Loading...
1/*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/idr.h>
17#include <linux/file.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/hash.h>
21#include <linux/tick.h>
22#include <linux/sysfs.h>
23#include <linux/dcache.h>
24#include <linux/percpu.h>
25#include <linux/ptrace.h>
26#include <linux/reboot.h>
27#include <linux/vmstat.h>
28#include <linux/device.h>
29#include <linux/export.h>
30#include <linux/vmalloc.h>
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
36#include <linux/kernel_stat.h>
37#include <linux/cgroup.h>
38#include <linux/perf_event.h>
39#include <linux/trace_events.h>
40#include <linux/hw_breakpoint.h>
41#include <linux/mm_types.h>
42#include <linux/module.h>
43#include <linux/mman.h>
44#include <linux/compat.h>
45#include <linux/bpf.h>
46#include <linux/filter.h>
47
48#include "internal.h"
49
50#include <asm/irq_regs.h>
51
52typedef int (*remote_function_f)(void *);
53
54struct remote_function_call {
55 struct task_struct *p;
56 remote_function_f func;
57 void *info;
58 int ret;
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82}
83
84/**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97static int
98task_function_call(struct task_struct *p, remote_function_f func, void *info)
99{
100 struct remote_function_call data = {
101 .p = p,
102 .func = func,
103 .info = info,
104 .ret = -EAGAIN,
105 };
106 int ret;
107
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
113
114 return ret;
115}
116
117/**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
126static int cpu_function_call(int cpu, remote_function_f func, void *info)
127{
128 struct remote_function_call data = {
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138}
139
140static inline struct perf_cpu_context *
141__get_cpu_context(struct perf_event_context *ctx)
142{
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144}
145
146static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
148{
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152}
153
154static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156{
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160}
161
162#define TASK_TOMBSTONE ((void *)-1L)
163
164static bool is_kernel_event(struct perf_event *event)
165{
166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167}
168
169/*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
201 struct perf_event_context *ctx = event->ctx;
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 int ret = 0;
205
206 WARN_ON_ONCE(!irqs_disabled());
207
208 perf_ctx_lock(cpuctx, task_ctx);
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
212 */
213 if (ctx->task) {
214 if (ctx->task != current) {
215 ret = -ESRCH;
216 goto unlock;
217 }
218
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 }
235
236 efs->func(event, cpuctx, ctx, efs->data);
237unlock:
238 perf_ctx_unlock(cpuctx, task_ctx);
239
240 return ret;
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
256{
257 struct perf_event_context *ctx = event->ctx;
258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
264
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
273
274 if (!task) {
275 cpu_function_call(event->cpu, event_function, &efs);
276 return;
277 }
278
279 if (task == TASK_TOMBSTONE)
280 return;
281
282again:
283 if (!task_function_call(task, event_function, &efs))
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
295 }
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
308
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
319 EVENT_TIME = 0x4,
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321};
322
323/*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
327
328static void perf_sched_delayed(struct work_struct *work);
329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331static DEFINE_MUTEX(perf_sched_mutex);
332static atomic_t perf_sched_count;
333
334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
336
337static atomic_t nr_mmap_events __read_mostly;
338static atomic_t nr_comm_events __read_mostly;
339static atomic_t nr_task_events __read_mostly;
340static atomic_t nr_freq_events __read_mostly;
341static atomic_t nr_switch_events __read_mostly;
342
343static LIST_HEAD(pmus);
344static DEFINE_MUTEX(pmus_lock);
345static struct srcu_struct pmus_srcu;
346
347/*
348 * perf event paranoia level:
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
351 * 1 - disallow cpu events for unpriv
352 * 2 - disallow kernel profiling for unpriv
353 */
354int sysctl_perf_event_paranoid __read_mostly = 2;
355
356/* Minimum for 512 kiB + 1 user control page */
357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358
359/*
360 * max perf event sample rate
361 */
362#define DEFAULT_MAX_SAMPLE_RATE 100000
363#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364#define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
371static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373
374static void update_perf_cpu_limits(void)
375{
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
379 tmp = div_u64(tmp, 100);
380 if (!tmp)
381 tmp = 1;
382
383 WRITE_ONCE(perf_sample_allowed_ns, tmp);
384}
385
386static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387
388int perf_proc_update_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391{
392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
393
394 if (ret || !write)
395 return ret;
396
397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 update_perf_cpu_limits();
400
401 return 0;
402}
403
404int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405
406int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 void __user *buffer, size_t *lenp,
408 loff_t *ppos)
409{
410 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411
412 if (ret || !write)
413 return ret;
414
415 if (sysctl_perf_cpu_time_max_percent == 100 ||
416 sysctl_perf_cpu_time_max_percent == 0) {
417 printk(KERN_WARNING
418 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
419 WRITE_ONCE(perf_sample_allowed_ns, 0);
420 } else {
421 update_perf_cpu_limits();
422 }
423
424 return 0;
425}
426
427/*
428 * perf samples are done in some very critical code paths (NMIs).
429 * If they take too much CPU time, the system can lock up and not
430 * get any real work done. This will drop the sample rate when
431 * we detect that events are taking too long.
432 */
433#define NR_ACCUMULATED_SAMPLES 128
434static DEFINE_PER_CPU(u64, running_sample_length);
435
436static u64 __report_avg;
437static u64 __report_allowed;
438
439static void perf_duration_warn(struct irq_work *w)
440{
441 printk_ratelimited(KERN_WARNING
442 "perf: interrupt took too long (%lld > %lld), lowering "
443 "kernel.perf_event_max_sample_rate to %d\n",
444 __report_avg, __report_allowed,
445 sysctl_perf_event_sample_rate);
446}
447
448static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
449
450void perf_sample_event_took(u64 sample_len_ns)
451{
452 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
453 u64 running_len;
454 u64 avg_len;
455 u32 max;
456
457 if (max_len == 0)
458 return;
459
460 /* Decay the counter by 1 average sample. */
461 running_len = __this_cpu_read(running_sample_length);
462 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
463 running_len += sample_len_ns;
464 __this_cpu_write(running_sample_length, running_len);
465
466 /*
467 * Note: this will be biased artifically low until we have
468 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
469 * from having to maintain a count.
470 */
471 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
472 if (avg_len <= max_len)
473 return;
474
475 __report_avg = avg_len;
476 __report_allowed = max_len;
477
478 /*
479 * Compute a throttle threshold 25% below the current duration.
480 */
481 avg_len += avg_len / 4;
482 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
483 if (avg_len < max)
484 max /= (u32)avg_len;
485 else
486 max = 1;
487
488 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
489 WRITE_ONCE(max_samples_per_tick, max);
490
491 sysctl_perf_event_sample_rate = max * HZ;
492 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
493
494 if (!irq_work_queue(&perf_duration_work)) {
495 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
496 "kernel.perf_event_max_sample_rate to %d\n",
497 __report_avg, __report_allowed,
498 sysctl_perf_event_sample_rate);
499 }
500}
501
502static atomic64_t perf_event_id;
503
504static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
505 enum event_type_t event_type);
506
507static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
508 enum event_type_t event_type,
509 struct task_struct *task);
510
511static void update_context_time(struct perf_event_context *ctx);
512static u64 perf_event_time(struct perf_event *event);
513
514void __weak perf_event_print_debug(void) { }
515
516extern __weak const char *perf_pmu_name(void)
517{
518 return "pmu";
519}
520
521static inline u64 perf_clock(void)
522{
523 return local_clock();
524}
525
526static inline u64 perf_event_clock(struct perf_event *event)
527{
528 return event->clock();
529}
530
531#ifdef CONFIG_CGROUP_PERF
532
533static inline bool
534perf_cgroup_match(struct perf_event *event)
535{
536 struct perf_event_context *ctx = event->ctx;
537 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
538
539 /* @event doesn't care about cgroup */
540 if (!event->cgrp)
541 return true;
542
543 /* wants specific cgroup scope but @cpuctx isn't associated with any */
544 if (!cpuctx->cgrp)
545 return false;
546
547 /*
548 * Cgroup scoping is recursive. An event enabled for a cgroup is
549 * also enabled for all its descendant cgroups. If @cpuctx's
550 * cgroup is a descendant of @event's (the test covers identity
551 * case), it's a match.
552 */
553 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
554 event->cgrp->css.cgroup);
555}
556
557static inline void perf_detach_cgroup(struct perf_event *event)
558{
559 css_put(&event->cgrp->css);
560 event->cgrp = NULL;
561}
562
563static inline int is_cgroup_event(struct perf_event *event)
564{
565 return event->cgrp != NULL;
566}
567
568static inline u64 perf_cgroup_event_time(struct perf_event *event)
569{
570 struct perf_cgroup_info *t;
571
572 t = per_cpu_ptr(event->cgrp->info, event->cpu);
573 return t->time;
574}
575
576static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
577{
578 struct perf_cgroup_info *info;
579 u64 now;
580
581 now = perf_clock();
582
583 info = this_cpu_ptr(cgrp->info);
584
585 info->time += now - info->timestamp;
586 info->timestamp = now;
587}
588
589static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
590{
591 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
592 if (cgrp_out)
593 __update_cgrp_time(cgrp_out);
594}
595
596static inline void update_cgrp_time_from_event(struct perf_event *event)
597{
598 struct perf_cgroup *cgrp;
599
600 /*
601 * ensure we access cgroup data only when needed and
602 * when we know the cgroup is pinned (css_get)
603 */
604 if (!is_cgroup_event(event))
605 return;
606
607 cgrp = perf_cgroup_from_task(current, event->ctx);
608 /*
609 * Do not update time when cgroup is not active
610 */
611 if (cgrp == event->cgrp)
612 __update_cgrp_time(event->cgrp);
613}
614
615static inline void
616perf_cgroup_set_timestamp(struct task_struct *task,
617 struct perf_event_context *ctx)
618{
619 struct perf_cgroup *cgrp;
620 struct perf_cgroup_info *info;
621
622 /*
623 * ctx->lock held by caller
624 * ensure we do not access cgroup data
625 * unless we have the cgroup pinned (css_get)
626 */
627 if (!task || !ctx->nr_cgroups)
628 return;
629
630 cgrp = perf_cgroup_from_task(task, ctx);
631 info = this_cpu_ptr(cgrp->info);
632 info->timestamp = ctx->timestamp;
633}
634
635#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
636#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
637
638/*
639 * reschedule events based on the cgroup constraint of task.
640 *
641 * mode SWOUT : schedule out everything
642 * mode SWIN : schedule in based on cgroup for next
643 */
644static void perf_cgroup_switch(struct task_struct *task, int mode)
645{
646 struct perf_cpu_context *cpuctx;
647 struct pmu *pmu;
648 unsigned long flags;
649
650 /*
651 * disable interrupts to avoid geting nr_cgroup
652 * changes via __perf_event_disable(). Also
653 * avoids preemption.
654 */
655 local_irq_save(flags);
656
657 /*
658 * we reschedule only in the presence of cgroup
659 * constrained events.
660 */
661
662 list_for_each_entry_rcu(pmu, &pmus, entry) {
663 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
664 if (cpuctx->unique_pmu != pmu)
665 continue; /* ensure we process each cpuctx once */
666
667 /*
668 * perf_cgroup_events says at least one
669 * context on this CPU has cgroup events.
670 *
671 * ctx->nr_cgroups reports the number of cgroup
672 * events for a context.
673 */
674 if (cpuctx->ctx.nr_cgroups > 0) {
675 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
676 perf_pmu_disable(cpuctx->ctx.pmu);
677
678 if (mode & PERF_CGROUP_SWOUT) {
679 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
680 /*
681 * must not be done before ctxswout due
682 * to event_filter_match() in event_sched_out()
683 */
684 cpuctx->cgrp = NULL;
685 }
686
687 if (mode & PERF_CGROUP_SWIN) {
688 WARN_ON_ONCE(cpuctx->cgrp);
689 /*
690 * set cgrp before ctxsw in to allow
691 * event_filter_match() to not have to pass
692 * task around
693 * we pass the cpuctx->ctx to perf_cgroup_from_task()
694 * because cgorup events are only per-cpu
695 */
696 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
697 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
698 }
699 perf_pmu_enable(cpuctx->ctx.pmu);
700 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
701 }
702 }
703
704 local_irq_restore(flags);
705}
706
707static inline void perf_cgroup_sched_out(struct task_struct *task,
708 struct task_struct *next)
709{
710 struct perf_cgroup *cgrp1;
711 struct perf_cgroup *cgrp2 = NULL;
712
713 rcu_read_lock();
714 /*
715 * we come here when we know perf_cgroup_events > 0
716 * we do not need to pass the ctx here because we know
717 * we are holding the rcu lock
718 */
719 cgrp1 = perf_cgroup_from_task(task, NULL);
720 cgrp2 = perf_cgroup_from_task(next, NULL);
721
722 /*
723 * only schedule out current cgroup events if we know
724 * that we are switching to a different cgroup. Otherwise,
725 * do no touch the cgroup events.
726 */
727 if (cgrp1 != cgrp2)
728 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
729
730 rcu_read_unlock();
731}
732
733static inline void perf_cgroup_sched_in(struct task_struct *prev,
734 struct task_struct *task)
735{
736 struct perf_cgroup *cgrp1;
737 struct perf_cgroup *cgrp2 = NULL;
738
739 rcu_read_lock();
740 /*
741 * we come here when we know perf_cgroup_events > 0
742 * we do not need to pass the ctx here because we know
743 * we are holding the rcu lock
744 */
745 cgrp1 = perf_cgroup_from_task(task, NULL);
746 cgrp2 = perf_cgroup_from_task(prev, NULL);
747
748 /*
749 * only need to schedule in cgroup events if we are changing
750 * cgroup during ctxsw. Cgroup events were not scheduled
751 * out of ctxsw out if that was not the case.
752 */
753 if (cgrp1 != cgrp2)
754 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
755
756 rcu_read_unlock();
757}
758
759static inline int perf_cgroup_connect(int fd, struct perf_event *event,
760 struct perf_event_attr *attr,
761 struct perf_event *group_leader)
762{
763 struct perf_cgroup *cgrp;
764 struct cgroup_subsys_state *css;
765 struct fd f = fdget(fd);
766 int ret = 0;
767
768 if (!f.file)
769 return -EBADF;
770
771 css = css_tryget_online_from_dir(f.file->f_path.dentry,
772 &perf_event_cgrp_subsys);
773 if (IS_ERR(css)) {
774 ret = PTR_ERR(css);
775 goto out;
776 }
777
778 cgrp = container_of(css, struct perf_cgroup, css);
779 event->cgrp = cgrp;
780
781 /*
782 * all events in a group must monitor
783 * the same cgroup because a task belongs
784 * to only one perf cgroup at a time
785 */
786 if (group_leader && group_leader->cgrp != cgrp) {
787 perf_detach_cgroup(event);
788 ret = -EINVAL;
789 }
790out:
791 fdput(f);
792 return ret;
793}
794
795static inline void
796perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
797{
798 struct perf_cgroup_info *t;
799 t = per_cpu_ptr(event->cgrp->info, event->cpu);
800 event->shadow_ctx_time = now - t->timestamp;
801}
802
803static inline void
804perf_cgroup_defer_enabled(struct perf_event *event)
805{
806 /*
807 * when the current task's perf cgroup does not match
808 * the event's, we need to remember to call the
809 * perf_mark_enable() function the first time a task with
810 * a matching perf cgroup is scheduled in.
811 */
812 if (is_cgroup_event(event) && !perf_cgroup_match(event))
813 event->cgrp_defer_enabled = 1;
814}
815
816static inline void
817perf_cgroup_mark_enabled(struct perf_event *event,
818 struct perf_event_context *ctx)
819{
820 struct perf_event *sub;
821 u64 tstamp = perf_event_time(event);
822
823 if (!event->cgrp_defer_enabled)
824 return;
825
826 event->cgrp_defer_enabled = 0;
827
828 event->tstamp_enabled = tstamp - event->total_time_enabled;
829 list_for_each_entry(sub, &event->sibling_list, group_entry) {
830 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
831 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
832 sub->cgrp_defer_enabled = 0;
833 }
834 }
835}
836#else /* !CONFIG_CGROUP_PERF */
837
838static inline bool
839perf_cgroup_match(struct perf_event *event)
840{
841 return true;
842}
843
844static inline void perf_detach_cgroup(struct perf_event *event)
845{}
846
847static inline int is_cgroup_event(struct perf_event *event)
848{
849 return 0;
850}
851
852static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
853{
854 return 0;
855}
856
857static inline void update_cgrp_time_from_event(struct perf_event *event)
858{
859}
860
861static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
862{
863}
864
865static inline void perf_cgroup_sched_out(struct task_struct *task,
866 struct task_struct *next)
867{
868}
869
870static inline void perf_cgroup_sched_in(struct task_struct *prev,
871 struct task_struct *task)
872{
873}
874
875static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
876 struct perf_event_attr *attr,
877 struct perf_event *group_leader)
878{
879 return -EINVAL;
880}
881
882static inline void
883perf_cgroup_set_timestamp(struct task_struct *task,
884 struct perf_event_context *ctx)
885{
886}
887
888void
889perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
890{
891}
892
893static inline void
894perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
895{
896}
897
898static inline u64 perf_cgroup_event_time(struct perf_event *event)
899{
900 return 0;
901}
902
903static inline void
904perf_cgroup_defer_enabled(struct perf_event *event)
905{
906}
907
908static inline void
909perf_cgroup_mark_enabled(struct perf_event *event,
910 struct perf_event_context *ctx)
911{
912}
913#endif
914
915/*
916 * set default to be dependent on timer tick just
917 * like original code
918 */
919#define PERF_CPU_HRTIMER (1000 / HZ)
920/*
921 * function must be called with interrupts disbled
922 */
923static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
924{
925 struct perf_cpu_context *cpuctx;
926 int rotations = 0;
927
928 WARN_ON(!irqs_disabled());
929
930 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
931 rotations = perf_rotate_context(cpuctx);
932
933 raw_spin_lock(&cpuctx->hrtimer_lock);
934 if (rotations)
935 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
936 else
937 cpuctx->hrtimer_active = 0;
938 raw_spin_unlock(&cpuctx->hrtimer_lock);
939
940 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
941}
942
943static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
944{
945 struct hrtimer *timer = &cpuctx->hrtimer;
946 struct pmu *pmu = cpuctx->ctx.pmu;
947 u64 interval;
948
949 /* no multiplexing needed for SW PMU */
950 if (pmu->task_ctx_nr == perf_sw_context)
951 return;
952
953 /*
954 * check default is sane, if not set then force to
955 * default interval (1/tick)
956 */
957 interval = pmu->hrtimer_interval_ms;
958 if (interval < 1)
959 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
960
961 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
962
963 raw_spin_lock_init(&cpuctx->hrtimer_lock);
964 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
965 timer->function = perf_mux_hrtimer_handler;
966}
967
968static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
969{
970 struct hrtimer *timer = &cpuctx->hrtimer;
971 struct pmu *pmu = cpuctx->ctx.pmu;
972 unsigned long flags;
973
974 /* not for SW PMU */
975 if (pmu->task_ctx_nr == perf_sw_context)
976 return 0;
977
978 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
979 if (!cpuctx->hrtimer_active) {
980 cpuctx->hrtimer_active = 1;
981 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
982 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
983 }
984 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
985
986 return 0;
987}
988
989void perf_pmu_disable(struct pmu *pmu)
990{
991 int *count = this_cpu_ptr(pmu->pmu_disable_count);
992 if (!(*count)++)
993 pmu->pmu_disable(pmu);
994}
995
996void perf_pmu_enable(struct pmu *pmu)
997{
998 int *count = this_cpu_ptr(pmu->pmu_disable_count);
999 if (!--(*count))
1000 pmu->pmu_enable(pmu);
1001}
1002
1003static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1004
1005/*
1006 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1007 * perf_event_task_tick() are fully serialized because they're strictly cpu
1008 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1009 * disabled, while perf_event_task_tick is called from IRQ context.
1010 */
1011static void perf_event_ctx_activate(struct perf_event_context *ctx)
1012{
1013 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1014
1015 WARN_ON(!irqs_disabled());
1016
1017 WARN_ON(!list_empty(&ctx->active_ctx_list));
1018
1019 list_add(&ctx->active_ctx_list, head);
1020}
1021
1022static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1023{
1024 WARN_ON(!irqs_disabled());
1025
1026 WARN_ON(list_empty(&ctx->active_ctx_list));
1027
1028 list_del_init(&ctx->active_ctx_list);
1029}
1030
1031static void get_ctx(struct perf_event_context *ctx)
1032{
1033 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1034}
1035
1036static void free_ctx(struct rcu_head *head)
1037{
1038 struct perf_event_context *ctx;
1039
1040 ctx = container_of(head, struct perf_event_context, rcu_head);
1041 kfree(ctx->task_ctx_data);
1042 kfree(ctx);
1043}
1044
1045static void put_ctx(struct perf_event_context *ctx)
1046{
1047 if (atomic_dec_and_test(&ctx->refcount)) {
1048 if (ctx->parent_ctx)
1049 put_ctx(ctx->parent_ctx);
1050 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1051 put_task_struct(ctx->task);
1052 call_rcu(&ctx->rcu_head, free_ctx);
1053 }
1054}
1055
1056/*
1057 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1058 * perf_pmu_migrate_context() we need some magic.
1059 *
1060 * Those places that change perf_event::ctx will hold both
1061 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1062 *
1063 * Lock ordering is by mutex address. There are two other sites where
1064 * perf_event_context::mutex nests and those are:
1065 *
1066 * - perf_event_exit_task_context() [ child , 0 ]
1067 * perf_event_exit_event()
1068 * put_event() [ parent, 1 ]
1069 *
1070 * - perf_event_init_context() [ parent, 0 ]
1071 * inherit_task_group()
1072 * inherit_group()
1073 * inherit_event()
1074 * perf_event_alloc()
1075 * perf_init_event()
1076 * perf_try_init_event() [ child , 1 ]
1077 *
1078 * While it appears there is an obvious deadlock here -- the parent and child
1079 * nesting levels are inverted between the two. This is in fact safe because
1080 * life-time rules separate them. That is an exiting task cannot fork, and a
1081 * spawning task cannot (yet) exit.
1082 *
1083 * But remember that that these are parent<->child context relations, and
1084 * migration does not affect children, therefore these two orderings should not
1085 * interact.
1086 *
1087 * The change in perf_event::ctx does not affect children (as claimed above)
1088 * because the sys_perf_event_open() case will install a new event and break
1089 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1090 * concerned with cpuctx and that doesn't have children.
1091 *
1092 * The places that change perf_event::ctx will issue:
1093 *
1094 * perf_remove_from_context();
1095 * synchronize_rcu();
1096 * perf_install_in_context();
1097 *
1098 * to affect the change. The remove_from_context() + synchronize_rcu() should
1099 * quiesce the event, after which we can install it in the new location. This
1100 * means that only external vectors (perf_fops, prctl) can perturb the event
1101 * while in transit. Therefore all such accessors should also acquire
1102 * perf_event_context::mutex to serialize against this.
1103 *
1104 * However; because event->ctx can change while we're waiting to acquire
1105 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1106 * function.
1107 *
1108 * Lock order:
1109 * cred_guard_mutex
1110 * task_struct::perf_event_mutex
1111 * perf_event_context::mutex
1112 * perf_event::child_mutex;
1113 * perf_event_context::lock
1114 * perf_event::mmap_mutex
1115 * mmap_sem
1116 */
1117static struct perf_event_context *
1118perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1119{
1120 struct perf_event_context *ctx;
1121
1122again:
1123 rcu_read_lock();
1124 ctx = ACCESS_ONCE(event->ctx);
1125 if (!atomic_inc_not_zero(&ctx->refcount)) {
1126 rcu_read_unlock();
1127 goto again;
1128 }
1129 rcu_read_unlock();
1130
1131 mutex_lock_nested(&ctx->mutex, nesting);
1132 if (event->ctx != ctx) {
1133 mutex_unlock(&ctx->mutex);
1134 put_ctx(ctx);
1135 goto again;
1136 }
1137
1138 return ctx;
1139}
1140
1141static inline struct perf_event_context *
1142perf_event_ctx_lock(struct perf_event *event)
1143{
1144 return perf_event_ctx_lock_nested(event, 0);
1145}
1146
1147static void perf_event_ctx_unlock(struct perf_event *event,
1148 struct perf_event_context *ctx)
1149{
1150 mutex_unlock(&ctx->mutex);
1151 put_ctx(ctx);
1152}
1153
1154/*
1155 * This must be done under the ctx->lock, such as to serialize against
1156 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1157 * calling scheduler related locks and ctx->lock nests inside those.
1158 */
1159static __must_check struct perf_event_context *
1160unclone_ctx(struct perf_event_context *ctx)
1161{
1162 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1163
1164 lockdep_assert_held(&ctx->lock);
1165
1166 if (parent_ctx)
1167 ctx->parent_ctx = NULL;
1168 ctx->generation++;
1169
1170 return parent_ctx;
1171}
1172
1173static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1174{
1175 /*
1176 * only top level events have the pid namespace they were created in
1177 */
1178 if (event->parent)
1179 event = event->parent;
1180
1181 return task_tgid_nr_ns(p, event->ns);
1182}
1183
1184static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1185{
1186 /*
1187 * only top level events have the pid namespace they were created in
1188 */
1189 if (event->parent)
1190 event = event->parent;
1191
1192 return task_pid_nr_ns(p, event->ns);
1193}
1194
1195/*
1196 * If we inherit events we want to return the parent event id
1197 * to userspace.
1198 */
1199static u64 primary_event_id(struct perf_event *event)
1200{
1201 u64 id = event->id;
1202
1203 if (event->parent)
1204 id = event->parent->id;
1205
1206 return id;
1207}
1208
1209/*
1210 * Get the perf_event_context for a task and lock it.
1211 *
1212 * This has to cope with with the fact that until it is locked,
1213 * the context could get moved to another task.
1214 */
1215static struct perf_event_context *
1216perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1217{
1218 struct perf_event_context *ctx;
1219
1220retry:
1221 /*
1222 * One of the few rules of preemptible RCU is that one cannot do
1223 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1224 * part of the read side critical section was irqs-enabled -- see
1225 * rcu_read_unlock_special().
1226 *
1227 * Since ctx->lock nests under rq->lock we must ensure the entire read
1228 * side critical section has interrupts disabled.
1229 */
1230 local_irq_save(*flags);
1231 rcu_read_lock();
1232 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1233 if (ctx) {
1234 /*
1235 * If this context is a clone of another, it might
1236 * get swapped for another underneath us by
1237 * perf_event_task_sched_out, though the
1238 * rcu_read_lock() protects us from any context
1239 * getting freed. Lock the context and check if it
1240 * got swapped before we could get the lock, and retry
1241 * if so. If we locked the right context, then it
1242 * can't get swapped on us any more.
1243 */
1244 raw_spin_lock(&ctx->lock);
1245 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1246 raw_spin_unlock(&ctx->lock);
1247 rcu_read_unlock();
1248 local_irq_restore(*flags);
1249 goto retry;
1250 }
1251
1252 if (ctx->task == TASK_TOMBSTONE ||
1253 !atomic_inc_not_zero(&ctx->refcount)) {
1254 raw_spin_unlock(&ctx->lock);
1255 ctx = NULL;
1256 } else {
1257 WARN_ON_ONCE(ctx->task != task);
1258 }
1259 }
1260 rcu_read_unlock();
1261 if (!ctx)
1262 local_irq_restore(*flags);
1263 return ctx;
1264}
1265
1266/*
1267 * Get the context for a task and increment its pin_count so it
1268 * can't get swapped to another task. This also increments its
1269 * reference count so that the context can't get freed.
1270 */
1271static struct perf_event_context *
1272perf_pin_task_context(struct task_struct *task, int ctxn)
1273{
1274 struct perf_event_context *ctx;
1275 unsigned long flags;
1276
1277 ctx = perf_lock_task_context(task, ctxn, &flags);
1278 if (ctx) {
1279 ++ctx->pin_count;
1280 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1281 }
1282 return ctx;
1283}
1284
1285static void perf_unpin_context(struct perf_event_context *ctx)
1286{
1287 unsigned long flags;
1288
1289 raw_spin_lock_irqsave(&ctx->lock, flags);
1290 --ctx->pin_count;
1291 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1292}
1293
1294/*
1295 * Update the record of the current time in a context.
1296 */
1297static void update_context_time(struct perf_event_context *ctx)
1298{
1299 u64 now = perf_clock();
1300
1301 ctx->time += now - ctx->timestamp;
1302 ctx->timestamp = now;
1303}
1304
1305static u64 perf_event_time(struct perf_event *event)
1306{
1307 struct perf_event_context *ctx = event->ctx;
1308
1309 if (is_cgroup_event(event))
1310 return perf_cgroup_event_time(event);
1311
1312 return ctx ? ctx->time : 0;
1313}
1314
1315/*
1316 * Update the total_time_enabled and total_time_running fields for a event.
1317 */
1318static void update_event_times(struct perf_event *event)
1319{
1320 struct perf_event_context *ctx = event->ctx;
1321 u64 run_end;
1322
1323 lockdep_assert_held(&ctx->lock);
1324
1325 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1326 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1327 return;
1328
1329 /*
1330 * in cgroup mode, time_enabled represents
1331 * the time the event was enabled AND active
1332 * tasks were in the monitored cgroup. This is
1333 * independent of the activity of the context as
1334 * there may be a mix of cgroup and non-cgroup events.
1335 *
1336 * That is why we treat cgroup events differently
1337 * here.
1338 */
1339 if (is_cgroup_event(event))
1340 run_end = perf_cgroup_event_time(event);
1341 else if (ctx->is_active)
1342 run_end = ctx->time;
1343 else
1344 run_end = event->tstamp_stopped;
1345
1346 event->total_time_enabled = run_end - event->tstamp_enabled;
1347
1348 if (event->state == PERF_EVENT_STATE_INACTIVE)
1349 run_end = event->tstamp_stopped;
1350 else
1351 run_end = perf_event_time(event);
1352
1353 event->total_time_running = run_end - event->tstamp_running;
1354
1355}
1356
1357/*
1358 * Update total_time_enabled and total_time_running for all events in a group.
1359 */
1360static void update_group_times(struct perf_event *leader)
1361{
1362 struct perf_event *event;
1363
1364 update_event_times(leader);
1365 list_for_each_entry(event, &leader->sibling_list, group_entry)
1366 update_event_times(event);
1367}
1368
1369static struct list_head *
1370ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1371{
1372 if (event->attr.pinned)
1373 return &ctx->pinned_groups;
1374 else
1375 return &ctx->flexible_groups;
1376}
1377
1378/*
1379 * Add a event from the lists for its context.
1380 * Must be called with ctx->mutex and ctx->lock held.
1381 */
1382static void
1383list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1384{
1385 lockdep_assert_held(&ctx->lock);
1386
1387 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1388 event->attach_state |= PERF_ATTACH_CONTEXT;
1389
1390 /*
1391 * If we're a stand alone event or group leader, we go to the context
1392 * list, group events are kept attached to the group so that
1393 * perf_group_detach can, at all times, locate all siblings.
1394 */
1395 if (event->group_leader == event) {
1396 struct list_head *list;
1397
1398 if (is_software_event(event))
1399 event->group_flags |= PERF_GROUP_SOFTWARE;
1400
1401 list = ctx_group_list(event, ctx);
1402 list_add_tail(&event->group_entry, list);
1403 }
1404
1405 if (is_cgroup_event(event))
1406 ctx->nr_cgroups++;
1407
1408 list_add_rcu(&event->event_entry, &ctx->event_list);
1409 ctx->nr_events++;
1410 if (event->attr.inherit_stat)
1411 ctx->nr_stat++;
1412
1413 ctx->generation++;
1414}
1415
1416/*
1417 * Initialize event state based on the perf_event_attr::disabled.
1418 */
1419static inline void perf_event__state_init(struct perf_event *event)
1420{
1421 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1422 PERF_EVENT_STATE_INACTIVE;
1423}
1424
1425static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1426{
1427 int entry = sizeof(u64); /* value */
1428 int size = 0;
1429 int nr = 1;
1430
1431 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1432 size += sizeof(u64);
1433
1434 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1435 size += sizeof(u64);
1436
1437 if (event->attr.read_format & PERF_FORMAT_ID)
1438 entry += sizeof(u64);
1439
1440 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1441 nr += nr_siblings;
1442 size += sizeof(u64);
1443 }
1444
1445 size += entry * nr;
1446 event->read_size = size;
1447}
1448
1449static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1450{
1451 struct perf_sample_data *data;
1452 u16 size = 0;
1453
1454 if (sample_type & PERF_SAMPLE_IP)
1455 size += sizeof(data->ip);
1456
1457 if (sample_type & PERF_SAMPLE_ADDR)
1458 size += sizeof(data->addr);
1459
1460 if (sample_type & PERF_SAMPLE_PERIOD)
1461 size += sizeof(data->period);
1462
1463 if (sample_type & PERF_SAMPLE_WEIGHT)
1464 size += sizeof(data->weight);
1465
1466 if (sample_type & PERF_SAMPLE_READ)
1467 size += event->read_size;
1468
1469 if (sample_type & PERF_SAMPLE_DATA_SRC)
1470 size += sizeof(data->data_src.val);
1471
1472 if (sample_type & PERF_SAMPLE_TRANSACTION)
1473 size += sizeof(data->txn);
1474
1475 event->header_size = size;
1476}
1477
1478/*
1479 * Called at perf_event creation and when events are attached/detached from a
1480 * group.
1481 */
1482static void perf_event__header_size(struct perf_event *event)
1483{
1484 __perf_event_read_size(event,
1485 event->group_leader->nr_siblings);
1486 __perf_event_header_size(event, event->attr.sample_type);
1487}
1488
1489static void perf_event__id_header_size(struct perf_event *event)
1490{
1491 struct perf_sample_data *data;
1492 u64 sample_type = event->attr.sample_type;
1493 u16 size = 0;
1494
1495 if (sample_type & PERF_SAMPLE_TID)
1496 size += sizeof(data->tid_entry);
1497
1498 if (sample_type & PERF_SAMPLE_TIME)
1499 size += sizeof(data->time);
1500
1501 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1502 size += sizeof(data->id);
1503
1504 if (sample_type & PERF_SAMPLE_ID)
1505 size += sizeof(data->id);
1506
1507 if (sample_type & PERF_SAMPLE_STREAM_ID)
1508 size += sizeof(data->stream_id);
1509
1510 if (sample_type & PERF_SAMPLE_CPU)
1511 size += sizeof(data->cpu_entry);
1512
1513 event->id_header_size = size;
1514}
1515
1516static bool perf_event_validate_size(struct perf_event *event)
1517{
1518 /*
1519 * The values computed here will be over-written when we actually
1520 * attach the event.
1521 */
1522 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1523 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1524 perf_event__id_header_size(event);
1525
1526 /*
1527 * Sum the lot; should not exceed the 64k limit we have on records.
1528 * Conservative limit to allow for callchains and other variable fields.
1529 */
1530 if (event->read_size + event->header_size +
1531 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1532 return false;
1533
1534 return true;
1535}
1536
1537static void perf_group_attach(struct perf_event *event)
1538{
1539 struct perf_event *group_leader = event->group_leader, *pos;
1540
1541 /*
1542 * We can have double attach due to group movement in perf_event_open.
1543 */
1544 if (event->attach_state & PERF_ATTACH_GROUP)
1545 return;
1546
1547 event->attach_state |= PERF_ATTACH_GROUP;
1548
1549 if (group_leader == event)
1550 return;
1551
1552 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1553
1554 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1555 !is_software_event(event))
1556 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1557
1558 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1559 group_leader->nr_siblings++;
1560
1561 perf_event__header_size(group_leader);
1562
1563 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1564 perf_event__header_size(pos);
1565}
1566
1567/*
1568 * Remove a event from the lists for its context.
1569 * Must be called with ctx->mutex and ctx->lock held.
1570 */
1571static void
1572list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1573{
1574 struct perf_cpu_context *cpuctx;
1575
1576 WARN_ON_ONCE(event->ctx != ctx);
1577 lockdep_assert_held(&ctx->lock);
1578
1579 /*
1580 * We can have double detach due to exit/hot-unplug + close.
1581 */
1582 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1583 return;
1584
1585 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1586
1587 if (is_cgroup_event(event)) {
1588 ctx->nr_cgroups--;
1589 /*
1590 * Because cgroup events are always per-cpu events, this will
1591 * always be called from the right CPU.
1592 */
1593 cpuctx = __get_cpu_context(ctx);
1594 /*
1595 * If there are no more cgroup events then clear cgrp to avoid
1596 * stale pointer in update_cgrp_time_from_cpuctx().
1597 */
1598 if (!ctx->nr_cgroups)
1599 cpuctx->cgrp = NULL;
1600 }
1601
1602 ctx->nr_events--;
1603 if (event->attr.inherit_stat)
1604 ctx->nr_stat--;
1605
1606 list_del_rcu(&event->event_entry);
1607
1608 if (event->group_leader == event)
1609 list_del_init(&event->group_entry);
1610
1611 update_group_times(event);
1612
1613 /*
1614 * If event was in error state, then keep it
1615 * that way, otherwise bogus counts will be
1616 * returned on read(). The only way to get out
1617 * of error state is by explicit re-enabling
1618 * of the event
1619 */
1620 if (event->state > PERF_EVENT_STATE_OFF)
1621 event->state = PERF_EVENT_STATE_OFF;
1622
1623 ctx->generation++;
1624}
1625
1626static void perf_group_detach(struct perf_event *event)
1627{
1628 struct perf_event *sibling, *tmp;
1629 struct list_head *list = NULL;
1630
1631 /*
1632 * We can have double detach due to exit/hot-unplug + close.
1633 */
1634 if (!(event->attach_state & PERF_ATTACH_GROUP))
1635 return;
1636
1637 event->attach_state &= ~PERF_ATTACH_GROUP;
1638
1639 /*
1640 * If this is a sibling, remove it from its group.
1641 */
1642 if (event->group_leader != event) {
1643 list_del_init(&event->group_entry);
1644 event->group_leader->nr_siblings--;
1645 goto out;
1646 }
1647
1648 if (!list_empty(&event->group_entry))
1649 list = &event->group_entry;
1650
1651 /*
1652 * If this was a group event with sibling events then
1653 * upgrade the siblings to singleton events by adding them
1654 * to whatever list we are on.
1655 */
1656 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1657 if (list)
1658 list_move_tail(&sibling->group_entry, list);
1659 sibling->group_leader = sibling;
1660
1661 /* Inherit group flags from the previous leader */
1662 sibling->group_flags = event->group_flags;
1663
1664 WARN_ON_ONCE(sibling->ctx != event->ctx);
1665 }
1666
1667out:
1668 perf_event__header_size(event->group_leader);
1669
1670 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1671 perf_event__header_size(tmp);
1672}
1673
1674static bool is_orphaned_event(struct perf_event *event)
1675{
1676 return event->state == PERF_EVENT_STATE_DEAD;
1677}
1678
1679static inline int pmu_filter_match(struct perf_event *event)
1680{
1681 struct pmu *pmu = event->pmu;
1682 return pmu->filter_match ? pmu->filter_match(event) : 1;
1683}
1684
1685static inline int
1686event_filter_match(struct perf_event *event)
1687{
1688 return (event->cpu == -1 || event->cpu == smp_processor_id())
1689 && perf_cgroup_match(event) && pmu_filter_match(event);
1690}
1691
1692static void
1693event_sched_out(struct perf_event *event,
1694 struct perf_cpu_context *cpuctx,
1695 struct perf_event_context *ctx)
1696{
1697 u64 tstamp = perf_event_time(event);
1698 u64 delta;
1699
1700 WARN_ON_ONCE(event->ctx != ctx);
1701 lockdep_assert_held(&ctx->lock);
1702
1703 /*
1704 * An event which could not be activated because of
1705 * filter mismatch still needs to have its timings
1706 * maintained, otherwise bogus information is return
1707 * via read() for time_enabled, time_running:
1708 */
1709 if (event->state == PERF_EVENT_STATE_INACTIVE
1710 && !event_filter_match(event)) {
1711 delta = tstamp - event->tstamp_stopped;
1712 event->tstamp_running += delta;
1713 event->tstamp_stopped = tstamp;
1714 }
1715
1716 if (event->state != PERF_EVENT_STATE_ACTIVE)
1717 return;
1718
1719 perf_pmu_disable(event->pmu);
1720
1721 event->tstamp_stopped = tstamp;
1722 event->pmu->del(event, 0);
1723 event->oncpu = -1;
1724 event->state = PERF_EVENT_STATE_INACTIVE;
1725 if (event->pending_disable) {
1726 event->pending_disable = 0;
1727 event->state = PERF_EVENT_STATE_OFF;
1728 }
1729
1730 if (!is_software_event(event))
1731 cpuctx->active_oncpu--;
1732 if (!--ctx->nr_active)
1733 perf_event_ctx_deactivate(ctx);
1734 if (event->attr.freq && event->attr.sample_freq)
1735 ctx->nr_freq--;
1736 if (event->attr.exclusive || !cpuctx->active_oncpu)
1737 cpuctx->exclusive = 0;
1738
1739 perf_pmu_enable(event->pmu);
1740}
1741
1742static void
1743group_sched_out(struct perf_event *group_event,
1744 struct perf_cpu_context *cpuctx,
1745 struct perf_event_context *ctx)
1746{
1747 struct perf_event *event;
1748 int state = group_event->state;
1749
1750 event_sched_out(group_event, cpuctx, ctx);
1751
1752 /*
1753 * Schedule out siblings (if any):
1754 */
1755 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1756 event_sched_out(event, cpuctx, ctx);
1757
1758 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1759 cpuctx->exclusive = 0;
1760}
1761
1762#define DETACH_GROUP 0x01UL
1763
1764/*
1765 * Cross CPU call to remove a performance event
1766 *
1767 * We disable the event on the hardware level first. After that we
1768 * remove it from the context list.
1769 */
1770static void
1771__perf_remove_from_context(struct perf_event *event,
1772 struct perf_cpu_context *cpuctx,
1773 struct perf_event_context *ctx,
1774 void *info)
1775{
1776 unsigned long flags = (unsigned long)info;
1777
1778 event_sched_out(event, cpuctx, ctx);
1779 if (flags & DETACH_GROUP)
1780 perf_group_detach(event);
1781 list_del_event(event, ctx);
1782
1783 if (!ctx->nr_events && ctx->is_active) {
1784 ctx->is_active = 0;
1785 if (ctx->task) {
1786 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1787 cpuctx->task_ctx = NULL;
1788 }
1789 }
1790}
1791
1792/*
1793 * Remove the event from a task's (or a CPU's) list of events.
1794 *
1795 * If event->ctx is a cloned context, callers must make sure that
1796 * every task struct that event->ctx->task could possibly point to
1797 * remains valid. This is OK when called from perf_release since
1798 * that only calls us on the top-level context, which can't be a clone.
1799 * When called from perf_event_exit_task, it's OK because the
1800 * context has been detached from its task.
1801 */
1802static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1803{
1804 lockdep_assert_held(&event->ctx->mutex);
1805
1806 event_function_call(event, __perf_remove_from_context, (void *)flags);
1807}
1808
1809/*
1810 * Cross CPU call to disable a performance event
1811 */
1812static void __perf_event_disable(struct perf_event *event,
1813 struct perf_cpu_context *cpuctx,
1814 struct perf_event_context *ctx,
1815 void *info)
1816{
1817 if (event->state < PERF_EVENT_STATE_INACTIVE)
1818 return;
1819
1820 update_context_time(ctx);
1821 update_cgrp_time_from_event(event);
1822 update_group_times(event);
1823 if (event == event->group_leader)
1824 group_sched_out(event, cpuctx, ctx);
1825 else
1826 event_sched_out(event, cpuctx, ctx);
1827 event->state = PERF_EVENT_STATE_OFF;
1828}
1829
1830/*
1831 * Disable a event.
1832 *
1833 * If event->ctx is a cloned context, callers must make sure that
1834 * every task struct that event->ctx->task could possibly point to
1835 * remains valid. This condition is satisifed when called through
1836 * perf_event_for_each_child or perf_event_for_each because they
1837 * hold the top-level event's child_mutex, so any descendant that
1838 * goes to exit will block in perf_event_exit_event().
1839 *
1840 * When called from perf_pending_event it's OK because event->ctx
1841 * is the current context on this CPU and preemption is disabled,
1842 * hence we can't get into perf_event_task_sched_out for this context.
1843 */
1844static void _perf_event_disable(struct perf_event *event)
1845{
1846 struct perf_event_context *ctx = event->ctx;
1847
1848 raw_spin_lock_irq(&ctx->lock);
1849 if (event->state <= PERF_EVENT_STATE_OFF) {
1850 raw_spin_unlock_irq(&ctx->lock);
1851 return;
1852 }
1853 raw_spin_unlock_irq(&ctx->lock);
1854
1855 event_function_call(event, __perf_event_disable, NULL);
1856}
1857
1858void perf_event_disable_local(struct perf_event *event)
1859{
1860 event_function_local(event, __perf_event_disable, NULL);
1861}
1862
1863/*
1864 * Strictly speaking kernel users cannot create groups and therefore this
1865 * interface does not need the perf_event_ctx_lock() magic.
1866 */
1867void perf_event_disable(struct perf_event *event)
1868{
1869 struct perf_event_context *ctx;
1870
1871 ctx = perf_event_ctx_lock(event);
1872 _perf_event_disable(event);
1873 perf_event_ctx_unlock(event, ctx);
1874}
1875EXPORT_SYMBOL_GPL(perf_event_disable);
1876
1877static void perf_set_shadow_time(struct perf_event *event,
1878 struct perf_event_context *ctx,
1879 u64 tstamp)
1880{
1881 /*
1882 * use the correct time source for the time snapshot
1883 *
1884 * We could get by without this by leveraging the
1885 * fact that to get to this function, the caller
1886 * has most likely already called update_context_time()
1887 * and update_cgrp_time_xx() and thus both timestamp
1888 * are identical (or very close). Given that tstamp is,
1889 * already adjusted for cgroup, we could say that:
1890 * tstamp - ctx->timestamp
1891 * is equivalent to
1892 * tstamp - cgrp->timestamp.
1893 *
1894 * Then, in perf_output_read(), the calculation would
1895 * work with no changes because:
1896 * - event is guaranteed scheduled in
1897 * - no scheduled out in between
1898 * - thus the timestamp would be the same
1899 *
1900 * But this is a bit hairy.
1901 *
1902 * So instead, we have an explicit cgroup call to remain
1903 * within the time time source all along. We believe it
1904 * is cleaner and simpler to understand.
1905 */
1906 if (is_cgroup_event(event))
1907 perf_cgroup_set_shadow_time(event, tstamp);
1908 else
1909 event->shadow_ctx_time = tstamp - ctx->timestamp;
1910}
1911
1912#define MAX_INTERRUPTS (~0ULL)
1913
1914static void perf_log_throttle(struct perf_event *event, int enable);
1915static void perf_log_itrace_start(struct perf_event *event);
1916
1917static int
1918event_sched_in(struct perf_event *event,
1919 struct perf_cpu_context *cpuctx,
1920 struct perf_event_context *ctx)
1921{
1922 u64 tstamp = perf_event_time(event);
1923 int ret = 0;
1924
1925 lockdep_assert_held(&ctx->lock);
1926
1927 if (event->state <= PERF_EVENT_STATE_OFF)
1928 return 0;
1929
1930 event->state = PERF_EVENT_STATE_ACTIVE;
1931 event->oncpu = smp_processor_id();
1932
1933 /*
1934 * Unthrottle events, since we scheduled we might have missed several
1935 * ticks already, also for a heavily scheduling task there is little
1936 * guarantee it'll get a tick in a timely manner.
1937 */
1938 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1939 perf_log_throttle(event, 1);
1940 event->hw.interrupts = 0;
1941 }
1942
1943 /*
1944 * The new state must be visible before we turn it on in the hardware:
1945 */
1946 smp_wmb();
1947
1948 perf_pmu_disable(event->pmu);
1949
1950 perf_set_shadow_time(event, ctx, tstamp);
1951
1952 perf_log_itrace_start(event);
1953
1954 if (event->pmu->add(event, PERF_EF_START)) {
1955 event->state = PERF_EVENT_STATE_INACTIVE;
1956 event->oncpu = -1;
1957 ret = -EAGAIN;
1958 goto out;
1959 }
1960
1961 event->tstamp_running += tstamp - event->tstamp_stopped;
1962
1963 if (!is_software_event(event))
1964 cpuctx->active_oncpu++;
1965 if (!ctx->nr_active++)
1966 perf_event_ctx_activate(ctx);
1967 if (event->attr.freq && event->attr.sample_freq)
1968 ctx->nr_freq++;
1969
1970 if (event->attr.exclusive)
1971 cpuctx->exclusive = 1;
1972
1973out:
1974 perf_pmu_enable(event->pmu);
1975
1976 return ret;
1977}
1978
1979static int
1980group_sched_in(struct perf_event *group_event,
1981 struct perf_cpu_context *cpuctx,
1982 struct perf_event_context *ctx)
1983{
1984 struct perf_event *event, *partial_group = NULL;
1985 struct pmu *pmu = ctx->pmu;
1986 u64 now = ctx->time;
1987 bool simulate = false;
1988
1989 if (group_event->state == PERF_EVENT_STATE_OFF)
1990 return 0;
1991
1992 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1993
1994 if (event_sched_in(group_event, cpuctx, ctx)) {
1995 pmu->cancel_txn(pmu);
1996 perf_mux_hrtimer_restart(cpuctx);
1997 return -EAGAIN;
1998 }
1999
2000 /*
2001 * Schedule in siblings as one group (if any):
2002 */
2003 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2004 if (event_sched_in(event, cpuctx, ctx)) {
2005 partial_group = event;
2006 goto group_error;
2007 }
2008 }
2009
2010 if (!pmu->commit_txn(pmu))
2011 return 0;
2012
2013group_error:
2014 /*
2015 * Groups can be scheduled in as one unit only, so undo any
2016 * partial group before returning:
2017 * The events up to the failed event are scheduled out normally,
2018 * tstamp_stopped will be updated.
2019 *
2020 * The failed events and the remaining siblings need to have
2021 * their timings updated as if they had gone thru event_sched_in()
2022 * and event_sched_out(). This is required to get consistent timings
2023 * across the group. This also takes care of the case where the group
2024 * could never be scheduled by ensuring tstamp_stopped is set to mark
2025 * the time the event was actually stopped, such that time delta
2026 * calculation in update_event_times() is correct.
2027 */
2028 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2029 if (event == partial_group)
2030 simulate = true;
2031
2032 if (simulate) {
2033 event->tstamp_running += now - event->tstamp_stopped;
2034 event->tstamp_stopped = now;
2035 } else {
2036 event_sched_out(event, cpuctx, ctx);
2037 }
2038 }
2039 event_sched_out(group_event, cpuctx, ctx);
2040
2041 pmu->cancel_txn(pmu);
2042
2043 perf_mux_hrtimer_restart(cpuctx);
2044
2045 return -EAGAIN;
2046}
2047
2048/*
2049 * Work out whether we can put this event group on the CPU now.
2050 */
2051static int group_can_go_on(struct perf_event *event,
2052 struct perf_cpu_context *cpuctx,
2053 int can_add_hw)
2054{
2055 /*
2056 * Groups consisting entirely of software events can always go on.
2057 */
2058 if (event->group_flags & PERF_GROUP_SOFTWARE)
2059 return 1;
2060 /*
2061 * If an exclusive group is already on, no other hardware
2062 * events can go on.
2063 */
2064 if (cpuctx->exclusive)
2065 return 0;
2066 /*
2067 * If this group is exclusive and there are already
2068 * events on the CPU, it can't go on.
2069 */
2070 if (event->attr.exclusive && cpuctx->active_oncpu)
2071 return 0;
2072 /*
2073 * Otherwise, try to add it if all previous groups were able
2074 * to go on.
2075 */
2076 return can_add_hw;
2077}
2078
2079static void add_event_to_ctx(struct perf_event *event,
2080 struct perf_event_context *ctx)
2081{
2082 u64 tstamp = perf_event_time(event);
2083
2084 list_add_event(event, ctx);
2085 perf_group_attach(event);
2086 event->tstamp_enabled = tstamp;
2087 event->tstamp_running = tstamp;
2088 event->tstamp_stopped = tstamp;
2089}
2090
2091static void ctx_sched_out(struct perf_event_context *ctx,
2092 struct perf_cpu_context *cpuctx,
2093 enum event_type_t event_type);
2094static void
2095ctx_sched_in(struct perf_event_context *ctx,
2096 struct perf_cpu_context *cpuctx,
2097 enum event_type_t event_type,
2098 struct task_struct *task);
2099
2100static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2101 struct perf_event_context *ctx)
2102{
2103 if (!cpuctx->task_ctx)
2104 return;
2105
2106 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2107 return;
2108
2109 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2110}
2111
2112static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2113 struct perf_event_context *ctx,
2114 struct task_struct *task)
2115{
2116 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2117 if (ctx)
2118 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2119 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2120 if (ctx)
2121 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2122}
2123
2124static void ctx_resched(struct perf_cpu_context *cpuctx,
2125 struct perf_event_context *task_ctx)
2126{
2127 perf_pmu_disable(cpuctx->ctx.pmu);
2128 if (task_ctx)
2129 task_ctx_sched_out(cpuctx, task_ctx);
2130 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2131 perf_event_sched_in(cpuctx, task_ctx, current);
2132 perf_pmu_enable(cpuctx->ctx.pmu);
2133}
2134
2135/*
2136 * Cross CPU call to install and enable a performance event
2137 *
2138 * Very similar to remote_function() + event_function() but cannot assume that
2139 * things like ctx->is_active and cpuctx->task_ctx are set.
2140 */
2141static int __perf_install_in_context(void *info)
2142{
2143 struct perf_event *event = info;
2144 struct perf_event_context *ctx = event->ctx;
2145 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2146 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2147 bool activate = true;
2148 int ret = 0;
2149
2150 raw_spin_lock(&cpuctx->ctx.lock);
2151 if (ctx->task) {
2152 raw_spin_lock(&ctx->lock);
2153 task_ctx = ctx;
2154
2155 /* If we're on the wrong CPU, try again */
2156 if (task_cpu(ctx->task) != smp_processor_id()) {
2157 ret = -ESRCH;
2158 goto unlock;
2159 }
2160
2161 /*
2162 * If we're on the right CPU, see if the task we target is
2163 * current, if not we don't have to activate the ctx, a future
2164 * context switch will do that for us.
2165 */
2166 if (ctx->task != current)
2167 activate = false;
2168 else
2169 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2170
2171 } else if (task_ctx) {
2172 raw_spin_lock(&task_ctx->lock);
2173 }
2174
2175 if (activate) {
2176 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2177 add_event_to_ctx(event, ctx);
2178 ctx_resched(cpuctx, task_ctx);
2179 } else {
2180 add_event_to_ctx(event, ctx);
2181 }
2182
2183unlock:
2184 perf_ctx_unlock(cpuctx, task_ctx);
2185
2186 return ret;
2187}
2188
2189/*
2190 * Attach a performance event to a context.
2191 *
2192 * Very similar to event_function_call, see comment there.
2193 */
2194static void
2195perf_install_in_context(struct perf_event_context *ctx,
2196 struct perf_event *event,
2197 int cpu)
2198{
2199 struct task_struct *task = READ_ONCE(ctx->task);
2200
2201 lockdep_assert_held(&ctx->mutex);
2202
2203 event->ctx = ctx;
2204 if (event->cpu != -1)
2205 event->cpu = cpu;
2206
2207 if (!task) {
2208 cpu_function_call(cpu, __perf_install_in_context, event);
2209 return;
2210 }
2211
2212 /*
2213 * Should not happen, we validate the ctx is still alive before calling.
2214 */
2215 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2216 return;
2217
2218 /*
2219 * Installing events is tricky because we cannot rely on ctx->is_active
2220 * to be set in case this is the nr_events 0 -> 1 transition.
2221 */
2222again:
2223 /*
2224 * Cannot use task_function_call() because we need to run on the task's
2225 * CPU regardless of whether its current or not.
2226 */
2227 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2228 return;
2229
2230 raw_spin_lock_irq(&ctx->lock);
2231 task = ctx->task;
2232 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2233 /*
2234 * Cannot happen because we already checked above (which also
2235 * cannot happen), and we hold ctx->mutex, which serializes us
2236 * against perf_event_exit_task_context().
2237 */
2238 raw_spin_unlock_irq(&ctx->lock);
2239 return;
2240 }
2241 raw_spin_unlock_irq(&ctx->lock);
2242 /*
2243 * Since !ctx->is_active doesn't mean anything, we must IPI
2244 * unconditionally.
2245 */
2246 goto again;
2247}
2248
2249/*
2250 * Put a event into inactive state and update time fields.
2251 * Enabling the leader of a group effectively enables all
2252 * the group members that aren't explicitly disabled, so we
2253 * have to update their ->tstamp_enabled also.
2254 * Note: this works for group members as well as group leaders
2255 * since the non-leader members' sibling_lists will be empty.
2256 */
2257static void __perf_event_mark_enabled(struct perf_event *event)
2258{
2259 struct perf_event *sub;
2260 u64 tstamp = perf_event_time(event);
2261
2262 event->state = PERF_EVENT_STATE_INACTIVE;
2263 event->tstamp_enabled = tstamp - event->total_time_enabled;
2264 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2265 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2266 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2267 }
2268}
2269
2270/*
2271 * Cross CPU call to enable a performance event
2272 */
2273static void __perf_event_enable(struct perf_event *event,
2274 struct perf_cpu_context *cpuctx,
2275 struct perf_event_context *ctx,
2276 void *info)
2277{
2278 struct perf_event *leader = event->group_leader;
2279 struct perf_event_context *task_ctx;
2280
2281 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2282 event->state <= PERF_EVENT_STATE_ERROR)
2283 return;
2284
2285 if (ctx->is_active)
2286 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2287
2288 __perf_event_mark_enabled(event);
2289
2290 if (!ctx->is_active)
2291 return;
2292
2293 if (!event_filter_match(event)) {
2294 if (is_cgroup_event(event))
2295 perf_cgroup_defer_enabled(event);
2296 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2297 return;
2298 }
2299
2300 /*
2301 * If the event is in a group and isn't the group leader,
2302 * then don't put it on unless the group is on.
2303 */
2304 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2305 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2306 return;
2307 }
2308
2309 task_ctx = cpuctx->task_ctx;
2310 if (ctx->task)
2311 WARN_ON_ONCE(task_ctx != ctx);
2312
2313 ctx_resched(cpuctx, task_ctx);
2314}
2315
2316/*
2317 * Enable a event.
2318 *
2319 * If event->ctx is a cloned context, callers must make sure that
2320 * every task struct that event->ctx->task could possibly point to
2321 * remains valid. This condition is satisfied when called through
2322 * perf_event_for_each_child or perf_event_for_each as described
2323 * for perf_event_disable.
2324 */
2325static void _perf_event_enable(struct perf_event *event)
2326{
2327 struct perf_event_context *ctx = event->ctx;
2328
2329 raw_spin_lock_irq(&ctx->lock);
2330 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2331 event->state < PERF_EVENT_STATE_ERROR) {
2332 raw_spin_unlock_irq(&ctx->lock);
2333 return;
2334 }
2335
2336 /*
2337 * If the event is in error state, clear that first.
2338 *
2339 * That way, if we see the event in error state below, we know that it
2340 * has gone back into error state, as distinct from the task having
2341 * been scheduled away before the cross-call arrived.
2342 */
2343 if (event->state == PERF_EVENT_STATE_ERROR)
2344 event->state = PERF_EVENT_STATE_OFF;
2345 raw_spin_unlock_irq(&ctx->lock);
2346
2347 event_function_call(event, __perf_event_enable, NULL);
2348}
2349
2350/*
2351 * See perf_event_disable();
2352 */
2353void perf_event_enable(struct perf_event *event)
2354{
2355 struct perf_event_context *ctx;
2356
2357 ctx = perf_event_ctx_lock(event);
2358 _perf_event_enable(event);
2359 perf_event_ctx_unlock(event, ctx);
2360}
2361EXPORT_SYMBOL_GPL(perf_event_enable);
2362
2363static int _perf_event_refresh(struct perf_event *event, int refresh)
2364{
2365 /*
2366 * not supported on inherited events
2367 */
2368 if (event->attr.inherit || !is_sampling_event(event))
2369 return -EINVAL;
2370
2371 atomic_add(refresh, &event->event_limit);
2372 _perf_event_enable(event);
2373
2374 return 0;
2375}
2376
2377/*
2378 * See perf_event_disable()
2379 */
2380int perf_event_refresh(struct perf_event *event, int refresh)
2381{
2382 struct perf_event_context *ctx;
2383 int ret;
2384
2385 ctx = perf_event_ctx_lock(event);
2386 ret = _perf_event_refresh(event, refresh);
2387 perf_event_ctx_unlock(event, ctx);
2388
2389 return ret;
2390}
2391EXPORT_SYMBOL_GPL(perf_event_refresh);
2392
2393static void ctx_sched_out(struct perf_event_context *ctx,
2394 struct perf_cpu_context *cpuctx,
2395 enum event_type_t event_type)
2396{
2397 int is_active = ctx->is_active;
2398 struct perf_event *event;
2399
2400 lockdep_assert_held(&ctx->lock);
2401
2402 if (likely(!ctx->nr_events)) {
2403 /*
2404 * See __perf_remove_from_context().
2405 */
2406 WARN_ON_ONCE(ctx->is_active);
2407 if (ctx->task)
2408 WARN_ON_ONCE(cpuctx->task_ctx);
2409 return;
2410 }
2411
2412 ctx->is_active &= ~event_type;
2413 if (!(ctx->is_active & EVENT_ALL))
2414 ctx->is_active = 0;
2415
2416 if (ctx->task) {
2417 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2418 if (!ctx->is_active)
2419 cpuctx->task_ctx = NULL;
2420 }
2421
2422 /*
2423 * Always update time if it was set; not only when it changes.
2424 * Otherwise we can 'forget' to update time for any but the last
2425 * context we sched out. For example:
2426 *
2427 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2428 * ctx_sched_out(.event_type = EVENT_PINNED)
2429 *
2430 * would only update time for the pinned events.
2431 */
2432 if (is_active & EVENT_TIME) {
2433 /* update (and stop) ctx time */
2434 update_context_time(ctx);
2435 update_cgrp_time_from_cpuctx(cpuctx);
2436 }
2437
2438 is_active ^= ctx->is_active; /* changed bits */
2439
2440 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2441 return;
2442
2443 perf_pmu_disable(ctx->pmu);
2444 if (is_active & EVENT_PINNED) {
2445 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2446 group_sched_out(event, cpuctx, ctx);
2447 }
2448
2449 if (is_active & EVENT_FLEXIBLE) {
2450 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2451 group_sched_out(event, cpuctx, ctx);
2452 }
2453 perf_pmu_enable(ctx->pmu);
2454}
2455
2456/*
2457 * Test whether two contexts are equivalent, i.e. whether they have both been
2458 * cloned from the same version of the same context.
2459 *
2460 * Equivalence is measured using a generation number in the context that is
2461 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2462 * and list_del_event().
2463 */
2464static int context_equiv(struct perf_event_context *ctx1,
2465 struct perf_event_context *ctx2)
2466{
2467 lockdep_assert_held(&ctx1->lock);
2468 lockdep_assert_held(&ctx2->lock);
2469
2470 /* Pinning disables the swap optimization */
2471 if (ctx1->pin_count || ctx2->pin_count)
2472 return 0;
2473
2474 /* If ctx1 is the parent of ctx2 */
2475 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2476 return 1;
2477
2478 /* If ctx2 is the parent of ctx1 */
2479 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2480 return 1;
2481
2482 /*
2483 * If ctx1 and ctx2 have the same parent; we flatten the parent
2484 * hierarchy, see perf_event_init_context().
2485 */
2486 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2487 ctx1->parent_gen == ctx2->parent_gen)
2488 return 1;
2489
2490 /* Unmatched */
2491 return 0;
2492}
2493
2494static void __perf_event_sync_stat(struct perf_event *event,
2495 struct perf_event *next_event)
2496{
2497 u64 value;
2498
2499 if (!event->attr.inherit_stat)
2500 return;
2501
2502 /*
2503 * Update the event value, we cannot use perf_event_read()
2504 * because we're in the middle of a context switch and have IRQs
2505 * disabled, which upsets smp_call_function_single(), however
2506 * we know the event must be on the current CPU, therefore we
2507 * don't need to use it.
2508 */
2509 switch (event->state) {
2510 case PERF_EVENT_STATE_ACTIVE:
2511 event->pmu->read(event);
2512 /* fall-through */
2513
2514 case PERF_EVENT_STATE_INACTIVE:
2515 update_event_times(event);
2516 break;
2517
2518 default:
2519 break;
2520 }
2521
2522 /*
2523 * In order to keep per-task stats reliable we need to flip the event
2524 * values when we flip the contexts.
2525 */
2526 value = local64_read(&next_event->count);
2527 value = local64_xchg(&event->count, value);
2528 local64_set(&next_event->count, value);
2529
2530 swap(event->total_time_enabled, next_event->total_time_enabled);
2531 swap(event->total_time_running, next_event->total_time_running);
2532
2533 /*
2534 * Since we swizzled the values, update the user visible data too.
2535 */
2536 perf_event_update_userpage(event);
2537 perf_event_update_userpage(next_event);
2538}
2539
2540static void perf_event_sync_stat(struct perf_event_context *ctx,
2541 struct perf_event_context *next_ctx)
2542{
2543 struct perf_event *event, *next_event;
2544
2545 if (!ctx->nr_stat)
2546 return;
2547
2548 update_context_time(ctx);
2549
2550 event = list_first_entry(&ctx->event_list,
2551 struct perf_event, event_entry);
2552
2553 next_event = list_first_entry(&next_ctx->event_list,
2554 struct perf_event, event_entry);
2555
2556 while (&event->event_entry != &ctx->event_list &&
2557 &next_event->event_entry != &next_ctx->event_list) {
2558
2559 __perf_event_sync_stat(event, next_event);
2560
2561 event = list_next_entry(event, event_entry);
2562 next_event = list_next_entry(next_event, event_entry);
2563 }
2564}
2565
2566static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2567 struct task_struct *next)
2568{
2569 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2570 struct perf_event_context *next_ctx;
2571 struct perf_event_context *parent, *next_parent;
2572 struct perf_cpu_context *cpuctx;
2573 int do_switch = 1;
2574
2575 if (likely(!ctx))
2576 return;
2577
2578 cpuctx = __get_cpu_context(ctx);
2579 if (!cpuctx->task_ctx)
2580 return;
2581
2582 rcu_read_lock();
2583 next_ctx = next->perf_event_ctxp[ctxn];
2584 if (!next_ctx)
2585 goto unlock;
2586
2587 parent = rcu_dereference(ctx->parent_ctx);
2588 next_parent = rcu_dereference(next_ctx->parent_ctx);
2589
2590 /* If neither context have a parent context; they cannot be clones. */
2591 if (!parent && !next_parent)
2592 goto unlock;
2593
2594 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2595 /*
2596 * Looks like the two contexts are clones, so we might be
2597 * able to optimize the context switch. We lock both
2598 * contexts and check that they are clones under the
2599 * lock (including re-checking that neither has been
2600 * uncloned in the meantime). It doesn't matter which
2601 * order we take the locks because no other cpu could
2602 * be trying to lock both of these tasks.
2603 */
2604 raw_spin_lock(&ctx->lock);
2605 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2606 if (context_equiv(ctx, next_ctx)) {
2607 WRITE_ONCE(ctx->task, next);
2608 WRITE_ONCE(next_ctx->task, task);
2609
2610 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2611
2612 /*
2613 * RCU_INIT_POINTER here is safe because we've not
2614 * modified the ctx and the above modification of
2615 * ctx->task and ctx->task_ctx_data are immaterial
2616 * since those values are always verified under
2617 * ctx->lock which we're now holding.
2618 */
2619 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2620 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2621
2622 do_switch = 0;
2623
2624 perf_event_sync_stat(ctx, next_ctx);
2625 }
2626 raw_spin_unlock(&next_ctx->lock);
2627 raw_spin_unlock(&ctx->lock);
2628 }
2629unlock:
2630 rcu_read_unlock();
2631
2632 if (do_switch) {
2633 raw_spin_lock(&ctx->lock);
2634 task_ctx_sched_out(cpuctx, ctx);
2635 raw_spin_unlock(&ctx->lock);
2636 }
2637}
2638
2639void perf_sched_cb_dec(struct pmu *pmu)
2640{
2641 this_cpu_dec(perf_sched_cb_usages);
2642}
2643
2644void perf_sched_cb_inc(struct pmu *pmu)
2645{
2646 this_cpu_inc(perf_sched_cb_usages);
2647}
2648
2649/*
2650 * This function provides the context switch callback to the lower code
2651 * layer. It is invoked ONLY when the context switch callback is enabled.
2652 */
2653static void perf_pmu_sched_task(struct task_struct *prev,
2654 struct task_struct *next,
2655 bool sched_in)
2656{
2657 struct perf_cpu_context *cpuctx;
2658 struct pmu *pmu;
2659 unsigned long flags;
2660
2661 if (prev == next)
2662 return;
2663
2664 local_irq_save(flags);
2665
2666 rcu_read_lock();
2667
2668 list_for_each_entry_rcu(pmu, &pmus, entry) {
2669 if (pmu->sched_task) {
2670 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2671
2672 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2673
2674 perf_pmu_disable(pmu);
2675
2676 pmu->sched_task(cpuctx->task_ctx, sched_in);
2677
2678 perf_pmu_enable(pmu);
2679
2680 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2681 }
2682 }
2683
2684 rcu_read_unlock();
2685
2686 local_irq_restore(flags);
2687}
2688
2689static void perf_event_switch(struct task_struct *task,
2690 struct task_struct *next_prev, bool sched_in);
2691
2692#define for_each_task_context_nr(ctxn) \
2693 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2694
2695/*
2696 * Called from scheduler to remove the events of the current task,
2697 * with interrupts disabled.
2698 *
2699 * We stop each event and update the event value in event->count.
2700 *
2701 * This does not protect us against NMI, but disable()
2702 * sets the disabled bit in the control field of event _before_
2703 * accessing the event control register. If a NMI hits, then it will
2704 * not restart the event.
2705 */
2706void __perf_event_task_sched_out(struct task_struct *task,
2707 struct task_struct *next)
2708{
2709 int ctxn;
2710
2711 if (__this_cpu_read(perf_sched_cb_usages))
2712 perf_pmu_sched_task(task, next, false);
2713
2714 if (atomic_read(&nr_switch_events))
2715 perf_event_switch(task, next, false);
2716
2717 for_each_task_context_nr(ctxn)
2718 perf_event_context_sched_out(task, ctxn, next);
2719
2720 /*
2721 * if cgroup events exist on this CPU, then we need
2722 * to check if we have to switch out PMU state.
2723 * cgroup event are system-wide mode only
2724 */
2725 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2726 perf_cgroup_sched_out(task, next);
2727}
2728
2729/*
2730 * Called with IRQs disabled
2731 */
2732static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2733 enum event_type_t event_type)
2734{
2735 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2736}
2737
2738static void
2739ctx_pinned_sched_in(struct perf_event_context *ctx,
2740 struct perf_cpu_context *cpuctx)
2741{
2742 struct perf_event *event;
2743
2744 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2745 if (event->state <= PERF_EVENT_STATE_OFF)
2746 continue;
2747 if (!event_filter_match(event))
2748 continue;
2749
2750 /* may need to reset tstamp_enabled */
2751 if (is_cgroup_event(event))
2752 perf_cgroup_mark_enabled(event, ctx);
2753
2754 if (group_can_go_on(event, cpuctx, 1))
2755 group_sched_in(event, cpuctx, ctx);
2756
2757 /*
2758 * If this pinned group hasn't been scheduled,
2759 * put it in error state.
2760 */
2761 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2762 update_group_times(event);
2763 event->state = PERF_EVENT_STATE_ERROR;
2764 }
2765 }
2766}
2767
2768static void
2769ctx_flexible_sched_in(struct perf_event_context *ctx,
2770 struct perf_cpu_context *cpuctx)
2771{
2772 struct perf_event *event;
2773 int can_add_hw = 1;
2774
2775 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2776 /* Ignore events in OFF or ERROR state */
2777 if (event->state <= PERF_EVENT_STATE_OFF)
2778 continue;
2779 /*
2780 * Listen to the 'cpu' scheduling filter constraint
2781 * of events:
2782 */
2783 if (!event_filter_match(event))
2784 continue;
2785
2786 /* may need to reset tstamp_enabled */
2787 if (is_cgroup_event(event))
2788 perf_cgroup_mark_enabled(event, ctx);
2789
2790 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2791 if (group_sched_in(event, cpuctx, ctx))
2792 can_add_hw = 0;
2793 }
2794 }
2795}
2796
2797static void
2798ctx_sched_in(struct perf_event_context *ctx,
2799 struct perf_cpu_context *cpuctx,
2800 enum event_type_t event_type,
2801 struct task_struct *task)
2802{
2803 int is_active = ctx->is_active;
2804 u64 now;
2805
2806 lockdep_assert_held(&ctx->lock);
2807
2808 if (likely(!ctx->nr_events))
2809 return;
2810
2811 ctx->is_active |= (event_type | EVENT_TIME);
2812 if (ctx->task) {
2813 if (!is_active)
2814 cpuctx->task_ctx = ctx;
2815 else
2816 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2817 }
2818
2819 is_active ^= ctx->is_active; /* changed bits */
2820
2821 if (is_active & EVENT_TIME) {
2822 /* start ctx time */
2823 now = perf_clock();
2824 ctx->timestamp = now;
2825 perf_cgroup_set_timestamp(task, ctx);
2826 }
2827
2828 /*
2829 * First go through the list and put on any pinned groups
2830 * in order to give them the best chance of going on.
2831 */
2832 if (is_active & EVENT_PINNED)
2833 ctx_pinned_sched_in(ctx, cpuctx);
2834
2835 /* Then walk through the lower prio flexible groups */
2836 if (is_active & EVENT_FLEXIBLE)
2837 ctx_flexible_sched_in(ctx, cpuctx);
2838}
2839
2840static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2841 enum event_type_t event_type,
2842 struct task_struct *task)
2843{
2844 struct perf_event_context *ctx = &cpuctx->ctx;
2845
2846 ctx_sched_in(ctx, cpuctx, event_type, task);
2847}
2848
2849static void perf_event_context_sched_in(struct perf_event_context *ctx,
2850 struct task_struct *task)
2851{
2852 struct perf_cpu_context *cpuctx;
2853
2854 cpuctx = __get_cpu_context(ctx);
2855 if (cpuctx->task_ctx == ctx)
2856 return;
2857
2858 perf_ctx_lock(cpuctx, ctx);
2859 perf_pmu_disable(ctx->pmu);
2860 /*
2861 * We want to keep the following priority order:
2862 * cpu pinned (that don't need to move), task pinned,
2863 * cpu flexible, task flexible.
2864 */
2865 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2866 perf_event_sched_in(cpuctx, ctx, task);
2867 perf_pmu_enable(ctx->pmu);
2868 perf_ctx_unlock(cpuctx, ctx);
2869}
2870
2871/*
2872 * Called from scheduler to add the events of the current task
2873 * with interrupts disabled.
2874 *
2875 * We restore the event value and then enable it.
2876 *
2877 * This does not protect us against NMI, but enable()
2878 * sets the enabled bit in the control field of event _before_
2879 * accessing the event control register. If a NMI hits, then it will
2880 * keep the event running.
2881 */
2882void __perf_event_task_sched_in(struct task_struct *prev,
2883 struct task_struct *task)
2884{
2885 struct perf_event_context *ctx;
2886 int ctxn;
2887
2888 /*
2889 * If cgroup events exist on this CPU, then we need to check if we have
2890 * to switch in PMU state; cgroup event are system-wide mode only.
2891 *
2892 * Since cgroup events are CPU events, we must schedule these in before
2893 * we schedule in the task events.
2894 */
2895 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2896 perf_cgroup_sched_in(prev, task);
2897
2898 for_each_task_context_nr(ctxn) {
2899 ctx = task->perf_event_ctxp[ctxn];
2900 if (likely(!ctx))
2901 continue;
2902
2903 perf_event_context_sched_in(ctx, task);
2904 }
2905
2906 if (atomic_read(&nr_switch_events))
2907 perf_event_switch(task, prev, true);
2908
2909 if (__this_cpu_read(perf_sched_cb_usages))
2910 perf_pmu_sched_task(prev, task, true);
2911}
2912
2913static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2914{
2915 u64 frequency = event->attr.sample_freq;
2916 u64 sec = NSEC_PER_SEC;
2917 u64 divisor, dividend;
2918
2919 int count_fls, nsec_fls, frequency_fls, sec_fls;
2920
2921 count_fls = fls64(count);
2922 nsec_fls = fls64(nsec);
2923 frequency_fls = fls64(frequency);
2924 sec_fls = 30;
2925
2926 /*
2927 * We got @count in @nsec, with a target of sample_freq HZ
2928 * the target period becomes:
2929 *
2930 * @count * 10^9
2931 * period = -------------------
2932 * @nsec * sample_freq
2933 *
2934 */
2935
2936 /*
2937 * Reduce accuracy by one bit such that @a and @b converge
2938 * to a similar magnitude.
2939 */
2940#define REDUCE_FLS(a, b) \
2941do { \
2942 if (a##_fls > b##_fls) { \
2943 a >>= 1; \
2944 a##_fls--; \
2945 } else { \
2946 b >>= 1; \
2947 b##_fls--; \
2948 } \
2949} while (0)
2950
2951 /*
2952 * Reduce accuracy until either term fits in a u64, then proceed with
2953 * the other, so that finally we can do a u64/u64 division.
2954 */
2955 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2956 REDUCE_FLS(nsec, frequency);
2957 REDUCE_FLS(sec, count);
2958 }
2959
2960 if (count_fls + sec_fls > 64) {
2961 divisor = nsec * frequency;
2962
2963 while (count_fls + sec_fls > 64) {
2964 REDUCE_FLS(count, sec);
2965 divisor >>= 1;
2966 }
2967
2968 dividend = count * sec;
2969 } else {
2970 dividend = count * sec;
2971
2972 while (nsec_fls + frequency_fls > 64) {
2973 REDUCE_FLS(nsec, frequency);
2974 dividend >>= 1;
2975 }
2976
2977 divisor = nsec * frequency;
2978 }
2979
2980 if (!divisor)
2981 return dividend;
2982
2983 return div64_u64(dividend, divisor);
2984}
2985
2986static DEFINE_PER_CPU(int, perf_throttled_count);
2987static DEFINE_PER_CPU(u64, perf_throttled_seq);
2988
2989static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2990{
2991 struct hw_perf_event *hwc = &event->hw;
2992 s64 period, sample_period;
2993 s64 delta;
2994
2995 period = perf_calculate_period(event, nsec, count);
2996
2997 delta = (s64)(period - hwc->sample_period);
2998 delta = (delta + 7) / 8; /* low pass filter */
2999
3000 sample_period = hwc->sample_period + delta;
3001
3002 if (!sample_period)
3003 sample_period = 1;
3004
3005 hwc->sample_period = sample_period;
3006
3007 if (local64_read(&hwc->period_left) > 8*sample_period) {
3008 if (disable)
3009 event->pmu->stop(event, PERF_EF_UPDATE);
3010
3011 local64_set(&hwc->period_left, 0);
3012
3013 if (disable)
3014 event->pmu->start(event, PERF_EF_RELOAD);
3015 }
3016}
3017
3018/*
3019 * combine freq adjustment with unthrottling to avoid two passes over the
3020 * events. At the same time, make sure, having freq events does not change
3021 * the rate of unthrottling as that would introduce bias.
3022 */
3023static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3024 int needs_unthr)
3025{
3026 struct perf_event *event;
3027 struct hw_perf_event *hwc;
3028 u64 now, period = TICK_NSEC;
3029 s64 delta;
3030
3031 /*
3032 * only need to iterate over all events iff:
3033 * - context have events in frequency mode (needs freq adjust)
3034 * - there are events to unthrottle on this cpu
3035 */
3036 if (!(ctx->nr_freq || needs_unthr))
3037 return;
3038
3039 raw_spin_lock(&ctx->lock);
3040 perf_pmu_disable(ctx->pmu);
3041
3042 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3043 if (event->state != PERF_EVENT_STATE_ACTIVE)
3044 continue;
3045
3046 if (!event_filter_match(event))
3047 continue;
3048
3049 perf_pmu_disable(event->pmu);
3050
3051 hwc = &event->hw;
3052
3053 if (hwc->interrupts == MAX_INTERRUPTS) {
3054 hwc->interrupts = 0;
3055 perf_log_throttle(event, 1);
3056 event->pmu->start(event, 0);
3057 }
3058
3059 if (!event->attr.freq || !event->attr.sample_freq)
3060 goto next;
3061
3062 /*
3063 * stop the event and update event->count
3064 */
3065 event->pmu->stop(event, PERF_EF_UPDATE);
3066
3067 now = local64_read(&event->count);
3068 delta = now - hwc->freq_count_stamp;
3069 hwc->freq_count_stamp = now;
3070
3071 /*
3072 * restart the event
3073 * reload only if value has changed
3074 * we have stopped the event so tell that
3075 * to perf_adjust_period() to avoid stopping it
3076 * twice.
3077 */
3078 if (delta > 0)
3079 perf_adjust_period(event, period, delta, false);
3080
3081 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3082 next:
3083 perf_pmu_enable(event->pmu);
3084 }
3085
3086 perf_pmu_enable(ctx->pmu);
3087 raw_spin_unlock(&ctx->lock);
3088}
3089
3090/*
3091 * Round-robin a context's events:
3092 */
3093static void rotate_ctx(struct perf_event_context *ctx)
3094{
3095 /*
3096 * Rotate the first entry last of non-pinned groups. Rotation might be
3097 * disabled by the inheritance code.
3098 */
3099 if (!ctx->rotate_disable)
3100 list_rotate_left(&ctx->flexible_groups);
3101}
3102
3103static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3104{
3105 struct perf_event_context *ctx = NULL;
3106 int rotate = 0;
3107
3108 if (cpuctx->ctx.nr_events) {
3109 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3110 rotate = 1;
3111 }
3112
3113 ctx = cpuctx->task_ctx;
3114 if (ctx && ctx->nr_events) {
3115 if (ctx->nr_events != ctx->nr_active)
3116 rotate = 1;
3117 }
3118
3119 if (!rotate)
3120 goto done;
3121
3122 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3123 perf_pmu_disable(cpuctx->ctx.pmu);
3124
3125 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3126 if (ctx)
3127 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3128
3129 rotate_ctx(&cpuctx->ctx);
3130 if (ctx)
3131 rotate_ctx(ctx);
3132
3133 perf_event_sched_in(cpuctx, ctx, current);
3134
3135 perf_pmu_enable(cpuctx->ctx.pmu);
3136 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3137done:
3138
3139 return rotate;
3140}
3141
3142void perf_event_task_tick(void)
3143{
3144 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3145 struct perf_event_context *ctx, *tmp;
3146 int throttled;
3147
3148 WARN_ON(!irqs_disabled());
3149
3150 __this_cpu_inc(perf_throttled_seq);
3151 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3152 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3153
3154 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3155 perf_adjust_freq_unthr_context(ctx, throttled);
3156}
3157
3158static int event_enable_on_exec(struct perf_event *event,
3159 struct perf_event_context *ctx)
3160{
3161 if (!event->attr.enable_on_exec)
3162 return 0;
3163
3164 event->attr.enable_on_exec = 0;
3165 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3166 return 0;
3167
3168 __perf_event_mark_enabled(event);
3169
3170 return 1;
3171}
3172
3173/*
3174 * Enable all of a task's events that have been marked enable-on-exec.
3175 * This expects task == current.
3176 */
3177static void perf_event_enable_on_exec(int ctxn)
3178{
3179 struct perf_event_context *ctx, *clone_ctx = NULL;
3180 struct perf_cpu_context *cpuctx;
3181 struct perf_event *event;
3182 unsigned long flags;
3183 int enabled = 0;
3184
3185 local_irq_save(flags);
3186 ctx = current->perf_event_ctxp[ctxn];
3187 if (!ctx || !ctx->nr_events)
3188 goto out;
3189
3190 cpuctx = __get_cpu_context(ctx);
3191 perf_ctx_lock(cpuctx, ctx);
3192 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3193 list_for_each_entry(event, &ctx->event_list, event_entry)
3194 enabled |= event_enable_on_exec(event, ctx);
3195
3196 /*
3197 * Unclone and reschedule this context if we enabled any event.
3198 */
3199 if (enabled) {
3200 clone_ctx = unclone_ctx(ctx);
3201 ctx_resched(cpuctx, ctx);
3202 }
3203 perf_ctx_unlock(cpuctx, ctx);
3204
3205out:
3206 local_irq_restore(flags);
3207
3208 if (clone_ctx)
3209 put_ctx(clone_ctx);
3210}
3211
3212void perf_event_exec(void)
3213{
3214 int ctxn;
3215
3216 rcu_read_lock();
3217 for_each_task_context_nr(ctxn)
3218 perf_event_enable_on_exec(ctxn);
3219 rcu_read_unlock();
3220}
3221
3222struct perf_read_data {
3223 struct perf_event *event;
3224 bool group;
3225 int ret;
3226};
3227
3228/*
3229 * Cross CPU call to read the hardware event
3230 */
3231static void __perf_event_read(void *info)
3232{
3233 struct perf_read_data *data = info;
3234 struct perf_event *sub, *event = data->event;
3235 struct perf_event_context *ctx = event->ctx;
3236 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3237 struct pmu *pmu = event->pmu;
3238
3239 /*
3240 * If this is a task context, we need to check whether it is
3241 * the current task context of this cpu. If not it has been
3242 * scheduled out before the smp call arrived. In that case
3243 * event->count would have been updated to a recent sample
3244 * when the event was scheduled out.
3245 */
3246 if (ctx->task && cpuctx->task_ctx != ctx)
3247 return;
3248
3249 raw_spin_lock(&ctx->lock);
3250 if (ctx->is_active) {
3251 update_context_time(ctx);
3252 update_cgrp_time_from_event(event);
3253 }
3254
3255 update_event_times(event);
3256 if (event->state != PERF_EVENT_STATE_ACTIVE)
3257 goto unlock;
3258
3259 if (!data->group) {
3260 pmu->read(event);
3261 data->ret = 0;
3262 goto unlock;
3263 }
3264
3265 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3266
3267 pmu->read(event);
3268
3269 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3270 update_event_times(sub);
3271 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3272 /*
3273 * Use sibling's PMU rather than @event's since
3274 * sibling could be on different (eg: software) PMU.
3275 */
3276 sub->pmu->read(sub);
3277 }
3278 }
3279
3280 data->ret = pmu->commit_txn(pmu);
3281
3282unlock:
3283 raw_spin_unlock(&ctx->lock);
3284}
3285
3286static inline u64 perf_event_count(struct perf_event *event)
3287{
3288 if (event->pmu->count)
3289 return event->pmu->count(event);
3290
3291 return __perf_event_count(event);
3292}
3293
3294/*
3295 * NMI-safe method to read a local event, that is an event that
3296 * is:
3297 * - either for the current task, or for this CPU
3298 * - does not have inherit set, for inherited task events
3299 * will not be local and we cannot read them atomically
3300 * - must not have a pmu::count method
3301 */
3302u64 perf_event_read_local(struct perf_event *event)
3303{
3304 unsigned long flags;
3305 u64 val;
3306
3307 /*
3308 * Disabling interrupts avoids all counter scheduling (context
3309 * switches, timer based rotation and IPIs).
3310 */
3311 local_irq_save(flags);
3312
3313 /* If this is a per-task event, it must be for current */
3314 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3315 event->hw.target != current);
3316
3317 /* If this is a per-CPU event, it must be for this CPU */
3318 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3319 event->cpu != smp_processor_id());
3320
3321 /*
3322 * It must not be an event with inherit set, we cannot read
3323 * all child counters from atomic context.
3324 */
3325 WARN_ON_ONCE(event->attr.inherit);
3326
3327 /*
3328 * It must not have a pmu::count method, those are not
3329 * NMI safe.
3330 */
3331 WARN_ON_ONCE(event->pmu->count);
3332
3333 /*
3334 * If the event is currently on this CPU, its either a per-task event,
3335 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3336 * oncpu == -1).
3337 */
3338 if (event->oncpu == smp_processor_id())
3339 event->pmu->read(event);
3340
3341 val = local64_read(&event->count);
3342 local_irq_restore(flags);
3343
3344 return val;
3345}
3346
3347static int perf_event_read(struct perf_event *event, bool group)
3348{
3349 int ret = 0;
3350
3351 /*
3352 * If event is enabled and currently active on a CPU, update the
3353 * value in the event structure:
3354 */
3355 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3356 struct perf_read_data data = {
3357 .event = event,
3358 .group = group,
3359 .ret = 0,
3360 };
3361 smp_call_function_single(event->oncpu,
3362 __perf_event_read, &data, 1);
3363 ret = data.ret;
3364 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3365 struct perf_event_context *ctx = event->ctx;
3366 unsigned long flags;
3367
3368 raw_spin_lock_irqsave(&ctx->lock, flags);
3369 /*
3370 * may read while context is not active
3371 * (e.g., thread is blocked), in that case
3372 * we cannot update context time
3373 */
3374 if (ctx->is_active) {
3375 update_context_time(ctx);
3376 update_cgrp_time_from_event(event);
3377 }
3378 if (group)
3379 update_group_times(event);
3380 else
3381 update_event_times(event);
3382 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3383 }
3384
3385 return ret;
3386}
3387
3388/*
3389 * Initialize the perf_event context in a task_struct:
3390 */
3391static void __perf_event_init_context(struct perf_event_context *ctx)
3392{
3393 raw_spin_lock_init(&ctx->lock);
3394 mutex_init(&ctx->mutex);
3395 INIT_LIST_HEAD(&ctx->active_ctx_list);
3396 INIT_LIST_HEAD(&ctx->pinned_groups);
3397 INIT_LIST_HEAD(&ctx->flexible_groups);
3398 INIT_LIST_HEAD(&ctx->event_list);
3399 atomic_set(&ctx->refcount, 1);
3400}
3401
3402static struct perf_event_context *
3403alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3404{
3405 struct perf_event_context *ctx;
3406
3407 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3408 if (!ctx)
3409 return NULL;
3410
3411 __perf_event_init_context(ctx);
3412 if (task) {
3413 ctx->task = task;
3414 get_task_struct(task);
3415 }
3416 ctx->pmu = pmu;
3417
3418 return ctx;
3419}
3420
3421static struct task_struct *
3422find_lively_task_by_vpid(pid_t vpid)
3423{
3424 struct task_struct *task;
3425
3426 rcu_read_lock();
3427 if (!vpid)
3428 task = current;
3429 else
3430 task = find_task_by_vpid(vpid);
3431 if (task)
3432 get_task_struct(task);
3433 rcu_read_unlock();
3434
3435 if (!task)
3436 return ERR_PTR(-ESRCH);
3437
3438 return task;
3439}
3440
3441/*
3442 * Returns a matching context with refcount and pincount.
3443 */
3444static struct perf_event_context *
3445find_get_context(struct pmu *pmu, struct task_struct *task,
3446 struct perf_event *event)
3447{
3448 struct perf_event_context *ctx, *clone_ctx = NULL;
3449 struct perf_cpu_context *cpuctx;
3450 void *task_ctx_data = NULL;
3451 unsigned long flags;
3452 int ctxn, err;
3453 int cpu = event->cpu;
3454
3455 if (!task) {
3456 /* Must be root to operate on a CPU event: */
3457 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3458 return ERR_PTR(-EACCES);
3459
3460 /*
3461 * We could be clever and allow to attach a event to an
3462 * offline CPU and activate it when the CPU comes up, but
3463 * that's for later.
3464 */
3465 if (!cpu_online(cpu))
3466 return ERR_PTR(-ENODEV);
3467
3468 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3469 ctx = &cpuctx->ctx;
3470 get_ctx(ctx);
3471 ++ctx->pin_count;
3472
3473 return ctx;
3474 }
3475
3476 err = -EINVAL;
3477 ctxn = pmu->task_ctx_nr;
3478 if (ctxn < 0)
3479 goto errout;
3480
3481 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3482 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3483 if (!task_ctx_data) {
3484 err = -ENOMEM;
3485 goto errout;
3486 }
3487 }
3488
3489retry:
3490 ctx = perf_lock_task_context(task, ctxn, &flags);
3491 if (ctx) {
3492 clone_ctx = unclone_ctx(ctx);
3493 ++ctx->pin_count;
3494
3495 if (task_ctx_data && !ctx->task_ctx_data) {
3496 ctx->task_ctx_data = task_ctx_data;
3497 task_ctx_data = NULL;
3498 }
3499 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3500
3501 if (clone_ctx)
3502 put_ctx(clone_ctx);
3503 } else {
3504 ctx = alloc_perf_context(pmu, task);
3505 err = -ENOMEM;
3506 if (!ctx)
3507 goto errout;
3508
3509 if (task_ctx_data) {
3510 ctx->task_ctx_data = task_ctx_data;
3511 task_ctx_data = NULL;
3512 }
3513
3514 err = 0;
3515 mutex_lock(&task->perf_event_mutex);
3516 /*
3517 * If it has already passed perf_event_exit_task().
3518 * we must see PF_EXITING, it takes this mutex too.
3519 */
3520 if (task->flags & PF_EXITING)
3521 err = -ESRCH;
3522 else if (task->perf_event_ctxp[ctxn])
3523 err = -EAGAIN;
3524 else {
3525 get_ctx(ctx);
3526 ++ctx->pin_count;
3527 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3528 }
3529 mutex_unlock(&task->perf_event_mutex);
3530
3531 if (unlikely(err)) {
3532 put_ctx(ctx);
3533
3534 if (err == -EAGAIN)
3535 goto retry;
3536 goto errout;
3537 }
3538 }
3539
3540 kfree(task_ctx_data);
3541 return ctx;
3542
3543errout:
3544 kfree(task_ctx_data);
3545 return ERR_PTR(err);
3546}
3547
3548static void perf_event_free_filter(struct perf_event *event);
3549static void perf_event_free_bpf_prog(struct perf_event *event);
3550
3551static void free_event_rcu(struct rcu_head *head)
3552{
3553 struct perf_event *event;
3554
3555 event = container_of(head, struct perf_event, rcu_head);
3556 if (event->ns)
3557 put_pid_ns(event->ns);
3558 perf_event_free_filter(event);
3559 kfree(event);
3560}
3561
3562static void ring_buffer_attach(struct perf_event *event,
3563 struct ring_buffer *rb);
3564
3565static void unaccount_event_cpu(struct perf_event *event, int cpu)
3566{
3567 if (event->parent)
3568 return;
3569
3570 if (is_cgroup_event(event))
3571 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3572}
3573
3574#ifdef CONFIG_NO_HZ_FULL
3575static DEFINE_SPINLOCK(nr_freq_lock);
3576#endif
3577
3578static void unaccount_freq_event_nohz(void)
3579{
3580#ifdef CONFIG_NO_HZ_FULL
3581 spin_lock(&nr_freq_lock);
3582 if (atomic_dec_and_test(&nr_freq_events))
3583 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3584 spin_unlock(&nr_freq_lock);
3585#endif
3586}
3587
3588static void unaccount_freq_event(void)
3589{
3590 if (tick_nohz_full_enabled())
3591 unaccount_freq_event_nohz();
3592 else
3593 atomic_dec(&nr_freq_events);
3594}
3595
3596static void unaccount_event(struct perf_event *event)
3597{
3598 bool dec = false;
3599
3600 if (event->parent)
3601 return;
3602
3603 if (event->attach_state & PERF_ATTACH_TASK)
3604 dec = true;
3605 if (event->attr.mmap || event->attr.mmap_data)
3606 atomic_dec(&nr_mmap_events);
3607 if (event->attr.comm)
3608 atomic_dec(&nr_comm_events);
3609 if (event->attr.task)
3610 atomic_dec(&nr_task_events);
3611 if (event->attr.freq)
3612 unaccount_freq_event();
3613 if (event->attr.context_switch) {
3614 dec = true;
3615 atomic_dec(&nr_switch_events);
3616 }
3617 if (is_cgroup_event(event))
3618 dec = true;
3619 if (has_branch_stack(event))
3620 dec = true;
3621
3622 if (dec) {
3623 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3624 schedule_delayed_work(&perf_sched_work, HZ);
3625 }
3626
3627 unaccount_event_cpu(event, event->cpu);
3628}
3629
3630static void perf_sched_delayed(struct work_struct *work)
3631{
3632 mutex_lock(&perf_sched_mutex);
3633 if (atomic_dec_and_test(&perf_sched_count))
3634 static_branch_disable(&perf_sched_events);
3635 mutex_unlock(&perf_sched_mutex);
3636}
3637
3638/*
3639 * The following implement mutual exclusion of events on "exclusive" pmus
3640 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3641 * at a time, so we disallow creating events that might conflict, namely:
3642 *
3643 * 1) cpu-wide events in the presence of per-task events,
3644 * 2) per-task events in the presence of cpu-wide events,
3645 * 3) two matching events on the same context.
3646 *
3647 * The former two cases are handled in the allocation path (perf_event_alloc(),
3648 * _free_event()), the latter -- before the first perf_install_in_context().
3649 */
3650static int exclusive_event_init(struct perf_event *event)
3651{
3652 struct pmu *pmu = event->pmu;
3653
3654 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3655 return 0;
3656
3657 /*
3658 * Prevent co-existence of per-task and cpu-wide events on the
3659 * same exclusive pmu.
3660 *
3661 * Negative pmu::exclusive_cnt means there are cpu-wide
3662 * events on this "exclusive" pmu, positive means there are
3663 * per-task events.
3664 *
3665 * Since this is called in perf_event_alloc() path, event::ctx
3666 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3667 * to mean "per-task event", because unlike other attach states it
3668 * never gets cleared.
3669 */
3670 if (event->attach_state & PERF_ATTACH_TASK) {
3671 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3672 return -EBUSY;
3673 } else {
3674 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3675 return -EBUSY;
3676 }
3677
3678 return 0;
3679}
3680
3681static void exclusive_event_destroy(struct perf_event *event)
3682{
3683 struct pmu *pmu = event->pmu;
3684
3685 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3686 return;
3687
3688 /* see comment in exclusive_event_init() */
3689 if (event->attach_state & PERF_ATTACH_TASK)
3690 atomic_dec(&pmu->exclusive_cnt);
3691 else
3692 atomic_inc(&pmu->exclusive_cnt);
3693}
3694
3695static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3696{
3697 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3698 (e1->cpu == e2->cpu ||
3699 e1->cpu == -1 ||
3700 e2->cpu == -1))
3701 return true;
3702 return false;
3703}
3704
3705/* Called under the same ctx::mutex as perf_install_in_context() */
3706static bool exclusive_event_installable(struct perf_event *event,
3707 struct perf_event_context *ctx)
3708{
3709 struct perf_event *iter_event;
3710 struct pmu *pmu = event->pmu;
3711
3712 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3713 return true;
3714
3715 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3716 if (exclusive_event_match(iter_event, event))
3717 return false;
3718 }
3719
3720 return true;
3721}
3722
3723static void _free_event(struct perf_event *event)
3724{
3725 irq_work_sync(&event->pending);
3726
3727 unaccount_event(event);
3728
3729 if (event->rb) {
3730 /*
3731 * Can happen when we close an event with re-directed output.
3732 *
3733 * Since we have a 0 refcount, perf_mmap_close() will skip
3734 * over us; possibly making our ring_buffer_put() the last.
3735 */
3736 mutex_lock(&event->mmap_mutex);
3737 ring_buffer_attach(event, NULL);
3738 mutex_unlock(&event->mmap_mutex);
3739 }
3740
3741 if (is_cgroup_event(event))
3742 perf_detach_cgroup(event);
3743
3744 if (!event->parent) {
3745 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3746 put_callchain_buffers();
3747 }
3748
3749 perf_event_free_bpf_prog(event);
3750
3751 if (event->destroy)
3752 event->destroy(event);
3753
3754 if (event->ctx)
3755 put_ctx(event->ctx);
3756
3757 if (event->pmu) {
3758 exclusive_event_destroy(event);
3759 module_put(event->pmu->module);
3760 }
3761
3762 call_rcu(&event->rcu_head, free_event_rcu);
3763}
3764
3765/*
3766 * Used to free events which have a known refcount of 1, such as in error paths
3767 * where the event isn't exposed yet and inherited events.
3768 */
3769static void free_event(struct perf_event *event)
3770{
3771 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3772 "unexpected event refcount: %ld; ptr=%p\n",
3773 atomic_long_read(&event->refcount), event)) {
3774 /* leak to avoid use-after-free */
3775 return;
3776 }
3777
3778 _free_event(event);
3779}
3780
3781/*
3782 * Remove user event from the owner task.
3783 */
3784static void perf_remove_from_owner(struct perf_event *event)
3785{
3786 struct task_struct *owner;
3787
3788 rcu_read_lock();
3789 /*
3790 * Matches the smp_store_release() in perf_event_exit_task(). If we
3791 * observe !owner it means the list deletion is complete and we can
3792 * indeed free this event, otherwise we need to serialize on
3793 * owner->perf_event_mutex.
3794 */
3795 owner = lockless_dereference(event->owner);
3796 if (owner) {
3797 /*
3798 * Since delayed_put_task_struct() also drops the last
3799 * task reference we can safely take a new reference
3800 * while holding the rcu_read_lock().
3801 */
3802 get_task_struct(owner);
3803 }
3804 rcu_read_unlock();
3805
3806 if (owner) {
3807 /*
3808 * If we're here through perf_event_exit_task() we're already
3809 * holding ctx->mutex which would be an inversion wrt. the
3810 * normal lock order.
3811 *
3812 * However we can safely take this lock because its the child
3813 * ctx->mutex.
3814 */
3815 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3816
3817 /*
3818 * We have to re-check the event->owner field, if it is cleared
3819 * we raced with perf_event_exit_task(), acquiring the mutex
3820 * ensured they're done, and we can proceed with freeing the
3821 * event.
3822 */
3823 if (event->owner) {
3824 list_del_init(&event->owner_entry);
3825 smp_store_release(&event->owner, NULL);
3826 }
3827 mutex_unlock(&owner->perf_event_mutex);
3828 put_task_struct(owner);
3829 }
3830}
3831
3832static void put_event(struct perf_event *event)
3833{
3834 if (!atomic_long_dec_and_test(&event->refcount))
3835 return;
3836
3837 _free_event(event);
3838}
3839
3840/*
3841 * Kill an event dead; while event:refcount will preserve the event
3842 * object, it will not preserve its functionality. Once the last 'user'
3843 * gives up the object, we'll destroy the thing.
3844 */
3845int perf_event_release_kernel(struct perf_event *event)
3846{
3847 struct perf_event_context *ctx = event->ctx;
3848 struct perf_event *child, *tmp;
3849
3850 /*
3851 * If we got here through err_file: fput(event_file); we will not have
3852 * attached to a context yet.
3853 */
3854 if (!ctx) {
3855 WARN_ON_ONCE(event->attach_state &
3856 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3857 goto no_ctx;
3858 }
3859
3860 if (!is_kernel_event(event))
3861 perf_remove_from_owner(event);
3862
3863 ctx = perf_event_ctx_lock(event);
3864 WARN_ON_ONCE(ctx->parent_ctx);
3865 perf_remove_from_context(event, DETACH_GROUP);
3866
3867 raw_spin_lock_irq(&ctx->lock);
3868 /*
3869 * Mark this even as STATE_DEAD, there is no external reference to it
3870 * anymore.
3871 *
3872 * Anybody acquiring event->child_mutex after the below loop _must_
3873 * also see this, most importantly inherit_event() which will avoid
3874 * placing more children on the list.
3875 *
3876 * Thus this guarantees that we will in fact observe and kill _ALL_
3877 * child events.
3878 */
3879 event->state = PERF_EVENT_STATE_DEAD;
3880 raw_spin_unlock_irq(&ctx->lock);
3881
3882 perf_event_ctx_unlock(event, ctx);
3883
3884again:
3885 mutex_lock(&event->child_mutex);
3886 list_for_each_entry(child, &event->child_list, child_list) {
3887
3888 /*
3889 * Cannot change, child events are not migrated, see the
3890 * comment with perf_event_ctx_lock_nested().
3891 */
3892 ctx = lockless_dereference(child->ctx);
3893 /*
3894 * Since child_mutex nests inside ctx::mutex, we must jump
3895 * through hoops. We start by grabbing a reference on the ctx.
3896 *
3897 * Since the event cannot get freed while we hold the
3898 * child_mutex, the context must also exist and have a !0
3899 * reference count.
3900 */
3901 get_ctx(ctx);
3902
3903 /*
3904 * Now that we have a ctx ref, we can drop child_mutex, and
3905 * acquire ctx::mutex without fear of it going away. Then we
3906 * can re-acquire child_mutex.
3907 */
3908 mutex_unlock(&event->child_mutex);
3909 mutex_lock(&ctx->mutex);
3910 mutex_lock(&event->child_mutex);
3911
3912 /*
3913 * Now that we hold ctx::mutex and child_mutex, revalidate our
3914 * state, if child is still the first entry, it didn't get freed
3915 * and we can continue doing so.
3916 */
3917 tmp = list_first_entry_or_null(&event->child_list,
3918 struct perf_event, child_list);
3919 if (tmp == child) {
3920 perf_remove_from_context(child, DETACH_GROUP);
3921 list_del(&child->child_list);
3922 free_event(child);
3923 /*
3924 * This matches the refcount bump in inherit_event();
3925 * this can't be the last reference.
3926 */
3927 put_event(event);
3928 }
3929
3930 mutex_unlock(&event->child_mutex);
3931 mutex_unlock(&ctx->mutex);
3932 put_ctx(ctx);
3933 goto again;
3934 }
3935 mutex_unlock(&event->child_mutex);
3936
3937no_ctx:
3938 put_event(event); /* Must be the 'last' reference */
3939 return 0;
3940}
3941EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3942
3943/*
3944 * Called when the last reference to the file is gone.
3945 */
3946static int perf_release(struct inode *inode, struct file *file)
3947{
3948 perf_event_release_kernel(file->private_data);
3949 return 0;
3950}
3951
3952u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3953{
3954 struct perf_event *child;
3955 u64 total = 0;
3956
3957 *enabled = 0;
3958 *running = 0;
3959
3960 mutex_lock(&event->child_mutex);
3961
3962 (void)perf_event_read(event, false);
3963 total += perf_event_count(event);
3964
3965 *enabled += event->total_time_enabled +
3966 atomic64_read(&event->child_total_time_enabled);
3967 *running += event->total_time_running +
3968 atomic64_read(&event->child_total_time_running);
3969
3970 list_for_each_entry(child, &event->child_list, child_list) {
3971 (void)perf_event_read(child, false);
3972 total += perf_event_count(child);
3973 *enabled += child->total_time_enabled;
3974 *running += child->total_time_running;
3975 }
3976 mutex_unlock(&event->child_mutex);
3977
3978 return total;
3979}
3980EXPORT_SYMBOL_GPL(perf_event_read_value);
3981
3982static int __perf_read_group_add(struct perf_event *leader,
3983 u64 read_format, u64 *values)
3984{
3985 struct perf_event *sub;
3986 int n = 1; /* skip @nr */
3987 int ret;
3988
3989 ret = perf_event_read(leader, true);
3990 if (ret)
3991 return ret;
3992
3993 /*
3994 * Since we co-schedule groups, {enabled,running} times of siblings
3995 * will be identical to those of the leader, so we only publish one
3996 * set.
3997 */
3998 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3999 values[n++] += leader->total_time_enabled +
4000 atomic64_read(&leader->child_total_time_enabled);
4001 }
4002
4003 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4004 values[n++] += leader->total_time_running +
4005 atomic64_read(&leader->child_total_time_running);
4006 }
4007
4008 /*
4009 * Write {count,id} tuples for every sibling.
4010 */
4011 values[n++] += perf_event_count(leader);
4012 if (read_format & PERF_FORMAT_ID)
4013 values[n++] = primary_event_id(leader);
4014
4015 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4016 values[n++] += perf_event_count(sub);
4017 if (read_format & PERF_FORMAT_ID)
4018 values[n++] = primary_event_id(sub);
4019 }
4020
4021 return 0;
4022}
4023
4024static int perf_read_group(struct perf_event *event,
4025 u64 read_format, char __user *buf)
4026{
4027 struct perf_event *leader = event->group_leader, *child;
4028 struct perf_event_context *ctx = leader->ctx;
4029 int ret;
4030 u64 *values;
4031
4032 lockdep_assert_held(&ctx->mutex);
4033
4034 values = kzalloc(event->read_size, GFP_KERNEL);
4035 if (!values)
4036 return -ENOMEM;
4037
4038 values[0] = 1 + leader->nr_siblings;
4039
4040 /*
4041 * By locking the child_mutex of the leader we effectively
4042 * lock the child list of all siblings.. XXX explain how.
4043 */
4044 mutex_lock(&leader->child_mutex);
4045
4046 ret = __perf_read_group_add(leader, read_format, values);
4047 if (ret)
4048 goto unlock;
4049
4050 list_for_each_entry(child, &leader->child_list, child_list) {
4051 ret = __perf_read_group_add(child, read_format, values);
4052 if (ret)
4053 goto unlock;
4054 }
4055
4056 mutex_unlock(&leader->child_mutex);
4057
4058 ret = event->read_size;
4059 if (copy_to_user(buf, values, event->read_size))
4060 ret = -EFAULT;
4061 goto out;
4062
4063unlock:
4064 mutex_unlock(&leader->child_mutex);
4065out:
4066 kfree(values);
4067 return ret;
4068}
4069
4070static int perf_read_one(struct perf_event *event,
4071 u64 read_format, char __user *buf)
4072{
4073 u64 enabled, running;
4074 u64 values[4];
4075 int n = 0;
4076
4077 values[n++] = perf_event_read_value(event, &enabled, &running);
4078 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4079 values[n++] = enabled;
4080 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4081 values[n++] = running;
4082 if (read_format & PERF_FORMAT_ID)
4083 values[n++] = primary_event_id(event);
4084
4085 if (copy_to_user(buf, values, n * sizeof(u64)))
4086 return -EFAULT;
4087
4088 return n * sizeof(u64);
4089}
4090
4091static bool is_event_hup(struct perf_event *event)
4092{
4093 bool no_children;
4094
4095 if (event->state > PERF_EVENT_STATE_EXIT)
4096 return false;
4097
4098 mutex_lock(&event->child_mutex);
4099 no_children = list_empty(&event->child_list);
4100 mutex_unlock(&event->child_mutex);
4101 return no_children;
4102}
4103
4104/*
4105 * Read the performance event - simple non blocking version for now
4106 */
4107static ssize_t
4108__perf_read(struct perf_event *event, char __user *buf, size_t count)
4109{
4110 u64 read_format = event->attr.read_format;
4111 int ret;
4112
4113 /*
4114 * Return end-of-file for a read on a event that is in
4115 * error state (i.e. because it was pinned but it couldn't be
4116 * scheduled on to the CPU at some point).
4117 */
4118 if (event->state == PERF_EVENT_STATE_ERROR)
4119 return 0;
4120
4121 if (count < event->read_size)
4122 return -ENOSPC;
4123
4124 WARN_ON_ONCE(event->ctx->parent_ctx);
4125 if (read_format & PERF_FORMAT_GROUP)
4126 ret = perf_read_group(event, read_format, buf);
4127 else
4128 ret = perf_read_one(event, read_format, buf);
4129
4130 return ret;
4131}
4132
4133static ssize_t
4134perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4135{
4136 struct perf_event *event = file->private_data;
4137 struct perf_event_context *ctx;
4138 int ret;
4139
4140 ctx = perf_event_ctx_lock(event);
4141 ret = __perf_read(event, buf, count);
4142 perf_event_ctx_unlock(event, ctx);
4143
4144 return ret;
4145}
4146
4147static unsigned int perf_poll(struct file *file, poll_table *wait)
4148{
4149 struct perf_event *event = file->private_data;
4150 struct ring_buffer *rb;
4151 unsigned int events = POLLHUP;
4152
4153 poll_wait(file, &event->waitq, wait);
4154
4155 if (is_event_hup(event))
4156 return events;
4157
4158 /*
4159 * Pin the event->rb by taking event->mmap_mutex; otherwise
4160 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4161 */
4162 mutex_lock(&event->mmap_mutex);
4163 rb = event->rb;
4164 if (rb)
4165 events = atomic_xchg(&rb->poll, 0);
4166 mutex_unlock(&event->mmap_mutex);
4167 return events;
4168}
4169
4170static void _perf_event_reset(struct perf_event *event)
4171{
4172 (void)perf_event_read(event, false);
4173 local64_set(&event->count, 0);
4174 perf_event_update_userpage(event);
4175}
4176
4177/*
4178 * Holding the top-level event's child_mutex means that any
4179 * descendant process that has inherited this event will block
4180 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4181 * task existence requirements of perf_event_enable/disable.
4182 */
4183static void perf_event_for_each_child(struct perf_event *event,
4184 void (*func)(struct perf_event *))
4185{
4186 struct perf_event *child;
4187
4188 WARN_ON_ONCE(event->ctx->parent_ctx);
4189
4190 mutex_lock(&event->child_mutex);
4191 func(event);
4192 list_for_each_entry(child, &event->child_list, child_list)
4193 func(child);
4194 mutex_unlock(&event->child_mutex);
4195}
4196
4197static void perf_event_for_each(struct perf_event *event,
4198 void (*func)(struct perf_event *))
4199{
4200 struct perf_event_context *ctx = event->ctx;
4201 struct perf_event *sibling;
4202
4203 lockdep_assert_held(&ctx->mutex);
4204
4205 event = event->group_leader;
4206
4207 perf_event_for_each_child(event, func);
4208 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4209 perf_event_for_each_child(sibling, func);
4210}
4211
4212static void __perf_event_period(struct perf_event *event,
4213 struct perf_cpu_context *cpuctx,
4214 struct perf_event_context *ctx,
4215 void *info)
4216{
4217 u64 value = *((u64 *)info);
4218 bool active;
4219
4220 if (event->attr.freq) {
4221 event->attr.sample_freq = value;
4222 } else {
4223 event->attr.sample_period = value;
4224 event->hw.sample_period = value;
4225 }
4226
4227 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4228 if (active) {
4229 perf_pmu_disable(ctx->pmu);
4230 /*
4231 * We could be throttled; unthrottle now to avoid the tick
4232 * trying to unthrottle while we already re-started the event.
4233 */
4234 if (event->hw.interrupts == MAX_INTERRUPTS) {
4235 event->hw.interrupts = 0;
4236 perf_log_throttle(event, 1);
4237 }
4238 event->pmu->stop(event, PERF_EF_UPDATE);
4239 }
4240
4241 local64_set(&event->hw.period_left, 0);
4242
4243 if (active) {
4244 event->pmu->start(event, PERF_EF_RELOAD);
4245 perf_pmu_enable(ctx->pmu);
4246 }
4247}
4248
4249static int perf_event_period(struct perf_event *event, u64 __user *arg)
4250{
4251 u64 value;
4252
4253 if (!is_sampling_event(event))
4254 return -EINVAL;
4255
4256 if (copy_from_user(&value, arg, sizeof(value)))
4257 return -EFAULT;
4258
4259 if (!value)
4260 return -EINVAL;
4261
4262 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4263 return -EINVAL;
4264
4265 event_function_call(event, __perf_event_period, &value);
4266
4267 return 0;
4268}
4269
4270static const struct file_operations perf_fops;
4271
4272static inline int perf_fget_light(int fd, struct fd *p)
4273{
4274 struct fd f = fdget(fd);
4275 if (!f.file)
4276 return -EBADF;
4277
4278 if (f.file->f_op != &perf_fops) {
4279 fdput(f);
4280 return -EBADF;
4281 }
4282 *p = f;
4283 return 0;
4284}
4285
4286static int perf_event_set_output(struct perf_event *event,
4287 struct perf_event *output_event);
4288static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4289static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4290
4291static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4292{
4293 void (*func)(struct perf_event *);
4294 u32 flags = arg;
4295
4296 switch (cmd) {
4297 case PERF_EVENT_IOC_ENABLE:
4298 func = _perf_event_enable;
4299 break;
4300 case PERF_EVENT_IOC_DISABLE:
4301 func = _perf_event_disable;
4302 break;
4303 case PERF_EVENT_IOC_RESET:
4304 func = _perf_event_reset;
4305 break;
4306
4307 case PERF_EVENT_IOC_REFRESH:
4308 return _perf_event_refresh(event, arg);
4309
4310 case PERF_EVENT_IOC_PERIOD:
4311 return perf_event_period(event, (u64 __user *)arg);
4312
4313 case PERF_EVENT_IOC_ID:
4314 {
4315 u64 id = primary_event_id(event);
4316
4317 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4318 return -EFAULT;
4319 return 0;
4320 }
4321
4322 case PERF_EVENT_IOC_SET_OUTPUT:
4323 {
4324 int ret;
4325 if (arg != -1) {
4326 struct perf_event *output_event;
4327 struct fd output;
4328 ret = perf_fget_light(arg, &output);
4329 if (ret)
4330 return ret;
4331 output_event = output.file->private_data;
4332 ret = perf_event_set_output(event, output_event);
4333 fdput(output);
4334 } else {
4335 ret = perf_event_set_output(event, NULL);
4336 }
4337 return ret;
4338 }
4339
4340 case PERF_EVENT_IOC_SET_FILTER:
4341 return perf_event_set_filter(event, (void __user *)arg);
4342
4343 case PERF_EVENT_IOC_SET_BPF:
4344 return perf_event_set_bpf_prog(event, arg);
4345
4346 default:
4347 return -ENOTTY;
4348 }
4349
4350 if (flags & PERF_IOC_FLAG_GROUP)
4351 perf_event_for_each(event, func);
4352 else
4353 perf_event_for_each_child(event, func);
4354
4355 return 0;
4356}
4357
4358static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4359{
4360 struct perf_event *event = file->private_data;
4361 struct perf_event_context *ctx;
4362 long ret;
4363
4364 ctx = perf_event_ctx_lock(event);
4365 ret = _perf_ioctl(event, cmd, arg);
4366 perf_event_ctx_unlock(event, ctx);
4367
4368 return ret;
4369}
4370
4371#ifdef CONFIG_COMPAT
4372static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4373 unsigned long arg)
4374{
4375 switch (_IOC_NR(cmd)) {
4376 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4377 case _IOC_NR(PERF_EVENT_IOC_ID):
4378 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4379 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4380 cmd &= ~IOCSIZE_MASK;
4381 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4382 }
4383 break;
4384 }
4385 return perf_ioctl(file, cmd, arg);
4386}
4387#else
4388# define perf_compat_ioctl NULL
4389#endif
4390
4391int perf_event_task_enable(void)
4392{
4393 struct perf_event_context *ctx;
4394 struct perf_event *event;
4395
4396 mutex_lock(¤t->perf_event_mutex);
4397 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
4398 ctx = perf_event_ctx_lock(event);
4399 perf_event_for_each_child(event, _perf_event_enable);
4400 perf_event_ctx_unlock(event, ctx);
4401 }
4402 mutex_unlock(¤t->perf_event_mutex);
4403
4404 return 0;
4405}
4406
4407int perf_event_task_disable(void)
4408{
4409 struct perf_event_context *ctx;
4410 struct perf_event *event;
4411
4412 mutex_lock(¤t->perf_event_mutex);
4413 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
4414 ctx = perf_event_ctx_lock(event);
4415 perf_event_for_each_child(event, _perf_event_disable);
4416 perf_event_ctx_unlock(event, ctx);
4417 }
4418 mutex_unlock(¤t->perf_event_mutex);
4419
4420 return 0;
4421}
4422
4423static int perf_event_index(struct perf_event *event)
4424{
4425 if (event->hw.state & PERF_HES_STOPPED)
4426 return 0;
4427
4428 if (event->state != PERF_EVENT_STATE_ACTIVE)
4429 return 0;
4430
4431 return event->pmu->event_idx(event);
4432}
4433
4434static void calc_timer_values(struct perf_event *event,
4435 u64 *now,
4436 u64 *enabled,
4437 u64 *running)
4438{
4439 u64 ctx_time;
4440
4441 *now = perf_clock();
4442 ctx_time = event->shadow_ctx_time + *now;
4443 *enabled = ctx_time - event->tstamp_enabled;
4444 *running = ctx_time - event->tstamp_running;
4445}
4446
4447static void perf_event_init_userpage(struct perf_event *event)
4448{
4449 struct perf_event_mmap_page *userpg;
4450 struct ring_buffer *rb;
4451
4452 rcu_read_lock();
4453 rb = rcu_dereference(event->rb);
4454 if (!rb)
4455 goto unlock;
4456
4457 userpg = rb->user_page;
4458
4459 /* Allow new userspace to detect that bit 0 is deprecated */
4460 userpg->cap_bit0_is_deprecated = 1;
4461 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4462 userpg->data_offset = PAGE_SIZE;
4463 userpg->data_size = perf_data_size(rb);
4464
4465unlock:
4466 rcu_read_unlock();
4467}
4468
4469void __weak arch_perf_update_userpage(
4470 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4471{
4472}
4473
4474/*
4475 * Callers need to ensure there can be no nesting of this function, otherwise
4476 * the seqlock logic goes bad. We can not serialize this because the arch
4477 * code calls this from NMI context.
4478 */
4479void perf_event_update_userpage(struct perf_event *event)
4480{
4481 struct perf_event_mmap_page *userpg;
4482 struct ring_buffer *rb;
4483 u64 enabled, running, now;
4484
4485 rcu_read_lock();
4486 rb = rcu_dereference(event->rb);
4487 if (!rb)
4488 goto unlock;
4489
4490 /*
4491 * compute total_time_enabled, total_time_running
4492 * based on snapshot values taken when the event
4493 * was last scheduled in.
4494 *
4495 * we cannot simply called update_context_time()
4496 * because of locking issue as we can be called in
4497 * NMI context
4498 */
4499 calc_timer_values(event, &now, &enabled, &running);
4500
4501 userpg = rb->user_page;
4502 /*
4503 * Disable preemption so as to not let the corresponding user-space
4504 * spin too long if we get preempted.
4505 */
4506 preempt_disable();
4507 ++userpg->lock;
4508 barrier();
4509 userpg->index = perf_event_index(event);
4510 userpg->offset = perf_event_count(event);
4511 if (userpg->index)
4512 userpg->offset -= local64_read(&event->hw.prev_count);
4513
4514 userpg->time_enabled = enabled +
4515 atomic64_read(&event->child_total_time_enabled);
4516
4517 userpg->time_running = running +
4518 atomic64_read(&event->child_total_time_running);
4519
4520 arch_perf_update_userpage(event, userpg, now);
4521
4522 barrier();
4523 ++userpg->lock;
4524 preempt_enable();
4525unlock:
4526 rcu_read_unlock();
4527}
4528
4529static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4530{
4531 struct perf_event *event = vma->vm_file->private_data;
4532 struct ring_buffer *rb;
4533 int ret = VM_FAULT_SIGBUS;
4534
4535 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4536 if (vmf->pgoff == 0)
4537 ret = 0;
4538 return ret;
4539 }
4540
4541 rcu_read_lock();
4542 rb = rcu_dereference(event->rb);
4543 if (!rb)
4544 goto unlock;
4545
4546 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4547 goto unlock;
4548
4549 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4550 if (!vmf->page)
4551 goto unlock;
4552
4553 get_page(vmf->page);
4554 vmf->page->mapping = vma->vm_file->f_mapping;
4555 vmf->page->index = vmf->pgoff;
4556
4557 ret = 0;
4558unlock:
4559 rcu_read_unlock();
4560
4561 return ret;
4562}
4563
4564static void ring_buffer_attach(struct perf_event *event,
4565 struct ring_buffer *rb)
4566{
4567 struct ring_buffer *old_rb = NULL;
4568 unsigned long flags;
4569
4570 if (event->rb) {
4571 /*
4572 * Should be impossible, we set this when removing
4573 * event->rb_entry and wait/clear when adding event->rb_entry.
4574 */
4575 WARN_ON_ONCE(event->rcu_pending);
4576
4577 old_rb = event->rb;
4578 spin_lock_irqsave(&old_rb->event_lock, flags);
4579 list_del_rcu(&event->rb_entry);
4580 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4581
4582 event->rcu_batches = get_state_synchronize_rcu();
4583 event->rcu_pending = 1;
4584 }
4585
4586 if (rb) {
4587 if (event->rcu_pending) {
4588 cond_synchronize_rcu(event->rcu_batches);
4589 event->rcu_pending = 0;
4590 }
4591
4592 spin_lock_irqsave(&rb->event_lock, flags);
4593 list_add_rcu(&event->rb_entry, &rb->event_list);
4594 spin_unlock_irqrestore(&rb->event_lock, flags);
4595 }
4596
4597 rcu_assign_pointer(event->rb, rb);
4598
4599 if (old_rb) {
4600 ring_buffer_put(old_rb);
4601 /*
4602 * Since we detached before setting the new rb, so that we
4603 * could attach the new rb, we could have missed a wakeup.
4604 * Provide it now.
4605 */
4606 wake_up_all(&event->waitq);
4607 }
4608}
4609
4610static void ring_buffer_wakeup(struct perf_event *event)
4611{
4612 struct ring_buffer *rb;
4613
4614 rcu_read_lock();
4615 rb = rcu_dereference(event->rb);
4616 if (rb) {
4617 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4618 wake_up_all(&event->waitq);
4619 }
4620 rcu_read_unlock();
4621}
4622
4623struct ring_buffer *ring_buffer_get(struct perf_event *event)
4624{
4625 struct ring_buffer *rb;
4626
4627 rcu_read_lock();
4628 rb = rcu_dereference(event->rb);
4629 if (rb) {
4630 if (!atomic_inc_not_zero(&rb->refcount))
4631 rb = NULL;
4632 }
4633 rcu_read_unlock();
4634
4635 return rb;
4636}
4637
4638void ring_buffer_put(struct ring_buffer *rb)
4639{
4640 if (!atomic_dec_and_test(&rb->refcount))
4641 return;
4642
4643 WARN_ON_ONCE(!list_empty(&rb->event_list));
4644
4645 call_rcu(&rb->rcu_head, rb_free_rcu);
4646}
4647
4648static void perf_mmap_open(struct vm_area_struct *vma)
4649{
4650 struct perf_event *event = vma->vm_file->private_data;
4651
4652 atomic_inc(&event->mmap_count);
4653 atomic_inc(&event->rb->mmap_count);
4654
4655 if (vma->vm_pgoff)
4656 atomic_inc(&event->rb->aux_mmap_count);
4657
4658 if (event->pmu->event_mapped)
4659 event->pmu->event_mapped(event);
4660}
4661
4662/*
4663 * A buffer can be mmap()ed multiple times; either directly through the same
4664 * event, or through other events by use of perf_event_set_output().
4665 *
4666 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4667 * the buffer here, where we still have a VM context. This means we need
4668 * to detach all events redirecting to us.
4669 */
4670static void perf_mmap_close(struct vm_area_struct *vma)
4671{
4672 struct perf_event *event = vma->vm_file->private_data;
4673
4674 struct ring_buffer *rb = ring_buffer_get(event);
4675 struct user_struct *mmap_user = rb->mmap_user;
4676 int mmap_locked = rb->mmap_locked;
4677 unsigned long size = perf_data_size(rb);
4678
4679 if (event->pmu->event_unmapped)
4680 event->pmu->event_unmapped(event);
4681
4682 /*
4683 * rb->aux_mmap_count will always drop before rb->mmap_count and
4684 * event->mmap_count, so it is ok to use event->mmap_mutex to
4685 * serialize with perf_mmap here.
4686 */
4687 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4688 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4689 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4690 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4691
4692 rb_free_aux(rb);
4693 mutex_unlock(&event->mmap_mutex);
4694 }
4695
4696 atomic_dec(&rb->mmap_count);
4697
4698 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4699 goto out_put;
4700
4701 ring_buffer_attach(event, NULL);
4702 mutex_unlock(&event->mmap_mutex);
4703
4704 /* If there's still other mmap()s of this buffer, we're done. */
4705 if (atomic_read(&rb->mmap_count))
4706 goto out_put;
4707
4708 /*
4709 * No other mmap()s, detach from all other events that might redirect
4710 * into the now unreachable buffer. Somewhat complicated by the
4711 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4712 */
4713again:
4714 rcu_read_lock();
4715 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4716 if (!atomic_long_inc_not_zero(&event->refcount)) {
4717 /*
4718 * This event is en-route to free_event() which will
4719 * detach it and remove it from the list.
4720 */
4721 continue;
4722 }
4723 rcu_read_unlock();
4724
4725 mutex_lock(&event->mmap_mutex);
4726 /*
4727 * Check we didn't race with perf_event_set_output() which can
4728 * swizzle the rb from under us while we were waiting to
4729 * acquire mmap_mutex.
4730 *
4731 * If we find a different rb; ignore this event, a next
4732 * iteration will no longer find it on the list. We have to
4733 * still restart the iteration to make sure we're not now
4734 * iterating the wrong list.
4735 */
4736 if (event->rb == rb)
4737 ring_buffer_attach(event, NULL);
4738
4739 mutex_unlock(&event->mmap_mutex);
4740 put_event(event);
4741
4742 /*
4743 * Restart the iteration; either we're on the wrong list or
4744 * destroyed its integrity by doing a deletion.
4745 */
4746 goto again;
4747 }
4748 rcu_read_unlock();
4749
4750 /*
4751 * It could be there's still a few 0-ref events on the list; they'll
4752 * get cleaned up by free_event() -- they'll also still have their
4753 * ref on the rb and will free it whenever they are done with it.
4754 *
4755 * Aside from that, this buffer is 'fully' detached and unmapped,
4756 * undo the VM accounting.
4757 */
4758
4759 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4760 vma->vm_mm->pinned_vm -= mmap_locked;
4761 free_uid(mmap_user);
4762
4763out_put:
4764 ring_buffer_put(rb); /* could be last */
4765}
4766
4767static const struct vm_operations_struct perf_mmap_vmops = {
4768 .open = perf_mmap_open,
4769 .close = perf_mmap_close, /* non mergable */
4770 .fault = perf_mmap_fault,
4771 .page_mkwrite = perf_mmap_fault,
4772};
4773
4774static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4775{
4776 struct perf_event *event = file->private_data;
4777 unsigned long user_locked, user_lock_limit;
4778 struct user_struct *user = current_user();
4779 unsigned long locked, lock_limit;
4780 struct ring_buffer *rb = NULL;
4781 unsigned long vma_size;
4782 unsigned long nr_pages;
4783 long user_extra = 0, extra = 0;
4784 int ret = 0, flags = 0;
4785
4786 /*
4787 * Don't allow mmap() of inherited per-task counters. This would
4788 * create a performance issue due to all children writing to the
4789 * same rb.
4790 */
4791 if (event->cpu == -1 && event->attr.inherit)
4792 return -EINVAL;
4793
4794 if (!(vma->vm_flags & VM_SHARED))
4795 return -EINVAL;
4796
4797 vma_size = vma->vm_end - vma->vm_start;
4798
4799 if (vma->vm_pgoff == 0) {
4800 nr_pages = (vma_size / PAGE_SIZE) - 1;
4801 } else {
4802 /*
4803 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4804 * mapped, all subsequent mappings should have the same size
4805 * and offset. Must be above the normal perf buffer.
4806 */
4807 u64 aux_offset, aux_size;
4808
4809 if (!event->rb)
4810 return -EINVAL;
4811
4812 nr_pages = vma_size / PAGE_SIZE;
4813
4814 mutex_lock(&event->mmap_mutex);
4815 ret = -EINVAL;
4816
4817 rb = event->rb;
4818 if (!rb)
4819 goto aux_unlock;
4820
4821 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4822 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4823
4824 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4825 goto aux_unlock;
4826
4827 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4828 goto aux_unlock;
4829
4830 /* already mapped with a different offset */
4831 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4832 goto aux_unlock;
4833
4834 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4835 goto aux_unlock;
4836
4837 /* already mapped with a different size */
4838 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4839 goto aux_unlock;
4840
4841 if (!is_power_of_2(nr_pages))
4842 goto aux_unlock;
4843
4844 if (!atomic_inc_not_zero(&rb->mmap_count))
4845 goto aux_unlock;
4846
4847 if (rb_has_aux(rb)) {
4848 atomic_inc(&rb->aux_mmap_count);
4849 ret = 0;
4850 goto unlock;
4851 }
4852
4853 atomic_set(&rb->aux_mmap_count, 1);
4854 user_extra = nr_pages;
4855
4856 goto accounting;
4857 }
4858
4859 /*
4860 * If we have rb pages ensure they're a power-of-two number, so we
4861 * can do bitmasks instead of modulo.
4862 */
4863 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4864 return -EINVAL;
4865
4866 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4867 return -EINVAL;
4868
4869 WARN_ON_ONCE(event->ctx->parent_ctx);
4870again:
4871 mutex_lock(&event->mmap_mutex);
4872 if (event->rb) {
4873 if (event->rb->nr_pages != nr_pages) {
4874 ret = -EINVAL;
4875 goto unlock;
4876 }
4877
4878 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4879 /*
4880 * Raced against perf_mmap_close() through
4881 * perf_event_set_output(). Try again, hope for better
4882 * luck.
4883 */
4884 mutex_unlock(&event->mmap_mutex);
4885 goto again;
4886 }
4887
4888 goto unlock;
4889 }
4890
4891 user_extra = nr_pages + 1;
4892
4893accounting:
4894 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4895
4896 /*
4897 * Increase the limit linearly with more CPUs:
4898 */
4899 user_lock_limit *= num_online_cpus();
4900
4901 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4902
4903 if (user_locked > user_lock_limit)
4904 extra = user_locked - user_lock_limit;
4905
4906 lock_limit = rlimit(RLIMIT_MEMLOCK);
4907 lock_limit >>= PAGE_SHIFT;
4908 locked = vma->vm_mm->pinned_vm + extra;
4909
4910 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4911 !capable(CAP_IPC_LOCK)) {
4912 ret = -EPERM;
4913 goto unlock;
4914 }
4915
4916 WARN_ON(!rb && event->rb);
4917
4918 if (vma->vm_flags & VM_WRITE)
4919 flags |= RING_BUFFER_WRITABLE;
4920
4921 if (!rb) {
4922 rb = rb_alloc(nr_pages,
4923 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4924 event->cpu, flags);
4925
4926 if (!rb) {
4927 ret = -ENOMEM;
4928 goto unlock;
4929 }
4930
4931 atomic_set(&rb->mmap_count, 1);
4932 rb->mmap_user = get_current_user();
4933 rb->mmap_locked = extra;
4934
4935 ring_buffer_attach(event, rb);
4936
4937 perf_event_init_userpage(event);
4938 perf_event_update_userpage(event);
4939 } else {
4940 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4941 event->attr.aux_watermark, flags);
4942 if (!ret)
4943 rb->aux_mmap_locked = extra;
4944 }
4945
4946unlock:
4947 if (!ret) {
4948 atomic_long_add(user_extra, &user->locked_vm);
4949 vma->vm_mm->pinned_vm += extra;
4950
4951 atomic_inc(&event->mmap_count);
4952 } else if (rb) {
4953 atomic_dec(&rb->mmap_count);
4954 }
4955aux_unlock:
4956 mutex_unlock(&event->mmap_mutex);
4957
4958 /*
4959 * Since pinned accounting is per vm we cannot allow fork() to copy our
4960 * vma.
4961 */
4962 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4963 vma->vm_ops = &perf_mmap_vmops;
4964
4965 if (event->pmu->event_mapped)
4966 event->pmu->event_mapped(event);
4967
4968 return ret;
4969}
4970
4971static int perf_fasync(int fd, struct file *filp, int on)
4972{
4973 struct inode *inode = file_inode(filp);
4974 struct perf_event *event = filp->private_data;
4975 int retval;
4976
4977 inode_lock(inode);
4978 retval = fasync_helper(fd, filp, on, &event->fasync);
4979 inode_unlock(inode);
4980
4981 if (retval < 0)
4982 return retval;
4983
4984 return 0;
4985}
4986
4987static const struct file_operations perf_fops = {
4988 .llseek = no_llseek,
4989 .release = perf_release,
4990 .read = perf_read,
4991 .poll = perf_poll,
4992 .unlocked_ioctl = perf_ioctl,
4993 .compat_ioctl = perf_compat_ioctl,
4994 .mmap = perf_mmap,
4995 .fasync = perf_fasync,
4996};
4997
4998/*
4999 * Perf event wakeup
5000 *
5001 * If there's data, ensure we set the poll() state and publish everything
5002 * to user-space before waking everybody up.
5003 */
5004
5005static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5006{
5007 /* only the parent has fasync state */
5008 if (event->parent)
5009 event = event->parent;
5010 return &event->fasync;
5011}
5012
5013void perf_event_wakeup(struct perf_event *event)
5014{
5015 ring_buffer_wakeup(event);
5016
5017 if (event->pending_kill) {
5018 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5019 event->pending_kill = 0;
5020 }
5021}
5022
5023static void perf_pending_event(struct irq_work *entry)
5024{
5025 struct perf_event *event = container_of(entry,
5026 struct perf_event, pending);
5027 int rctx;
5028
5029 rctx = perf_swevent_get_recursion_context();
5030 /*
5031 * If we 'fail' here, that's OK, it means recursion is already disabled
5032 * and we won't recurse 'further'.
5033 */
5034
5035 if (event->pending_disable) {
5036 event->pending_disable = 0;
5037 perf_event_disable_local(event);
5038 }
5039
5040 if (event->pending_wakeup) {
5041 event->pending_wakeup = 0;
5042 perf_event_wakeup(event);
5043 }
5044
5045 if (rctx >= 0)
5046 perf_swevent_put_recursion_context(rctx);
5047}
5048
5049/*
5050 * We assume there is only KVM supporting the callbacks.
5051 * Later on, we might change it to a list if there is
5052 * another virtualization implementation supporting the callbacks.
5053 */
5054struct perf_guest_info_callbacks *perf_guest_cbs;
5055
5056int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5057{
5058 perf_guest_cbs = cbs;
5059 return 0;
5060}
5061EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5062
5063int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5064{
5065 perf_guest_cbs = NULL;
5066 return 0;
5067}
5068EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5069
5070static void
5071perf_output_sample_regs(struct perf_output_handle *handle,
5072 struct pt_regs *regs, u64 mask)
5073{
5074 int bit;
5075
5076 for_each_set_bit(bit, (const unsigned long *) &mask,
5077 sizeof(mask) * BITS_PER_BYTE) {
5078 u64 val;
5079
5080 val = perf_reg_value(regs, bit);
5081 perf_output_put(handle, val);
5082 }
5083}
5084
5085static void perf_sample_regs_user(struct perf_regs *regs_user,
5086 struct pt_regs *regs,
5087 struct pt_regs *regs_user_copy)
5088{
5089 if (user_mode(regs)) {
5090 regs_user->abi = perf_reg_abi(current);
5091 regs_user->regs = regs;
5092 } else if (current->mm) {
5093 perf_get_regs_user(regs_user, regs, regs_user_copy);
5094 } else {
5095 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5096 regs_user->regs = NULL;
5097 }
5098}
5099
5100static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5101 struct pt_regs *regs)
5102{
5103 regs_intr->regs = regs;
5104 regs_intr->abi = perf_reg_abi(current);
5105}
5106
5107
5108/*
5109 * Get remaining task size from user stack pointer.
5110 *
5111 * It'd be better to take stack vma map and limit this more
5112 * precisly, but there's no way to get it safely under interrupt,
5113 * so using TASK_SIZE as limit.
5114 */
5115static u64 perf_ustack_task_size(struct pt_regs *regs)
5116{
5117 unsigned long addr = perf_user_stack_pointer(regs);
5118
5119 if (!addr || addr >= TASK_SIZE)
5120 return 0;
5121
5122 return TASK_SIZE - addr;
5123}
5124
5125static u16
5126perf_sample_ustack_size(u16 stack_size, u16 header_size,
5127 struct pt_regs *regs)
5128{
5129 u64 task_size;
5130
5131 /* No regs, no stack pointer, no dump. */
5132 if (!regs)
5133 return 0;
5134
5135 /*
5136 * Check if we fit in with the requested stack size into the:
5137 * - TASK_SIZE
5138 * If we don't, we limit the size to the TASK_SIZE.
5139 *
5140 * - remaining sample size
5141 * If we don't, we customize the stack size to
5142 * fit in to the remaining sample size.
5143 */
5144
5145 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5146 stack_size = min(stack_size, (u16) task_size);
5147
5148 /* Current header size plus static size and dynamic size. */
5149 header_size += 2 * sizeof(u64);
5150
5151 /* Do we fit in with the current stack dump size? */
5152 if ((u16) (header_size + stack_size) < header_size) {
5153 /*
5154 * If we overflow the maximum size for the sample,
5155 * we customize the stack dump size to fit in.
5156 */
5157 stack_size = USHRT_MAX - header_size - sizeof(u64);
5158 stack_size = round_up(stack_size, sizeof(u64));
5159 }
5160
5161 return stack_size;
5162}
5163
5164static void
5165perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5166 struct pt_regs *regs)
5167{
5168 /* Case of a kernel thread, nothing to dump */
5169 if (!regs) {
5170 u64 size = 0;
5171 perf_output_put(handle, size);
5172 } else {
5173 unsigned long sp;
5174 unsigned int rem;
5175 u64 dyn_size;
5176
5177 /*
5178 * We dump:
5179 * static size
5180 * - the size requested by user or the best one we can fit
5181 * in to the sample max size
5182 * data
5183 * - user stack dump data
5184 * dynamic size
5185 * - the actual dumped size
5186 */
5187
5188 /* Static size. */
5189 perf_output_put(handle, dump_size);
5190
5191 /* Data. */
5192 sp = perf_user_stack_pointer(regs);
5193 rem = __output_copy_user(handle, (void *) sp, dump_size);
5194 dyn_size = dump_size - rem;
5195
5196 perf_output_skip(handle, rem);
5197
5198 /* Dynamic size. */
5199 perf_output_put(handle, dyn_size);
5200 }
5201}
5202
5203static void __perf_event_header__init_id(struct perf_event_header *header,
5204 struct perf_sample_data *data,
5205 struct perf_event *event)
5206{
5207 u64 sample_type = event->attr.sample_type;
5208
5209 data->type = sample_type;
5210 header->size += event->id_header_size;
5211
5212 if (sample_type & PERF_SAMPLE_TID) {
5213 /* namespace issues */
5214 data->tid_entry.pid = perf_event_pid(event, current);
5215 data->tid_entry.tid = perf_event_tid(event, current);
5216 }
5217
5218 if (sample_type & PERF_SAMPLE_TIME)
5219 data->time = perf_event_clock(event);
5220
5221 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5222 data->id = primary_event_id(event);
5223
5224 if (sample_type & PERF_SAMPLE_STREAM_ID)
5225 data->stream_id = event->id;
5226
5227 if (sample_type & PERF_SAMPLE_CPU) {
5228 data->cpu_entry.cpu = raw_smp_processor_id();
5229 data->cpu_entry.reserved = 0;
5230 }
5231}
5232
5233void perf_event_header__init_id(struct perf_event_header *header,
5234 struct perf_sample_data *data,
5235 struct perf_event *event)
5236{
5237 if (event->attr.sample_id_all)
5238 __perf_event_header__init_id(header, data, event);
5239}
5240
5241static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5242 struct perf_sample_data *data)
5243{
5244 u64 sample_type = data->type;
5245
5246 if (sample_type & PERF_SAMPLE_TID)
5247 perf_output_put(handle, data->tid_entry);
5248
5249 if (sample_type & PERF_SAMPLE_TIME)
5250 perf_output_put(handle, data->time);
5251
5252 if (sample_type & PERF_SAMPLE_ID)
5253 perf_output_put(handle, data->id);
5254
5255 if (sample_type & PERF_SAMPLE_STREAM_ID)
5256 perf_output_put(handle, data->stream_id);
5257
5258 if (sample_type & PERF_SAMPLE_CPU)
5259 perf_output_put(handle, data->cpu_entry);
5260
5261 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5262 perf_output_put(handle, data->id);
5263}
5264
5265void perf_event__output_id_sample(struct perf_event *event,
5266 struct perf_output_handle *handle,
5267 struct perf_sample_data *sample)
5268{
5269 if (event->attr.sample_id_all)
5270 __perf_event__output_id_sample(handle, sample);
5271}
5272
5273static void perf_output_read_one(struct perf_output_handle *handle,
5274 struct perf_event *event,
5275 u64 enabled, u64 running)
5276{
5277 u64 read_format = event->attr.read_format;
5278 u64 values[4];
5279 int n = 0;
5280
5281 values[n++] = perf_event_count(event);
5282 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5283 values[n++] = enabled +
5284 atomic64_read(&event->child_total_time_enabled);
5285 }
5286 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5287 values[n++] = running +
5288 atomic64_read(&event->child_total_time_running);
5289 }
5290 if (read_format & PERF_FORMAT_ID)
5291 values[n++] = primary_event_id(event);
5292
5293 __output_copy(handle, values, n * sizeof(u64));
5294}
5295
5296/*
5297 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5298 */
5299static void perf_output_read_group(struct perf_output_handle *handle,
5300 struct perf_event *event,
5301 u64 enabled, u64 running)
5302{
5303 struct perf_event *leader = event->group_leader, *sub;
5304 u64 read_format = event->attr.read_format;
5305 u64 values[5];
5306 int n = 0;
5307
5308 values[n++] = 1 + leader->nr_siblings;
5309
5310 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5311 values[n++] = enabled;
5312
5313 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5314 values[n++] = running;
5315
5316 if (leader != event)
5317 leader->pmu->read(leader);
5318
5319 values[n++] = perf_event_count(leader);
5320 if (read_format & PERF_FORMAT_ID)
5321 values[n++] = primary_event_id(leader);
5322
5323 __output_copy(handle, values, n * sizeof(u64));
5324
5325 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5326 n = 0;
5327
5328 if ((sub != event) &&
5329 (sub->state == PERF_EVENT_STATE_ACTIVE))
5330 sub->pmu->read(sub);
5331
5332 values[n++] = perf_event_count(sub);
5333 if (read_format & PERF_FORMAT_ID)
5334 values[n++] = primary_event_id(sub);
5335
5336 __output_copy(handle, values, n * sizeof(u64));
5337 }
5338}
5339
5340#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5341 PERF_FORMAT_TOTAL_TIME_RUNNING)
5342
5343static void perf_output_read(struct perf_output_handle *handle,
5344 struct perf_event *event)
5345{
5346 u64 enabled = 0, running = 0, now;
5347 u64 read_format = event->attr.read_format;
5348
5349 /*
5350 * compute total_time_enabled, total_time_running
5351 * based on snapshot values taken when the event
5352 * was last scheduled in.
5353 *
5354 * we cannot simply called update_context_time()
5355 * because of locking issue as we are called in
5356 * NMI context
5357 */
5358 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5359 calc_timer_values(event, &now, &enabled, &running);
5360
5361 if (event->attr.read_format & PERF_FORMAT_GROUP)
5362 perf_output_read_group(handle, event, enabled, running);
5363 else
5364 perf_output_read_one(handle, event, enabled, running);
5365}
5366
5367void perf_output_sample(struct perf_output_handle *handle,
5368 struct perf_event_header *header,
5369 struct perf_sample_data *data,
5370 struct perf_event *event)
5371{
5372 u64 sample_type = data->type;
5373
5374 perf_output_put(handle, *header);
5375
5376 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5377 perf_output_put(handle, data->id);
5378
5379 if (sample_type & PERF_SAMPLE_IP)
5380 perf_output_put(handle, data->ip);
5381
5382 if (sample_type & PERF_SAMPLE_TID)
5383 perf_output_put(handle, data->tid_entry);
5384
5385 if (sample_type & PERF_SAMPLE_TIME)
5386 perf_output_put(handle, data->time);
5387
5388 if (sample_type & PERF_SAMPLE_ADDR)
5389 perf_output_put(handle, data->addr);
5390
5391 if (sample_type & PERF_SAMPLE_ID)
5392 perf_output_put(handle, data->id);
5393
5394 if (sample_type & PERF_SAMPLE_STREAM_ID)
5395 perf_output_put(handle, data->stream_id);
5396
5397 if (sample_type & PERF_SAMPLE_CPU)
5398 perf_output_put(handle, data->cpu_entry);
5399
5400 if (sample_type & PERF_SAMPLE_PERIOD)
5401 perf_output_put(handle, data->period);
5402
5403 if (sample_type & PERF_SAMPLE_READ)
5404 perf_output_read(handle, event);
5405
5406 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5407 if (data->callchain) {
5408 int size = 1;
5409
5410 if (data->callchain)
5411 size += data->callchain->nr;
5412
5413 size *= sizeof(u64);
5414
5415 __output_copy(handle, data->callchain, size);
5416 } else {
5417 u64 nr = 0;
5418 perf_output_put(handle, nr);
5419 }
5420 }
5421
5422 if (sample_type & PERF_SAMPLE_RAW) {
5423 if (data->raw) {
5424 u32 raw_size = data->raw->size;
5425 u32 real_size = round_up(raw_size + sizeof(u32),
5426 sizeof(u64)) - sizeof(u32);
5427 u64 zero = 0;
5428
5429 perf_output_put(handle, real_size);
5430 __output_copy(handle, data->raw->data, raw_size);
5431 if (real_size - raw_size)
5432 __output_copy(handle, &zero, real_size - raw_size);
5433 } else {
5434 struct {
5435 u32 size;
5436 u32 data;
5437 } raw = {
5438 .size = sizeof(u32),
5439 .data = 0,
5440 };
5441 perf_output_put(handle, raw);
5442 }
5443 }
5444
5445 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5446 if (data->br_stack) {
5447 size_t size;
5448
5449 size = data->br_stack->nr
5450 * sizeof(struct perf_branch_entry);
5451
5452 perf_output_put(handle, data->br_stack->nr);
5453 perf_output_copy(handle, data->br_stack->entries, size);
5454 } else {
5455 /*
5456 * we always store at least the value of nr
5457 */
5458 u64 nr = 0;
5459 perf_output_put(handle, nr);
5460 }
5461 }
5462
5463 if (sample_type & PERF_SAMPLE_REGS_USER) {
5464 u64 abi = data->regs_user.abi;
5465
5466 /*
5467 * If there are no regs to dump, notice it through
5468 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5469 */
5470 perf_output_put(handle, abi);
5471
5472 if (abi) {
5473 u64 mask = event->attr.sample_regs_user;
5474 perf_output_sample_regs(handle,
5475 data->regs_user.regs,
5476 mask);
5477 }
5478 }
5479
5480 if (sample_type & PERF_SAMPLE_STACK_USER) {
5481 perf_output_sample_ustack(handle,
5482 data->stack_user_size,
5483 data->regs_user.regs);
5484 }
5485
5486 if (sample_type & PERF_SAMPLE_WEIGHT)
5487 perf_output_put(handle, data->weight);
5488
5489 if (sample_type & PERF_SAMPLE_DATA_SRC)
5490 perf_output_put(handle, data->data_src.val);
5491
5492 if (sample_type & PERF_SAMPLE_TRANSACTION)
5493 perf_output_put(handle, data->txn);
5494
5495 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5496 u64 abi = data->regs_intr.abi;
5497 /*
5498 * If there are no regs to dump, notice it through
5499 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5500 */
5501 perf_output_put(handle, abi);
5502
5503 if (abi) {
5504 u64 mask = event->attr.sample_regs_intr;
5505
5506 perf_output_sample_regs(handle,
5507 data->regs_intr.regs,
5508 mask);
5509 }
5510 }
5511
5512 if (!event->attr.watermark) {
5513 int wakeup_events = event->attr.wakeup_events;
5514
5515 if (wakeup_events) {
5516 struct ring_buffer *rb = handle->rb;
5517 int events = local_inc_return(&rb->events);
5518
5519 if (events >= wakeup_events) {
5520 local_sub(wakeup_events, &rb->events);
5521 local_inc(&rb->wakeup);
5522 }
5523 }
5524 }
5525}
5526
5527void perf_prepare_sample(struct perf_event_header *header,
5528 struct perf_sample_data *data,
5529 struct perf_event *event,
5530 struct pt_regs *regs)
5531{
5532 u64 sample_type = event->attr.sample_type;
5533
5534 header->type = PERF_RECORD_SAMPLE;
5535 header->size = sizeof(*header) + event->header_size;
5536
5537 header->misc = 0;
5538 header->misc |= perf_misc_flags(regs);
5539
5540 __perf_event_header__init_id(header, data, event);
5541
5542 if (sample_type & PERF_SAMPLE_IP)
5543 data->ip = perf_instruction_pointer(regs);
5544
5545 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5546 int size = 1;
5547
5548 data->callchain = perf_callchain(event, regs);
5549
5550 if (data->callchain)
5551 size += data->callchain->nr;
5552
5553 header->size += size * sizeof(u64);
5554 }
5555
5556 if (sample_type & PERF_SAMPLE_RAW) {
5557 int size = sizeof(u32);
5558
5559 if (data->raw)
5560 size += data->raw->size;
5561 else
5562 size += sizeof(u32);
5563
5564 header->size += round_up(size, sizeof(u64));
5565 }
5566
5567 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5568 int size = sizeof(u64); /* nr */
5569 if (data->br_stack) {
5570 size += data->br_stack->nr
5571 * sizeof(struct perf_branch_entry);
5572 }
5573 header->size += size;
5574 }
5575
5576 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5577 perf_sample_regs_user(&data->regs_user, regs,
5578 &data->regs_user_copy);
5579
5580 if (sample_type & PERF_SAMPLE_REGS_USER) {
5581 /* regs dump ABI info */
5582 int size = sizeof(u64);
5583
5584 if (data->regs_user.regs) {
5585 u64 mask = event->attr.sample_regs_user;
5586 size += hweight64(mask) * sizeof(u64);
5587 }
5588
5589 header->size += size;
5590 }
5591
5592 if (sample_type & PERF_SAMPLE_STACK_USER) {
5593 /*
5594 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5595 * processed as the last one or have additional check added
5596 * in case new sample type is added, because we could eat
5597 * up the rest of the sample size.
5598 */
5599 u16 stack_size = event->attr.sample_stack_user;
5600 u16 size = sizeof(u64);
5601
5602 stack_size = perf_sample_ustack_size(stack_size, header->size,
5603 data->regs_user.regs);
5604
5605 /*
5606 * If there is something to dump, add space for the dump
5607 * itself and for the field that tells the dynamic size,
5608 * which is how many have been actually dumped.
5609 */
5610 if (stack_size)
5611 size += sizeof(u64) + stack_size;
5612
5613 data->stack_user_size = stack_size;
5614 header->size += size;
5615 }
5616
5617 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5618 /* regs dump ABI info */
5619 int size = sizeof(u64);
5620
5621 perf_sample_regs_intr(&data->regs_intr, regs);
5622
5623 if (data->regs_intr.regs) {
5624 u64 mask = event->attr.sample_regs_intr;
5625
5626 size += hweight64(mask) * sizeof(u64);
5627 }
5628
5629 header->size += size;
5630 }
5631}
5632
5633void perf_event_output(struct perf_event *event,
5634 struct perf_sample_data *data,
5635 struct pt_regs *regs)
5636{
5637 struct perf_output_handle handle;
5638 struct perf_event_header header;
5639
5640 /* protect the callchain buffers */
5641 rcu_read_lock();
5642
5643 perf_prepare_sample(&header, data, event, regs);
5644
5645 if (perf_output_begin(&handle, event, header.size))
5646 goto exit;
5647
5648 perf_output_sample(&handle, &header, data, event);
5649
5650 perf_output_end(&handle);
5651
5652exit:
5653 rcu_read_unlock();
5654}
5655
5656/*
5657 * read event_id
5658 */
5659
5660struct perf_read_event {
5661 struct perf_event_header header;
5662
5663 u32 pid;
5664 u32 tid;
5665};
5666
5667static void
5668perf_event_read_event(struct perf_event *event,
5669 struct task_struct *task)
5670{
5671 struct perf_output_handle handle;
5672 struct perf_sample_data sample;
5673 struct perf_read_event read_event = {
5674 .header = {
5675 .type = PERF_RECORD_READ,
5676 .misc = 0,
5677 .size = sizeof(read_event) + event->read_size,
5678 },
5679 .pid = perf_event_pid(event, task),
5680 .tid = perf_event_tid(event, task),
5681 };
5682 int ret;
5683
5684 perf_event_header__init_id(&read_event.header, &sample, event);
5685 ret = perf_output_begin(&handle, event, read_event.header.size);
5686 if (ret)
5687 return;
5688
5689 perf_output_put(&handle, read_event);
5690 perf_output_read(&handle, event);
5691 perf_event__output_id_sample(event, &handle, &sample);
5692
5693 perf_output_end(&handle);
5694}
5695
5696typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5697
5698static void
5699perf_event_aux_ctx(struct perf_event_context *ctx,
5700 perf_event_aux_output_cb output,
5701 void *data)
5702{
5703 struct perf_event *event;
5704
5705 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5706 if (event->state < PERF_EVENT_STATE_INACTIVE)
5707 continue;
5708 if (!event_filter_match(event))
5709 continue;
5710 output(event, data);
5711 }
5712}
5713
5714static void
5715perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5716 struct perf_event_context *task_ctx)
5717{
5718 rcu_read_lock();
5719 preempt_disable();
5720 perf_event_aux_ctx(task_ctx, output, data);
5721 preempt_enable();
5722 rcu_read_unlock();
5723}
5724
5725static void
5726perf_event_aux(perf_event_aux_output_cb output, void *data,
5727 struct perf_event_context *task_ctx)
5728{
5729 struct perf_cpu_context *cpuctx;
5730 struct perf_event_context *ctx;
5731 struct pmu *pmu;
5732 int ctxn;
5733
5734 /*
5735 * If we have task_ctx != NULL we only notify
5736 * the task context itself. The task_ctx is set
5737 * only for EXIT events before releasing task
5738 * context.
5739 */
5740 if (task_ctx) {
5741 perf_event_aux_task_ctx(output, data, task_ctx);
5742 return;
5743 }
5744
5745 rcu_read_lock();
5746 list_for_each_entry_rcu(pmu, &pmus, entry) {
5747 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5748 if (cpuctx->unique_pmu != pmu)
5749 goto next;
5750 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5751 ctxn = pmu->task_ctx_nr;
5752 if (ctxn < 0)
5753 goto next;
5754 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5755 if (ctx)
5756 perf_event_aux_ctx(ctx, output, data);
5757next:
5758 put_cpu_ptr(pmu->pmu_cpu_context);
5759 }
5760 rcu_read_unlock();
5761}
5762
5763/*
5764 * task tracking -- fork/exit
5765 *
5766 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5767 */
5768
5769struct perf_task_event {
5770 struct task_struct *task;
5771 struct perf_event_context *task_ctx;
5772
5773 struct {
5774 struct perf_event_header header;
5775
5776 u32 pid;
5777 u32 ppid;
5778 u32 tid;
5779 u32 ptid;
5780 u64 time;
5781 } event_id;
5782};
5783
5784static int perf_event_task_match(struct perf_event *event)
5785{
5786 return event->attr.comm || event->attr.mmap ||
5787 event->attr.mmap2 || event->attr.mmap_data ||
5788 event->attr.task;
5789}
5790
5791static void perf_event_task_output(struct perf_event *event,
5792 void *data)
5793{
5794 struct perf_task_event *task_event = data;
5795 struct perf_output_handle handle;
5796 struct perf_sample_data sample;
5797 struct task_struct *task = task_event->task;
5798 int ret, size = task_event->event_id.header.size;
5799
5800 if (!perf_event_task_match(event))
5801 return;
5802
5803 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5804
5805 ret = perf_output_begin(&handle, event,
5806 task_event->event_id.header.size);
5807 if (ret)
5808 goto out;
5809
5810 task_event->event_id.pid = perf_event_pid(event, task);
5811 task_event->event_id.ppid = perf_event_pid(event, current);
5812
5813 task_event->event_id.tid = perf_event_tid(event, task);
5814 task_event->event_id.ptid = perf_event_tid(event, current);
5815
5816 task_event->event_id.time = perf_event_clock(event);
5817
5818 perf_output_put(&handle, task_event->event_id);
5819
5820 perf_event__output_id_sample(event, &handle, &sample);
5821
5822 perf_output_end(&handle);
5823out:
5824 task_event->event_id.header.size = size;
5825}
5826
5827static void perf_event_task(struct task_struct *task,
5828 struct perf_event_context *task_ctx,
5829 int new)
5830{
5831 struct perf_task_event task_event;
5832
5833 if (!atomic_read(&nr_comm_events) &&
5834 !atomic_read(&nr_mmap_events) &&
5835 !atomic_read(&nr_task_events))
5836 return;
5837
5838 task_event = (struct perf_task_event){
5839 .task = task,
5840 .task_ctx = task_ctx,
5841 .event_id = {
5842 .header = {
5843 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5844 .misc = 0,
5845 .size = sizeof(task_event.event_id),
5846 },
5847 /* .pid */
5848 /* .ppid */
5849 /* .tid */
5850 /* .ptid */
5851 /* .time */
5852 },
5853 };
5854
5855 perf_event_aux(perf_event_task_output,
5856 &task_event,
5857 task_ctx);
5858}
5859
5860void perf_event_fork(struct task_struct *task)
5861{
5862 perf_event_task(task, NULL, 1);
5863}
5864
5865/*
5866 * comm tracking
5867 */
5868
5869struct perf_comm_event {
5870 struct task_struct *task;
5871 char *comm;
5872 int comm_size;
5873
5874 struct {
5875 struct perf_event_header header;
5876
5877 u32 pid;
5878 u32 tid;
5879 } event_id;
5880};
5881
5882static int perf_event_comm_match(struct perf_event *event)
5883{
5884 return event->attr.comm;
5885}
5886
5887static void perf_event_comm_output(struct perf_event *event,
5888 void *data)
5889{
5890 struct perf_comm_event *comm_event = data;
5891 struct perf_output_handle handle;
5892 struct perf_sample_data sample;
5893 int size = comm_event->event_id.header.size;
5894 int ret;
5895
5896 if (!perf_event_comm_match(event))
5897 return;
5898
5899 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5900 ret = perf_output_begin(&handle, event,
5901 comm_event->event_id.header.size);
5902
5903 if (ret)
5904 goto out;
5905
5906 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5907 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5908
5909 perf_output_put(&handle, comm_event->event_id);
5910 __output_copy(&handle, comm_event->comm,
5911 comm_event->comm_size);
5912
5913 perf_event__output_id_sample(event, &handle, &sample);
5914
5915 perf_output_end(&handle);
5916out:
5917 comm_event->event_id.header.size = size;
5918}
5919
5920static void perf_event_comm_event(struct perf_comm_event *comm_event)
5921{
5922 char comm[TASK_COMM_LEN];
5923 unsigned int size;
5924
5925 memset(comm, 0, sizeof(comm));
5926 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5927 size = ALIGN(strlen(comm)+1, sizeof(u64));
5928
5929 comm_event->comm = comm;
5930 comm_event->comm_size = size;
5931
5932 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5933
5934 perf_event_aux(perf_event_comm_output,
5935 comm_event,
5936 NULL);
5937}
5938
5939void perf_event_comm(struct task_struct *task, bool exec)
5940{
5941 struct perf_comm_event comm_event;
5942
5943 if (!atomic_read(&nr_comm_events))
5944 return;
5945
5946 comm_event = (struct perf_comm_event){
5947 .task = task,
5948 /* .comm */
5949 /* .comm_size */
5950 .event_id = {
5951 .header = {
5952 .type = PERF_RECORD_COMM,
5953 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5954 /* .size */
5955 },
5956 /* .pid */
5957 /* .tid */
5958 },
5959 };
5960
5961 perf_event_comm_event(&comm_event);
5962}
5963
5964/*
5965 * mmap tracking
5966 */
5967
5968struct perf_mmap_event {
5969 struct vm_area_struct *vma;
5970
5971 const char *file_name;
5972 int file_size;
5973 int maj, min;
5974 u64 ino;
5975 u64 ino_generation;
5976 u32 prot, flags;
5977
5978 struct {
5979 struct perf_event_header header;
5980
5981 u32 pid;
5982 u32 tid;
5983 u64 start;
5984 u64 len;
5985 u64 pgoff;
5986 } event_id;
5987};
5988
5989static int perf_event_mmap_match(struct perf_event *event,
5990 void *data)
5991{
5992 struct perf_mmap_event *mmap_event = data;
5993 struct vm_area_struct *vma = mmap_event->vma;
5994 int executable = vma->vm_flags & VM_EXEC;
5995
5996 return (!executable && event->attr.mmap_data) ||
5997 (executable && (event->attr.mmap || event->attr.mmap2));
5998}
5999
6000static void perf_event_mmap_output(struct perf_event *event,
6001 void *data)
6002{
6003 struct perf_mmap_event *mmap_event = data;
6004 struct perf_output_handle handle;
6005 struct perf_sample_data sample;
6006 int size = mmap_event->event_id.header.size;
6007 int ret;
6008
6009 if (!perf_event_mmap_match(event, data))
6010 return;
6011
6012 if (event->attr.mmap2) {
6013 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6014 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6015 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6016 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6017 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6018 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6019 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6020 }
6021
6022 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6023 ret = perf_output_begin(&handle, event,
6024 mmap_event->event_id.header.size);
6025 if (ret)
6026 goto out;
6027
6028 mmap_event->event_id.pid = perf_event_pid(event, current);
6029 mmap_event->event_id.tid = perf_event_tid(event, current);
6030
6031 perf_output_put(&handle, mmap_event->event_id);
6032
6033 if (event->attr.mmap2) {
6034 perf_output_put(&handle, mmap_event->maj);
6035 perf_output_put(&handle, mmap_event->min);
6036 perf_output_put(&handle, mmap_event->ino);
6037 perf_output_put(&handle, mmap_event->ino_generation);
6038 perf_output_put(&handle, mmap_event->prot);
6039 perf_output_put(&handle, mmap_event->flags);
6040 }
6041
6042 __output_copy(&handle, mmap_event->file_name,
6043 mmap_event->file_size);
6044
6045 perf_event__output_id_sample(event, &handle, &sample);
6046
6047 perf_output_end(&handle);
6048out:
6049 mmap_event->event_id.header.size = size;
6050}
6051
6052static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6053{
6054 struct vm_area_struct *vma = mmap_event->vma;
6055 struct file *file = vma->vm_file;
6056 int maj = 0, min = 0;
6057 u64 ino = 0, gen = 0;
6058 u32 prot = 0, flags = 0;
6059 unsigned int size;
6060 char tmp[16];
6061 char *buf = NULL;
6062 char *name;
6063
6064 if (file) {
6065 struct inode *inode;
6066 dev_t dev;
6067
6068 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6069 if (!buf) {
6070 name = "//enomem";
6071 goto cpy_name;
6072 }
6073 /*
6074 * d_path() works from the end of the rb backwards, so we
6075 * need to add enough zero bytes after the string to handle
6076 * the 64bit alignment we do later.
6077 */
6078 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6079 if (IS_ERR(name)) {
6080 name = "//toolong";
6081 goto cpy_name;
6082 }
6083 inode = file_inode(vma->vm_file);
6084 dev = inode->i_sb->s_dev;
6085 ino = inode->i_ino;
6086 gen = inode->i_generation;
6087 maj = MAJOR(dev);
6088 min = MINOR(dev);
6089
6090 if (vma->vm_flags & VM_READ)
6091 prot |= PROT_READ;
6092 if (vma->vm_flags & VM_WRITE)
6093 prot |= PROT_WRITE;
6094 if (vma->vm_flags & VM_EXEC)
6095 prot |= PROT_EXEC;
6096
6097 if (vma->vm_flags & VM_MAYSHARE)
6098 flags = MAP_SHARED;
6099 else
6100 flags = MAP_PRIVATE;
6101
6102 if (vma->vm_flags & VM_DENYWRITE)
6103 flags |= MAP_DENYWRITE;
6104 if (vma->vm_flags & VM_MAYEXEC)
6105 flags |= MAP_EXECUTABLE;
6106 if (vma->vm_flags & VM_LOCKED)
6107 flags |= MAP_LOCKED;
6108 if (vma->vm_flags & VM_HUGETLB)
6109 flags |= MAP_HUGETLB;
6110
6111 goto got_name;
6112 } else {
6113 if (vma->vm_ops && vma->vm_ops->name) {
6114 name = (char *) vma->vm_ops->name(vma);
6115 if (name)
6116 goto cpy_name;
6117 }
6118
6119 name = (char *)arch_vma_name(vma);
6120 if (name)
6121 goto cpy_name;
6122
6123 if (vma->vm_start <= vma->vm_mm->start_brk &&
6124 vma->vm_end >= vma->vm_mm->brk) {
6125 name = "[heap]";
6126 goto cpy_name;
6127 }
6128 if (vma->vm_start <= vma->vm_mm->start_stack &&
6129 vma->vm_end >= vma->vm_mm->start_stack) {
6130 name = "[stack]";
6131 goto cpy_name;
6132 }
6133
6134 name = "//anon";
6135 goto cpy_name;
6136 }
6137
6138cpy_name:
6139 strlcpy(tmp, name, sizeof(tmp));
6140 name = tmp;
6141got_name:
6142 /*
6143 * Since our buffer works in 8 byte units we need to align our string
6144 * size to a multiple of 8. However, we must guarantee the tail end is
6145 * zero'd out to avoid leaking random bits to userspace.
6146 */
6147 size = strlen(name)+1;
6148 while (!IS_ALIGNED(size, sizeof(u64)))
6149 name[size++] = '\0';
6150
6151 mmap_event->file_name = name;
6152 mmap_event->file_size = size;
6153 mmap_event->maj = maj;
6154 mmap_event->min = min;
6155 mmap_event->ino = ino;
6156 mmap_event->ino_generation = gen;
6157 mmap_event->prot = prot;
6158 mmap_event->flags = flags;
6159
6160 if (!(vma->vm_flags & VM_EXEC))
6161 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6162
6163 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6164
6165 perf_event_aux(perf_event_mmap_output,
6166 mmap_event,
6167 NULL);
6168
6169 kfree(buf);
6170}
6171
6172void perf_event_mmap(struct vm_area_struct *vma)
6173{
6174 struct perf_mmap_event mmap_event;
6175
6176 if (!atomic_read(&nr_mmap_events))
6177 return;
6178
6179 mmap_event = (struct perf_mmap_event){
6180 .vma = vma,
6181 /* .file_name */
6182 /* .file_size */
6183 .event_id = {
6184 .header = {
6185 .type = PERF_RECORD_MMAP,
6186 .misc = PERF_RECORD_MISC_USER,
6187 /* .size */
6188 },
6189 /* .pid */
6190 /* .tid */
6191 .start = vma->vm_start,
6192 .len = vma->vm_end - vma->vm_start,
6193 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6194 },
6195 /* .maj (attr_mmap2 only) */
6196 /* .min (attr_mmap2 only) */
6197 /* .ino (attr_mmap2 only) */
6198 /* .ino_generation (attr_mmap2 only) */
6199 /* .prot (attr_mmap2 only) */
6200 /* .flags (attr_mmap2 only) */
6201 };
6202
6203 perf_event_mmap_event(&mmap_event);
6204}
6205
6206void perf_event_aux_event(struct perf_event *event, unsigned long head,
6207 unsigned long size, u64 flags)
6208{
6209 struct perf_output_handle handle;
6210 struct perf_sample_data sample;
6211 struct perf_aux_event {
6212 struct perf_event_header header;
6213 u64 offset;
6214 u64 size;
6215 u64 flags;
6216 } rec = {
6217 .header = {
6218 .type = PERF_RECORD_AUX,
6219 .misc = 0,
6220 .size = sizeof(rec),
6221 },
6222 .offset = head,
6223 .size = size,
6224 .flags = flags,
6225 };
6226 int ret;
6227
6228 perf_event_header__init_id(&rec.header, &sample, event);
6229 ret = perf_output_begin(&handle, event, rec.header.size);
6230
6231 if (ret)
6232 return;
6233
6234 perf_output_put(&handle, rec);
6235 perf_event__output_id_sample(event, &handle, &sample);
6236
6237 perf_output_end(&handle);
6238}
6239
6240/*
6241 * Lost/dropped samples logging
6242 */
6243void perf_log_lost_samples(struct perf_event *event, u64 lost)
6244{
6245 struct perf_output_handle handle;
6246 struct perf_sample_data sample;
6247 int ret;
6248
6249 struct {
6250 struct perf_event_header header;
6251 u64 lost;
6252 } lost_samples_event = {
6253 .header = {
6254 .type = PERF_RECORD_LOST_SAMPLES,
6255 .misc = 0,
6256 .size = sizeof(lost_samples_event),
6257 },
6258 .lost = lost,
6259 };
6260
6261 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6262
6263 ret = perf_output_begin(&handle, event,
6264 lost_samples_event.header.size);
6265 if (ret)
6266 return;
6267
6268 perf_output_put(&handle, lost_samples_event);
6269 perf_event__output_id_sample(event, &handle, &sample);
6270 perf_output_end(&handle);
6271}
6272
6273/*
6274 * context_switch tracking
6275 */
6276
6277struct perf_switch_event {
6278 struct task_struct *task;
6279 struct task_struct *next_prev;
6280
6281 struct {
6282 struct perf_event_header header;
6283 u32 next_prev_pid;
6284 u32 next_prev_tid;
6285 } event_id;
6286};
6287
6288static int perf_event_switch_match(struct perf_event *event)
6289{
6290 return event->attr.context_switch;
6291}
6292
6293static void perf_event_switch_output(struct perf_event *event, void *data)
6294{
6295 struct perf_switch_event *se = data;
6296 struct perf_output_handle handle;
6297 struct perf_sample_data sample;
6298 int ret;
6299
6300 if (!perf_event_switch_match(event))
6301 return;
6302
6303 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6304 if (event->ctx->task) {
6305 se->event_id.header.type = PERF_RECORD_SWITCH;
6306 se->event_id.header.size = sizeof(se->event_id.header);
6307 } else {
6308 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6309 se->event_id.header.size = sizeof(se->event_id);
6310 se->event_id.next_prev_pid =
6311 perf_event_pid(event, se->next_prev);
6312 se->event_id.next_prev_tid =
6313 perf_event_tid(event, se->next_prev);
6314 }
6315
6316 perf_event_header__init_id(&se->event_id.header, &sample, event);
6317
6318 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6319 if (ret)
6320 return;
6321
6322 if (event->ctx->task)
6323 perf_output_put(&handle, se->event_id.header);
6324 else
6325 perf_output_put(&handle, se->event_id);
6326
6327 perf_event__output_id_sample(event, &handle, &sample);
6328
6329 perf_output_end(&handle);
6330}
6331
6332static void perf_event_switch(struct task_struct *task,
6333 struct task_struct *next_prev, bool sched_in)
6334{
6335 struct perf_switch_event switch_event;
6336
6337 /* N.B. caller checks nr_switch_events != 0 */
6338
6339 switch_event = (struct perf_switch_event){
6340 .task = task,
6341 .next_prev = next_prev,
6342 .event_id = {
6343 .header = {
6344 /* .type */
6345 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6346 /* .size */
6347 },
6348 /* .next_prev_pid */
6349 /* .next_prev_tid */
6350 },
6351 };
6352
6353 perf_event_aux(perf_event_switch_output,
6354 &switch_event,
6355 NULL);
6356}
6357
6358/*
6359 * IRQ throttle logging
6360 */
6361
6362static void perf_log_throttle(struct perf_event *event, int enable)
6363{
6364 struct perf_output_handle handle;
6365 struct perf_sample_data sample;
6366 int ret;
6367
6368 struct {
6369 struct perf_event_header header;
6370 u64 time;
6371 u64 id;
6372 u64 stream_id;
6373 } throttle_event = {
6374 .header = {
6375 .type = PERF_RECORD_THROTTLE,
6376 .misc = 0,
6377 .size = sizeof(throttle_event),
6378 },
6379 .time = perf_event_clock(event),
6380 .id = primary_event_id(event),
6381 .stream_id = event->id,
6382 };
6383
6384 if (enable)
6385 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6386
6387 perf_event_header__init_id(&throttle_event.header, &sample, event);
6388
6389 ret = perf_output_begin(&handle, event,
6390 throttle_event.header.size);
6391 if (ret)
6392 return;
6393
6394 perf_output_put(&handle, throttle_event);
6395 perf_event__output_id_sample(event, &handle, &sample);
6396 perf_output_end(&handle);
6397}
6398
6399static void perf_log_itrace_start(struct perf_event *event)
6400{
6401 struct perf_output_handle handle;
6402 struct perf_sample_data sample;
6403 struct perf_aux_event {
6404 struct perf_event_header header;
6405 u32 pid;
6406 u32 tid;
6407 } rec;
6408 int ret;
6409
6410 if (event->parent)
6411 event = event->parent;
6412
6413 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6414 event->hw.itrace_started)
6415 return;
6416
6417 rec.header.type = PERF_RECORD_ITRACE_START;
6418 rec.header.misc = 0;
6419 rec.header.size = sizeof(rec);
6420 rec.pid = perf_event_pid(event, current);
6421 rec.tid = perf_event_tid(event, current);
6422
6423 perf_event_header__init_id(&rec.header, &sample, event);
6424 ret = perf_output_begin(&handle, event, rec.header.size);
6425
6426 if (ret)
6427 return;
6428
6429 perf_output_put(&handle, rec);
6430 perf_event__output_id_sample(event, &handle, &sample);
6431
6432 perf_output_end(&handle);
6433}
6434
6435/*
6436 * Generic event overflow handling, sampling.
6437 */
6438
6439static int __perf_event_overflow(struct perf_event *event,
6440 int throttle, struct perf_sample_data *data,
6441 struct pt_regs *regs)
6442{
6443 int events = atomic_read(&event->event_limit);
6444 struct hw_perf_event *hwc = &event->hw;
6445 u64 seq;
6446 int ret = 0;
6447
6448 /*
6449 * Non-sampling counters might still use the PMI to fold short
6450 * hardware counters, ignore those.
6451 */
6452 if (unlikely(!is_sampling_event(event)))
6453 return 0;
6454
6455 seq = __this_cpu_read(perf_throttled_seq);
6456 if (seq != hwc->interrupts_seq) {
6457 hwc->interrupts_seq = seq;
6458 hwc->interrupts = 1;
6459 } else {
6460 hwc->interrupts++;
6461 if (unlikely(throttle
6462 && hwc->interrupts >= max_samples_per_tick)) {
6463 __this_cpu_inc(perf_throttled_count);
6464 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6465 hwc->interrupts = MAX_INTERRUPTS;
6466 perf_log_throttle(event, 0);
6467 ret = 1;
6468 }
6469 }
6470
6471 if (event->attr.freq) {
6472 u64 now = perf_clock();
6473 s64 delta = now - hwc->freq_time_stamp;
6474
6475 hwc->freq_time_stamp = now;
6476
6477 if (delta > 0 && delta < 2*TICK_NSEC)
6478 perf_adjust_period(event, delta, hwc->last_period, true);
6479 }
6480
6481 /*
6482 * XXX event_limit might not quite work as expected on inherited
6483 * events
6484 */
6485
6486 event->pending_kill = POLL_IN;
6487 if (events && atomic_dec_and_test(&event->event_limit)) {
6488 ret = 1;
6489 event->pending_kill = POLL_HUP;
6490 event->pending_disable = 1;
6491 irq_work_queue(&event->pending);
6492 }
6493
6494 if (event->overflow_handler)
6495 event->overflow_handler(event, data, regs);
6496 else
6497 perf_event_output(event, data, regs);
6498
6499 if (*perf_event_fasync(event) && event->pending_kill) {
6500 event->pending_wakeup = 1;
6501 irq_work_queue(&event->pending);
6502 }
6503
6504 return ret;
6505}
6506
6507int perf_event_overflow(struct perf_event *event,
6508 struct perf_sample_data *data,
6509 struct pt_regs *regs)
6510{
6511 return __perf_event_overflow(event, 1, data, regs);
6512}
6513
6514/*
6515 * Generic software event infrastructure
6516 */
6517
6518struct swevent_htable {
6519 struct swevent_hlist *swevent_hlist;
6520 struct mutex hlist_mutex;
6521 int hlist_refcount;
6522
6523 /* Recursion avoidance in each contexts */
6524 int recursion[PERF_NR_CONTEXTS];
6525};
6526
6527static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6528
6529/*
6530 * We directly increment event->count and keep a second value in
6531 * event->hw.period_left to count intervals. This period event
6532 * is kept in the range [-sample_period, 0] so that we can use the
6533 * sign as trigger.
6534 */
6535
6536u64 perf_swevent_set_period(struct perf_event *event)
6537{
6538 struct hw_perf_event *hwc = &event->hw;
6539 u64 period = hwc->last_period;
6540 u64 nr, offset;
6541 s64 old, val;
6542
6543 hwc->last_period = hwc->sample_period;
6544
6545again:
6546 old = val = local64_read(&hwc->period_left);
6547 if (val < 0)
6548 return 0;
6549
6550 nr = div64_u64(period + val, period);
6551 offset = nr * period;
6552 val -= offset;
6553 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6554 goto again;
6555
6556 return nr;
6557}
6558
6559static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6560 struct perf_sample_data *data,
6561 struct pt_regs *regs)
6562{
6563 struct hw_perf_event *hwc = &event->hw;
6564 int throttle = 0;
6565
6566 if (!overflow)
6567 overflow = perf_swevent_set_period(event);
6568
6569 if (hwc->interrupts == MAX_INTERRUPTS)
6570 return;
6571
6572 for (; overflow; overflow--) {
6573 if (__perf_event_overflow(event, throttle,
6574 data, regs)) {
6575 /*
6576 * We inhibit the overflow from happening when
6577 * hwc->interrupts == MAX_INTERRUPTS.
6578 */
6579 break;
6580 }
6581 throttle = 1;
6582 }
6583}
6584
6585static void perf_swevent_event(struct perf_event *event, u64 nr,
6586 struct perf_sample_data *data,
6587 struct pt_regs *regs)
6588{
6589 struct hw_perf_event *hwc = &event->hw;
6590
6591 local64_add(nr, &event->count);
6592
6593 if (!regs)
6594 return;
6595
6596 if (!is_sampling_event(event))
6597 return;
6598
6599 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6600 data->period = nr;
6601 return perf_swevent_overflow(event, 1, data, regs);
6602 } else
6603 data->period = event->hw.last_period;
6604
6605 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6606 return perf_swevent_overflow(event, 1, data, regs);
6607
6608 if (local64_add_negative(nr, &hwc->period_left))
6609 return;
6610
6611 perf_swevent_overflow(event, 0, data, regs);
6612}
6613
6614static int perf_exclude_event(struct perf_event *event,
6615 struct pt_regs *regs)
6616{
6617 if (event->hw.state & PERF_HES_STOPPED)
6618 return 1;
6619
6620 if (regs) {
6621 if (event->attr.exclude_user && user_mode(regs))
6622 return 1;
6623
6624 if (event->attr.exclude_kernel && !user_mode(regs))
6625 return 1;
6626 }
6627
6628 return 0;
6629}
6630
6631static int perf_swevent_match(struct perf_event *event,
6632 enum perf_type_id type,
6633 u32 event_id,
6634 struct perf_sample_data *data,
6635 struct pt_regs *regs)
6636{
6637 if (event->attr.type != type)
6638 return 0;
6639
6640 if (event->attr.config != event_id)
6641 return 0;
6642
6643 if (perf_exclude_event(event, regs))
6644 return 0;
6645
6646 return 1;
6647}
6648
6649static inline u64 swevent_hash(u64 type, u32 event_id)
6650{
6651 u64 val = event_id | (type << 32);
6652
6653 return hash_64(val, SWEVENT_HLIST_BITS);
6654}
6655
6656static inline struct hlist_head *
6657__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6658{
6659 u64 hash = swevent_hash(type, event_id);
6660
6661 return &hlist->heads[hash];
6662}
6663
6664/* For the read side: events when they trigger */
6665static inline struct hlist_head *
6666find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6667{
6668 struct swevent_hlist *hlist;
6669
6670 hlist = rcu_dereference(swhash->swevent_hlist);
6671 if (!hlist)
6672 return NULL;
6673
6674 return __find_swevent_head(hlist, type, event_id);
6675}
6676
6677/* For the event head insertion and removal in the hlist */
6678static inline struct hlist_head *
6679find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6680{
6681 struct swevent_hlist *hlist;
6682 u32 event_id = event->attr.config;
6683 u64 type = event->attr.type;
6684
6685 /*
6686 * Event scheduling is always serialized against hlist allocation
6687 * and release. Which makes the protected version suitable here.
6688 * The context lock guarantees that.
6689 */
6690 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6691 lockdep_is_held(&event->ctx->lock));
6692 if (!hlist)
6693 return NULL;
6694
6695 return __find_swevent_head(hlist, type, event_id);
6696}
6697
6698static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6699 u64 nr,
6700 struct perf_sample_data *data,
6701 struct pt_regs *regs)
6702{
6703 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6704 struct perf_event *event;
6705 struct hlist_head *head;
6706
6707 rcu_read_lock();
6708 head = find_swevent_head_rcu(swhash, type, event_id);
6709 if (!head)
6710 goto end;
6711
6712 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6713 if (perf_swevent_match(event, type, event_id, data, regs))
6714 perf_swevent_event(event, nr, data, regs);
6715 }
6716end:
6717 rcu_read_unlock();
6718}
6719
6720DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6721
6722int perf_swevent_get_recursion_context(void)
6723{
6724 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6725
6726 return get_recursion_context(swhash->recursion);
6727}
6728EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6729
6730inline void perf_swevent_put_recursion_context(int rctx)
6731{
6732 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6733
6734 put_recursion_context(swhash->recursion, rctx);
6735}
6736
6737void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6738{
6739 struct perf_sample_data data;
6740
6741 if (WARN_ON_ONCE(!regs))
6742 return;
6743
6744 perf_sample_data_init(&data, addr, 0);
6745 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6746}
6747
6748void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6749{
6750 int rctx;
6751
6752 preempt_disable_notrace();
6753 rctx = perf_swevent_get_recursion_context();
6754 if (unlikely(rctx < 0))
6755 goto fail;
6756
6757 ___perf_sw_event(event_id, nr, regs, addr);
6758
6759 perf_swevent_put_recursion_context(rctx);
6760fail:
6761 preempt_enable_notrace();
6762}
6763
6764static void perf_swevent_read(struct perf_event *event)
6765{
6766}
6767
6768static int perf_swevent_add(struct perf_event *event, int flags)
6769{
6770 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6771 struct hw_perf_event *hwc = &event->hw;
6772 struct hlist_head *head;
6773
6774 if (is_sampling_event(event)) {
6775 hwc->last_period = hwc->sample_period;
6776 perf_swevent_set_period(event);
6777 }
6778
6779 hwc->state = !(flags & PERF_EF_START);
6780
6781 head = find_swevent_head(swhash, event);
6782 if (WARN_ON_ONCE(!head))
6783 return -EINVAL;
6784
6785 hlist_add_head_rcu(&event->hlist_entry, head);
6786 perf_event_update_userpage(event);
6787
6788 return 0;
6789}
6790
6791static void perf_swevent_del(struct perf_event *event, int flags)
6792{
6793 hlist_del_rcu(&event->hlist_entry);
6794}
6795
6796static void perf_swevent_start(struct perf_event *event, int flags)
6797{
6798 event->hw.state = 0;
6799}
6800
6801static void perf_swevent_stop(struct perf_event *event, int flags)
6802{
6803 event->hw.state = PERF_HES_STOPPED;
6804}
6805
6806/* Deref the hlist from the update side */
6807static inline struct swevent_hlist *
6808swevent_hlist_deref(struct swevent_htable *swhash)
6809{
6810 return rcu_dereference_protected(swhash->swevent_hlist,
6811 lockdep_is_held(&swhash->hlist_mutex));
6812}
6813
6814static void swevent_hlist_release(struct swevent_htable *swhash)
6815{
6816 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6817
6818 if (!hlist)
6819 return;
6820
6821 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6822 kfree_rcu(hlist, rcu_head);
6823}
6824
6825static void swevent_hlist_put_cpu(int cpu)
6826{
6827 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6828
6829 mutex_lock(&swhash->hlist_mutex);
6830
6831 if (!--swhash->hlist_refcount)
6832 swevent_hlist_release(swhash);
6833
6834 mutex_unlock(&swhash->hlist_mutex);
6835}
6836
6837static void swevent_hlist_put(void)
6838{
6839 int cpu;
6840
6841 for_each_possible_cpu(cpu)
6842 swevent_hlist_put_cpu(cpu);
6843}
6844
6845static int swevent_hlist_get_cpu(int cpu)
6846{
6847 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6848 int err = 0;
6849
6850 mutex_lock(&swhash->hlist_mutex);
6851 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6852 struct swevent_hlist *hlist;
6853
6854 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6855 if (!hlist) {
6856 err = -ENOMEM;
6857 goto exit;
6858 }
6859 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6860 }
6861 swhash->hlist_refcount++;
6862exit:
6863 mutex_unlock(&swhash->hlist_mutex);
6864
6865 return err;
6866}
6867
6868static int swevent_hlist_get(void)
6869{
6870 int err, cpu, failed_cpu;
6871
6872 get_online_cpus();
6873 for_each_possible_cpu(cpu) {
6874 err = swevent_hlist_get_cpu(cpu);
6875 if (err) {
6876 failed_cpu = cpu;
6877 goto fail;
6878 }
6879 }
6880 put_online_cpus();
6881
6882 return 0;
6883fail:
6884 for_each_possible_cpu(cpu) {
6885 if (cpu == failed_cpu)
6886 break;
6887 swevent_hlist_put_cpu(cpu);
6888 }
6889
6890 put_online_cpus();
6891 return err;
6892}
6893
6894struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6895
6896static void sw_perf_event_destroy(struct perf_event *event)
6897{
6898 u64 event_id = event->attr.config;
6899
6900 WARN_ON(event->parent);
6901
6902 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6903 swevent_hlist_put();
6904}
6905
6906static int perf_swevent_init(struct perf_event *event)
6907{
6908 u64 event_id = event->attr.config;
6909
6910 if (event->attr.type != PERF_TYPE_SOFTWARE)
6911 return -ENOENT;
6912
6913 /*
6914 * no branch sampling for software events
6915 */
6916 if (has_branch_stack(event))
6917 return -EOPNOTSUPP;
6918
6919 switch (event_id) {
6920 case PERF_COUNT_SW_CPU_CLOCK:
6921 case PERF_COUNT_SW_TASK_CLOCK:
6922 return -ENOENT;
6923
6924 default:
6925 break;
6926 }
6927
6928 if (event_id >= PERF_COUNT_SW_MAX)
6929 return -ENOENT;
6930
6931 if (!event->parent) {
6932 int err;
6933
6934 err = swevent_hlist_get();
6935 if (err)
6936 return err;
6937
6938 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6939 event->destroy = sw_perf_event_destroy;
6940 }
6941
6942 return 0;
6943}
6944
6945static struct pmu perf_swevent = {
6946 .task_ctx_nr = perf_sw_context,
6947
6948 .capabilities = PERF_PMU_CAP_NO_NMI,
6949
6950 .event_init = perf_swevent_init,
6951 .add = perf_swevent_add,
6952 .del = perf_swevent_del,
6953 .start = perf_swevent_start,
6954 .stop = perf_swevent_stop,
6955 .read = perf_swevent_read,
6956};
6957
6958#ifdef CONFIG_EVENT_TRACING
6959
6960static int perf_tp_filter_match(struct perf_event *event,
6961 struct perf_sample_data *data)
6962{
6963 void *record = data->raw->data;
6964
6965 /* only top level events have filters set */
6966 if (event->parent)
6967 event = event->parent;
6968
6969 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6970 return 1;
6971 return 0;
6972}
6973
6974static int perf_tp_event_match(struct perf_event *event,
6975 struct perf_sample_data *data,
6976 struct pt_regs *regs)
6977{
6978 if (event->hw.state & PERF_HES_STOPPED)
6979 return 0;
6980 /*
6981 * All tracepoints are from kernel-space.
6982 */
6983 if (event->attr.exclude_kernel)
6984 return 0;
6985
6986 if (!perf_tp_filter_match(event, data))
6987 return 0;
6988
6989 return 1;
6990}
6991
6992void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6993 struct pt_regs *regs, struct hlist_head *head, int rctx,
6994 struct task_struct *task)
6995{
6996 struct perf_sample_data data;
6997 struct perf_event *event;
6998
6999 struct perf_raw_record raw = {
7000 .size = entry_size,
7001 .data = record,
7002 };
7003
7004 perf_sample_data_init(&data, addr, 0);
7005 data.raw = &raw;
7006
7007 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7008 if (perf_tp_event_match(event, &data, regs))
7009 perf_swevent_event(event, count, &data, regs);
7010 }
7011
7012 /*
7013 * If we got specified a target task, also iterate its context and
7014 * deliver this event there too.
7015 */
7016 if (task && task != current) {
7017 struct perf_event_context *ctx;
7018 struct trace_entry *entry = record;
7019
7020 rcu_read_lock();
7021 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7022 if (!ctx)
7023 goto unlock;
7024
7025 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7026 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7027 continue;
7028 if (event->attr.config != entry->type)
7029 continue;
7030 if (perf_tp_event_match(event, &data, regs))
7031 perf_swevent_event(event, count, &data, regs);
7032 }
7033unlock:
7034 rcu_read_unlock();
7035 }
7036
7037 perf_swevent_put_recursion_context(rctx);
7038}
7039EXPORT_SYMBOL_GPL(perf_tp_event);
7040
7041static void tp_perf_event_destroy(struct perf_event *event)
7042{
7043 perf_trace_destroy(event);
7044}
7045
7046static int perf_tp_event_init(struct perf_event *event)
7047{
7048 int err;
7049
7050 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7051 return -ENOENT;
7052
7053 /*
7054 * no branch sampling for tracepoint events
7055 */
7056 if (has_branch_stack(event))
7057 return -EOPNOTSUPP;
7058
7059 err = perf_trace_init(event);
7060 if (err)
7061 return err;
7062
7063 event->destroy = tp_perf_event_destroy;
7064
7065 return 0;
7066}
7067
7068static struct pmu perf_tracepoint = {
7069 .task_ctx_nr = perf_sw_context,
7070
7071 .event_init = perf_tp_event_init,
7072 .add = perf_trace_add,
7073 .del = perf_trace_del,
7074 .start = perf_swevent_start,
7075 .stop = perf_swevent_stop,
7076 .read = perf_swevent_read,
7077};
7078
7079static inline void perf_tp_register(void)
7080{
7081 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7082}
7083
7084static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7085{
7086 char *filter_str;
7087 int ret;
7088
7089 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7090 return -EINVAL;
7091
7092 filter_str = strndup_user(arg, PAGE_SIZE);
7093 if (IS_ERR(filter_str))
7094 return PTR_ERR(filter_str);
7095
7096 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7097
7098 kfree(filter_str);
7099 return ret;
7100}
7101
7102static void perf_event_free_filter(struct perf_event *event)
7103{
7104 ftrace_profile_free_filter(event);
7105}
7106
7107static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7108{
7109 struct bpf_prog *prog;
7110
7111 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7112 return -EINVAL;
7113
7114 if (event->tp_event->prog)
7115 return -EEXIST;
7116
7117 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7118 /* bpf programs can only be attached to u/kprobes */
7119 return -EINVAL;
7120
7121 prog = bpf_prog_get(prog_fd);
7122 if (IS_ERR(prog))
7123 return PTR_ERR(prog);
7124
7125 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7126 /* valid fd, but invalid bpf program type */
7127 bpf_prog_put(prog);
7128 return -EINVAL;
7129 }
7130
7131 event->tp_event->prog = prog;
7132
7133 return 0;
7134}
7135
7136static void perf_event_free_bpf_prog(struct perf_event *event)
7137{
7138 struct bpf_prog *prog;
7139
7140 if (!event->tp_event)
7141 return;
7142
7143 prog = event->tp_event->prog;
7144 if (prog) {
7145 event->tp_event->prog = NULL;
7146 bpf_prog_put(prog);
7147 }
7148}
7149
7150#else
7151
7152static inline void perf_tp_register(void)
7153{
7154}
7155
7156static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7157{
7158 return -ENOENT;
7159}
7160
7161static void perf_event_free_filter(struct perf_event *event)
7162{
7163}
7164
7165static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7166{
7167 return -ENOENT;
7168}
7169
7170static void perf_event_free_bpf_prog(struct perf_event *event)
7171{
7172}
7173#endif /* CONFIG_EVENT_TRACING */
7174
7175#ifdef CONFIG_HAVE_HW_BREAKPOINT
7176void perf_bp_event(struct perf_event *bp, void *data)
7177{
7178 struct perf_sample_data sample;
7179 struct pt_regs *regs = data;
7180
7181 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7182
7183 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7184 perf_swevent_event(bp, 1, &sample, regs);
7185}
7186#endif
7187
7188/*
7189 * hrtimer based swevent callback
7190 */
7191
7192static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7193{
7194 enum hrtimer_restart ret = HRTIMER_RESTART;
7195 struct perf_sample_data data;
7196 struct pt_regs *regs;
7197 struct perf_event *event;
7198 u64 period;
7199
7200 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7201
7202 if (event->state != PERF_EVENT_STATE_ACTIVE)
7203 return HRTIMER_NORESTART;
7204
7205 event->pmu->read(event);
7206
7207 perf_sample_data_init(&data, 0, event->hw.last_period);
7208 regs = get_irq_regs();
7209
7210 if (regs && !perf_exclude_event(event, regs)) {
7211 if (!(event->attr.exclude_idle && is_idle_task(current)))
7212 if (__perf_event_overflow(event, 1, &data, regs))
7213 ret = HRTIMER_NORESTART;
7214 }
7215
7216 period = max_t(u64, 10000, event->hw.sample_period);
7217 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7218
7219 return ret;
7220}
7221
7222static void perf_swevent_start_hrtimer(struct perf_event *event)
7223{
7224 struct hw_perf_event *hwc = &event->hw;
7225 s64 period;
7226
7227 if (!is_sampling_event(event))
7228 return;
7229
7230 period = local64_read(&hwc->period_left);
7231 if (period) {
7232 if (period < 0)
7233 period = 10000;
7234
7235 local64_set(&hwc->period_left, 0);
7236 } else {
7237 period = max_t(u64, 10000, hwc->sample_period);
7238 }
7239 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7240 HRTIMER_MODE_REL_PINNED);
7241}
7242
7243static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7244{
7245 struct hw_perf_event *hwc = &event->hw;
7246
7247 if (is_sampling_event(event)) {
7248 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7249 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7250
7251 hrtimer_cancel(&hwc->hrtimer);
7252 }
7253}
7254
7255static void perf_swevent_init_hrtimer(struct perf_event *event)
7256{
7257 struct hw_perf_event *hwc = &event->hw;
7258
7259 if (!is_sampling_event(event))
7260 return;
7261
7262 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7263 hwc->hrtimer.function = perf_swevent_hrtimer;
7264
7265 /*
7266 * Since hrtimers have a fixed rate, we can do a static freq->period
7267 * mapping and avoid the whole period adjust feedback stuff.
7268 */
7269 if (event->attr.freq) {
7270 long freq = event->attr.sample_freq;
7271
7272 event->attr.sample_period = NSEC_PER_SEC / freq;
7273 hwc->sample_period = event->attr.sample_period;
7274 local64_set(&hwc->period_left, hwc->sample_period);
7275 hwc->last_period = hwc->sample_period;
7276 event->attr.freq = 0;
7277 }
7278}
7279
7280/*
7281 * Software event: cpu wall time clock
7282 */
7283
7284static void cpu_clock_event_update(struct perf_event *event)
7285{
7286 s64 prev;
7287 u64 now;
7288
7289 now = local_clock();
7290 prev = local64_xchg(&event->hw.prev_count, now);
7291 local64_add(now - prev, &event->count);
7292}
7293
7294static void cpu_clock_event_start(struct perf_event *event, int flags)
7295{
7296 local64_set(&event->hw.prev_count, local_clock());
7297 perf_swevent_start_hrtimer(event);
7298}
7299
7300static void cpu_clock_event_stop(struct perf_event *event, int flags)
7301{
7302 perf_swevent_cancel_hrtimer(event);
7303 cpu_clock_event_update(event);
7304}
7305
7306static int cpu_clock_event_add(struct perf_event *event, int flags)
7307{
7308 if (flags & PERF_EF_START)
7309 cpu_clock_event_start(event, flags);
7310 perf_event_update_userpage(event);
7311
7312 return 0;
7313}
7314
7315static void cpu_clock_event_del(struct perf_event *event, int flags)
7316{
7317 cpu_clock_event_stop(event, flags);
7318}
7319
7320static void cpu_clock_event_read(struct perf_event *event)
7321{
7322 cpu_clock_event_update(event);
7323}
7324
7325static int cpu_clock_event_init(struct perf_event *event)
7326{
7327 if (event->attr.type != PERF_TYPE_SOFTWARE)
7328 return -ENOENT;
7329
7330 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7331 return -ENOENT;
7332
7333 /*
7334 * no branch sampling for software events
7335 */
7336 if (has_branch_stack(event))
7337 return -EOPNOTSUPP;
7338
7339 perf_swevent_init_hrtimer(event);
7340
7341 return 0;
7342}
7343
7344static struct pmu perf_cpu_clock = {
7345 .task_ctx_nr = perf_sw_context,
7346
7347 .capabilities = PERF_PMU_CAP_NO_NMI,
7348
7349 .event_init = cpu_clock_event_init,
7350 .add = cpu_clock_event_add,
7351 .del = cpu_clock_event_del,
7352 .start = cpu_clock_event_start,
7353 .stop = cpu_clock_event_stop,
7354 .read = cpu_clock_event_read,
7355};
7356
7357/*
7358 * Software event: task time clock
7359 */
7360
7361static void task_clock_event_update(struct perf_event *event, u64 now)
7362{
7363 u64 prev;
7364 s64 delta;
7365
7366 prev = local64_xchg(&event->hw.prev_count, now);
7367 delta = now - prev;
7368 local64_add(delta, &event->count);
7369}
7370
7371static void task_clock_event_start(struct perf_event *event, int flags)
7372{
7373 local64_set(&event->hw.prev_count, event->ctx->time);
7374 perf_swevent_start_hrtimer(event);
7375}
7376
7377static void task_clock_event_stop(struct perf_event *event, int flags)
7378{
7379 perf_swevent_cancel_hrtimer(event);
7380 task_clock_event_update(event, event->ctx->time);
7381}
7382
7383static int task_clock_event_add(struct perf_event *event, int flags)
7384{
7385 if (flags & PERF_EF_START)
7386 task_clock_event_start(event, flags);
7387 perf_event_update_userpage(event);
7388
7389 return 0;
7390}
7391
7392static void task_clock_event_del(struct perf_event *event, int flags)
7393{
7394 task_clock_event_stop(event, PERF_EF_UPDATE);
7395}
7396
7397static void task_clock_event_read(struct perf_event *event)
7398{
7399 u64 now = perf_clock();
7400 u64 delta = now - event->ctx->timestamp;
7401 u64 time = event->ctx->time + delta;
7402
7403 task_clock_event_update(event, time);
7404}
7405
7406static int task_clock_event_init(struct perf_event *event)
7407{
7408 if (event->attr.type != PERF_TYPE_SOFTWARE)
7409 return -ENOENT;
7410
7411 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7412 return -ENOENT;
7413
7414 /*
7415 * no branch sampling for software events
7416 */
7417 if (has_branch_stack(event))
7418 return -EOPNOTSUPP;
7419
7420 perf_swevent_init_hrtimer(event);
7421
7422 return 0;
7423}
7424
7425static struct pmu perf_task_clock = {
7426 .task_ctx_nr = perf_sw_context,
7427
7428 .capabilities = PERF_PMU_CAP_NO_NMI,
7429
7430 .event_init = task_clock_event_init,
7431 .add = task_clock_event_add,
7432 .del = task_clock_event_del,
7433 .start = task_clock_event_start,
7434 .stop = task_clock_event_stop,
7435 .read = task_clock_event_read,
7436};
7437
7438static void perf_pmu_nop_void(struct pmu *pmu)
7439{
7440}
7441
7442static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7443{
7444}
7445
7446static int perf_pmu_nop_int(struct pmu *pmu)
7447{
7448 return 0;
7449}
7450
7451static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7452
7453static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7454{
7455 __this_cpu_write(nop_txn_flags, flags);
7456
7457 if (flags & ~PERF_PMU_TXN_ADD)
7458 return;
7459
7460 perf_pmu_disable(pmu);
7461}
7462
7463static int perf_pmu_commit_txn(struct pmu *pmu)
7464{
7465 unsigned int flags = __this_cpu_read(nop_txn_flags);
7466
7467 __this_cpu_write(nop_txn_flags, 0);
7468
7469 if (flags & ~PERF_PMU_TXN_ADD)
7470 return 0;
7471
7472 perf_pmu_enable(pmu);
7473 return 0;
7474}
7475
7476static void perf_pmu_cancel_txn(struct pmu *pmu)
7477{
7478 unsigned int flags = __this_cpu_read(nop_txn_flags);
7479
7480 __this_cpu_write(nop_txn_flags, 0);
7481
7482 if (flags & ~PERF_PMU_TXN_ADD)
7483 return;
7484
7485 perf_pmu_enable(pmu);
7486}
7487
7488static int perf_event_idx_default(struct perf_event *event)
7489{
7490 return 0;
7491}
7492
7493/*
7494 * Ensures all contexts with the same task_ctx_nr have the same
7495 * pmu_cpu_context too.
7496 */
7497static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7498{
7499 struct pmu *pmu;
7500
7501 if (ctxn < 0)
7502 return NULL;
7503
7504 list_for_each_entry(pmu, &pmus, entry) {
7505 if (pmu->task_ctx_nr == ctxn)
7506 return pmu->pmu_cpu_context;
7507 }
7508
7509 return NULL;
7510}
7511
7512static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7513{
7514 int cpu;
7515
7516 for_each_possible_cpu(cpu) {
7517 struct perf_cpu_context *cpuctx;
7518
7519 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7520
7521 if (cpuctx->unique_pmu == old_pmu)
7522 cpuctx->unique_pmu = pmu;
7523 }
7524}
7525
7526static void free_pmu_context(struct pmu *pmu)
7527{
7528 struct pmu *i;
7529
7530 mutex_lock(&pmus_lock);
7531 /*
7532 * Like a real lame refcount.
7533 */
7534 list_for_each_entry(i, &pmus, entry) {
7535 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7536 update_pmu_context(i, pmu);
7537 goto out;
7538 }
7539 }
7540
7541 free_percpu(pmu->pmu_cpu_context);
7542out:
7543 mutex_unlock(&pmus_lock);
7544}
7545static struct idr pmu_idr;
7546
7547static ssize_t
7548type_show(struct device *dev, struct device_attribute *attr, char *page)
7549{
7550 struct pmu *pmu = dev_get_drvdata(dev);
7551
7552 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7553}
7554static DEVICE_ATTR_RO(type);
7555
7556static ssize_t
7557perf_event_mux_interval_ms_show(struct device *dev,
7558 struct device_attribute *attr,
7559 char *page)
7560{
7561 struct pmu *pmu = dev_get_drvdata(dev);
7562
7563 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7564}
7565
7566static DEFINE_MUTEX(mux_interval_mutex);
7567
7568static ssize_t
7569perf_event_mux_interval_ms_store(struct device *dev,
7570 struct device_attribute *attr,
7571 const char *buf, size_t count)
7572{
7573 struct pmu *pmu = dev_get_drvdata(dev);
7574 int timer, cpu, ret;
7575
7576 ret = kstrtoint(buf, 0, &timer);
7577 if (ret)
7578 return ret;
7579
7580 if (timer < 1)
7581 return -EINVAL;
7582
7583 /* same value, noting to do */
7584 if (timer == pmu->hrtimer_interval_ms)
7585 return count;
7586
7587 mutex_lock(&mux_interval_mutex);
7588 pmu->hrtimer_interval_ms = timer;
7589
7590 /* update all cpuctx for this PMU */
7591 get_online_cpus();
7592 for_each_online_cpu(cpu) {
7593 struct perf_cpu_context *cpuctx;
7594 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7595 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7596
7597 cpu_function_call(cpu,
7598 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7599 }
7600 put_online_cpus();
7601 mutex_unlock(&mux_interval_mutex);
7602
7603 return count;
7604}
7605static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7606
7607static struct attribute *pmu_dev_attrs[] = {
7608 &dev_attr_type.attr,
7609 &dev_attr_perf_event_mux_interval_ms.attr,
7610 NULL,
7611};
7612ATTRIBUTE_GROUPS(pmu_dev);
7613
7614static int pmu_bus_running;
7615static struct bus_type pmu_bus = {
7616 .name = "event_source",
7617 .dev_groups = pmu_dev_groups,
7618};
7619
7620static void pmu_dev_release(struct device *dev)
7621{
7622 kfree(dev);
7623}
7624
7625static int pmu_dev_alloc(struct pmu *pmu)
7626{
7627 int ret = -ENOMEM;
7628
7629 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7630 if (!pmu->dev)
7631 goto out;
7632
7633 pmu->dev->groups = pmu->attr_groups;
7634 device_initialize(pmu->dev);
7635 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7636 if (ret)
7637 goto free_dev;
7638
7639 dev_set_drvdata(pmu->dev, pmu);
7640 pmu->dev->bus = &pmu_bus;
7641 pmu->dev->release = pmu_dev_release;
7642 ret = device_add(pmu->dev);
7643 if (ret)
7644 goto free_dev;
7645
7646out:
7647 return ret;
7648
7649free_dev:
7650 put_device(pmu->dev);
7651 goto out;
7652}
7653
7654static struct lock_class_key cpuctx_mutex;
7655static struct lock_class_key cpuctx_lock;
7656
7657int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7658{
7659 int cpu, ret;
7660
7661 mutex_lock(&pmus_lock);
7662 ret = -ENOMEM;
7663 pmu->pmu_disable_count = alloc_percpu(int);
7664 if (!pmu->pmu_disable_count)
7665 goto unlock;
7666
7667 pmu->type = -1;
7668 if (!name)
7669 goto skip_type;
7670 pmu->name = name;
7671
7672 if (type < 0) {
7673 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7674 if (type < 0) {
7675 ret = type;
7676 goto free_pdc;
7677 }
7678 }
7679 pmu->type = type;
7680
7681 if (pmu_bus_running) {
7682 ret = pmu_dev_alloc(pmu);
7683 if (ret)
7684 goto free_idr;
7685 }
7686
7687skip_type:
7688 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7689 if (pmu->pmu_cpu_context)
7690 goto got_cpu_context;
7691
7692 ret = -ENOMEM;
7693 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7694 if (!pmu->pmu_cpu_context)
7695 goto free_dev;
7696
7697 for_each_possible_cpu(cpu) {
7698 struct perf_cpu_context *cpuctx;
7699
7700 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7701 __perf_event_init_context(&cpuctx->ctx);
7702 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7703 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7704 cpuctx->ctx.pmu = pmu;
7705
7706 __perf_mux_hrtimer_init(cpuctx, cpu);
7707
7708 cpuctx->unique_pmu = pmu;
7709 }
7710
7711got_cpu_context:
7712 if (!pmu->start_txn) {
7713 if (pmu->pmu_enable) {
7714 /*
7715 * If we have pmu_enable/pmu_disable calls, install
7716 * transaction stubs that use that to try and batch
7717 * hardware accesses.
7718 */
7719 pmu->start_txn = perf_pmu_start_txn;
7720 pmu->commit_txn = perf_pmu_commit_txn;
7721 pmu->cancel_txn = perf_pmu_cancel_txn;
7722 } else {
7723 pmu->start_txn = perf_pmu_nop_txn;
7724 pmu->commit_txn = perf_pmu_nop_int;
7725 pmu->cancel_txn = perf_pmu_nop_void;
7726 }
7727 }
7728
7729 if (!pmu->pmu_enable) {
7730 pmu->pmu_enable = perf_pmu_nop_void;
7731 pmu->pmu_disable = perf_pmu_nop_void;
7732 }
7733
7734 if (!pmu->event_idx)
7735 pmu->event_idx = perf_event_idx_default;
7736
7737 list_add_rcu(&pmu->entry, &pmus);
7738 atomic_set(&pmu->exclusive_cnt, 0);
7739 ret = 0;
7740unlock:
7741 mutex_unlock(&pmus_lock);
7742
7743 return ret;
7744
7745free_dev:
7746 device_del(pmu->dev);
7747 put_device(pmu->dev);
7748
7749free_idr:
7750 if (pmu->type >= PERF_TYPE_MAX)
7751 idr_remove(&pmu_idr, pmu->type);
7752
7753free_pdc:
7754 free_percpu(pmu->pmu_disable_count);
7755 goto unlock;
7756}
7757EXPORT_SYMBOL_GPL(perf_pmu_register);
7758
7759void perf_pmu_unregister(struct pmu *pmu)
7760{
7761 mutex_lock(&pmus_lock);
7762 list_del_rcu(&pmu->entry);
7763 mutex_unlock(&pmus_lock);
7764
7765 /*
7766 * We dereference the pmu list under both SRCU and regular RCU, so
7767 * synchronize against both of those.
7768 */
7769 synchronize_srcu(&pmus_srcu);
7770 synchronize_rcu();
7771
7772 free_percpu(pmu->pmu_disable_count);
7773 if (pmu->type >= PERF_TYPE_MAX)
7774 idr_remove(&pmu_idr, pmu->type);
7775 device_del(pmu->dev);
7776 put_device(pmu->dev);
7777 free_pmu_context(pmu);
7778}
7779EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7780
7781static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7782{
7783 struct perf_event_context *ctx = NULL;
7784 int ret;
7785
7786 if (!try_module_get(pmu->module))
7787 return -ENODEV;
7788
7789 if (event->group_leader != event) {
7790 /*
7791 * This ctx->mutex can nest when we're called through
7792 * inheritance. See the perf_event_ctx_lock_nested() comment.
7793 */
7794 ctx = perf_event_ctx_lock_nested(event->group_leader,
7795 SINGLE_DEPTH_NESTING);
7796 BUG_ON(!ctx);
7797 }
7798
7799 event->pmu = pmu;
7800 ret = pmu->event_init(event);
7801
7802 if (ctx)
7803 perf_event_ctx_unlock(event->group_leader, ctx);
7804
7805 if (ret)
7806 module_put(pmu->module);
7807
7808 return ret;
7809}
7810
7811static struct pmu *perf_init_event(struct perf_event *event)
7812{
7813 struct pmu *pmu = NULL;
7814 int idx;
7815 int ret;
7816
7817 idx = srcu_read_lock(&pmus_srcu);
7818
7819 rcu_read_lock();
7820 pmu = idr_find(&pmu_idr, event->attr.type);
7821 rcu_read_unlock();
7822 if (pmu) {
7823 ret = perf_try_init_event(pmu, event);
7824 if (ret)
7825 pmu = ERR_PTR(ret);
7826 goto unlock;
7827 }
7828
7829 list_for_each_entry_rcu(pmu, &pmus, entry) {
7830 ret = perf_try_init_event(pmu, event);
7831 if (!ret)
7832 goto unlock;
7833
7834 if (ret != -ENOENT) {
7835 pmu = ERR_PTR(ret);
7836 goto unlock;
7837 }
7838 }
7839 pmu = ERR_PTR(-ENOENT);
7840unlock:
7841 srcu_read_unlock(&pmus_srcu, idx);
7842
7843 return pmu;
7844}
7845
7846static void account_event_cpu(struct perf_event *event, int cpu)
7847{
7848 if (event->parent)
7849 return;
7850
7851 if (is_cgroup_event(event))
7852 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7853}
7854
7855/* Freq events need the tick to stay alive (see perf_event_task_tick). */
7856static void account_freq_event_nohz(void)
7857{
7858#ifdef CONFIG_NO_HZ_FULL
7859 /* Lock so we don't race with concurrent unaccount */
7860 spin_lock(&nr_freq_lock);
7861 if (atomic_inc_return(&nr_freq_events) == 1)
7862 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7863 spin_unlock(&nr_freq_lock);
7864#endif
7865}
7866
7867static void account_freq_event(void)
7868{
7869 if (tick_nohz_full_enabled())
7870 account_freq_event_nohz();
7871 else
7872 atomic_inc(&nr_freq_events);
7873}
7874
7875
7876static void account_event(struct perf_event *event)
7877{
7878 bool inc = false;
7879
7880 if (event->parent)
7881 return;
7882
7883 if (event->attach_state & PERF_ATTACH_TASK)
7884 inc = true;
7885 if (event->attr.mmap || event->attr.mmap_data)
7886 atomic_inc(&nr_mmap_events);
7887 if (event->attr.comm)
7888 atomic_inc(&nr_comm_events);
7889 if (event->attr.task)
7890 atomic_inc(&nr_task_events);
7891 if (event->attr.freq)
7892 account_freq_event();
7893 if (event->attr.context_switch) {
7894 atomic_inc(&nr_switch_events);
7895 inc = true;
7896 }
7897 if (has_branch_stack(event))
7898 inc = true;
7899 if (is_cgroup_event(event))
7900 inc = true;
7901
7902 if (inc) {
7903 if (atomic_inc_not_zero(&perf_sched_count))
7904 goto enabled;
7905
7906 mutex_lock(&perf_sched_mutex);
7907 if (!atomic_read(&perf_sched_count)) {
7908 static_branch_enable(&perf_sched_events);
7909 /*
7910 * Guarantee that all CPUs observe they key change and
7911 * call the perf scheduling hooks before proceeding to
7912 * install events that need them.
7913 */
7914 synchronize_sched();
7915 }
7916 /*
7917 * Now that we have waited for the sync_sched(), allow further
7918 * increments to by-pass the mutex.
7919 */
7920 atomic_inc(&perf_sched_count);
7921 mutex_unlock(&perf_sched_mutex);
7922 }
7923enabled:
7924
7925 account_event_cpu(event, event->cpu);
7926}
7927
7928/*
7929 * Allocate and initialize a event structure
7930 */
7931static struct perf_event *
7932perf_event_alloc(struct perf_event_attr *attr, int cpu,
7933 struct task_struct *task,
7934 struct perf_event *group_leader,
7935 struct perf_event *parent_event,
7936 perf_overflow_handler_t overflow_handler,
7937 void *context, int cgroup_fd)
7938{
7939 struct pmu *pmu;
7940 struct perf_event *event;
7941 struct hw_perf_event *hwc;
7942 long err = -EINVAL;
7943
7944 if ((unsigned)cpu >= nr_cpu_ids) {
7945 if (!task || cpu != -1)
7946 return ERR_PTR(-EINVAL);
7947 }
7948
7949 event = kzalloc(sizeof(*event), GFP_KERNEL);
7950 if (!event)
7951 return ERR_PTR(-ENOMEM);
7952
7953 /*
7954 * Single events are their own group leaders, with an
7955 * empty sibling list:
7956 */
7957 if (!group_leader)
7958 group_leader = event;
7959
7960 mutex_init(&event->child_mutex);
7961 INIT_LIST_HEAD(&event->child_list);
7962
7963 INIT_LIST_HEAD(&event->group_entry);
7964 INIT_LIST_HEAD(&event->event_entry);
7965 INIT_LIST_HEAD(&event->sibling_list);
7966 INIT_LIST_HEAD(&event->rb_entry);
7967 INIT_LIST_HEAD(&event->active_entry);
7968 INIT_HLIST_NODE(&event->hlist_entry);
7969
7970
7971 init_waitqueue_head(&event->waitq);
7972 init_irq_work(&event->pending, perf_pending_event);
7973
7974 mutex_init(&event->mmap_mutex);
7975
7976 atomic_long_set(&event->refcount, 1);
7977 event->cpu = cpu;
7978 event->attr = *attr;
7979 event->group_leader = group_leader;
7980 event->pmu = NULL;
7981 event->oncpu = -1;
7982
7983 event->parent = parent_event;
7984
7985 event->ns = get_pid_ns(task_active_pid_ns(current));
7986 event->id = atomic64_inc_return(&perf_event_id);
7987
7988 event->state = PERF_EVENT_STATE_INACTIVE;
7989
7990 if (task) {
7991 event->attach_state = PERF_ATTACH_TASK;
7992 /*
7993 * XXX pmu::event_init needs to know what task to account to
7994 * and we cannot use the ctx information because we need the
7995 * pmu before we get a ctx.
7996 */
7997 event->hw.target = task;
7998 }
7999
8000 event->clock = &local_clock;
8001 if (parent_event)
8002 event->clock = parent_event->clock;
8003
8004 if (!overflow_handler && parent_event) {
8005 overflow_handler = parent_event->overflow_handler;
8006 context = parent_event->overflow_handler_context;
8007 }
8008
8009 event->overflow_handler = overflow_handler;
8010 event->overflow_handler_context = context;
8011
8012 perf_event__state_init(event);
8013
8014 pmu = NULL;
8015
8016 hwc = &event->hw;
8017 hwc->sample_period = attr->sample_period;
8018 if (attr->freq && attr->sample_freq)
8019 hwc->sample_period = 1;
8020 hwc->last_period = hwc->sample_period;
8021
8022 local64_set(&hwc->period_left, hwc->sample_period);
8023
8024 /*
8025 * we currently do not support PERF_FORMAT_GROUP on inherited events
8026 */
8027 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8028 goto err_ns;
8029
8030 if (!has_branch_stack(event))
8031 event->attr.branch_sample_type = 0;
8032
8033 if (cgroup_fd != -1) {
8034 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8035 if (err)
8036 goto err_ns;
8037 }
8038
8039 pmu = perf_init_event(event);
8040 if (!pmu)
8041 goto err_ns;
8042 else if (IS_ERR(pmu)) {
8043 err = PTR_ERR(pmu);
8044 goto err_ns;
8045 }
8046
8047 err = exclusive_event_init(event);
8048 if (err)
8049 goto err_pmu;
8050
8051 if (!event->parent) {
8052 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8053 err = get_callchain_buffers();
8054 if (err)
8055 goto err_per_task;
8056 }
8057 }
8058
8059 /* symmetric to unaccount_event() in _free_event() */
8060 account_event(event);
8061
8062 return event;
8063
8064err_per_task:
8065 exclusive_event_destroy(event);
8066
8067err_pmu:
8068 if (event->destroy)
8069 event->destroy(event);
8070 module_put(pmu->module);
8071err_ns:
8072 if (is_cgroup_event(event))
8073 perf_detach_cgroup(event);
8074 if (event->ns)
8075 put_pid_ns(event->ns);
8076 kfree(event);
8077
8078 return ERR_PTR(err);
8079}
8080
8081static int perf_copy_attr(struct perf_event_attr __user *uattr,
8082 struct perf_event_attr *attr)
8083{
8084 u32 size;
8085 int ret;
8086
8087 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8088 return -EFAULT;
8089
8090 /*
8091 * zero the full structure, so that a short copy will be nice.
8092 */
8093 memset(attr, 0, sizeof(*attr));
8094
8095 ret = get_user(size, &uattr->size);
8096 if (ret)
8097 return ret;
8098
8099 if (size > PAGE_SIZE) /* silly large */
8100 goto err_size;
8101
8102 if (!size) /* abi compat */
8103 size = PERF_ATTR_SIZE_VER0;
8104
8105 if (size < PERF_ATTR_SIZE_VER0)
8106 goto err_size;
8107
8108 /*
8109 * If we're handed a bigger struct than we know of,
8110 * ensure all the unknown bits are 0 - i.e. new
8111 * user-space does not rely on any kernel feature
8112 * extensions we dont know about yet.
8113 */
8114 if (size > sizeof(*attr)) {
8115 unsigned char __user *addr;
8116 unsigned char __user *end;
8117 unsigned char val;
8118
8119 addr = (void __user *)uattr + sizeof(*attr);
8120 end = (void __user *)uattr + size;
8121
8122 for (; addr < end; addr++) {
8123 ret = get_user(val, addr);
8124 if (ret)
8125 return ret;
8126 if (val)
8127 goto err_size;
8128 }
8129 size = sizeof(*attr);
8130 }
8131
8132 ret = copy_from_user(attr, uattr, size);
8133 if (ret)
8134 return -EFAULT;
8135
8136 if (attr->__reserved_1)
8137 return -EINVAL;
8138
8139 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8140 return -EINVAL;
8141
8142 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8143 return -EINVAL;
8144
8145 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8146 u64 mask = attr->branch_sample_type;
8147
8148 /* only using defined bits */
8149 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8150 return -EINVAL;
8151
8152 /* at least one branch bit must be set */
8153 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8154 return -EINVAL;
8155
8156 /* propagate priv level, when not set for branch */
8157 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8158
8159 /* exclude_kernel checked on syscall entry */
8160 if (!attr->exclude_kernel)
8161 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8162
8163 if (!attr->exclude_user)
8164 mask |= PERF_SAMPLE_BRANCH_USER;
8165
8166 if (!attr->exclude_hv)
8167 mask |= PERF_SAMPLE_BRANCH_HV;
8168 /*
8169 * adjust user setting (for HW filter setup)
8170 */
8171 attr->branch_sample_type = mask;
8172 }
8173 /* privileged levels capture (kernel, hv): check permissions */
8174 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8175 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8176 return -EACCES;
8177 }
8178
8179 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8180 ret = perf_reg_validate(attr->sample_regs_user);
8181 if (ret)
8182 return ret;
8183 }
8184
8185 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8186 if (!arch_perf_have_user_stack_dump())
8187 return -ENOSYS;
8188
8189 /*
8190 * We have __u32 type for the size, but so far
8191 * we can only use __u16 as maximum due to the
8192 * __u16 sample size limit.
8193 */
8194 if (attr->sample_stack_user >= USHRT_MAX)
8195 ret = -EINVAL;
8196 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8197 ret = -EINVAL;
8198 }
8199
8200 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8201 ret = perf_reg_validate(attr->sample_regs_intr);
8202out:
8203 return ret;
8204
8205err_size:
8206 put_user(sizeof(*attr), &uattr->size);
8207 ret = -E2BIG;
8208 goto out;
8209}
8210
8211static int
8212perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8213{
8214 struct ring_buffer *rb = NULL;
8215 int ret = -EINVAL;
8216
8217 if (!output_event)
8218 goto set;
8219
8220 /* don't allow circular references */
8221 if (event == output_event)
8222 goto out;
8223
8224 /*
8225 * Don't allow cross-cpu buffers
8226 */
8227 if (output_event->cpu != event->cpu)
8228 goto out;
8229
8230 /*
8231 * If its not a per-cpu rb, it must be the same task.
8232 */
8233 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8234 goto out;
8235
8236 /*
8237 * Mixing clocks in the same buffer is trouble you don't need.
8238 */
8239 if (output_event->clock != event->clock)
8240 goto out;
8241
8242 /*
8243 * If both events generate aux data, they must be on the same PMU
8244 */
8245 if (has_aux(event) && has_aux(output_event) &&
8246 event->pmu != output_event->pmu)
8247 goto out;
8248
8249set:
8250 mutex_lock(&event->mmap_mutex);
8251 /* Can't redirect output if we've got an active mmap() */
8252 if (atomic_read(&event->mmap_count))
8253 goto unlock;
8254
8255 if (output_event) {
8256 /* get the rb we want to redirect to */
8257 rb = ring_buffer_get(output_event);
8258 if (!rb)
8259 goto unlock;
8260 }
8261
8262 ring_buffer_attach(event, rb);
8263
8264 ret = 0;
8265unlock:
8266 mutex_unlock(&event->mmap_mutex);
8267
8268out:
8269 return ret;
8270}
8271
8272static void mutex_lock_double(struct mutex *a, struct mutex *b)
8273{
8274 if (b < a)
8275 swap(a, b);
8276
8277 mutex_lock(a);
8278 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8279}
8280
8281static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8282{
8283 bool nmi_safe = false;
8284
8285 switch (clk_id) {
8286 case CLOCK_MONOTONIC:
8287 event->clock = &ktime_get_mono_fast_ns;
8288 nmi_safe = true;
8289 break;
8290
8291 case CLOCK_MONOTONIC_RAW:
8292 event->clock = &ktime_get_raw_fast_ns;
8293 nmi_safe = true;
8294 break;
8295
8296 case CLOCK_REALTIME:
8297 event->clock = &ktime_get_real_ns;
8298 break;
8299
8300 case CLOCK_BOOTTIME:
8301 event->clock = &ktime_get_boot_ns;
8302 break;
8303
8304 case CLOCK_TAI:
8305 event->clock = &ktime_get_tai_ns;
8306 break;
8307
8308 default:
8309 return -EINVAL;
8310 }
8311
8312 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8313 return -EINVAL;
8314
8315 return 0;
8316}
8317
8318/**
8319 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8320 *
8321 * @attr_uptr: event_id type attributes for monitoring/sampling
8322 * @pid: target pid
8323 * @cpu: target cpu
8324 * @group_fd: group leader event fd
8325 */
8326SYSCALL_DEFINE5(perf_event_open,
8327 struct perf_event_attr __user *, attr_uptr,
8328 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8329{
8330 struct perf_event *group_leader = NULL, *output_event = NULL;
8331 struct perf_event *event, *sibling;
8332 struct perf_event_attr attr;
8333 struct perf_event_context *ctx, *uninitialized_var(gctx);
8334 struct file *event_file = NULL;
8335 struct fd group = {NULL, 0};
8336 struct task_struct *task = NULL;
8337 struct pmu *pmu;
8338 int event_fd;
8339 int move_group = 0;
8340 int err;
8341 int f_flags = O_RDWR;
8342 int cgroup_fd = -1;
8343
8344 /* for future expandability... */
8345 if (flags & ~PERF_FLAG_ALL)
8346 return -EINVAL;
8347
8348 err = perf_copy_attr(attr_uptr, &attr);
8349 if (err)
8350 return err;
8351
8352 if (!attr.exclude_kernel) {
8353 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8354 return -EACCES;
8355 }
8356
8357 if (attr.freq) {
8358 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8359 return -EINVAL;
8360 } else {
8361 if (attr.sample_period & (1ULL << 63))
8362 return -EINVAL;
8363 }
8364
8365 /*
8366 * In cgroup mode, the pid argument is used to pass the fd
8367 * opened to the cgroup directory in cgroupfs. The cpu argument
8368 * designates the cpu on which to monitor threads from that
8369 * cgroup.
8370 */
8371 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8372 return -EINVAL;
8373
8374 if (flags & PERF_FLAG_FD_CLOEXEC)
8375 f_flags |= O_CLOEXEC;
8376
8377 event_fd = get_unused_fd_flags(f_flags);
8378 if (event_fd < 0)
8379 return event_fd;
8380
8381 if (group_fd != -1) {
8382 err = perf_fget_light(group_fd, &group);
8383 if (err)
8384 goto err_fd;
8385 group_leader = group.file->private_data;
8386 if (flags & PERF_FLAG_FD_OUTPUT)
8387 output_event = group_leader;
8388 if (flags & PERF_FLAG_FD_NO_GROUP)
8389 group_leader = NULL;
8390 }
8391
8392 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8393 task = find_lively_task_by_vpid(pid);
8394 if (IS_ERR(task)) {
8395 err = PTR_ERR(task);
8396 goto err_group_fd;
8397 }
8398 }
8399
8400 if (task && group_leader &&
8401 group_leader->attr.inherit != attr.inherit) {
8402 err = -EINVAL;
8403 goto err_task;
8404 }
8405
8406 get_online_cpus();
8407
8408 if (task) {
8409 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
8410 if (err)
8411 goto err_cpus;
8412
8413 /*
8414 * Reuse ptrace permission checks for now.
8415 *
8416 * We must hold cred_guard_mutex across this and any potential
8417 * perf_install_in_context() call for this new event to
8418 * serialize against exec() altering our credentials (and the
8419 * perf_event_exit_task() that could imply).
8420 */
8421 err = -EACCES;
8422 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
8423 goto err_cred;
8424 }
8425
8426 if (flags & PERF_FLAG_PID_CGROUP)
8427 cgroup_fd = pid;
8428
8429 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8430 NULL, NULL, cgroup_fd);
8431 if (IS_ERR(event)) {
8432 err = PTR_ERR(event);
8433 goto err_cred;
8434 }
8435
8436 if (is_sampling_event(event)) {
8437 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8438 err = -ENOTSUPP;
8439 goto err_alloc;
8440 }
8441 }
8442
8443 /*
8444 * Special case software events and allow them to be part of
8445 * any hardware group.
8446 */
8447 pmu = event->pmu;
8448
8449 if (attr.use_clockid) {
8450 err = perf_event_set_clock(event, attr.clockid);
8451 if (err)
8452 goto err_alloc;
8453 }
8454
8455 if (group_leader &&
8456 (is_software_event(event) != is_software_event(group_leader))) {
8457 if (is_software_event(event)) {
8458 /*
8459 * If event and group_leader are not both a software
8460 * event, and event is, then group leader is not.
8461 *
8462 * Allow the addition of software events to !software
8463 * groups, this is safe because software events never
8464 * fail to schedule.
8465 */
8466 pmu = group_leader->pmu;
8467 } else if (is_software_event(group_leader) &&
8468 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8469 /*
8470 * In case the group is a pure software group, and we
8471 * try to add a hardware event, move the whole group to
8472 * the hardware context.
8473 */
8474 move_group = 1;
8475 }
8476 }
8477
8478 /*
8479 * Get the target context (task or percpu):
8480 */
8481 ctx = find_get_context(pmu, task, event);
8482 if (IS_ERR(ctx)) {
8483 err = PTR_ERR(ctx);
8484 goto err_alloc;
8485 }
8486
8487 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8488 err = -EBUSY;
8489 goto err_context;
8490 }
8491
8492 /*
8493 * Look up the group leader (we will attach this event to it):
8494 */
8495 if (group_leader) {
8496 err = -EINVAL;
8497
8498 /*
8499 * Do not allow a recursive hierarchy (this new sibling
8500 * becoming part of another group-sibling):
8501 */
8502 if (group_leader->group_leader != group_leader)
8503 goto err_context;
8504
8505 /* All events in a group should have the same clock */
8506 if (group_leader->clock != event->clock)
8507 goto err_context;
8508
8509 /*
8510 * Do not allow to attach to a group in a different
8511 * task or CPU context:
8512 */
8513 if (move_group) {
8514 /*
8515 * Make sure we're both on the same task, or both
8516 * per-cpu events.
8517 */
8518 if (group_leader->ctx->task != ctx->task)
8519 goto err_context;
8520
8521 /*
8522 * Make sure we're both events for the same CPU;
8523 * grouping events for different CPUs is broken; since
8524 * you can never concurrently schedule them anyhow.
8525 */
8526 if (group_leader->cpu != event->cpu)
8527 goto err_context;
8528 } else {
8529 if (group_leader->ctx != ctx)
8530 goto err_context;
8531 }
8532
8533 /*
8534 * Only a group leader can be exclusive or pinned
8535 */
8536 if (attr.exclusive || attr.pinned)
8537 goto err_context;
8538 }
8539
8540 if (output_event) {
8541 err = perf_event_set_output(event, output_event);
8542 if (err)
8543 goto err_context;
8544 }
8545
8546 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8547 f_flags);
8548 if (IS_ERR(event_file)) {
8549 err = PTR_ERR(event_file);
8550 event_file = NULL;
8551 goto err_context;
8552 }
8553
8554 if (move_group) {
8555 gctx = group_leader->ctx;
8556 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8557 if (gctx->task == TASK_TOMBSTONE) {
8558 err = -ESRCH;
8559 goto err_locked;
8560 }
8561 } else {
8562 mutex_lock(&ctx->mutex);
8563 }
8564
8565 if (ctx->task == TASK_TOMBSTONE) {
8566 err = -ESRCH;
8567 goto err_locked;
8568 }
8569
8570 if (!perf_event_validate_size(event)) {
8571 err = -E2BIG;
8572 goto err_locked;
8573 }
8574
8575 /*
8576 * Must be under the same ctx::mutex as perf_install_in_context(),
8577 * because we need to serialize with concurrent event creation.
8578 */
8579 if (!exclusive_event_installable(event, ctx)) {
8580 /* exclusive and group stuff are assumed mutually exclusive */
8581 WARN_ON_ONCE(move_group);
8582
8583 err = -EBUSY;
8584 goto err_locked;
8585 }
8586
8587 WARN_ON_ONCE(ctx->parent_ctx);
8588
8589 /*
8590 * This is the point on no return; we cannot fail hereafter. This is
8591 * where we start modifying current state.
8592 */
8593
8594 if (move_group) {
8595 /*
8596 * See perf_event_ctx_lock() for comments on the details
8597 * of swizzling perf_event::ctx.
8598 */
8599 perf_remove_from_context(group_leader, 0);
8600
8601 list_for_each_entry(sibling, &group_leader->sibling_list,
8602 group_entry) {
8603 perf_remove_from_context(sibling, 0);
8604 put_ctx(gctx);
8605 }
8606
8607 /*
8608 * Wait for everybody to stop referencing the events through
8609 * the old lists, before installing it on new lists.
8610 */
8611 synchronize_rcu();
8612
8613 /*
8614 * Install the group siblings before the group leader.
8615 *
8616 * Because a group leader will try and install the entire group
8617 * (through the sibling list, which is still in-tact), we can
8618 * end up with siblings installed in the wrong context.
8619 *
8620 * By installing siblings first we NO-OP because they're not
8621 * reachable through the group lists.
8622 */
8623 list_for_each_entry(sibling, &group_leader->sibling_list,
8624 group_entry) {
8625 perf_event__state_init(sibling);
8626 perf_install_in_context(ctx, sibling, sibling->cpu);
8627 get_ctx(ctx);
8628 }
8629
8630 /*
8631 * Removing from the context ends up with disabled
8632 * event. What we want here is event in the initial
8633 * startup state, ready to be add into new context.
8634 */
8635 perf_event__state_init(group_leader);
8636 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8637 get_ctx(ctx);
8638
8639 /*
8640 * Now that all events are installed in @ctx, nothing
8641 * references @gctx anymore, so drop the last reference we have
8642 * on it.
8643 */
8644 put_ctx(gctx);
8645 }
8646
8647 /*
8648 * Precalculate sample_data sizes; do while holding ctx::mutex such
8649 * that we're serialized against further additions and before
8650 * perf_install_in_context() which is the point the event is active and
8651 * can use these values.
8652 */
8653 perf_event__header_size(event);
8654 perf_event__id_header_size(event);
8655
8656 event->owner = current;
8657
8658 perf_install_in_context(ctx, event, event->cpu);
8659 perf_unpin_context(ctx);
8660
8661 if (move_group)
8662 mutex_unlock(&gctx->mutex);
8663 mutex_unlock(&ctx->mutex);
8664
8665 if (task) {
8666 mutex_unlock(&task->signal->cred_guard_mutex);
8667 put_task_struct(task);
8668 }
8669
8670 put_online_cpus();
8671
8672 mutex_lock(¤t->perf_event_mutex);
8673 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
8674 mutex_unlock(¤t->perf_event_mutex);
8675
8676 /*
8677 * Drop the reference on the group_event after placing the
8678 * new event on the sibling_list. This ensures destruction
8679 * of the group leader will find the pointer to itself in
8680 * perf_group_detach().
8681 */
8682 fdput(group);
8683 fd_install(event_fd, event_file);
8684 return event_fd;
8685
8686err_locked:
8687 if (move_group)
8688 mutex_unlock(&gctx->mutex);
8689 mutex_unlock(&ctx->mutex);
8690/* err_file: */
8691 fput(event_file);
8692err_context:
8693 perf_unpin_context(ctx);
8694 put_ctx(ctx);
8695err_alloc:
8696 /*
8697 * If event_file is set, the fput() above will have called ->release()
8698 * and that will take care of freeing the event.
8699 */
8700 if (!event_file)
8701 free_event(event);
8702err_cred:
8703 if (task)
8704 mutex_unlock(&task->signal->cred_guard_mutex);
8705err_cpus:
8706 put_online_cpus();
8707err_task:
8708 if (task)
8709 put_task_struct(task);
8710err_group_fd:
8711 fdput(group);
8712err_fd:
8713 put_unused_fd(event_fd);
8714 return err;
8715}
8716
8717/**
8718 * perf_event_create_kernel_counter
8719 *
8720 * @attr: attributes of the counter to create
8721 * @cpu: cpu in which the counter is bound
8722 * @task: task to profile (NULL for percpu)
8723 */
8724struct perf_event *
8725perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8726 struct task_struct *task,
8727 perf_overflow_handler_t overflow_handler,
8728 void *context)
8729{
8730 struct perf_event_context *ctx;
8731 struct perf_event *event;
8732 int err;
8733
8734 /*
8735 * Get the target context (task or percpu):
8736 */
8737
8738 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8739 overflow_handler, context, -1);
8740 if (IS_ERR(event)) {
8741 err = PTR_ERR(event);
8742 goto err;
8743 }
8744
8745 /* Mark owner so we could distinguish it from user events. */
8746 event->owner = TASK_TOMBSTONE;
8747
8748 ctx = find_get_context(event->pmu, task, event);
8749 if (IS_ERR(ctx)) {
8750 err = PTR_ERR(ctx);
8751 goto err_free;
8752 }
8753
8754 WARN_ON_ONCE(ctx->parent_ctx);
8755 mutex_lock(&ctx->mutex);
8756 if (ctx->task == TASK_TOMBSTONE) {
8757 err = -ESRCH;
8758 goto err_unlock;
8759 }
8760
8761 if (!exclusive_event_installable(event, ctx)) {
8762 err = -EBUSY;
8763 goto err_unlock;
8764 }
8765
8766 perf_install_in_context(ctx, event, cpu);
8767 perf_unpin_context(ctx);
8768 mutex_unlock(&ctx->mutex);
8769
8770 return event;
8771
8772err_unlock:
8773 mutex_unlock(&ctx->mutex);
8774 perf_unpin_context(ctx);
8775 put_ctx(ctx);
8776err_free:
8777 free_event(event);
8778err:
8779 return ERR_PTR(err);
8780}
8781EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8782
8783void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8784{
8785 struct perf_event_context *src_ctx;
8786 struct perf_event_context *dst_ctx;
8787 struct perf_event *event, *tmp;
8788 LIST_HEAD(events);
8789
8790 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8791 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8792
8793 /*
8794 * See perf_event_ctx_lock() for comments on the details
8795 * of swizzling perf_event::ctx.
8796 */
8797 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8798 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8799 event_entry) {
8800 perf_remove_from_context(event, 0);
8801 unaccount_event_cpu(event, src_cpu);
8802 put_ctx(src_ctx);
8803 list_add(&event->migrate_entry, &events);
8804 }
8805
8806 /*
8807 * Wait for the events to quiesce before re-instating them.
8808 */
8809 synchronize_rcu();
8810
8811 /*
8812 * Re-instate events in 2 passes.
8813 *
8814 * Skip over group leaders and only install siblings on this first
8815 * pass, siblings will not get enabled without a leader, however a
8816 * leader will enable its siblings, even if those are still on the old
8817 * context.
8818 */
8819 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8820 if (event->group_leader == event)
8821 continue;
8822
8823 list_del(&event->migrate_entry);
8824 if (event->state >= PERF_EVENT_STATE_OFF)
8825 event->state = PERF_EVENT_STATE_INACTIVE;
8826 account_event_cpu(event, dst_cpu);
8827 perf_install_in_context(dst_ctx, event, dst_cpu);
8828 get_ctx(dst_ctx);
8829 }
8830
8831 /*
8832 * Once all the siblings are setup properly, install the group leaders
8833 * to make it go.
8834 */
8835 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8836 list_del(&event->migrate_entry);
8837 if (event->state >= PERF_EVENT_STATE_OFF)
8838 event->state = PERF_EVENT_STATE_INACTIVE;
8839 account_event_cpu(event, dst_cpu);
8840 perf_install_in_context(dst_ctx, event, dst_cpu);
8841 get_ctx(dst_ctx);
8842 }
8843 mutex_unlock(&dst_ctx->mutex);
8844 mutex_unlock(&src_ctx->mutex);
8845}
8846EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8847
8848static void sync_child_event(struct perf_event *child_event,
8849 struct task_struct *child)
8850{
8851 struct perf_event *parent_event = child_event->parent;
8852 u64 child_val;
8853
8854 if (child_event->attr.inherit_stat)
8855 perf_event_read_event(child_event, child);
8856
8857 child_val = perf_event_count(child_event);
8858
8859 /*
8860 * Add back the child's count to the parent's count:
8861 */
8862 atomic64_add(child_val, &parent_event->child_count);
8863 atomic64_add(child_event->total_time_enabled,
8864 &parent_event->child_total_time_enabled);
8865 atomic64_add(child_event->total_time_running,
8866 &parent_event->child_total_time_running);
8867}
8868
8869static void
8870perf_event_exit_event(struct perf_event *child_event,
8871 struct perf_event_context *child_ctx,
8872 struct task_struct *child)
8873{
8874 struct perf_event *parent_event = child_event->parent;
8875
8876 /*
8877 * Do not destroy the 'original' grouping; because of the context
8878 * switch optimization the original events could've ended up in a
8879 * random child task.
8880 *
8881 * If we were to destroy the original group, all group related
8882 * operations would cease to function properly after this random
8883 * child dies.
8884 *
8885 * Do destroy all inherited groups, we don't care about those
8886 * and being thorough is better.
8887 */
8888 raw_spin_lock_irq(&child_ctx->lock);
8889 WARN_ON_ONCE(child_ctx->is_active);
8890
8891 if (parent_event)
8892 perf_group_detach(child_event);
8893 list_del_event(child_event, child_ctx);
8894 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8895 raw_spin_unlock_irq(&child_ctx->lock);
8896
8897 /*
8898 * Parent events are governed by their filedesc, retain them.
8899 */
8900 if (!parent_event) {
8901 perf_event_wakeup(child_event);
8902 return;
8903 }
8904 /*
8905 * Child events can be cleaned up.
8906 */
8907
8908 sync_child_event(child_event, child);
8909
8910 /*
8911 * Remove this event from the parent's list
8912 */
8913 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8914 mutex_lock(&parent_event->child_mutex);
8915 list_del_init(&child_event->child_list);
8916 mutex_unlock(&parent_event->child_mutex);
8917
8918 /*
8919 * Kick perf_poll() for is_event_hup().
8920 */
8921 perf_event_wakeup(parent_event);
8922 free_event(child_event);
8923 put_event(parent_event);
8924}
8925
8926static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8927{
8928 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8929 struct perf_event *child_event, *next;
8930
8931 WARN_ON_ONCE(child != current);
8932
8933 child_ctx = perf_pin_task_context(child, ctxn);
8934 if (!child_ctx)
8935 return;
8936
8937 /*
8938 * In order to reduce the amount of tricky in ctx tear-down, we hold
8939 * ctx::mutex over the entire thing. This serializes against almost
8940 * everything that wants to access the ctx.
8941 *
8942 * The exception is sys_perf_event_open() /
8943 * perf_event_create_kernel_count() which does find_get_context()
8944 * without ctx::mutex (it cannot because of the move_group double mutex
8945 * lock thing). See the comments in perf_install_in_context().
8946 */
8947 mutex_lock(&child_ctx->mutex);
8948
8949 /*
8950 * In a single ctx::lock section, de-schedule the events and detach the
8951 * context from the task such that we cannot ever get it scheduled back
8952 * in.
8953 */
8954 raw_spin_lock_irq(&child_ctx->lock);
8955 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8956
8957 /*
8958 * Now that the context is inactive, destroy the task <-> ctx relation
8959 * and mark the context dead.
8960 */
8961 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8962 put_ctx(child_ctx); /* cannot be last */
8963 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8964 put_task_struct(current); /* cannot be last */
8965
8966 clone_ctx = unclone_ctx(child_ctx);
8967 raw_spin_unlock_irq(&child_ctx->lock);
8968
8969 if (clone_ctx)
8970 put_ctx(clone_ctx);
8971
8972 /*
8973 * Report the task dead after unscheduling the events so that we
8974 * won't get any samples after PERF_RECORD_EXIT. We can however still
8975 * get a few PERF_RECORD_READ events.
8976 */
8977 perf_event_task(child, child_ctx, 0);
8978
8979 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8980 perf_event_exit_event(child_event, child_ctx, child);
8981
8982 mutex_unlock(&child_ctx->mutex);
8983
8984 put_ctx(child_ctx);
8985}
8986
8987/*
8988 * When a child task exits, feed back event values to parent events.
8989 *
8990 * Can be called with cred_guard_mutex held when called from
8991 * install_exec_creds().
8992 */
8993void perf_event_exit_task(struct task_struct *child)
8994{
8995 struct perf_event *event, *tmp;
8996 int ctxn;
8997
8998 mutex_lock(&child->perf_event_mutex);
8999 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9000 owner_entry) {
9001 list_del_init(&event->owner_entry);
9002
9003 /*
9004 * Ensure the list deletion is visible before we clear
9005 * the owner, closes a race against perf_release() where
9006 * we need to serialize on the owner->perf_event_mutex.
9007 */
9008 smp_store_release(&event->owner, NULL);
9009 }
9010 mutex_unlock(&child->perf_event_mutex);
9011
9012 for_each_task_context_nr(ctxn)
9013 perf_event_exit_task_context(child, ctxn);
9014
9015 /*
9016 * The perf_event_exit_task_context calls perf_event_task
9017 * with child's task_ctx, which generates EXIT events for
9018 * child contexts and sets child->perf_event_ctxp[] to NULL.
9019 * At this point we need to send EXIT events to cpu contexts.
9020 */
9021 perf_event_task(child, NULL, 0);
9022}
9023
9024static void perf_free_event(struct perf_event *event,
9025 struct perf_event_context *ctx)
9026{
9027 struct perf_event *parent = event->parent;
9028
9029 if (WARN_ON_ONCE(!parent))
9030 return;
9031
9032 mutex_lock(&parent->child_mutex);
9033 list_del_init(&event->child_list);
9034 mutex_unlock(&parent->child_mutex);
9035
9036 put_event(parent);
9037
9038 raw_spin_lock_irq(&ctx->lock);
9039 perf_group_detach(event);
9040 list_del_event(event, ctx);
9041 raw_spin_unlock_irq(&ctx->lock);
9042 free_event(event);
9043}
9044
9045/*
9046 * Free an unexposed, unused context as created by inheritance by
9047 * perf_event_init_task below, used by fork() in case of fail.
9048 *
9049 * Not all locks are strictly required, but take them anyway to be nice and
9050 * help out with the lockdep assertions.
9051 */
9052void perf_event_free_task(struct task_struct *task)
9053{
9054 struct perf_event_context *ctx;
9055 struct perf_event *event, *tmp;
9056 int ctxn;
9057
9058 for_each_task_context_nr(ctxn) {
9059 ctx = task->perf_event_ctxp[ctxn];
9060 if (!ctx)
9061 continue;
9062
9063 mutex_lock(&ctx->mutex);
9064again:
9065 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9066 group_entry)
9067 perf_free_event(event, ctx);
9068
9069 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9070 group_entry)
9071 perf_free_event(event, ctx);
9072
9073 if (!list_empty(&ctx->pinned_groups) ||
9074 !list_empty(&ctx->flexible_groups))
9075 goto again;
9076
9077 mutex_unlock(&ctx->mutex);
9078
9079 put_ctx(ctx);
9080 }
9081}
9082
9083void perf_event_delayed_put(struct task_struct *task)
9084{
9085 int ctxn;
9086
9087 for_each_task_context_nr(ctxn)
9088 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9089}
9090
9091struct file *perf_event_get(unsigned int fd)
9092{
9093 struct file *file;
9094
9095 file = fget_raw(fd);
9096 if (!file)
9097 return ERR_PTR(-EBADF);
9098
9099 if (file->f_op != &perf_fops) {
9100 fput(file);
9101 return ERR_PTR(-EBADF);
9102 }
9103
9104 return file;
9105}
9106
9107const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9108{
9109 if (!event)
9110 return ERR_PTR(-EINVAL);
9111
9112 return &event->attr;
9113}
9114
9115/*
9116 * inherit a event from parent task to child task:
9117 */
9118static struct perf_event *
9119inherit_event(struct perf_event *parent_event,
9120 struct task_struct *parent,
9121 struct perf_event_context *parent_ctx,
9122 struct task_struct *child,
9123 struct perf_event *group_leader,
9124 struct perf_event_context *child_ctx)
9125{
9126 enum perf_event_active_state parent_state = parent_event->state;
9127 struct perf_event *child_event;
9128 unsigned long flags;
9129
9130 /*
9131 * Instead of creating recursive hierarchies of events,
9132 * we link inherited events back to the original parent,
9133 * which has a filp for sure, which we use as the reference
9134 * count:
9135 */
9136 if (parent_event->parent)
9137 parent_event = parent_event->parent;
9138
9139 child_event = perf_event_alloc(&parent_event->attr,
9140 parent_event->cpu,
9141 child,
9142 group_leader, parent_event,
9143 NULL, NULL, -1);
9144 if (IS_ERR(child_event))
9145 return child_event;
9146
9147 /*
9148 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9149 * must be under the same lock in order to serialize against
9150 * perf_event_release_kernel(), such that either we must observe
9151 * is_orphaned_event() or they will observe us on the child_list.
9152 */
9153 mutex_lock(&parent_event->child_mutex);
9154 if (is_orphaned_event(parent_event) ||
9155 !atomic_long_inc_not_zero(&parent_event->refcount)) {
9156 mutex_unlock(&parent_event->child_mutex);
9157 free_event(child_event);
9158 return NULL;
9159 }
9160
9161 get_ctx(child_ctx);
9162
9163 /*
9164 * Make the child state follow the state of the parent event,
9165 * not its attr.disabled bit. We hold the parent's mutex,
9166 * so we won't race with perf_event_{en, dis}able_family.
9167 */
9168 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9169 child_event->state = PERF_EVENT_STATE_INACTIVE;
9170 else
9171 child_event->state = PERF_EVENT_STATE_OFF;
9172
9173 if (parent_event->attr.freq) {
9174 u64 sample_period = parent_event->hw.sample_period;
9175 struct hw_perf_event *hwc = &child_event->hw;
9176
9177 hwc->sample_period = sample_period;
9178 hwc->last_period = sample_period;
9179
9180 local64_set(&hwc->period_left, sample_period);
9181 }
9182
9183 child_event->ctx = child_ctx;
9184 child_event->overflow_handler = parent_event->overflow_handler;
9185 child_event->overflow_handler_context
9186 = parent_event->overflow_handler_context;
9187
9188 /*
9189 * Precalculate sample_data sizes
9190 */
9191 perf_event__header_size(child_event);
9192 perf_event__id_header_size(child_event);
9193
9194 /*
9195 * Link it up in the child's context:
9196 */
9197 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9198 add_event_to_ctx(child_event, child_ctx);
9199 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9200
9201 /*
9202 * Link this into the parent event's child list
9203 */
9204 list_add_tail(&child_event->child_list, &parent_event->child_list);
9205 mutex_unlock(&parent_event->child_mutex);
9206
9207 return child_event;
9208}
9209
9210static int inherit_group(struct perf_event *parent_event,
9211 struct task_struct *parent,
9212 struct perf_event_context *parent_ctx,
9213 struct task_struct *child,
9214 struct perf_event_context *child_ctx)
9215{
9216 struct perf_event *leader;
9217 struct perf_event *sub;
9218 struct perf_event *child_ctr;
9219
9220 leader = inherit_event(parent_event, parent, parent_ctx,
9221 child, NULL, child_ctx);
9222 if (IS_ERR(leader))
9223 return PTR_ERR(leader);
9224 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9225 child_ctr = inherit_event(sub, parent, parent_ctx,
9226 child, leader, child_ctx);
9227 if (IS_ERR(child_ctr))
9228 return PTR_ERR(child_ctr);
9229 }
9230 return 0;
9231}
9232
9233static int
9234inherit_task_group(struct perf_event *event, struct task_struct *parent,
9235 struct perf_event_context *parent_ctx,
9236 struct task_struct *child, int ctxn,
9237 int *inherited_all)
9238{
9239 int ret;
9240 struct perf_event_context *child_ctx;
9241
9242 if (!event->attr.inherit) {
9243 *inherited_all = 0;
9244 return 0;
9245 }
9246
9247 child_ctx = child->perf_event_ctxp[ctxn];
9248 if (!child_ctx) {
9249 /*
9250 * This is executed from the parent task context, so
9251 * inherit events that have been marked for cloning.
9252 * First allocate and initialize a context for the
9253 * child.
9254 */
9255
9256 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9257 if (!child_ctx)
9258 return -ENOMEM;
9259
9260 child->perf_event_ctxp[ctxn] = child_ctx;
9261 }
9262
9263 ret = inherit_group(event, parent, parent_ctx,
9264 child, child_ctx);
9265
9266 if (ret)
9267 *inherited_all = 0;
9268
9269 return ret;
9270}
9271
9272/*
9273 * Initialize the perf_event context in task_struct
9274 */
9275static int perf_event_init_context(struct task_struct *child, int ctxn)
9276{
9277 struct perf_event_context *child_ctx, *parent_ctx;
9278 struct perf_event_context *cloned_ctx;
9279 struct perf_event *event;
9280 struct task_struct *parent = current;
9281 int inherited_all = 1;
9282 unsigned long flags;
9283 int ret = 0;
9284
9285 if (likely(!parent->perf_event_ctxp[ctxn]))
9286 return 0;
9287
9288 /*
9289 * If the parent's context is a clone, pin it so it won't get
9290 * swapped under us.
9291 */
9292 parent_ctx = perf_pin_task_context(parent, ctxn);
9293 if (!parent_ctx)
9294 return 0;
9295
9296 /*
9297 * No need to check if parent_ctx != NULL here; since we saw
9298 * it non-NULL earlier, the only reason for it to become NULL
9299 * is if we exit, and since we're currently in the middle of
9300 * a fork we can't be exiting at the same time.
9301 */
9302
9303 /*
9304 * Lock the parent list. No need to lock the child - not PID
9305 * hashed yet and not running, so nobody can access it.
9306 */
9307 mutex_lock(&parent_ctx->mutex);
9308
9309 /*
9310 * We dont have to disable NMIs - we are only looking at
9311 * the list, not manipulating it:
9312 */
9313 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9314 ret = inherit_task_group(event, parent, parent_ctx,
9315 child, ctxn, &inherited_all);
9316 if (ret)
9317 break;
9318 }
9319
9320 /*
9321 * We can't hold ctx->lock when iterating the ->flexible_group list due
9322 * to allocations, but we need to prevent rotation because
9323 * rotate_ctx() will change the list from interrupt context.
9324 */
9325 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9326 parent_ctx->rotate_disable = 1;
9327 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9328
9329 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9330 ret = inherit_task_group(event, parent, parent_ctx,
9331 child, ctxn, &inherited_all);
9332 if (ret)
9333 break;
9334 }
9335
9336 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9337 parent_ctx->rotate_disable = 0;
9338
9339 child_ctx = child->perf_event_ctxp[ctxn];
9340
9341 if (child_ctx && inherited_all) {
9342 /*
9343 * Mark the child context as a clone of the parent
9344 * context, or of whatever the parent is a clone of.
9345 *
9346 * Note that if the parent is a clone, the holding of
9347 * parent_ctx->lock avoids it from being uncloned.
9348 */
9349 cloned_ctx = parent_ctx->parent_ctx;
9350 if (cloned_ctx) {
9351 child_ctx->parent_ctx = cloned_ctx;
9352 child_ctx->parent_gen = parent_ctx->parent_gen;
9353 } else {
9354 child_ctx->parent_ctx = parent_ctx;
9355 child_ctx->parent_gen = parent_ctx->generation;
9356 }
9357 get_ctx(child_ctx->parent_ctx);
9358 }
9359
9360 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9361 mutex_unlock(&parent_ctx->mutex);
9362
9363 perf_unpin_context(parent_ctx);
9364 put_ctx(parent_ctx);
9365
9366 return ret;
9367}
9368
9369/*
9370 * Initialize the perf_event context in task_struct
9371 */
9372int perf_event_init_task(struct task_struct *child)
9373{
9374 int ctxn, ret;
9375
9376 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9377 mutex_init(&child->perf_event_mutex);
9378 INIT_LIST_HEAD(&child->perf_event_list);
9379
9380 for_each_task_context_nr(ctxn) {
9381 ret = perf_event_init_context(child, ctxn);
9382 if (ret) {
9383 perf_event_free_task(child);
9384 return ret;
9385 }
9386 }
9387
9388 return 0;
9389}
9390
9391static void __init perf_event_init_all_cpus(void)
9392{
9393 struct swevent_htable *swhash;
9394 int cpu;
9395
9396 for_each_possible_cpu(cpu) {
9397 swhash = &per_cpu(swevent_htable, cpu);
9398 mutex_init(&swhash->hlist_mutex);
9399 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9400 }
9401}
9402
9403static void perf_event_init_cpu(int cpu)
9404{
9405 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9406
9407 mutex_lock(&swhash->hlist_mutex);
9408 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9409 struct swevent_hlist *hlist;
9410
9411 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9412 WARN_ON(!hlist);
9413 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9414 }
9415 mutex_unlock(&swhash->hlist_mutex);
9416}
9417
9418#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9419static void __perf_event_exit_context(void *__info)
9420{
9421 struct perf_event_context *ctx = __info;
9422 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9423 struct perf_event *event;
9424
9425 raw_spin_lock(&ctx->lock);
9426 list_for_each_entry(event, &ctx->event_list, event_entry)
9427 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9428 raw_spin_unlock(&ctx->lock);
9429}
9430
9431static void perf_event_exit_cpu_context(int cpu)
9432{
9433 struct perf_event_context *ctx;
9434 struct pmu *pmu;
9435 int idx;
9436
9437 idx = srcu_read_lock(&pmus_srcu);
9438 list_for_each_entry_rcu(pmu, &pmus, entry) {
9439 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9440
9441 mutex_lock(&ctx->mutex);
9442 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9443 mutex_unlock(&ctx->mutex);
9444 }
9445 srcu_read_unlock(&pmus_srcu, idx);
9446}
9447
9448static void perf_event_exit_cpu(int cpu)
9449{
9450 perf_event_exit_cpu_context(cpu);
9451}
9452#else
9453static inline void perf_event_exit_cpu(int cpu) { }
9454#endif
9455
9456static int
9457perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9458{
9459 int cpu;
9460
9461 for_each_online_cpu(cpu)
9462 perf_event_exit_cpu(cpu);
9463
9464 return NOTIFY_OK;
9465}
9466
9467/*
9468 * Run the perf reboot notifier at the very last possible moment so that
9469 * the generic watchdog code runs as long as possible.
9470 */
9471static struct notifier_block perf_reboot_notifier = {
9472 .notifier_call = perf_reboot,
9473 .priority = INT_MIN,
9474};
9475
9476static int
9477perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9478{
9479 unsigned int cpu = (long)hcpu;
9480
9481 switch (action & ~CPU_TASKS_FROZEN) {
9482
9483 case CPU_UP_PREPARE:
9484 /*
9485 * This must be done before the CPU comes alive, because the
9486 * moment we can run tasks we can encounter (software) events.
9487 *
9488 * Specifically, someone can have inherited events on kthreadd
9489 * or a pre-existing worker thread that gets re-bound.
9490 */
9491 perf_event_init_cpu(cpu);
9492 break;
9493
9494 case CPU_DOWN_PREPARE:
9495 /*
9496 * This must be done before the CPU dies because after that an
9497 * active event might want to IPI the CPU and that'll not work
9498 * so great for dead CPUs.
9499 *
9500 * XXX smp_call_function_single() return -ENXIO without a warn
9501 * so we could possibly deal with this.
9502 *
9503 * This is safe against new events arriving because
9504 * sys_perf_event_open() serializes against hotplug using
9505 * get_online_cpus().
9506 */
9507 perf_event_exit_cpu(cpu);
9508 break;
9509 default:
9510 break;
9511 }
9512
9513 return NOTIFY_OK;
9514}
9515
9516void __init perf_event_init(void)
9517{
9518 int ret;
9519
9520 idr_init(&pmu_idr);
9521
9522 perf_event_init_all_cpus();
9523 init_srcu_struct(&pmus_srcu);
9524 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9525 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9526 perf_pmu_register(&perf_task_clock, NULL, -1);
9527 perf_tp_register();
9528 perf_cpu_notifier(perf_cpu_notify);
9529 register_reboot_notifier(&perf_reboot_notifier);
9530
9531 ret = init_hw_breakpoint();
9532 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9533
9534 /*
9535 * Build time assertion that we keep the data_head at the intended
9536 * location. IOW, validation we got the __reserved[] size right.
9537 */
9538 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9539 != 1024);
9540}
9541
9542ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9543 char *page)
9544{
9545 struct perf_pmu_events_attr *pmu_attr =
9546 container_of(attr, struct perf_pmu_events_attr, attr);
9547
9548 if (pmu_attr->event_str)
9549 return sprintf(page, "%s\n", pmu_attr->event_str);
9550
9551 return 0;
9552}
9553EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
9554
9555static int __init perf_event_sysfs_init(void)
9556{
9557 struct pmu *pmu;
9558 int ret;
9559
9560 mutex_lock(&pmus_lock);
9561
9562 ret = bus_register(&pmu_bus);
9563 if (ret)
9564 goto unlock;
9565
9566 list_for_each_entry(pmu, &pmus, entry) {
9567 if (!pmu->name || pmu->type < 0)
9568 continue;
9569
9570 ret = pmu_dev_alloc(pmu);
9571 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9572 }
9573 pmu_bus_running = 1;
9574 ret = 0;
9575
9576unlock:
9577 mutex_unlock(&pmus_lock);
9578
9579 return ret;
9580}
9581device_initcall(perf_event_sysfs_init);
9582
9583#ifdef CONFIG_CGROUP_PERF
9584static struct cgroup_subsys_state *
9585perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9586{
9587 struct perf_cgroup *jc;
9588
9589 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9590 if (!jc)
9591 return ERR_PTR(-ENOMEM);
9592
9593 jc->info = alloc_percpu(struct perf_cgroup_info);
9594 if (!jc->info) {
9595 kfree(jc);
9596 return ERR_PTR(-ENOMEM);
9597 }
9598
9599 return &jc->css;
9600}
9601
9602static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9603{
9604 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9605
9606 free_percpu(jc->info);
9607 kfree(jc);
9608}
9609
9610static int __perf_cgroup_move(void *info)
9611{
9612 struct task_struct *task = info;
9613 rcu_read_lock();
9614 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9615 rcu_read_unlock();
9616 return 0;
9617}
9618
9619static void perf_cgroup_attach(struct cgroup_taskset *tset)
9620{
9621 struct task_struct *task;
9622 struct cgroup_subsys_state *css;
9623
9624 cgroup_taskset_for_each(task, css, tset)
9625 task_function_call(task, __perf_cgroup_move, task);
9626}
9627
9628struct cgroup_subsys perf_event_cgrp_subsys = {
9629 .css_alloc = perf_cgroup_css_alloc,
9630 .css_free = perf_cgroup_css_free,
9631 .attach = perf_cgroup_attach,
9632};
9633#endif /* CONFIG_CGROUP_PERF */
1/*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/idr.h>
17#include <linux/file.h>
18#include <linux/poll.h>
19#include <linux/slab.h>
20#include <linux/hash.h>
21#include <linux/tick.h>
22#include <linux/sysfs.h>
23#include <linux/dcache.h>
24#include <linux/percpu.h>
25#include <linux/ptrace.h>
26#include <linux/reboot.h>
27#include <linux/vmstat.h>
28#include <linux/device.h>
29#include <linux/export.h>
30#include <linux/vmalloc.h>
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
36#include <linux/kernel_stat.h>
37#include <linux/perf_event.h>
38#include <linux/ftrace_event.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/mm_types.h>
41#include <linux/cgroup.h>
42
43#include "internal.h"
44
45#include <asm/irq_regs.h>
46
47struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP |\
123 PERF_FLAG_FD_CLOEXEC)
124
125/*
126 * branch priv levels that need permission checks
127 */
128#define PERF_SAMPLE_BRANCH_PERM_PLM \
129 (PERF_SAMPLE_BRANCH_KERNEL |\
130 PERF_SAMPLE_BRANCH_HV)
131
132enum event_type_t {
133 EVENT_FLEXIBLE = 0x1,
134 EVENT_PINNED = 0x2,
135 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136};
137
138/*
139 * perf_sched_events : >0 events exist
140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 */
142struct static_key_deferred perf_sched_events __read_mostly;
143static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145
146static atomic_t nr_mmap_events __read_mostly;
147static atomic_t nr_comm_events __read_mostly;
148static atomic_t nr_task_events __read_mostly;
149static atomic_t nr_freq_events __read_mostly;
150
151static LIST_HEAD(pmus);
152static DEFINE_MUTEX(pmus_lock);
153static struct srcu_struct pmus_srcu;
154
155/*
156 * perf event paranoia level:
157 * -1 - not paranoid at all
158 * 0 - disallow raw tracepoint access for unpriv
159 * 1 - disallow cpu events for unpriv
160 * 2 - disallow kernel profiling for unpriv
161 */
162int sysctl_perf_event_paranoid __read_mostly = 1;
163
164/* Minimum for 512 kiB + 1 user control page */
165int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166
167/*
168 * max perf event sample rate
169 */
170#define DEFAULT_MAX_SAMPLE_RATE 100000
171#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
172#define DEFAULT_CPU_TIME_MAX_PERCENT 25
173
174int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
175
176static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
177static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
178
179static int perf_sample_allowed_ns __read_mostly =
180 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181
182void update_perf_cpu_limits(void)
183{
184 u64 tmp = perf_sample_period_ns;
185
186 tmp *= sysctl_perf_cpu_time_max_percent;
187 do_div(tmp, 100);
188 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189}
190
191static int perf_rotate_context(struct perf_cpu_context *cpuctx);
192
193int perf_proc_update_handler(struct ctl_table *table, int write,
194 void __user *buffer, size_t *lenp,
195 loff_t *ppos)
196{
197 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
198
199 if (ret || !write)
200 return ret;
201
202 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
204 update_perf_cpu_limits();
205
206 return 0;
207}
208
209int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
210
211int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
212 void __user *buffer, size_t *lenp,
213 loff_t *ppos)
214{
215 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
216
217 if (ret || !write)
218 return ret;
219
220 update_perf_cpu_limits();
221
222 return 0;
223}
224
225/*
226 * perf samples are done in some very critical code paths (NMIs).
227 * If they take too much CPU time, the system can lock up and not
228 * get any real work done. This will drop the sample rate when
229 * we detect that events are taking too long.
230 */
231#define NR_ACCUMULATED_SAMPLES 128
232static DEFINE_PER_CPU(u64, running_sample_length);
233
234static void perf_duration_warn(struct irq_work *w)
235{
236 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
237 u64 avg_local_sample_len;
238 u64 local_samples_len;
239
240 local_samples_len = __get_cpu_var(running_sample_length);
241 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
242
243 printk_ratelimited(KERN_WARNING
244 "perf interrupt took too long (%lld > %lld), lowering "
245 "kernel.perf_event_max_sample_rate to %d\n",
246 avg_local_sample_len, allowed_ns >> 1,
247 sysctl_perf_event_sample_rate);
248}
249
250static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
251
252void perf_sample_event_took(u64 sample_len_ns)
253{
254 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
255 u64 avg_local_sample_len;
256 u64 local_samples_len;
257
258 if (allowed_ns == 0)
259 return;
260
261 /* decay the counter by 1 average sample */
262 local_samples_len = __get_cpu_var(running_sample_length);
263 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
264 local_samples_len += sample_len_ns;
265 __get_cpu_var(running_sample_length) = local_samples_len;
266
267 /*
268 * note: this will be biased artifically low until we have
269 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
270 * from having to maintain a count.
271 */
272 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
273
274 if (avg_local_sample_len <= allowed_ns)
275 return;
276
277 if (max_samples_per_tick <= 1)
278 return;
279
280 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
281 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
282 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
283
284 update_perf_cpu_limits();
285
286 if (!irq_work_queue(&perf_duration_work)) {
287 early_printk("perf interrupt took too long (%lld > %lld), lowering "
288 "kernel.perf_event_max_sample_rate to %d\n",
289 avg_local_sample_len, allowed_ns >> 1,
290 sysctl_perf_event_sample_rate);
291 }
292}
293
294static atomic64_t perf_event_id;
295
296static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
297 enum event_type_t event_type);
298
299static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
300 enum event_type_t event_type,
301 struct task_struct *task);
302
303static void update_context_time(struct perf_event_context *ctx);
304static u64 perf_event_time(struct perf_event *event);
305
306void __weak perf_event_print_debug(void) { }
307
308extern __weak const char *perf_pmu_name(void)
309{
310 return "pmu";
311}
312
313static inline u64 perf_clock(void)
314{
315 return local_clock();
316}
317
318static inline struct perf_cpu_context *
319__get_cpu_context(struct perf_event_context *ctx)
320{
321 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
322}
323
324static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
325 struct perf_event_context *ctx)
326{
327 raw_spin_lock(&cpuctx->ctx.lock);
328 if (ctx)
329 raw_spin_lock(&ctx->lock);
330}
331
332static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
333 struct perf_event_context *ctx)
334{
335 if (ctx)
336 raw_spin_unlock(&ctx->lock);
337 raw_spin_unlock(&cpuctx->ctx.lock);
338}
339
340#ifdef CONFIG_CGROUP_PERF
341
342/*
343 * perf_cgroup_info keeps track of time_enabled for a cgroup.
344 * This is a per-cpu dynamically allocated data structure.
345 */
346struct perf_cgroup_info {
347 u64 time;
348 u64 timestamp;
349};
350
351struct perf_cgroup {
352 struct cgroup_subsys_state css;
353 struct perf_cgroup_info __percpu *info;
354};
355
356/*
357 * Must ensure cgroup is pinned (css_get) before calling
358 * this function. In other words, we cannot call this function
359 * if there is no cgroup event for the current CPU context.
360 */
361static inline struct perf_cgroup *
362perf_cgroup_from_task(struct task_struct *task)
363{
364 return container_of(task_css(task, perf_event_cgrp_id),
365 struct perf_cgroup, css);
366}
367
368static inline bool
369perf_cgroup_match(struct perf_event *event)
370{
371 struct perf_event_context *ctx = event->ctx;
372 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
373
374 /* @event doesn't care about cgroup */
375 if (!event->cgrp)
376 return true;
377
378 /* wants specific cgroup scope but @cpuctx isn't associated with any */
379 if (!cpuctx->cgrp)
380 return false;
381
382 /*
383 * Cgroup scoping is recursive. An event enabled for a cgroup is
384 * also enabled for all its descendant cgroups. If @cpuctx's
385 * cgroup is a descendant of @event's (the test covers identity
386 * case), it's a match.
387 */
388 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
389 event->cgrp->css.cgroup);
390}
391
392static inline void perf_put_cgroup(struct perf_event *event)
393{
394 css_put(&event->cgrp->css);
395}
396
397static inline void perf_detach_cgroup(struct perf_event *event)
398{
399 perf_put_cgroup(event);
400 event->cgrp = NULL;
401}
402
403static inline int is_cgroup_event(struct perf_event *event)
404{
405 return event->cgrp != NULL;
406}
407
408static inline u64 perf_cgroup_event_time(struct perf_event *event)
409{
410 struct perf_cgroup_info *t;
411
412 t = per_cpu_ptr(event->cgrp->info, event->cpu);
413 return t->time;
414}
415
416static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
417{
418 struct perf_cgroup_info *info;
419 u64 now;
420
421 now = perf_clock();
422
423 info = this_cpu_ptr(cgrp->info);
424
425 info->time += now - info->timestamp;
426 info->timestamp = now;
427}
428
429static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
430{
431 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
432 if (cgrp_out)
433 __update_cgrp_time(cgrp_out);
434}
435
436static inline void update_cgrp_time_from_event(struct perf_event *event)
437{
438 struct perf_cgroup *cgrp;
439
440 /*
441 * ensure we access cgroup data only when needed and
442 * when we know the cgroup is pinned (css_get)
443 */
444 if (!is_cgroup_event(event))
445 return;
446
447 cgrp = perf_cgroup_from_task(current);
448 /*
449 * Do not update time when cgroup is not active
450 */
451 if (cgrp == event->cgrp)
452 __update_cgrp_time(event->cgrp);
453}
454
455static inline void
456perf_cgroup_set_timestamp(struct task_struct *task,
457 struct perf_event_context *ctx)
458{
459 struct perf_cgroup *cgrp;
460 struct perf_cgroup_info *info;
461
462 /*
463 * ctx->lock held by caller
464 * ensure we do not access cgroup data
465 * unless we have the cgroup pinned (css_get)
466 */
467 if (!task || !ctx->nr_cgroups)
468 return;
469
470 cgrp = perf_cgroup_from_task(task);
471 info = this_cpu_ptr(cgrp->info);
472 info->timestamp = ctx->timestamp;
473}
474
475#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
476#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
477
478/*
479 * reschedule events based on the cgroup constraint of task.
480 *
481 * mode SWOUT : schedule out everything
482 * mode SWIN : schedule in based on cgroup for next
483 */
484void perf_cgroup_switch(struct task_struct *task, int mode)
485{
486 struct perf_cpu_context *cpuctx;
487 struct pmu *pmu;
488 unsigned long flags;
489
490 /*
491 * disable interrupts to avoid geting nr_cgroup
492 * changes via __perf_event_disable(). Also
493 * avoids preemption.
494 */
495 local_irq_save(flags);
496
497 /*
498 * we reschedule only in the presence of cgroup
499 * constrained events.
500 */
501 rcu_read_lock();
502
503 list_for_each_entry_rcu(pmu, &pmus, entry) {
504 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
505 if (cpuctx->unique_pmu != pmu)
506 continue; /* ensure we process each cpuctx once */
507
508 /*
509 * perf_cgroup_events says at least one
510 * context on this CPU has cgroup events.
511 *
512 * ctx->nr_cgroups reports the number of cgroup
513 * events for a context.
514 */
515 if (cpuctx->ctx.nr_cgroups > 0) {
516 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
517 perf_pmu_disable(cpuctx->ctx.pmu);
518
519 if (mode & PERF_CGROUP_SWOUT) {
520 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
521 /*
522 * must not be done before ctxswout due
523 * to event_filter_match() in event_sched_out()
524 */
525 cpuctx->cgrp = NULL;
526 }
527
528 if (mode & PERF_CGROUP_SWIN) {
529 WARN_ON_ONCE(cpuctx->cgrp);
530 /*
531 * set cgrp before ctxsw in to allow
532 * event_filter_match() to not have to pass
533 * task around
534 */
535 cpuctx->cgrp = perf_cgroup_from_task(task);
536 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
537 }
538 perf_pmu_enable(cpuctx->ctx.pmu);
539 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
540 }
541 }
542
543 rcu_read_unlock();
544
545 local_irq_restore(flags);
546}
547
548static inline void perf_cgroup_sched_out(struct task_struct *task,
549 struct task_struct *next)
550{
551 struct perf_cgroup *cgrp1;
552 struct perf_cgroup *cgrp2 = NULL;
553
554 /*
555 * we come here when we know perf_cgroup_events > 0
556 */
557 cgrp1 = perf_cgroup_from_task(task);
558
559 /*
560 * next is NULL when called from perf_event_enable_on_exec()
561 * that will systematically cause a cgroup_switch()
562 */
563 if (next)
564 cgrp2 = perf_cgroup_from_task(next);
565
566 /*
567 * only schedule out current cgroup events if we know
568 * that we are switching to a different cgroup. Otherwise,
569 * do no touch the cgroup events.
570 */
571 if (cgrp1 != cgrp2)
572 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
573}
574
575static inline void perf_cgroup_sched_in(struct task_struct *prev,
576 struct task_struct *task)
577{
578 struct perf_cgroup *cgrp1;
579 struct perf_cgroup *cgrp2 = NULL;
580
581 /*
582 * we come here when we know perf_cgroup_events > 0
583 */
584 cgrp1 = perf_cgroup_from_task(task);
585
586 /* prev can never be NULL */
587 cgrp2 = perf_cgroup_from_task(prev);
588
589 /*
590 * only need to schedule in cgroup events if we are changing
591 * cgroup during ctxsw. Cgroup events were not scheduled
592 * out of ctxsw out if that was not the case.
593 */
594 if (cgrp1 != cgrp2)
595 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
596}
597
598static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 struct perf_event_attr *attr,
600 struct perf_event *group_leader)
601{
602 struct perf_cgroup *cgrp;
603 struct cgroup_subsys_state *css;
604 struct fd f = fdget(fd);
605 int ret = 0;
606
607 if (!f.file)
608 return -EBADF;
609
610 css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
611 if (IS_ERR(css)) {
612 ret = PTR_ERR(css);
613 goto out;
614 }
615
616 cgrp = container_of(css, struct perf_cgroup, css);
617 event->cgrp = cgrp;
618
619 /*
620 * all events in a group must monitor
621 * the same cgroup because a task belongs
622 * to only one perf cgroup at a time
623 */
624 if (group_leader && group_leader->cgrp != cgrp) {
625 perf_detach_cgroup(event);
626 ret = -EINVAL;
627 }
628out:
629 fdput(f);
630 return ret;
631}
632
633static inline void
634perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
635{
636 struct perf_cgroup_info *t;
637 t = per_cpu_ptr(event->cgrp->info, event->cpu);
638 event->shadow_ctx_time = now - t->timestamp;
639}
640
641static inline void
642perf_cgroup_defer_enabled(struct perf_event *event)
643{
644 /*
645 * when the current task's perf cgroup does not match
646 * the event's, we need to remember to call the
647 * perf_mark_enable() function the first time a task with
648 * a matching perf cgroup is scheduled in.
649 */
650 if (is_cgroup_event(event) && !perf_cgroup_match(event))
651 event->cgrp_defer_enabled = 1;
652}
653
654static inline void
655perf_cgroup_mark_enabled(struct perf_event *event,
656 struct perf_event_context *ctx)
657{
658 struct perf_event *sub;
659 u64 tstamp = perf_event_time(event);
660
661 if (!event->cgrp_defer_enabled)
662 return;
663
664 event->cgrp_defer_enabled = 0;
665
666 event->tstamp_enabled = tstamp - event->total_time_enabled;
667 list_for_each_entry(sub, &event->sibling_list, group_entry) {
668 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
669 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
670 sub->cgrp_defer_enabled = 0;
671 }
672 }
673}
674#else /* !CONFIG_CGROUP_PERF */
675
676static inline bool
677perf_cgroup_match(struct perf_event *event)
678{
679 return true;
680}
681
682static inline void perf_detach_cgroup(struct perf_event *event)
683{}
684
685static inline int is_cgroup_event(struct perf_event *event)
686{
687 return 0;
688}
689
690static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
691{
692 return 0;
693}
694
695static inline void update_cgrp_time_from_event(struct perf_event *event)
696{
697}
698
699static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
700{
701}
702
703static inline void perf_cgroup_sched_out(struct task_struct *task,
704 struct task_struct *next)
705{
706}
707
708static inline void perf_cgroup_sched_in(struct task_struct *prev,
709 struct task_struct *task)
710{
711}
712
713static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
714 struct perf_event_attr *attr,
715 struct perf_event *group_leader)
716{
717 return -EINVAL;
718}
719
720static inline void
721perf_cgroup_set_timestamp(struct task_struct *task,
722 struct perf_event_context *ctx)
723{
724}
725
726void
727perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
728{
729}
730
731static inline void
732perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
733{
734}
735
736static inline u64 perf_cgroup_event_time(struct perf_event *event)
737{
738 return 0;
739}
740
741static inline void
742perf_cgroup_defer_enabled(struct perf_event *event)
743{
744}
745
746static inline void
747perf_cgroup_mark_enabled(struct perf_event *event,
748 struct perf_event_context *ctx)
749{
750}
751#endif
752
753/*
754 * set default to be dependent on timer tick just
755 * like original code
756 */
757#define PERF_CPU_HRTIMER (1000 / HZ)
758/*
759 * function must be called with interrupts disbled
760 */
761static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
762{
763 struct perf_cpu_context *cpuctx;
764 enum hrtimer_restart ret = HRTIMER_NORESTART;
765 int rotations = 0;
766
767 WARN_ON(!irqs_disabled());
768
769 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
770
771 rotations = perf_rotate_context(cpuctx);
772
773 /*
774 * arm timer if needed
775 */
776 if (rotations) {
777 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
778 ret = HRTIMER_RESTART;
779 }
780
781 return ret;
782}
783
784/* CPU is going down */
785void perf_cpu_hrtimer_cancel(int cpu)
786{
787 struct perf_cpu_context *cpuctx;
788 struct pmu *pmu;
789 unsigned long flags;
790
791 if (WARN_ON(cpu != smp_processor_id()))
792 return;
793
794 local_irq_save(flags);
795
796 rcu_read_lock();
797
798 list_for_each_entry_rcu(pmu, &pmus, entry) {
799 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
800
801 if (pmu->task_ctx_nr == perf_sw_context)
802 continue;
803
804 hrtimer_cancel(&cpuctx->hrtimer);
805 }
806
807 rcu_read_unlock();
808
809 local_irq_restore(flags);
810}
811
812static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
813{
814 struct hrtimer *hr = &cpuctx->hrtimer;
815 struct pmu *pmu = cpuctx->ctx.pmu;
816 int timer;
817
818 /* no multiplexing needed for SW PMU */
819 if (pmu->task_ctx_nr == perf_sw_context)
820 return;
821
822 /*
823 * check default is sane, if not set then force to
824 * default interval (1/tick)
825 */
826 timer = pmu->hrtimer_interval_ms;
827 if (timer < 1)
828 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
829
830 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
831
832 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
833 hr->function = perf_cpu_hrtimer_handler;
834}
835
836static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
837{
838 struct hrtimer *hr = &cpuctx->hrtimer;
839 struct pmu *pmu = cpuctx->ctx.pmu;
840
841 /* not for SW PMU */
842 if (pmu->task_ctx_nr == perf_sw_context)
843 return;
844
845 if (hrtimer_active(hr))
846 return;
847
848 if (!hrtimer_callback_running(hr))
849 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
850 0, HRTIMER_MODE_REL_PINNED, 0);
851}
852
853void perf_pmu_disable(struct pmu *pmu)
854{
855 int *count = this_cpu_ptr(pmu->pmu_disable_count);
856 if (!(*count)++)
857 pmu->pmu_disable(pmu);
858}
859
860void perf_pmu_enable(struct pmu *pmu)
861{
862 int *count = this_cpu_ptr(pmu->pmu_disable_count);
863 if (!--(*count))
864 pmu->pmu_enable(pmu);
865}
866
867static DEFINE_PER_CPU(struct list_head, rotation_list);
868
869/*
870 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
871 * because they're strictly cpu affine and rotate_start is called with IRQs
872 * disabled, while rotate_context is called from IRQ context.
873 */
874static void perf_pmu_rotate_start(struct pmu *pmu)
875{
876 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
877 struct list_head *head = &__get_cpu_var(rotation_list);
878
879 WARN_ON(!irqs_disabled());
880
881 if (list_empty(&cpuctx->rotation_list))
882 list_add(&cpuctx->rotation_list, head);
883}
884
885static void get_ctx(struct perf_event_context *ctx)
886{
887 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
888}
889
890static void put_ctx(struct perf_event_context *ctx)
891{
892 if (atomic_dec_and_test(&ctx->refcount)) {
893 if (ctx->parent_ctx)
894 put_ctx(ctx->parent_ctx);
895 if (ctx->task)
896 put_task_struct(ctx->task);
897 kfree_rcu(ctx, rcu_head);
898 }
899}
900
901static void unclone_ctx(struct perf_event_context *ctx)
902{
903 if (ctx->parent_ctx) {
904 put_ctx(ctx->parent_ctx);
905 ctx->parent_ctx = NULL;
906 }
907 ctx->generation++;
908}
909
910static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
911{
912 /*
913 * only top level events have the pid namespace they were created in
914 */
915 if (event->parent)
916 event = event->parent;
917
918 return task_tgid_nr_ns(p, event->ns);
919}
920
921static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
922{
923 /*
924 * only top level events have the pid namespace they were created in
925 */
926 if (event->parent)
927 event = event->parent;
928
929 return task_pid_nr_ns(p, event->ns);
930}
931
932/*
933 * If we inherit events we want to return the parent event id
934 * to userspace.
935 */
936static u64 primary_event_id(struct perf_event *event)
937{
938 u64 id = event->id;
939
940 if (event->parent)
941 id = event->parent->id;
942
943 return id;
944}
945
946/*
947 * Get the perf_event_context for a task and lock it.
948 * This has to cope with with the fact that until it is locked,
949 * the context could get moved to another task.
950 */
951static struct perf_event_context *
952perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
953{
954 struct perf_event_context *ctx;
955
956retry:
957 /*
958 * One of the few rules of preemptible RCU is that one cannot do
959 * rcu_read_unlock() while holding a scheduler (or nested) lock when
960 * part of the read side critical section was preemptible -- see
961 * rcu_read_unlock_special().
962 *
963 * Since ctx->lock nests under rq->lock we must ensure the entire read
964 * side critical section is non-preemptible.
965 */
966 preempt_disable();
967 rcu_read_lock();
968 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
969 if (ctx) {
970 /*
971 * If this context is a clone of another, it might
972 * get swapped for another underneath us by
973 * perf_event_task_sched_out, though the
974 * rcu_read_lock() protects us from any context
975 * getting freed. Lock the context and check if it
976 * got swapped before we could get the lock, and retry
977 * if so. If we locked the right context, then it
978 * can't get swapped on us any more.
979 */
980 raw_spin_lock_irqsave(&ctx->lock, *flags);
981 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
982 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
983 rcu_read_unlock();
984 preempt_enable();
985 goto retry;
986 }
987
988 if (!atomic_inc_not_zero(&ctx->refcount)) {
989 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
990 ctx = NULL;
991 }
992 }
993 rcu_read_unlock();
994 preempt_enable();
995 return ctx;
996}
997
998/*
999 * Get the context for a task and increment its pin_count so it
1000 * can't get swapped to another task. This also increments its
1001 * reference count so that the context can't get freed.
1002 */
1003static struct perf_event_context *
1004perf_pin_task_context(struct task_struct *task, int ctxn)
1005{
1006 struct perf_event_context *ctx;
1007 unsigned long flags;
1008
1009 ctx = perf_lock_task_context(task, ctxn, &flags);
1010 if (ctx) {
1011 ++ctx->pin_count;
1012 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1013 }
1014 return ctx;
1015}
1016
1017static void perf_unpin_context(struct perf_event_context *ctx)
1018{
1019 unsigned long flags;
1020
1021 raw_spin_lock_irqsave(&ctx->lock, flags);
1022 --ctx->pin_count;
1023 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1024}
1025
1026/*
1027 * Update the record of the current time in a context.
1028 */
1029static void update_context_time(struct perf_event_context *ctx)
1030{
1031 u64 now = perf_clock();
1032
1033 ctx->time += now - ctx->timestamp;
1034 ctx->timestamp = now;
1035}
1036
1037static u64 perf_event_time(struct perf_event *event)
1038{
1039 struct perf_event_context *ctx = event->ctx;
1040
1041 if (is_cgroup_event(event))
1042 return perf_cgroup_event_time(event);
1043
1044 return ctx ? ctx->time : 0;
1045}
1046
1047/*
1048 * Update the total_time_enabled and total_time_running fields for a event.
1049 * The caller of this function needs to hold the ctx->lock.
1050 */
1051static void update_event_times(struct perf_event *event)
1052{
1053 struct perf_event_context *ctx = event->ctx;
1054 u64 run_end;
1055
1056 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1057 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1058 return;
1059 /*
1060 * in cgroup mode, time_enabled represents
1061 * the time the event was enabled AND active
1062 * tasks were in the monitored cgroup. This is
1063 * independent of the activity of the context as
1064 * there may be a mix of cgroup and non-cgroup events.
1065 *
1066 * That is why we treat cgroup events differently
1067 * here.
1068 */
1069 if (is_cgroup_event(event))
1070 run_end = perf_cgroup_event_time(event);
1071 else if (ctx->is_active)
1072 run_end = ctx->time;
1073 else
1074 run_end = event->tstamp_stopped;
1075
1076 event->total_time_enabled = run_end - event->tstamp_enabled;
1077
1078 if (event->state == PERF_EVENT_STATE_INACTIVE)
1079 run_end = event->tstamp_stopped;
1080 else
1081 run_end = perf_event_time(event);
1082
1083 event->total_time_running = run_end - event->tstamp_running;
1084
1085}
1086
1087/*
1088 * Update total_time_enabled and total_time_running for all events in a group.
1089 */
1090static void update_group_times(struct perf_event *leader)
1091{
1092 struct perf_event *event;
1093
1094 update_event_times(leader);
1095 list_for_each_entry(event, &leader->sibling_list, group_entry)
1096 update_event_times(event);
1097}
1098
1099static struct list_head *
1100ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1101{
1102 if (event->attr.pinned)
1103 return &ctx->pinned_groups;
1104 else
1105 return &ctx->flexible_groups;
1106}
1107
1108/*
1109 * Add a event from the lists for its context.
1110 * Must be called with ctx->mutex and ctx->lock held.
1111 */
1112static void
1113list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1114{
1115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1116 event->attach_state |= PERF_ATTACH_CONTEXT;
1117
1118 /*
1119 * If we're a stand alone event or group leader, we go to the context
1120 * list, group events are kept attached to the group so that
1121 * perf_group_detach can, at all times, locate all siblings.
1122 */
1123 if (event->group_leader == event) {
1124 struct list_head *list;
1125
1126 if (is_software_event(event))
1127 event->group_flags |= PERF_GROUP_SOFTWARE;
1128
1129 list = ctx_group_list(event, ctx);
1130 list_add_tail(&event->group_entry, list);
1131 }
1132
1133 if (is_cgroup_event(event))
1134 ctx->nr_cgroups++;
1135
1136 if (has_branch_stack(event))
1137 ctx->nr_branch_stack++;
1138
1139 list_add_rcu(&event->event_entry, &ctx->event_list);
1140 if (!ctx->nr_events)
1141 perf_pmu_rotate_start(ctx->pmu);
1142 ctx->nr_events++;
1143 if (event->attr.inherit_stat)
1144 ctx->nr_stat++;
1145
1146 ctx->generation++;
1147}
1148
1149/*
1150 * Initialize event state based on the perf_event_attr::disabled.
1151 */
1152static inline void perf_event__state_init(struct perf_event *event)
1153{
1154 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1155 PERF_EVENT_STATE_INACTIVE;
1156}
1157
1158/*
1159 * Called at perf_event creation and when events are attached/detached from a
1160 * group.
1161 */
1162static void perf_event__read_size(struct perf_event *event)
1163{
1164 int entry = sizeof(u64); /* value */
1165 int size = 0;
1166 int nr = 1;
1167
1168 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1169 size += sizeof(u64);
1170
1171 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1172 size += sizeof(u64);
1173
1174 if (event->attr.read_format & PERF_FORMAT_ID)
1175 entry += sizeof(u64);
1176
1177 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1178 nr += event->group_leader->nr_siblings;
1179 size += sizeof(u64);
1180 }
1181
1182 size += entry * nr;
1183 event->read_size = size;
1184}
1185
1186static void perf_event__header_size(struct perf_event *event)
1187{
1188 struct perf_sample_data *data;
1189 u64 sample_type = event->attr.sample_type;
1190 u16 size = 0;
1191
1192 perf_event__read_size(event);
1193
1194 if (sample_type & PERF_SAMPLE_IP)
1195 size += sizeof(data->ip);
1196
1197 if (sample_type & PERF_SAMPLE_ADDR)
1198 size += sizeof(data->addr);
1199
1200 if (sample_type & PERF_SAMPLE_PERIOD)
1201 size += sizeof(data->period);
1202
1203 if (sample_type & PERF_SAMPLE_WEIGHT)
1204 size += sizeof(data->weight);
1205
1206 if (sample_type & PERF_SAMPLE_READ)
1207 size += event->read_size;
1208
1209 if (sample_type & PERF_SAMPLE_DATA_SRC)
1210 size += sizeof(data->data_src.val);
1211
1212 if (sample_type & PERF_SAMPLE_TRANSACTION)
1213 size += sizeof(data->txn);
1214
1215 event->header_size = size;
1216}
1217
1218static void perf_event__id_header_size(struct perf_event *event)
1219{
1220 struct perf_sample_data *data;
1221 u64 sample_type = event->attr.sample_type;
1222 u16 size = 0;
1223
1224 if (sample_type & PERF_SAMPLE_TID)
1225 size += sizeof(data->tid_entry);
1226
1227 if (sample_type & PERF_SAMPLE_TIME)
1228 size += sizeof(data->time);
1229
1230 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1231 size += sizeof(data->id);
1232
1233 if (sample_type & PERF_SAMPLE_ID)
1234 size += sizeof(data->id);
1235
1236 if (sample_type & PERF_SAMPLE_STREAM_ID)
1237 size += sizeof(data->stream_id);
1238
1239 if (sample_type & PERF_SAMPLE_CPU)
1240 size += sizeof(data->cpu_entry);
1241
1242 event->id_header_size = size;
1243}
1244
1245static void perf_group_attach(struct perf_event *event)
1246{
1247 struct perf_event *group_leader = event->group_leader, *pos;
1248
1249 /*
1250 * We can have double attach due to group movement in perf_event_open.
1251 */
1252 if (event->attach_state & PERF_ATTACH_GROUP)
1253 return;
1254
1255 event->attach_state |= PERF_ATTACH_GROUP;
1256
1257 if (group_leader == event)
1258 return;
1259
1260 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1261 !is_software_event(event))
1262 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1263
1264 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1265 group_leader->nr_siblings++;
1266
1267 perf_event__header_size(group_leader);
1268
1269 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1270 perf_event__header_size(pos);
1271}
1272
1273/*
1274 * Remove a event from the lists for its context.
1275 * Must be called with ctx->mutex and ctx->lock held.
1276 */
1277static void
1278list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1279{
1280 struct perf_cpu_context *cpuctx;
1281 /*
1282 * We can have double detach due to exit/hot-unplug + close.
1283 */
1284 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1285 return;
1286
1287 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1288
1289 if (is_cgroup_event(event)) {
1290 ctx->nr_cgroups--;
1291 cpuctx = __get_cpu_context(ctx);
1292 /*
1293 * if there are no more cgroup events
1294 * then cler cgrp to avoid stale pointer
1295 * in update_cgrp_time_from_cpuctx()
1296 */
1297 if (!ctx->nr_cgroups)
1298 cpuctx->cgrp = NULL;
1299 }
1300
1301 if (has_branch_stack(event))
1302 ctx->nr_branch_stack--;
1303
1304 ctx->nr_events--;
1305 if (event->attr.inherit_stat)
1306 ctx->nr_stat--;
1307
1308 list_del_rcu(&event->event_entry);
1309
1310 if (event->group_leader == event)
1311 list_del_init(&event->group_entry);
1312
1313 update_group_times(event);
1314
1315 /*
1316 * If event was in error state, then keep it
1317 * that way, otherwise bogus counts will be
1318 * returned on read(). The only way to get out
1319 * of error state is by explicit re-enabling
1320 * of the event
1321 */
1322 if (event->state > PERF_EVENT_STATE_OFF)
1323 event->state = PERF_EVENT_STATE_OFF;
1324
1325 ctx->generation++;
1326}
1327
1328static void perf_group_detach(struct perf_event *event)
1329{
1330 struct perf_event *sibling, *tmp;
1331 struct list_head *list = NULL;
1332
1333 /*
1334 * We can have double detach due to exit/hot-unplug + close.
1335 */
1336 if (!(event->attach_state & PERF_ATTACH_GROUP))
1337 return;
1338
1339 event->attach_state &= ~PERF_ATTACH_GROUP;
1340
1341 /*
1342 * If this is a sibling, remove it from its group.
1343 */
1344 if (event->group_leader != event) {
1345 list_del_init(&event->group_entry);
1346 event->group_leader->nr_siblings--;
1347 goto out;
1348 }
1349
1350 if (!list_empty(&event->group_entry))
1351 list = &event->group_entry;
1352
1353 /*
1354 * If this was a group event with sibling events then
1355 * upgrade the siblings to singleton events by adding them
1356 * to whatever list we are on.
1357 */
1358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1359 if (list)
1360 list_move_tail(&sibling->group_entry, list);
1361 sibling->group_leader = sibling;
1362
1363 /* Inherit group flags from the previous leader */
1364 sibling->group_flags = event->group_flags;
1365 }
1366
1367out:
1368 perf_event__header_size(event->group_leader);
1369
1370 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1371 perf_event__header_size(tmp);
1372}
1373
1374static inline int
1375event_filter_match(struct perf_event *event)
1376{
1377 return (event->cpu == -1 || event->cpu == smp_processor_id())
1378 && perf_cgroup_match(event);
1379}
1380
1381static void
1382event_sched_out(struct perf_event *event,
1383 struct perf_cpu_context *cpuctx,
1384 struct perf_event_context *ctx)
1385{
1386 u64 tstamp = perf_event_time(event);
1387 u64 delta;
1388 /*
1389 * An event which could not be activated because of
1390 * filter mismatch still needs to have its timings
1391 * maintained, otherwise bogus information is return
1392 * via read() for time_enabled, time_running:
1393 */
1394 if (event->state == PERF_EVENT_STATE_INACTIVE
1395 && !event_filter_match(event)) {
1396 delta = tstamp - event->tstamp_stopped;
1397 event->tstamp_running += delta;
1398 event->tstamp_stopped = tstamp;
1399 }
1400
1401 if (event->state != PERF_EVENT_STATE_ACTIVE)
1402 return;
1403
1404 perf_pmu_disable(event->pmu);
1405
1406 event->state = PERF_EVENT_STATE_INACTIVE;
1407 if (event->pending_disable) {
1408 event->pending_disable = 0;
1409 event->state = PERF_EVENT_STATE_OFF;
1410 }
1411 event->tstamp_stopped = tstamp;
1412 event->pmu->del(event, 0);
1413 event->oncpu = -1;
1414
1415 if (!is_software_event(event))
1416 cpuctx->active_oncpu--;
1417 ctx->nr_active--;
1418 if (event->attr.freq && event->attr.sample_freq)
1419 ctx->nr_freq--;
1420 if (event->attr.exclusive || !cpuctx->active_oncpu)
1421 cpuctx->exclusive = 0;
1422
1423 perf_pmu_enable(event->pmu);
1424}
1425
1426static void
1427group_sched_out(struct perf_event *group_event,
1428 struct perf_cpu_context *cpuctx,
1429 struct perf_event_context *ctx)
1430{
1431 struct perf_event *event;
1432 int state = group_event->state;
1433
1434 event_sched_out(group_event, cpuctx, ctx);
1435
1436 /*
1437 * Schedule out siblings (if any):
1438 */
1439 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1440 event_sched_out(event, cpuctx, ctx);
1441
1442 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1443 cpuctx->exclusive = 0;
1444}
1445
1446struct remove_event {
1447 struct perf_event *event;
1448 bool detach_group;
1449};
1450
1451/*
1452 * Cross CPU call to remove a performance event
1453 *
1454 * We disable the event on the hardware level first. After that we
1455 * remove it from the context list.
1456 */
1457static int __perf_remove_from_context(void *info)
1458{
1459 struct remove_event *re = info;
1460 struct perf_event *event = re->event;
1461 struct perf_event_context *ctx = event->ctx;
1462 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1463
1464 raw_spin_lock(&ctx->lock);
1465 event_sched_out(event, cpuctx, ctx);
1466 if (re->detach_group)
1467 perf_group_detach(event);
1468 list_del_event(event, ctx);
1469 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1470 ctx->is_active = 0;
1471 cpuctx->task_ctx = NULL;
1472 }
1473 raw_spin_unlock(&ctx->lock);
1474
1475 return 0;
1476}
1477
1478
1479/*
1480 * Remove the event from a task's (or a CPU's) list of events.
1481 *
1482 * CPU events are removed with a smp call. For task events we only
1483 * call when the task is on a CPU.
1484 *
1485 * If event->ctx is a cloned context, callers must make sure that
1486 * every task struct that event->ctx->task could possibly point to
1487 * remains valid. This is OK when called from perf_release since
1488 * that only calls us on the top-level context, which can't be a clone.
1489 * When called from perf_event_exit_task, it's OK because the
1490 * context has been detached from its task.
1491 */
1492static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1493{
1494 struct perf_event_context *ctx = event->ctx;
1495 struct task_struct *task = ctx->task;
1496 struct remove_event re = {
1497 .event = event,
1498 .detach_group = detach_group,
1499 };
1500
1501 lockdep_assert_held(&ctx->mutex);
1502
1503 if (!task) {
1504 /*
1505 * Per cpu events are removed via an smp call and
1506 * the removal is always successful.
1507 */
1508 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1509 return;
1510 }
1511
1512retry:
1513 if (!task_function_call(task, __perf_remove_from_context, &re))
1514 return;
1515
1516 raw_spin_lock_irq(&ctx->lock);
1517 /*
1518 * If we failed to find a running task, but find the context active now
1519 * that we've acquired the ctx->lock, retry.
1520 */
1521 if (ctx->is_active) {
1522 raw_spin_unlock_irq(&ctx->lock);
1523 goto retry;
1524 }
1525
1526 /*
1527 * Since the task isn't running, its safe to remove the event, us
1528 * holding the ctx->lock ensures the task won't get scheduled in.
1529 */
1530 if (detach_group)
1531 perf_group_detach(event);
1532 list_del_event(event, ctx);
1533 raw_spin_unlock_irq(&ctx->lock);
1534}
1535
1536/*
1537 * Cross CPU call to disable a performance event
1538 */
1539int __perf_event_disable(void *info)
1540{
1541 struct perf_event *event = info;
1542 struct perf_event_context *ctx = event->ctx;
1543 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1544
1545 /*
1546 * If this is a per-task event, need to check whether this
1547 * event's task is the current task on this cpu.
1548 *
1549 * Can trigger due to concurrent perf_event_context_sched_out()
1550 * flipping contexts around.
1551 */
1552 if (ctx->task && cpuctx->task_ctx != ctx)
1553 return -EINVAL;
1554
1555 raw_spin_lock(&ctx->lock);
1556
1557 /*
1558 * If the event is on, turn it off.
1559 * If it is in error state, leave it in error state.
1560 */
1561 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1562 update_context_time(ctx);
1563 update_cgrp_time_from_event(event);
1564 update_group_times(event);
1565 if (event == event->group_leader)
1566 group_sched_out(event, cpuctx, ctx);
1567 else
1568 event_sched_out(event, cpuctx, ctx);
1569 event->state = PERF_EVENT_STATE_OFF;
1570 }
1571
1572 raw_spin_unlock(&ctx->lock);
1573
1574 return 0;
1575}
1576
1577/*
1578 * Disable a event.
1579 *
1580 * If event->ctx is a cloned context, callers must make sure that
1581 * every task struct that event->ctx->task could possibly point to
1582 * remains valid. This condition is satisifed when called through
1583 * perf_event_for_each_child or perf_event_for_each because they
1584 * hold the top-level event's child_mutex, so any descendant that
1585 * goes to exit will block in sync_child_event.
1586 * When called from perf_pending_event it's OK because event->ctx
1587 * is the current context on this CPU and preemption is disabled,
1588 * hence we can't get into perf_event_task_sched_out for this context.
1589 */
1590void perf_event_disable(struct perf_event *event)
1591{
1592 struct perf_event_context *ctx = event->ctx;
1593 struct task_struct *task = ctx->task;
1594
1595 if (!task) {
1596 /*
1597 * Disable the event on the cpu that it's on
1598 */
1599 cpu_function_call(event->cpu, __perf_event_disable, event);
1600 return;
1601 }
1602
1603retry:
1604 if (!task_function_call(task, __perf_event_disable, event))
1605 return;
1606
1607 raw_spin_lock_irq(&ctx->lock);
1608 /*
1609 * If the event is still active, we need to retry the cross-call.
1610 */
1611 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1612 raw_spin_unlock_irq(&ctx->lock);
1613 /*
1614 * Reload the task pointer, it might have been changed by
1615 * a concurrent perf_event_context_sched_out().
1616 */
1617 task = ctx->task;
1618 goto retry;
1619 }
1620
1621 /*
1622 * Since we have the lock this context can't be scheduled
1623 * in, so we can change the state safely.
1624 */
1625 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1626 update_group_times(event);
1627 event->state = PERF_EVENT_STATE_OFF;
1628 }
1629 raw_spin_unlock_irq(&ctx->lock);
1630}
1631EXPORT_SYMBOL_GPL(perf_event_disable);
1632
1633static void perf_set_shadow_time(struct perf_event *event,
1634 struct perf_event_context *ctx,
1635 u64 tstamp)
1636{
1637 /*
1638 * use the correct time source for the time snapshot
1639 *
1640 * We could get by without this by leveraging the
1641 * fact that to get to this function, the caller
1642 * has most likely already called update_context_time()
1643 * and update_cgrp_time_xx() and thus both timestamp
1644 * are identical (or very close). Given that tstamp is,
1645 * already adjusted for cgroup, we could say that:
1646 * tstamp - ctx->timestamp
1647 * is equivalent to
1648 * tstamp - cgrp->timestamp.
1649 *
1650 * Then, in perf_output_read(), the calculation would
1651 * work with no changes because:
1652 * - event is guaranteed scheduled in
1653 * - no scheduled out in between
1654 * - thus the timestamp would be the same
1655 *
1656 * But this is a bit hairy.
1657 *
1658 * So instead, we have an explicit cgroup call to remain
1659 * within the time time source all along. We believe it
1660 * is cleaner and simpler to understand.
1661 */
1662 if (is_cgroup_event(event))
1663 perf_cgroup_set_shadow_time(event, tstamp);
1664 else
1665 event->shadow_ctx_time = tstamp - ctx->timestamp;
1666}
1667
1668#define MAX_INTERRUPTS (~0ULL)
1669
1670static void perf_log_throttle(struct perf_event *event, int enable);
1671
1672static int
1673event_sched_in(struct perf_event *event,
1674 struct perf_cpu_context *cpuctx,
1675 struct perf_event_context *ctx)
1676{
1677 u64 tstamp = perf_event_time(event);
1678 int ret = 0;
1679
1680 if (event->state <= PERF_EVENT_STATE_OFF)
1681 return 0;
1682
1683 event->state = PERF_EVENT_STATE_ACTIVE;
1684 event->oncpu = smp_processor_id();
1685
1686 /*
1687 * Unthrottle events, since we scheduled we might have missed several
1688 * ticks already, also for a heavily scheduling task there is little
1689 * guarantee it'll get a tick in a timely manner.
1690 */
1691 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1692 perf_log_throttle(event, 1);
1693 event->hw.interrupts = 0;
1694 }
1695
1696 /*
1697 * The new state must be visible before we turn it on in the hardware:
1698 */
1699 smp_wmb();
1700
1701 perf_pmu_disable(event->pmu);
1702
1703 if (event->pmu->add(event, PERF_EF_START)) {
1704 event->state = PERF_EVENT_STATE_INACTIVE;
1705 event->oncpu = -1;
1706 ret = -EAGAIN;
1707 goto out;
1708 }
1709
1710 event->tstamp_running += tstamp - event->tstamp_stopped;
1711
1712 perf_set_shadow_time(event, ctx, tstamp);
1713
1714 if (!is_software_event(event))
1715 cpuctx->active_oncpu++;
1716 ctx->nr_active++;
1717 if (event->attr.freq && event->attr.sample_freq)
1718 ctx->nr_freq++;
1719
1720 if (event->attr.exclusive)
1721 cpuctx->exclusive = 1;
1722
1723out:
1724 perf_pmu_enable(event->pmu);
1725
1726 return ret;
1727}
1728
1729static int
1730group_sched_in(struct perf_event *group_event,
1731 struct perf_cpu_context *cpuctx,
1732 struct perf_event_context *ctx)
1733{
1734 struct perf_event *event, *partial_group = NULL;
1735 struct pmu *pmu = ctx->pmu;
1736 u64 now = ctx->time;
1737 bool simulate = false;
1738
1739 if (group_event->state == PERF_EVENT_STATE_OFF)
1740 return 0;
1741
1742 pmu->start_txn(pmu);
1743
1744 if (event_sched_in(group_event, cpuctx, ctx)) {
1745 pmu->cancel_txn(pmu);
1746 perf_cpu_hrtimer_restart(cpuctx);
1747 return -EAGAIN;
1748 }
1749
1750 /*
1751 * Schedule in siblings as one group (if any):
1752 */
1753 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1754 if (event_sched_in(event, cpuctx, ctx)) {
1755 partial_group = event;
1756 goto group_error;
1757 }
1758 }
1759
1760 if (!pmu->commit_txn(pmu))
1761 return 0;
1762
1763group_error:
1764 /*
1765 * Groups can be scheduled in as one unit only, so undo any
1766 * partial group before returning:
1767 * The events up to the failed event are scheduled out normally,
1768 * tstamp_stopped will be updated.
1769 *
1770 * The failed events and the remaining siblings need to have
1771 * their timings updated as if they had gone thru event_sched_in()
1772 * and event_sched_out(). This is required to get consistent timings
1773 * across the group. This also takes care of the case where the group
1774 * could never be scheduled by ensuring tstamp_stopped is set to mark
1775 * the time the event was actually stopped, such that time delta
1776 * calculation in update_event_times() is correct.
1777 */
1778 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1779 if (event == partial_group)
1780 simulate = true;
1781
1782 if (simulate) {
1783 event->tstamp_running += now - event->tstamp_stopped;
1784 event->tstamp_stopped = now;
1785 } else {
1786 event_sched_out(event, cpuctx, ctx);
1787 }
1788 }
1789 event_sched_out(group_event, cpuctx, ctx);
1790
1791 pmu->cancel_txn(pmu);
1792
1793 perf_cpu_hrtimer_restart(cpuctx);
1794
1795 return -EAGAIN;
1796}
1797
1798/*
1799 * Work out whether we can put this event group on the CPU now.
1800 */
1801static int group_can_go_on(struct perf_event *event,
1802 struct perf_cpu_context *cpuctx,
1803 int can_add_hw)
1804{
1805 /*
1806 * Groups consisting entirely of software events can always go on.
1807 */
1808 if (event->group_flags & PERF_GROUP_SOFTWARE)
1809 return 1;
1810 /*
1811 * If an exclusive group is already on, no other hardware
1812 * events can go on.
1813 */
1814 if (cpuctx->exclusive)
1815 return 0;
1816 /*
1817 * If this group is exclusive and there are already
1818 * events on the CPU, it can't go on.
1819 */
1820 if (event->attr.exclusive && cpuctx->active_oncpu)
1821 return 0;
1822 /*
1823 * Otherwise, try to add it if all previous groups were able
1824 * to go on.
1825 */
1826 return can_add_hw;
1827}
1828
1829static void add_event_to_ctx(struct perf_event *event,
1830 struct perf_event_context *ctx)
1831{
1832 u64 tstamp = perf_event_time(event);
1833
1834 list_add_event(event, ctx);
1835 perf_group_attach(event);
1836 event->tstamp_enabled = tstamp;
1837 event->tstamp_running = tstamp;
1838 event->tstamp_stopped = tstamp;
1839}
1840
1841static void task_ctx_sched_out(struct perf_event_context *ctx);
1842static void
1843ctx_sched_in(struct perf_event_context *ctx,
1844 struct perf_cpu_context *cpuctx,
1845 enum event_type_t event_type,
1846 struct task_struct *task);
1847
1848static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1849 struct perf_event_context *ctx,
1850 struct task_struct *task)
1851{
1852 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1853 if (ctx)
1854 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1855 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1856 if (ctx)
1857 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1858}
1859
1860/*
1861 * Cross CPU call to install and enable a performance event
1862 *
1863 * Must be called with ctx->mutex held
1864 */
1865static int __perf_install_in_context(void *info)
1866{
1867 struct perf_event *event = info;
1868 struct perf_event_context *ctx = event->ctx;
1869 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1870 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1871 struct task_struct *task = current;
1872
1873 perf_ctx_lock(cpuctx, task_ctx);
1874 perf_pmu_disable(cpuctx->ctx.pmu);
1875
1876 /*
1877 * If there was an active task_ctx schedule it out.
1878 */
1879 if (task_ctx)
1880 task_ctx_sched_out(task_ctx);
1881
1882 /*
1883 * If the context we're installing events in is not the
1884 * active task_ctx, flip them.
1885 */
1886 if (ctx->task && task_ctx != ctx) {
1887 if (task_ctx)
1888 raw_spin_unlock(&task_ctx->lock);
1889 raw_spin_lock(&ctx->lock);
1890 task_ctx = ctx;
1891 }
1892
1893 if (task_ctx) {
1894 cpuctx->task_ctx = task_ctx;
1895 task = task_ctx->task;
1896 }
1897
1898 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1899
1900 update_context_time(ctx);
1901 /*
1902 * update cgrp time only if current cgrp
1903 * matches event->cgrp. Must be done before
1904 * calling add_event_to_ctx()
1905 */
1906 update_cgrp_time_from_event(event);
1907
1908 add_event_to_ctx(event, ctx);
1909
1910 /*
1911 * Schedule everything back in
1912 */
1913 perf_event_sched_in(cpuctx, task_ctx, task);
1914
1915 perf_pmu_enable(cpuctx->ctx.pmu);
1916 perf_ctx_unlock(cpuctx, task_ctx);
1917
1918 return 0;
1919}
1920
1921/*
1922 * Attach a performance event to a context
1923 *
1924 * First we add the event to the list with the hardware enable bit
1925 * in event->hw_config cleared.
1926 *
1927 * If the event is attached to a task which is on a CPU we use a smp
1928 * call to enable it in the task context. The task might have been
1929 * scheduled away, but we check this in the smp call again.
1930 */
1931static void
1932perf_install_in_context(struct perf_event_context *ctx,
1933 struct perf_event *event,
1934 int cpu)
1935{
1936 struct task_struct *task = ctx->task;
1937
1938 lockdep_assert_held(&ctx->mutex);
1939
1940 event->ctx = ctx;
1941 if (event->cpu != -1)
1942 event->cpu = cpu;
1943
1944 if (!task) {
1945 /*
1946 * Per cpu events are installed via an smp call and
1947 * the install is always successful.
1948 */
1949 cpu_function_call(cpu, __perf_install_in_context, event);
1950 return;
1951 }
1952
1953retry:
1954 if (!task_function_call(task, __perf_install_in_context, event))
1955 return;
1956
1957 raw_spin_lock_irq(&ctx->lock);
1958 /*
1959 * If we failed to find a running task, but find the context active now
1960 * that we've acquired the ctx->lock, retry.
1961 */
1962 if (ctx->is_active) {
1963 raw_spin_unlock_irq(&ctx->lock);
1964 goto retry;
1965 }
1966
1967 /*
1968 * Since the task isn't running, its safe to add the event, us holding
1969 * the ctx->lock ensures the task won't get scheduled in.
1970 */
1971 add_event_to_ctx(event, ctx);
1972 raw_spin_unlock_irq(&ctx->lock);
1973}
1974
1975/*
1976 * Put a event into inactive state and update time fields.
1977 * Enabling the leader of a group effectively enables all
1978 * the group members that aren't explicitly disabled, so we
1979 * have to update their ->tstamp_enabled also.
1980 * Note: this works for group members as well as group leaders
1981 * since the non-leader members' sibling_lists will be empty.
1982 */
1983static void __perf_event_mark_enabled(struct perf_event *event)
1984{
1985 struct perf_event *sub;
1986 u64 tstamp = perf_event_time(event);
1987
1988 event->state = PERF_EVENT_STATE_INACTIVE;
1989 event->tstamp_enabled = tstamp - event->total_time_enabled;
1990 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1991 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1992 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1993 }
1994}
1995
1996/*
1997 * Cross CPU call to enable a performance event
1998 */
1999static int __perf_event_enable(void *info)
2000{
2001 struct perf_event *event = info;
2002 struct perf_event_context *ctx = event->ctx;
2003 struct perf_event *leader = event->group_leader;
2004 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2005 int err;
2006
2007 /*
2008 * There's a time window between 'ctx->is_active' check
2009 * in perf_event_enable function and this place having:
2010 * - IRQs on
2011 * - ctx->lock unlocked
2012 *
2013 * where the task could be killed and 'ctx' deactivated
2014 * by perf_event_exit_task.
2015 */
2016 if (!ctx->is_active)
2017 return -EINVAL;
2018
2019 raw_spin_lock(&ctx->lock);
2020 update_context_time(ctx);
2021
2022 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2023 goto unlock;
2024
2025 /*
2026 * set current task's cgroup time reference point
2027 */
2028 perf_cgroup_set_timestamp(current, ctx);
2029
2030 __perf_event_mark_enabled(event);
2031
2032 if (!event_filter_match(event)) {
2033 if (is_cgroup_event(event))
2034 perf_cgroup_defer_enabled(event);
2035 goto unlock;
2036 }
2037
2038 /*
2039 * If the event is in a group and isn't the group leader,
2040 * then don't put it on unless the group is on.
2041 */
2042 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2043 goto unlock;
2044
2045 if (!group_can_go_on(event, cpuctx, 1)) {
2046 err = -EEXIST;
2047 } else {
2048 if (event == leader)
2049 err = group_sched_in(event, cpuctx, ctx);
2050 else
2051 err = event_sched_in(event, cpuctx, ctx);
2052 }
2053
2054 if (err) {
2055 /*
2056 * If this event can't go on and it's part of a
2057 * group, then the whole group has to come off.
2058 */
2059 if (leader != event) {
2060 group_sched_out(leader, cpuctx, ctx);
2061 perf_cpu_hrtimer_restart(cpuctx);
2062 }
2063 if (leader->attr.pinned) {
2064 update_group_times(leader);
2065 leader->state = PERF_EVENT_STATE_ERROR;
2066 }
2067 }
2068
2069unlock:
2070 raw_spin_unlock(&ctx->lock);
2071
2072 return 0;
2073}
2074
2075/*
2076 * Enable a event.
2077 *
2078 * If event->ctx is a cloned context, callers must make sure that
2079 * every task struct that event->ctx->task could possibly point to
2080 * remains valid. This condition is satisfied when called through
2081 * perf_event_for_each_child or perf_event_for_each as described
2082 * for perf_event_disable.
2083 */
2084void perf_event_enable(struct perf_event *event)
2085{
2086 struct perf_event_context *ctx = event->ctx;
2087 struct task_struct *task = ctx->task;
2088
2089 if (!task) {
2090 /*
2091 * Enable the event on the cpu that it's on
2092 */
2093 cpu_function_call(event->cpu, __perf_event_enable, event);
2094 return;
2095 }
2096
2097 raw_spin_lock_irq(&ctx->lock);
2098 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2099 goto out;
2100
2101 /*
2102 * If the event is in error state, clear that first.
2103 * That way, if we see the event in error state below, we
2104 * know that it has gone back into error state, as distinct
2105 * from the task having been scheduled away before the
2106 * cross-call arrived.
2107 */
2108 if (event->state == PERF_EVENT_STATE_ERROR)
2109 event->state = PERF_EVENT_STATE_OFF;
2110
2111retry:
2112 if (!ctx->is_active) {
2113 __perf_event_mark_enabled(event);
2114 goto out;
2115 }
2116
2117 raw_spin_unlock_irq(&ctx->lock);
2118
2119 if (!task_function_call(task, __perf_event_enable, event))
2120 return;
2121
2122 raw_spin_lock_irq(&ctx->lock);
2123
2124 /*
2125 * If the context is active and the event is still off,
2126 * we need to retry the cross-call.
2127 */
2128 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2129 /*
2130 * task could have been flipped by a concurrent
2131 * perf_event_context_sched_out()
2132 */
2133 task = ctx->task;
2134 goto retry;
2135 }
2136
2137out:
2138 raw_spin_unlock_irq(&ctx->lock);
2139}
2140EXPORT_SYMBOL_GPL(perf_event_enable);
2141
2142int perf_event_refresh(struct perf_event *event, int refresh)
2143{
2144 /*
2145 * not supported on inherited events
2146 */
2147 if (event->attr.inherit || !is_sampling_event(event))
2148 return -EINVAL;
2149
2150 atomic_add(refresh, &event->event_limit);
2151 perf_event_enable(event);
2152
2153 return 0;
2154}
2155EXPORT_SYMBOL_GPL(perf_event_refresh);
2156
2157static void ctx_sched_out(struct perf_event_context *ctx,
2158 struct perf_cpu_context *cpuctx,
2159 enum event_type_t event_type)
2160{
2161 struct perf_event *event;
2162 int is_active = ctx->is_active;
2163
2164 ctx->is_active &= ~event_type;
2165 if (likely(!ctx->nr_events))
2166 return;
2167
2168 update_context_time(ctx);
2169 update_cgrp_time_from_cpuctx(cpuctx);
2170 if (!ctx->nr_active)
2171 return;
2172
2173 perf_pmu_disable(ctx->pmu);
2174 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2175 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2176 group_sched_out(event, cpuctx, ctx);
2177 }
2178
2179 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2180 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2181 group_sched_out(event, cpuctx, ctx);
2182 }
2183 perf_pmu_enable(ctx->pmu);
2184}
2185
2186/*
2187 * Test whether two contexts are equivalent, i.e. whether they have both been
2188 * cloned from the same version of the same context.
2189 *
2190 * Equivalence is measured using a generation number in the context that is
2191 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2192 * and list_del_event().
2193 */
2194static int context_equiv(struct perf_event_context *ctx1,
2195 struct perf_event_context *ctx2)
2196{
2197 /* Pinning disables the swap optimization */
2198 if (ctx1->pin_count || ctx2->pin_count)
2199 return 0;
2200
2201 /* If ctx1 is the parent of ctx2 */
2202 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2203 return 1;
2204
2205 /* If ctx2 is the parent of ctx1 */
2206 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2207 return 1;
2208
2209 /*
2210 * If ctx1 and ctx2 have the same parent; we flatten the parent
2211 * hierarchy, see perf_event_init_context().
2212 */
2213 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2214 ctx1->parent_gen == ctx2->parent_gen)
2215 return 1;
2216
2217 /* Unmatched */
2218 return 0;
2219}
2220
2221static void __perf_event_sync_stat(struct perf_event *event,
2222 struct perf_event *next_event)
2223{
2224 u64 value;
2225
2226 if (!event->attr.inherit_stat)
2227 return;
2228
2229 /*
2230 * Update the event value, we cannot use perf_event_read()
2231 * because we're in the middle of a context switch and have IRQs
2232 * disabled, which upsets smp_call_function_single(), however
2233 * we know the event must be on the current CPU, therefore we
2234 * don't need to use it.
2235 */
2236 switch (event->state) {
2237 case PERF_EVENT_STATE_ACTIVE:
2238 event->pmu->read(event);
2239 /* fall-through */
2240
2241 case PERF_EVENT_STATE_INACTIVE:
2242 update_event_times(event);
2243 break;
2244
2245 default:
2246 break;
2247 }
2248
2249 /*
2250 * In order to keep per-task stats reliable we need to flip the event
2251 * values when we flip the contexts.
2252 */
2253 value = local64_read(&next_event->count);
2254 value = local64_xchg(&event->count, value);
2255 local64_set(&next_event->count, value);
2256
2257 swap(event->total_time_enabled, next_event->total_time_enabled);
2258 swap(event->total_time_running, next_event->total_time_running);
2259
2260 /*
2261 * Since we swizzled the values, update the user visible data too.
2262 */
2263 perf_event_update_userpage(event);
2264 perf_event_update_userpage(next_event);
2265}
2266
2267static void perf_event_sync_stat(struct perf_event_context *ctx,
2268 struct perf_event_context *next_ctx)
2269{
2270 struct perf_event *event, *next_event;
2271
2272 if (!ctx->nr_stat)
2273 return;
2274
2275 update_context_time(ctx);
2276
2277 event = list_first_entry(&ctx->event_list,
2278 struct perf_event, event_entry);
2279
2280 next_event = list_first_entry(&next_ctx->event_list,
2281 struct perf_event, event_entry);
2282
2283 while (&event->event_entry != &ctx->event_list &&
2284 &next_event->event_entry != &next_ctx->event_list) {
2285
2286 __perf_event_sync_stat(event, next_event);
2287
2288 event = list_next_entry(event, event_entry);
2289 next_event = list_next_entry(next_event, event_entry);
2290 }
2291}
2292
2293static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2294 struct task_struct *next)
2295{
2296 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2297 struct perf_event_context *next_ctx;
2298 struct perf_event_context *parent, *next_parent;
2299 struct perf_cpu_context *cpuctx;
2300 int do_switch = 1;
2301
2302 if (likely(!ctx))
2303 return;
2304
2305 cpuctx = __get_cpu_context(ctx);
2306 if (!cpuctx->task_ctx)
2307 return;
2308
2309 rcu_read_lock();
2310 next_ctx = next->perf_event_ctxp[ctxn];
2311 if (!next_ctx)
2312 goto unlock;
2313
2314 parent = rcu_dereference(ctx->parent_ctx);
2315 next_parent = rcu_dereference(next_ctx->parent_ctx);
2316
2317 /* If neither context have a parent context; they cannot be clones. */
2318 if (!parent && !next_parent)
2319 goto unlock;
2320
2321 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2322 /*
2323 * Looks like the two contexts are clones, so we might be
2324 * able to optimize the context switch. We lock both
2325 * contexts and check that they are clones under the
2326 * lock (including re-checking that neither has been
2327 * uncloned in the meantime). It doesn't matter which
2328 * order we take the locks because no other cpu could
2329 * be trying to lock both of these tasks.
2330 */
2331 raw_spin_lock(&ctx->lock);
2332 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2333 if (context_equiv(ctx, next_ctx)) {
2334 /*
2335 * XXX do we need a memory barrier of sorts
2336 * wrt to rcu_dereference() of perf_event_ctxp
2337 */
2338 task->perf_event_ctxp[ctxn] = next_ctx;
2339 next->perf_event_ctxp[ctxn] = ctx;
2340 ctx->task = next;
2341 next_ctx->task = task;
2342 do_switch = 0;
2343
2344 perf_event_sync_stat(ctx, next_ctx);
2345 }
2346 raw_spin_unlock(&next_ctx->lock);
2347 raw_spin_unlock(&ctx->lock);
2348 }
2349unlock:
2350 rcu_read_unlock();
2351
2352 if (do_switch) {
2353 raw_spin_lock(&ctx->lock);
2354 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2355 cpuctx->task_ctx = NULL;
2356 raw_spin_unlock(&ctx->lock);
2357 }
2358}
2359
2360#define for_each_task_context_nr(ctxn) \
2361 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2362
2363/*
2364 * Called from scheduler to remove the events of the current task,
2365 * with interrupts disabled.
2366 *
2367 * We stop each event and update the event value in event->count.
2368 *
2369 * This does not protect us against NMI, but disable()
2370 * sets the disabled bit in the control field of event _before_
2371 * accessing the event control register. If a NMI hits, then it will
2372 * not restart the event.
2373 */
2374void __perf_event_task_sched_out(struct task_struct *task,
2375 struct task_struct *next)
2376{
2377 int ctxn;
2378
2379 for_each_task_context_nr(ctxn)
2380 perf_event_context_sched_out(task, ctxn, next);
2381
2382 /*
2383 * if cgroup events exist on this CPU, then we need
2384 * to check if we have to switch out PMU state.
2385 * cgroup event are system-wide mode only
2386 */
2387 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2388 perf_cgroup_sched_out(task, next);
2389}
2390
2391static void task_ctx_sched_out(struct perf_event_context *ctx)
2392{
2393 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2394
2395 if (!cpuctx->task_ctx)
2396 return;
2397
2398 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2399 return;
2400
2401 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2402 cpuctx->task_ctx = NULL;
2403}
2404
2405/*
2406 * Called with IRQs disabled
2407 */
2408static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2409 enum event_type_t event_type)
2410{
2411 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2412}
2413
2414static void
2415ctx_pinned_sched_in(struct perf_event_context *ctx,
2416 struct perf_cpu_context *cpuctx)
2417{
2418 struct perf_event *event;
2419
2420 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2421 if (event->state <= PERF_EVENT_STATE_OFF)
2422 continue;
2423 if (!event_filter_match(event))
2424 continue;
2425
2426 /* may need to reset tstamp_enabled */
2427 if (is_cgroup_event(event))
2428 perf_cgroup_mark_enabled(event, ctx);
2429
2430 if (group_can_go_on(event, cpuctx, 1))
2431 group_sched_in(event, cpuctx, ctx);
2432
2433 /*
2434 * If this pinned group hasn't been scheduled,
2435 * put it in error state.
2436 */
2437 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2438 update_group_times(event);
2439 event->state = PERF_EVENT_STATE_ERROR;
2440 }
2441 }
2442}
2443
2444static void
2445ctx_flexible_sched_in(struct perf_event_context *ctx,
2446 struct perf_cpu_context *cpuctx)
2447{
2448 struct perf_event *event;
2449 int can_add_hw = 1;
2450
2451 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2452 /* Ignore events in OFF or ERROR state */
2453 if (event->state <= PERF_EVENT_STATE_OFF)
2454 continue;
2455 /*
2456 * Listen to the 'cpu' scheduling filter constraint
2457 * of events:
2458 */
2459 if (!event_filter_match(event))
2460 continue;
2461
2462 /* may need to reset tstamp_enabled */
2463 if (is_cgroup_event(event))
2464 perf_cgroup_mark_enabled(event, ctx);
2465
2466 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2467 if (group_sched_in(event, cpuctx, ctx))
2468 can_add_hw = 0;
2469 }
2470 }
2471}
2472
2473static void
2474ctx_sched_in(struct perf_event_context *ctx,
2475 struct perf_cpu_context *cpuctx,
2476 enum event_type_t event_type,
2477 struct task_struct *task)
2478{
2479 u64 now;
2480 int is_active = ctx->is_active;
2481
2482 ctx->is_active |= event_type;
2483 if (likely(!ctx->nr_events))
2484 return;
2485
2486 now = perf_clock();
2487 ctx->timestamp = now;
2488 perf_cgroup_set_timestamp(task, ctx);
2489 /*
2490 * First go through the list and put on any pinned groups
2491 * in order to give them the best chance of going on.
2492 */
2493 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2494 ctx_pinned_sched_in(ctx, cpuctx);
2495
2496 /* Then walk through the lower prio flexible groups */
2497 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2498 ctx_flexible_sched_in(ctx, cpuctx);
2499}
2500
2501static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2502 enum event_type_t event_type,
2503 struct task_struct *task)
2504{
2505 struct perf_event_context *ctx = &cpuctx->ctx;
2506
2507 ctx_sched_in(ctx, cpuctx, event_type, task);
2508}
2509
2510static void perf_event_context_sched_in(struct perf_event_context *ctx,
2511 struct task_struct *task)
2512{
2513 struct perf_cpu_context *cpuctx;
2514
2515 cpuctx = __get_cpu_context(ctx);
2516 if (cpuctx->task_ctx == ctx)
2517 return;
2518
2519 perf_ctx_lock(cpuctx, ctx);
2520 perf_pmu_disable(ctx->pmu);
2521 /*
2522 * We want to keep the following priority order:
2523 * cpu pinned (that don't need to move), task pinned,
2524 * cpu flexible, task flexible.
2525 */
2526 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2527
2528 if (ctx->nr_events)
2529 cpuctx->task_ctx = ctx;
2530
2531 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2532
2533 perf_pmu_enable(ctx->pmu);
2534 perf_ctx_unlock(cpuctx, ctx);
2535
2536 /*
2537 * Since these rotations are per-cpu, we need to ensure the
2538 * cpu-context we got scheduled on is actually rotating.
2539 */
2540 perf_pmu_rotate_start(ctx->pmu);
2541}
2542
2543/*
2544 * When sampling the branck stack in system-wide, it may be necessary
2545 * to flush the stack on context switch. This happens when the branch
2546 * stack does not tag its entries with the pid of the current task.
2547 * Otherwise it becomes impossible to associate a branch entry with a
2548 * task. This ambiguity is more likely to appear when the branch stack
2549 * supports priv level filtering and the user sets it to monitor only
2550 * at the user level (which could be a useful measurement in system-wide
2551 * mode). In that case, the risk is high of having a branch stack with
2552 * branch from multiple tasks. Flushing may mean dropping the existing
2553 * entries or stashing them somewhere in the PMU specific code layer.
2554 *
2555 * This function provides the context switch callback to the lower code
2556 * layer. It is invoked ONLY when there is at least one system-wide context
2557 * with at least one active event using taken branch sampling.
2558 */
2559static void perf_branch_stack_sched_in(struct task_struct *prev,
2560 struct task_struct *task)
2561{
2562 struct perf_cpu_context *cpuctx;
2563 struct pmu *pmu;
2564 unsigned long flags;
2565
2566 /* no need to flush branch stack if not changing task */
2567 if (prev == task)
2568 return;
2569
2570 local_irq_save(flags);
2571
2572 rcu_read_lock();
2573
2574 list_for_each_entry_rcu(pmu, &pmus, entry) {
2575 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2576
2577 /*
2578 * check if the context has at least one
2579 * event using PERF_SAMPLE_BRANCH_STACK
2580 */
2581 if (cpuctx->ctx.nr_branch_stack > 0
2582 && pmu->flush_branch_stack) {
2583
2584 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2585
2586 perf_pmu_disable(pmu);
2587
2588 pmu->flush_branch_stack();
2589
2590 perf_pmu_enable(pmu);
2591
2592 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2593 }
2594 }
2595
2596 rcu_read_unlock();
2597
2598 local_irq_restore(flags);
2599}
2600
2601/*
2602 * Called from scheduler to add the events of the current task
2603 * with interrupts disabled.
2604 *
2605 * We restore the event value and then enable it.
2606 *
2607 * This does not protect us against NMI, but enable()
2608 * sets the enabled bit in the control field of event _before_
2609 * accessing the event control register. If a NMI hits, then it will
2610 * keep the event running.
2611 */
2612void __perf_event_task_sched_in(struct task_struct *prev,
2613 struct task_struct *task)
2614{
2615 struct perf_event_context *ctx;
2616 int ctxn;
2617
2618 for_each_task_context_nr(ctxn) {
2619 ctx = task->perf_event_ctxp[ctxn];
2620 if (likely(!ctx))
2621 continue;
2622
2623 perf_event_context_sched_in(ctx, task);
2624 }
2625 /*
2626 * if cgroup events exist on this CPU, then we need
2627 * to check if we have to switch in PMU state.
2628 * cgroup event are system-wide mode only
2629 */
2630 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2631 perf_cgroup_sched_in(prev, task);
2632
2633 /* check for system-wide branch_stack events */
2634 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2635 perf_branch_stack_sched_in(prev, task);
2636}
2637
2638static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2639{
2640 u64 frequency = event->attr.sample_freq;
2641 u64 sec = NSEC_PER_SEC;
2642 u64 divisor, dividend;
2643
2644 int count_fls, nsec_fls, frequency_fls, sec_fls;
2645
2646 count_fls = fls64(count);
2647 nsec_fls = fls64(nsec);
2648 frequency_fls = fls64(frequency);
2649 sec_fls = 30;
2650
2651 /*
2652 * We got @count in @nsec, with a target of sample_freq HZ
2653 * the target period becomes:
2654 *
2655 * @count * 10^9
2656 * period = -------------------
2657 * @nsec * sample_freq
2658 *
2659 */
2660
2661 /*
2662 * Reduce accuracy by one bit such that @a and @b converge
2663 * to a similar magnitude.
2664 */
2665#define REDUCE_FLS(a, b) \
2666do { \
2667 if (a##_fls > b##_fls) { \
2668 a >>= 1; \
2669 a##_fls--; \
2670 } else { \
2671 b >>= 1; \
2672 b##_fls--; \
2673 } \
2674} while (0)
2675
2676 /*
2677 * Reduce accuracy until either term fits in a u64, then proceed with
2678 * the other, so that finally we can do a u64/u64 division.
2679 */
2680 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2681 REDUCE_FLS(nsec, frequency);
2682 REDUCE_FLS(sec, count);
2683 }
2684
2685 if (count_fls + sec_fls > 64) {
2686 divisor = nsec * frequency;
2687
2688 while (count_fls + sec_fls > 64) {
2689 REDUCE_FLS(count, sec);
2690 divisor >>= 1;
2691 }
2692
2693 dividend = count * sec;
2694 } else {
2695 dividend = count * sec;
2696
2697 while (nsec_fls + frequency_fls > 64) {
2698 REDUCE_FLS(nsec, frequency);
2699 dividend >>= 1;
2700 }
2701
2702 divisor = nsec * frequency;
2703 }
2704
2705 if (!divisor)
2706 return dividend;
2707
2708 return div64_u64(dividend, divisor);
2709}
2710
2711static DEFINE_PER_CPU(int, perf_throttled_count);
2712static DEFINE_PER_CPU(u64, perf_throttled_seq);
2713
2714static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2715{
2716 struct hw_perf_event *hwc = &event->hw;
2717 s64 period, sample_period;
2718 s64 delta;
2719
2720 period = perf_calculate_period(event, nsec, count);
2721
2722 delta = (s64)(period - hwc->sample_period);
2723 delta = (delta + 7) / 8; /* low pass filter */
2724
2725 sample_period = hwc->sample_period + delta;
2726
2727 if (!sample_period)
2728 sample_period = 1;
2729
2730 hwc->sample_period = sample_period;
2731
2732 if (local64_read(&hwc->period_left) > 8*sample_period) {
2733 if (disable)
2734 event->pmu->stop(event, PERF_EF_UPDATE);
2735
2736 local64_set(&hwc->period_left, 0);
2737
2738 if (disable)
2739 event->pmu->start(event, PERF_EF_RELOAD);
2740 }
2741}
2742
2743/*
2744 * combine freq adjustment with unthrottling to avoid two passes over the
2745 * events. At the same time, make sure, having freq events does not change
2746 * the rate of unthrottling as that would introduce bias.
2747 */
2748static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2749 int needs_unthr)
2750{
2751 struct perf_event *event;
2752 struct hw_perf_event *hwc;
2753 u64 now, period = TICK_NSEC;
2754 s64 delta;
2755
2756 /*
2757 * only need to iterate over all events iff:
2758 * - context have events in frequency mode (needs freq adjust)
2759 * - there are events to unthrottle on this cpu
2760 */
2761 if (!(ctx->nr_freq || needs_unthr))
2762 return;
2763
2764 raw_spin_lock(&ctx->lock);
2765 perf_pmu_disable(ctx->pmu);
2766
2767 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2768 if (event->state != PERF_EVENT_STATE_ACTIVE)
2769 continue;
2770
2771 if (!event_filter_match(event))
2772 continue;
2773
2774 perf_pmu_disable(event->pmu);
2775
2776 hwc = &event->hw;
2777
2778 if (hwc->interrupts == MAX_INTERRUPTS) {
2779 hwc->interrupts = 0;
2780 perf_log_throttle(event, 1);
2781 event->pmu->start(event, 0);
2782 }
2783
2784 if (!event->attr.freq || !event->attr.sample_freq)
2785 goto next;
2786
2787 /*
2788 * stop the event and update event->count
2789 */
2790 event->pmu->stop(event, PERF_EF_UPDATE);
2791
2792 now = local64_read(&event->count);
2793 delta = now - hwc->freq_count_stamp;
2794 hwc->freq_count_stamp = now;
2795
2796 /*
2797 * restart the event
2798 * reload only if value has changed
2799 * we have stopped the event so tell that
2800 * to perf_adjust_period() to avoid stopping it
2801 * twice.
2802 */
2803 if (delta > 0)
2804 perf_adjust_period(event, period, delta, false);
2805
2806 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2807 next:
2808 perf_pmu_enable(event->pmu);
2809 }
2810
2811 perf_pmu_enable(ctx->pmu);
2812 raw_spin_unlock(&ctx->lock);
2813}
2814
2815/*
2816 * Round-robin a context's events:
2817 */
2818static void rotate_ctx(struct perf_event_context *ctx)
2819{
2820 /*
2821 * Rotate the first entry last of non-pinned groups. Rotation might be
2822 * disabled by the inheritance code.
2823 */
2824 if (!ctx->rotate_disable)
2825 list_rotate_left(&ctx->flexible_groups);
2826}
2827
2828/*
2829 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2830 * because they're strictly cpu affine and rotate_start is called with IRQs
2831 * disabled, while rotate_context is called from IRQ context.
2832 */
2833static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2834{
2835 struct perf_event_context *ctx = NULL;
2836 int rotate = 0, remove = 1;
2837
2838 if (cpuctx->ctx.nr_events) {
2839 remove = 0;
2840 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2841 rotate = 1;
2842 }
2843
2844 ctx = cpuctx->task_ctx;
2845 if (ctx && ctx->nr_events) {
2846 remove = 0;
2847 if (ctx->nr_events != ctx->nr_active)
2848 rotate = 1;
2849 }
2850
2851 if (!rotate)
2852 goto done;
2853
2854 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2855 perf_pmu_disable(cpuctx->ctx.pmu);
2856
2857 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2858 if (ctx)
2859 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2860
2861 rotate_ctx(&cpuctx->ctx);
2862 if (ctx)
2863 rotate_ctx(ctx);
2864
2865 perf_event_sched_in(cpuctx, ctx, current);
2866
2867 perf_pmu_enable(cpuctx->ctx.pmu);
2868 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2869done:
2870 if (remove)
2871 list_del_init(&cpuctx->rotation_list);
2872
2873 return rotate;
2874}
2875
2876#ifdef CONFIG_NO_HZ_FULL
2877bool perf_event_can_stop_tick(void)
2878{
2879 if (atomic_read(&nr_freq_events) ||
2880 __this_cpu_read(perf_throttled_count))
2881 return false;
2882 else
2883 return true;
2884}
2885#endif
2886
2887void perf_event_task_tick(void)
2888{
2889 struct list_head *head = &__get_cpu_var(rotation_list);
2890 struct perf_cpu_context *cpuctx, *tmp;
2891 struct perf_event_context *ctx;
2892 int throttled;
2893
2894 WARN_ON(!irqs_disabled());
2895
2896 __this_cpu_inc(perf_throttled_seq);
2897 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2898
2899 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2900 ctx = &cpuctx->ctx;
2901 perf_adjust_freq_unthr_context(ctx, throttled);
2902
2903 ctx = cpuctx->task_ctx;
2904 if (ctx)
2905 perf_adjust_freq_unthr_context(ctx, throttled);
2906 }
2907}
2908
2909static int event_enable_on_exec(struct perf_event *event,
2910 struct perf_event_context *ctx)
2911{
2912 if (!event->attr.enable_on_exec)
2913 return 0;
2914
2915 event->attr.enable_on_exec = 0;
2916 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2917 return 0;
2918
2919 __perf_event_mark_enabled(event);
2920
2921 return 1;
2922}
2923
2924/*
2925 * Enable all of a task's events that have been marked enable-on-exec.
2926 * This expects task == current.
2927 */
2928static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2929{
2930 struct perf_event *event;
2931 unsigned long flags;
2932 int enabled = 0;
2933 int ret;
2934
2935 local_irq_save(flags);
2936 if (!ctx || !ctx->nr_events)
2937 goto out;
2938
2939 /*
2940 * We must ctxsw out cgroup events to avoid conflict
2941 * when invoking perf_task_event_sched_in() later on
2942 * in this function. Otherwise we end up trying to
2943 * ctxswin cgroup events which are already scheduled
2944 * in.
2945 */
2946 perf_cgroup_sched_out(current, NULL);
2947
2948 raw_spin_lock(&ctx->lock);
2949 task_ctx_sched_out(ctx);
2950
2951 list_for_each_entry(event, &ctx->event_list, event_entry) {
2952 ret = event_enable_on_exec(event, ctx);
2953 if (ret)
2954 enabled = 1;
2955 }
2956
2957 /*
2958 * Unclone this context if we enabled any event.
2959 */
2960 if (enabled)
2961 unclone_ctx(ctx);
2962
2963 raw_spin_unlock(&ctx->lock);
2964
2965 /*
2966 * Also calls ctxswin for cgroup events, if any:
2967 */
2968 perf_event_context_sched_in(ctx, ctx->task);
2969out:
2970 local_irq_restore(flags);
2971}
2972
2973/*
2974 * Cross CPU call to read the hardware event
2975 */
2976static void __perf_event_read(void *info)
2977{
2978 struct perf_event *event = info;
2979 struct perf_event_context *ctx = event->ctx;
2980 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2981
2982 /*
2983 * If this is a task context, we need to check whether it is
2984 * the current task context of this cpu. If not it has been
2985 * scheduled out before the smp call arrived. In that case
2986 * event->count would have been updated to a recent sample
2987 * when the event was scheduled out.
2988 */
2989 if (ctx->task && cpuctx->task_ctx != ctx)
2990 return;
2991
2992 raw_spin_lock(&ctx->lock);
2993 if (ctx->is_active) {
2994 update_context_time(ctx);
2995 update_cgrp_time_from_event(event);
2996 }
2997 update_event_times(event);
2998 if (event->state == PERF_EVENT_STATE_ACTIVE)
2999 event->pmu->read(event);
3000 raw_spin_unlock(&ctx->lock);
3001}
3002
3003static inline u64 perf_event_count(struct perf_event *event)
3004{
3005 return local64_read(&event->count) + atomic64_read(&event->child_count);
3006}
3007
3008static u64 perf_event_read(struct perf_event *event)
3009{
3010 /*
3011 * If event is enabled and currently active on a CPU, update the
3012 * value in the event structure:
3013 */
3014 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3015 smp_call_function_single(event->oncpu,
3016 __perf_event_read, event, 1);
3017 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3018 struct perf_event_context *ctx = event->ctx;
3019 unsigned long flags;
3020
3021 raw_spin_lock_irqsave(&ctx->lock, flags);
3022 /*
3023 * may read while context is not active
3024 * (e.g., thread is blocked), in that case
3025 * we cannot update context time
3026 */
3027 if (ctx->is_active) {
3028 update_context_time(ctx);
3029 update_cgrp_time_from_event(event);
3030 }
3031 update_event_times(event);
3032 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3033 }
3034
3035 return perf_event_count(event);
3036}
3037
3038/*
3039 * Initialize the perf_event context in a task_struct:
3040 */
3041static void __perf_event_init_context(struct perf_event_context *ctx)
3042{
3043 raw_spin_lock_init(&ctx->lock);
3044 mutex_init(&ctx->mutex);
3045 INIT_LIST_HEAD(&ctx->pinned_groups);
3046 INIT_LIST_HEAD(&ctx->flexible_groups);
3047 INIT_LIST_HEAD(&ctx->event_list);
3048 atomic_set(&ctx->refcount, 1);
3049}
3050
3051static struct perf_event_context *
3052alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3053{
3054 struct perf_event_context *ctx;
3055
3056 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3057 if (!ctx)
3058 return NULL;
3059
3060 __perf_event_init_context(ctx);
3061 if (task) {
3062 ctx->task = task;
3063 get_task_struct(task);
3064 }
3065 ctx->pmu = pmu;
3066
3067 return ctx;
3068}
3069
3070static struct task_struct *
3071find_lively_task_by_vpid(pid_t vpid)
3072{
3073 struct task_struct *task;
3074 int err;
3075
3076 rcu_read_lock();
3077 if (!vpid)
3078 task = current;
3079 else
3080 task = find_task_by_vpid(vpid);
3081 if (task)
3082 get_task_struct(task);
3083 rcu_read_unlock();
3084
3085 if (!task)
3086 return ERR_PTR(-ESRCH);
3087
3088 /* Reuse ptrace permission checks for now. */
3089 err = -EACCES;
3090 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3091 goto errout;
3092
3093 return task;
3094errout:
3095 put_task_struct(task);
3096 return ERR_PTR(err);
3097
3098}
3099
3100/*
3101 * Returns a matching context with refcount and pincount.
3102 */
3103static struct perf_event_context *
3104find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3105{
3106 struct perf_event_context *ctx;
3107 struct perf_cpu_context *cpuctx;
3108 unsigned long flags;
3109 int ctxn, err;
3110
3111 if (!task) {
3112 /* Must be root to operate on a CPU event: */
3113 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3114 return ERR_PTR(-EACCES);
3115
3116 /*
3117 * We could be clever and allow to attach a event to an
3118 * offline CPU and activate it when the CPU comes up, but
3119 * that's for later.
3120 */
3121 if (!cpu_online(cpu))
3122 return ERR_PTR(-ENODEV);
3123
3124 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3125 ctx = &cpuctx->ctx;
3126 get_ctx(ctx);
3127 ++ctx->pin_count;
3128
3129 return ctx;
3130 }
3131
3132 err = -EINVAL;
3133 ctxn = pmu->task_ctx_nr;
3134 if (ctxn < 0)
3135 goto errout;
3136
3137retry:
3138 ctx = perf_lock_task_context(task, ctxn, &flags);
3139 if (ctx) {
3140 unclone_ctx(ctx);
3141 ++ctx->pin_count;
3142 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3143 } else {
3144 ctx = alloc_perf_context(pmu, task);
3145 err = -ENOMEM;
3146 if (!ctx)
3147 goto errout;
3148
3149 err = 0;
3150 mutex_lock(&task->perf_event_mutex);
3151 /*
3152 * If it has already passed perf_event_exit_task().
3153 * we must see PF_EXITING, it takes this mutex too.
3154 */
3155 if (task->flags & PF_EXITING)
3156 err = -ESRCH;
3157 else if (task->perf_event_ctxp[ctxn])
3158 err = -EAGAIN;
3159 else {
3160 get_ctx(ctx);
3161 ++ctx->pin_count;
3162 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3163 }
3164 mutex_unlock(&task->perf_event_mutex);
3165
3166 if (unlikely(err)) {
3167 put_ctx(ctx);
3168
3169 if (err == -EAGAIN)
3170 goto retry;
3171 goto errout;
3172 }
3173 }
3174
3175 return ctx;
3176
3177errout:
3178 return ERR_PTR(err);
3179}
3180
3181static void perf_event_free_filter(struct perf_event *event);
3182
3183static void free_event_rcu(struct rcu_head *head)
3184{
3185 struct perf_event *event;
3186
3187 event = container_of(head, struct perf_event, rcu_head);
3188 if (event->ns)
3189 put_pid_ns(event->ns);
3190 perf_event_free_filter(event);
3191 kfree(event);
3192}
3193
3194static void ring_buffer_put(struct ring_buffer *rb);
3195static void ring_buffer_attach(struct perf_event *event,
3196 struct ring_buffer *rb);
3197
3198static void unaccount_event_cpu(struct perf_event *event, int cpu)
3199{
3200 if (event->parent)
3201 return;
3202
3203 if (has_branch_stack(event)) {
3204 if (!(event->attach_state & PERF_ATTACH_TASK))
3205 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3206 }
3207 if (is_cgroup_event(event))
3208 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3209}
3210
3211static void unaccount_event(struct perf_event *event)
3212{
3213 if (event->parent)
3214 return;
3215
3216 if (event->attach_state & PERF_ATTACH_TASK)
3217 static_key_slow_dec_deferred(&perf_sched_events);
3218 if (event->attr.mmap || event->attr.mmap_data)
3219 atomic_dec(&nr_mmap_events);
3220 if (event->attr.comm)
3221 atomic_dec(&nr_comm_events);
3222 if (event->attr.task)
3223 atomic_dec(&nr_task_events);
3224 if (event->attr.freq)
3225 atomic_dec(&nr_freq_events);
3226 if (is_cgroup_event(event))
3227 static_key_slow_dec_deferred(&perf_sched_events);
3228 if (has_branch_stack(event))
3229 static_key_slow_dec_deferred(&perf_sched_events);
3230
3231 unaccount_event_cpu(event, event->cpu);
3232}
3233
3234static void __free_event(struct perf_event *event)
3235{
3236 if (!event->parent) {
3237 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3238 put_callchain_buffers();
3239 }
3240
3241 if (event->destroy)
3242 event->destroy(event);
3243
3244 if (event->ctx)
3245 put_ctx(event->ctx);
3246
3247 call_rcu(&event->rcu_head, free_event_rcu);
3248}
3249static void free_event(struct perf_event *event)
3250{
3251 irq_work_sync(&event->pending);
3252
3253 unaccount_event(event);
3254
3255 if (event->rb) {
3256 /*
3257 * Can happen when we close an event with re-directed output.
3258 *
3259 * Since we have a 0 refcount, perf_mmap_close() will skip
3260 * over us; possibly making our ring_buffer_put() the last.
3261 */
3262 mutex_lock(&event->mmap_mutex);
3263 ring_buffer_attach(event, NULL);
3264 mutex_unlock(&event->mmap_mutex);
3265 }
3266
3267 if (is_cgroup_event(event))
3268 perf_detach_cgroup(event);
3269
3270
3271 __free_event(event);
3272}
3273
3274int perf_event_release_kernel(struct perf_event *event)
3275{
3276 struct perf_event_context *ctx = event->ctx;
3277
3278 WARN_ON_ONCE(ctx->parent_ctx);
3279 /*
3280 * There are two ways this annotation is useful:
3281 *
3282 * 1) there is a lock recursion from perf_event_exit_task
3283 * see the comment there.
3284 *
3285 * 2) there is a lock-inversion with mmap_sem through
3286 * perf_event_read_group(), which takes faults while
3287 * holding ctx->mutex, however this is called after
3288 * the last filedesc died, so there is no possibility
3289 * to trigger the AB-BA case.
3290 */
3291 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3292 perf_remove_from_context(event, true);
3293 mutex_unlock(&ctx->mutex);
3294
3295 free_event(event);
3296
3297 return 0;
3298}
3299EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3300
3301/*
3302 * Called when the last reference to the file is gone.
3303 */
3304static void put_event(struct perf_event *event)
3305{
3306 struct task_struct *owner;
3307
3308 if (!atomic_long_dec_and_test(&event->refcount))
3309 return;
3310
3311 rcu_read_lock();
3312 owner = ACCESS_ONCE(event->owner);
3313 /*
3314 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3315 * !owner it means the list deletion is complete and we can indeed
3316 * free this event, otherwise we need to serialize on
3317 * owner->perf_event_mutex.
3318 */
3319 smp_read_barrier_depends();
3320 if (owner) {
3321 /*
3322 * Since delayed_put_task_struct() also drops the last
3323 * task reference we can safely take a new reference
3324 * while holding the rcu_read_lock().
3325 */
3326 get_task_struct(owner);
3327 }
3328 rcu_read_unlock();
3329
3330 if (owner) {
3331 mutex_lock(&owner->perf_event_mutex);
3332 /*
3333 * We have to re-check the event->owner field, if it is cleared
3334 * we raced with perf_event_exit_task(), acquiring the mutex
3335 * ensured they're done, and we can proceed with freeing the
3336 * event.
3337 */
3338 if (event->owner)
3339 list_del_init(&event->owner_entry);
3340 mutex_unlock(&owner->perf_event_mutex);
3341 put_task_struct(owner);
3342 }
3343
3344 perf_event_release_kernel(event);
3345}
3346
3347static int perf_release(struct inode *inode, struct file *file)
3348{
3349 put_event(file->private_data);
3350 return 0;
3351}
3352
3353u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3354{
3355 struct perf_event *child;
3356 u64 total = 0;
3357
3358 *enabled = 0;
3359 *running = 0;
3360
3361 mutex_lock(&event->child_mutex);
3362 total += perf_event_read(event);
3363 *enabled += event->total_time_enabled +
3364 atomic64_read(&event->child_total_time_enabled);
3365 *running += event->total_time_running +
3366 atomic64_read(&event->child_total_time_running);
3367
3368 list_for_each_entry(child, &event->child_list, child_list) {
3369 total += perf_event_read(child);
3370 *enabled += child->total_time_enabled;
3371 *running += child->total_time_running;
3372 }
3373 mutex_unlock(&event->child_mutex);
3374
3375 return total;
3376}
3377EXPORT_SYMBOL_GPL(perf_event_read_value);
3378
3379static int perf_event_read_group(struct perf_event *event,
3380 u64 read_format, char __user *buf)
3381{
3382 struct perf_event *leader = event->group_leader, *sub;
3383 int n = 0, size = 0, ret = -EFAULT;
3384 struct perf_event_context *ctx = leader->ctx;
3385 u64 values[5];
3386 u64 count, enabled, running;
3387
3388 mutex_lock(&ctx->mutex);
3389 count = perf_event_read_value(leader, &enabled, &running);
3390
3391 values[n++] = 1 + leader->nr_siblings;
3392 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3393 values[n++] = enabled;
3394 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3395 values[n++] = running;
3396 values[n++] = count;
3397 if (read_format & PERF_FORMAT_ID)
3398 values[n++] = primary_event_id(leader);
3399
3400 size = n * sizeof(u64);
3401
3402 if (copy_to_user(buf, values, size))
3403 goto unlock;
3404
3405 ret = size;
3406
3407 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3408 n = 0;
3409
3410 values[n++] = perf_event_read_value(sub, &enabled, &running);
3411 if (read_format & PERF_FORMAT_ID)
3412 values[n++] = primary_event_id(sub);
3413
3414 size = n * sizeof(u64);
3415
3416 if (copy_to_user(buf + ret, values, size)) {
3417 ret = -EFAULT;
3418 goto unlock;
3419 }
3420
3421 ret += size;
3422 }
3423unlock:
3424 mutex_unlock(&ctx->mutex);
3425
3426 return ret;
3427}
3428
3429static int perf_event_read_one(struct perf_event *event,
3430 u64 read_format, char __user *buf)
3431{
3432 u64 enabled, running;
3433 u64 values[4];
3434 int n = 0;
3435
3436 values[n++] = perf_event_read_value(event, &enabled, &running);
3437 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3438 values[n++] = enabled;
3439 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3440 values[n++] = running;
3441 if (read_format & PERF_FORMAT_ID)
3442 values[n++] = primary_event_id(event);
3443
3444 if (copy_to_user(buf, values, n * sizeof(u64)))
3445 return -EFAULT;
3446
3447 return n * sizeof(u64);
3448}
3449
3450/*
3451 * Read the performance event - simple non blocking version for now
3452 */
3453static ssize_t
3454perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3455{
3456 u64 read_format = event->attr.read_format;
3457 int ret;
3458
3459 /*
3460 * Return end-of-file for a read on a event that is in
3461 * error state (i.e. because it was pinned but it couldn't be
3462 * scheduled on to the CPU at some point).
3463 */
3464 if (event->state == PERF_EVENT_STATE_ERROR)
3465 return 0;
3466
3467 if (count < event->read_size)
3468 return -ENOSPC;
3469
3470 WARN_ON_ONCE(event->ctx->parent_ctx);
3471 if (read_format & PERF_FORMAT_GROUP)
3472 ret = perf_event_read_group(event, read_format, buf);
3473 else
3474 ret = perf_event_read_one(event, read_format, buf);
3475
3476 return ret;
3477}
3478
3479static ssize_t
3480perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3481{
3482 struct perf_event *event = file->private_data;
3483
3484 return perf_read_hw(event, buf, count);
3485}
3486
3487static unsigned int perf_poll(struct file *file, poll_table *wait)
3488{
3489 struct perf_event *event = file->private_data;
3490 struct ring_buffer *rb;
3491 unsigned int events = POLL_HUP;
3492
3493 /*
3494 * Pin the event->rb by taking event->mmap_mutex; otherwise
3495 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3496 */
3497 mutex_lock(&event->mmap_mutex);
3498 rb = event->rb;
3499 if (rb)
3500 events = atomic_xchg(&rb->poll, 0);
3501 mutex_unlock(&event->mmap_mutex);
3502
3503 poll_wait(file, &event->waitq, wait);
3504
3505 return events;
3506}
3507
3508static void perf_event_reset(struct perf_event *event)
3509{
3510 (void)perf_event_read(event);
3511 local64_set(&event->count, 0);
3512 perf_event_update_userpage(event);
3513}
3514
3515/*
3516 * Holding the top-level event's child_mutex means that any
3517 * descendant process that has inherited this event will block
3518 * in sync_child_event if it goes to exit, thus satisfying the
3519 * task existence requirements of perf_event_enable/disable.
3520 */
3521static void perf_event_for_each_child(struct perf_event *event,
3522 void (*func)(struct perf_event *))
3523{
3524 struct perf_event *child;
3525
3526 WARN_ON_ONCE(event->ctx->parent_ctx);
3527 mutex_lock(&event->child_mutex);
3528 func(event);
3529 list_for_each_entry(child, &event->child_list, child_list)
3530 func(child);
3531 mutex_unlock(&event->child_mutex);
3532}
3533
3534static void perf_event_for_each(struct perf_event *event,
3535 void (*func)(struct perf_event *))
3536{
3537 struct perf_event_context *ctx = event->ctx;
3538 struct perf_event *sibling;
3539
3540 WARN_ON_ONCE(ctx->parent_ctx);
3541 mutex_lock(&ctx->mutex);
3542 event = event->group_leader;
3543
3544 perf_event_for_each_child(event, func);
3545 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3546 perf_event_for_each_child(sibling, func);
3547 mutex_unlock(&ctx->mutex);
3548}
3549
3550static int perf_event_period(struct perf_event *event, u64 __user *arg)
3551{
3552 struct perf_event_context *ctx = event->ctx;
3553 int ret = 0, active;
3554 u64 value;
3555
3556 if (!is_sampling_event(event))
3557 return -EINVAL;
3558
3559 if (copy_from_user(&value, arg, sizeof(value)))
3560 return -EFAULT;
3561
3562 if (!value)
3563 return -EINVAL;
3564
3565 raw_spin_lock_irq(&ctx->lock);
3566 if (event->attr.freq) {
3567 if (value > sysctl_perf_event_sample_rate) {
3568 ret = -EINVAL;
3569 goto unlock;
3570 }
3571
3572 event->attr.sample_freq = value;
3573 } else {
3574 event->attr.sample_period = value;
3575 event->hw.sample_period = value;
3576 }
3577
3578 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3579 if (active) {
3580 perf_pmu_disable(ctx->pmu);
3581 event->pmu->stop(event, PERF_EF_UPDATE);
3582 }
3583
3584 local64_set(&event->hw.period_left, 0);
3585
3586 if (active) {
3587 event->pmu->start(event, PERF_EF_RELOAD);
3588 perf_pmu_enable(ctx->pmu);
3589 }
3590
3591unlock:
3592 raw_spin_unlock_irq(&ctx->lock);
3593
3594 return ret;
3595}
3596
3597static const struct file_operations perf_fops;
3598
3599static inline int perf_fget_light(int fd, struct fd *p)
3600{
3601 struct fd f = fdget(fd);
3602 if (!f.file)
3603 return -EBADF;
3604
3605 if (f.file->f_op != &perf_fops) {
3606 fdput(f);
3607 return -EBADF;
3608 }
3609 *p = f;
3610 return 0;
3611}
3612
3613static int perf_event_set_output(struct perf_event *event,
3614 struct perf_event *output_event);
3615static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3616
3617static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3618{
3619 struct perf_event *event = file->private_data;
3620 void (*func)(struct perf_event *);
3621 u32 flags = arg;
3622
3623 switch (cmd) {
3624 case PERF_EVENT_IOC_ENABLE:
3625 func = perf_event_enable;
3626 break;
3627 case PERF_EVENT_IOC_DISABLE:
3628 func = perf_event_disable;
3629 break;
3630 case PERF_EVENT_IOC_RESET:
3631 func = perf_event_reset;
3632 break;
3633
3634 case PERF_EVENT_IOC_REFRESH:
3635 return perf_event_refresh(event, arg);
3636
3637 case PERF_EVENT_IOC_PERIOD:
3638 return perf_event_period(event, (u64 __user *)arg);
3639
3640 case PERF_EVENT_IOC_ID:
3641 {
3642 u64 id = primary_event_id(event);
3643
3644 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3645 return -EFAULT;
3646 return 0;
3647 }
3648
3649 case PERF_EVENT_IOC_SET_OUTPUT:
3650 {
3651 int ret;
3652 if (arg != -1) {
3653 struct perf_event *output_event;
3654 struct fd output;
3655 ret = perf_fget_light(arg, &output);
3656 if (ret)
3657 return ret;
3658 output_event = output.file->private_data;
3659 ret = perf_event_set_output(event, output_event);
3660 fdput(output);
3661 } else {
3662 ret = perf_event_set_output(event, NULL);
3663 }
3664 return ret;
3665 }
3666
3667 case PERF_EVENT_IOC_SET_FILTER:
3668 return perf_event_set_filter(event, (void __user *)arg);
3669
3670 default:
3671 return -ENOTTY;
3672 }
3673
3674 if (flags & PERF_IOC_FLAG_GROUP)
3675 perf_event_for_each(event, func);
3676 else
3677 perf_event_for_each_child(event, func);
3678
3679 return 0;
3680}
3681
3682int perf_event_task_enable(void)
3683{
3684 struct perf_event *event;
3685
3686 mutex_lock(¤t->perf_event_mutex);
3687 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3688 perf_event_for_each_child(event, perf_event_enable);
3689 mutex_unlock(¤t->perf_event_mutex);
3690
3691 return 0;
3692}
3693
3694int perf_event_task_disable(void)
3695{
3696 struct perf_event *event;
3697
3698 mutex_lock(¤t->perf_event_mutex);
3699 list_for_each_entry(event, ¤t->perf_event_list, owner_entry)
3700 perf_event_for_each_child(event, perf_event_disable);
3701 mutex_unlock(¤t->perf_event_mutex);
3702
3703 return 0;
3704}
3705
3706static int perf_event_index(struct perf_event *event)
3707{
3708 if (event->hw.state & PERF_HES_STOPPED)
3709 return 0;
3710
3711 if (event->state != PERF_EVENT_STATE_ACTIVE)
3712 return 0;
3713
3714 return event->pmu->event_idx(event);
3715}
3716
3717static void calc_timer_values(struct perf_event *event,
3718 u64 *now,
3719 u64 *enabled,
3720 u64 *running)
3721{
3722 u64 ctx_time;
3723
3724 *now = perf_clock();
3725 ctx_time = event->shadow_ctx_time + *now;
3726 *enabled = ctx_time - event->tstamp_enabled;
3727 *running = ctx_time - event->tstamp_running;
3728}
3729
3730static void perf_event_init_userpage(struct perf_event *event)
3731{
3732 struct perf_event_mmap_page *userpg;
3733 struct ring_buffer *rb;
3734
3735 rcu_read_lock();
3736 rb = rcu_dereference(event->rb);
3737 if (!rb)
3738 goto unlock;
3739
3740 userpg = rb->user_page;
3741
3742 /* Allow new userspace to detect that bit 0 is deprecated */
3743 userpg->cap_bit0_is_deprecated = 1;
3744 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3745
3746unlock:
3747 rcu_read_unlock();
3748}
3749
3750void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3751{
3752}
3753
3754/*
3755 * Callers need to ensure there can be no nesting of this function, otherwise
3756 * the seqlock logic goes bad. We can not serialize this because the arch
3757 * code calls this from NMI context.
3758 */
3759void perf_event_update_userpage(struct perf_event *event)
3760{
3761 struct perf_event_mmap_page *userpg;
3762 struct ring_buffer *rb;
3763 u64 enabled, running, now;
3764
3765 rcu_read_lock();
3766 rb = rcu_dereference(event->rb);
3767 if (!rb)
3768 goto unlock;
3769
3770 /*
3771 * compute total_time_enabled, total_time_running
3772 * based on snapshot values taken when the event
3773 * was last scheduled in.
3774 *
3775 * we cannot simply called update_context_time()
3776 * because of locking issue as we can be called in
3777 * NMI context
3778 */
3779 calc_timer_values(event, &now, &enabled, &running);
3780
3781 userpg = rb->user_page;
3782 /*
3783 * Disable preemption so as to not let the corresponding user-space
3784 * spin too long if we get preempted.
3785 */
3786 preempt_disable();
3787 ++userpg->lock;
3788 barrier();
3789 userpg->index = perf_event_index(event);
3790 userpg->offset = perf_event_count(event);
3791 if (userpg->index)
3792 userpg->offset -= local64_read(&event->hw.prev_count);
3793
3794 userpg->time_enabled = enabled +
3795 atomic64_read(&event->child_total_time_enabled);
3796
3797 userpg->time_running = running +
3798 atomic64_read(&event->child_total_time_running);
3799
3800 arch_perf_update_userpage(userpg, now);
3801
3802 barrier();
3803 ++userpg->lock;
3804 preempt_enable();
3805unlock:
3806 rcu_read_unlock();
3807}
3808
3809static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3810{
3811 struct perf_event *event = vma->vm_file->private_data;
3812 struct ring_buffer *rb;
3813 int ret = VM_FAULT_SIGBUS;
3814
3815 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3816 if (vmf->pgoff == 0)
3817 ret = 0;
3818 return ret;
3819 }
3820
3821 rcu_read_lock();
3822 rb = rcu_dereference(event->rb);
3823 if (!rb)
3824 goto unlock;
3825
3826 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3827 goto unlock;
3828
3829 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3830 if (!vmf->page)
3831 goto unlock;
3832
3833 get_page(vmf->page);
3834 vmf->page->mapping = vma->vm_file->f_mapping;
3835 vmf->page->index = vmf->pgoff;
3836
3837 ret = 0;
3838unlock:
3839 rcu_read_unlock();
3840
3841 return ret;
3842}
3843
3844static void ring_buffer_attach(struct perf_event *event,
3845 struct ring_buffer *rb)
3846{
3847 struct ring_buffer *old_rb = NULL;
3848 unsigned long flags;
3849
3850 if (event->rb) {
3851 /*
3852 * Should be impossible, we set this when removing
3853 * event->rb_entry and wait/clear when adding event->rb_entry.
3854 */
3855 WARN_ON_ONCE(event->rcu_pending);
3856
3857 old_rb = event->rb;
3858 event->rcu_batches = get_state_synchronize_rcu();
3859 event->rcu_pending = 1;
3860
3861 spin_lock_irqsave(&old_rb->event_lock, flags);
3862 list_del_rcu(&event->rb_entry);
3863 spin_unlock_irqrestore(&old_rb->event_lock, flags);
3864 }
3865
3866 if (event->rcu_pending && rb) {
3867 cond_synchronize_rcu(event->rcu_batches);
3868 event->rcu_pending = 0;
3869 }
3870
3871 if (rb) {
3872 spin_lock_irqsave(&rb->event_lock, flags);
3873 list_add_rcu(&event->rb_entry, &rb->event_list);
3874 spin_unlock_irqrestore(&rb->event_lock, flags);
3875 }
3876
3877 rcu_assign_pointer(event->rb, rb);
3878
3879 if (old_rb) {
3880 ring_buffer_put(old_rb);
3881 /*
3882 * Since we detached before setting the new rb, so that we
3883 * could attach the new rb, we could have missed a wakeup.
3884 * Provide it now.
3885 */
3886 wake_up_all(&event->waitq);
3887 }
3888}
3889
3890static void ring_buffer_wakeup(struct perf_event *event)
3891{
3892 struct ring_buffer *rb;
3893
3894 rcu_read_lock();
3895 rb = rcu_dereference(event->rb);
3896 if (rb) {
3897 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3898 wake_up_all(&event->waitq);
3899 }
3900 rcu_read_unlock();
3901}
3902
3903static void rb_free_rcu(struct rcu_head *rcu_head)
3904{
3905 struct ring_buffer *rb;
3906
3907 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3908 rb_free(rb);
3909}
3910
3911static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3912{
3913 struct ring_buffer *rb;
3914
3915 rcu_read_lock();
3916 rb = rcu_dereference(event->rb);
3917 if (rb) {
3918 if (!atomic_inc_not_zero(&rb->refcount))
3919 rb = NULL;
3920 }
3921 rcu_read_unlock();
3922
3923 return rb;
3924}
3925
3926static void ring_buffer_put(struct ring_buffer *rb)
3927{
3928 if (!atomic_dec_and_test(&rb->refcount))
3929 return;
3930
3931 WARN_ON_ONCE(!list_empty(&rb->event_list));
3932
3933 call_rcu(&rb->rcu_head, rb_free_rcu);
3934}
3935
3936static void perf_mmap_open(struct vm_area_struct *vma)
3937{
3938 struct perf_event *event = vma->vm_file->private_data;
3939
3940 atomic_inc(&event->mmap_count);
3941 atomic_inc(&event->rb->mmap_count);
3942}
3943
3944/*
3945 * A buffer can be mmap()ed multiple times; either directly through the same
3946 * event, or through other events by use of perf_event_set_output().
3947 *
3948 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3949 * the buffer here, where we still have a VM context. This means we need
3950 * to detach all events redirecting to us.
3951 */
3952static void perf_mmap_close(struct vm_area_struct *vma)
3953{
3954 struct perf_event *event = vma->vm_file->private_data;
3955
3956 struct ring_buffer *rb = ring_buffer_get(event);
3957 struct user_struct *mmap_user = rb->mmap_user;
3958 int mmap_locked = rb->mmap_locked;
3959 unsigned long size = perf_data_size(rb);
3960
3961 atomic_dec(&rb->mmap_count);
3962
3963 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3964 goto out_put;
3965
3966 ring_buffer_attach(event, NULL);
3967 mutex_unlock(&event->mmap_mutex);
3968
3969 /* If there's still other mmap()s of this buffer, we're done. */
3970 if (atomic_read(&rb->mmap_count))
3971 goto out_put;
3972
3973 /*
3974 * No other mmap()s, detach from all other events that might redirect
3975 * into the now unreachable buffer. Somewhat complicated by the
3976 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3977 */
3978again:
3979 rcu_read_lock();
3980 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3981 if (!atomic_long_inc_not_zero(&event->refcount)) {
3982 /*
3983 * This event is en-route to free_event() which will
3984 * detach it and remove it from the list.
3985 */
3986 continue;
3987 }
3988 rcu_read_unlock();
3989
3990 mutex_lock(&event->mmap_mutex);
3991 /*
3992 * Check we didn't race with perf_event_set_output() which can
3993 * swizzle the rb from under us while we were waiting to
3994 * acquire mmap_mutex.
3995 *
3996 * If we find a different rb; ignore this event, a next
3997 * iteration will no longer find it on the list. We have to
3998 * still restart the iteration to make sure we're not now
3999 * iterating the wrong list.
4000 */
4001 if (event->rb == rb)
4002 ring_buffer_attach(event, NULL);
4003
4004 mutex_unlock(&event->mmap_mutex);
4005 put_event(event);
4006
4007 /*
4008 * Restart the iteration; either we're on the wrong list or
4009 * destroyed its integrity by doing a deletion.
4010 */
4011 goto again;
4012 }
4013 rcu_read_unlock();
4014
4015 /*
4016 * It could be there's still a few 0-ref events on the list; they'll
4017 * get cleaned up by free_event() -- they'll also still have their
4018 * ref on the rb and will free it whenever they are done with it.
4019 *
4020 * Aside from that, this buffer is 'fully' detached and unmapped,
4021 * undo the VM accounting.
4022 */
4023
4024 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4025 vma->vm_mm->pinned_vm -= mmap_locked;
4026 free_uid(mmap_user);
4027
4028out_put:
4029 ring_buffer_put(rb); /* could be last */
4030}
4031
4032static const struct vm_operations_struct perf_mmap_vmops = {
4033 .open = perf_mmap_open,
4034 .close = perf_mmap_close,
4035 .fault = perf_mmap_fault,
4036 .page_mkwrite = perf_mmap_fault,
4037};
4038
4039static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4040{
4041 struct perf_event *event = file->private_data;
4042 unsigned long user_locked, user_lock_limit;
4043 struct user_struct *user = current_user();
4044 unsigned long locked, lock_limit;
4045 struct ring_buffer *rb;
4046 unsigned long vma_size;
4047 unsigned long nr_pages;
4048 long user_extra, extra;
4049 int ret = 0, flags = 0;
4050
4051 /*
4052 * Don't allow mmap() of inherited per-task counters. This would
4053 * create a performance issue due to all children writing to the
4054 * same rb.
4055 */
4056 if (event->cpu == -1 && event->attr.inherit)
4057 return -EINVAL;
4058
4059 if (!(vma->vm_flags & VM_SHARED))
4060 return -EINVAL;
4061
4062 vma_size = vma->vm_end - vma->vm_start;
4063 nr_pages = (vma_size / PAGE_SIZE) - 1;
4064
4065 /*
4066 * If we have rb pages ensure they're a power-of-two number, so we
4067 * can do bitmasks instead of modulo.
4068 */
4069 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4070 return -EINVAL;
4071
4072 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4073 return -EINVAL;
4074
4075 if (vma->vm_pgoff != 0)
4076 return -EINVAL;
4077
4078 WARN_ON_ONCE(event->ctx->parent_ctx);
4079again:
4080 mutex_lock(&event->mmap_mutex);
4081 if (event->rb) {
4082 if (event->rb->nr_pages != nr_pages) {
4083 ret = -EINVAL;
4084 goto unlock;
4085 }
4086
4087 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4088 /*
4089 * Raced against perf_mmap_close() through
4090 * perf_event_set_output(). Try again, hope for better
4091 * luck.
4092 */
4093 mutex_unlock(&event->mmap_mutex);
4094 goto again;
4095 }
4096
4097 goto unlock;
4098 }
4099
4100 user_extra = nr_pages + 1;
4101 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4102
4103 /*
4104 * Increase the limit linearly with more CPUs:
4105 */
4106 user_lock_limit *= num_online_cpus();
4107
4108 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4109
4110 extra = 0;
4111 if (user_locked > user_lock_limit)
4112 extra = user_locked - user_lock_limit;
4113
4114 lock_limit = rlimit(RLIMIT_MEMLOCK);
4115 lock_limit >>= PAGE_SHIFT;
4116 locked = vma->vm_mm->pinned_vm + extra;
4117
4118 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4119 !capable(CAP_IPC_LOCK)) {
4120 ret = -EPERM;
4121 goto unlock;
4122 }
4123
4124 WARN_ON(event->rb);
4125
4126 if (vma->vm_flags & VM_WRITE)
4127 flags |= RING_BUFFER_WRITABLE;
4128
4129 rb = rb_alloc(nr_pages,
4130 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4131 event->cpu, flags);
4132
4133 if (!rb) {
4134 ret = -ENOMEM;
4135 goto unlock;
4136 }
4137
4138 atomic_set(&rb->mmap_count, 1);
4139 rb->mmap_locked = extra;
4140 rb->mmap_user = get_current_user();
4141
4142 atomic_long_add(user_extra, &user->locked_vm);
4143 vma->vm_mm->pinned_vm += extra;
4144
4145 ring_buffer_attach(event, rb);
4146
4147 perf_event_init_userpage(event);
4148 perf_event_update_userpage(event);
4149
4150unlock:
4151 if (!ret)
4152 atomic_inc(&event->mmap_count);
4153 mutex_unlock(&event->mmap_mutex);
4154
4155 /*
4156 * Since pinned accounting is per vm we cannot allow fork() to copy our
4157 * vma.
4158 */
4159 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4160 vma->vm_ops = &perf_mmap_vmops;
4161
4162 return ret;
4163}
4164
4165static int perf_fasync(int fd, struct file *filp, int on)
4166{
4167 struct inode *inode = file_inode(filp);
4168 struct perf_event *event = filp->private_data;
4169 int retval;
4170
4171 mutex_lock(&inode->i_mutex);
4172 retval = fasync_helper(fd, filp, on, &event->fasync);
4173 mutex_unlock(&inode->i_mutex);
4174
4175 if (retval < 0)
4176 return retval;
4177
4178 return 0;
4179}
4180
4181static const struct file_operations perf_fops = {
4182 .llseek = no_llseek,
4183 .release = perf_release,
4184 .read = perf_read,
4185 .poll = perf_poll,
4186 .unlocked_ioctl = perf_ioctl,
4187 .compat_ioctl = perf_ioctl,
4188 .mmap = perf_mmap,
4189 .fasync = perf_fasync,
4190};
4191
4192/*
4193 * Perf event wakeup
4194 *
4195 * If there's data, ensure we set the poll() state and publish everything
4196 * to user-space before waking everybody up.
4197 */
4198
4199void perf_event_wakeup(struct perf_event *event)
4200{
4201 ring_buffer_wakeup(event);
4202
4203 if (event->pending_kill) {
4204 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4205 event->pending_kill = 0;
4206 }
4207}
4208
4209static void perf_pending_event(struct irq_work *entry)
4210{
4211 struct perf_event *event = container_of(entry,
4212 struct perf_event, pending);
4213
4214 if (event->pending_disable) {
4215 event->pending_disable = 0;
4216 __perf_event_disable(event);
4217 }
4218
4219 if (event->pending_wakeup) {
4220 event->pending_wakeup = 0;
4221 perf_event_wakeup(event);
4222 }
4223}
4224
4225/*
4226 * We assume there is only KVM supporting the callbacks.
4227 * Later on, we might change it to a list if there is
4228 * another virtualization implementation supporting the callbacks.
4229 */
4230struct perf_guest_info_callbacks *perf_guest_cbs;
4231
4232int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4233{
4234 perf_guest_cbs = cbs;
4235 return 0;
4236}
4237EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4238
4239int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4240{
4241 perf_guest_cbs = NULL;
4242 return 0;
4243}
4244EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4245
4246static void
4247perf_output_sample_regs(struct perf_output_handle *handle,
4248 struct pt_regs *regs, u64 mask)
4249{
4250 int bit;
4251
4252 for_each_set_bit(bit, (const unsigned long *) &mask,
4253 sizeof(mask) * BITS_PER_BYTE) {
4254 u64 val;
4255
4256 val = perf_reg_value(regs, bit);
4257 perf_output_put(handle, val);
4258 }
4259}
4260
4261static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4262 struct pt_regs *regs)
4263{
4264 if (!user_mode(regs)) {
4265 if (current->mm)
4266 regs = task_pt_regs(current);
4267 else
4268 regs = NULL;
4269 }
4270
4271 if (regs) {
4272 regs_user->regs = regs;
4273 regs_user->abi = perf_reg_abi(current);
4274 }
4275}
4276
4277/*
4278 * Get remaining task size from user stack pointer.
4279 *
4280 * It'd be better to take stack vma map and limit this more
4281 * precisly, but there's no way to get it safely under interrupt,
4282 * so using TASK_SIZE as limit.
4283 */
4284static u64 perf_ustack_task_size(struct pt_regs *regs)
4285{
4286 unsigned long addr = perf_user_stack_pointer(regs);
4287
4288 if (!addr || addr >= TASK_SIZE)
4289 return 0;
4290
4291 return TASK_SIZE - addr;
4292}
4293
4294static u16
4295perf_sample_ustack_size(u16 stack_size, u16 header_size,
4296 struct pt_regs *regs)
4297{
4298 u64 task_size;
4299
4300 /* No regs, no stack pointer, no dump. */
4301 if (!regs)
4302 return 0;
4303
4304 /*
4305 * Check if we fit in with the requested stack size into the:
4306 * - TASK_SIZE
4307 * If we don't, we limit the size to the TASK_SIZE.
4308 *
4309 * - remaining sample size
4310 * If we don't, we customize the stack size to
4311 * fit in to the remaining sample size.
4312 */
4313
4314 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4315 stack_size = min(stack_size, (u16) task_size);
4316
4317 /* Current header size plus static size and dynamic size. */
4318 header_size += 2 * sizeof(u64);
4319
4320 /* Do we fit in with the current stack dump size? */
4321 if ((u16) (header_size + stack_size) < header_size) {
4322 /*
4323 * If we overflow the maximum size for the sample,
4324 * we customize the stack dump size to fit in.
4325 */
4326 stack_size = USHRT_MAX - header_size - sizeof(u64);
4327 stack_size = round_up(stack_size, sizeof(u64));
4328 }
4329
4330 return stack_size;
4331}
4332
4333static void
4334perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4335 struct pt_regs *regs)
4336{
4337 /* Case of a kernel thread, nothing to dump */
4338 if (!regs) {
4339 u64 size = 0;
4340 perf_output_put(handle, size);
4341 } else {
4342 unsigned long sp;
4343 unsigned int rem;
4344 u64 dyn_size;
4345
4346 /*
4347 * We dump:
4348 * static size
4349 * - the size requested by user or the best one we can fit
4350 * in to the sample max size
4351 * data
4352 * - user stack dump data
4353 * dynamic size
4354 * - the actual dumped size
4355 */
4356
4357 /* Static size. */
4358 perf_output_put(handle, dump_size);
4359
4360 /* Data. */
4361 sp = perf_user_stack_pointer(regs);
4362 rem = __output_copy_user(handle, (void *) sp, dump_size);
4363 dyn_size = dump_size - rem;
4364
4365 perf_output_skip(handle, rem);
4366
4367 /* Dynamic size. */
4368 perf_output_put(handle, dyn_size);
4369 }
4370}
4371
4372static void __perf_event_header__init_id(struct perf_event_header *header,
4373 struct perf_sample_data *data,
4374 struct perf_event *event)
4375{
4376 u64 sample_type = event->attr.sample_type;
4377
4378 data->type = sample_type;
4379 header->size += event->id_header_size;
4380
4381 if (sample_type & PERF_SAMPLE_TID) {
4382 /* namespace issues */
4383 data->tid_entry.pid = perf_event_pid(event, current);
4384 data->tid_entry.tid = perf_event_tid(event, current);
4385 }
4386
4387 if (sample_type & PERF_SAMPLE_TIME)
4388 data->time = perf_clock();
4389
4390 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4391 data->id = primary_event_id(event);
4392
4393 if (sample_type & PERF_SAMPLE_STREAM_ID)
4394 data->stream_id = event->id;
4395
4396 if (sample_type & PERF_SAMPLE_CPU) {
4397 data->cpu_entry.cpu = raw_smp_processor_id();
4398 data->cpu_entry.reserved = 0;
4399 }
4400}
4401
4402void perf_event_header__init_id(struct perf_event_header *header,
4403 struct perf_sample_data *data,
4404 struct perf_event *event)
4405{
4406 if (event->attr.sample_id_all)
4407 __perf_event_header__init_id(header, data, event);
4408}
4409
4410static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4411 struct perf_sample_data *data)
4412{
4413 u64 sample_type = data->type;
4414
4415 if (sample_type & PERF_SAMPLE_TID)
4416 perf_output_put(handle, data->tid_entry);
4417
4418 if (sample_type & PERF_SAMPLE_TIME)
4419 perf_output_put(handle, data->time);
4420
4421 if (sample_type & PERF_SAMPLE_ID)
4422 perf_output_put(handle, data->id);
4423
4424 if (sample_type & PERF_SAMPLE_STREAM_ID)
4425 perf_output_put(handle, data->stream_id);
4426
4427 if (sample_type & PERF_SAMPLE_CPU)
4428 perf_output_put(handle, data->cpu_entry);
4429
4430 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4431 perf_output_put(handle, data->id);
4432}
4433
4434void perf_event__output_id_sample(struct perf_event *event,
4435 struct perf_output_handle *handle,
4436 struct perf_sample_data *sample)
4437{
4438 if (event->attr.sample_id_all)
4439 __perf_event__output_id_sample(handle, sample);
4440}
4441
4442static void perf_output_read_one(struct perf_output_handle *handle,
4443 struct perf_event *event,
4444 u64 enabled, u64 running)
4445{
4446 u64 read_format = event->attr.read_format;
4447 u64 values[4];
4448 int n = 0;
4449
4450 values[n++] = perf_event_count(event);
4451 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4452 values[n++] = enabled +
4453 atomic64_read(&event->child_total_time_enabled);
4454 }
4455 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4456 values[n++] = running +
4457 atomic64_read(&event->child_total_time_running);
4458 }
4459 if (read_format & PERF_FORMAT_ID)
4460 values[n++] = primary_event_id(event);
4461
4462 __output_copy(handle, values, n * sizeof(u64));
4463}
4464
4465/*
4466 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4467 */
4468static void perf_output_read_group(struct perf_output_handle *handle,
4469 struct perf_event *event,
4470 u64 enabled, u64 running)
4471{
4472 struct perf_event *leader = event->group_leader, *sub;
4473 u64 read_format = event->attr.read_format;
4474 u64 values[5];
4475 int n = 0;
4476
4477 values[n++] = 1 + leader->nr_siblings;
4478
4479 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4480 values[n++] = enabled;
4481
4482 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4483 values[n++] = running;
4484
4485 if (leader != event)
4486 leader->pmu->read(leader);
4487
4488 values[n++] = perf_event_count(leader);
4489 if (read_format & PERF_FORMAT_ID)
4490 values[n++] = primary_event_id(leader);
4491
4492 __output_copy(handle, values, n * sizeof(u64));
4493
4494 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4495 n = 0;
4496
4497 if ((sub != event) &&
4498 (sub->state == PERF_EVENT_STATE_ACTIVE))
4499 sub->pmu->read(sub);
4500
4501 values[n++] = perf_event_count(sub);
4502 if (read_format & PERF_FORMAT_ID)
4503 values[n++] = primary_event_id(sub);
4504
4505 __output_copy(handle, values, n * sizeof(u64));
4506 }
4507}
4508
4509#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4510 PERF_FORMAT_TOTAL_TIME_RUNNING)
4511
4512static void perf_output_read(struct perf_output_handle *handle,
4513 struct perf_event *event)
4514{
4515 u64 enabled = 0, running = 0, now;
4516 u64 read_format = event->attr.read_format;
4517
4518 /*
4519 * compute total_time_enabled, total_time_running
4520 * based on snapshot values taken when the event
4521 * was last scheduled in.
4522 *
4523 * we cannot simply called update_context_time()
4524 * because of locking issue as we are called in
4525 * NMI context
4526 */
4527 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4528 calc_timer_values(event, &now, &enabled, &running);
4529
4530 if (event->attr.read_format & PERF_FORMAT_GROUP)
4531 perf_output_read_group(handle, event, enabled, running);
4532 else
4533 perf_output_read_one(handle, event, enabled, running);
4534}
4535
4536void perf_output_sample(struct perf_output_handle *handle,
4537 struct perf_event_header *header,
4538 struct perf_sample_data *data,
4539 struct perf_event *event)
4540{
4541 u64 sample_type = data->type;
4542
4543 perf_output_put(handle, *header);
4544
4545 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4546 perf_output_put(handle, data->id);
4547
4548 if (sample_type & PERF_SAMPLE_IP)
4549 perf_output_put(handle, data->ip);
4550
4551 if (sample_type & PERF_SAMPLE_TID)
4552 perf_output_put(handle, data->tid_entry);
4553
4554 if (sample_type & PERF_SAMPLE_TIME)
4555 perf_output_put(handle, data->time);
4556
4557 if (sample_type & PERF_SAMPLE_ADDR)
4558 perf_output_put(handle, data->addr);
4559
4560 if (sample_type & PERF_SAMPLE_ID)
4561 perf_output_put(handle, data->id);
4562
4563 if (sample_type & PERF_SAMPLE_STREAM_ID)
4564 perf_output_put(handle, data->stream_id);
4565
4566 if (sample_type & PERF_SAMPLE_CPU)
4567 perf_output_put(handle, data->cpu_entry);
4568
4569 if (sample_type & PERF_SAMPLE_PERIOD)
4570 perf_output_put(handle, data->period);
4571
4572 if (sample_type & PERF_SAMPLE_READ)
4573 perf_output_read(handle, event);
4574
4575 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4576 if (data->callchain) {
4577 int size = 1;
4578
4579 if (data->callchain)
4580 size += data->callchain->nr;
4581
4582 size *= sizeof(u64);
4583
4584 __output_copy(handle, data->callchain, size);
4585 } else {
4586 u64 nr = 0;
4587 perf_output_put(handle, nr);
4588 }
4589 }
4590
4591 if (sample_type & PERF_SAMPLE_RAW) {
4592 if (data->raw) {
4593 perf_output_put(handle, data->raw->size);
4594 __output_copy(handle, data->raw->data,
4595 data->raw->size);
4596 } else {
4597 struct {
4598 u32 size;
4599 u32 data;
4600 } raw = {
4601 .size = sizeof(u32),
4602 .data = 0,
4603 };
4604 perf_output_put(handle, raw);
4605 }
4606 }
4607
4608 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4609 if (data->br_stack) {
4610 size_t size;
4611
4612 size = data->br_stack->nr
4613 * sizeof(struct perf_branch_entry);
4614
4615 perf_output_put(handle, data->br_stack->nr);
4616 perf_output_copy(handle, data->br_stack->entries, size);
4617 } else {
4618 /*
4619 * we always store at least the value of nr
4620 */
4621 u64 nr = 0;
4622 perf_output_put(handle, nr);
4623 }
4624 }
4625
4626 if (sample_type & PERF_SAMPLE_REGS_USER) {
4627 u64 abi = data->regs_user.abi;
4628
4629 /*
4630 * If there are no regs to dump, notice it through
4631 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4632 */
4633 perf_output_put(handle, abi);
4634
4635 if (abi) {
4636 u64 mask = event->attr.sample_regs_user;
4637 perf_output_sample_regs(handle,
4638 data->regs_user.regs,
4639 mask);
4640 }
4641 }
4642
4643 if (sample_type & PERF_SAMPLE_STACK_USER) {
4644 perf_output_sample_ustack(handle,
4645 data->stack_user_size,
4646 data->regs_user.regs);
4647 }
4648
4649 if (sample_type & PERF_SAMPLE_WEIGHT)
4650 perf_output_put(handle, data->weight);
4651
4652 if (sample_type & PERF_SAMPLE_DATA_SRC)
4653 perf_output_put(handle, data->data_src.val);
4654
4655 if (sample_type & PERF_SAMPLE_TRANSACTION)
4656 perf_output_put(handle, data->txn);
4657
4658 if (!event->attr.watermark) {
4659 int wakeup_events = event->attr.wakeup_events;
4660
4661 if (wakeup_events) {
4662 struct ring_buffer *rb = handle->rb;
4663 int events = local_inc_return(&rb->events);
4664
4665 if (events >= wakeup_events) {
4666 local_sub(wakeup_events, &rb->events);
4667 local_inc(&rb->wakeup);
4668 }
4669 }
4670 }
4671}
4672
4673void perf_prepare_sample(struct perf_event_header *header,
4674 struct perf_sample_data *data,
4675 struct perf_event *event,
4676 struct pt_regs *regs)
4677{
4678 u64 sample_type = event->attr.sample_type;
4679
4680 header->type = PERF_RECORD_SAMPLE;
4681 header->size = sizeof(*header) + event->header_size;
4682
4683 header->misc = 0;
4684 header->misc |= perf_misc_flags(regs);
4685
4686 __perf_event_header__init_id(header, data, event);
4687
4688 if (sample_type & PERF_SAMPLE_IP)
4689 data->ip = perf_instruction_pointer(regs);
4690
4691 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4692 int size = 1;
4693
4694 data->callchain = perf_callchain(event, regs);
4695
4696 if (data->callchain)
4697 size += data->callchain->nr;
4698
4699 header->size += size * sizeof(u64);
4700 }
4701
4702 if (sample_type & PERF_SAMPLE_RAW) {
4703 int size = sizeof(u32);
4704
4705 if (data->raw)
4706 size += data->raw->size;
4707 else
4708 size += sizeof(u32);
4709
4710 WARN_ON_ONCE(size & (sizeof(u64)-1));
4711 header->size += size;
4712 }
4713
4714 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4715 int size = sizeof(u64); /* nr */
4716 if (data->br_stack) {
4717 size += data->br_stack->nr
4718 * sizeof(struct perf_branch_entry);
4719 }
4720 header->size += size;
4721 }
4722
4723 if (sample_type & PERF_SAMPLE_REGS_USER) {
4724 /* regs dump ABI info */
4725 int size = sizeof(u64);
4726
4727 perf_sample_regs_user(&data->regs_user, regs);
4728
4729 if (data->regs_user.regs) {
4730 u64 mask = event->attr.sample_regs_user;
4731 size += hweight64(mask) * sizeof(u64);
4732 }
4733
4734 header->size += size;
4735 }
4736
4737 if (sample_type & PERF_SAMPLE_STACK_USER) {
4738 /*
4739 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4740 * processed as the last one or have additional check added
4741 * in case new sample type is added, because we could eat
4742 * up the rest of the sample size.
4743 */
4744 struct perf_regs_user *uregs = &data->regs_user;
4745 u16 stack_size = event->attr.sample_stack_user;
4746 u16 size = sizeof(u64);
4747
4748 if (!uregs->abi)
4749 perf_sample_regs_user(uregs, regs);
4750
4751 stack_size = perf_sample_ustack_size(stack_size, header->size,
4752 uregs->regs);
4753
4754 /*
4755 * If there is something to dump, add space for the dump
4756 * itself and for the field that tells the dynamic size,
4757 * which is how many have been actually dumped.
4758 */
4759 if (stack_size)
4760 size += sizeof(u64) + stack_size;
4761
4762 data->stack_user_size = stack_size;
4763 header->size += size;
4764 }
4765}
4766
4767static void perf_event_output(struct perf_event *event,
4768 struct perf_sample_data *data,
4769 struct pt_regs *regs)
4770{
4771 struct perf_output_handle handle;
4772 struct perf_event_header header;
4773
4774 /* protect the callchain buffers */
4775 rcu_read_lock();
4776
4777 perf_prepare_sample(&header, data, event, regs);
4778
4779 if (perf_output_begin(&handle, event, header.size))
4780 goto exit;
4781
4782 perf_output_sample(&handle, &header, data, event);
4783
4784 perf_output_end(&handle);
4785
4786exit:
4787 rcu_read_unlock();
4788}
4789
4790/*
4791 * read event_id
4792 */
4793
4794struct perf_read_event {
4795 struct perf_event_header header;
4796
4797 u32 pid;
4798 u32 tid;
4799};
4800
4801static void
4802perf_event_read_event(struct perf_event *event,
4803 struct task_struct *task)
4804{
4805 struct perf_output_handle handle;
4806 struct perf_sample_data sample;
4807 struct perf_read_event read_event = {
4808 .header = {
4809 .type = PERF_RECORD_READ,
4810 .misc = 0,
4811 .size = sizeof(read_event) + event->read_size,
4812 },
4813 .pid = perf_event_pid(event, task),
4814 .tid = perf_event_tid(event, task),
4815 };
4816 int ret;
4817
4818 perf_event_header__init_id(&read_event.header, &sample, event);
4819 ret = perf_output_begin(&handle, event, read_event.header.size);
4820 if (ret)
4821 return;
4822
4823 perf_output_put(&handle, read_event);
4824 perf_output_read(&handle, event);
4825 perf_event__output_id_sample(event, &handle, &sample);
4826
4827 perf_output_end(&handle);
4828}
4829
4830typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4831
4832static void
4833perf_event_aux_ctx(struct perf_event_context *ctx,
4834 perf_event_aux_output_cb output,
4835 void *data)
4836{
4837 struct perf_event *event;
4838
4839 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4840 if (event->state < PERF_EVENT_STATE_INACTIVE)
4841 continue;
4842 if (!event_filter_match(event))
4843 continue;
4844 output(event, data);
4845 }
4846}
4847
4848static void
4849perf_event_aux(perf_event_aux_output_cb output, void *data,
4850 struct perf_event_context *task_ctx)
4851{
4852 struct perf_cpu_context *cpuctx;
4853 struct perf_event_context *ctx;
4854 struct pmu *pmu;
4855 int ctxn;
4856
4857 rcu_read_lock();
4858 list_for_each_entry_rcu(pmu, &pmus, entry) {
4859 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4860 if (cpuctx->unique_pmu != pmu)
4861 goto next;
4862 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4863 if (task_ctx)
4864 goto next;
4865 ctxn = pmu->task_ctx_nr;
4866 if (ctxn < 0)
4867 goto next;
4868 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4869 if (ctx)
4870 perf_event_aux_ctx(ctx, output, data);
4871next:
4872 put_cpu_ptr(pmu->pmu_cpu_context);
4873 }
4874
4875 if (task_ctx) {
4876 preempt_disable();
4877 perf_event_aux_ctx(task_ctx, output, data);
4878 preempt_enable();
4879 }
4880 rcu_read_unlock();
4881}
4882
4883/*
4884 * task tracking -- fork/exit
4885 *
4886 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4887 */
4888
4889struct perf_task_event {
4890 struct task_struct *task;
4891 struct perf_event_context *task_ctx;
4892
4893 struct {
4894 struct perf_event_header header;
4895
4896 u32 pid;
4897 u32 ppid;
4898 u32 tid;
4899 u32 ptid;
4900 u64 time;
4901 } event_id;
4902};
4903
4904static int perf_event_task_match(struct perf_event *event)
4905{
4906 return event->attr.comm || event->attr.mmap ||
4907 event->attr.mmap2 || event->attr.mmap_data ||
4908 event->attr.task;
4909}
4910
4911static void perf_event_task_output(struct perf_event *event,
4912 void *data)
4913{
4914 struct perf_task_event *task_event = data;
4915 struct perf_output_handle handle;
4916 struct perf_sample_data sample;
4917 struct task_struct *task = task_event->task;
4918 int ret, size = task_event->event_id.header.size;
4919
4920 if (!perf_event_task_match(event))
4921 return;
4922
4923 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4924
4925 ret = perf_output_begin(&handle, event,
4926 task_event->event_id.header.size);
4927 if (ret)
4928 goto out;
4929
4930 task_event->event_id.pid = perf_event_pid(event, task);
4931 task_event->event_id.ppid = perf_event_pid(event, current);
4932
4933 task_event->event_id.tid = perf_event_tid(event, task);
4934 task_event->event_id.ptid = perf_event_tid(event, current);
4935
4936 perf_output_put(&handle, task_event->event_id);
4937
4938 perf_event__output_id_sample(event, &handle, &sample);
4939
4940 perf_output_end(&handle);
4941out:
4942 task_event->event_id.header.size = size;
4943}
4944
4945static void perf_event_task(struct task_struct *task,
4946 struct perf_event_context *task_ctx,
4947 int new)
4948{
4949 struct perf_task_event task_event;
4950
4951 if (!atomic_read(&nr_comm_events) &&
4952 !atomic_read(&nr_mmap_events) &&
4953 !atomic_read(&nr_task_events))
4954 return;
4955
4956 task_event = (struct perf_task_event){
4957 .task = task,
4958 .task_ctx = task_ctx,
4959 .event_id = {
4960 .header = {
4961 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4962 .misc = 0,
4963 .size = sizeof(task_event.event_id),
4964 },
4965 /* .pid */
4966 /* .ppid */
4967 /* .tid */
4968 /* .ptid */
4969 .time = perf_clock(),
4970 },
4971 };
4972
4973 perf_event_aux(perf_event_task_output,
4974 &task_event,
4975 task_ctx);
4976}
4977
4978void perf_event_fork(struct task_struct *task)
4979{
4980 perf_event_task(task, NULL, 1);
4981}
4982
4983/*
4984 * comm tracking
4985 */
4986
4987struct perf_comm_event {
4988 struct task_struct *task;
4989 char *comm;
4990 int comm_size;
4991
4992 struct {
4993 struct perf_event_header header;
4994
4995 u32 pid;
4996 u32 tid;
4997 } event_id;
4998};
4999
5000static int perf_event_comm_match(struct perf_event *event)
5001{
5002 return event->attr.comm;
5003}
5004
5005static void perf_event_comm_output(struct perf_event *event,
5006 void *data)
5007{
5008 struct perf_comm_event *comm_event = data;
5009 struct perf_output_handle handle;
5010 struct perf_sample_data sample;
5011 int size = comm_event->event_id.header.size;
5012 int ret;
5013
5014 if (!perf_event_comm_match(event))
5015 return;
5016
5017 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5018 ret = perf_output_begin(&handle, event,
5019 comm_event->event_id.header.size);
5020
5021 if (ret)
5022 goto out;
5023
5024 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5025 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5026
5027 perf_output_put(&handle, comm_event->event_id);
5028 __output_copy(&handle, comm_event->comm,
5029 comm_event->comm_size);
5030
5031 perf_event__output_id_sample(event, &handle, &sample);
5032
5033 perf_output_end(&handle);
5034out:
5035 comm_event->event_id.header.size = size;
5036}
5037
5038static void perf_event_comm_event(struct perf_comm_event *comm_event)
5039{
5040 char comm[TASK_COMM_LEN];
5041 unsigned int size;
5042
5043 memset(comm, 0, sizeof(comm));
5044 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5045 size = ALIGN(strlen(comm)+1, sizeof(u64));
5046
5047 comm_event->comm = comm;
5048 comm_event->comm_size = size;
5049
5050 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5051
5052 perf_event_aux(perf_event_comm_output,
5053 comm_event,
5054 NULL);
5055}
5056
5057void perf_event_comm(struct task_struct *task)
5058{
5059 struct perf_comm_event comm_event;
5060 struct perf_event_context *ctx;
5061 int ctxn;
5062
5063 rcu_read_lock();
5064 for_each_task_context_nr(ctxn) {
5065 ctx = task->perf_event_ctxp[ctxn];
5066 if (!ctx)
5067 continue;
5068
5069 perf_event_enable_on_exec(ctx);
5070 }
5071 rcu_read_unlock();
5072
5073 if (!atomic_read(&nr_comm_events))
5074 return;
5075
5076 comm_event = (struct perf_comm_event){
5077 .task = task,
5078 /* .comm */
5079 /* .comm_size */
5080 .event_id = {
5081 .header = {
5082 .type = PERF_RECORD_COMM,
5083 .misc = 0,
5084 /* .size */
5085 },
5086 /* .pid */
5087 /* .tid */
5088 },
5089 };
5090
5091 perf_event_comm_event(&comm_event);
5092}
5093
5094/*
5095 * mmap tracking
5096 */
5097
5098struct perf_mmap_event {
5099 struct vm_area_struct *vma;
5100
5101 const char *file_name;
5102 int file_size;
5103 int maj, min;
5104 u64 ino;
5105 u64 ino_generation;
5106
5107 struct {
5108 struct perf_event_header header;
5109
5110 u32 pid;
5111 u32 tid;
5112 u64 start;
5113 u64 len;
5114 u64 pgoff;
5115 } event_id;
5116};
5117
5118static int perf_event_mmap_match(struct perf_event *event,
5119 void *data)
5120{
5121 struct perf_mmap_event *mmap_event = data;
5122 struct vm_area_struct *vma = mmap_event->vma;
5123 int executable = vma->vm_flags & VM_EXEC;
5124
5125 return (!executable && event->attr.mmap_data) ||
5126 (executable && (event->attr.mmap || event->attr.mmap2));
5127}
5128
5129static void perf_event_mmap_output(struct perf_event *event,
5130 void *data)
5131{
5132 struct perf_mmap_event *mmap_event = data;
5133 struct perf_output_handle handle;
5134 struct perf_sample_data sample;
5135 int size = mmap_event->event_id.header.size;
5136 int ret;
5137
5138 if (!perf_event_mmap_match(event, data))
5139 return;
5140
5141 if (event->attr.mmap2) {
5142 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5143 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5144 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5145 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5146 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5147 }
5148
5149 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5150 ret = perf_output_begin(&handle, event,
5151 mmap_event->event_id.header.size);
5152 if (ret)
5153 goto out;
5154
5155 mmap_event->event_id.pid = perf_event_pid(event, current);
5156 mmap_event->event_id.tid = perf_event_tid(event, current);
5157
5158 perf_output_put(&handle, mmap_event->event_id);
5159
5160 if (event->attr.mmap2) {
5161 perf_output_put(&handle, mmap_event->maj);
5162 perf_output_put(&handle, mmap_event->min);
5163 perf_output_put(&handle, mmap_event->ino);
5164 perf_output_put(&handle, mmap_event->ino_generation);
5165 }
5166
5167 __output_copy(&handle, mmap_event->file_name,
5168 mmap_event->file_size);
5169
5170 perf_event__output_id_sample(event, &handle, &sample);
5171
5172 perf_output_end(&handle);
5173out:
5174 mmap_event->event_id.header.size = size;
5175}
5176
5177static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5178{
5179 struct vm_area_struct *vma = mmap_event->vma;
5180 struct file *file = vma->vm_file;
5181 int maj = 0, min = 0;
5182 u64 ino = 0, gen = 0;
5183 unsigned int size;
5184 char tmp[16];
5185 char *buf = NULL;
5186 char *name;
5187
5188 if (file) {
5189 struct inode *inode;
5190 dev_t dev;
5191
5192 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5193 if (!buf) {
5194 name = "//enomem";
5195 goto cpy_name;
5196 }
5197 /*
5198 * d_path() works from the end of the rb backwards, so we
5199 * need to add enough zero bytes after the string to handle
5200 * the 64bit alignment we do later.
5201 */
5202 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5203 if (IS_ERR(name)) {
5204 name = "//toolong";
5205 goto cpy_name;
5206 }
5207 inode = file_inode(vma->vm_file);
5208 dev = inode->i_sb->s_dev;
5209 ino = inode->i_ino;
5210 gen = inode->i_generation;
5211 maj = MAJOR(dev);
5212 min = MINOR(dev);
5213 goto got_name;
5214 } else {
5215 name = (char *)arch_vma_name(vma);
5216 if (name)
5217 goto cpy_name;
5218
5219 if (vma->vm_start <= vma->vm_mm->start_brk &&
5220 vma->vm_end >= vma->vm_mm->brk) {
5221 name = "[heap]";
5222 goto cpy_name;
5223 }
5224 if (vma->vm_start <= vma->vm_mm->start_stack &&
5225 vma->vm_end >= vma->vm_mm->start_stack) {
5226 name = "[stack]";
5227 goto cpy_name;
5228 }
5229
5230 name = "//anon";
5231 goto cpy_name;
5232 }
5233
5234cpy_name:
5235 strlcpy(tmp, name, sizeof(tmp));
5236 name = tmp;
5237got_name:
5238 /*
5239 * Since our buffer works in 8 byte units we need to align our string
5240 * size to a multiple of 8. However, we must guarantee the tail end is
5241 * zero'd out to avoid leaking random bits to userspace.
5242 */
5243 size = strlen(name)+1;
5244 while (!IS_ALIGNED(size, sizeof(u64)))
5245 name[size++] = '\0';
5246
5247 mmap_event->file_name = name;
5248 mmap_event->file_size = size;
5249 mmap_event->maj = maj;
5250 mmap_event->min = min;
5251 mmap_event->ino = ino;
5252 mmap_event->ino_generation = gen;
5253
5254 if (!(vma->vm_flags & VM_EXEC))
5255 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5256
5257 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5258
5259 perf_event_aux(perf_event_mmap_output,
5260 mmap_event,
5261 NULL);
5262
5263 kfree(buf);
5264}
5265
5266void perf_event_mmap(struct vm_area_struct *vma)
5267{
5268 struct perf_mmap_event mmap_event;
5269
5270 if (!atomic_read(&nr_mmap_events))
5271 return;
5272
5273 mmap_event = (struct perf_mmap_event){
5274 .vma = vma,
5275 /* .file_name */
5276 /* .file_size */
5277 .event_id = {
5278 .header = {
5279 .type = PERF_RECORD_MMAP,
5280 .misc = PERF_RECORD_MISC_USER,
5281 /* .size */
5282 },
5283 /* .pid */
5284 /* .tid */
5285 .start = vma->vm_start,
5286 .len = vma->vm_end - vma->vm_start,
5287 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5288 },
5289 /* .maj (attr_mmap2 only) */
5290 /* .min (attr_mmap2 only) */
5291 /* .ino (attr_mmap2 only) */
5292 /* .ino_generation (attr_mmap2 only) */
5293 };
5294
5295 perf_event_mmap_event(&mmap_event);
5296}
5297
5298/*
5299 * IRQ throttle logging
5300 */
5301
5302static void perf_log_throttle(struct perf_event *event, int enable)
5303{
5304 struct perf_output_handle handle;
5305 struct perf_sample_data sample;
5306 int ret;
5307
5308 struct {
5309 struct perf_event_header header;
5310 u64 time;
5311 u64 id;
5312 u64 stream_id;
5313 } throttle_event = {
5314 .header = {
5315 .type = PERF_RECORD_THROTTLE,
5316 .misc = 0,
5317 .size = sizeof(throttle_event),
5318 },
5319 .time = perf_clock(),
5320 .id = primary_event_id(event),
5321 .stream_id = event->id,
5322 };
5323
5324 if (enable)
5325 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5326
5327 perf_event_header__init_id(&throttle_event.header, &sample, event);
5328
5329 ret = perf_output_begin(&handle, event,
5330 throttle_event.header.size);
5331 if (ret)
5332 return;
5333
5334 perf_output_put(&handle, throttle_event);
5335 perf_event__output_id_sample(event, &handle, &sample);
5336 perf_output_end(&handle);
5337}
5338
5339/*
5340 * Generic event overflow handling, sampling.
5341 */
5342
5343static int __perf_event_overflow(struct perf_event *event,
5344 int throttle, struct perf_sample_data *data,
5345 struct pt_regs *regs)
5346{
5347 int events = atomic_read(&event->event_limit);
5348 struct hw_perf_event *hwc = &event->hw;
5349 u64 seq;
5350 int ret = 0;
5351
5352 /*
5353 * Non-sampling counters might still use the PMI to fold short
5354 * hardware counters, ignore those.
5355 */
5356 if (unlikely(!is_sampling_event(event)))
5357 return 0;
5358
5359 seq = __this_cpu_read(perf_throttled_seq);
5360 if (seq != hwc->interrupts_seq) {
5361 hwc->interrupts_seq = seq;
5362 hwc->interrupts = 1;
5363 } else {
5364 hwc->interrupts++;
5365 if (unlikely(throttle
5366 && hwc->interrupts >= max_samples_per_tick)) {
5367 __this_cpu_inc(perf_throttled_count);
5368 hwc->interrupts = MAX_INTERRUPTS;
5369 perf_log_throttle(event, 0);
5370 tick_nohz_full_kick();
5371 ret = 1;
5372 }
5373 }
5374
5375 if (event->attr.freq) {
5376 u64 now = perf_clock();
5377 s64 delta = now - hwc->freq_time_stamp;
5378
5379 hwc->freq_time_stamp = now;
5380
5381 if (delta > 0 && delta < 2*TICK_NSEC)
5382 perf_adjust_period(event, delta, hwc->last_period, true);
5383 }
5384
5385 /*
5386 * XXX event_limit might not quite work as expected on inherited
5387 * events
5388 */
5389
5390 event->pending_kill = POLL_IN;
5391 if (events && atomic_dec_and_test(&event->event_limit)) {
5392 ret = 1;
5393 event->pending_kill = POLL_HUP;
5394 event->pending_disable = 1;
5395 irq_work_queue(&event->pending);
5396 }
5397
5398 if (event->overflow_handler)
5399 event->overflow_handler(event, data, regs);
5400 else
5401 perf_event_output(event, data, regs);
5402
5403 if (event->fasync && event->pending_kill) {
5404 event->pending_wakeup = 1;
5405 irq_work_queue(&event->pending);
5406 }
5407
5408 return ret;
5409}
5410
5411int perf_event_overflow(struct perf_event *event,
5412 struct perf_sample_data *data,
5413 struct pt_regs *regs)
5414{
5415 return __perf_event_overflow(event, 1, data, regs);
5416}
5417
5418/*
5419 * Generic software event infrastructure
5420 */
5421
5422struct swevent_htable {
5423 struct swevent_hlist *swevent_hlist;
5424 struct mutex hlist_mutex;
5425 int hlist_refcount;
5426
5427 /* Recursion avoidance in each contexts */
5428 int recursion[PERF_NR_CONTEXTS];
5429
5430 /* Keeps track of cpu being initialized/exited */
5431 bool online;
5432};
5433
5434static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5435
5436/*
5437 * We directly increment event->count and keep a second value in
5438 * event->hw.period_left to count intervals. This period event
5439 * is kept in the range [-sample_period, 0] so that we can use the
5440 * sign as trigger.
5441 */
5442
5443u64 perf_swevent_set_period(struct perf_event *event)
5444{
5445 struct hw_perf_event *hwc = &event->hw;
5446 u64 period = hwc->last_period;
5447 u64 nr, offset;
5448 s64 old, val;
5449
5450 hwc->last_period = hwc->sample_period;
5451
5452again:
5453 old = val = local64_read(&hwc->period_left);
5454 if (val < 0)
5455 return 0;
5456
5457 nr = div64_u64(period + val, period);
5458 offset = nr * period;
5459 val -= offset;
5460 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5461 goto again;
5462
5463 return nr;
5464}
5465
5466static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5467 struct perf_sample_data *data,
5468 struct pt_regs *regs)
5469{
5470 struct hw_perf_event *hwc = &event->hw;
5471 int throttle = 0;
5472
5473 if (!overflow)
5474 overflow = perf_swevent_set_period(event);
5475
5476 if (hwc->interrupts == MAX_INTERRUPTS)
5477 return;
5478
5479 for (; overflow; overflow--) {
5480 if (__perf_event_overflow(event, throttle,
5481 data, regs)) {
5482 /*
5483 * We inhibit the overflow from happening when
5484 * hwc->interrupts == MAX_INTERRUPTS.
5485 */
5486 break;
5487 }
5488 throttle = 1;
5489 }
5490}
5491
5492static void perf_swevent_event(struct perf_event *event, u64 nr,
5493 struct perf_sample_data *data,
5494 struct pt_regs *regs)
5495{
5496 struct hw_perf_event *hwc = &event->hw;
5497
5498 local64_add(nr, &event->count);
5499
5500 if (!regs)
5501 return;
5502
5503 if (!is_sampling_event(event))
5504 return;
5505
5506 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5507 data->period = nr;
5508 return perf_swevent_overflow(event, 1, data, regs);
5509 } else
5510 data->period = event->hw.last_period;
5511
5512 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5513 return perf_swevent_overflow(event, 1, data, regs);
5514
5515 if (local64_add_negative(nr, &hwc->period_left))
5516 return;
5517
5518 perf_swevent_overflow(event, 0, data, regs);
5519}
5520
5521static int perf_exclude_event(struct perf_event *event,
5522 struct pt_regs *regs)
5523{
5524 if (event->hw.state & PERF_HES_STOPPED)
5525 return 1;
5526
5527 if (regs) {
5528 if (event->attr.exclude_user && user_mode(regs))
5529 return 1;
5530
5531 if (event->attr.exclude_kernel && !user_mode(regs))
5532 return 1;
5533 }
5534
5535 return 0;
5536}
5537
5538static int perf_swevent_match(struct perf_event *event,
5539 enum perf_type_id type,
5540 u32 event_id,
5541 struct perf_sample_data *data,
5542 struct pt_regs *regs)
5543{
5544 if (event->attr.type != type)
5545 return 0;
5546
5547 if (event->attr.config != event_id)
5548 return 0;
5549
5550 if (perf_exclude_event(event, regs))
5551 return 0;
5552
5553 return 1;
5554}
5555
5556static inline u64 swevent_hash(u64 type, u32 event_id)
5557{
5558 u64 val = event_id | (type << 32);
5559
5560 return hash_64(val, SWEVENT_HLIST_BITS);
5561}
5562
5563static inline struct hlist_head *
5564__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5565{
5566 u64 hash = swevent_hash(type, event_id);
5567
5568 return &hlist->heads[hash];
5569}
5570
5571/* For the read side: events when they trigger */
5572static inline struct hlist_head *
5573find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5574{
5575 struct swevent_hlist *hlist;
5576
5577 hlist = rcu_dereference(swhash->swevent_hlist);
5578 if (!hlist)
5579 return NULL;
5580
5581 return __find_swevent_head(hlist, type, event_id);
5582}
5583
5584/* For the event head insertion and removal in the hlist */
5585static inline struct hlist_head *
5586find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5587{
5588 struct swevent_hlist *hlist;
5589 u32 event_id = event->attr.config;
5590 u64 type = event->attr.type;
5591
5592 /*
5593 * Event scheduling is always serialized against hlist allocation
5594 * and release. Which makes the protected version suitable here.
5595 * The context lock guarantees that.
5596 */
5597 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5598 lockdep_is_held(&event->ctx->lock));
5599 if (!hlist)
5600 return NULL;
5601
5602 return __find_swevent_head(hlist, type, event_id);
5603}
5604
5605static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5606 u64 nr,
5607 struct perf_sample_data *data,
5608 struct pt_regs *regs)
5609{
5610 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5611 struct perf_event *event;
5612 struct hlist_head *head;
5613
5614 rcu_read_lock();
5615 head = find_swevent_head_rcu(swhash, type, event_id);
5616 if (!head)
5617 goto end;
5618
5619 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5620 if (perf_swevent_match(event, type, event_id, data, regs))
5621 perf_swevent_event(event, nr, data, regs);
5622 }
5623end:
5624 rcu_read_unlock();
5625}
5626
5627int perf_swevent_get_recursion_context(void)
5628{
5629 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5630
5631 return get_recursion_context(swhash->recursion);
5632}
5633EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5634
5635inline void perf_swevent_put_recursion_context(int rctx)
5636{
5637 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5638
5639 put_recursion_context(swhash->recursion, rctx);
5640}
5641
5642void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5643{
5644 struct perf_sample_data data;
5645 int rctx;
5646
5647 preempt_disable_notrace();
5648 rctx = perf_swevent_get_recursion_context();
5649 if (rctx < 0)
5650 return;
5651
5652 perf_sample_data_init(&data, addr, 0);
5653
5654 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5655
5656 perf_swevent_put_recursion_context(rctx);
5657 preempt_enable_notrace();
5658}
5659
5660static void perf_swevent_read(struct perf_event *event)
5661{
5662}
5663
5664static int perf_swevent_add(struct perf_event *event, int flags)
5665{
5666 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5667 struct hw_perf_event *hwc = &event->hw;
5668 struct hlist_head *head;
5669
5670 if (is_sampling_event(event)) {
5671 hwc->last_period = hwc->sample_period;
5672 perf_swevent_set_period(event);
5673 }
5674
5675 hwc->state = !(flags & PERF_EF_START);
5676
5677 head = find_swevent_head(swhash, event);
5678 if (!head) {
5679 /*
5680 * We can race with cpu hotplug code. Do not
5681 * WARN if the cpu just got unplugged.
5682 */
5683 WARN_ON_ONCE(swhash->online);
5684 return -EINVAL;
5685 }
5686
5687 hlist_add_head_rcu(&event->hlist_entry, head);
5688
5689 return 0;
5690}
5691
5692static void perf_swevent_del(struct perf_event *event, int flags)
5693{
5694 hlist_del_rcu(&event->hlist_entry);
5695}
5696
5697static void perf_swevent_start(struct perf_event *event, int flags)
5698{
5699 event->hw.state = 0;
5700}
5701
5702static void perf_swevent_stop(struct perf_event *event, int flags)
5703{
5704 event->hw.state = PERF_HES_STOPPED;
5705}
5706
5707/* Deref the hlist from the update side */
5708static inline struct swevent_hlist *
5709swevent_hlist_deref(struct swevent_htable *swhash)
5710{
5711 return rcu_dereference_protected(swhash->swevent_hlist,
5712 lockdep_is_held(&swhash->hlist_mutex));
5713}
5714
5715static void swevent_hlist_release(struct swevent_htable *swhash)
5716{
5717 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5718
5719 if (!hlist)
5720 return;
5721
5722 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5723 kfree_rcu(hlist, rcu_head);
5724}
5725
5726static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5727{
5728 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5729
5730 mutex_lock(&swhash->hlist_mutex);
5731
5732 if (!--swhash->hlist_refcount)
5733 swevent_hlist_release(swhash);
5734
5735 mutex_unlock(&swhash->hlist_mutex);
5736}
5737
5738static void swevent_hlist_put(struct perf_event *event)
5739{
5740 int cpu;
5741
5742 for_each_possible_cpu(cpu)
5743 swevent_hlist_put_cpu(event, cpu);
5744}
5745
5746static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5747{
5748 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5749 int err = 0;
5750
5751 mutex_lock(&swhash->hlist_mutex);
5752
5753 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5754 struct swevent_hlist *hlist;
5755
5756 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5757 if (!hlist) {
5758 err = -ENOMEM;
5759 goto exit;
5760 }
5761 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5762 }
5763 swhash->hlist_refcount++;
5764exit:
5765 mutex_unlock(&swhash->hlist_mutex);
5766
5767 return err;
5768}
5769
5770static int swevent_hlist_get(struct perf_event *event)
5771{
5772 int err;
5773 int cpu, failed_cpu;
5774
5775 get_online_cpus();
5776 for_each_possible_cpu(cpu) {
5777 err = swevent_hlist_get_cpu(event, cpu);
5778 if (err) {
5779 failed_cpu = cpu;
5780 goto fail;
5781 }
5782 }
5783 put_online_cpus();
5784
5785 return 0;
5786fail:
5787 for_each_possible_cpu(cpu) {
5788 if (cpu == failed_cpu)
5789 break;
5790 swevent_hlist_put_cpu(event, cpu);
5791 }
5792
5793 put_online_cpus();
5794 return err;
5795}
5796
5797struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5798
5799static void sw_perf_event_destroy(struct perf_event *event)
5800{
5801 u64 event_id = event->attr.config;
5802
5803 WARN_ON(event->parent);
5804
5805 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5806 swevent_hlist_put(event);
5807}
5808
5809static int perf_swevent_init(struct perf_event *event)
5810{
5811 u64 event_id = event->attr.config;
5812
5813 if (event->attr.type != PERF_TYPE_SOFTWARE)
5814 return -ENOENT;
5815
5816 /*
5817 * no branch sampling for software events
5818 */
5819 if (has_branch_stack(event))
5820 return -EOPNOTSUPP;
5821
5822 switch (event_id) {
5823 case PERF_COUNT_SW_CPU_CLOCK:
5824 case PERF_COUNT_SW_TASK_CLOCK:
5825 return -ENOENT;
5826
5827 default:
5828 break;
5829 }
5830
5831 if (event_id >= PERF_COUNT_SW_MAX)
5832 return -ENOENT;
5833
5834 if (!event->parent) {
5835 int err;
5836
5837 err = swevent_hlist_get(event);
5838 if (err)
5839 return err;
5840
5841 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5842 event->destroy = sw_perf_event_destroy;
5843 }
5844
5845 return 0;
5846}
5847
5848static int perf_swevent_event_idx(struct perf_event *event)
5849{
5850 return 0;
5851}
5852
5853static struct pmu perf_swevent = {
5854 .task_ctx_nr = perf_sw_context,
5855
5856 .event_init = perf_swevent_init,
5857 .add = perf_swevent_add,
5858 .del = perf_swevent_del,
5859 .start = perf_swevent_start,
5860 .stop = perf_swevent_stop,
5861 .read = perf_swevent_read,
5862
5863 .event_idx = perf_swevent_event_idx,
5864};
5865
5866#ifdef CONFIG_EVENT_TRACING
5867
5868static int perf_tp_filter_match(struct perf_event *event,
5869 struct perf_sample_data *data)
5870{
5871 void *record = data->raw->data;
5872
5873 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5874 return 1;
5875 return 0;
5876}
5877
5878static int perf_tp_event_match(struct perf_event *event,
5879 struct perf_sample_data *data,
5880 struct pt_regs *regs)
5881{
5882 if (event->hw.state & PERF_HES_STOPPED)
5883 return 0;
5884 /*
5885 * All tracepoints are from kernel-space.
5886 */
5887 if (event->attr.exclude_kernel)
5888 return 0;
5889
5890 if (!perf_tp_filter_match(event, data))
5891 return 0;
5892
5893 return 1;
5894}
5895
5896void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5897 struct pt_regs *regs, struct hlist_head *head, int rctx,
5898 struct task_struct *task)
5899{
5900 struct perf_sample_data data;
5901 struct perf_event *event;
5902
5903 struct perf_raw_record raw = {
5904 .size = entry_size,
5905 .data = record,
5906 };
5907
5908 perf_sample_data_init(&data, addr, 0);
5909 data.raw = &raw;
5910
5911 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5912 if (perf_tp_event_match(event, &data, regs))
5913 perf_swevent_event(event, count, &data, regs);
5914 }
5915
5916 /*
5917 * If we got specified a target task, also iterate its context and
5918 * deliver this event there too.
5919 */
5920 if (task && task != current) {
5921 struct perf_event_context *ctx;
5922 struct trace_entry *entry = record;
5923
5924 rcu_read_lock();
5925 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5926 if (!ctx)
5927 goto unlock;
5928
5929 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5930 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5931 continue;
5932 if (event->attr.config != entry->type)
5933 continue;
5934 if (perf_tp_event_match(event, &data, regs))
5935 perf_swevent_event(event, count, &data, regs);
5936 }
5937unlock:
5938 rcu_read_unlock();
5939 }
5940
5941 perf_swevent_put_recursion_context(rctx);
5942}
5943EXPORT_SYMBOL_GPL(perf_tp_event);
5944
5945static void tp_perf_event_destroy(struct perf_event *event)
5946{
5947 perf_trace_destroy(event);
5948}
5949
5950static int perf_tp_event_init(struct perf_event *event)
5951{
5952 int err;
5953
5954 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5955 return -ENOENT;
5956
5957 /*
5958 * no branch sampling for tracepoint events
5959 */
5960 if (has_branch_stack(event))
5961 return -EOPNOTSUPP;
5962
5963 err = perf_trace_init(event);
5964 if (err)
5965 return err;
5966
5967 event->destroy = tp_perf_event_destroy;
5968
5969 return 0;
5970}
5971
5972static struct pmu perf_tracepoint = {
5973 .task_ctx_nr = perf_sw_context,
5974
5975 .event_init = perf_tp_event_init,
5976 .add = perf_trace_add,
5977 .del = perf_trace_del,
5978 .start = perf_swevent_start,
5979 .stop = perf_swevent_stop,
5980 .read = perf_swevent_read,
5981
5982 .event_idx = perf_swevent_event_idx,
5983};
5984
5985static inline void perf_tp_register(void)
5986{
5987 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5988}
5989
5990static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5991{
5992 char *filter_str;
5993 int ret;
5994
5995 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5996 return -EINVAL;
5997
5998 filter_str = strndup_user(arg, PAGE_SIZE);
5999 if (IS_ERR(filter_str))
6000 return PTR_ERR(filter_str);
6001
6002 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6003
6004 kfree(filter_str);
6005 return ret;
6006}
6007
6008static void perf_event_free_filter(struct perf_event *event)
6009{
6010 ftrace_profile_free_filter(event);
6011}
6012
6013#else
6014
6015static inline void perf_tp_register(void)
6016{
6017}
6018
6019static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6020{
6021 return -ENOENT;
6022}
6023
6024static void perf_event_free_filter(struct perf_event *event)
6025{
6026}
6027
6028#endif /* CONFIG_EVENT_TRACING */
6029
6030#ifdef CONFIG_HAVE_HW_BREAKPOINT
6031void perf_bp_event(struct perf_event *bp, void *data)
6032{
6033 struct perf_sample_data sample;
6034 struct pt_regs *regs = data;
6035
6036 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6037
6038 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6039 perf_swevent_event(bp, 1, &sample, regs);
6040}
6041#endif
6042
6043/*
6044 * hrtimer based swevent callback
6045 */
6046
6047static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6048{
6049 enum hrtimer_restart ret = HRTIMER_RESTART;
6050 struct perf_sample_data data;
6051 struct pt_regs *regs;
6052 struct perf_event *event;
6053 u64 period;
6054
6055 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6056
6057 if (event->state != PERF_EVENT_STATE_ACTIVE)
6058 return HRTIMER_NORESTART;
6059
6060 event->pmu->read(event);
6061
6062 perf_sample_data_init(&data, 0, event->hw.last_period);
6063 regs = get_irq_regs();
6064
6065 if (regs && !perf_exclude_event(event, regs)) {
6066 if (!(event->attr.exclude_idle && is_idle_task(current)))
6067 if (__perf_event_overflow(event, 1, &data, regs))
6068 ret = HRTIMER_NORESTART;
6069 }
6070
6071 period = max_t(u64, 10000, event->hw.sample_period);
6072 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6073
6074 return ret;
6075}
6076
6077static void perf_swevent_start_hrtimer(struct perf_event *event)
6078{
6079 struct hw_perf_event *hwc = &event->hw;
6080 s64 period;
6081
6082 if (!is_sampling_event(event))
6083 return;
6084
6085 period = local64_read(&hwc->period_left);
6086 if (period) {
6087 if (period < 0)
6088 period = 10000;
6089
6090 local64_set(&hwc->period_left, 0);
6091 } else {
6092 period = max_t(u64, 10000, hwc->sample_period);
6093 }
6094 __hrtimer_start_range_ns(&hwc->hrtimer,
6095 ns_to_ktime(period), 0,
6096 HRTIMER_MODE_REL_PINNED, 0);
6097}
6098
6099static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6100{
6101 struct hw_perf_event *hwc = &event->hw;
6102
6103 if (is_sampling_event(event)) {
6104 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6105 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6106
6107 hrtimer_cancel(&hwc->hrtimer);
6108 }
6109}
6110
6111static void perf_swevent_init_hrtimer(struct perf_event *event)
6112{
6113 struct hw_perf_event *hwc = &event->hw;
6114
6115 if (!is_sampling_event(event))
6116 return;
6117
6118 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6119 hwc->hrtimer.function = perf_swevent_hrtimer;
6120
6121 /*
6122 * Since hrtimers have a fixed rate, we can do a static freq->period
6123 * mapping and avoid the whole period adjust feedback stuff.
6124 */
6125 if (event->attr.freq) {
6126 long freq = event->attr.sample_freq;
6127
6128 event->attr.sample_period = NSEC_PER_SEC / freq;
6129 hwc->sample_period = event->attr.sample_period;
6130 local64_set(&hwc->period_left, hwc->sample_period);
6131 hwc->last_period = hwc->sample_period;
6132 event->attr.freq = 0;
6133 }
6134}
6135
6136/*
6137 * Software event: cpu wall time clock
6138 */
6139
6140static void cpu_clock_event_update(struct perf_event *event)
6141{
6142 s64 prev;
6143 u64 now;
6144
6145 now = local_clock();
6146 prev = local64_xchg(&event->hw.prev_count, now);
6147 local64_add(now - prev, &event->count);
6148}
6149
6150static void cpu_clock_event_start(struct perf_event *event, int flags)
6151{
6152 local64_set(&event->hw.prev_count, local_clock());
6153 perf_swevent_start_hrtimer(event);
6154}
6155
6156static void cpu_clock_event_stop(struct perf_event *event, int flags)
6157{
6158 perf_swevent_cancel_hrtimer(event);
6159 cpu_clock_event_update(event);
6160}
6161
6162static int cpu_clock_event_add(struct perf_event *event, int flags)
6163{
6164 if (flags & PERF_EF_START)
6165 cpu_clock_event_start(event, flags);
6166
6167 return 0;
6168}
6169
6170static void cpu_clock_event_del(struct perf_event *event, int flags)
6171{
6172 cpu_clock_event_stop(event, flags);
6173}
6174
6175static void cpu_clock_event_read(struct perf_event *event)
6176{
6177 cpu_clock_event_update(event);
6178}
6179
6180static int cpu_clock_event_init(struct perf_event *event)
6181{
6182 if (event->attr.type != PERF_TYPE_SOFTWARE)
6183 return -ENOENT;
6184
6185 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6186 return -ENOENT;
6187
6188 /*
6189 * no branch sampling for software events
6190 */
6191 if (has_branch_stack(event))
6192 return -EOPNOTSUPP;
6193
6194 perf_swevent_init_hrtimer(event);
6195
6196 return 0;
6197}
6198
6199static struct pmu perf_cpu_clock = {
6200 .task_ctx_nr = perf_sw_context,
6201
6202 .event_init = cpu_clock_event_init,
6203 .add = cpu_clock_event_add,
6204 .del = cpu_clock_event_del,
6205 .start = cpu_clock_event_start,
6206 .stop = cpu_clock_event_stop,
6207 .read = cpu_clock_event_read,
6208
6209 .event_idx = perf_swevent_event_idx,
6210};
6211
6212/*
6213 * Software event: task time clock
6214 */
6215
6216static void task_clock_event_update(struct perf_event *event, u64 now)
6217{
6218 u64 prev;
6219 s64 delta;
6220
6221 prev = local64_xchg(&event->hw.prev_count, now);
6222 delta = now - prev;
6223 local64_add(delta, &event->count);
6224}
6225
6226static void task_clock_event_start(struct perf_event *event, int flags)
6227{
6228 local64_set(&event->hw.prev_count, event->ctx->time);
6229 perf_swevent_start_hrtimer(event);
6230}
6231
6232static void task_clock_event_stop(struct perf_event *event, int flags)
6233{
6234 perf_swevent_cancel_hrtimer(event);
6235 task_clock_event_update(event, event->ctx->time);
6236}
6237
6238static int task_clock_event_add(struct perf_event *event, int flags)
6239{
6240 if (flags & PERF_EF_START)
6241 task_clock_event_start(event, flags);
6242
6243 return 0;
6244}
6245
6246static void task_clock_event_del(struct perf_event *event, int flags)
6247{
6248 task_clock_event_stop(event, PERF_EF_UPDATE);
6249}
6250
6251static void task_clock_event_read(struct perf_event *event)
6252{
6253 u64 now = perf_clock();
6254 u64 delta = now - event->ctx->timestamp;
6255 u64 time = event->ctx->time + delta;
6256
6257 task_clock_event_update(event, time);
6258}
6259
6260static int task_clock_event_init(struct perf_event *event)
6261{
6262 if (event->attr.type != PERF_TYPE_SOFTWARE)
6263 return -ENOENT;
6264
6265 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6266 return -ENOENT;
6267
6268 /*
6269 * no branch sampling for software events
6270 */
6271 if (has_branch_stack(event))
6272 return -EOPNOTSUPP;
6273
6274 perf_swevent_init_hrtimer(event);
6275
6276 return 0;
6277}
6278
6279static struct pmu perf_task_clock = {
6280 .task_ctx_nr = perf_sw_context,
6281
6282 .event_init = task_clock_event_init,
6283 .add = task_clock_event_add,
6284 .del = task_clock_event_del,
6285 .start = task_clock_event_start,
6286 .stop = task_clock_event_stop,
6287 .read = task_clock_event_read,
6288
6289 .event_idx = perf_swevent_event_idx,
6290};
6291
6292static void perf_pmu_nop_void(struct pmu *pmu)
6293{
6294}
6295
6296static int perf_pmu_nop_int(struct pmu *pmu)
6297{
6298 return 0;
6299}
6300
6301static void perf_pmu_start_txn(struct pmu *pmu)
6302{
6303 perf_pmu_disable(pmu);
6304}
6305
6306static int perf_pmu_commit_txn(struct pmu *pmu)
6307{
6308 perf_pmu_enable(pmu);
6309 return 0;
6310}
6311
6312static void perf_pmu_cancel_txn(struct pmu *pmu)
6313{
6314 perf_pmu_enable(pmu);
6315}
6316
6317static int perf_event_idx_default(struct perf_event *event)
6318{
6319 return event->hw.idx + 1;
6320}
6321
6322/*
6323 * Ensures all contexts with the same task_ctx_nr have the same
6324 * pmu_cpu_context too.
6325 */
6326static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6327{
6328 struct pmu *pmu;
6329
6330 if (ctxn < 0)
6331 return NULL;
6332
6333 list_for_each_entry(pmu, &pmus, entry) {
6334 if (pmu->task_ctx_nr == ctxn)
6335 return pmu->pmu_cpu_context;
6336 }
6337
6338 return NULL;
6339}
6340
6341static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6342{
6343 int cpu;
6344
6345 for_each_possible_cpu(cpu) {
6346 struct perf_cpu_context *cpuctx;
6347
6348 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6349
6350 if (cpuctx->unique_pmu == old_pmu)
6351 cpuctx->unique_pmu = pmu;
6352 }
6353}
6354
6355static void free_pmu_context(struct pmu *pmu)
6356{
6357 struct pmu *i;
6358
6359 mutex_lock(&pmus_lock);
6360 /*
6361 * Like a real lame refcount.
6362 */
6363 list_for_each_entry(i, &pmus, entry) {
6364 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6365 update_pmu_context(i, pmu);
6366 goto out;
6367 }
6368 }
6369
6370 free_percpu(pmu->pmu_cpu_context);
6371out:
6372 mutex_unlock(&pmus_lock);
6373}
6374static struct idr pmu_idr;
6375
6376static ssize_t
6377type_show(struct device *dev, struct device_attribute *attr, char *page)
6378{
6379 struct pmu *pmu = dev_get_drvdata(dev);
6380
6381 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6382}
6383static DEVICE_ATTR_RO(type);
6384
6385static ssize_t
6386perf_event_mux_interval_ms_show(struct device *dev,
6387 struct device_attribute *attr,
6388 char *page)
6389{
6390 struct pmu *pmu = dev_get_drvdata(dev);
6391
6392 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6393}
6394
6395static ssize_t
6396perf_event_mux_interval_ms_store(struct device *dev,
6397 struct device_attribute *attr,
6398 const char *buf, size_t count)
6399{
6400 struct pmu *pmu = dev_get_drvdata(dev);
6401 int timer, cpu, ret;
6402
6403 ret = kstrtoint(buf, 0, &timer);
6404 if (ret)
6405 return ret;
6406
6407 if (timer < 1)
6408 return -EINVAL;
6409
6410 /* same value, noting to do */
6411 if (timer == pmu->hrtimer_interval_ms)
6412 return count;
6413
6414 pmu->hrtimer_interval_ms = timer;
6415
6416 /* update all cpuctx for this PMU */
6417 for_each_possible_cpu(cpu) {
6418 struct perf_cpu_context *cpuctx;
6419 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6420 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6421
6422 if (hrtimer_active(&cpuctx->hrtimer))
6423 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6424 }
6425
6426 return count;
6427}
6428static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6429
6430static struct attribute *pmu_dev_attrs[] = {
6431 &dev_attr_type.attr,
6432 &dev_attr_perf_event_mux_interval_ms.attr,
6433 NULL,
6434};
6435ATTRIBUTE_GROUPS(pmu_dev);
6436
6437static int pmu_bus_running;
6438static struct bus_type pmu_bus = {
6439 .name = "event_source",
6440 .dev_groups = pmu_dev_groups,
6441};
6442
6443static void pmu_dev_release(struct device *dev)
6444{
6445 kfree(dev);
6446}
6447
6448static int pmu_dev_alloc(struct pmu *pmu)
6449{
6450 int ret = -ENOMEM;
6451
6452 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6453 if (!pmu->dev)
6454 goto out;
6455
6456 pmu->dev->groups = pmu->attr_groups;
6457 device_initialize(pmu->dev);
6458 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6459 if (ret)
6460 goto free_dev;
6461
6462 dev_set_drvdata(pmu->dev, pmu);
6463 pmu->dev->bus = &pmu_bus;
6464 pmu->dev->release = pmu_dev_release;
6465 ret = device_add(pmu->dev);
6466 if (ret)
6467 goto free_dev;
6468
6469out:
6470 return ret;
6471
6472free_dev:
6473 put_device(pmu->dev);
6474 goto out;
6475}
6476
6477static struct lock_class_key cpuctx_mutex;
6478static struct lock_class_key cpuctx_lock;
6479
6480int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6481{
6482 int cpu, ret;
6483
6484 mutex_lock(&pmus_lock);
6485 ret = -ENOMEM;
6486 pmu->pmu_disable_count = alloc_percpu(int);
6487 if (!pmu->pmu_disable_count)
6488 goto unlock;
6489
6490 pmu->type = -1;
6491 if (!name)
6492 goto skip_type;
6493 pmu->name = name;
6494
6495 if (type < 0) {
6496 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6497 if (type < 0) {
6498 ret = type;
6499 goto free_pdc;
6500 }
6501 }
6502 pmu->type = type;
6503
6504 if (pmu_bus_running) {
6505 ret = pmu_dev_alloc(pmu);
6506 if (ret)
6507 goto free_idr;
6508 }
6509
6510skip_type:
6511 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6512 if (pmu->pmu_cpu_context)
6513 goto got_cpu_context;
6514
6515 ret = -ENOMEM;
6516 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6517 if (!pmu->pmu_cpu_context)
6518 goto free_dev;
6519
6520 for_each_possible_cpu(cpu) {
6521 struct perf_cpu_context *cpuctx;
6522
6523 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6524 __perf_event_init_context(&cpuctx->ctx);
6525 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6526 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6527 cpuctx->ctx.type = cpu_context;
6528 cpuctx->ctx.pmu = pmu;
6529
6530 __perf_cpu_hrtimer_init(cpuctx, cpu);
6531
6532 INIT_LIST_HEAD(&cpuctx->rotation_list);
6533 cpuctx->unique_pmu = pmu;
6534 }
6535
6536got_cpu_context:
6537 if (!pmu->start_txn) {
6538 if (pmu->pmu_enable) {
6539 /*
6540 * If we have pmu_enable/pmu_disable calls, install
6541 * transaction stubs that use that to try and batch
6542 * hardware accesses.
6543 */
6544 pmu->start_txn = perf_pmu_start_txn;
6545 pmu->commit_txn = perf_pmu_commit_txn;
6546 pmu->cancel_txn = perf_pmu_cancel_txn;
6547 } else {
6548 pmu->start_txn = perf_pmu_nop_void;
6549 pmu->commit_txn = perf_pmu_nop_int;
6550 pmu->cancel_txn = perf_pmu_nop_void;
6551 }
6552 }
6553
6554 if (!pmu->pmu_enable) {
6555 pmu->pmu_enable = perf_pmu_nop_void;
6556 pmu->pmu_disable = perf_pmu_nop_void;
6557 }
6558
6559 if (!pmu->event_idx)
6560 pmu->event_idx = perf_event_idx_default;
6561
6562 list_add_rcu(&pmu->entry, &pmus);
6563 ret = 0;
6564unlock:
6565 mutex_unlock(&pmus_lock);
6566
6567 return ret;
6568
6569free_dev:
6570 device_del(pmu->dev);
6571 put_device(pmu->dev);
6572
6573free_idr:
6574 if (pmu->type >= PERF_TYPE_MAX)
6575 idr_remove(&pmu_idr, pmu->type);
6576
6577free_pdc:
6578 free_percpu(pmu->pmu_disable_count);
6579 goto unlock;
6580}
6581
6582void perf_pmu_unregister(struct pmu *pmu)
6583{
6584 mutex_lock(&pmus_lock);
6585 list_del_rcu(&pmu->entry);
6586 mutex_unlock(&pmus_lock);
6587
6588 /*
6589 * We dereference the pmu list under both SRCU and regular RCU, so
6590 * synchronize against both of those.
6591 */
6592 synchronize_srcu(&pmus_srcu);
6593 synchronize_rcu();
6594
6595 free_percpu(pmu->pmu_disable_count);
6596 if (pmu->type >= PERF_TYPE_MAX)
6597 idr_remove(&pmu_idr, pmu->type);
6598 device_del(pmu->dev);
6599 put_device(pmu->dev);
6600 free_pmu_context(pmu);
6601}
6602
6603struct pmu *perf_init_event(struct perf_event *event)
6604{
6605 struct pmu *pmu = NULL;
6606 int idx;
6607 int ret;
6608
6609 idx = srcu_read_lock(&pmus_srcu);
6610
6611 rcu_read_lock();
6612 pmu = idr_find(&pmu_idr, event->attr.type);
6613 rcu_read_unlock();
6614 if (pmu) {
6615 event->pmu = pmu;
6616 ret = pmu->event_init(event);
6617 if (ret)
6618 pmu = ERR_PTR(ret);
6619 goto unlock;
6620 }
6621
6622 list_for_each_entry_rcu(pmu, &pmus, entry) {
6623 event->pmu = pmu;
6624 ret = pmu->event_init(event);
6625 if (!ret)
6626 goto unlock;
6627
6628 if (ret != -ENOENT) {
6629 pmu = ERR_PTR(ret);
6630 goto unlock;
6631 }
6632 }
6633 pmu = ERR_PTR(-ENOENT);
6634unlock:
6635 srcu_read_unlock(&pmus_srcu, idx);
6636
6637 return pmu;
6638}
6639
6640static void account_event_cpu(struct perf_event *event, int cpu)
6641{
6642 if (event->parent)
6643 return;
6644
6645 if (has_branch_stack(event)) {
6646 if (!(event->attach_state & PERF_ATTACH_TASK))
6647 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6648 }
6649 if (is_cgroup_event(event))
6650 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6651}
6652
6653static void account_event(struct perf_event *event)
6654{
6655 if (event->parent)
6656 return;
6657
6658 if (event->attach_state & PERF_ATTACH_TASK)
6659 static_key_slow_inc(&perf_sched_events.key);
6660 if (event->attr.mmap || event->attr.mmap_data)
6661 atomic_inc(&nr_mmap_events);
6662 if (event->attr.comm)
6663 atomic_inc(&nr_comm_events);
6664 if (event->attr.task)
6665 atomic_inc(&nr_task_events);
6666 if (event->attr.freq) {
6667 if (atomic_inc_return(&nr_freq_events) == 1)
6668 tick_nohz_full_kick_all();
6669 }
6670 if (has_branch_stack(event))
6671 static_key_slow_inc(&perf_sched_events.key);
6672 if (is_cgroup_event(event))
6673 static_key_slow_inc(&perf_sched_events.key);
6674
6675 account_event_cpu(event, event->cpu);
6676}
6677
6678/*
6679 * Allocate and initialize a event structure
6680 */
6681static struct perf_event *
6682perf_event_alloc(struct perf_event_attr *attr, int cpu,
6683 struct task_struct *task,
6684 struct perf_event *group_leader,
6685 struct perf_event *parent_event,
6686 perf_overflow_handler_t overflow_handler,
6687 void *context)
6688{
6689 struct pmu *pmu;
6690 struct perf_event *event;
6691 struct hw_perf_event *hwc;
6692 long err = -EINVAL;
6693
6694 if ((unsigned)cpu >= nr_cpu_ids) {
6695 if (!task || cpu != -1)
6696 return ERR_PTR(-EINVAL);
6697 }
6698
6699 event = kzalloc(sizeof(*event), GFP_KERNEL);
6700 if (!event)
6701 return ERR_PTR(-ENOMEM);
6702
6703 /*
6704 * Single events are their own group leaders, with an
6705 * empty sibling list:
6706 */
6707 if (!group_leader)
6708 group_leader = event;
6709
6710 mutex_init(&event->child_mutex);
6711 INIT_LIST_HEAD(&event->child_list);
6712
6713 INIT_LIST_HEAD(&event->group_entry);
6714 INIT_LIST_HEAD(&event->event_entry);
6715 INIT_LIST_HEAD(&event->sibling_list);
6716 INIT_LIST_HEAD(&event->rb_entry);
6717 INIT_LIST_HEAD(&event->active_entry);
6718 INIT_HLIST_NODE(&event->hlist_entry);
6719
6720
6721 init_waitqueue_head(&event->waitq);
6722 init_irq_work(&event->pending, perf_pending_event);
6723
6724 mutex_init(&event->mmap_mutex);
6725
6726 atomic_long_set(&event->refcount, 1);
6727 event->cpu = cpu;
6728 event->attr = *attr;
6729 event->group_leader = group_leader;
6730 event->pmu = NULL;
6731 event->oncpu = -1;
6732
6733 event->parent = parent_event;
6734
6735 event->ns = get_pid_ns(task_active_pid_ns(current));
6736 event->id = atomic64_inc_return(&perf_event_id);
6737
6738 event->state = PERF_EVENT_STATE_INACTIVE;
6739
6740 if (task) {
6741 event->attach_state = PERF_ATTACH_TASK;
6742
6743 if (attr->type == PERF_TYPE_TRACEPOINT)
6744 event->hw.tp_target = task;
6745#ifdef CONFIG_HAVE_HW_BREAKPOINT
6746 /*
6747 * hw_breakpoint is a bit difficult here..
6748 */
6749 else if (attr->type == PERF_TYPE_BREAKPOINT)
6750 event->hw.bp_target = task;
6751#endif
6752 }
6753
6754 if (!overflow_handler && parent_event) {
6755 overflow_handler = parent_event->overflow_handler;
6756 context = parent_event->overflow_handler_context;
6757 }
6758
6759 event->overflow_handler = overflow_handler;
6760 event->overflow_handler_context = context;
6761
6762 perf_event__state_init(event);
6763
6764 pmu = NULL;
6765
6766 hwc = &event->hw;
6767 hwc->sample_period = attr->sample_period;
6768 if (attr->freq && attr->sample_freq)
6769 hwc->sample_period = 1;
6770 hwc->last_period = hwc->sample_period;
6771
6772 local64_set(&hwc->period_left, hwc->sample_period);
6773
6774 /*
6775 * we currently do not support PERF_FORMAT_GROUP on inherited events
6776 */
6777 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6778 goto err_ns;
6779
6780 pmu = perf_init_event(event);
6781 if (!pmu)
6782 goto err_ns;
6783 else if (IS_ERR(pmu)) {
6784 err = PTR_ERR(pmu);
6785 goto err_ns;
6786 }
6787
6788 if (!event->parent) {
6789 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6790 err = get_callchain_buffers();
6791 if (err)
6792 goto err_pmu;
6793 }
6794 }
6795
6796 return event;
6797
6798err_pmu:
6799 if (event->destroy)
6800 event->destroy(event);
6801err_ns:
6802 if (event->ns)
6803 put_pid_ns(event->ns);
6804 kfree(event);
6805
6806 return ERR_PTR(err);
6807}
6808
6809static int perf_copy_attr(struct perf_event_attr __user *uattr,
6810 struct perf_event_attr *attr)
6811{
6812 u32 size;
6813 int ret;
6814
6815 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6816 return -EFAULT;
6817
6818 /*
6819 * zero the full structure, so that a short copy will be nice.
6820 */
6821 memset(attr, 0, sizeof(*attr));
6822
6823 ret = get_user(size, &uattr->size);
6824 if (ret)
6825 return ret;
6826
6827 if (size > PAGE_SIZE) /* silly large */
6828 goto err_size;
6829
6830 if (!size) /* abi compat */
6831 size = PERF_ATTR_SIZE_VER0;
6832
6833 if (size < PERF_ATTR_SIZE_VER0)
6834 goto err_size;
6835
6836 /*
6837 * If we're handed a bigger struct than we know of,
6838 * ensure all the unknown bits are 0 - i.e. new
6839 * user-space does not rely on any kernel feature
6840 * extensions we dont know about yet.
6841 */
6842 if (size > sizeof(*attr)) {
6843 unsigned char __user *addr;
6844 unsigned char __user *end;
6845 unsigned char val;
6846
6847 addr = (void __user *)uattr + sizeof(*attr);
6848 end = (void __user *)uattr + size;
6849
6850 for (; addr < end; addr++) {
6851 ret = get_user(val, addr);
6852 if (ret)
6853 return ret;
6854 if (val)
6855 goto err_size;
6856 }
6857 size = sizeof(*attr);
6858 }
6859
6860 ret = copy_from_user(attr, uattr, size);
6861 if (ret)
6862 return -EFAULT;
6863
6864 /* disabled for now */
6865 if (attr->mmap2)
6866 return -EINVAL;
6867
6868 if (attr->__reserved_1)
6869 return -EINVAL;
6870
6871 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6872 return -EINVAL;
6873
6874 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6875 return -EINVAL;
6876
6877 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6878 u64 mask = attr->branch_sample_type;
6879
6880 /* only using defined bits */
6881 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6882 return -EINVAL;
6883
6884 /* at least one branch bit must be set */
6885 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6886 return -EINVAL;
6887
6888 /* propagate priv level, when not set for branch */
6889 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6890
6891 /* exclude_kernel checked on syscall entry */
6892 if (!attr->exclude_kernel)
6893 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6894
6895 if (!attr->exclude_user)
6896 mask |= PERF_SAMPLE_BRANCH_USER;
6897
6898 if (!attr->exclude_hv)
6899 mask |= PERF_SAMPLE_BRANCH_HV;
6900 /*
6901 * adjust user setting (for HW filter setup)
6902 */
6903 attr->branch_sample_type = mask;
6904 }
6905 /* privileged levels capture (kernel, hv): check permissions */
6906 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6907 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6908 return -EACCES;
6909 }
6910
6911 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6912 ret = perf_reg_validate(attr->sample_regs_user);
6913 if (ret)
6914 return ret;
6915 }
6916
6917 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6918 if (!arch_perf_have_user_stack_dump())
6919 return -ENOSYS;
6920
6921 /*
6922 * We have __u32 type for the size, but so far
6923 * we can only use __u16 as maximum due to the
6924 * __u16 sample size limit.
6925 */
6926 if (attr->sample_stack_user >= USHRT_MAX)
6927 ret = -EINVAL;
6928 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6929 ret = -EINVAL;
6930 }
6931
6932out:
6933 return ret;
6934
6935err_size:
6936 put_user(sizeof(*attr), &uattr->size);
6937 ret = -E2BIG;
6938 goto out;
6939}
6940
6941static int
6942perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6943{
6944 struct ring_buffer *rb = NULL;
6945 int ret = -EINVAL;
6946
6947 if (!output_event)
6948 goto set;
6949
6950 /* don't allow circular references */
6951 if (event == output_event)
6952 goto out;
6953
6954 /*
6955 * Don't allow cross-cpu buffers
6956 */
6957 if (output_event->cpu != event->cpu)
6958 goto out;
6959
6960 /*
6961 * If its not a per-cpu rb, it must be the same task.
6962 */
6963 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6964 goto out;
6965
6966set:
6967 mutex_lock(&event->mmap_mutex);
6968 /* Can't redirect output if we've got an active mmap() */
6969 if (atomic_read(&event->mmap_count))
6970 goto unlock;
6971
6972 if (output_event) {
6973 /* get the rb we want to redirect to */
6974 rb = ring_buffer_get(output_event);
6975 if (!rb)
6976 goto unlock;
6977 }
6978
6979 ring_buffer_attach(event, rb);
6980
6981 ret = 0;
6982unlock:
6983 mutex_unlock(&event->mmap_mutex);
6984
6985out:
6986 return ret;
6987}
6988
6989/**
6990 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6991 *
6992 * @attr_uptr: event_id type attributes for monitoring/sampling
6993 * @pid: target pid
6994 * @cpu: target cpu
6995 * @group_fd: group leader event fd
6996 */
6997SYSCALL_DEFINE5(perf_event_open,
6998 struct perf_event_attr __user *, attr_uptr,
6999 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7000{
7001 struct perf_event *group_leader = NULL, *output_event = NULL;
7002 struct perf_event *event, *sibling;
7003 struct perf_event_attr attr;
7004 struct perf_event_context *ctx;
7005 struct file *event_file = NULL;
7006 struct fd group = {NULL, 0};
7007 struct task_struct *task = NULL;
7008 struct pmu *pmu;
7009 int event_fd;
7010 int move_group = 0;
7011 int err;
7012 int f_flags = O_RDWR;
7013
7014 /* for future expandability... */
7015 if (flags & ~PERF_FLAG_ALL)
7016 return -EINVAL;
7017
7018 err = perf_copy_attr(attr_uptr, &attr);
7019 if (err)
7020 return err;
7021
7022 if (!attr.exclude_kernel) {
7023 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7024 return -EACCES;
7025 }
7026
7027 if (attr.freq) {
7028 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7029 return -EINVAL;
7030 } else {
7031 if (attr.sample_period & (1ULL << 63))
7032 return -EINVAL;
7033 }
7034
7035 /*
7036 * In cgroup mode, the pid argument is used to pass the fd
7037 * opened to the cgroup directory in cgroupfs. The cpu argument
7038 * designates the cpu on which to monitor threads from that
7039 * cgroup.
7040 */
7041 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7042 return -EINVAL;
7043
7044 if (flags & PERF_FLAG_FD_CLOEXEC)
7045 f_flags |= O_CLOEXEC;
7046
7047 event_fd = get_unused_fd_flags(f_flags);
7048 if (event_fd < 0)
7049 return event_fd;
7050
7051 if (group_fd != -1) {
7052 err = perf_fget_light(group_fd, &group);
7053 if (err)
7054 goto err_fd;
7055 group_leader = group.file->private_data;
7056 if (flags & PERF_FLAG_FD_OUTPUT)
7057 output_event = group_leader;
7058 if (flags & PERF_FLAG_FD_NO_GROUP)
7059 group_leader = NULL;
7060 }
7061
7062 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7063 task = find_lively_task_by_vpid(pid);
7064 if (IS_ERR(task)) {
7065 err = PTR_ERR(task);
7066 goto err_group_fd;
7067 }
7068 }
7069
7070 get_online_cpus();
7071
7072 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7073 NULL, NULL);
7074 if (IS_ERR(event)) {
7075 err = PTR_ERR(event);
7076 goto err_task;
7077 }
7078
7079 if (flags & PERF_FLAG_PID_CGROUP) {
7080 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7081 if (err) {
7082 __free_event(event);
7083 goto err_task;
7084 }
7085 }
7086
7087 account_event(event);
7088
7089 /*
7090 * Special case software events and allow them to be part of
7091 * any hardware group.
7092 */
7093 pmu = event->pmu;
7094
7095 if (group_leader &&
7096 (is_software_event(event) != is_software_event(group_leader))) {
7097 if (is_software_event(event)) {
7098 /*
7099 * If event and group_leader are not both a software
7100 * event, and event is, then group leader is not.
7101 *
7102 * Allow the addition of software events to !software
7103 * groups, this is safe because software events never
7104 * fail to schedule.
7105 */
7106 pmu = group_leader->pmu;
7107 } else if (is_software_event(group_leader) &&
7108 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7109 /*
7110 * In case the group is a pure software group, and we
7111 * try to add a hardware event, move the whole group to
7112 * the hardware context.
7113 */
7114 move_group = 1;
7115 }
7116 }
7117
7118 /*
7119 * Get the target context (task or percpu):
7120 */
7121 ctx = find_get_context(pmu, task, event->cpu);
7122 if (IS_ERR(ctx)) {
7123 err = PTR_ERR(ctx);
7124 goto err_alloc;
7125 }
7126
7127 if (task) {
7128 put_task_struct(task);
7129 task = NULL;
7130 }
7131
7132 /*
7133 * Look up the group leader (we will attach this event to it):
7134 */
7135 if (group_leader) {
7136 err = -EINVAL;
7137
7138 /*
7139 * Do not allow a recursive hierarchy (this new sibling
7140 * becoming part of another group-sibling):
7141 */
7142 if (group_leader->group_leader != group_leader)
7143 goto err_context;
7144 /*
7145 * Do not allow to attach to a group in a different
7146 * task or CPU context:
7147 */
7148 if (move_group) {
7149 if (group_leader->ctx->type != ctx->type)
7150 goto err_context;
7151 } else {
7152 if (group_leader->ctx != ctx)
7153 goto err_context;
7154 }
7155
7156 /*
7157 * Only a group leader can be exclusive or pinned
7158 */
7159 if (attr.exclusive || attr.pinned)
7160 goto err_context;
7161 }
7162
7163 if (output_event) {
7164 err = perf_event_set_output(event, output_event);
7165 if (err)
7166 goto err_context;
7167 }
7168
7169 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7170 f_flags);
7171 if (IS_ERR(event_file)) {
7172 err = PTR_ERR(event_file);
7173 goto err_context;
7174 }
7175
7176 if (move_group) {
7177 struct perf_event_context *gctx = group_leader->ctx;
7178
7179 mutex_lock(&gctx->mutex);
7180 perf_remove_from_context(group_leader, false);
7181
7182 /*
7183 * Removing from the context ends up with disabled
7184 * event. What we want here is event in the initial
7185 * startup state, ready to be add into new context.
7186 */
7187 perf_event__state_init(group_leader);
7188 list_for_each_entry(sibling, &group_leader->sibling_list,
7189 group_entry) {
7190 perf_remove_from_context(sibling, false);
7191 perf_event__state_init(sibling);
7192 put_ctx(gctx);
7193 }
7194 mutex_unlock(&gctx->mutex);
7195 put_ctx(gctx);
7196 }
7197
7198 WARN_ON_ONCE(ctx->parent_ctx);
7199 mutex_lock(&ctx->mutex);
7200
7201 if (move_group) {
7202 synchronize_rcu();
7203 perf_install_in_context(ctx, group_leader, event->cpu);
7204 get_ctx(ctx);
7205 list_for_each_entry(sibling, &group_leader->sibling_list,
7206 group_entry) {
7207 perf_install_in_context(ctx, sibling, event->cpu);
7208 get_ctx(ctx);
7209 }
7210 }
7211
7212 perf_install_in_context(ctx, event, event->cpu);
7213 perf_unpin_context(ctx);
7214 mutex_unlock(&ctx->mutex);
7215
7216 put_online_cpus();
7217
7218 event->owner = current;
7219
7220 mutex_lock(¤t->perf_event_mutex);
7221 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
7222 mutex_unlock(¤t->perf_event_mutex);
7223
7224 /*
7225 * Precalculate sample_data sizes
7226 */
7227 perf_event__header_size(event);
7228 perf_event__id_header_size(event);
7229
7230 /*
7231 * Drop the reference on the group_event after placing the
7232 * new event on the sibling_list. This ensures destruction
7233 * of the group leader will find the pointer to itself in
7234 * perf_group_detach().
7235 */
7236 fdput(group);
7237 fd_install(event_fd, event_file);
7238 return event_fd;
7239
7240err_context:
7241 perf_unpin_context(ctx);
7242 put_ctx(ctx);
7243err_alloc:
7244 free_event(event);
7245err_task:
7246 put_online_cpus();
7247 if (task)
7248 put_task_struct(task);
7249err_group_fd:
7250 fdput(group);
7251err_fd:
7252 put_unused_fd(event_fd);
7253 return err;
7254}
7255
7256/**
7257 * perf_event_create_kernel_counter
7258 *
7259 * @attr: attributes of the counter to create
7260 * @cpu: cpu in which the counter is bound
7261 * @task: task to profile (NULL for percpu)
7262 */
7263struct perf_event *
7264perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7265 struct task_struct *task,
7266 perf_overflow_handler_t overflow_handler,
7267 void *context)
7268{
7269 struct perf_event_context *ctx;
7270 struct perf_event *event;
7271 int err;
7272
7273 /*
7274 * Get the target context (task or percpu):
7275 */
7276
7277 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7278 overflow_handler, context);
7279 if (IS_ERR(event)) {
7280 err = PTR_ERR(event);
7281 goto err;
7282 }
7283
7284 account_event(event);
7285
7286 ctx = find_get_context(event->pmu, task, cpu);
7287 if (IS_ERR(ctx)) {
7288 err = PTR_ERR(ctx);
7289 goto err_free;
7290 }
7291
7292 WARN_ON_ONCE(ctx->parent_ctx);
7293 mutex_lock(&ctx->mutex);
7294 perf_install_in_context(ctx, event, cpu);
7295 perf_unpin_context(ctx);
7296 mutex_unlock(&ctx->mutex);
7297
7298 return event;
7299
7300err_free:
7301 free_event(event);
7302err:
7303 return ERR_PTR(err);
7304}
7305EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7306
7307void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7308{
7309 struct perf_event_context *src_ctx;
7310 struct perf_event_context *dst_ctx;
7311 struct perf_event *event, *tmp;
7312 LIST_HEAD(events);
7313
7314 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7315 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7316
7317 mutex_lock(&src_ctx->mutex);
7318 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7319 event_entry) {
7320 perf_remove_from_context(event, false);
7321 unaccount_event_cpu(event, src_cpu);
7322 put_ctx(src_ctx);
7323 list_add(&event->migrate_entry, &events);
7324 }
7325 mutex_unlock(&src_ctx->mutex);
7326
7327 synchronize_rcu();
7328
7329 mutex_lock(&dst_ctx->mutex);
7330 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7331 list_del(&event->migrate_entry);
7332 if (event->state >= PERF_EVENT_STATE_OFF)
7333 event->state = PERF_EVENT_STATE_INACTIVE;
7334 account_event_cpu(event, dst_cpu);
7335 perf_install_in_context(dst_ctx, event, dst_cpu);
7336 get_ctx(dst_ctx);
7337 }
7338 mutex_unlock(&dst_ctx->mutex);
7339}
7340EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7341
7342static void sync_child_event(struct perf_event *child_event,
7343 struct task_struct *child)
7344{
7345 struct perf_event *parent_event = child_event->parent;
7346 u64 child_val;
7347
7348 if (child_event->attr.inherit_stat)
7349 perf_event_read_event(child_event, child);
7350
7351 child_val = perf_event_count(child_event);
7352
7353 /*
7354 * Add back the child's count to the parent's count:
7355 */
7356 atomic64_add(child_val, &parent_event->child_count);
7357 atomic64_add(child_event->total_time_enabled,
7358 &parent_event->child_total_time_enabled);
7359 atomic64_add(child_event->total_time_running,
7360 &parent_event->child_total_time_running);
7361
7362 /*
7363 * Remove this event from the parent's list
7364 */
7365 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7366 mutex_lock(&parent_event->child_mutex);
7367 list_del_init(&child_event->child_list);
7368 mutex_unlock(&parent_event->child_mutex);
7369
7370 /*
7371 * Release the parent event, if this was the last
7372 * reference to it.
7373 */
7374 put_event(parent_event);
7375}
7376
7377static void
7378__perf_event_exit_task(struct perf_event *child_event,
7379 struct perf_event_context *child_ctx,
7380 struct task_struct *child)
7381{
7382 perf_remove_from_context(child_event, !!child_event->parent);
7383
7384 /*
7385 * It can happen that the parent exits first, and has events
7386 * that are still around due to the child reference. These
7387 * events need to be zapped.
7388 */
7389 if (child_event->parent) {
7390 sync_child_event(child_event, child);
7391 free_event(child_event);
7392 }
7393}
7394
7395static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7396{
7397 struct perf_event *child_event, *tmp;
7398 struct perf_event_context *child_ctx;
7399 unsigned long flags;
7400
7401 if (likely(!child->perf_event_ctxp[ctxn])) {
7402 perf_event_task(child, NULL, 0);
7403 return;
7404 }
7405
7406 local_irq_save(flags);
7407 /*
7408 * We can't reschedule here because interrupts are disabled,
7409 * and either child is current or it is a task that can't be
7410 * scheduled, so we are now safe from rescheduling changing
7411 * our context.
7412 */
7413 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7414
7415 /*
7416 * Take the context lock here so that if find_get_context is
7417 * reading child->perf_event_ctxp, we wait until it has
7418 * incremented the context's refcount before we do put_ctx below.
7419 */
7420 raw_spin_lock(&child_ctx->lock);
7421 task_ctx_sched_out(child_ctx);
7422 child->perf_event_ctxp[ctxn] = NULL;
7423 /*
7424 * If this context is a clone; unclone it so it can't get
7425 * swapped to another process while we're removing all
7426 * the events from it.
7427 */
7428 unclone_ctx(child_ctx);
7429 update_context_time(child_ctx);
7430 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7431
7432 /*
7433 * Report the task dead after unscheduling the events so that we
7434 * won't get any samples after PERF_RECORD_EXIT. We can however still
7435 * get a few PERF_RECORD_READ events.
7436 */
7437 perf_event_task(child, child_ctx, 0);
7438
7439 /*
7440 * We can recurse on the same lock type through:
7441 *
7442 * __perf_event_exit_task()
7443 * sync_child_event()
7444 * put_event()
7445 * mutex_lock(&ctx->mutex)
7446 *
7447 * But since its the parent context it won't be the same instance.
7448 */
7449 mutex_lock(&child_ctx->mutex);
7450
7451again:
7452 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7453 group_entry)
7454 __perf_event_exit_task(child_event, child_ctx, child);
7455
7456 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7457 group_entry)
7458 __perf_event_exit_task(child_event, child_ctx, child);
7459
7460 /*
7461 * If the last event was a group event, it will have appended all
7462 * its siblings to the list, but we obtained 'tmp' before that which
7463 * will still point to the list head terminating the iteration.
7464 */
7465 if (!list_empty(&child_ctx->pinned_groups) ||
7466 !list_empty(&child_ctx->flexible_groups))
7467 goto again;
7468
7469 mutex_unlock(&child_ctx->mutex);
7470
7471 put_ctx(child_ctx);
7472}
7473
7474/*
7475 * When a child task exits, feed back event values to parent events.
7476 */
7477void perf_event_exit_task(struct task_struct *child)
7478{
7479 struct perf_event *event, *tmp;
7480 int ctxn;
7481
7482 mutex_lock(&child->perf_event_mutex);
7483 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7484 owner_entry) {
7485 list_del_init(&event->owner_entry);
7486
7487 /*
7488 * Ensure the list deletion is visible before we clear
7489 * the owner, closes a race against perf_release() where
7490 * we need to serialize on the owner->perf_event_mutex.
7491 */
7492 smp_wmb();
7493 event->owner = NULL;
7494 }
7495 mutex_unlock(&child->perf_event_mutex);
7496
7497 for_each_task_context_nr(ctxn)
7498 perf_event_exit_task_context(child, ctxn);
7499}
7500
7501static void perf_free_event(struct perf_event *event,
7502 struct perf_event_context *ctx)
7503{
7504 struct perf_event *parent = event->parent;
7505
7506 if (WARN_ON_ONCE(!parent))
7507 return;
7508
7509 mutex_lock(&parent->child_mutex);
7510 list_del_init(&event->child_list);
7511 mutex_unlock(&parent->child_mutex);
7512
7513 put_event(parent);
7514
7515 perf_group_detach(event);
7516 list_del_event(event, ctx);
7517 free_event(event);
7518}
7519
7520/*
7521 * free an unexposed, unused context as created by inheritance by
7522 * perf_event_init_task below, used by fork() in case of fail.
7523 */
7524void perf_event_free_task(struct task_struct *task)
7525{
7526 struct perf_event_context *ctx;
7527 struct perf_event *event, *tmp;
7528 int ctxn;
7529
7530 for_each_task_context_nr(ctxn) {
7531 ctx = task->perf_event_ctxp[ctxn];
7532 if (!ctx)
7533 continue;
7534
7535 mutex_lock(&ctx->mutex);
7536again:
7537 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7538 group_entry)
7539 perf_free_event(event, ctx);
7540
7541 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7542 group_entry)
7543 perf_free_event(event, ctx);
7544
7545 if (!list_empty(&ctx->pinned_groups) ||
7546 !list_empty(&ctx->flexible_groups))
7547 goto again;
7548
7549 mutex_unlock(&ctx->mutex);
7550
7551 put_ctx(ctx);
7552 }
7553}
7554
7555void perf_event_delayed_put(struct task_struct *task)
7556{
7557 int ctxn;
7558
7559 for_each_task_context_nr(ctxn)
7560 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7561}
7562
7563/*
7564 * inherit a event from parent task to child task:
7565 */
7566static struct perf_event *
7567inherit_event(struct perf_event *parent_event,
7568 struct task_struct *parent,
7569 struct perf_event_context *parent_ctx,
7570 struct task_struct *child,
7571 struct perf_event *group_leader,
7572 struct perf_event_context *child_ctx)
7573{
7574 struct perf_event *child_event;
7575 unsigned long flags;
7576
7577 /*
7578 * Instead of creating recursive hierarchies of events,
7579 * we link inherited events back to the original parent,
7580 * which has a filp for sure, which we use as the reference
7581 * count:
7582 */
7583 if (parent_event->parent)
7584 parent_event = parent_event->parent;
7585
7586 child_event = perf_event_alloc(&parent_event->attr,
7587 parent_event->cpu,
7588 child,
7589 group_leader, parent_event,
7590 NULL, NULL);
7591 if (IS_ERR(child_event))
7592 return child_event;
7593
7594 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7595 free_event(child_event);
7596 return NULL;
7597 }
7598
7599 get_ctx(child_ctx);
7600
7601 /*
7602 * Make the child state follow the state of the parent event,
7603 * not its attr.disabled bit. We hold the parent's mutex,
7604 * so we won't race with perf_event_{en, dis}able_family.
7605 */
7606 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7607 child_event->state = PERF_EVENT_STATE_INACTIVE;
7608 else
7609 child_event->state = PERF_EVENT_STATE_OFF;
7610
7611 if (parent_event->attr.freq) {
7612 u64 sample_period = parent_event->hw.sample_period;
7613 struct hw_perf_event *hwc = &child_event->hw;
7614
7615 hwc->sample_period = sample_period;
7616 hwc->last_period = sample_period;
7617
7618 local64_set(&hwc->period_left, sample_period);
7619 }
7620
7621 child_event->ctx = child_ctx;
7622 child_event->overflow_handler = parent_event->overflow_handler;
7623 child_event->overflow_handler_context
7624 = parent_event->overflow_handler_context;
7625
7626 /*
7627 * Precalculate sample_data sizes
7628 */
7629 perf_event__header_size(child_event);
7630 perf_event__id_header_size(child_event);
7631
7632 /*
7633 * Link it up in the child's context:
7634 */
7635 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7636 add_event_to_ctx(child_event, child_ctx);
7637 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7638
7639 /*
7640 * Link this into the parent event's child list
7641 */
7642 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7643 mutex_lock(&parent_event->child_mutex);
7644 list_add_tail(&child_event->child_list, &parent_event->child_list);
7645 mutex_unlock(&parent_event->child_mutex);
7646
7647 return child_event;
7648}
7649
7650static int inherit_group(struct perf_event *parent_event,
7651 struct task_struct *parent,
7652 struct perf_event_context *parent_ctx,
7653 struct task_struct *child,
7654 struct perf_event_context *child_ctx)
7655{
7656 struct perf_event *leader;
7657 struct perf_event *sub;
7658 struct perf_event *child_ctr;
7659
7660 leader = inherit_event(parent_event, parent, parent_ctx,
7661 child, NULL, child_ctx);
7662 if (IS_ERR(leader))
7663 return PTR_ERR(leader);
7664 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7665 child_ctr = inherit_event(sub, parent, parent_ctx,
7666 child, leader, child_ctx);
7667 if (IS_ERR(child_ctr))
7668 return PTR_ERR(child_ctr);
7669 }
7670 return 0;
7671}
7672
7673static int
7674inherit_task_group(struct perf_event *event, struct task_struct *parent,
7675 struct perf_event_context *parent_ctx,
7676 struct task_struct *child, int ctxn,
7677 int *inherited_all)
7678{
7679 int ret;
7680 struct perf_event_context *child_ctx;
7681
7682 if (!event->attr.inherit) {
7683 *inherited_all = 0;
7684 return 0;
7685 }
7686
7687 child_ctx = child->perf_event_ctxp[ctxn];
7688 if (!child_ctx) {
7689 /*
7690 * This is executed from the parent task context, so
7691 * inherit events that have been marked for cloning.
7692 * First allocate and initialize a context for the
7693 * child.
7694 */
7695
7696 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7697 if (!child_ctx)
7698 return -ENOMEM;
7699
7700 child->perf_event_ctxp[ctxn] = child_ctx;
7701 }
7702
7703 ret = inherit_group(event, parent, parent_ctx,
7704 child, child_ctx);
7705
7706 if (ret)
7707 *inherited_all = 0;
7708
7709 return ret;
7710}
7711
7712/*
7713 * Initialize the perf_event context in task_struct
7714 */
7715int perf_event_init_context(struct task_struct *child, int ctxn)
7716{
7717 struct perf_event_context *child_ctx, *parent_ctx;
7718 struct perf_event_context *cloned_ctx;
7719 struct perf_event *event;
7720 struct task_struct *parent = current;
7721 int inherited_all = 1;
7722 unsigned long flags;
7723 int ret = 0;
7724
7725 if (likely(!parent->perf_event_ctxp[ctxn]))
7726 return 0;
7727
7728 /*
7729 * If the parent's context is a clone, pin it so it won't get
7730 * swapped under us.
7731 */
7732 parent_ctx = perf_pin_task_context(parent, ctxn);
7733 if (!parent_ctx)
7734 return 0;
7735
7736 /*
7737 * No need to check if parent_ctx != NULL here; since we saw
7738 * it non-NULL earlier, the only reason for it to become NULL
7739 * is if we exit, and since we're currently in the middle of
7740 * a fork we can't be exiting at the same time.
7741 */
7742
7743 /*
7744 * Lock the parent list. No need to lock the child - not PID
7745 * hashed yet and not running, so nobody can access it.
7746 */
7747 mutex_lock(&parent_ctx->mutex);
7748
7749 /*
7750 * We dont have to disable NMIs - we are only looking at
7751 * the list, not manipulating it:
7752 */
7753 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7754 ret = inherit_task_group(event, parent, parent_ctx,
7755 child, ctxn, &inherited_all);
7756 if (ret)
7757 break;
7758 }
7759
7760 /*
7761 * We can't hold ctx->lock when iterating the ->flexible_group list due
7762 * to allocations, but we need to prevent rotation because
7763 * rotate_ctx() will change the list from interrupt context.
7764 */
7765 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7766 parent_ctx->rotate_disable = 1;
7767 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7768
7769 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7770 ret = inherit_task_group(event, parent, parent_ctx,
7771 child, ctxn, &inherited_all);
7772 if (ret)
7773 break;
7774 }
7775
7776 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7777 parent_ctx->rotate_disable = 0;
7778
7779 child_ctx = child->perf_event_ctxp[ctxn];
7780
7781 if (child_ctx && inherited_all) {
7782 /*
7783 * Mark the child context as a clone of the parent
7784 * context, or of whatever the parent is a clone of.
7785 *
7786 * Note that if the parent is a clone, the holding of
7787 * parent_ctx->lock avoids it from being uncloned.
7788 */
7789 cloned_ctx = parent_ctx->parent_ctx;
7790 if (cloned_ctx) {
7791 child_ctx->parent_ctx = cloned_ctx;
7792 child_ctx->parent_gen = parent_ctx->parent_gen;
7793 } else {
7794 child_ctx->parent_ctx = parent_ctx;
7795 child_ctx->parent_gen = parent_ctx->generation;
7796 }
7797 get_ctx(child_ctx->parent_ctx);
7798 }
7799
7800 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7801 mutex_unlock(&parent_ctx->mutex);
7802
7803 perf_unpin_context(parent_ctx);
7804 put_ctx(parent_ctx);
7805
7806 return ret;
7807}
7808
7809/*
7810 * Initialize the perf_event context in task_struct
7811 */
7812int perf_event_init_task(struct task_struct *child)
7813{
7814 int ctxn, ret;
7815
7816 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7817 mutex_init(&child->perf_event_mutex);
7818 INIT_LIST_HEAD(&child->perf_event_list);
7819
7820 for_each_task_context_nr(ctxn) {
7821 ret = perf_event_init_context(child, ctxn);
7822 if (ret)
7823 return ret;
7824 }
7825
7826 return 0;
7827}
7828
7829static void __init perf_event_init_all_cpus(void)
7830{
7831 struct swevent_htable *swhash;
7832 int cpu;
7833
7834 for_each_possible_cpu(cpu) {
7835 swhash = &per_cpu(swevent_htable, cpu);
7836 mutex_init(&swhash->hlist_mutex);
7837 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7838 }
7839}
7840
7841static void perf_event_init_cpu(int cpu)
7842{
7843 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7844
7845 mutex_lock(&swhash->hlist_mutex);
7846 swhash->online = true;
7847 if (swhash->hlist_refcount > 0) {
7848 struct swevent_hlist *hlist;
7849
7850 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7851 WARN_ON(!hlist);
7852 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7853 }
7854 mutex_unlock(&swhash->hlist_mutex);
7855}
7856
7857#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7858static void perf_pmu_rotate_stop(struct pmu *pmu)
7859{
7860 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7861
7862 WARN_ON(!irqs_disabled());
7863
7864 list_del_init(&cpuctx->rotation_list);
7865}
7866
7867static void __perf_event_exit_context(void *__info)
7868{
7869 struct remove_event re = { .detach_group = false };
7870 struct perf_event_context *ctx = __info;
7871
7872 perf_pmu_rotate_stop(ctx->pmu);
7873
7874 rcu_read_lock();
7875 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7876 __perf_remove_from_context(&re);
7877 rcu_read_unlock();
7878}
7879
7880static void perf_event_exit_cpu_context(int cpu)
7881{
7882 struct perf_event_context *ctx;
7883 struct pmu *pmu;
7884 int idx;
7885
7886 idx = srcu_read_lock(&pmus_srcu);
7887 list_for_each_entry_rcu(pmu, &pmus, entry) {
7888 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7889
7890 mutex_lock(&ctx->mutex);
7891 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7892 mutex_unlock(&ctx->mutex);
7893 }
7894 srcu_read_unlock(&pmus_srcu, idx);
7895}
7896
7897static void perf_event_exit_cpu(int cpu)
7898{
7899 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7900
7901 perf_event_exit_cpu_context(cpu);
7902
7903 mutex_lock(&swhash->hlist_mutex);
7904 swhash->online = false;
7905 swevent_hlist_release(swhash);
7906 mutex_unlock(&swhash->hlist_mutex);
7907}
7908#else
7909static inline void perf_event_exit_cpu(int cpu) { }
7910#endif
7911
7912static int
7913perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7914{
7915 int cpu;
7916
7917 for_each_online_cpu(cpu)
7918 perf_event_exit_cpu(cpu);
7919
7920 return NOTIFY_OK;
7921}
7922
7923/*
7924 * Run the perf reboot notifier at the very last possible moment so that
7925 * the generic watchdog code runs as long as possible.
7926 */
7927static struct notifier_block perf_reboot_notifier = {
7928 .notifier_call = perf_reboot,
7929 .priority = INT_MIN,
7930};
7931
7932static int
7933perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7934{
7935 unsigned int cpu = (long)hcpu;
7936
7937 switch (action & ~CPU_TASKS_FROZEN) {
7938
7939 case CPU_UP_PREPARE:
7940 case CPU_DOWN_FAILED:
7941 perf_event_init_cpu(cpu);
7942 break;
7943
7944 case CPU_UP_CANCELED:
7945 case CPU_DOWN_PREPARE:
7946 perf_event_exit_cpu(cpu);
7947 break;
7948 default:
7949 break;
7950 }
7951
7952 return NOTIFY_OK;
7953}
7954
7955void __init perf_event_init(void)
7956{
7957 int ret;
7958
7959 idr_init(&pmu_idr);
7960
7961 perf_event_init_all_cpus();
7962 init_srcu_struct(&pmus_srcu);
7963 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7964 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7965 perf_pmu_register(&perf_task_clock, NULL, -1);
7966 perf_tp_register();
7967 perf_cpu_notifier(perf_cpu_notify);
7968 register_reboot_notifier(&perf_reboot_notifier);
7969
7970 ret = init_hw_breakpoint();
7971 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7972
7973 /* do not patch jump label more than once per second */
7974 jump_label_rate_limit(&perf_sched_events, HZ);
7975
7976 /*
7977 * Build time assertion that we keep the data_head at the intended
7978 * location. IOW, validation we got the __reserved[] size right.
7979 */
7980 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7981 != 1024);
7982}
7983
7984static int __init perf_event_sysfs_init(void)
7985{
7986 struct pmu *pmu;
7987 int ret;
7988
7989 mutex_lock(&pmus_lock);
7990
7991 ret = bus_register(&pmu_bus);
7992 if (ret)
7993 goto unlock;
7994
7995 list_for_each_entry(pmu, &pmus, entry) {
7996 if (!pmu->name || pmu->type < 0)
7997 continue;
7998
7999 ret = pmu_dev_alloc(pmu);
8000 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8001 }
8002 pmu_bus_running = 1;
8003 ret = 0;
8004
8005unlock:
8006 mutex_unlock(&pmus_lock);
8007
8008 return ret;
8009}
8010device_initcall(perf_event_sysfs_init);
8011
8012#ifdef CONFIG_CGROUP_PERF
8013static struct cgroup_subsys_state *
8014perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8015{
8016 struct perf_cgroup *jc;
8017
8018 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8019 if (!jc)
8020 return ERR_PTR(-ENOMEM);
8021
8022 jc->info = alloc_percpu(struct perf_cgroup_info);
8023 if (!jc->info) {
8024 kfree(jc);
8025 return ERR_PTR(-ENOMEM);
8026 }
8027
8028 return &jc->css;
8029}
8030
8031static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8032{
8033 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8034
8035 free_percpu(jc->info);
8036 kfree(jc);
8037}
8038
8039static int __perf_cgroup_move(void *info)
8040{
8041 struct task_struct *task = info;
8042 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8043 return 0;
8044}
8045
8046static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8047 struct cgroup_taskset *tset)
8048{
8049 struct task_struct *task;
8050
8051 cgroup_taskset_for_each(task, tset)
8052 task_function_call(task, __perf_cgroup_move, task);
8053}
8054
8055static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8056 struct cgroup_subsys_state *old_css,
8057 struct task_struct *task)
8058{
8059 /*
8060 * cgroup_exit() is called in the copy_process() failure path.
8061 * Ignore this case since the task hasn't ran yet, this avoids
8062 * trying to poke a half freed task state from generic code.
8063 */
8064 if (!(task->flags & PF_EXITING))
8065 return;
8066
8067 task_function_call(task, __perf_cgroup_move, task);
8068}
8069
8070struct cgroup_subsys perf_event_cgrp_subsys = {
8071 .css_alloc = perf_cgroup_css_alloc,
8072 .css_free = perf_cgroup_css_free,
8073 .exit = perf_cgroup_exit,
8074 .attach = perf_cgroup_attach,
8075};
8076#endif /* CONFIG_CGROUP_PERF */