Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  Meta version derived from arch/powerpc/lib/dma-noncoherent.c
  3 *    Copyright (C) 2008 Imagination Technologies Ltd.
  4 *
  5 *  PowerPC version derived from arch/arm/mm/consistent.c
  6 *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
  7 *
  8 *  Copyright (C) 2000 Russell King
  9 *
 10 * Consistent memory allocators.  Used for DMA devices that want to
 11 * share uncached memory with the processor core.  The function return
 12 * is the virtual address and 'dma_handle' is the physical address.
 13 * Mostly stolen from the ARM port, with some changes for PowerPC.
 14 *						-- Dan
 15 *
 16 * Reorganized to get rid of the arch-specific consistent_* functions
 17 * and provide non-coherent implementations for the DMA API. -Matt
 18 *
 19 * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
 20 * implementation. This is pulled straight from ARM and barely
 21 * modified. -Matt
 22 *
 23 * This program is free software; you can redistribute it and/or modify
 24 * it under the terms of the GNU General Public License version 2 as
 25 * published by the Free Software Foundation.
 26 */
 27
 28#include <linux/sched.h>
 29#include <linux/kernel.h>
 30#include <linux/errno.h>
 31#include <linux/export.h>
 32#include <linux/string.h>
 33#include <linux/types.h>
 34#include <linux/highmem.h>
 35#include <linux/dma-mapping.h>
 36#include <linux/slab.h>
 37
 38#include <asm/tlbflush.h>
 39#include <asm/mmu.h>
 40
 41#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_START) \
 42					>> PAGE_SHIFT)
 43
 44static u64 get_coherent_dma_mask(struct device *dev)
 45{
 46	u64 mask = ~0ULL;
 47
 48	if (dev) {
 49		mask = dev->coherent_dma_mask;
 50
 51		/*
 52		 * Sanity check the DMA mask - it must be non-zero, and
 53		 * must be able to be satisfied by a DMA allocation.
 54		 */
 55		if (mask == 0) {
 56			dev_warn(dev, "coherent DMA mask is unset\n");
 57			return 0;
 58		}
 59	}
 60
 61	return mask;
 62}
 63/*
 64 * This is the page table (2MB) covering uncached, DMA consistent allocations
 65 */
 66static pte_t *consistent_pte;
 67static DEFINE_SPINLOCK(consistent_lock);
 68
 69/*
 70 * VM region handling support.
 71 *
 72 * This should become something generic, handling VM region allocations for
 73 * vmalloc and similar (ioremap, module space, etc).
 74 *
 75 * I envisage vmalloc()'s supporting vm_struct becoming:
 76 *
 77 *  struct vm_struct {
 78 *    struct metag_vm_region	region;
 79 *    unsigned long	flags;
 80 *    struct page	**pages;
 81 *    unsigned int	nr_pages;
 82 *    unsigned long	phys_addr;
 83 *  };
 84 *
 85 * get_vm_area() would then call metag_vm_region_alloc with an appropriate
 86 * struct metag_vm_region head (eg):
 87 *
 88 *  struct metag_vm_region vmalloc_head = {
 89 *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
 90 *	.vm_start	= VMALLOC_START,
 91 *	.vm_end		= VMALLOC_END,
 92 *  };
 93 *
 94 * However, vmalloc_head.vm_start is variable (typically, it is dependent on
 95 * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
 96 * would have to initialise this each time prior to calling
 97 * metag_vm_region_alloc().
 98 */
 99struct metag_vm_region {
100	struct list_head vm_list;
101	unsigned long vm_start;
102	unsigned long vm_end;
103	struct page		*vm_pages;
104	int			vm_active;
105};
106
107static struct metag_vm_region consistent_head = {
108	.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
109	.vm_start = CONSISTENT_START,
110	.vm_end = CONSISTENT_END,
111};
112
113static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region
114						     *head, size_t size,
115						     gfp_t gfp)
116{
117	unsigned long addr = head->vm_start, end = head->vm_end - size;
118	unsigned long flags;
119	struct metag_vm_region *c, *new;
120
121	new = kmalloc(sizeof(struct metag_vm_region), gfp);
122	if (!new)
123		goto out;
124
125	spin_lock_irqsave(&consistent_lock, flags);
126
127	list_for_each_entry(c, &head->vm_list, vm_list) {
128		if ((addr + size) < addr)
129			goto nospc;
130		if ((addr + size) <= c->vm_start)
131			goto found;
132		addr = c->vm_end;
133		if (addr > end)
134			goto nospc;
135	}
136
137found:
138	/*
139	 * Insert this entry _before_ the one we found.
140	 */
141	list_add_tail(&new->vm_list, &c->vm_list);
142	new->vm_start = addr;
143	new->vm_end = addr + size;
144	new->vm_active = 1;
145
146	spin_unlock_irqrestore(&consistent_lock, flags);
147	return new;
148
149nospc:
150	spin_unlock_irqrestore(&consistent_lock, flags);
151	kfree(new);
152out:
153	return NULL;
154}
155
156static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region
157						    *head, unsigned long addr)
158{
159	struct metag_vm_region *c;
160
161	list_for_each_entry(c, &head->vm_list, vm_list) {
162		if (c->vm_active && c->vm_start == addr)
163			goto out;
164	}
165	c = NULL;
166out:
167	return c;
168}
169
170/*
171 * Allocate DMA-coherent memory space and return both the kernel remapped
172 * virtual and bus address for that space.
173 */
174static void *metag_dma_alloc(struct device *dev, size_t size,
175		dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
176{
177	struct page *page;
178	struct metag_vm_region *c;
179	unsigned long order;
180	u64 mask = get_coherent_dma_mask(dev);
181	u64 limit;
182
183	if (!consistent_pte) {
184		pr_err("%s: not initialised\n", __func__);
185		dump_stack();
186		return NULL;
187	}
188
189	if (!mask)
190		goto no_page;
191	size = PAGE_ALIGN(size);
192	limit = (mask + 1) & ~mask;
193	if ((limit && size >= limit)
194	    || size >= (CONSISTENT_END - CONSISTENT_START)) {
195		pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n",
196			size, mask);
197		return NULL;
198	}
199
200	order = get_order(size);
201
202	if (mask != 0xffffffff)
203		gfp |= GFP_DMA;
204
205	page = alloc_pages(gfp, order);
206	if (!page)
207		goto no_page;
208
209	/*
210	 * Invalidate any data that might be lurking in the
211	 * kernel direct-mapped region for device DMA.
212	 */
213	{
214		void *kaddr = page_address(page);
215		memset(kaddr, 0, size);
216		flush_dcache_region(kaddr, size);
217	}
218
219	/*
220	 * Allocate a virtual address in the consistent mapping region.
221	 */
222	c = metag_vm_region_alloc(&consistent_head, size,
223				  gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
224	if (c) {
225		unsigned long vaddr = c->vm_start;
226		pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
227		struct page *end = page + (1 << order);
228
229		c->vm_pages = page;
230		split_page(page, order);
231
232		/*
233		 * Set the "dma handle"
234		 */
235		*handle = page_to_bus(page);
236
237		do {
238			BUG_ON(!pte_none(*pte));
239
240			SetPageReserved(page);
241			set_pte_at(&init_mm, vaddr,
242				   pte, mk_pte(page,
243					       pgprot_writecombine
244					       (PAGE_KERNEL)));
245			page++;
246			pte++;
247			vaddr += PAGE_SIZE;
248		} while (size -= PAGE_SIZE);
249
250		/*
251		 * Free the otherwise unused pages.
252		 */
253		while (page < end) {
254			__free_page(page);
255			page++;
256		}
257
258		return (void *)c->vm_start;
259	}
260
261	if (page)
262		__free_pages(page, order);
263no_page:
264	return NULL;
265}
 
266
267/*
268 * free a page as defined by the above mapping.
269 */
270static void metag_dma_free(struct device *dev, size_t size, void *vaddr,
271		dma_addr_t dma_handle, struct dma_attrs *attrs)
272{
273	struct metag_vm_region *c;
274	unsigned long flags, addr;
275	pte_t *ptep;
276
277	size = PAGE_ALIGN(size);
278
279	spin_lock_irqsave(&consistent_lock, flags);
280
281	c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr);
282	if (!c)
283		goto no_area;
284
285	c->vm_active = 0;
286	if ((c->vm_end - c->vm_start) != size) {
287		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
288		       __func__, c->vm_end - c->vm_start, size);
289		dump_stack();
290		size = c->vm_end - c->vm_start;
291	}
292
293	ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
294	addr = c->vm_start;
295	do {
296		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
297		unsigned long pfn;
298
299		ptep++;
300		addr += PAGE_SIZE;
301
302		if (!pte_none(pte) && pte_present(pte)) {
303			pfn = pte_pfn(pte);
304
305			if (pfn_valid(pfn)) {
306				struct page *page = pfn_to_page(pfn);
307				__free_reserved_page(page);
308				continue;
309			}
310		}
311
312		pr_crit("%s: bad page in kernel page table\n",
313			__func__);
314	} while (size -= PAGE_SIZE);
315
316	flush_tlb_kernel_range(c->vm_start, c->vm_end);
317
318	list_del(&c->vm_list);
319
320	spin_unlock_irqrestore(&consistent_lock, flags);
321
322	kfree(c);
323	return;
324
325no_area:
326	spin_unlock_irqrestore(&consistent_lock, flags);
327	pr_err("%s: trying to free invalid coherent area: %p\n",
328	       __func__, vaddr);
329	dump_stack();
330}
 
331
332static int metag_dma_mmap(struct device *dev, struct vm_area_struct *vma,
333		void *cpu_addr, dma_addr_t dma_addr, size_t size,
334		struct dma_attrs *attrs)
335{
336	unsigned long flags, user_size, kern_size;
337	struct metag_vm_region *c;
338	int ret = -ENXIO;
339
340	if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
341		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
342	else
343		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
344
345	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
346
347	spin_lock_irqsave(&consistent_lock, flags);
348	c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
349	spin_unlock_irqrestore(&consistent_lock, flags);
350
351	if (c) {
352		unsigned long off = vma->vm_pgoff;
353
354		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
355
356		if (off < kern_size &&
357		    user_size <= (kern_size - off)) {
358			ret = remap_pfn_range(vma, vma->vm_start,
359					      page_to_pfn(c->vm_pages) + off,
360					      user_size << PAGE_SHIFT,
361					      vma->vm_page_prot);
362		}
363	}
364
365
366	return ret;
367}
368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369/*
370 * Initialise the consistent memory allocation.
371 */
372static int __init dma_alloc_init(void)
373{
374	pgd_t *pgd, *pgd_k;
375	pud_t *pud, *pud_k;
376	pmd_t *pmd, *pmd_k;
377	pte_t *pte;
378	int ret = 0;
379
380	do {
381		int offset = pgd_index(CONSISTENT_START);
382		pgd = pgd_offset(&init_mm, CONSISTENT_START);
383		pud = pud_alloc(&init_mm, pgd, CONSISTENT_START);
384		pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START);
385		WARN_ON(!pmd_none(*pmd));
386
387		pte = pte_alloc_kernel(pmd, CONSISTENT_START);
388		if (!pte) {
389			pr_err("%s: no pte tables\n", __func__);
390			ret = -ENOMEM;
391			break;
392		}
393
394		pgd_k = ((pgd_t *) mmu_get_base()) + offset;
395		pud_k = pud_offset(pgd_k, CONSISTENT_START);
396		pmd_k = pmd_offset(pud_k, CONSISTENT_START);
397		set_pmd(pmd_k, *pmd);
398
399		consistent_pte = pte;
400	} while (0);
401
402	return ret;
403}
404early_initcall(dma_alloc_init);
405
406/*
407 * make an area consistent to devices.
408 */
409static void dma_sync_for_device(void *vaddr, size_t size, int dma_direction)
410{
411	/*
412	 * Ensure any writes get through the write combiner. This is necessary
413	 * even with DMA_FROM_DEVICE, or the write may dirty the cache after
414	 * we've invalidated it and get written back during the DMA.
415	 */
416
417	barrier();
418
419	switch (dma_direction) {
420	case DMA_BIDIRECTIONAL:
421		/*
422		 * Writeback to ensure the device can see our latest changes and
423		 * so that we have no dirty lines, and invalidate the cache
424		 * lines too in preparation for receiving the buffer back
425		 * (dma_sync_for_cpu) later.
426		 */
427		flush_dcache_region(vaddr, size);
428		break;
429	case DMA_TO_DEVICE:
430		/*
431		 * Writeback to ensure the device can see our latest changes.
432		 * There's no need to invalidate as the device shouldn't write
433		 * to the buffer.
434		 */
435		writeback_dcache_region(vaddr, size);
436		break;
437	case DMA_FROM_DEVICE:
438		/*
439		 * Invalidate to ensure we have no dirty lines that could get
440		 * written back during the DMA. It's also safe to flush
441		 * (writeback) here if necessary.
442		 */
443		invalidate_dcache_region(vaddr, size);
444		break;
445	case DMA_NONE:
446		BUG();
447	}
448
449	wmb();
450}
 
451
452/*
453 * make an area consistent to the core.
454 */
455static void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction)
456{
457	/*
458	 * Hardware L2 cache prefetch doesn't occur across 4K physical
459	 * boundaries, however according to Documentation/DMA-API-HOWTO.txt
460	 * kmalloc'd memory is DMA'able, so accesses in nearby memory could
461	 * trigger a cache fill in the DMA buffer.
462	 *
463	 * This should never cause dirty lines, so a flush or invalidate should
464	 * be safe to allow us to see data from the device.
465	 */
466	if (_meta_l2c_pf_is_enabled()) {
467		switch (dma_direction) {
468		case DMA_BIDIRECTIONAL:
469		case DMA_FROM_DEVICE:
470			invalidate_dcache_region(vaddr, size);
471			break;
472		case DMA_TO_DEVICE:
473			/* The device shouldn't have written to the buffer */
474			break;
475		case DMA_NONE:
476			BUG();
477		}
478	}
479
480	rmb();
481}
482
483static dma_addr_t metag_dma_map_page(struct device *dev, struct page *page,
484		unsigned long offset, size_t size,
485		enum dma_data_direction direction, struct dma_attrs *attrs)
486{
487	dma_sync_for_device((void *)(page_to_phys(page) + offset), size,
488			    direction);
489	return page_to_phys(page) + offset;
490}
491
492static void metag_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
493		size_t size, enum dma_data_direction direction,
494		struct dma_attrs *attrs)
495{
496	dma_sync_for_cpu(phys_to_virt(dma_address), size, direction);
497}
498
499static int metag_dma_map_sg(struct device *dev, struct scatterlist *sglist,
500		int nents, enum dma_data_direction direction,
501		struct dma_attrs *attrs)
502{
503	struct scatterlist *sg;
504	int i;
505
506	for_each_sg(sglist, sg, nents, i) {
507		BUG_ON(!sg_page(sg));
508
509		sg->dma_address = sg_phys(sg);
510		dma_sync_for_device(sg_virt(sg), sg->length, direction);
511	}
512
513	return nents;
514}
515
516
517static void metag_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
518		int nhwentries, enum dma_data_direction direction,
519		struct dma_attrs *attrs)
520{
521	struct scatterlist *sg;
522	int i;
523
524	for_each_sg(sglist, sg, nhwentries, i) {
525		BUG_ON(!sg_page(sg));
526
527		sg->dma_address = sg_phys(sg);
528		dma_sync_for_cpu(sg_virt(sg), sg->length, direction);
529	}
530}
531
532static void metag_dma_sync_single_for_cpu(struct device *dev,
533		dma_addr_t dma_handle, size_t size,
534		enum dma_data_direction direction)
535{
536	dma_sync_for_cpu(phys_to_virt(dma_handle), size, direction);
537}
538
539static void metag_dma_sync_single_for_device(struct device *dev,
540		dma_addr_t dma_handle, size_t size,
541		enum dma_data_direction direction)
542{
543	dma_sync_for_device(phys_to_virt(dma_handle), size, direction);
544}
545
546static void metag_dma_sync_sg_for_cpu(struct device *dev,
547		struct scatterlist *sglist, int nelems,
548		enum dma_data_direction direction)
549{
550	int i;
551	struct scatterlist *sg;
552
553	for_each_sg(sglist, sg, nelems, i)
554		dma_sync_for_cpu(sg_virt(sg), sg->length, direction);
555}
556
557static void metag_dma_sync_sg_for_device(struct device *dev,
558		struct scatterlist *sglist, int nelems,
559		enum dma_data_direction direction)
560{
561	int i;
562	struct scatterlist *sg;
563
564	for_each_sg(sglist, sg, nelems, i)
565		dma_sync_for_device(sg_virt(sg), sg->length, direction);
566}
567
568struct dma_map_ops metag_dma_ops = {
569	.alloc			= metag_dma_alloc,
570	.free			= metag_dma_free,
571	.map_page		= metag_dma_map_page,
572	.map_sg			= metag_dma_map_sg,
573	.sync_single_for_device	= metag_dma_sync_single_for_device,
574	.sync_single_for_cpu	= metag_dma_sync_single_for_cpu,
575	.sync_sg_for_cpu	= metag_dma_sync_sg_for_cpu,
576	.mmap			= metag_dma_mmap,
577};
578EXPORT_SYMBOL(metag_dma_ops);
v3.15
  1/*
  2 *  Meta version derived from arch/powerpc/lib/dma-noncoherent.c
  3 *    Copyright (C) 2008 Imagination Technologies Ltd.
  4 *
  5 *  PowerPC version derived from arch/arm/mm/consistent.c
  6 *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
  7 *
  8 *  Copyright (C) 2000 Russell King
  9 *
 10 * Consistent memory allocators.  Used for DMA devices that want to
 11 * share uncached memory with the processor core.  The function return
 12 * is the virtual address and 'dma_handle' is the physical address.
 13 * Mostly stolen from the ARM port, with some changes for PowerPC.
 14 *						-- Dan
 15 *
 16 * Reorganized to get rid of the arch-specific consistent_* functions
 17 * and provide non-coherent implementations for the DMA API. -Matt
 18 *
 19 * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
 20 * implementation. This is pulled straight from ARM and barely
 21 * modified. -Matt
 22 *
 23 * This program is free software; you can redistribute it and/or modify
 24 * it under the terms of the GNU General Public License version 2 as
 25 * published by the Free Software Foundation.
 26 */
 27
 28#include <linux/sched.h>
 29#include <linux/kernel.h>
 30#include <linux/errno.h>
 31#include <linux/export.h>
 32#include <linux/string.h>
 33#include <linux/types.h>
 34#include <linux/highmem.h>
 35#include <linux/dma-mapping.h>
 36#include <linux/slab.h>
 37
 38#include <asm/tlbflush.h>
 39#include <asm/mmu.h>
 40
 41#define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_START) \
 42					>> PAGE_SHIFT)
 43
 44static u64 get_coherent_dma_mask(struct device *dev)
 45{
 46	u64 mask = ~0ULL;
 47
 48	if (dev) {
 49		mask = dev->coherent_dma_mask;
 50
 51		/*
 52		 * Sanity check the DMA mask - it must be non-zero, and
 53		 * must be able to be satisfied by a DMA allocation.
 54		 */
 55		if (mask == 0) {
 56			dev_warn(dev, "coherent DMA mask is unset\n");
 57			return 0;
 58		}
 59	}
 60
 61	return mask;
 62}
 63/*
 64 * This is the page table (2MB) covering uncached, DMA consistent allocations
 65 */
 66static pte_t *consistent_pte;
 67static DEFINE_SPINLOCK(consistent_lock);
 68
 69/*
 70 * VM region handling support.
 71 *
 72 * This should become something generic, handling VM region allocations for
 73 * vmalloc and similar (ioremap, module space, etc).
 74 *
 75 * I envisage vmalloc()'s supporting vm_struct becoming:
 76 *
 77 *  struct vm_struct {
 78 *    struct metag_vm_region	region;
 79 *    unsigned long	flags;
 80 *    struct page	**pages;
 81 *    unsigned int	nr_pages;
 82 *    unsigned long	phys_addr;
 83 *  };
 84 *
 85 * get_vm_area() would then call metag_vm_region_alloc with an appropriate
 86 * struct metag_vm_region head (eg):
 87 *
 88 *  struct metag_vm_region vmalloc_head = {
 89 *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
 90 *	.vm_start	= VMALLOC_START,
 91 *	.vm_end		= VMALLOC_END,
 92 *  };
 93 *
 94 * However, vmalloc_head.vm_start is variable (typically, it is dependent on
 95 * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
 96 * would have to initialise this each time prior to calling
 97 * metag_vm_region_alloc().
 98 */
 99struct metag_vm_region {
100	struct list_head vm_list;
101	unsigned long vm_start;
102	unsigned long vm_end;
103	struct page		*vm_pages;
104	int			vm_active;
105};
106
107static struct metag_vm_region consistent_head = {
108	.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
109	.vm_start = CONSISTENT_START,
110	.vm_end = CONSISTENT_END,
111};
112
113static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region
114						     *head, size_t size,
115						     gfp_t gfp)
116{
117	unsigned long addr = head->vm_start, end = head->vm_end - size;
118	unsigned long flags;
119	struct metag_vm_region *c, *new;
120
121	new = kmalloc(sizeof(struct metag_vm_region), gfp);
122	if (!new)
123		goto out;
124
125	spin_lock_irqsave(&consistent_lock, flags);
126
127	list_for_each_entry(c, &head->vm_list, vm_list) {
128		if ((addr + size) < addr)
129			goto nospc;
130		if ((addr + size) <= c->vm_start)
131			goto found;
132		addr = c->vm_end;
133		if (addr > end)
134			goto nospc;
135	}
136
137found:
138	/*
139	 * Insert this entry _before_ the one we found.
140	 */
141	list_add_tail(&new->vm_list, &c->vm_list);
142	new->vm_start = addr;
143	new->vm_end = addr + size;
144	new->vm_active = 1;
145
146	spin_unlock_irqrestore(&consistent_lock, flags);
147	return new;
148
149nospc:
150	spin_unlock_irqrestore(&consistent_lock, flags);
151	kfree(new);
152out:
153	return NULL;
154}
155
156static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region
157						    *head, unsigned long addr)
158{
159	struct metag_vm_region *c;
160
161	list_for_each_entry(c, &head->vm_list, vm_list) {
162		if (c->vm_active && c->vm_start == addr)
163			goto out;
164	}
165	c = NULL;
166out:
167	return c;
168}
169
170/*
171 * Allocate DMA-coherent memory space and return both the kernel remapped
172 * virtual and bus address for that space.
173 */
174void *dma_alloc_coherent(struct device *dev, size_t size,
175			 dma_addr_t *handle, gfp_t gfp)
176{
177	struct page *page;
178	struct metag_vm_region *c;
179	unsigned long order;
180	u64 mask = get_coherent_dma_mask(dev);
181	u64 limit;
182
183	if (!consistent_pte) {
184		pr_err("%s: not initialised\n", __func__);
185		dump_stack();
186		return NULL;
187	}
188
189	if (!mask)
190		goto no_page;
191	size = PAGE_ALIGN(size);
192	limit = (mask + 1) & ~mask;
193	if ((limit && size >= limit)
194	    || size >= (CONSISTENT_END - CONSISTENT_START)) {
195		pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n",
196			size, mask);
197		return NULL;
198	}
199
200	order = get_order(size);
201
202	if (mask != 0xffffffff)
203		gfp |= GFP_DMA;
204
205	page = alloc_pages(gfp, order);
206	if (!page)
207		goto no_page;
208
209	/*
210	 * Invalidate any data that might be lurking in the
211	 * kernel direct-mapped region for device DMA.
212	 */
213	{
214		void *kaddr = page_address(page);
215		memset(kaddr, 0, size);
216		flush_dcache_region(kaddr, size);
217	}
218
219	/*
220	 * Allocate a virtual address in the consistent mapping region.
221	 */
222	c = metag_vm_region_alloc(&consistent_head, size,
223				  gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
224	if (c) {
225		unsigned long vaddr = c->vm_start;
226		pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
227		struct page *end = page + (1 << order);
228
229		c->vm_pages = page;
230		split_page(page, order);
231
232		/*
233		 * Set the "dma handle"
234		 */
235		*handle = page_to_bus(page);
236
237		do {
238			BUG_ON(!pte_none(*pte));
239
240			SetPageReserved(page);
241			set_pte_at(&init_mm, vaddr,
242				   pte, mk_pte(page,
243					       pgprot_writecombine
244					       (PAGE_KERNEL)));
245			page++;
246			pte++;
247			vaddr += PAGE_SIZE;
248		} while (size -= PAGE_SIZE);
249
250		/*
251		 * Free the otherwise unused pages.
252		 */
253		while (page < end) {
254			__free_page(page);
255			page++;
256		}
257
258		return (void *)c->vm_start;
259	}
260
261	if (page)
262		__free_pages(page, order);
263no_page:
264	return NULL;
265}
266EXPORT_SYMBOL(dma_alloc_coherent);
267
268/*
269 * free a page as defined by the above mapping.
270 */
271void dma_free_coherent(struct device *dev, size_t size,
272		       void *vaddr, dma_addr_t dma_handle)
273{
274	struct metag_vm_region *c;
275	unsigned long flags, addr;
276	pte_t *ptep;
277
278	size = PAGE_ALIGN(size);
279
280	spin_lock_irqsave(&consistent_lock, flags);
281
282	c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr);
283	if (!c)
284		goto no_area;
285
286	c->vm_active = 0;
287	if ((c->vm_end - c->vm_start) != size) {
288		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
289		       __func__, c->vm_end - c->vm_start, size);
290		dump_stack();
291		size = c->vm_end - c->vm_start;
292	}
293
294	ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
295	addr = c->vm_start;
296	do {
297		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
298		unsigned long pfn;
299
300		ptep++;
301		addr += PAGE_SIZE;
302
303		if (!pte_none(pte) && pte_present(pte)) {
304			pfn = pte_pfn(pte);
305
306			if (pfn_valid(pfn)) {
307				struct page *page = pfn_to_page(pfn);
308				__free_reserved_page(page);
309				continue;
310			}
311		}
312
313		pr_crit("%s: bad page in kernel page table\n",
314			__func__);
315	} while (size -= PAGE_SIZE);
316
317	flush_tlb_kernel_range(c->vm_start, c->vm_end);
318
319	list_del(&c->vm_list);
320
321	spin_unlock_irqrestore(&consistent_lock, flags);
322
323	kfree(c);
324	return;
325
326no_area:
327	spin_unlock_irqrestore(&consistent_lock, flags);
328	pr_err("%s: trying to free invalid coherent area: %p\n",
329	       __func__, vaddr);
330	dump_stack();
331}
332EXPORT_SYMBOL(dma_free_coherent);
333
334
335static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
336		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
337{
 
 
338	int ret = -ENXIO;
339
340	unsigned long flags, user_size, kern_size;
341	struct metag_vm_region *c;
 
 
342
343	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
344
345	spin_lock_irqsave(&consistent_lock, flags);
346	c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
347	spin_unlock_irqrestore(&consistent_lock, flags);
348
349	if (c) {
350		unsigned long off = vma->vm_pgoff;
351
352		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
353
354		if (off < kern_size &&
355		    user_size <= (kern_size - off)) {
356			ret = remap_pfn_range(vma, vma->vm_start,
357					      page_to_pfn(c->vm_pages) + off,
358					      user_size << PAGE_SHIFT,
359					      vma->vm_page_prot);
360		}
361	}
362
363
364	return ret;
365}
366
367int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
368		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
369{
370	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
371	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
372}
373EXPORT_SYMBOL(dma_mmap_coherent);
374
375int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
376			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
377{
378	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
379	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
380}
381EXPORT_SYMBOL(dma_mmap_writecombine);
382
383
384
385
386/*
387 * Initialise the consistent memory allocation.
388 */
389static int __init dma_alloc_init(void)
390{
391	pgd_t *pgd, *pgd_k;
392	pud_t *pud, *pud_k;
393	pmd_t *pmd, *pmd_k;
394	pte_t *pte;
395	int ret = 0;
396
397	do {
398		int offset = pgd_index(CONSISTENT_START);
399		pgd = pgd_offset(&init_mm, CONSISTENT_START);
400		pud = pud_alloc(&init_mm, pgd, CONSISTENT_START);
401		pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START);
402		WARN_ON(!pmd_none(*pmd));
403
404		pte = pte_alloc_kernel(pmd, CONSISTENT_START);
405		if (!pte) {
406			pr_err("%s: no pte tables\n", __func__);
407			ret = -ENOMEM;
408			break;
409		}
410
411		pgd_k = ((pgd_t *) mmu_get_base()) + offset;
412		pud_k = pud_offset(pgd_k, CONSISTENT_START);
413		pmd_k = pmd_offset(pud_k, CONSISTENT_START);
414		set_pmd(pmd_k, *pmd);
415
416		consistent_pte = pte;
417	} while (0);
418
419	return ret;
420}
421early_initcall(dma_alloc_init);
422
423/*
424 * make an area consistent to devices.
425 */
426void dma_sync_for_device(void *vaddr, size_t size, int dma_direction)
427{
428	/*
429	 * Ensure any writes get through the write combiner. This is necessary
430	 * even with DMA_FROM_DEVICE, or the write may dirty the cache after
431	 * we've invalidated it and get written back during the DMA.
432	 */
433
434	barrier();
435
436	switch (dma_direction) {
437	case DMA_BIDIRECTIONAL:
438		/*
439		 * Writeback to ensure the device can see our latest changes and
440		 * so that we have no dirty lines, and invalidate the cache
441		 * lines too in preparation for receiving the buffer back
442		 * (dma_sync_for_cpu) later.
443		 */
444		flush_dcache_region(vaddr, size);
445		break;
446	case DMA_TO_DEVICE:
447		/*
448		 * Writeback to ensure the device can see our latest changes.
449		 * There's no need to invalidate as the device shouldn't write
450		 * to the buffer.
451		 */
452		writeback_dcache_region(vaddr, size);
453		break;
454	case DMA_FROM_DEVICE:
455		/*
456		 * Invalidate to ensure we have no dirty lines that could get
457		 * written back during the DMA. It's also safe to flush
458		 * (writeback) here if necessary.
459		 */
460		invalidate_dcache_region(vaddr, size);
461		break;
462	case DMA_NONE:
463		BUG();
464	}
465
466	wmb();
467}
468EXPORT_SYMBOL(dma_sync_for_device);
469
470/*
471 * make an area consistent to the core.
472 */
473void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction)
474{
475	/*
476	 * Hardware L2 cache prefetch doesn't occur across 4K physical
477	 * boundaries, however according to Documentation/DMA-API-HOWTO.txt
478	 * kmalloc'd memory is DMA'able, so accesses in nearby memory could
479	 * trigger a cache fill in the DMA buffer.
480	 *
481	 * This should never cause dirty lines, so a flush or invalidate should
482	 * be safe to allow us to see data from the device.
483	 */
484	if (_meta_l2c_pf_is_enabled()) {
485		switch (dma_direction) {
486		case DMA_BIDIRECTIONAL:
487		case DMA_FROM_DEVICE:
488			invalidate_dcache_region(vaddr, size);
489			break;
490		case DMA_TO_DEVICE:
491			/* The device shouldn't have written to the buffer */
492			break;
493		case DMA_NONE:
494			BUG();
495		}
496	}
497
498	rmb();
499}
500EXPORT_SYMBOL(dma_sync_for_cpu);