Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 19#include <linux/dma-contiguous.h>
 20
 21#include <asm/cache.h>
 22#include <asm/cpu-type.h>
 23#include <asm/io.h>
 24
 25#include <dma-coherence.h>
 26
 27#ifdef CONFIG_DMA_MAYBE_COHERENT
 28int coherentio = 0;	/* User defined DMA coherency from command line. */
 29EXPORT_SYMBOL_GPL(coherentio);
 30int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
 31
 32static int __init setcoherentio(char *str)
 33{
 34	coherentio = 1;
 35	pr_info("Hardware DMA cache coherency (command line)\n");
 36	return 0;
 37}
 38early_param("coherentio", setcoherentio);
 39
 40static int __init setnocoherentio(char *str)
 41{
 42	coherentio = 0;
 43	pr_info("Software DMA cache coherency (command line)\n");
 44	return 0;
 45}
 46early_param("nocoherentio", setnocoherentio);
 47#endif
 48
 49static inline struct page *dma_addr_to_page(struct device *dev,
 50	dma_addr_t dma_addr)
 51{
 52	return pfn_to_page(
 53		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 54}
 55
 56/*
 57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
 58 * speculatively fill random cachelines with stale data at any time,
 59 * requiring an extra flush post-DMA.
 60 *
 61 * Warning on the terminology - Linux calls an uncached area coherent;
 62 * MIPS terminology calls memory areas with hardware maintained coherency
 63 * coherent.
 64 *
 65 * Note that the R14000 and R16000 should also be checked for in this
 66 * condition.  However this function is only called on non-I/O-coherent
 67 * systems and only the R10000 and R12000 are used in such systems, the
 68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
 69 */
 70static inline int cpu_needs_post_dma_flush(struct device *dev)
 71{
 72	return !plat_device_is_coherent(dev) &&
 73	       (boot_cpu_type() == CPU_R10000 ||
 74		boot_cpu_type() == CPU_R12000 ||
 75		boot_cpu_type() == CPU_BMIPS5000);
 76}
 77
 78static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 79{
 80	gfp_t dma_flag;
 81
 82	/* ignore region specifiers */
 83	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 84
 85#ifdef CONFIG_ISA
 86	if (dev == NULL)
 87		dma_flag = __GFP_DMA;
 88	else
 89#endif
 90#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 91	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 92			dma_flag = __GFP_DMA;
 93	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 94			dma_flag = __GFP_DMA32;
 95	else
 96#endif
 97#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 98	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 99		dma_flag = __GFP_DMA32;
100	else
101#endif
102#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103	     if (dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
104		dma_flag = __GFP_DMA;
105	else
106#endif
107		dma_flag = 0;
108
109	/* Don't invoke OOM killer */
110	gfp |= __GFP_NORETRY;
111
112	return gfp | dma_flag;
113}
114
115static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
116	dma_addr_t * dma_handle, gfp_t gfp)
117{
118	void *ret;
119
120	gfp = massage_gfp_flags(dev, gfp);
121
122	ret = (void *) __get_free_pages(gfp, get_order(size));
123
124	if (ret != NULL) {
125		memset(ret, 0, size);
126		*dma_handle = plat_map_dma_mem(dev, ret, size);
127	}
128
129	return ret;
130}
 
131
132static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
133	dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
134{
135	void *ret;
136	struct page *page = NULL;
137	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
138
139	/*
140	 * XXX: seems like the coherent and non-coherent implementations could
141	 * be consolidated.
142	 */
143	if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs))
144		return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
145
146	gfp = massage_gfp_flags(dev, gfp);
147
148	if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
149		page = dma_alloc_from_contiguous(dev,
150					count, get_order(size));
151	if (!page)
152		page = alloc_pages(gfp, get_order(size));
153
154	if (!page)
155		return NULL;
156
157	ret = page_address(page);
158	memset(ret, 0, size);
159	*dma_handle = plat_map_dma_mem(dev, ret, size);
160	if (!plat_device_is_coherent(dev)) {
161		dma_cache_wback_inv((unsigned long) ret, size);
162		if (!hw_coherentio)
163			ret = UNCAC_ADDR(ret);
164	}
165
166	return ret;
167}
168
169
170static void mips_dma_free_noncoherent(struct device *dev, size_t size,
171		void *vaddr, dma_addr_t dma_handle)
172{
173	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
174	free_pages((unsigned long) vaddr, get_order(size));
175}
 
176
177static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
178	dma_addr_t dma_handle, struct dma_attrs *attrs)
179{
180	unsigned long addr = (unsigned long) vaddr;
181	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
182	struct page *page = NULL;
183
184	if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs)) {
185		mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
186		return;
187	}
188
189	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
190
191	if (!plat_device_is_coherent(dev) && !hw_coherentio)
192		addr = CAC_ADDR(addr);
193
194	page = virt_to_page((void *) addr);
195
196	if (!dma_release_from_contiguous(dev, page, count))
197		__free_pages(page, get_order(size));
198}
199
200static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201	void *cpu_addr, dma_addr_t dma_addr, size_t size,
202	struct dma_attrs *attrs)
203{
204	unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
205	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
206	unsigned long addr = (unsigned long)cpu_addr;
207	unsigned long off = vma->vm_pgoff;
208	unsigned long pfn;
209	int ret = -ENXIO;
210
211	if (!plat_device_is_coherent(dev) && !hw_coherentio)
212		addr = CAC_ADDR(addr);
213
214	pfn = page_to_pfn(virt_to_page((void *)addr));
215
216	if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
217		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
218	else
219		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
220
221	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
222		return ret;
223
224	if (off < count && user_count <= (count - off)) {
225		ret = remap_pfn_range(vma, vma->vm_start,
226				      pfn + off,
227				      user_count << PAGE_SHIFT,
228				      vma->vm_page_prot);
229	}
230
231	return ret;
232}
233
234static inline void __dma_sync_virtual(void *addr, size_t size,
235	enum dma_data_direction direction)
236{
237	switch (direction) {
238	case DMA_TO_DEVICE:
239		dma_cache_wback((unsigned long)addr, size);
240		break;
241
242	case DMA_FROM_DEVICE:
243		dma_cache_inv((unsigned long)addr, size);
244		break;
245
246	case DMA_BIDIRECTIONAL:
247		dma_cache_wback_inv((unsigned long)addr, size);
248		break;
249
250	default:
251		BUG();
252	}
253}
254
255/*
256 * A single sg entry may refer to multiple physically contiguous
257 * pages. But we still need to process highmem pages individually.
258 * If highmem is not configured then the bulk of this loop gets
259 * optimized out.
260 */
261static inline void __dma_sync(struct page *page,
262	unsigned long offset, size_t size, enum dma_data_direction direction)
263{
264	size_t left = size;
265
266	do {
267		size_t len = left;
268
269		if (PageHighMem(page)) {
270			void *addr;
271
272			if (offset + len > PAGE_SIZE) {
273				if (offset >= PAGE_SIZE) {
274					page += offset >> PAGE_SHIFT;
275					offset &= ~PAGE_MASK;
276				}
277				len = PAGE_SIZE - offset;
278			}
279
280			addr = kmap_atomic(page);
281			__dma_sync_virtual(addr + offset, len, direction);
282			kunmap_atomic(addr);
283		} else
284			__dma_sync_virtual(page_address(page) + offset,
285					   size, direction);
286		offset = 0;
287		page++;
288		left -= len;
289	} while (left);
290}
291
292static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
293	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
294{
295	if (cpu_needs_post_dma_flush(dev))
296		__dma_sync(dma_addr_to_page(dev, dma_addr),
297			   dma_addr & ~PAGE_MASK, size, direction);
298	plat_post_dma_flush(dev);
299	plat_unmap_dma_mem(dev, dma_addr, size, direction);
300}
301
302static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
303	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
304{
305	int i;
306	struct scatterlist *sg;
307
308	for_each_sg(sglist, sg, nents, i) {
309		if (!plat_device_is_coherent(dev))
310			__dma_sync(sg_page(sg), sg->offset, sg->length,
311				   direction);
312#ifdef CONFIG_NEED_SG_DMA_LENGTH
313		sg->dma_length = sg->length;
314#endif
315		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
316				  sg->offset;
317	}
318
319	return nents;
320}
321
322static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
323	unsigned long offset, size_t size, enum dma_data_direction direction,
324	struct dma_attrs *attrs)
325{
326	if (!plat_device_is_coherent(dev))
327		__dma_sync(page, offset, size, direction);
328
329	return plat_map_dma_mem_page(dev, page) + offset;
330}
331
332static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
333	int nhwentries, enum dma_data_direction direction,
334	struct dma_attrs *attrs)
335{
336	int i;
337	struct scatterlist *sg;
338
339	for_each_sg(sglist, sg, nhwentries, i) {
340		if (!plat_device_is_coherent(dev) &&
341		    direction != DMA_TO_DEVICE)
342			__dma_sync(sg_page(sg), sg->offset, sg->length,
343				   direction);
344		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
345	}
346}
347
348static void mips_dma_sync_single_for_cpu(struct device *dev,
349	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
350{
351	if (cpu_needs_post_dma_flush(dev))
352		__dma_sync(dma_addr_to_page(dev, dma_handle),
353			   dma_handle & ~PAGE_MASK, size, direction);
354	plat_post_dma_flush(dev);
355}
356
357static void mips_dma_sync_single_for_device(struct device *dev,
358	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
359{
360	if (!plat_device_is_coherent(dev))
361		__dma_sync(dma_addr_to_page(dev, dma_handle),
362			   dma_handle & ~PAGE_MASK, size, direction);
363}
364
365static void mips_dma_sync_sg_for_cpu(struct device *dev,
366	struct scatterlist *sglist, int nelems,
367	enum dma_data_direction direction)
368{
369	int i;
370	struct scatterlist *sg;
371
372	if (cpu_needs_post_dma_flush(dev)) {
373		for_each_sg(sglist, sg, nelems, i) {
374			__dma_sync(sg_page(sg), sg->offset, sg->length,
375				   direction);
376		}
377	}
378	plat_post_dma_flush(dev);
379}
380
381static void mips_dma_sync_sg_for_device(struct device *dev,
382	struct scatterlist *sglist, int nelems,
383	enum dma_data_direction direction)
384{
385	int i;
386	struct scatterlist *sg;
387
388	if (!plat_device_is_coherent(dev)) {
389		for_each_sg(sglist, sg, nelems, i) {
390			__dma_sync(sg_page(sg), sg->offset, sg->length,
391				   direction);
392		}
393	}
394}
395
396int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
397{
398	return 0;
399}
400
401int mips_dma_supported(struct device *dev, u64 mask)
402{
403	return plat_dma_supported(dev, mask);
404}
405
406void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
407			 enum dma_data_direction direction)
408{
409	BUG_ON(direction == DMA_NONE);
410
411	if (!plat_device_is_coherent(dev))
412		__dma_sync_virtual(vaddr, size, direction);
413}
414
415EXPORT_SYMBOL(dma_cache_sync);
416
417static struct dma_map_ops mips_default_dma_map_ops = {
418	.alloc = mips_dma_alloc_coherent,
419	.free = mips_dma_free_coherent,
420	.mmap = mips_dma_mmap,
421	.map_page = mips_dma_map_page,
422	.unmap_page = mips_dma_unmap_page,
423	.map_sg = mips_dma_map_sg,
424	.unmap_sg = mips_dma_unmap_sg,
425	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
426	.sync_single_for_device = mips_dma_sync_single_for_device,
427	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
428	.sync_sg_for_device = mips_dma_sync_sg_for_device,
429	.mapping_error = mips_dma_mapping_error,
430	.dma_supported = mips_dma_supported
431};
432
433struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
434EXPORT_SYMBOL(mips_dma_map_ops);
435
436#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
437
438static int __init mips_dma_init(void)
439{
440	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
441
442	return 0;
443}
444fs_initcall(mips_dma_init);
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 
 19
 20#include <asm/cache.h>
 21#include <asm/cpu-type.h>
 22#include <asm/io.h>
 23
 24#include <dma-coherence.h>
 25
 26#ifdef CONFIG_DMA_MAYBE_COHERENT
 27int coherentio = 0;	/* User defined DMA coherency from command line. */
 28EXPORT_SYMBOL_GPL(coherentio);
 29int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
 30
 31static int __init setcoherentio(char *str)
 32{
 33	coherentio = 1;
 34	pr_info("Hardware DMA cache coherency (command line)\n");
 35	return 0;
 36}
 37early_param("coherentio", setcoherentio);
 38
 39static int __init setnocoherentio(char *str)
 40{
 41	coherentio = 0;
 42	pr_info("Software DMA cache coherency (command line)\n");
 43	return 0;
 44}
 45early_param("nocoherentio", setnocoherentio);
 46#endif
 47
 48static inline struct page *dma_addr_to_page(struct device *dev,
 49	dma_addr_t dma_addr)
 50{
 51	return pfn_to_page(
 52		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 53}
 54
 55/*
 56 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
 57 * speculatively fill random cachelines with stale data at any time,
 58 * requiring an extra flush post-DMA.
 59 *
 60 * Warning on the terminology - Linux calls an uncached area coherent;
 61 * MIPS terminology calls memory areas with hardware maintained coherency
 62 * coherent.
 
 
 
 
 
 63 */
 64static inline int cpu_needs_post_dma_flush(struct device *dev)
 65{
 66	return !plat_device_is_coherent(dev) &&
 67	       (boot_cpu_type() == CPU_R10000 ||
 68		boot_cpu_type() == CPU_R12000 ||
 69		boot_cpu_type() == CPU_BMIPS5000);
 70}
 71
 72static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 73{
 74	gfp_t dma_flag;
 75
 76	/* ignore region specifiers */
 77	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 78
 79#ifdef CONFIG_ISA
 80	if (dev == NULL)
 81		dma_flag = __GFP_DMA;
 82	else
 83#endif
 84#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 85	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 86			dma_flag = __GFP_DMA;
 87	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 88			dma_flag = __GFP_DMA32;
 89	else
 90#endif
 91#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 92	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 93		dma_flag = __GFP_DMA32;
 94	else
 95#endif
 96#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
 97	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 98		dma_flag = __GFP_DMA;
 99	else
100#endif
101		dma_flag = 0;
102
103	/* Don't invoke OOM killer */
104	gfp |= __GFP_NORETRY;
105
106	return gfp | dma_flag;
107}
108
109void *dma_alloc_noncoherent(struct device *dev, size_t size,
110	dma_addr_t * dma_handle, gfp_t gfp)
111{
112	void *ret;
113
114	gfp = massage_gfp_flags(dev, gfp);
115
116	ret = (void *) __get_free_pages(gfp, get_order(size));
117
118	if (ret != NULL) {
119		memset(ret, 0, size);
120		*dma_handle = plat_map_dma_mem(dev, ret, size);
121	}
122
123	return ret;
124}
125EXPORT_SYMBOL(dma_alloc_noncoherent);
126
127static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
128	dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
129{
130	void *ret;
 
 
131
132	if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
133		return ret;
 
 
 
 
134
135	gfp = massage_gfp_flags(dev, gfp);
136
137	ret = (void *) __get_free_pages(gfp, get_order(size));
138
139	if (ret) {
140		memset(ret, 0, size);
141		*dma_handle = plat_map_dma_mem(dev, ret, size);
142
143		if (!plat_device_is_coherent(dev)) {
144			dma_cache_wback_inv((unsigned long) ret, size);
145			if (!hw_coherentio)
146				ret = UNCAC_ADDR(ret);
147		}
 
 
 
 
 
148	}
149
150	return ret;
151}
152
153
154void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
155	dma_addr_t dma_handle)
156{
157	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
158	free_pages((unsigned long) vaddr, get_order(size));
159}
160EXPORT_SYMBOL(dma_free_noncoherent);
161
162static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
163	dma_addr_t dma_handle, struct dma_attrs *attrs)
164{
165	unsigned long addr = (unsigned long) vaddr;
166	int order = get_order(size);
 
167
168	if (dma_release_from_coherent(dev, order, vaddr))
 
169		return;
 
170
171	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
172
173	if (!plat_device_is_coherent(dev) && !hw_coherentio)
174		addr = CAC_ADDR(addr);
175
176	free_pages(addr, get_order(size));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177}
178
179static inline void __dma_sync_virtual(void *addr, size_t size,
180	enum dma_data_direction direction)
181{
182	switch (direction) {
183	case DMA_TO_DEVICE:
184		dma_cache_wback((unsigned long)addr, size);
185		break;
186
187	case DMA_FROM_DEVICE:
188		dma_cache_inv((unsigned long)addr, size);
189		break;
190
191	case DMA_BIDIRECTIONAL:
192		dma_cache_wback_inv((unsigned long)addr, size);
193		break;
194
195	default:
196		BUG();
197	}
198}
199
200/*
201 * A single sg entry may refer to multiple physically contiguous
202 * pages. But we still need to process highmem pages individually.
203 * If highmem is not configured then the bulk of this loop gets
204 * optimized out.
205 */
206static inline void __dma_sync(struct page *page,
207	unsigned long offset, size_t size, enum dma_data_direction direction)
208{
209	size_t left = size;
210
211	do {
212		size_t len = left;
213
214		if (PageHighMem(page)) {
215			void *addr;
216
217			if (offset + len > PAGE_SIZE) {
218				if (offset >= PAGE_SIZE) {
219					page += offset >> PAGE_SHIFT;
220					offset &= ~PAGE_MASK;
221				}
222				len = PAGE_SIZE - offset;
223			}
224
225			addr = kmap_atomic(page);
226			__dma_sync_virtual(addr + offset, len, direction);
227			kunmap_atomic(addr);
228		} else
229			__dma_sync_virtual(page_address(page) + offset,
230					   size, direction);
231		offset = 0;
232		page++;
233		left -= len;
234	} while (left);
235}
236
237static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
238	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
239{
240	if (cpu_needs_post_dma_flush(dev))
241		__dma_sync(dma_addr_to_page(dev, dma_addr),
242			   dma_addr & ~PAGE_MASK, size, direction);
243
244	plat_unmap_dma_mem(dev, dma_addr, size, direction);
245}
246
247static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
248	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
249{
250	int i;
 
251
252	for (i = 0; i < nents; i++, sg++) {
253		if (!plat_device_is_coherent(dev))
254			__dma_sync(sg_page(sg), sg->offset, sg->length,
255				   direction);
256#ifdef CONFIG_NEED_SG_DMA_LENGTH
257		sg->dma_length = sg->length;
258#endif
259		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
260				  sg->offset;
261	}
262
263	return nents;
264}
265
266static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
267	unsigned long offset, size_t size, enum dma_data_direction direction,
268	struct dma_attrs *attrs)
269{
270	if (!plat_device_is_coherent(dev))
271		__dma_sync(page, offset, size, direction);
272
273	return plat_map_dma_mem_page(dev, page) + offset;
274}
275
276static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
277	int nhwentries, enum dma_data_direction direction,
278	struct dma_attrs *attrs)
279{
280	int i;
 
281
282	for (i = 0; i < nhwentries; i++, sg++) {
283		if (!plat_device_is_coherent(dev) &&
284		    direction != DMA_TO_DEVICE)
285			__dma_sync(sg_page(sg), sg->offset, sg->length,
286				   direction);
287		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
288	}
289}
290
291static void mips_dma_sync_single_for_cpu(struct device *dev,
292	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
293{
294	if (cpu_needs_post_dma_flush(dev))
295		__dma_sync(dma_addr_to_page(dev, dma_handle),
296			   dma_handle & ~PAGE_MASK, size, direction);
 
297}
298
299static void mips_dma_sync_single_for_device(struct device *dev,
300	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
301{
302	if (!plat_device_is_coherent(dev))
303		__dma_sync(dma_addr_to_page(dev, dma_handle),
304			   dma_handle & ~PAGE_MASK, size, direction);
305}
306
307static void mips_dma_sync_sg_for_cpu(struct device *dev,
308	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
 
309{
310	int i;
 
311
312	if (cpu_needs_post_dma_flush(dev))
313		for (i = 0; i < nelems; i++, sg++)
314			__dma_sync(sg_page(sg), sg->offset, sg->length,
315				   direction);
 
 
 
316}
317
318static void mips_dma_sync_sg_for_device(struct device *dev,
319	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
 
320{
321	int i;
 
322
323	if (!plat_device_is_coherent(dev))
324		for (i = 0; i < nelems; i++, sg++)
325			__dma_sync(sg_page(sg), sg->offset, sg->length,
326				   direction);
 
 
327}
328
329int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
330{
331	return 0;
332}
333
334int mips_dma_supported(struct device *dev, u64 mask)
335{
336	return plat_dma_supported(dev, mask);
337}
338
339void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
340			 enum dma_data_direction direction)
341{
342	BUG_ON(direction == DMA_NONE);
343
344	if (!plat_device_is_coherent(dev))
345		__dma_sync_virtual(vaddr, size, direction);
346}
347
348EXPORT_SYMBOL(dma_cache_sync);
349
350static struct dma_map_ops mips_default_dma_map_ops = {
351	.alloc = mips_dma_alloc_coherent,
352	.free = mips_dma_free_coherent,
 
353	.map_page = mips_dma_map_page,
354	.unmap_page = mips_dma_unmap_page,
355	.map_sg = mips_dma_map_sg,
356	.unmap_sg = mips_dma_unmap_sg,
357	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
358	.sync_single_for_device = mips_dma_sync_single_for_device,
359	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
360	.sync_sg_for_device = mips_dma_sync_sg_for_device,
361	.mapping_error = mips_dma_mapping_error,
362	.dma_supported = mips_dma_supported
363};
364
365struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
366EXPORT_SYMBOL(mips_dma_map_ops);
367
368#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
369
370static int __init mips_dma_init(void)
371{
372	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
373
374	return 0;
375}
376fs_initcall(mips_dma_init);