Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * tracing clocks
  3 *
  4 *  Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5 *
  6 * Implements 3 trace clock variants, with differing scalability/precision
  7 * tradeoffs:
  8 *
  9 *  -   local: CPU-local trace clock
 10 *  -  medium: scalable global clock with some jitter
 11 *  -  global: globally monotonic, serialized clock
 12 *
 13 * Tracer plugins will chose a default from these clocks.
 14 */
 15#include <linux/spinlock.h>
 16#include <linux/irqflags.h>
 17#include <linux/hardirq.h>
 18#include <linux/module.h>
 19#include <linux/percpu.h>
 20#include <linux/sched.h>
 21#include <linux/ktime.h>
 22#include <linux/trace_clock.h>
 23
 24/*
 25 * trace_clock_local(): the simplest and least coherent tracing clock.
 26 *
 27 * Useful for tracing that does not cross to other CPUs nor
 28 * does it go through idle events.
 29 */
 30u64 notrace trace_clock_local(void)
 31{
 32	u64 clock;
 33
 34	/*
 35	 * sched_clock() is an architecture implemented, fast, scalable,
 36	 * lockless clock. It is not guaranteed to be coherent across
 37	 * CPUs, nor across CPU idle events.
 38	 */
 39	preempt_disable_notrace();
 40	clock = sched_clock();
 41	preempt_enable_notrace();
 42
 43	return clock;
 44}
 45EXPORT_SYMBOL_GPL(trace_clock_local);
 46
 47/*
 48 * trace_clock(): 'between' trace clock. Not completely serialized,
 49 * but not completely incorrect when crossing CPUs either.
 50 *
 51 * This is based on cpu_clock(), which will allow at most ~1 jiffy of
 52 * jitter between CPUs. So it's a pretty scalable clock, but there
 53 * can be offsets in the trace data.
 54 */
 55u64 notrace trace_clock(void)
 56{
 57	return local_clock();
 58}
 59EXPORT_SYMBOL_GPL(trace_clock);
 60
 61/*
 62 * trace_jiffy_clock(): Simply use jiffies as a clock counter.
 63 * Note that this use of jiffies_64 is not completely safe on
 64 * 32-bit systems. But the window is tiny, and the effect if
 65 * we are affected is that we will have an obviously bogus
 66 * timestamp on a trace event - i.e. not life threatening.
 67 */
 68u64 notrace trace_clock_jiffies(void)
 69{
 70	return jiffies_64_to_clock_t(jiffies_64 - INITIAL_JIFFIES);
 
 
 
 71}
 72EXPORT_SYMBOL_GPL(trace_clock_jiffies);
 73
 74/*
 75 * trace_clock_global(): special globally coherent trace clock
 76 *
 77 * It has higher overhead than the other trace clocks but is still
 78 * an order of magnitude faster than GTOD derived hardware clocks.
 79 *
 80 * Used by plugins that need globally coherent timestamps.
 81 */
 82
 83/* keep prev_time and lock in the same cacheline. */
 84static struct {
 85	u64 prev_time;
 86	arch_spinlock_t lock;
 87} trace_clock_struct ____cacheline_aligned_in_smp =
 88	{
 89		.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
 90	};
 91
 92u64 notrace trace_clock_global(void)
 93{
 94	unsigned long flags;
 95	int this_cpu;
 96	u64 now;
 97
 98	local_irq_save(flags);
 99
100	this_cpu = raw_smp_processor_id();
101	now = sched_clock_cpu(this_cpu);
102	/*
103	 * If in an NMI context then dont risk lockups and return the
104	 * cpu_clock() time:
105	 */
106	if (unlikely(in_nmi()))
107		goto out;
108
109	arch_spin_lock(&trace_clock_struct.lock);
110
111	/*
112	 * TODO: if this happens often then maybe we should reset
113	 * my_scd->clock to prev_time+1, to make sure
114	 * we start ticking with the local clock from now on?
115	 */
116	if ((s64)(now - trace_clock_struct.prev_time) < 0)
117		now = trace_clock_struct.prev_time + 1;
118
119	trace_clock_struct.prev_time = now;
120
121	arch_spin_unlock(&trace_clock_struct.lock);
122
123 out:
124	local_irq_restore(flags);
125
126	return now;
127}
128EXPORT_SYMBOL_GPL(trace_clock_global);
129
130static atomic64_t trace_counter;
131
132/*
133 * trace_clock_counter(): simply an atomic counter.
134 * Use the trace_counter "counter" for cases where you do not care
135 * about timings, but are interested in strict ordering.
136 */
137u64 notrace trace_clock_counter(void)
138{
139	return atomic64_add_return(1, &trace_counter);
140}
v3.15
  1/*
  2 * tracing clocks
  3 *
  4 *  Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5 *
  6 * Implements 3 trace clock variants, with differing scalability/precision
  7 * tradeoffs:
  8 *
  9 *  -   local: CPU-local trace clock
 10 *  -  medium: scalable global clock with some jitter
 11 *  -  global: globally monotonic, serialized clock
 12 *
 13 * Tracer plugins will chose a default from these clocks.
 14 */
 15#include <linux/spinlock.h>
 16#include <linux/irqflags.h>
 17#include <linux/hardirq.h>
 18#include <linux/module.h>
 19#include <linux/percpu.h>
 20#include <linux/sched.h>
 21#include <linux/ktime.h>
 22#include <linux/trace_clock.h>
 23
 24/*
 25 * trace_clock_local(): the simplest and least coherent tracing clock.
 26 *
 27 * Useful for tracing that does not cross to other CPUs nor
 28 * does it go through idle events.
 29 */
 30u64 notrace trace_clock_local(void)
 31{
 32	u64 clock;
 33
 34	/*
 35	 * sched_clock() is an architecture implemented, fast, scalable,
 36	 * lockless clock. It is not guaranteed to be coherent across
 37	 * CPUs, nor across CPU idle events.
 38	 */
 39	preempt_disable_notrace();
 40	clock = sched_clock();
 41	preempt_enable_notrace();
 42
 43	return clock;
 44}
 45EXPORT_SYMBOL_GPL(trace_clock_local);
 46
 47/*
 48 * trace_clock(): 'between' trace clock. Not completely serialized,
 49 * but not completely incorrect when crossing CPUs either.
 50 *
 51 * This is based on cpu_clock(), which will allow at most ~1 jiffy of
 52 * jitter between CPUs. So it's a pretty scalable clock, but there
 53 * can be offsets in the trace data.
 54 */
 55u64 notrace trace_clock(void)
 56{
 57	return local_clock();
 58}
 
 59
 60/*
 61 * trace_jiffy_clock(): Simply use jiffies as a clock counter.
 
 
 
 
 62 */
 63u64 notrace trace_clock_jiffies(void)
 64{
 65	u64 jiffy = jiffies - INITIAL_JIFFIES;
 66
 67	/* Return nsecs */
 68	return (u64)jiffies_to_usecs(jiffy) * 1000ULL;
 69}
 
 70
 71/*
 72 * trace_clock_global(): special globally coherent trace clock
 73 *
 74 * It has higher overhead than the other trace clocks but is still
 75 * an order of magnitude faster than GTOD derived hardware clocks.
 76 *
 77 * Used by plugins that need globally coherent timestamps.
 78 */
 79
 80/* keep prev_time and lock in the same cacheline. */
 81static struct {
 82	u64 prev_time;
 83	arch_spinlock_t lock;
 84} trace_clock_struct ____cacheline_aligned_in_smp =
 85	{
 86		.lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
 87	};
 88
 89u64 notrace trace_clock_global(void)
 90{
 91	unsigned long flags;
 92	int this_cpu;
 93	u64 now;
 94
 95	local_irq_save(flags);
 96
 97	this_cpu = raw_smp_processor_id();
 98	now = sched_clock_cpu(this_cpu);
 99	/*
100	 * If in an NMI context then dont risk lockups and return the
101	 * cpu_clock() time:
102	 */
103	if (unlikely(in_nmi()))
104		goto out;
105
106	arch_spin_lock(&trace_clock_struct.lock);
107
108	/*
109	 * TODO: if this happens often then maybe we should reset
110	 * my_scd->clock to prev_time+1, to make sure
111	 * we start ticking with the local clock from now on?
112	 */
113	if ((s64)(now - trace_clock_struct.prev_time) < 0)
114		now = trace_clock_struct.prev_time + 1;
115
116	trace_clock_struct.prev_time = now;
117
118	arch_spin_unlock(&trace_clock_struct.lock);
119
120 out:
121	local_irq_restore(flags);
122
123	return now;
124}
 
125
126static atomic64_t trace_counter;
127
128/*
129 * trace_clock_counter(): simply an atomic counter.
130 * Use the trace_counter "counter" for cases where you do not care
131 * about timings, but are interested in strict ordering.
132 */
133u64 notrace trace_clock_counter(void)
134{
135	return atomic64_add_return(1, &trace_counter);
136}