
2227 ret = do_mathemu(regs, f, false);
2228 break;
2229 }
2230 if (ret)
2231 goto out;
2232 do_fpe_common(regs);
2233out:
2234 exception_exit(prev_state);
2235}
2236
2237void do_tof(struct pt_regs *regs)
2238{
2239 enum ctx_state prev_state = exception_enter();
2240 siginfo_t info;
2241
2242 if (notify_die(DIE_TRAP, "tagged arithmetic overflow", regs,
2243 0, 0x26, SIGEMT) == NOTIFY_STOP)
2244 goto out;
2245
2246 if (regs->tstate & TSTATE_PRIV)
2247 die_if_kernel("Penguin overflow trap from kernel mode", regs);
2248 if (test_thread_flag(TIF_32BIT)) {
2249 regs->tpc &= 0xffffffff;
2250 regs->tnpc &= 0xffffffff;
2251 }
2252 info.si_signo = SIGEMT;
2253 info.si_errno = 0;
2254 info.si_code = EMT_TAGOVF;
2255 info.si_addr = (void __user *)regs->tpc;
2256 info.si_trapno = 0;
2257 force_sig_info(SIGEMT, &info, current);
2258out:
2259 exception_exit(prev_state);
2260}
2261
2262void do_div0(struct pt_regs *regs)
2263{
2264 enum ctx_state prev_state = exception_enter();
2265 siginfo_t info;
2266
2267 if (notify_die(DIE_TRAP, "integer division by zero", regs,
2268 0, 0x28, SIGFPE) == NOTIFY_STOP)
2269 goto out;
2270
2271 if (regs->tstate & TSTATE_PRIV)
2272 die_if_kernel("TL0: Kernel divide by zero.", regs);
2273 if (test_thread_flag(TIF_32BIT)) {
2274 regs->tpc &= 0xffffffff;
2275 regs->tnpc &= 0xffffffff;
2276 }
2277 info.si_signo = SIGFPE;
2278 info.si_errno = 0;
2279 info.si_code = FPE_INTDIV;
2280 info.si_addr = (void __user *)regs->tpc;
2281 info.si_trapno = 0;
2282 force_sig_info(SIGFPE, &info, current);
2283out:
2284 exception_exit(prev_state);
2285}
2286
2287static void instruction_dump(unsigned int *pc)
2288{
2289 int i;
2290
2291 if ((((unsigned long) pc) & 3))
2292 return;
2293
2294 printk("Instruction DUMP:");
2295 for (i = -3; i < 6; i++)
2296 printk("%c%08x%c",i?' ':'<',pc[i],i?' ':'>');
2297 printk("\n");
2298}
2299
2300static void user_instruction_dump(unsigned int __user *pc)
2301{
2302 int i;
2303 unsigned int buf[9];
2304
2305 if ((((unsigned long) pc) & 3))
2306 return;
2307
2308 if (copy_from_user(buf, pc - 3, sizeof(buf)))
2309 return;
2310
2311 printk("Instruction DUMP:");
2312 for (i = 0; i < 9; i++)
2313 printk("%c%08x%c",i==3?' ':'<',buf[i],i==3?' ':'>');
2314 printk("\n");
2315}
2316
2317void show_stack(struct task_struct *tsk, unsigned long *_ksp)
2318{
2319 unsigned long fp, ksp;
2320 struct thread_info *tp;
2321 int count = 0;
2322#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2323 int graph = 0;
2324#endif
2325
2326 ksp = (unsigned long) _ksp;
2327 if (!tsk)
2328 tsk = current;
2329 tp = task_thread_info(tsk);
2330 if (ksp == 0UL) {
2331 if (tsk == current)
2332 asm("mov %%fp, %0" : "=r" (ksp));
2333 else
2334 ksp = tp->ksp;
2335 }
2336 if (tp == current_thread_info())
2337 flushw_all();
2338
2339 fp = ksp + STACK_BIAS;
2340
2341 printk("Call Trace:\n");
2342 do {
2343 struct sparc_stackf *sf;
2344 struct pt_regs *regs;
2345 unsigned long pc;
2346
2347 if (!kstack_valid(tp, fp))
2348 break;
2349 sf = (struct sparc_stackf *) fp;
2350 regs = (struct pt_regs *) (sf + 1);
2351
2352 if (kstack_is_trap_frame(tp, regs)) {
2353 if (!(regs->tstate & TSTATE_PRIV))
2354 break;
2355 pc = regs->tpc;
2356 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
2357 } else {
2358 pc = sf->callers_pc;
2359 fp = (unsigned long)sf->fp + STACK_BIAS;
2360 }
2361
2362 printk(" [%016lx] %pS\n", pc, (void *) pc);
2363#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2364 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
2365 int index = tsk->curr_ret_stack;
2366 if (tsk->ret_stack && index >= graph) {
2367 pc = tsk->ret_stack[index - graph].ret;
2368 printk(" [%016lx] %pS\n", pc, (void *) pc);
2369 graph++;
2370 }
2371 }
2372#endif
2373 } while (++count < 16);
2374}
2375
2376static inline struct reg_window *kernel_stack_up(struct reg_window *rw)
2377{
2378 unsigned long fp = rw->ins[6];
2379
2380 if (!fp)
2381 return NULL;
2382
2383 return (struct reg_window *) (fp + STACK_BIAS);
2384}
2385
2386void die_if_kernel(char *str, struct pt_regs *regs)
2387{
2388 static int die_counter;
2389 int count = 0;
2390
2391 /* Amuse the user. */
2392 printk(
2393" \\|/ ____ \\|/\n"
2394" \"@'/ .. \\`@\"\n"
2395" /_| \\__/ |_\\\n"
2396" \\__U_/\n");
2397
2398 printk("%s(%d): %s [#%d]\n", current->comm, task_pid_nr(current), str, ++die_counter);
2399 notify_die(DIE_OOPS, str, regs, 0, 255, SIGSEGV);
2400 __asm__ __volatile__("flushw");
2401 show_regs(regs);
2402 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
2403 if (regs->tstate & TSTATE_PRIV) {
2404 struct thread_info *tp = current_thread_info();
2405 struct reg_window *rw = (struct reg_window *)
2406 (regs->u_regs[UREG_FP] + STACK_BIAS);
2407
2408 /* Stop the back trace when we hit userland or we
2409 * find some badly aligned kernel stack.
2410 */
2411 while (rw &&
2412 count++ < 30 &&
2413 kstack_valid(tp, (unsigned long) rw)) {
2414 printk("Caller[%016lx]: %pS\n", rw->ins[7],
2415 (void *) rw->ins[7]);
2416
2417 rw = kernel_stack_up(rw);
2418 }
2419 instruction_dump ((unsigned int *) regs->tpc);
2420 } else {
2421 if (test_thread_flag(TIF_32BIT)) {
2422 regs->tpc &= 0xffffffff;
2423 regs->tnpc &= 0xffffffff;
2424 }
2425 user_instruction_dump ((unsigned int __user *) regs->tpc);
2426 }
2427 if (regs->tstate & TSTATE_PRIV)
2428 do_exit(SIGKILL);
2429 do_exit(SIGSEGV);
2430}
2431EXPORT_SYMBOL(die_if_kernel);
2432
2433#define VIS_OPCODE_MASK ((0x3 << 30) | (0x3f << 19))
2434#define VIS_OPCODE_VAL ((0x2 << 30) | (0x36 << 19))
2435
2436extern int handle_popc(u32 insn, struct pt_regs *regs);
2437extern int handle_ldf_stq(u32 insn, struct pt_regs *regs);
2438
2439void do_illegal_instruction(struct pt_regs *regs)
2440{
2441 enum ctx_state prev_state = exception_enter();
2442 unsigned long pc = regs->tpc;
2443 unsigned long tstate = regs->tstate;
2444 u32 insn;
2445 siginfo_t info;
2446
2447 if (notify_die(DIE_TRAP, "illegal instruction", regs,
2448 0, 0x10, SIGILL) == NOTIFY_STOP)
2449 goto out;
2450
2451 if (tstate & TSTATE_PRIV)
2452 die_if_kernel("Kernel illegal instruction", regs);
2453 if (test_thread_flag(TIF_32BIT))
2454 pc = (u32)pc;
2455 if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
2456 if ((insn & 0xc1ffc000) == 0x81700000) /* POPC */ {
2457 if (handle_popc(insn, regs))
2458 goto out;
2459 } else if ((insn & 0xc1580000) == 0xc1100000) /* LDQ/STQ */ {
2460 if (handle_ldf_stq(insn, regs))
2461 goto out;
2462 } else if (tlb_type == hypervisor) {
2463 if ((insn & VIS_OPCODE_MASK) == VIS_OPCODE_VAL) {
2464 if (!vis_emul(regs, insn))
2465 goto out;
2466 } else {
2467 struct fpustate *f = FPUSTATE;
2468
2469 /* On UltraSPARC T2 and later, FPU insns which
2470 * are not implemented in HW signal an illegal
2471 * instruction trap and do not set the FP Trap
2472 * Trap in the %fsr to unimplemented_FPop.
2473 */
2474 if (do_mathemu(regs, f, true))
2475 goto out;
2476 }
2477 }
2478 }
2479 info.si_signo = SIGILL;
2480 info.si_errno = 0;
2481 info.si_code = ILL_ILLOPC;
2482 info.si_addr = (void __user *)pc;
2483 info.si_trapno = 0;
2484 force_sig_info(SIGILL, &info, current);
2485out:
2486 exception_exit(prev_state);
2487}
2488
2489extern void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn);
2490
2491void mem_address_unaligned(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
2492{
2493 enum ctx_state prev_state = exception_enter();
2494 siginfo_t info;
2495
2496 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2497 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2498 goto out;
2499
2500 if (regs->tstate & TSTATE_PRIV) {
2501 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2502 goto out;
2503 }
2504 info.si_signo = SIGBUS;
2505 info.si_errno = 0;
2506 info.si_code = BUS_ADRALN;
2507 info.si_addr = (void __user *)sfar;
2508 info.si_trapno = 0;
2509 force_sig_info(SIGBUS, &info, current);
2510out:
2511 exception_exit(prev_state);
2512}
2513
2514void sun4v_do_mna(struct pt_regs *regs, unsigned long addr, unsigned long type_ctx)
2515{
2516 siginfo_t info;
2517
2518 if (notify_die(DIE_TRAP, "memory address unaligned", regs,
2519 0, 0x34, SIGSEGV) == NOTIFY_STOP)
2520 return;
2521
2522 if (regs->tstate & TSTATE_PRIV) {
2523 kernel_unaligned_trap(regs, *((unsigned int *)regs->tpc));
2524 return;
2525 }
2526 info.si_signo = SIGBUS;
2527 info.si_errno = 0;
2528 info.si_code = BUS_ADRALN;
2529 info.si_addr = (void __user *) addr;
2530 info.si_trapno = 0;
2531 force_sig_info(SIGBUS, &info, current);
2532}
2533
2534void do_privop(struct pt_regs *regs)
2535{
2536 enum ctx_state prev_state = exception_enter();
2537 siginfo_t info;
2538
2539 if (notify_die(DIE_TRAP, "privileged operation", regs,
2540 0, 0x11, SIGILL) == NOTIFY_STOP)
2541 goto out;
2542
2543 if (test_thread_flag(TIF_32BIT)) {
2544 regs->tpc &= 0xffffffff;
2545 regs->tnpc &= 0xffffffff;
2546 }
2547 info.si_signo = SIGILL;
2548 info.si_errno = 0;
2549 info.si_code = ILL_PRVOPC;
2550 info.si_addr = (void __user *)regs->tpc;
2551 info.si_trapno = 0;
2552 force_sig_info(SIGILL, &info, current);
2553out:
2554 exception_exit(prev_state);
2555}
2556
2557void do_privact(struct pt_regs *regs)
2558{
2559 do_privop(regs);
2560}
2561
2562/* Trap level 1 stuff or other traps we should never see... */
2563void do_cee(struct pt_regs *regs)
2564{
2565 exception_enter();
2566 die_if_kernel("TL0: Cache Error Exception", regs);
2567}
2568
2569void do_cee_tl1(struct pt_regs *regs)
2570{
2571 exception_enter();
2572 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2573 die_if_kernel("TL1: Cache Error Exception", regs);
2574}
2575
2576void do_dae_tl1(struct pt_regs *regs)
2577{
2578 exception_enter();
2579 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2580 die_if_kernel("TL1: Data Access Exception", regs);
2581}
2582
2583void do_iae_tl1(struct pt_regs *regs)
2584{
2585 exception_enter();
2586 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2587 die_if_kernel("TL1: Instruction Access Exception", regs);
2588}
2589
2590void do_div0_tl1(struct pt_regs *regs)
2591{
2592 exception_enter();
2593 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2594 die_if_kernel("TL1: DIV0 Exception", regs);
2595}
2596
2597void do_fpdis_tl1(struct pt_regs *regs)
2598{
2599 exception_enter();
2600 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2601 die_if_kernel("TL1: FPU Disabled", regs);
2602}
2603
2604void do_fpieee_tl1(struct pt_regs *regs)
2605{
2606 exception_enter();
2607 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2608 die_if_kernel("TL1: FPU IEEE Exception", regs);
2609}
2610
2611void do_fpother_tl1(struct pt_regs *regs)
2612{
2613 exception_enter();
2614 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2615 die_if_kernel("TL1: FPU Other Exception", regs);
2616}
2617
2618void do_ill_tl1(struct pt_regs *regs)
2619{
2620 exception_enter();
2621 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2622 die_if_kernel("TL1: Illegal Instruction Exception", regs);
2623}
2624
2625void do_irq_tl1(struct pt_regs *regs)
2626{
2627 exception_enter();
2628 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2629 die_if_kernel("TL1: IRQ Exception", regs);
2630}
2631
2632void do_lddfmna_tl1(struct pt_regs *regs)
2633{
2634 exception_enter();
2635 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2636 die_if_kernel("TL1: LDDF Exception", regs);
2637}
2638
2639void do_stdfmna_tl1(struct pt_regs *regs)
2640{
2641 exception_enter();
2642 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2643 die_if_kernel("TL1: STDF Exception", regs);
2644}
2645
2646void do_paw(struct pt_regs *regs)
2647{
2648 exception_enter();
2649 die_if_kernel("TL0: Phys Watchpoint Exception", regs);
2650}
2651
2652void do_paw_tl1(struct pt_regs *regs)
2653{
2654 exception_enter();
2655 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2656 die_if_kernel("TL1: Phys Watchpoint Exception", regs);
2657}
2658
2659void do_vaw(struct pt_regs *regs)
2660{
2661 exception_enter();
2662 die_if_kernel("TL0: Virt Watchpoint Exception", regs);
2663}
2664
2665void do_vaw_tl1(struct pt_regs *regs)
2666{
2667 exception_enter();
2668 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2669 die_if_kernel("TL1: Virt Watchpoint Exception", regs);
2670}
2671
2672void do_tof_tl1(struct pt_regs *regs)
2673{
2674 exception_enter();
2675 dump_tl1_traplog((struct tl1_traplog *)(regs + 1));
2676 die_if_kernel("TL1: Tag Overflow Exception", regs);
2677}
2678
2679void do_getpsr(struct pt_regs *regs)
2680{
2681 regs->u_regs[UREG_I0] = tstate_to_psr(regs->tstate);
2682 regs->tpc = regs->tnpc;
2683 regs->tnpc += 4;
2684 if (test_thread_flag(TIF_32BIT)) {
2685 regs->tpc &= 0xffffffff;
2686 regs->tnpc &= 0xffffffff;
2687 }
2688}
2689
2690struct trap_per_cpu trap_block[NR_CPUS];
2691EXPORT_SYMBOL(trap_block);
2692
2693/* This can get invoked before sched_init() so play it super safe
2694 * and use hard_smp_processor_id().
2695 */
2696void notrace init_cur_cpu_trap(struct thread_info *t)
2697{
2698 int cpu = hard_smp_processor_id();
2699 struct trap_per_cpu *p = &trap_block[cpu];
2700
2701 p->thread = t;
2702 p->pgd_paddr = 0;
2703}
2704
2705extern void thread_info_offsets_are_bolixed_dave(void);
2706extern void trap_per_cpu_offsets_are_bolixed_dave(void);
2707extern void tsb_config_offsets_are_bolixed_dave(void);
2708
2709/* Only invoked on boot processor. */
2710void __init trap_init(void)
2711{
2712 /* Compile time sanity check. */
2713 BUILD_BUG_ON(TI_TASK != offsetof(struct thread_info, task) ||
2714 TI_FLAGS != offsetof(struct thread_info, flags) ||
2715 TI_CPU != offsetof(struct thread_info, cpu) ||
2716 TI_FPSAVED != offsetof(struct thread_info, fpsaved) ||
2717 TI_KSP != offsetof(struct thread_info, ksp) ||
2718 TI_FAULT_ADDR != offsetof(struct thread_info,
2719 fault_address) ||
2720 TI_KREGS != offsetof(struct thread_info, kregs) ||
2721 TI_UTRAPS != offsetof(struct thread_info, utraps) ||
2722 TI_EXEC_DOMAIN != offsetof(struct thread_info,
2723 exec_domain) ||
2724 TI_REG_WINDOW != offsetof(struct thread_info,
2725 reg_window) ||
2726 TI_RWIN_SPTRS != offsetof(struct thread_info,
2727 rwbuf_stkptrs) ||
2728 TI_GSR != offsetof(struct thread_info, gsr) ||
2729 TI_XFSR != offsetof(struct thread_info, xfsr) ||
2730 TI_PRE_COUNT != offsetof(struct thread_info,
2731 preempt_count) ||
2732 TI_NEW_CHILD != offsetof(struct thread_info, new_child) ||
2733 TI_CURRENT_DS != offsetof(struct thread_info,
2734 current_ds) ||
2735 TI_RESTART_BLOCK != offsetof(struct thread_info,
2736 restart_block) ||
2737 TI_KUNA_REGS != offsetof(struct thread_info,
2738 kern_una_regs) ||
2739 TI_KUNA_INSN != offsetof(struct thread_info,
2740 kern_una_insn) ||
2741 TI_FPREGS != offsetof(struct thread_info, fpregs) ||
2742 (TI_FPREGS & (64 - 1)));
2743
2744 BUILD_BUG_ON(TRAP_PER_CPU_THREAD != offsetof(struct trap_per_cpu,
2745 thread) ||
2746 (TRAP_PER_CPU_PGD_PADDR !=
2747 offsetof(struct trap_per_cpu, pgd_paddr)) ||
2748 (TRAP_PER_CPU_CPU_MONDO_PA !=
2749 offsetof(struct trap_per_cpu, cpu_mondo_pa)) ||
2750 (TRAP_PER_CPU_DEV_MONDO_PA !=
2751 offsetof(struct trap_per_cpu, dev_mondo_pa)) ||
2752 (TRAP_PER_CPU_RESUM_MONDO_PA !=
2753 offsetof(struct trap_per_cpu, resum_mondo_pa)) ||
2754 (TRAP_PER_CPU_RESUM_KBUF_PA !=
2755 offsetof(struct trap_per_cpu, resum_kernel_buf_pa)) ||
2756 (TRAP_PER_CPU_NONRESUM_MONDO_PA !=
2757 offsetof(struct trap_per_cpu, nonresum_mondo_pa)) ||
2758 (TRAP_PER_CPU_NONRESUM_KBUF_PA !=
2759 offsetof(struct trap_per_cpu, nonresum_kernel_buf_pa)) ||
2760 (TRAP_PER_CPU_FAULT_INFO !=
2761 offsetof(struct trap_per_cpu, fault_info)) ||
2762 (TRAP_PER_CPU_CPU_MONDO_BLOCK_PA !=
2763 offsetof(struct trap_per_cpu, cpu_mondo_block_pa)) ||
2764 (TRAP_PER_CPU_CPU_LIST_PA !=
2765 offsetof(struct trap_per_cpu, cpu_list_pa)) ||
2766 (TRAP_PER_CPU_TSB_HUGE !=
2767 offsetof(struct trap_per_cpu, tsb_huge)) ||
2768 (TRAP_PER_CPU_TSB_HUGE_TEMP !=
2769 offsetof(struct trap_per_cpu, tsb_huge_temp)) ||
2770 (TRAP_PER_CPU_IRQ_WORKLIST_PA !=
2771 offsetof(struct trap_per_cpu, irq_worklist_pa)) ||
2772 (TRAP_PER_CPU_CPU_MONDO_QMASK !=
2773 offsetof(struct trap_per_cpu, cpu_mondo_qmask)) ||
2774 (TRAP_PER_CPU_DEV_MONDO_QMASK !=
2775 offsetof(struct trap_per_cpu, dev_mondo_qmask)) ||
2776 (TRAP_PER_CPU_RESUM_QMASK !=
2777 offsetof(struct trap_per_cpu, resum_qmask)) ||
2778 (TRAP_PER_CPU_NONRESUM_QMASK !=
2779 offsetof(struct trap_per_cpu, nonresum_qmask)) ||
2780 (TRAP_PER_CPU_PER_CPU_BASE !=
2781 offsetof(struct trap_per_cpu, __per_cpu_base)));
2782
2783 BUILD_BUG_ON((TSB_CONFIG_TSB !=
2784 offsetof(struct tsb_config, tsb)) ||
2785 (TSB_CONFIG_RSS_LIMIT !=
2786 offsetof(struct tsb_config, tsb_rss_limit)) ||
2787 (TSB_CONFIG_NENTRIES !=
2788 offsetof(struct tsb_config, tsb_nentries)) ||
2789 (TSB_CONFIG_REG_VAL !=
2790 offsetof(struct tsb_config, tsb_reg_val)) ||
2791 (TSB_CONFIG_MAP_VADDR !=
2792 offsetof(struct tsb_config, tsb_map_vaddr)) ||
2793 (TSB_CONFIG_MAP_PTE !=
2794 offsetof(struct tsb_config, tsb_map_pte)));
2795
2796 /* Attach to the address space of init_task. On SMP we
2797 * do this in smp.c:smp_callin for other cpus.
2798 */
2799 atomic_inc(&init_mm.mm_count);
2800 current->active_mm = &init_mm;
2801}