Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.6
  1/*
  2 * Cleancache frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of cleancache.  See
  6 * Documentation/vm/cleancache.txt for more information.
  7 *
  8 * Copyright (C) 2009-2010 Oracle Corp. All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/module.h>
 15#include <linux/fs.h>
 16#include <linux/exportfs.h>
 17#include <linux/mm.h>
 18#include <linux/debugfs.h>
 19#include <linux/cleancache.h>
 20
 21/*
 22 * cleancache_ops is set by cleancache_register_ops to contain the pointers
 23 * to the cleancache "backend" implementation functions.
 24 */
 25static const struct cleancache_ops *cleancache_ops __read_mostly;
 26
 27/*
 28 * Counters available via /sys/kernel/debug/cleancache (if debugfs is
 29 * properly configured.  These are for information only so are not protected
 30 * against increment races.
 31 */
 32static u64 cleancache_succ_gets;
 33static u64 cleancache_failed_gets;
 34static u64 cleancache_puts;
 35static u64 cleancache_invalidates;
 36
 37static void cleancache_register_ops_sb(struct super_block *sb, void *unused)
 38{
 39	switch (sb->cleancache_poolid) {
 40	case CLEANCACHE_NO_BACKEND:
 41		__cleancache_init_fs(sb);
 42		break;
 43	case CLEANCACHE_NO_BACKEND_SHARED:
 44		__cleancache_init_shared_fs(sb);
 45		break;
 46	}
 47}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48
 49/*
 50 * Register operations for cleancache. Returns 0 on success.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 51 */
 52int cleancache_register_ops(const struct cleancache_ops *ops)
 53{
 54	if (cmpxchg(&cleancache_ops, NULL, ops))
 55		return -EBUSY;
 56
 
 
 
 
 
 
 
 
 57	/*
 58	 * A cleancache backend can be built as a module and hence loaded after
 59	 * a cleancache enabled filesystem has called cleancache_init_fs. To
 60	 * handle such a scenario, here we call ->init_fs or ->init_shared_fs
 61	 * for each active super block. To differentiate between local and
 62	 * shared filesystems, we temporarily initialize sb->cleancache_poolid
 63	 * to CLEANCACHE_NO_BACKEND or CLEANCACHE_NO_BACKEND_SHARED
 64	 * respectively in case there is no backend registered at the time
 65	 * cleancache_init_fs or cleancache_init_shared_fs is called.
 66	 *
 67	 * Since filesystems can be mounted concurrently with cleancache
 68	 * backend registration, we have to be careful to guarantee that all
 69	 * cleancache enabled filesystems that has been mounted by the time
 70	 * cleancache_register_ops is called has got and all mounted later will
 71	 * get cleancache_poolid. This is assured by the following statements
 72	 * tied together:
 73	 *
 74	 * a) iterate_supers skips only those super blocks that has started
 75	 *    ->kill_sb
 76	 *
 77	 * b) if iterate_supers encounters a super block that has not finished
 78	 *    ->mount yet, it waits until it is finished
 79	 *
 80	 * c) cleancache_init_fs is called from ->mount and
 81	 *    cleancache_invalidate_fs is called from ->kill_sb
 82	 *
 83	 * d) we call iterate_supers after cleancache_ops has been set
 84	 *
 85	 * From a) it follows that if iterate_supers skips a super block, then
 86	 * either the super block is already dead, in which case we do not need
 87	 * to bother initializing cleancache for it, or it was mounted after we
 88	 * initiated iterate_supers. In the latter case, it must have seen
 89	 * cleancache_ops set according to d) and initialized cleancache from
 90	 * ->mount by itself according to c). This proves that we call
 91	 * ->init_fs at least once for each active super block.
 92	 *
 93	 * From b) and c) it follows that if iterate_supers encounters a super
 94	 * block that has already started ->init_fs, it will wait until ->mount
 95	 * and hence ->init_fs has finished, then check cleancache_poolid, see
 96	 * that it has already been set and therefore do nothing. This proves
 97	 * that we call ->init_fs no more than once for each super block.
 98	 *
 99	 * Combined together, the last two paragraphs prove the function
100	 * correctness.
101	 *
102	 * Note that various cleancache callbacks may proceed before this
103	 * function is called or even concurrently with it, but since
104	 * CLEANCACHE_NO_BACKEND is negative, they will all result in a noop
105	 * until the corresponding ->init_fs has been actually called and
106	 * cleancache_ops has been set.
107	 */
108	iterate_supers(cleancache_register_ops_sb, NULL);
109	return 0;
 
 
110}
111EXPORT_SYMBOL(cleancache_register_ops);
112
113/* Called by a cleancache-enabled filesystem at time of mount */
114void __cleancache_init_fs(struct super_block *sb)
115{
116	int pool_id = CLEANCACHE_NO_BACKEND;
117
118	if (cleancache_ops) {
119		pool_id = cleancache_ops->init_fs(PAGE_SIZE);
120		if (pool_id < 0)
121			pool_id = CLEANCACHE_NO_POOL;
 
 
 
 
 
 
122	}
123	sb->cleancache_poolid = pool_id;
124}
125EXPORT_SYMBOL(__cleancache_init_fs);
126
127/* Called by a cleancache-enabled clustered filesystem at time of mount */
128void __cleancache_init_shared_fs(struct super_block *sb)
129{
130	int pool_id = CLEANCACHE_NO_BACKEND_SHARED;
131
132	if (cleancache_ops) {
133		pool_id = cleancache_ops->init_shared_fs(sb->s_uuid, PAGE_SIZE);
134		if (pool_id < 0)
135			pool_id = CLEANCACHE_NO_POOL;
 
 
 
 
 
 
 
 
136	}
137	sb->cleancache_poolid = pool_id;
138}
139EXPORT_SYMBOL(__cleancache_init_shared_fs);
140
141/*
142 * If the filesystem uses exportable filehandles, use the filehandle as
143 * the key, else use the inode number.
144 */
145static int cleancache_get_key(struct inode *inode,
146			      struct cleancache_filekey *key)
147{
148	int (*fhfn)(struct inode *, __u32 *fh, int *, struct inode *);
149	int len = 0, maxlen = CLEANCACHE_KEY_MAX;
150	struct super_block *sb = inode->i_sb;
151
152	key->u.ino = inode->i_ino;
153	if (sb->s_export_op != NULL) {
154		fhfn = sb->s_export_op->encode_fh;
155		if  (fhfn) {
156			len = (*fhfn)(inode, &key->u.fh[0], &maxlen, NULL);
157			if (len <= FILEID_ROOT || len == FILEID_INVALID)
158				return -1;
159			if (maxlen > CLEANCACHE_KEY_MAX)
160				return -1;
161		}
162	}
163	return 0;
164}
165
166/*
 
 
 
 
 
 
 
 
 
 
 
 
 
167 * "Get" data from cleancache associated with the poolid/inode/index
168 * that were specified when the data was put to cleanache and, if
169 * successful, use it to fill the specified page with data and return 0.
170 * The pageframe is unchanged and returns -1 if the get fails.
171 * Page must be locked by caller.
172 *
173 * The function has two checks before any action is taken - whether
174 * a backend is registered and whether the sb->cleancache_poolid
175 * is correct.
176 */
177int __cleancache_get_page(struct page *page)
178{
179	int ret = -1;
180	int pool_id;
 
181	struct cleancache_filekey key = { .u.key = { 0 } };
182
183	if (!cleancache_ops) {
184		cleancache_failed_gets++;
185		goto out;
186	}
187
188	VM_BUG_ON_PAGE(!PageLocked(page), page);
189	pool_id = page->mapping->host->i_sb->cleancache_poolid;
190	if (pool_id < 0)
191		goto out;
 
192
193	if (cleancache_get_key(page->mapping->host, &key) < 0)
194		goto out;
195
196	ret = cleancache_ops->get_page(pool_id, key, page->index, page);
 
 
197	if (ret == 0)
198		cleancache_succ_gets++;
199	else
200		cleancache_failed_gets++;
201out:
202	return ret;
203}
204EXPORT_SYMBOL(__cleancache_get_page);
205
206/*
207 * "Put" data from a page to cleancache and associate it with the
208 * (previously-obtained per-filesystem) poolid and the page's,
209 * inode and page index.  Page must be locked.  Note that a put_page
210 * always "succeeds", though a subsequent get_page may succeed or fail.
211 *
212 * The function has two checks before any action is taken - whether
213 * a backend is registered and whether the sb->cleancache_poolid
214 * is correct.
215 */
216void __cleancache_put_page(struct page *page)
217{
218	int pool_id;
 
219	struct cleancache_filekey key = { .u.key = { 0 } };
220
221	if (!cleancache_ops) {
222		cleancache_puts++;
223		return;
224	}
225
226	VM_BUG_ON_PAGE(!PageLocked(page), page);
227	pool_id = page->mapping->host->i_sb->cleancache_poolid;
 
 
 
 
 
228	if (pool_id >= 0 &&
229		cleancache_get_key(page->mapping->host, &key) >= 0) {
230		cleancache_ops->put_page(pool_id, key, page->index, page);
231		cleancache_puts++;
232	}
233}
234EXPORT_SYMBOL(__cleancache_put_page);
235
236/*
237 * Invalidate any data from cleancache associated with the poolid and the
238 * page's inode and page index so that a subsequent "get" will fail.
239 *
240 * The function has two checks before any action is taken - whether
241 * a backend is registered and whether the sb->cleancache_poolid
242 * is correct.
243 */
244void __cleancache_invalidate_page(struct address_space *mapping,
245					struct page *page)
246{
247	/* careful... page->mapping is NULL sometimes when this is called */
248	int pool_id = mapping->host->i_sb->cleancache_poolid;
 
249	struct cleancache_filekey key = { .u.key = { 0 } };
250
251	if (!cleancache_ops)
252		return;
253
254	if (pool_id >= 0) {
 
 
 
 
255		VM_BUG_ON_PAGE(!PageLocked(page), page);
256		if (cleancache_get_key(mapping->host, &key) >= 0) {
257			cleancache_ops->invalidate_page(pool_id,
258					key, page->index);
259			cleancache_invalidates++;
260		}
261	}
262}
263EXPORT_SYMBOL(__cleancache_invalidate_page);
264
265/*
266 * Invalidate all data from cleancache associated with the poolid and the
267 * mappings's inode so that all subsequent gets to this poolid/inode
268 * will fail.
269 *
270 * The function has two checks before any action is taken - whether
271 * a backend is registered and whether the sb->cleancache_poolid
272 * is correct.
273 */
274void __cleancache_invalidate_inode(struct address_space *mapping)
275{
276	int pool_id = mapping->host->i_sb->cleancache_poolid;
 
277	struct cleancache_filekey key = { .u.key = { 0 } };
278
279	if (!cleancache_ops)
280		return;
281
 
 
 
 
 
282	if (pool_id >= 0 && cleancache_get_key(mapping->host, &key) >= 0)
283		cleancache_ops->invalidate_inode(pool_id, key);
284}
285EXPORT_SYMBOL(__cleancache_invalidate_inode);
286
287/*
288 * Called by any cleancache-enabled filesystem at time of unmount;
289 * note that pool_id is surrendered and may be returned by a subsequent
290 * cleancache_init_fs or cleancache_init_shared_fs.
291 */
292void __cleancache_invalidate_fs(struct super_block *sb)
293{
294	int pool_id;
295
296	pool_id = sb->cleancache_poolid;
297	sb->cleancache_poolid = CLEANCACHE_NO_POOL;
298
299	if (cleancache_ops && pool_id >= 0)
300		cleancache_ops->invalidate_fs(pool_id);
 
 
 
 
 
 
 
 
 
 
 
 
301}
302EXPORT_SYMBOL(__cleancache_invalidate_fs);
303
304static int __init init_cleancache(void)
305{
 
 
306#ifdef CONFIG_DEBUG_FS
307	struct dentry *root = debugfs_create_dir("cleancache", NULL);
308	if (root == NULL)
309		return -ENXIO;
310	debugfs_create_u64("succ_gets", S_IRUGO, root, &cleancache_succ_gets);
311	debugfs_create_u64("failed_gets", S_IRUGO,
312				root, &cleancache_failed_gets);
313	debugfs_create_u64("puts", S_IRUGO, root, &cleancache_puts);
314	debugfs_create_u64("invalidates", S_IRUGO,
315				root, &cleancache_invalidates);
316#endif
 
 
 
 
317	return 0;
318}
319module_init(init_cleancache)
v3.15
  1/*
  2 * Cleancache frontend
  3 *
  4 * This code provides the generic "frontend" layer to call a matching
  5 * "backend" driver implementation of cleancache.  See
  6 * Documentation/vm/cleancache.txt for more information.
  7 *
  8 * Copyright (C) 2009-2010 Oracle Corp. All rights reserved.
  9 * Author: Dan Magenheimer
 10 *
 11 * This work is licensed under the terms of the GNU GPL, version 2.
 12 */
 13
 14#include <linux/module.h>
 15#include <linux/fs.h>
 16#include <linux/exportfs.h>
 17#include <linux/mm.h>
 18#include <linux/debugfs.h>
 19#include <linux/cleancache.h>
 20
 21/*
 22 * cleancache_ops is set by cleancache_ops_register to contain the pointers
 23 * to the cleancache "backend" implementation functions.
 24 */
 25static struct cleancache_ops *cleancache_ops __read_mostly;
 26
 27/*
 28 * Counters available via /sys/kernel/debug/frontswap (if debugfs is
 29 * properly configured.  These are for information only so are not protected
 30 * against increment races.
 31 */
 32static u64 cleancache_succ_gets;
 33static u64 cleancache_failed_gets;
 34static u64 cleancache_puts;
 35static u64 cleancache_invalidates;
 36
 37/*
 38 * When no backend is registered all calls to init_fs and init_shared_fs
 39 * are registered and fake poolids (FAKE_FS_POOLID_OFFSET or
 40 * FAKE_SHARED_FS_POOLID_OFFSET, plus offset in the respective array
 41 * [shared_|]fs_poolid_map) are given to the respective super block
 42 * (sb->cleancache_poolid) and no tmem_pools are created. When a backend
 43 * registers with cleancache the previous calls to init_fs and init_shared_fs
 44 * are executed to create tmem_pools and set the respective poolids. While no
 45 * backend is registered all "puts", "gets" and "flushes" are ignored or failed.
 46 */
 47#define MAX_INITIALIZABLE_FS 32
 48#define FAKE_FS_POOLID_OFFSET 1000
 49#define FAKE_SHARED_FS_POOLID_OFFSET 2000
 50
 51#define FS_NO_BACKEND (-1)
 52#define FS_UNKNOWN (-2)
 53static int fs_poolid_map[MAX_INITIALIZABLE_FS];
 54static int shared_fs_poolid_map[MAX_INITIALIZABLE_FS];
 55static char *uuids[MAX_INITIALIZABLE_FS];
 56/*
 57 * Mutex for the [shared_|]fs_poolid_map to guard against multiple threads
 58 * invoking umount (and ending in __cleancache_invalidate_fs) and also multiple
 59 * threads calling mount (and ending up in __cleancache_init_[shared|]fs).
 60 */
 61static DEFINE_MUTEX(poolid_mutex);
 62/*
 63 * When set to false (default) all calls to the cleancache functions, except
 64 * the __cleancache_invalidate_fs and __cleancache_init_[shared|]fs are guarded
 65 * by the if (!cleancache_ops) return. This means multiple threads (from
 66 * different filesystems) will be checking cleancache_ops. The usage of a
 67 * bool instead of a atomic_t or a bool guarded by a spinlock is OK - we are
 68 * OK if the time between the backend's have been initialized (and
 69 * cleancache_ops has been set to not NULL) and when the filesystems start
 70 * actually calling the backends. The inverse (when unloading) is obviously
 71 * not good - but this shim does not do that (yet).
 72 */
 73
 74/*
 75 * The backends and filesystems work all asynchronously. This is b/c the
 76 * backends can be built as modules.
 77 * The usual sequence of events is:
 78 *	a) mount /	-> __cleancache_init_fs is called. We set the
 79 *		[shared_|]fs_poolid_map and uuids for.
 80 *
 81 *	b). user does I/Os -> we call the rest of __cleancache_* functions
 82 *		which return immediately as cleancache_ops is false.
 83 *
 84 *	c). modprobe zcache -> cleancache_register_ops. We init the backend
 85 *		and set cleancache_ops to true, and for any fs_poolid_map
 86 *		(which is set by __cleancache_init_fs) we initialize the poolid.
 87 *
 88 *	d). user does I/Os -> now that cleancache_ops is true all the
 89 *		__cleancache_* functions can call the backend. They all check
 90 *		that fs_poolid_map is valid and if so invoke the backend.
 91 *
 92 *	e). umount /	-> __cleancache_invalidate_fs, the fs_poolid_map is
 93 *		reset (which is the second check in the __cleancache_* ops
 94 *		to call the backend).
 95 *
 96 * The sequence of event could also be c), followed by a), and d). and e). The
 97 * c) would not happen anymore. There is also the chance of c), and one thread
 98 * doing a) + d), and another doing e). For that case we depend on the
 99 * filesystem calling __cleancache_invalidate_fs in the proper sequence (so
100 * that it handles all I/Os before it invalidates the fs (which is last part
101 * of unmounting process).
102 *
103 * Note: The acute reader will notice that there is no "rmmod zcache" case.
104 * This is b/c the functionality for that is not yet implemented and when
105 * done, will require some extra locking not yet devised.
106 */
107
108/*
109 * Register operations for cleancache, returning previous thus allowing
110 * detection of multiple backends and possible nesting.
111 */
112struct cleancache_ops *cleancache_register_ops(struct cleancache_ops *ops)
113{
114	struct cleancache_ops *old = cleancache_ops;
115	int i;
116
117	mutex_lock(&poolid_mutex);
118	for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
119		if (fs_poolid_map[i] == FS_NO_BACKEND)
120			fs_poolid_map[i] = ops->init_fs(PAGE_SIZE);
121		if (shared_fs_poolid_map[i] == FS_NO_BACKEND)
122			shared_fs_poolid_map[i] = ops->init_shared_fs
123					(uuids[i], PAGE_SIZE);
124	}
125	/*
126	 * We MUST set cleancache_ops _after_ we have called the backends
127	 * init_fs or init_shared_fs functions. Otherwise the compiler might
128	 * re-order where cleancache_ops is set in this function.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129	 */
130	barrier();
131	cleancache_ops = ops;
132	mutex_unlock(&poolid_mutex);
133	return old;
134}
135EXPORT_SYMBOL(cleancache_register_ops);
136
137/* Called by a cleancache-enabled filesystem at time of mount */
138void __cleancache_init_fs(struct super_block *sb)
139{
140	int i;
141
142	mutex_lock(&poolid_mutex);
143	for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
144		if (fs_poolid_map[i] == FS_UNKNOWN) {
145			sb->cleancache_poolid = i + FAKE_FS_POOLID_OFFSET;
146			if (cleancache_ops)
147				fs_poolid_map[i] = cleancache_ops->init_fs(PAGE_SIZE);
148			else
149				fs_poolid_map[i] = FS_NO_BACKEND;
150			break;
151		}
152	}
153	mutex_unlock(&poolid_mutex);
154}
155EXPORT_SYMBOL(__cleancache_init_fs);
156
157/* Called by a cleancache-enabled clustered filesystem at time of mount */
158void __cleancache_init_shared_fs(char *uuid, struct super_block *sb)
159{
160	int i;
161
162	mutex_lock(&poolid_mutex);
163	for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
164		if (shared_fs_poolid_map[i] == FS_UNKNOWN) {
165			sb->cleancache_poolid = i + FAKE_SHARED_FS_POOLID_OFFSET;
166			uuids[i] = uuid;
167			if (cleancache_ops)
168				shared_fs_poolid_map[i] = cleancache_ops->init_shared_fs
169						(uuid, PAGE_SIZE);
170			else
171				shared_fs_poolid_map[i] = FS_NO_BACKEND;
172			break;
173		}
174	}
175	mutex_unlock(&poolid_mutex);
176}
177EXPORT_SYMBOL(__cleancache_init_shared_fs);
178
179/*
180 * If the filesystem uses exportable filehandles, use the filehandle as
181 * the key, else use the inode number.
182 */
183static int cleancache_get_key(struct inode *inode,
184			      struct cleancache_filekey *key)
185{
186	int (*fhfn)(struct inode *, __u32 *fh, int *, struct inode *);
187	int len = 0, maxlen = CLEANCACHE_KEY_MAX;
188	struct super_block *sb = inode->i_sb;
189
190	key->u.ino = inode->i_ino;
191	if (sb->s_export_op != NULL) {
192		fhfn = sb->s_export_op->encode_fh;
193		if  (fhfn) {
194			len = (*fhfn)(inode, &key->u.fh[0], &maxlen, NULL);
195			if (len <= FILEID_ROOT || len == FILEID_INVALID)
196				return -1;
197			if (maxlen > CLEANCACHE_KEY_MAX)
198				return -1;
199		}
200	}
201	return 0;
202}
203
204/*
205 * Returns a pool_id that is associated with a given fake poolid.
206 */
207static int get_poolid_from_fake(int fake_pool_id)
208{
209	if (fake_pool_id >= FAKE_SHARED_FS_POOLID_OFFSET)
210		return shared_fs_poolid_map[fake_pool_id -
211			FAKE_SHARED_FS_POOLID_OFFSET];
212	else if (fake_pool_id >= FAKE_FS_POOLID_OFFSET)
213		return fs_poolid_map[fake_pool_id - FAKE_FS_POOLID_OFFSET];
214	return FS_NO_BACKEND;
215}
216
217/*
218 * "Get" data from cleancache associated with the poolid/inode/index
219 * that were specified when the data was put to cleanache and, if
220 * successful, use it to fill the specified page with data and return 0.
221 * The pageframe is unchanged and returns -1 if the get fails.
222 * Page must be locked by caller.
223 *
224 * The function has two checks before any action is taken - whether
225 * a backend is registered and whether the sb->cleancache_poolid
226 * is correct.
227 */
228int __cleancache_get_page(struct page *page)
229{
230	int ret = -1;
231	int pool_id;
232	int fake_pool_id;
233	struct cleancache_filekey key = { .u.key = { 0 } };
234
235	if (!cleancache_ops) {
236		cleancache_failed_gets++;
237		goto out;
238	}
239
240	VM_BUG_ON_PAGE(!PageLocked(page), page);
241	fake_pool_id = page->mapping->host->i_sb->cleancache_poolid;
242	if (fake_pool_id < 0)
243		goto out;
244	pool_id = get_poolid_from_fake(fake_pool_id);
245
246	if (cleancache_get_key(page->mapping->host, &key) < 0)
247		goto out;
248
249	if (pool_id >= 0)
250		ret = cleancache_ops->get_page(pool_id,
251				key, page->index, page);
252	if (ret == 0)
253		cleancache_succ_gets++;
254	else
255		cleancache_failed_gets++;
256out:
257	return ret;
258}
259EXPORT_SYMBOL(__cleancache_get_page);
260
261/*
262 * "Put" data from a page to cleancache and associate it with the
263 * (previously-obtained per-filesystem) poolid and the page's,
264 * inode and page index.  Page must be locked.  Note that a put_page
265 * always "succeeds", though a subsequent get_page may succeed or fail.
266 *
267 * The function has two checks before any action is taken - whether
268 * a backend is registered and whether the sb->cleancache_poolid
269 * is correct.
270 */
271void __cleancache_put_page(struct page *page)
272{
273	int pool_id;
274	int fake_pool_id;
275	struct cleancache_filekey key = { .u.key = { 0 } };
276
277	if (!cleancache_ops) {
278		cleancache_puts++;
279		return;
280	}
281
282	VM_BUG_ON_PAGE(!PageLocked(page), page);
283	fake_pool_id = page->mapping->host->i_sb->cleancache_poolid;
284	if (fake_pool_id < 0)
285		return;
286
287	pool_id = get_poolid_from_fake(fake_pool_id);
288
289	if (pool_id >= 0 &&
290		cleancache_get_key(page->mapping->host, &key) >= 0) {
291		cleancache_ops->put_page(pool_id, key, page->index, page);
292		cleancache_puts++;
293	}
294}
295EXPORT_SYMBOL(__cleancache_put_page);
296
297/*
298 * Invalidate any data from cleancache associated with the poolid and the
299 * page's inode and page index so that a subsequent "get" will fail.
300 *
301 * The function has two checks before any action is taken - whether
302 * a backend is registered and whether the sb->cleancache_poolid
303 * is correct.
304 */
305void __cleancache_invalidate_page(struct address_space *mapping,
306					struct page *page)
307{
308	/* careful... page->mapping is NULL sometimes when this is called */
309	int pool_id;
310	int fake_pool_id = mapping->host->i_sb->cleancache_poolid;
311	struct cleancache_filekey key = { .u.key = { 0 } };
312
313	if (!cleancache_ops)
314		return;
315
316	if (fake_pool_id >= 0) {
317		pool_id = get_poolid_from_fake(fake_pool_id);
318		if (pool_id < 0)
319			return;
320
321		VM_BUG_ON_PAGE(!PageLocked(page), page);
322		if (cleancache_get_key(mapping->host, &key) >= 0) {
323			cleancache_ops->invalidate_page(pool_id,
324					key, page->index);
325			cleancache_invalidates++;
326		}
327	}
328}
329EXPORT_SYMBOL(__cleancache_invalidate_page);
330
331/*
332 * Invalidate all data from cleancache associated with the poolid and the
333 * mappings's inode so that all subsequent gets to this poolid/inode
334 * will fail.
335 *
336 * The function has two checks before any action is taken - whether
337 * a backend is registered and whether the sb->cleancache_poolid
338 * is correct.
339 */
340void __cleancache_invalidate_inode(struct address_space *mapping)
341{
342	int pool_id;
343	int fake_pool_id = mapping->host->i_sb->cleancache_poolid;
344	struct cleancache_filekey key = { .u.key = { 0 } };
345
346	if (!cleancache_ops)
347		return;
348
349	if (fake_pool_id < 0)
350		return;
351
352	pool_id = get_poolid_from_fake(fake_pool_id);
353
354	if (pool_id >= 0 && cleancache_get_key(mapping->host, &key) >= 0)
355		cleancache_ops->invalidate_inode(pool_id, key);
356}
357EXPORT_SYMBOL(__cleancache_invalidate_inode);
358
359/*
360 * Called by any cleancache-enabled filesystem at time of unmount;
361 * note that pool_id is surrendered and may be returned by a subsequent
362 * cleancache_init_fs or cleancache_init_shared_fs.
363 */
364void __cleancache_invalidate_fs(struct super_block *sb)
365{
366	int index;
367	int fake_pool_id = sb->cleancache_poolid;
368	int old_poolid = fake_pool_id;
369
370	mutex_lock(&poolid_mutex);
371	if (fake_pool_id >= FAKE_SHARED_FS_POOLID_OFFSET) {
372		index = fake_pool_id - FAKE_SHARED_FS_POOLID_OFFSET;
373		old_poolid = shared_fs_poolid_map[index];
374		shared_fs_poolid_map[index] = FS_UNKNOWN;
375		uuids[index] = NULL;
376	} else if (fake_pool_id >= FAKE_FS_POOLID_OFFSET) {
377		index = fake_pool_id - FAKE_FS_POOLID_OFFSET;
378		old_poolid = fs_poolid_map[index];
379		fs_poolid_map[index] = FS_UNKNOWN;
380	}
381	sb->cleancache_poolid = -1;
382	if (cleancache_ops)
383		cleancache_ops->invalidate_fs(old_poolid);
384	mutex_unlock(&poolid_mutex);
385}
386EXPORT_SYMBOL(__cleancache_invalidate_fs);
387
388static int __init init_cleancache(void)
389{
390	int i;
391
392#ifdef CONFIG_DEBUG_FS
393	struct dentry *root = debugfs_create_dir("cleancache", NULL);
394	if (root == NULL)
395		return -ENXIO;
396	debugfs_create_u64("succ_gets", S_IRUGO, root, &cleancache_succ_gets);
397	debugfs_create_u64("failed_gets", S_IRUGO,
398				root, &cleancache_failed_gets);
399	debugfs_create_u64("puts", S_IRUGO, root, &cleancache_puts);
400	debugfs_create_u64("invalidates", S_IRUGO,
401				root, &cleancache_invalidates);
402#endif
403	for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
404		fs_poolid_map[i] = FS_UNKNOWN;
405		shared_fs_poolid_map[i] = FS_UNKNOWN;
406	}
407	return 0;
408}
409module_init(init_cleancache)