Linux Audio

Check our new training course

Loading...
v4.6
  1#ifndef MM_SLAB_H
  2#define MM_SLAB_H
  3/*
  4 * Internal slab definitions
  5 */
  6
  7#ifdef CONFIG_SLOB
  8/*
  9 * Common fields provided in kmem_cache by all slab allocators
 10 * This struct is either used directly by the allocator (SLOB)
 11 * or the allocator must include definitions for all fields
 12 * provided in kmem_cache_common in their definition of kmem_cache.
 13 *
 14 * Once we can do anonymous structs (C11 standard) we could put a
 15 * anonymous struct definition in these allocators so that the
 16 * separate allocations in the kmem_cache structure of SLAB and
 17 * SLUB is no longer needed.
 18 */
 19struct kmem_cache {
 20	unsigned int object_size;/* The original size of the object */
 21	unsigned int size;	/* The aligned/padded/added on size  */
 22	unsigned int align;	/* Alignment as calculated */
 23	unsigned long flags;	/* Active flags on the slab */
 24	const char *name;	/* Slab name for sysfs */
 25	int refcount;		/* Use counter */
 26	void (*ctor)(void *);	/* Called on object slot creation */
 27	struct list_head list;	/* List of all slab caches on the system */
 28};
 29
 30#endif /* CONFIG_SLOB */
 31
 32#ifdef CONFIG_SLAB
 33#include <linux/slab_def.h>
 34#endif
 35
 36#ifdef CONFIG_SLUB
 37#include <linux/slub_def.h>
 38#endif
 39
 40#include <linux/memcontrol.h>
 41#include <linux/fault-inject.h>
 42#include <linux/kmemcheck.h>
 43#include <linux/kasan.h>
 44#include <linux/kmemleak.h>
 45
 46/*
 47 * State of the slab allocator.
 48 *
 49 * This is used to describe the states of the allocator during bootup.
 50 * Allocators use this to gradually bootstrap themselves. Most allocators
 51 * have the problem that the structures used for managing slab caches are
 52 * allocated from slab caches themselves.
 53 */
 54enum slab_state {
 55	DOWN,			/* No slab functionality yet */
 56	PARTIAL,		/* SLUB: kmem_cache_node available */
 
 57	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
 58	UP,			/* Slab caches usable but not all extras yet */
 59	FULL			/* Everything is working */
 60};
 61
 62extern enum slab_state slab_state;
 63
 64/* The slab cache mutex protects the management structures during changes */
 65extern struct mutex slab_mutex;
 66
 67/* The list of all slab caches on the system */
 68extern struct list_head slab_caches;
 69
 70/* The slab cache that manages slab cache information */
 71extern struct kmem_cache *kmem_cache;
 72
 73unsigned long calculate_alignment(unsigned long flags,
 74		unsigned long align, unsigned long size);
 75
 76#ifndef CONFIG_SLOB
 77/* Kmalloc array related functions */
 78void setup_kmalloc_cache_index_table(void);
 79void create_kmalloc_caches(unsigned long);
 80
 81/* Find the kmalloc slab corresponding for a certain size */
 82struct kmem_cache *kmalloc_slab(size_t, gfp_t);
 83#endif
 84
 85
 86/* Functions provided by the slab allocators */
 87extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
 88
 89extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
 90			unsigned long flags);
 91extern void create_boot_cache(struct kmem_cache *, const char *name,
 92			size_t size, unsigned long flags);
 93
 94int slab_unmergeable(struct kmem_cache *s);
 95struct kmem_cache *find_mergeable(size_t size, size_t align,
 96		unsigned long flags, const char *name, void (*ctor)(void *));
 97#ifndef CONFIG_SLOB
 98struct kmem_cache *
 99__kmem_cache_alias(const char *name, size_t size, size_t align,
100		   unsigned long flags, void (*ctor)(void *));
101
102unsigned long kmem_cache_flags(unsigned long object_size,
103	unsigned long flags, const char *name,
104	void (*ctor)(void *));
105#else
106static inline struct kmem_cache *
107__kmem_cache_alias(const char *name, size_t size, size_t align,
108		   unsigned long flags, void (*ctor)(void *))
109{ return NULL; }
110
111static inline unsigned long kmem_cache_flags(unsigned long object_size,
112	unsigned long flags, const char *name,
113	void (*ctor)(void *))
114{
115	return flags;
116}
117#endif
118
119
120/* Legal flag mask for kmem_cache_create(), for various configurations */
121#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
122			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
123
124#if defined(CONFIG_DEBUG_SLAB)
125#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
126#elif defined(CONFIG_SLUB_DEBUG)
127#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
128			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
129#else
130#define SLAB_DEBUG_FLAGS (0)
131#endif
132
133#if defined(CONFIG_SLAB)
134#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
135			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
136			  SLAB_NOTRACK | SLAB_ACCOUNT)
137#elif defined(CONFIG_SLUB)
138#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
139			  SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
140#else
141#define SLAB_CACHE_FLAGS (0)
142#endif
143
144#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
145
146int __kmem_cache_shutdown(struct kmem_cache *);
147void __kmem_cache_release(struct kmem_cache *);
148int __kmem_cache_shrink(struct kmem_cache *, bool);
149void slab_kmem_cache_release(struct kmem_cache *);
150
151struct seq_file;
152struct file;
153
154struct slabinfo {
155	unsigned long active_objs;
156	unsigned long num_objs;
157	unsigned long active_slabs;
158	unsigned long num_slabs;
159	unsigned long shared_avail;
160	unsigned int limit;
161	unsigned int batchcount;
162	unsigned int shared;
163	unsigned int objects_per_slab;
164	unsigned int cache_order;
165};
166
167void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
168void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
169ssize_t slabinfo_write(struct file *file, const char __user *buffer,
170		       size_t count, loff_t *ppos);
171
172/*
173 * Generic implementation of bulk operations
174 * These are useful for situations in which the allocator cannot
175 * perform optimizations. In that case segments of the object listed
176 * may be allocated or freed using these operations.
177 */
178void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
179int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
180
181#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
182/*
183 * Iterate over all memcg caches of the given root cache. The caller must hold
184 * slab_mutex.
185 */
186#define for_each_memcg_cache(iter, root) \
187	list_for_each_entry(iter, &(root)->memcg_params.list, \
188			    memcg_params.list)
189
190static inline bool is_root_cache(struct kmem_cache *s)
191{
192	return s->memcg_params.is_root_cache;
 
 
 
 
193}
194
195static inline bool slab_equal_or_root(struct kmem_cache *s,
196				      struct kmem_cache *p)
197{
198	return p == s || p == s->memcg_params.root_cache;
 
199}
200
201/*
202 * We use suffixes to the name in memcg because we can't have caches
203 * created in the system with the same name. But when we print them
204 * locally, better refer to them with the base name
205 */
206static inline const char *cache_name(struct kmem_cache *s)
207{
208	if (!is_root_cache(s))
209		s = s->memcg_params.root_cache;
210	return s->name;
211}
212
213/*
214 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
215 * That said the caller must assure the memcg's cache won't go away by either
216 * taking a css reference to the owner cgroup, or holding the slab_mutex.
 
 
 
 
217 */
218static inline struct kmem_cache *
219cache_from_memcg_idx(struct kmem_cache *s, int idx)
220{
221	struct kmem_cache *cachep;
222	struct memcg_cache_array *arr;
 
 
 
223
224	rcu_read_lock();
225	arr = rcu_dereference(s->memcg_params.memcg_caches);
 
 
226
227	/*
228	 * Make sure we will access the up-to-date value. The code updating
229	 * memcg_caches issues a write barrier to match this (see
230	 * memcg_create_kmem_cache()).
231	 */
232	cachep = lockless_dereference(arr->entries[idx]);
233	rcu_read_unlock();
234
235	return cachep;
236}
237
238static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
239{
240	if (is_root_cache(s))
241		return s;
242	return s->memcg_params.root_cache;
243}
244
245static __always_inline int memcg_charge_slab(struct page *page,
246					     gfp_t gfp, int order,
247					     struct kmem_cache *s)
248{
249	int ret;
250
251	if (!memcg_kmem_enabled())
252		return 0;
253	if (is_root_cache(s))
254		return 0;
255
256	ret = __memcg_kmem_charge_memcg(page, gfp, order,
257					s->memcg_params.memcg);
258	if (ret)
259		return ret;
260
261	memcg_kmem_update_page_stat(page,
262			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
263			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
264			1 << order);
265	return 0;
266}
267
268static __always_inline void memcg_uncharge_slab(struct page *page, int order,
269						struct kmem_cache *s)
270{
271	memcg_kmem_update_page_stat(page,
272			(s->flags & SLAB_RECLAIM_ACCOUNT) ?
273			MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
274			-(1 << order));
275	memcg_kmem_uncharge(page, order);
276}
277
278extern void slab_init_memcg_params(struct kmem_cache *);
279
280#else /* CONFIG_MEMCG && !CONFIG_SLOB */
281
282#define for_each_memcg_cache(iter, root) \
283	for ((void)(iter), (void)(root); 0; )
284
285static inline bool is_root_cache(struct kmem_cache *s)
286{
287	return true;
288}
289
290static inline bool slab_equal_or_root(struct kmem_cache *s,
291				      struct kmem_cache *p)
292{
293	return true;
294}
295
296static inline const char *cache_name(struct kmem_cache *s)
297{
298	return s->name;
299}
300
301static inline struct kmem_cache *
302cache_from_memcg_idx(struct kmem_cache *s, int idx)
303{
304	return NULL;
305}
306
307static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
308{
309	return s;
310}
311
312static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
313				    struct kmem_cache *s)
314{
315	return 0;
316}
317
318static inline void memcg_uncharge_slab(struct page *page, int order,
319				       struct kmem_cache *s)
320{
321}
322
323static inline void slab_init_memcg_params(struct kmem_cache *s)
324{
325}
326#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
327
328static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
329{
330	struct kmem_cache *cachep;
331	struct page *page;
332
333	/*
334	 * When kmemcg is not being used, both assignments should return the
335	 * same value. but we don't want to pay the assignment price in that
336	 * case. If it is not compiled in, the compiler should be smart enough
337	 * to not do even the assignment. In that case, slab_equal_or_root
338	 * will also be a constant.
339	 */
340	if (!memcg_kmem_enabled() &&
341	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
342		return s;
343
344	page = virt_to_head_page(x);
345	cachep = page->slab_cache;
346	if (slab_equal_or_root(cachep, s))
347		return cachep;
348
349	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
350	       __func__, s->name, cachep->name);
351	WARN_ON_ONCE(1);
352	return s;
353}
354
355static inline size_t slab_ksize(const struct kmem_cache *s)
356{
357#ifndef CONFIG_SLUB
358	return s->object_size;
359
360#else /* CONFIG_SLUB */
361# ifdef CONFIG_SLUB_DEBUG
362	/*
363	 * Debugging requires use of the padding between object
364	 * and whatever may come after it.
365	 */
366	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
367		return s->object_size;
368# endif
369	/*
370	 * If we have the need to store the freelist pointer
371	 * back there or track user information then we can
372	 * only use the space before that information.
373	 */
374	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
375		return s->inuse;
376	/*
377	 * Else we can use all the padding etc for the allocation
378	 */
379	return s->size;
380#endif
381}
382
383static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
384						     gfp_t flags)
385{
386	flags &= gfp_allowed_mask;
387	lockdep_trace_alloc(flags);
388	might_sleep_if(gfpflags_allow_blocking(flags));
389
390	if (should_failslab(s, flags))
391		return NULL;
392
393	return memcg_kmem_get_cache(s, flags);
394}
395
396static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
397					size_t size, void **p)
398{
399	size_t i;
400
401	flags &= gfp_allowed_mask;
402	for (i = 0; i < size; i++) {
403		void *object = p[i];
404
405		kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
406		kmemleak_alloc_recursive(object, s->object_size, 1,
407					 s->flags, flags);
408		kasan_slab_alloc(s, object, flags);
409	}
410	memcg_kmem_put_cache(s);
411}
412
413#ifndef CONFIG_SLOB
414/*
415 * The slab lists for all objects.
416 */
417struct kmem_cache_node {
418	spinlock_t list_lock;
419
420#ifdef CONFIG_SLAB
421	struct list_head slabs_partial;	/* partial list first, better asm code */
422	struct list_head slabs_full;
423	struct list_head slabs_free;
424	unsigned long free_objects;
425	unsigned int free_limit;
426	unsigned int colour_next;	/* Per-node cache coloring */
427	struct array_cache *shared;	/* shared per node */
428	struct alien_cache **alien;	/* on other nodes */
429	unsigned long next_reap;	/* updated without locking */
430	int free_touched;		/* updated without locking */
431#endif
432
433#ifdef CONFIG_SLUB
434	unsigned long nr_partial;
435	struct list_head partial;
436#ifdef CONFIG_SLUB_DEBUG
437	atomic_long_t nr_slabs;
438	atomic_long_t total_objects;
439	struct list_head full;
440#endif
441#endif
442
443};
444
445static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
446{
447	return s->node[node];
448}
449
450/*
451 * Iterator over all nodes. The body will be executed for each node that has
452 * a kmem_cache_node structure allocated (which is true for all online nodes)
453 */
454#define for_each_kmem_cache_node(__s, __node, __n) \
455	for (__node = 0; __node < nr_node_ids; __node++) \
456		 if ((__n = get_node(__s, __node)))
457
458#endif
459
460void *slab_start(struct seq_file *m, loff_t *pos);
461void *slab_next(struct seq_file *m, void *p, loff_t *pos);
462void slab_stop(struct seq_file *m, void *p);
463int memcg_slab_show(struct seq_file *m, void *p);
464
465#endif /* MM_SLAB_H */
v3.15
  1#ifndef MM_SLAB_H
  2#define MM_SLAB_H
  3/*
  4 * Internal slab definitions
  5 */
  6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  7/*
  8 * State of the slab allocator.
  9 *
 10 * This is used to describe the states of the allocator during bootup.
 11 * Allocators use this to gradually bootstrap themselves. Most allocators
 12 * have the problem that the structures used for managing slab caches are
 13 * allocated from slab caches themselves.
 14 */
 15enum slab_state {
 16	DOWN,			/* No slab functionality yet */
 17	PARTIAL,		/* SLUB: kmem_cache_node available */
 18	PARTIAL_ARRAYCACHE,	/* SLAB: kmalloc size for arraycache available */
 19	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
 20	UP,			/* Slab caches usable but not all extras yet */
 21	FULL			/* Everything is working */
 22};
 23
 24extern enum slab_state slab_state;
 25
 26/* The slab cache mutex protects the management structures during changes */
 27extern struct mutex slab_mutex;
 28
 29/* The list of all slab caches on the system */
 30extern struct list_head slab_caches;
 31
 32/* The slab cache that manages slab cache information */
 33extern struct kmem_cache *kmem_cache;
 34
 35unsigned long calculate_alignment(unsigned long flags,
 36		unsigned long align, unsigned long size);
 37
 38#ifndef CONFIG_SLOB
 39/* Kmalloc array related functions */
 
 40void create_kmalloc_caches(unsigned long);
 41
 42/* Find the kmalloc slab corresponding for a certain size */
 43struct kmem_cache *kmalloc_slab(size_t, gfp_t);
 44#endif
 45
 46
 47/* Functions provided by the slab allocators */
 48extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
 49
 50extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
 51			unsigned long flags);
 52extern void create_boot_cache(struct kmem_cache *, const char *name,
 53			size_t size, unsigned long flags);
 54
 55struct mem_cgroup;
 56#ifdef CONFIG_SLUB
 
 
 57struct kmem_cache *
 58__kmem_cache_alias(const char *name, size_t size, size_t align,
 59		   unsigned long flags, void (*ctor)(void *));
 
 
 
 
 60#else
 61static inline struct kmem_cache *
 62__kmem_cache_alias(const char *name, size_t size, size_t align,
 63		   unsigned long flags, void (*ctor)(void *))
 64{ return NULL; }
 
 
 
 
 
 
 
 65#endif
 66
 67
 68/* Legal flag mask for kmem_cache_create(), for various configurations */
 69#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
 70			 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
 71
 72#if defined(CONFIG_DEBUG_SLAB)
 73#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 74#elif defined(CONFIG_SLUB_DEBUG)
 75#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 76			  SLAB_TRACE | SLAB_DEBUG_FREE)
 77#else
 78#define SLAB_DEBUG_FLAGS (0)
 79#endif
 80
 81#if defined(CONFIG_SLAB)
 82#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
 83			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
 
 84#elif defined(CONFIG_SLUB)
 85#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
 86			  SLAB_TEMPORARY | SLAB_NOTRACK)
 87#else
 88#define SLAB_CACHE_FLAGS (0)
 89#endif
 90
 91#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
 92
 93int __kmem_cache_shutdown(struct kmem_cache *);
 
 
 94void slab_kmem_cache_release(struct kmem_cache *);
 95
 96struct seq_file;
 97struct file;
 98
 99struct slabinfo {
100	unsigned long active_objs;
101	unsigned long num_objs;
102	unsigned long active_slabs;
103	unsigned long num_slabs;
104	unsigned long shared_avail;
105	unsigned int limit;
106	unsigned int batchcount;
107	unsigned int shared;
108	unsigned int objects_per_slab;
109	unsigned int cache_order;
110};
111
112void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
113void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
114ssize_t slabinfo_write(struct file *file, const char __user *buffer,
115		       size_t count, loff_t *ppos);
116
117#ifdef CONFIG_MEMCG_KMEM
118static inline bool is_root_cache(struct kmem_cache *s)
119{
120	return !s->memcg_params || s->memcg_params->is_root_cache;
121}
 
 
 
122
123static inline void memcg_bind_pages(struct kmem_cache *s, int order)
124{
125	if (!is_root_cache(s))
126		atomic_add(1 << order, &s->memcg_params->nr_pages);
127}
 
 
 
128
129static inline void memcg_release_pages(struct kmem_cache *s, int order)
130{
131	if (is_root_cache(s))
132		return;
133
134	if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
135		mem_cgroup_destroy_cache(s);
136}
137
138static inline bool slab_equal_or_root(struct kmem_cache *s,
139					struct kmem_cache *p)
140{
141	return (p == s) ||
142		(s->memcg_params && (p == s->memcg_params->root_cache));
143}
144
145/*
146 * We use suffixes to the name in memcg because we can't have caches
147 * created in the system with the same name. But when we print them
148 * locally, better refer to them with the base name
149 */
150static inline const char *cache_name(struct kmem_cache *s)
151{
152	if (!is_root_cache(s))
153		return s->memcg_params->root_cache->name;
154	return s->name;
155}
156
157/*
158 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
159 * That said the caller must assure the memcg's cache won't go away. Since once
160 * created a memcg's cache is destroyed only along with the root cache, it is
161 * true if we are going to allocate from the cache or hold a reference to the
162 * root cache by other means. Otherwise, we should hold either the slab_mutex
163 * or the memcg's slab_caches_mutex while calling this function and accessing
164 * the returned value.
165 */
166static inline struct kmem_cache *
167cache_from_memcg_idx(struct kmem_cache *s, int idx)
168{
169	struct kmem_cache *cachep;
170	struct memcg_cache_params *params;
171
172	if (!s->memcg_params)
173		return NULL;
174
175	rcu_read_lock();
176	params = rcu_dereference(s->memcg_params);
177	cachep = params->memcg_caches[idx];
178	rcu_read_unlock();
179
180	/*
181	 * Make sure we will access the up-to-date value. The code updating
182	 * memcg_caches issues a write barrier to match this (see
183	 * memcg_register_cache()).
184	 */
185	smp_read_barrier_depends();
 
 
186	return cachep;
187}
188
189static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
190{
191	if (is_root_cache(s))
192		return s;
193	return s->memcg_params->root_cache;
194}
195#else
196static inline bool is_root_cache(struct kmem_cache *s)
 
 
197{
198	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199}
200
201static inline void memcg_bind_pages(struct kmem_cache *s, int order)
 
202{
 
 
 
 
 
203}
204
205static inline void memcg_release_pages(struct kmem_cache *s, int order)
 
 
 
 
 
 
 
206{
 
207}
208
209static inline bool slab_equal_or_root(struct kmem_cache *s,
210				      struct kmem_cache *p)
211{
212	return true;
213}
214
215static inline const char *cache_name(struct kmem_cache *s)
216{
217	return s->name;
218}
219
220static inline struct kmem_cache *
221cache_from_memcg_idx(struct kmem_cache *s, int idx)
222{
223	return NULL;
224}
225
226static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
227{
228	return s;
229}
230#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
232static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
233{
234	struct kmem_cache *cachep;
235	struct page *page;
236
237	/*
238	 * When kmemcg is not being used, both assignments should return the
239	 * same value. but we don't want to pay the assignment price in that
240	 * case. If it is not compiled in, the compiler should be smart enough
241	 * to not do even the assignment. In that case, slab_equal_or_root
242	 * will also be a constant.
243	 */
244	if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
 
245		return s;
246
247	page = virt_to_head_page(x);
248	cachep = page->slab_cache;
249	if (slab_equal_or_root(cachep, s))
250		return cachep;
251
252	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
253		__FUNCTION__, cachep->name, s->name);
254	WARN_ON_ONCE(1);
255	return s;
256}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
 
 
 
 
 
 
 
259
 
260/*
261 * The slab lists for all objects.
262 */
263struct kmem_cache_node {
264	spinlock_t list_lock;
265
266#ifdef CONFIG_SLAB
267	struct list_head slabs_partial;	/* partial list first, better asm code */
268	struct list_head slabs_full;
269	struct list_head slabs_free;
270	unsigned long free_objects;
271	unsigned int free_limit;
272	unsigned int colour_next;	/* Per-node cache coloring */
273	struct array_cache *shared;	/* shared per node */
274	struct array_cache **alien;	/* on other nodes */
275	unsigned long next_reap;	/* updated without locking */
276	int free_touched;		/* updated without locking */
277#endif
278
279#ifdef CONFIG_SLUB
280	unsigned long nr_partial;
281	struct list_head partial;
282#ifdef CONFIG_SLUB_DEBUG
283	atomic_long_t nr_slabs;
284	atomic_long_t total_objects;
285	struct list_head full;
286#endif
287#endif
288
289};
290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291void *slab_next(struct seq_file *m, void *p, loff_t *pos);
292void slab_stop(struct seq_file *m, void *p);