Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11#include <linux/types.h>
12#include <linux/dma-mapping.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/scatterlist.h>
16#include <linux/string.h>
17#include <linux/gfp.h>
18#include <linux/highmem.h>
19#include <linux/dma-contiguous.h>
20
21#include <asm/cache.h>
22#include <asm/cpu-type.h>
23#include <asm/io.h>
24
25#include <dma-coherence.h>
26
27#ifdef CONFIG_DMA_MAYBE_COHERENT
28int coherentio = 0; /* User defined DMA coherency from command line. */
29EXPORT_SYMBOL_GPL(coherentio);
30int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
31
32static int __init setcoherentio(char *str)
33{
34 coherentio = 1;
35 pr_info("Hardware DMA cache coherency (command line)\n");
36 return 0;
37}
38early_param("coherentio", setcoherentio);
39
40static int __init setnocoherentio(char *str)
41{
42 coherentio = 0;
43 pr_info("Software DMA cache coherency (command line)\n");
44 return 0;
45}
46early_param("nocoherentio", setnocoherentio);
47#endif
48
49static inline struct page *dma_addr_to_page(struct device *dev,
50 dma_addr_t dma_addr)
51{
52 return pfn_to_page(
53 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
54}
55
56/*
57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58 * speculatively fill random cachelines with stale data at any time,
59 * requiring an extra flush post-DMA.
60 *
61 * Warning on the terminology - Linux calls an uncached area coherent;
62 * MIPS terminology calls memory areas with hardware maintained coherency
63 * coherent.
64 *
65 * Note that the R14000 and R16000 should also be checked for in this
66 * condition. However this function is only called on non-I/O-coherent
67 * systems and only the R10000 and R12000 are used in such systems, the
68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
69 */
70static inline int cpu_needs_post_dma_flush(struct device *dev)
71{
72 return !plat_device_is_coherent(dev) &&
73 (boot_cpu_type() == CPU_R10000 ||
74 boot_cpu_type() == CPU_R12000 ||
75 boot_cpu_type() == CPU_BMIPS5000);
76}
77
78static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
79{
80 gfp_t dma_flag;
81
82 /* ignore region specifiers */
83 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
84
85#ifdef CONFIG_ISA
86 if (dev == NULL)
87 dma_flag = __GFP_DMA;
88 else
89#endif
90#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
91 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
92 dma_flag = __GFP_DMA;
93 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
94 dma_flag = __GFP_DMA32;
95 else
96#endif
97#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
98 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
99 dma_flag = __GFP_DMA32;
100 else
101#endif
102#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103 if (dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
104 dma_flag = __GFP_DMA;
105 else
106#endif
107 dma_flag = 0;
108
109 /* Don't invoke OOM killer */
110 gfp |= __GFP_NORETRY;
111
112 return gfp | dma_flag;
113}
114
115static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
116 dma_addr_t * dma_handle, gfp_t gfp)
117{
118 void *ret;
119
120 gfp = massage_gfp_flags(dev, gfp);
121
122 ret = (void *) __get_free_pages(gfp, get_order(size));
123
124 if (ret != NULL) {
125 memset(ret, 0, size);
126 *dma_handle = plat_map_dma_mem(dev, ret, size);
127 }
128
129 return ret;
130}
131
132static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
133 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
134{
135 void *ret;
136 struct page *page = NULL;
137 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
138
139 /*
140 * XXX: seems like the coherent and non-coherent implementations could
141 * be consolidated.
142 */
143 if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs))
144 return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
145
146 gfp = massage_gfp_flags(dev, gfp);
147
148 if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
149 page = dma_alloc_from_contiguous(dev,
150 count, get_order(size));
151 if (!page)
152 page = alloc_pages(gfp, get_order(size));
153
154 if (!page)
155 return NULL;
156
157 ret = page_address(page);
158 memset(ret, 0, size);
159 *dma_handle = plat_map_dma_mem(dev, ret, size);
160 if (!plat_device_is_coherent(dev)) {
161 dma_cache_wback_inv((unsigned long) ret, size);
162 if (!hw_coherentio)
163 ret = UNCAC_ADDR(ret);
164 }
165
166 return ret;
167}
168
169
170static void mips_dma_free_noncoherent(struct device *dev, size_t size,
171 void *vaddr, dma_addr_t dma_handle)
172{
173 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
174 free_pages((unsigned long) vaddr, get_order(size));
175}
176
177static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
178 dma_addr_t dma_handle, struct dma_attrs *attrs)
179{
180 unsigned long addr = (unsigned long) vaddr;
181 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
182 struct page *page = NULL;
183
184 if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs)) {
185 mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
186 return;
187 }
188
189 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
190
191 if (!plat_device_is_coherent(dev) && !hw_coherentio)
192 addr = CAC_ADDR(addr);
193
194 page = virt_to_page((void *) addr);
195
196 if (!dma_release_from_contiguous(dev, page, count))
197 __free_pages(page, get_order(size));
198}
199
200static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201 void *cpu_addr, dma_addr_t dma_addr, size_t size,
202 struct dma_attrs *attrs)
203{
204 unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
205 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
206 unsigned long addr = (unsigned long)cpu_addr;
207 unsigned long off = vma->vm_pgoff;
208 unsigned long pfn;
209 int ret = -ENXIO;
210
211 if (!plat_device_is_coherent(dev) && !hw_coherentio)
212 addr = CAC_ADDR(addr);
213
214 pfn = page_to_pfn(virt_to_page((void *)addr));
215
216 if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
217 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
218 else
219 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
220
221 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
222 return ret;
223
224 if (off < count && user_count <= (count - off)) {
225 ret = remap_pfn_range(vma, vma->vm_start,
226 pfn + off,
227 user_count << PAGE_SHIFT,
228 vma->vm_page_prot);
229 }
230
231 return ret;
232}
233
234static inline void __dma_sync_virtual(void *addr, size_t size,
235 enum dma_data_direction direction)
236{
237 switch (direction) {
238 case DMA_TO_DEVICE:
239 dma_cache_wback((unsigned long)addr, size);
240 break;
241
242 case DMA_FROM_DEVICE:
243 dma_cache_inv((unsigned long)addr, size);
244 break;
245
246 case DMA_BIDIRECTIONAL:
247 dma_cache_wback_inv((unsigned long)addr, size);
248 break;
249
250 default:
251 BUG();
252 }
253}
254
255/*
256 * A single sg entry may refer to multiple physically contiguous
257 * pages. But we still need to process highmem pages individually.
258 * If highmem is not configured then the bulk of this loop gets
259 * optimized out.
260 */
261static inline void __dma_sync(struct page *page,
262 unsigned long offset, size_t size, enum dma_data_direction direction)
263{
264 size_t left = size;
265
266 do {
267 size_t len = left;
268
269 if (PageHighMem(page)) {
270 void *addr;
271
272 if (offset + len > PAGE_SIZE) {
273 if (offset >= PAGE_SIZE) {
274 page += offset >> PAGE_SHIFT;
275 offset &= ~PAGE_MASK;
276 }
277 len = PAGE_SIZE - offset;
278 }
279
280 addr = kmap_atomic(page);
281 __dma_sync_virtual(addr + offset, len, direction);
282 kunmap_atomic(addr);
283 } else
284 __dma_sync_virtual(page_address(page) + offset,
285 size, direction);
286 offset = 0;
287 page++;
288 left -= len;
289 } while (left);
290}
291
292static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
293 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
294{
295 if (cpu_needs_post_dma_flush(dev))
296 __dma_sync(dma_addr_to_page(dev, dma_addr),
297 dma_addr & ~PAGE_MASK, size, direction);
298 plat_post_dma_flush(dev);
299 plat_unmap_dma_mem(dev, dma_addr, size, direction);
300}
301
302static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
303 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
304{
305 int i;
306 struct scatterlist *sg;
307
308 for_each_sg(sglist, sg, nents, i) {
309 if (!plat_device_is_coherent(dev))
310 __dma_sync(sg_page(sg), sg->offset, sg->length,
311 direction);
312#ifdef CONFIG_NEED_SG_DMA_LENGTH
313 sg->dma_length = sg->length;
314#endif
315 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
316 sg->offset;
317 }
318
319 return nents;
320}
321
322static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
323 unsigned long offset, size_t size, enum dma_data_direction direction,
324 struct dma_attrs *attrs)
325{
326 if (!plat_device_is_coherent(dev))
327 __dma_sync(page, offset, size, direction);
328
329 return plat_map_dma_mem_page(dev, page) + offset;
330}
331
332static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
333 int nhwentries, enum dma_data_direction direction,
334 struct dma_attrs *attrs)
335{
336 int i;
337 struct scatterlist *sg;
338
339 for_each_sg(sglist, sg, nhwentries, i) {
340 if (!plat_device_is_coherent(dev) &&
341 direction != DMA_TO_DEVICE)
342 __dma_sync(sg_page(sg), sg->offset, sg->length,
343 direction);
344 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
345 }
346}
347
348static void mips_dma_sync_single_for_cpu(struct device *dev,
349 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
350{
351 if (cpu_needs_post_dma_flush(dev))
352 __dma_sync(dma_addr_to_page(dev, dma_handle),
353 dma_handle & ~PAGE_MASK, size, direction);
354 plat_post_dma_flush(dev);
355}
356
357static void mips_dma_sync_single_for_device(struct device *dev,
358 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
359{
360 if (!plat_device_is_coherent(dev))
361 __dma_sync(dma_addr_to_page(dev, dma_handle),
362 dma_handle & ~PAGE_MASK, size, direction);
363}
364
365static void mips_dma_sync_sg_for_cpu(struct device *dev,
366 struct scatterlist *sglist, int nelems,
367 enum dma_data_direction direction)
368{
369 int i;
370 struct scatterlist *sg;
371
372 if (cpu_needs_post_dma_flush(dev)) {
373 for_each_sg(sglist, sg, nelems, i) {
374 __dma_sync(sg_page(sg), sg->offset, sg->length,
375 direction);
376 }
377 }
378 plat_post_dma_flush(dev);
379}
380
381static void mips_dma_sync_sg_for_device(struct device *dev,
382 struct scatterlist *sglist, int nelems,
383 enum dma_data_direction direction)
384{
385 int i;
386 struct scatterlist *sg;
387
388 if (!plat_device_is_coherent(dev)) {
389 for_each_sg(sglist, sg, nelems, i) {
390 __dma_sync(sg_page(sg), sg->offset, sg->length,
391 direction);
392 }
393 }
394}
395
396int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
397{
398 return 0;
399}
400
401int mips_dma_supported(struct device *dev, u64 mask)
402{
403 return plat_dma_supported(dev, mask);
404}
405
406void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
407 enum dma_data_direction direction)
408{
409 BUG_ON(direction == DMA_NONE);
410
411 if (!plat_device_is_coherent(dev))
412 __dma_sync_virtual(vaddr, size, direction);
413}
414
415EXPORT_SYMBOL(dma_cache_sync);
416
417static struct dma_map_ops mips_default_dma_map_ops = {
418 .alloc = mips_dma_alloc_coherent,
419 .free = mips_dma_free_coherent,
420 .mmap = mips_dma_mmap,
421 .map_page = mips_dma_map_page,
422 .unmap_page = mips_dma_unmap_page,
423 .map_sg = mips_dma_map_sg,
424 .unmap_sg = mips_dma_unmap_sg,
425 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
426 .sync_single_for_device = mips_dma_sync_single_for_device,
427 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
428 .sync_sg_for_device = mips_dma_sync_sg_for_device,
429 .mapping_error = mips_dma_mapping_error,
430 .dma_supported = mips_dma_supported
431};
432
433struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
434EXPORT_SYMBOL(mips_dma_map_ops);
435
436#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
437
438static int __init mips_dma_init(void)
439{
440 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
441
442 return 0;
443}
444fs_initcall(mips_dma_init);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11#include <linux/types.h>
12#include <linux/dma-mapping.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/scatterlist.h>
16#include <linux/string.h>
17#include <linux/gfp.h>
18#include <linux/highmem.h>
19
20#include <asm/cache.h>
21#include <asm/cpu-type.h>
22#include <asm/io.h>
23
24#include <dma-coherence.h>
25
26#ifdef CONFIG_DMA_MAYBE_COHERENT
27int coherentio = 0; /* User defined DMA coherency from command line. */
28EXPORT_SYMBOL_GPL(coherentio);
29int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
30
31static int __init setcoherentio(char *str)
32{
33 coherentio = 1;
34 pr_info("Hardware DMA cache coherency (command line)\n");
35 return 0;
36}
37early_param("coherentio", setcoherentio);
38
39static int __init setnocoherentio(char *str)
40{
41 coherentio = 0;
42 pr_info("Software DMA cache coherency (command line)\n");
43 return 0;
44}
45early_param("nocoherentio", setnocoherentio);
46#endif
47
48static inline struct page *dma_addr_to_page(struct device *dev,
49 dma_addr_t dma_addr)
50{
51 return pfn_to_page(
52 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
53}
54
55/*
56 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
57 * speculatively fill random cachelines with stale data at any time,
58 * requiring an extra flush post-DMA.
59 *
60 * Warning on the terminology - Linux calls an uncached area coherent;
61 * MIPS terminology calls memory areas with hardware maintained coherency
62 * coherent.
63 */
64static inline int cpu_needs_post_dma_flush(struct device *dev)
65{
66 return !plat_device_is_coherent(dev) &&
67 (boot_cpu_type() == CPU_R10000 ||
68 boot_cpu_type() == CPU_R12000 ||
69 boot_cpu_type() == CPU_BMIPS5000);
70}
71
72static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
73{
74 gfp_t dma_flag;
75
76 /* ignore region specifiers */
77 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
78
79#ifdef CONFIG_ISA
80 if (dev == NULL)
81 dma_flag = __GFP_DMA;
82 else
83#endif
84#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
85 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
86 dma_flag = __GFP_DMA;
87 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
88 dma_flag = __GFP_DMA32;
89 else
90#endif
91#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
92 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
93 dma_flag = __GFP_DMA32;
94 else
95#endif
96#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
97 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
98 dma_flag = __GFP_DMA;
99 else
100#endif
101 dma_flag = 0;
102
103 /* Don't invoke OOM killer */
104 gfp |= __GFP_NORETRY;
105
106 return gfp | dma_flag;
107}
108
109void *dma_alloc_noncoherent(struct device *dev, size_t size,
110 dma_addr_t * dma_handle, gfp_t gfp)
111{
112 void *ret;
113
114 gfp = massage_gfp_flags(dev, gfp);
115
116 ret = (void *) __get_free_pages(gfp, get_order(size));
117
118 if (ret != NULL) {
119 memset(ret, 0, size);
120 *dma_handle = plat_map_dma_mem(dev, ret, size);
121 }
122
123 return ret;
124}
125EXPORT_SYMBOL(dma_alloc_noncoherent);
126
127static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
128 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
129{
130 void *ret;
131
132 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
133 return ret;
134
135 gfp = massage_gfp_flags(dev, gfp);
136
137 ret = (void *) __get_free_pages(gfp, get_order(size));
138
139 if (ret) {
140 memset(ret, 0, size);
141 *dma_handle = plat_map_dma_mem(dev, ret, size);
142
143 if (!plat_device_is_coherent(dev)) {
144 dma_cache_wback_inv((unsigned long) ret, size);
145 if (!hw_coherentio)
146 ret = UNCAC_ADDR(ret);
147 }
148 }
149
150 return ret;
151}
152
153
154void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
155 dma_addr_t dma_handle)
156{
157 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
158 free_pages((unsigned long) vaddr, get_order(size));
159}
160EXPORT_SYMBOL(dma_free_noncoherent);
161
162static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
163 dma_addr_t dma_handle, struct dma_attrs *attrs)
164{
165 unsigned long addr = (unsigned long) vaddr;
166 int order = get_order(size);
167
168 if (dma_release_from_coherent(dev, order, vaddr))
169 return;
170
171 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
172
173 if (!plat_device_is_coherent(dev) && !hw_coherentio)
174 addr = CAC_ADDR(addr);
175
176 free_pages(addr, get_order(size));
177}
178
179static inline void __dma_sync_virtual(void *addr, size_t size,
180 enum dma_data_direction direction)
181{
182 switch (direction) {
183 case DMA_TO_DEVICE:
184 dma_cache_wback((unsigned long)addr, size);
185 break;
186
187 case DMA_FROM_DEVICE:
188 dma_cache_inv((unsigned long)addr, size);
189 break;
190
191 case DMA_BIDIRECTIONAL:
192 dma_cache_wback_inv((unsigned long)addr, size);
193 break;
194
195 default:
196 BUG();
197 }
198}
199
200/*
201 * A single sg entry may refer to multiple physically contiguous
202 * pages. But we still need to process highmem pages individually.
203 * If highmem is not configured then the bulk of this loop gets
204 * optimized out.
205 */
206static inline void __dma_sync(struct page *page,
207 unsigned long offset, size_t size, enum dma_data_direction direction)
208{
209 size_t left = size;
210
211 do {
212 size_t len = left;
213
214 if (PageHighMem(page)) {
215 void *addr;
216
217 if (offset + len > PAGE_SIZE) {
218 if (offset >= PAGE_SIZE) {
219 page += offset >> PAGE_SHIFT;
220 offset &= ~PAGE_MASK;
221 }
222 len = PAGE_SIZE - offset;
223 }
224
225 addr = kmap_atomic(page);
226 __dma_sync_virtual(addr + offset, len, direction);
227 kunmap_atomic(addr);
228 } else
229 __dma_sync_virtual(page_address(page) + offset,
230 size, direction);
231 offset = 0;
232 page++;
233 left -= len;
234 } while (left);
235}
236
237static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
238 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
239{
240 if (cpu_needs_post_dma_flush(dev))
241 __dma_sync(dma_addr_to_page(dev, dma_addr),
242 dma_addr & ~PAGE_MASK, size, direction);
243
244 plat_unmap_dma_mem(dev, dma_addr, size, direction);
245}
246
247static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
248 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
249{
250 int i;
251
252 for (i = 0; i < nents; i++, sg++) {
253 if (!plat_device_is_coherent(dev))
254 __dma_sync(sg_page(sg), sg->offset, sg->length,
255 direction);
256#ifdef CONFIG_NEED_SG_DMA_LENGTH
257 sg->dma_length = sg->length;
258#endif
259 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
260 sg->offset;
261 }
262
263 return nents;
264}
265
266static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
267 unsigned long offset, size_t size, enum dma_data_direction direction,
268 struct dma_attrs *attrs)
269{
270 if (!plat_device_is_coherent(dev))
271 __dma_sync(page, offset, size, direction);
272
273 return plat_map_dma_mem_page(dev, page) + offset;
274}
275
276static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
277 int nhwentries, enum dma_data_direction direction,
278 struct dma_attrs *attrs)
279{
280 int i;
281
282 for (i = 0; i < nhwentries; i++, sg++) {
283 if (!plat_device_is_coherent(dev) &&
284 direction != DMA_TO_DEVICE)
285 __dma_sync(sg_page(sg), sg->offset, sg->length,
286 direction);
287 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
288 }
289}
290
291static void mips_dma_sync_single_for_cpu(struct device *dev,
292 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
293{
294 if (cpu_needs_post_dma_flush(dev))
295 __dma_sync(dma_addr_to_page(dev, dma_handle),
296 dma_handle & ~PAGE_MASK, size, direction);
297}
298
299static void mips_dma_sync_single_for_device(struct device *dev,
300 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
301{
302 if (!plat_device_is_coherent(dev))
303 __dma_sync(dma_addr_to_page(dev, dma_handle),
304 dma_handle & ~PAGE_MASK, size, direction);
305}
306
307static void mips_dma_sync_sg_for_cpu(struct device *dev,
308 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
309{
310 int i;
311
312 if (cpu_needs_post_dma_flush(dev))
313 for (i = 0; i < nelems; i++, sg++)
314 __dma_sync(sg_page(sg), sg->offset, sg->length,
315 direction);
316}
317
318static void mips_dma_sync_sg_for_device(struct device *dev,
319 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
320{
321 int i;
322
323 if (!plat_device_is_coherent(dev))
324 for (i = 0; i < nelems; i++, sg++)
325 __dma_sync(sg_page(sg), sg->offset, sg->length,
326 direction);
327}
328
329int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
330{
331 return 0;
332}
333
334int mips_dma_supported(struct device *dev, u64 mask)
335{
336 return plat_dma_supported(dev, mask);
337}
338
339void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
340 enum dma_data_direction direction)
341{
342 BUG_ON(direction == DMA_NONE);
343
344 if (!plat_device_is_coherent(dev))
345 __dma_sync_virtual(vaddr, size, direction);
346}
347
348EXPORT_SYMBOL(dma_cache_sync);
349
350static struct dma_map_ops mips_default_dma_map_ops = {
351 .alloc = mips_dma_alloc_coherent,
352 .free = mips_dma_free_coherent,
353 .map_page = mips_dma_map_page,
354 .unmap_page = mips_dma_unmap_page,
355 .map_sg = mips_dma_map_sg,
356 .unmap_sg = mips_dma_unmap_sg,
357 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
358 .sync_single_for_device = mips_dma_sync_single_for_device,
359 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
360 .sync_sg_for_device = mips_dma_sync_sg_for_device,
361 .mapping_error = mips_dma_mapping_error,
362 .dma_supported = mips_dma_supported
363};
364
365struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
366EXPORT_SYMBOL(mips_dma_map_ops);
367
368#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
369
370static int __init mips_dma_init(void)
371{
372 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
373
374 return 0;
375}
376fs_initcall(mips_dma_init);