Loading...
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/slab.h>
7#include <linux/string.h>
8#include "reiserfs.h"
9#include <linux/buffer_head.h>
10
11/*
12 * To make any changes in the tree we find a node that contains item
13 * to be changed/deleted or position in the node we insert a new item
14 * to. We call this node S. To do balancing we need to decide what we
15 * will shift to left/right neighbor, or to a new node, where new item
16 * will be etc. To make this analysis simpler we build virtual
17 * node. Virtual node is an array of items, that will replace items of
18 * node S. (For instance if we are going to delete an item, virtual
19 * node does not contain it). Virtual node keeps information about
20 * item sizes and types, mergeability of first and last items, sizes
21 * of all entries in directory item. We use this array of items when
22 * calculating what we can shift to neighbors and how many nodes we
23 * have to have if we do not any shiftings, if we shift to left/right
24 * neighbor or to both.
25 */
26
27/*
28 * Takes item number in virtual node, returns number of item
29 * that it has in source buffer
30 */
31static inline int old_item_num(int new_num, int affected_item_num, int mode)
32{
33 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
34 return new_num;
35
36 if (mode == M_INSERT) {
37
38 RFALSE(new_num == 0,
39 "vs-8005: for INSERT mode and item number of inserted item");
40
41 return new_num - 1;
42 }
43
44 RFALSE(mode != M_DELETE,
45 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
46 mode);
47 /* delete mode */
48 return new_num + 1;
49}
50
51static void create_virtual_node(struct tree_balance *tb, int h)
52{
53 struct item_head *ih;
54 struct virtual_node *vn = tb->tb_vn;
55 int new_num;
56 struct buffer_head *Sh; /* this comes from tb->S[h] */
57
58 Sh = PATH_H_PBUFFER(tb->tb_path, h);
59
60 /* size of changed node */
61 vn->vn_size =
62 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
63
64 /* for internal nodes array if virtual items is not created */
65 if (h) {
66 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
67 return;
68 }
69
70 /* number of items in virtual node */
71 vn->vn_nr_item =
72 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
73 ((vn->vn_mode == M_DELETE) ? 1 : 0);
74
75 /* first virtual item */
76 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
77 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
78 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
79
80 /* first item in the node */
81 ih = item_head(Sh, 0);
82
83 /* define the mergeability for 0-th item (if it is not being deleted) */
84 if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
85 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
86 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
87
88 /*
89 * go through all items that remain in the virtual
90 * node (except for the new (inserted) one)
91 */
92 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
93 int j;
94 struct virtual_item *vi = vn->vn_vi + new_num;
95 int is_affected =
96 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
97
98 if (is_affected && vn->vn_mode == M_INSERT)
99 continue;
100
101 /* get item number in source node */
102 j = old_item_num(new_num, vn->vn_affected_item_num,
103 vn->vn_mode);
104
105 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
106 vi->vi_ih = ih + j;
107 vi->vi_item = ih_item_body(Sh, ih + j);
108 vi->vi_uarea = vn->vn_free_ptr;
109
110 /*
111 * FIXME: there is no check that item operation did not
112 * consume too much memory
113 */
114 vn->vn_free_ptr +=
115 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
116 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
117 reiserfs_panic(tb->tb_sb, "vs-8030",
118 "virtual node space consumed");
119
120 if (!is_affected)
121 /* this is not being changed */
122 continue;
123
124 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
125 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
126 /* pointer to data which is going to be pasted */
127 vi->vi_new_data = vn->vn_data;
128 }
129 }
130
131 /* virtual inserted item is not defined yet */
132 if (vn->vn_mode == M_INSERT) {
133 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
134
135 RFALSE(vn->vn_ins_ih == NULL,
136 "vs-8040: item header of inserted item is not specified");
137 vi->vi_item_len = tb->insert_size[0];
138 vi->vi_ih = vn->vn_ins_ih;
139 vi->vi_item = vn->vn_data;
140 vi->vi_uarea = vn->vn_free_ptr;
141
142 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
143 tb->insert_size[0]);
144 }
145
146 /*
147 * set right merge flag we take right delimiting key and
148 * check whether it is a mergeable item
149 */
150 if (tb->CFR[0]) {
151 struct reiserfs_key *key;
152
153 key = internal_key(tb->CFR[0], tb->rkey[0]);
154 if (op_is_left_mergeable(key, Sh->b_size)
155 && (vn->vn_mode != M_DELETE
156 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
157 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
158 VI_TYPE_RIGHT_MERGEABLE;
159
160#ifdef CONFIG_REISERFS_CHECK
161 if (op_is_left_mergeable(key, Sh->b_size) &&
162 !(vn->vn_mode != M_DELETE
163 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
164 /*
165 * we delete last item and it could be merged
166 * with right neighbor's first item
167 */
168 if (!
169 (B_NR_ITEMS(Sh) == 1
170 && is_direntry_le_ih(item_head(Sh, 0))
171 && ih_entry_count(item_head(Sh, 0)) == 1)) {
172 /*
173 * node contains more than 1 item, or item
174 * is not directory item, or this item
175 * contains more than 1 entry
176 */
177 print_block(Sh, 0, -1, -1);
178 reiserfs_panic(tb->tb_sb, "vs-8045",
179 "rdkey %k, affected item==%d "
180 "(mode==%c) Must be %c",
181 key, vn->vn_affected_item_num,
182 vn->vn_mode, M_DELETE);
183 }
184 }
185#endif
186
187 }
188}
189
190/*
191 * Using virtual node check, how many items can be
192 * shifted to left neighbor
193 */
194static void check_left(struct tree_balance *tb, int h, int cur_free)
195{
196 int i;
197 struct virtual_node *vn = tb->tb_vn;
198 struct virtual_item *vi;
199 int d_size, ih_size;
200
201 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
202
203 /* internal level */
204 if (h > 0) {
205 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
206 return;
207 }
208
209 /* leaf level */
210
211 if (!cur_free || !vn->vn_nr_item) {
212 /* no free space or nothing to move */
213 tb->lnum[h] = 0;
214 tb->lbytes = -1;
215 return;
216 }
217
218 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
219 "vs-8055: parent does not exist or invalid");
220
221 vi = vn->vn_vi;
222 if ((unsigned int)cur_free >=
223 (vn->vn_size -
224 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
225 /* all contents of S[0] fits into L[0] */
226
227 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
228 "vs-8055: invalid mode or balance condition failed");
229
230 tb->lnum[0] = vn->vn_nr_item;
231 tb->lbytes = -1;
232 return;
233 }
234
235 d_size = 0, ih_size = IH_SIZE;
236
237 /* first item may be merge with last item in left neighbor */
238 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239 d_size = -((int)IH_SIZE), ih_size = 0;
240
241 tb->lnum[0] = 0;
242 for (i = 0; i < vn->vn_nr_item;
243 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
244 d_size += vi->vi_item_len;
245 if (cur_free >= d_size) {
246 /* the item can be shifted entirely */
247 cur_free -= d_size;
248 tb->lnum[0]++;
249 continue;
250 }
251
252 /* the item cannot be shifted entirely, try to split it */
253 /*
254 * check whether L[0] can hold ih and at least one byte
255 * of the item body
256 */
257
258 /* cannot shift even a part of the current item */
259 if (cur_free <= ih_size) {
260 tb->lbytes = -1;
261 return;
262 }
263 cur_free -= ih_size;
264
265 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
266 if (tb->lbytes != -1)
267 /* count partially shifted item */
268 tb->lnum[0]++;
269
270 break;
271 }
272
273 return;
274}
275
276/*
277 * Using virtual node check, how many items can be
278 * shifted to right neighbor
279 */
280static void check_right(struct tree_balance *tb, int h, int cur_free)
281{
282 int i;
283 struct virtual_node *vn = tb->tb_vn;
284 struct virtual_item *vi;
285 int d_size, ih_size;
286
287 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
288
289 /* internal level */
290 if (h > 0) {
291 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
292 return;
293 }
294
295 /* leaf level */
296
297 if (!cur_free || !vn->vn_nr_item) {
298 /* no free space */
299 tb->rnum[h] = 0;
300 tb->rbytes = -1;
301 return;
302 }
303
304 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
305 "vs-8075: parent does not exist or invalid");
306
307 vi = vn->vn_vi + vn->vn_nr_item - 1;
308 if ((unsigned int)cur_free >=
309 (vn->vn_size -
310 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
311 /* all contents of S[0] fits into R[0] */
312
313 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
314 "vs-8080: invalid mode or balance condition failed");
315
316 tb->rnum[h] = vn->vn_nr_item;
317 tb->rbytes = -1;
318 return;
319 }
320
321 d_size = 0, ih_size = IH_SIZE;
322
323 /* last item may be merge with first item in right neighbor */
324 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
325 d_size = -(int)IH_SIZE, ih_size = 0;
326
327 tb->rnum[0] = 0;
328 for (i = vn->vn_nr_item - 1; i >= 0;
329 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
330 d_size += vi->vi_item_len;
331 if (cur_free >= d_size) {
332 /* the item can be shifted entirely */
333 cur_free -= d_size;
334 tb->rnum[0]++;
335 continue;
336 }
337
338 /*
339 * check whether R[0] can hold ih and at least one
340 * byte of the item body
341 */
342
343 /* cannot shift even a part of the current item */
344 if (cur_free <= ih_size) {
345 tb->rbytes = -1;
346 return;
347 }
348
349 /*
350 * R[0] can hold the header of the item and at least
351 * one byte of its body
352 */
353 cur_free -= ih_size; /* cur_free is still > 0 */
354
355 tb->rbytes = op_check_right(vi, cur_free);
356 if (tb->rbytes != -1)
357 /* count partially shifted item */
358 tb->rnum[0]++;
359
360 break;
361 }
362
363 return;
364}
365
366/*
367 * from - number of items, which are shifted to left neighbor entirely
368 * to - number of item, which are shifted to right neighbor entirely
369 * from_bytes - number of bytes of boundary item (or directory entries)
370 * which are shifted to left neighbor
371 * to_bytes - number of bytes of boundary item (or directory entries)
372 * which are shifted to right neighbor
373 */
374static int get_num_ver(int mode, struct tree_balance *tb, int h,
375 int from, int from_bytes,
376 int to, int to_bytes, short *snum012, int flow)
377{
378 int i;
379 int cur_free;
380 int units;
381 struct virtual_node *vn = tb->tb_vn;
382 int total_node_size, max_node_size, current_item_size;
383 int needed_nodes;
384
385 /* position of item we start filling node from */
386 int start_item;
387
388 /* position of item we finish filling node by */
389 int end_item;
390
391 /*
392 * number of first bytes (entries for directory) of start_item-th item
393 * we do not include into node that is being filled
394 */
395 int start_bytes;
396
397 /*
398 * number of last bytes (entries for directory) of end_item-th item
399 * we do node include into node that is being filled
400 */
401 int end_bytes;
402
403 /*
404 * these are positions in virtual item of items, that are split
405 * between S[0] and S1new and S1new and S2new
406 */
407 int split_item_positions[2];
408
409 split_item_positions[0] = -1;
410 split_item_positions[1] = -1;
411
412 /*
413 * We only create additional nodes if we are in insert or paste mode
414 * or we are in replace mode at the internal level. If h is 0 and
415 * the mode is M_REPLACE then in fix_nodes we change the mode to
416 * paste or insert before we get here in the code.
417 */
418 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
419 "vs-8100: insert_size < 0 in overflow");
420
421 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
422
423 /*
424 * snum012 [0-2] - number of items, that lay
425 * to S[0], first new node and second new node
426 */
427 snum012[3] = -1; /* s1bytes */
428 snum012[4] = -1; /* s2bytes */
429
430 /* internal level */
431 if (h > 0) {
432 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
433 if (i == max_node_size)
434 return 1;
435 return (i / max_node_size + 1);
436 }
437
438 /* leaf level */
439 needed_nodes = 1;
440 total_node_size = 0;
441 cur_free = max_node_size;
442
443 /* start from 'from'-th item */
444 start_item = from;
445 /* skip its first 'start_bytes' units */
446 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
447
448 /* last included item is the 'end_item'-th one */
449 end_item = vn->vn_nr_item - to - 1;
450 /* do not count last 'end_bytes' units of 'end_item'-th item */
451 end_bytes = (to_bytes != -1) ? to_bytes : 0;
452
453 /*
454 * go through all item beginning from the start_item-th item
455 * and ending by the end_item-th item. Do not count first
456 * 'start_bytes' units of 'start_item'-th item and last
457 * 'end_bytes' of 'end_item'-th item
458 */
459 for (i = start_item; i <= end_item; i++) {
460 struct virtual_item *vi = vn->vn_vi + i;
461 int skip_from_end = ((i == end_item) ? end_bytes : 0);
462
463 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
464
465 /* get size of current item */
466 current_item_size = vi->vi_item_len;
467
468 /*
469 * do not take in calculation head part (from_bytes)
470 * of from-th item
471 */
472 current_item_size -=
473 op_part_size(vi, 0 /*from start */ , start_bytes);
474
475 /* do not take in calculation tail part of last item */
476 current_item_size -=
477 op_part_size(vi, 1 /*from end */ , skip_from_end);
478
479 /* if item fits into current node entierly */
480 if (total_node_size + current_item_size <= max_node_size) {
481 snum012[needed_nodes - 1]++;
482 total_node_size += current_item_size;
483 start_bytes = 0;
484 continue;
485 }
486
487 /*
488 * virtual item length is longer, than max size of item in
489 * a node. It is impossible for direct item
490 */
491 if (current_item_size > max_node_size) {
492 RFALSE(is_direct_le_ih(vi->vi_ih),
493 "vs-8110: "
494 "direct item length is %d. It can not be longer than %d",
495 current_item_size, max_node_size);
496 /* we will try to split it */
497 flow = 1;
498 }
499
500 /* as we do not split items, take new node and continue */
501 if (!flow) {
502 needed_nodes++;
503 i--;
504 total_node_size = 0;
505 continue;
506 }
507
508 /*
509 * calculate number of item units which fit into node being
510 * filled
511 */
512 {
513 int free_space;
514
515 free_space = max_node_size - total_node_size - IH_SIZE;
516 units =
517 op_check_left(vi, free_space, start_bytes,
518 skip_from_end);
519 /*
520 * nothing fits into current node, take new
521 * node and continue
522 */
523 if (units == -1) {
524 needed_nodes++, i--, total_node_size = 0;
525 continue;
526 }
527 }
528
529 /* something fits into the current node */
530 start_bytes += units;
531 snum012[needed_nodes - 1 + 3] = units;
532
533 if (needed_nodes > 2)
534 reiserfs_warning(tb->tb_sb, "vs-8111",
535 "split_item_position is out of range");
536 snum012[needed_nodes - 1]++;
537 split_item_positions[needed_nodes - 1] = i;
538 needed_nodes++;
539 /* continue from the same item with start_bytes != -1 */
540 start_item = i;
541 i--;
542 total_node_size = 0;
543 }
544
545 /*
546 * sum012[4] (if it is not -1) contains number of units of which
547 * are to be in S1new, snum012[3] - to be in S0. They are supposed
548 * to be S1bytes and S2bytes correspondingly, so recalculate
549 */
550 if (snum012[4] > 0) {
551 int split_item_num;
552 int bytes_to_r, bytes_to_l;
553 int bytes_to_S1new;
554
555 split_item_num = split_item_positions[1];
556 bytes_to_l =
557 ((from == split_item_num
558 && from_bytes != -1) ? from_bytes : 0);
559 bytes_to_r =
560 ((end_item == split_item_num
561 && end_bytes != -1) ? end_bytes : 0);
562 bytes_to_S1new =
563 ((split_item_positions[0] ==
564 split_item_positions[1]) ? snum012[3] : 0);
565
566 /* s2bytes */
567 snum012[4] =
568 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
569 bytes_to_r - bytes_to_l - bytes_to_S1new;
570
571 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
572 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
573 reiserfs_warning(tb->tb_sb, "vs-8115",
574 "not directory or indirect item");
575 }
576
577 /* now we know S2bytes, calculate S1bytes */
578 if (snum012[3] > 0) {
579 int split_item_num;
580 int bytes_to_r, bytes_to_l;
581 int bytes_to_S2new;
582
583 split_item_num = split_item_positions[0];
584 bytes_to_l =
585 ((from == split_item_num
586 && from_bytes != -1) ? from_bytes : 0);
587 bytes_to_r =
588 ((end_item == split_item_num
589 && end_bytes != -1) ? end_bytes : 0);
590 bytes_to_S2new =
591 ((split_item_positions[0] == split_item_positions[1]
592 && snum012[4] != -1) ? snum012[4] : 0);
593
594 /* s1bytes */
595 snum012[3] =
596 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
597 bytes_to_r - bytes_to_l - bytes_to_S2new;
598 }
599
600 return needed_nodes;
601}
602
603
604/*
605 * Set parameters for balancing.
606 * Performs write of results of analysis of balancing into structure tb,
607 * where it will later be used by the functions that actually do the balancing.
608 * Parameters:
609 * tb tree_balance structure;
610 * h current level of the node;
611 * lnum number of items from S[h] that must be shifted to L[h];
612 * rnum number of items from S[h] that must be shifted to R[h];
613 * blk_num number of blocks that S[h] will be splitted into;
614 * s012 number of items that fall into splitted nodes.
615 * lbytes number of bytes which flow to the left neighbor from the
616 * item that is not not shifted entirely
617 * rbytes number of bytes which flow to the right neighbor from the
618 * item that is not not shifted entirely
619 * s1bytes number of bytes which flow to the first new node when
620 * S[0] splits (this number is contained in s012 array)
621 */
622
623static void set_parameters(struct tree_balance *tb, int h, int lnum,
624 int rnum, int blk_num, short *s012, int lb, int rb)
625{
626
627 tb->lnum[h] = lnum;
628 tb->rnum[h] = rnum;
629 tb->blknum[h] = blk_num;
630
631 /* only for leaf level */
632 if (h == 0) {
633 if (s012 != NULL) {
634 tb->s0num = *s012++;
635 tb->snum[0] = *s012++;
636 tb->snum[1] = *s012++;
637 tb->sbytes[0] = *s012++;
638 tb->sbytes[1] = *s012;
639 }
640 tb->lbytes = lb;
641 tb->rbytes = rb;
642 }
643 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
644 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
645
646 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
647 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
648}
649
650/*
651 * check if node disappears if we shift tb->lnum[0] items to left
652 * neighbor and tb->rnum[0] to the right one.
653 */
654static int is_leaf_removable(struct tree_balance *tb)
655{
656 struct virtual_node *vn = tb->tb_vn;
657 int to_left, to_right;
658 int size;
659 int remain_items;
660
661 /*
662 * number of items that will be shifted to left (right) neighbor
663 * entirely
664 */
665 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
666 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
667 remain_items = vn->vn_nr_item;
668
669 /* how many items remain in S[0] after shiftings to neighbors */
670 remain_items -= (to_left + to_right);
671
672 /* all content of node can be shifted to neighbors */
673 if (remain_items < 1) {
674 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
675 NULL, -1, -1);
676 return 1;
677 }
678
679 /* S[0] is not removable */
680 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
681 return 0;
682
683 /* check whether we can divide 1 remaining item between neighbors */
684
685 /* get size of remaining item (in item units) */
686 size = op_unit_num(&vn->vn_vi[to_left]);
687
688 if (tb->lbytes + tb->rbytes >= size) {
689 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
690 tb->lbytes, -1);
691 return 1;
692 }
693
694 return 0;
695}
696
697/* check whether L, S, R can be joined in one node */
698static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
699{
700 struct virtual_node *vn = tb->tb_vn;
701 int ih_size;
702 struct buffer_head *S0;
703
704 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
705
706 ih_size = 0;
707 if (vn->vn_nr_item) {
708 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
709 ih_size += IH_SIZE;
710
711 if (vn->vn_vi[vn->vn_nr_item - 1].
712 vi_type & VI_TYPE_RIGHT_MERGEABLE)
713 ih_size += IH_SIZE;
714 } else {
715 /* there was only one item and it will be deleted */
716 struct item_head *ih;
717
718 RFALSE(B_NR_ITEMS(S0) != 1,
719 "vs-8125: item number must be 1: it is %d",
720 B_NR_ITEMS(S0));
721
722 ih = item_head(S0, 0);
723 if (tb->CFR[0]
724 && !comp_short_le_keys(&ih->ih_key,
725 internal_key(tb->CFR[0],
726 tb->rkey[0])))
727 /*
728 * Directory must be in correct state here: that is
729 * somewhere at the left side should exist first
730 * directory item. But the item being deleted can
731 * not be that first one because its right neighbor
732 * is item of the same directory. (But first item
733 * always gets deleted in last turn). So, neighbors
734 * of deleted item can be merged, so we can save
735 * ih_size
736 */
737 if (is_direntry_le_ih(ih)) {
738 ih_size = IH_SIZE;
739
740 /*
741 * we might check that left neighbor exists
742 * and is of the same directory
743 */
744 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
745 "vs-8130: first directory item can not be removed until directory is not empty");
746 }
747
748 }
749
750 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
751 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
752 PROC_INFO_INC(tb->tb_sb, leaves_removable);
753 return 1;
754 }
755 return 0;
756
757}
758
759/* when we do not split item, lnum and rnum are numbers of entire items */
760#define SET_PAR_SHIFT_LEFT \
761if (h)\
762{\
763 int to_l;\
764 \
765 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
766 (MAX_NR_KEY(Sh) + 1 - lpar);\
767 \
768 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
769}\
770else \
771{\
772 if (lset==LEFT_SHIFT_FLOW)\
773 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
774 tb->lbytes, -1);\
775 else\
776 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
777 -1, -1);\
778}
779
780#define SET_PAR_SHIFT_RIGHT \
781if (h)\
782{\
783 int to_r;\
784 \
785 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
786 \
787 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
788}\
789else \
790{\
791 if (rset==RIGHT_SHIFT_FLOW)\
792 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
793 -1, tb->rbytes);\
794 else\
795 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
796 -1, -1);\
797}
798
799static void free_buffers_in_tb(struct tree_balance *tb)
800{
801 int i;
802
803 pathrelse(tb->tb_path);
804
805 for (i = 0; i < MAX_HEIGHT; i++) {
806 brelse(tb->L[i]);
807 brelse(tb->R[i]);
808 brelse(tb->FL[i]);
809 brelse(tb->FR[i]);
810 brelse(tb->CFL[i]);
811 brelse(tb->CFR[i]);
812
813 tb->L[i] = NULL;
814 tb->R[i] = NULL;
815 tb->FL[i] = NULL;
816 tb->FR[i] = NULL;
817 tb->CFL[i] = NULL;
818 tb->CFR[i] = NULL;
819 }
820}
821
822/*
823 * Get new buffers for storing new nodes that are created while balancing.
824 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
825 * CARRY_ON - schedule didn't occur while the function worked;
826 * NO_DISK_SPACE - no disk space.
827 */
828/* The function is NOT SCHEDULE-SAFE! */
829static int get_empty_nodes(struct tree_balance *tb, int h)
830{
831 struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
832 b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
833 int counter, number_of_freeblk;
834 int amount_needed; /* number of needed empty blocks */
835 int retval = CARRY_ON;
836 struct super_block *sb = tb->tb_sb;
837
838 /*
839 * number_of_freeblk is the number of empty blocks which have been
840 * acquired for use by the balancing algorithm minus the number of
841 * empty blocks used in the previous levels of the analysis,
842 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
843 * occurs after empty blocks are acquired, and the balancing analysis
844 * is then restarted, amount_needed is the number needed by this
845 * level (h) of the balancing analysis.
846 *
847 * Note that for systems with many processes writing, it would be
848 * more layout optimal to calculate the total number needed by all
849 * levels and then to run reiserfs_new_blocks to get all of them at
850 * once.
851 */
852
853 /*
854 * Initiate number_of_freeblk to the amount acquired prior to the
855 * restart of the analysis or 0 if not restarted, then subtract the
856 * amount needed by all of the levels of the tree below h.
857 */
858 /* blknum includes S[h], so we subtract 1 in this calculation */
859 for (counter = 0, number_of_freeblk = tb->cur_blknum;
860 counter < h; counter++)
861 number_of_freeblk -=
862 (tb->blknum[counter]) ? (tb->blknum[counter] -
863 1) : 0;
864
865 /* Allocate missing empty blocks. */
866 /* if Sh == 0 then we are getting a new root */
867 amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
868 /*
869 * Amount_needed = the amount that we need more than the
870 * amount that we have.
871 */
872 if (amount_needed > number_of_freeblk)
873 amount_needed -= number_of_freeblk;
874 else /* If we have enough already then there is nothing to do. */
875 return CARRY_ON;
876
877 /*
878 * No need to check quota - is not allocated for blocks used
879 * for formatted nodes
880 */
881 if (reiserfs_new_form_blocknrs(tb, blocknrs,
882 amount_needed) == NO_DISK_SPACE)
883 return NO_DISK_SPACE;
884
885 /* for each blocknumber we just got, get a buffer and stick it on FEB */
886 for (blocknr = blocknrs, counter = 0;
887 counter < amount_needed; blocknr++, counter++) {
888
889 RFALSE(!*blocknr,
890 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
891
892 new_bh = sb_getblk(sb, *blocknr);
893 RFALSE(buffer_dirty(new_bh) ||
894 buffer_journaled(new_bh) ||
895 buffer_journal_dirty(new_bh),
896 "PAP-8140: journaled or dirty buffer %b for the new block",
897 new_bh);
898
899 /* Put empty buffers into the array. */
900 RFALSE(tb->FEB[tb->cur_blknum],
901 "PAP-8141: busy slot for new buffer");
902
903 set_buffer_journal_new(new_bh);
904 tb->FEB[tb->cur_blknum++] = new_bh;
905 }
906
907 if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
908 retval = REPEAT_SEARCH;
909
910 return retval;
911}
912
913/*
914 * Get free space of the left neighbor, which is stored in the parent
915 * node of the left neighbor.
916 */
917static int get_lfree(struct tree_balance *tb, int h)
918{
919 struct buffer_head *l, *f;
920 int order;
921
922 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
923 (l = tb->FL[h]) == NULL)
924 return 0;
925
926 if (f == l)
927 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
928 else {
929 order = B_NR_ITEMS(l);
930 f = l;
931 }
932
933 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
934}
935
936/*
937 * Get free space of the right neighbor,
938 * which is stored in the parent node of the right neighbor.
939 */
940static int get_rfree(struct tree_balance *tb, int h)
941{
942 struct buffer_head *r, *f;
943 int order;
944
945 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
946 (r = tb->FR[h]) == NULL)
947 return 0;
948
949 if (f == r)
950 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
951 else {
952 order = 0;
953 f = r;
954 }
955
956 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
957
958}
959
960/* Check whether left neighbor is in memory. */
961static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
962{
963 struct buffer_head *father, *left;
964 struct super_block *sb = tb->tb_sb;
965 b_blocknr_t left_neighbor_blocknr;
966 int left_neighbor_position;
967
968 /* Father of the left neighbor does not exist. */
969 if (!tb->FL[h])
970 return 0;
971
972 /* Calculate father of the node to be balanced. */
973 father = PATH_H_PBUFFER(tb->tb_path, h + 1);
974
975 RFALSE(!father ||
976 !B_IS_IN_TREE(father) ||
977 !B_IS_IN_TREE(tb->FL[h]) ||
978 !buffer_uptodate(father) ||
979 !buffer_uptodate(tb->FL[h]),
980 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
981 father, tb->FL[h]);
982
983 /*
984 * Get position of the pointer to the left neighbor
985 * into the left father.
986 */
987 left_neighbor_position = (father == tb->FL[h]) ?
988 tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
989 /* Get left neighbor block number. */
990 left_neighbor_blocknr =
991 B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
992 /* Look for the left neighbor in the cache. */
993 if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
994
995 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
996 "vs-8170: left neighbor (%b %z) is not in the tree",
997 left, left);
998 put_bh(left);
999 return 1;
1000 }
1001
1002 return 0;
1003}
1004
1005#define LEFT_PARENTS 'l'
1006#define RIGHT_PARENTS 'r'
1007
1008static void decrement_key(struct cpu_key *key)
1009{
1010 /* call item specific function for this key */
1011 item_ops[cpu_key_k_type(key)]->decrement_key(key);
1012}
1013
1014/*
1015 * Calculate far left/right parent of the left/right neighbor of the
1016 * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
1017 * of the parent F[h].
1018 * Calculate left/right common parent of the current node and L[h]/R[h].
1019 * Calculate left/right delimiting key position.
1020 * Returns: PATH_INCORRECT - path in the tree is not correct
1021 * SCHEDULE_OCCURRED - schedule occurred while the function worked
1022 * CARRY_ON - schedule didn't occur while the function
1023 * worked
1024 */
1025static int get_far_parent(struct tree_balance *tb,
1026 int h,
1027 struct buffer_head **pfather,
1028 struct buffer_head **pcom_father, char c_lr_par)
1029{
1030 struct buffer_head *parent;
1031 INITIALIZE_PATH(s_path_to_neighbor_father);
1032 struct treepath *path = tb->tb_path;
1033 struct cpu_key s_lr_father_key;
1034 int counter,
1035 position = INT_MAX,
1036 first_last_position = 0,
1037 path_offset = PATH_H_PATH_OFFSET(path, h);
1038
1039 /*
1040 * Starting from F[h] go upwards in the tree, and look for the common
1041 * ancestor of F[h], and its neighbor l/r, that should be obtained.
1042 */
1043
1044 counter = path_offset;
1045
1046 RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
1047 "PAP-8180: invalid path length");
1048
1049 for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
1050 /*
1051 * Check whether parent of the current buffer in the path
1052 * is really parent in the tree.
1053 */
1054 if (!B_IS_IN_TREE
1055 (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
1056 return REPEAT_SEARCH;
1057
1058 /* Check whether position in the parent is correct. */
1059 if ((position =
1060 PATH_OFFSET_POSITION(path,
1061 counter - 1)) >
1062 B_NR_ITEMS(parent))
1063 return REPEAT_SEARCH;
1064
1065 /*
1066 * Check whether parent at the path really points
1067 * to the child.
1068 */
1069 if (B_N_CHILD_NUM(parent, position) !=
1070 PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
1071 return REPEAT_SEARCH;
1072
1073 /*
1074 * Return delimiting key if position in the parent is not
1075 * equal to first/last one.
1076 */
1077 if (c_lr_par == RIGHT_PARENTS)
1078 first_last_position = B_NR_ITEMS(parent);
1079 if (position != first_last_position) {
1080 *pcom_father = parent;
1081 get_bh(*pcom_father);
1082 /*(*pcom_father = parent)->b_count++; */
1083 break;
1084 }
1085 }
1086
1087 /* if we are in the root of the tree, then there is no common father */
1088 if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1089 /*
1090 * Check whether first buffer in the path is the
1091 * root of the tree.
1092 */
1093 if (PATH_OFFSET_PBUFFER
1094 (tb->tb_path,
1095 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1096 SB_ROOT_BLOCK(tb->tb_sb)) {
1097 *pfather = *pcom_father = NULL;
1098 return CARRY_ON;
1099 }
1100 return REPEAT_SEARCH;
1101 }
1102
1103 RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1104 "PAP-8185: (%b %z) level too small",
1105 *pcom_father, *pcom_father);
1106
1107 /* Check whether the common parent is locked. */
1108
1109 if (buffer_locked(*pcom_father)) {
1110
1111 /* Release the write lock while the buffer is busy */
1112 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1113 __wait_on_buffer(*pcom_father);
1114 reiserfs_write_lock_nested(tb->tb_sb, depth);
1115 if (FILESYSTEM_CHANGED_TB(tb)) {
1116 brelse(*pcom_father);
1117 return REPEAT_SEARCH;
1118 }
1119 }
1120
1121 /*
1122 * So, we got common parent of the current node and its
1123 * left/right neighbor. Now we are getting the parent of the
1124 * left/right neighbor.
1125 */
1126
1127 /* Form key to get parent of the left/right neighbor. */
1128 le_key2cpu_key(&s_lr_father_key,
1129 internal_key(*pcom_father,
1130 (c_lr_par ==
1131 LEFT_PARENTS) ? (tb->lkey[h - 1] =
1132 position -
1133 1) : (tb->rkey[h -
1134 1] =
1135 position)));
1136
1137 if (c_lr_par == LEFT_PARENTS)
1138 decrement_key(&s_lr_father_key);
1139
1140 if (search_by_key
1141 (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1142 h + 1) == IO_ERROR)
1143 /* path is released */
1144 return IO_ERROR;
1145
1146 if (FILESYSTEM_CHANGED_TB(tb)) {
1147 pathrelse(&s_path_to_neighbor_father);
1148 brelse(*pcom_father);
1149 return REPEAT_SEARCH;
1150 }
1151
1152 *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1153
1154 RFALSE(B_LEVEL(*pfather) != h + 1,
1155 "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1156 RFALSE(s_path_to_neighbor_father.path_length <
1157 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1158
1159 s_path_to_neighbor_father.path_length--;
1160 pathrelse(&s_path_to_neighbor_father);
1161 return CARRY_ON;
1162}
1163
1164/*
1165 * Get parents of neighbors of node in the path(S[path_offset]) and
1166 * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
1167 * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
1168 * CFR[path_offset].
1169 * Calculate numbers of left and right delimiting keys position:
1170 * lkey[path_offset], rkey[path_offset].
1171 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked
1172 * CARRY_ON - schedule didn't occur while the function worked
1173 */
1174static int get_parents(struct tree_balance *tb, int h)
1175{
1176 struct treepath *path = tb->tb_path;
1177 int position,
1178 ret,
1179 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1180 struct buffer_head *curf, *curcf;
1181
1182 /* Current node is the root of the tree or will be root of the tree */
1183 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1184 /*
1185 * The root can not have parents.
1186 * Release nodes which previously were obtained as
1187 * parents of the current node neighbors.
1188 */
1189 brelse(tb->FL[h]);
1190 brelse(tb->CFL[h]);
1191 brelse(tb->FR[h]);
1192 brelse(tb->CFR[h]);
1193 tb->FL[h] = NULL;
1194 tb->CFL[h] = NULL;
1195 tb->FR[h] = NULL;
1196 tb->CFR[h] = NULL;
1197 return CARRY_ON;
1198 }
1199
1200 /* Get parent FL[path_offset] of L[path_offset]. */
1201 position = PATH_OFFSET_POSITION(path, path_offset - 1);
1202 if (position) {
1203 /* Current node is not the first child of its parent. */
1204 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1205 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1206 get_bh(curf);
1207 get_bh(curf);
1208 tb->lkey[h] = position - 1;
1209 } else {
1210 /*
1211 * Calculate current parent of L[path_offset], which is the
1212 * left neighbor of the current node. Calculate current
1213 * common parent of L[path_offset] and the current node.
1214 * Note that CFL[path_offset] not equal FL[path_offset] and
1215 * CFL[path_offset] not equal F[path_offset].
1216 * Calculate lkey[path_offset].
1217 */
1218 if ((ret = get_far_parent(tb, h + 1, &curf,
1219 &curcf,
1220 LEFT_PARENTS)) != CARRY_ON)
1221 return ret;
1222 }
1223
1224 brelse(tb->FL[h]);
1225 tb->FL[h] = curf; /* New initialization of FL[h]. */
1226 brelse(tb->CFL[h]);
1227 tb->CFL[h] = curcf; /* New initialization of CFL[h]. */
1228
1229 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1230 (curcf && !B_IS_IN_TREE(curcf)),
1231 "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1232
1233 /* Get parent FR[h] of R[h]. */
1234
1235 /* Current node is the last child of F[h]. FR[h] != F[h]. */
1236 if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1237 /*
1238 * Calculate current parent of R[h], which is the right
1239 * neighbor of F[h]. Calculate current common parent of
1240 * R[h] and current node. Note that CFR[h] not equal
1241 * FR[path_offset] and CFR[h] not equal F[h].
1242 */
1243 if ((ret =
1244 get_far_parent(tb, h + 1, &curf, &curcf,
1245 RIGHT_PARENTS)) != CARRY_ON)
1246 return ret;
1247 } else {
1248 /* Current node is not the last child of its parent F[h]. */
1249 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1250 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1251 get_bh(curf);
1252 get_bh(curf);
1253 tb->rkey[h] = position;
1254 }
1255
1256 brelse(tb->FR[h]);
1257 /* New initialization of FR[path_offset]. */
1258 tb->FR[h] = curf;
1259
1260 brelse(tb->CFR[h]);
1261 /* New initialization of CFR[path_offset]. */
1262 tb->CFR[h] = curcf;
1263
1264 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1265 (curcf && !B_IS_IN_TREE(curcf)),
1266 "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1267
1268 return CARRY_ON;
1269}
1270
1271/*
1272 * it is possible to remove node as result of shiftings to
1273 * neighbors even when we insert or paste item.
1274 */
1275static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1276 struct tree_balance *tb, int h)
1277{
1278 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1279 int levbytes = tb->insert_size[h];
1280 struct item_head *ih;
1281 struct reiserfs_key *r_key = NULL;
1282
1283 ih = item_head(Sh, 0);
1284 if (tb->CFR[h])
1285 r_key = internal_key(tb->CFR[h], tb->rkey[h]);
1286
1287 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1288 /* shifting may merge items which might save space */
1289 -
1290 ((!h
1291 && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
1292 -
1293 ((!h && r_key
1294 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1295 + ((h) ? KEY_SIZE : 0)) {
1296 /* node can not be removed */
1297 if (sfree >= levbytes) {
1298 /* new item fits into node S[h] without any shifting */
1299 if (!h)
1300 tb->s0num =
1301 B_NR_ITEMS(Sh) +
1302 ((mode == M_INSERT) ? 1 : 0);
1303 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1304 return NO_BALANCING_NEEDED;
1305 }
1306 }
1307 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1308 return !NO_BALANCING_NEEDED;
1309}
1310
1311/*
1312 * Check whether current node S[h] is balanced when increasing its size by
1313 * Inserting or Pasting.
1314 * Calculate parameters for balancing for current level h.
1315 * Parameters:
1316 * tb tree_balance structure;
1317 * h current level of the node;
1318 * inum item number in S[h];
1319 * mode i - insert, p - paste;
1320 * Returns: 1 - schedule occurred;
1321 * 0 - balancing for higher levels needed;
1322 * -1 - no balancing for higher levels needed;
1323 * -2 - no disk space.
1324 */
1325/* ip means Inserting or Pasting */
1326static int ip_check_balance(struct tree_balance *tb, int h)
1327{
1328 struct virtual_node *vn = tb->tb_vn;
1329 /*
1330 * Number of bytes that must be inserted into (value is negative
1331 * if bytes are deleted) buffer which contains node being balanced.
1332 * The mnemonic is that the attempted change in node space used
1333 * level is levbytes bytes.
1334 */
1335 int levbytes;
1336 int ret;
1337
1338 int lfree, sfree, rfree /* free space in L, S and R */ ;
1339
1340 /*
1341 * nver is short for number of vertixes, and lnver is the number if
1342 * we shift to the left, rnver is the number if we shift to the
1343 * right, and lrnver is the number if we shift in both directions.
1344 * The goal is to minimize first the number of vertixes, and second,
1345 * the number of vertixes whose contents are changed by shifting,
1346 * and third the number of uncached vertixes whose contents are
1347 * changed by shifting and must be read from disk.
1348 */
1349 int nver, lnver, rnver, lrnver;
1350
1351 /*
1352 * used at leaf level only, S0 = S[0] is the node being balanced,
1353 * sInum [ I = 0,1,2 ] is the number of items that will
1354 * remain in node SI after balancing. S1 and S2 are new
1355 * nodes that might be created.
1356 */
1357
1358 /*
1359 * we perform 8 calls to get_num_ver(). For each call we
1360 * calculate five parameters. where 4th parameter is s1bytes
1361 * and 5th - s2bytes
1362 *
1363 * s0num, s1num, s2num for 8 cases
1364 * 0,1 - do not shift and do not shift but bottle
1365 * 2 - shift only whole item to left
1366 * 3 - shift to left and bottle as much as possible
1367 * 4,5 - shift to right (whole items and as much as possible
1368 * 6,7 - shift to both directions (whole items and as much as possible)
1369 */
1370 short snum012[40] = { 0, };
1371
1372 /* Sh is the node whose balance is currently being checked */
1373 struct buffer_head *Sh;
1374
1375 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1376 levbytes = tb->insert_size[h];
1377
1378 /* Calculate balance parameters for creating new root. */
1379 if (!Sh) {
1380 if (!h)
1381 reiserfs_panic(tb->tb_sb, "vs-8210",
1382 "S[0] can not be 0");
1383 switch (ret = get_empty_nodes(tb, h)) {
1384 /* no balancing for higher levels needed */
1385 case CARRY_ON:
1386 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1387 return NO_BALANCING_NEEDED;
1388
1389 case NO_DISK_SPACE:
1390 case REPEAT_SEARCH:
1391 return ret;
1392 default:
1393 reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1394 "return value of get_empty_nodes");
1395 }
1396 }
1397
1398 /* get parents of S[h] neighbors. */
1399 ret = get_parents(tb, h);
1400 if (ret != CARRY_ON)
1401 return ret;
1402
1403 sfree = B_FREE_SPACE(Sh);
1404
1405 /* get free space of neighbors */
1406 rfree = get_rfree(tb, h);
1407 lfree = get_lfree(tb, h);
1408
1409 /* and new item fits into node S[h] without any shifting */
1410 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1411 NO_BALANCING_NEEDED)
1412 return NO_BALANCING_NEEDED;
1413
1414 create_virtual_node(tb, h);
1415
1416 /*
1417 * determine maximal number of items we can shift to the left
1418 * neighbor (in tb structure) and the maximal number of bytes
1419 * that can flow to the left neighbor from the left most liquid
1420 * item that cannot be shifted from S[0] entirely (returned value)
1421 */
1422 check_left(tb, h, lfree);
1423
1424 /*
1425 * determine maximal number of items we can shift to the right
1426 * neighbor (in tb structure) and the maximal number of bytes
1427 * that can flow to the right neighbor from the right most liquid
1428 * item that cannot be shifted from S[0] entirely (returned value)
1429 */
1430 check_right(tb, h, rfree);
1431
1432 /*
1433 * all contents of internal node S[h] can be moved into its
1434 * neighbors, S[h] will be removed after balancing
1435 */
1436 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1437 int to_r;
1438
1439 /*
1440 * Since we are working on internal nodes, and our internal
1441 * nodes have fixed size entries, then we can balance by the
1442 * number of items rather than the space they consume. In this
1443 * routine we set the left node equal to the right node,
1444 * allowing a difference of less than or equal to 1 child
1445 * pointer.
1446 */
1447 to_r =
1448 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1449 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1450 tb->rnum[h]);
1451 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1452 -1, -1);
1453 return CARRY_ON;
1454 }
1455
1456 /*
1457 * this checks balance condition, that any two neighboring nodes
1458 * can not fit in one node
1459 */
1460 RFALSE(h &&
1461 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1462 tb->rnum[h] >= vn->vn_nr_item + 1),
1463 "vs-8220: tree is not balanced on internal level");
1464 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1465 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1466 "vs-8225: tree is not balanced on leaf level");
1467
1468 /*
1469 * all contents of S[0] can be moved into its neighbors
1470 * S[0] will be removed after balancing.
1471 */
1472 if (!h && is_leaf_removable(tb))
1473 return CARRY_ON;
1474
1475 /*
1476 * why do we perform this check here rather than earlier??
1477 * Answer: we can win 1 node in some cases above. Moreover we
1478 * checked it above, when we checked, that S[0] is not removable
1479 * in principle
1480 */
1481
1482 /* new item fits into node S[h] without any shifting */
1483 if (sfree >= levbytes) {
1484 if (!h)
1485 tb->s0num = vn->vn_nr_item;
1486 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1487 return NO_BALANCING_NEEDED;
1488 }
1489
1490 {
1491 int lpar, rpar, nset, lset, rset, lrset;
1492 /* regular overflowing of the node */
1493
1494 /*
1495 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
1496 * lpar, rpar - number of items we can shift to left/right
1497 * neighbor (including splitting item)
1498 * nset, lset, rset, lrset - shows, whether flowing items
1499 * give better packing
1500 */
1501#define FLOW 1
1502#define NO_FLOW 0 /* do not any splitting */
1503
1504 /* we choose one of the following */
1505#define NOTHING_SHIFT_NO_FLOW 0
1506#define NOTHING_SHIFT_FLOW 5
1507#define LEFT_SHIFT_NO_FLOW 10
1508#define LEFT_SHIFT_FLOW 15
1509#define RIGHT_SHIFT_NO_FLOW 20
1510#define RIGHT_SHIFT_FLOW 25
1511#define LR_SHIFT_NO_FLOW 30
1512#define LR_SHIFT_FLOW 35
1513
1514 lpar = tb->lnum[h];
1515 rpar = tb->rnum[h];
1516
1517 /*
1518 * calculate number of blocks S[h] must be split into when
1519 * nothing is shifted to the neighbors, as well as number of
1520 * items in each part of the split node (s012 numbers),
1521 * and number of bytes (s1bytes) of the shared drop which
1522 * flow to S1 if any
1523 */
1524 nset = NOTHING_SHIFT_NO_FLOW;
1525 nver = get_num_ver(vn->vn_mode, tb, h,
1526 0, -1, h ? vn->vn_nr_item : 0, -1,
1527 snum012, NO_FLOW);
1528
1529 if (!h) {
1530 int nver1;
1531
1532 /*
1533 * note, that in this case we try to bottle
1534 * between S[0] and S1 (S1 - the first new node)
1535 */
1536 nver1 = get_num_ver(vn->vn_mode, tb, h,
1537 0, -1, 0, -1,
1538 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1539 if (nver > nver1)
1540 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1541 }
1542
1543 /*
1544 * calculate number of blocks S[h] must be split into when
1545 * l_shift_num first items and l_shift_bytes of the right
1546 * most liquid item to be shifted are shifted to the left
1547 * neighbor, as well as number of items in each part of the
1548 * splitted node (s012 numbers), and number of bytes
1549 * (s1bytes) of the shared drop which flow to S1 if any
1550 */
1551 lset = LEFT_SHIFT_NO_FLOW;
1552 lnver = get_num_ver(vn->vn_mode, tb, h,
1553 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1554 -1, h ? vn->vn_nr_item : 0, -1,
1555 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1556 if (!h) {
1557 int lnver1;
1558
1559 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1560 lpar -
1561 ((tb->lbytes != -1) ? 1 : 0),
1562 tb->lbytes, 0, -1,
1563 snum012 + LEFT_SHIFT_FLOW, FLOW);
1564 if (lnver > lnver1)
1565 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1566 }
1567
1568 /*
1569 * calculate number of blocks S[h] must be split into when
1570 * r_shift_num first items and r_shift_bytes of the left most
1571 * liquid item to be shifted are shifted to the right neighbor,
1572 * as well as number of items in each part of the splitted
1573 * node (s012 numbers), and number of bytes (s1bytes) of the
1574 * shared drop which flow to S1 if any
1575 */
1576 rset = RIGHT_SHIFT_NO_FLOW;
1577 rnver = get_num_ver(vn->vn_mode, tb, h,
1578 0, -1,
1579 h ? (vn->vn_nr_item - rpar) : (rpar -
1580 ((tb->
1581 rbytes !=
1582 -1) ? 1 :
1583 0)), -1,
1584 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1585 if (!h) {
1586 int rnver1;
1587
1588 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1589 0, -1,
1590 (rpar -
1591 ((tb->rbytes != -1) ? 1 : 0)),
1592 tb->rbytes,
1593 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1594
1595 if (rnver > rnver1)
1596 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1597 }
1598
1599 /*
1600 * calculate number of blocks S[h] must be split into when
1601 * items are shifted in both directions, as well as number
1602 * of items in each part of the splitted node (s012 numbers),
1603 * and number of bytes (s1bytes) of the shared drop which
1604 * flow to S1 if any
1605 */
1606 lrset = LR_SHIFT_NO_FLOW;
1607 lrnver = get_num_ver(vn->vn_mode, tb, h,
1608 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1609 -1,
1610 h ? (vn->vn_nr_item - rpar) : (rpar -
1611 ((tb->
1612 rbytes !=
1613 -1) ? 1 :
1614 0)), -1,
1615 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1616 if (!h) {
1617 int lrnver1;
1618
1619 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1620 lpar -
1621 ((tb->lbytes != -1) ? 1 : 0),
1622 tb->lbytes,
1623 (rpar -
1624 ((tb->rbytes != -1) ? 1 : 0)),
1625 tb->rbytes,
1626 snum012 + LR_SHIFT_FLOW, FLOW);
1627 if (lrnver > lrnver1)
1628 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1629 }
1630
1631 /*
1632 * Our general shifting strategy is:
1633 * 1) to minimized number of new nodes;
1634 * 2) to minimized number of neighbors involved in shifting;
1635 * 3) to minimized number of disk reads;
1636 */
1637
1638 /* we can win TWO or ONE nodes by shifting in both directions */
1639 if (lrnver < lnver && lrnver < rnver) {
1640 RFALSE(h &&
1641 (tb->lnum[h] != 1 ||
1642 tb->rnum[h] != 1 ||
1643 lrnver != 1 || rnver != 2 || lnver != 2
1644 || h != 1), "vs-8230: bad h");
1645 if (lrset == LR_SHIFT_FLOW)
1646 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1647 lrnver, snum012 + lrset,
1648 tb->lbytes, tb->rbytes);
1649 else
1650 set_parameters(tb, h,
1651 tb->lnum[h] -
1652 ((tb->lbytes == -1) ? 0 : 1),
1653 tb->rnum[h] -
1654 ((tb->rbytes == -1) ? 0 : 1),
1655 lrnver, snum012 + lrset, -1, -1);
1656
1657 return CARRY_ON;
1658 }
1659
1660 /*
1661 * if shifting doesn't lead to better packing
1662 * then don't shift
1663 */
1664 if (nver == lrnver) {
1665 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1666 -1);
1667 return CARRY_ON;
1668 }
1669
1670 /*
1671 * now we know that for better packing shifting in only one
1672 * direction either to the left or to the right is required
1673 */
1674
1675 /*
1676 * if shifting to the left is better than
1677 * shifting to the right
1678 */
1679 if (lnver < rnver) {
1680 SET_PAR_SHIFT_LEFT;
1681 return CARRY_ON;
1682 }
1683
1684 /*
1685 * if shifting to the right is better than
1686 * shifting to the left
1687 */
1688 if (lnver > rnver) {
1689 SET_PAR_SHIFT_RIGHT;
1690 return CARRY_ON;
1691 }
1692
1693 /*
1694 * now shifting in either direction gives the same number
1695 * of nodes and we can make use of the cached neighbors
1696 */
1697 if (is_left_neighbor_in_cache(tb, h)) {
1698 SET_PAR_SHIFT_LEFT;
1699 return CARRY_ON;
1700 }
1701
1702 /*
1703 * shift to the right independently on whether the
1704 * right neighbor in cache or not
1705 */
1706 SET_PAR_SHIFT_RIGHT;
1707 return CARRY_ON;
1708 }
1709}
1710
1711/*
1712 * Check whether current node S[h] is balanced when Decreasing its size by
1713 * Deleting or Cutting for INTERNAL node of S+tree.
1714 * Calculate parameters for balancing for current level h.
1715 * Parameters:
1716 * tb tree_balance structure;
1717 * h current level of the node;
1718 * inum item number in S[h];
1719 * mode i - insert, p - paste;
1720 * Returns: 1 - schedule occurred;
1721 * 0 - balancing for higher levels needed;
1722 * -1 - no balancing for higher levels needed;
1723 * -2 - no disk space.
1724 *
1725 * Note: Items of internal nodes have fixed size, so the balance condition for
1726 * the internal part of S+tree is as for the B-trees.
1727 */
1728static int dc_check_balance_internal(struct tree_balance *tb, int h)
1729{
1730 struct virtual_node *vn = tb->tb_vn;
1731
1732 /*
1733 * Sh is the node whose balance is currently being checked,
1734 * and Fh is its father.
1735 */
1736 struct buffer_head *Sh, *Fh;
1737 int maxsize, ret;
1738 int lfree, rfree /* free space in L and R */ ;
1739
1740 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1741 Fh = PATH_H_PPARENT(tb->tb_path, h);
1742
1743 maxsize = MAX_CHILD_SIZE(Sh);
1744
1745 /*
1746 * using tb->insert_size[h], which is negative in this case,
1747 * create_virtual_node calculates:
1748 * new_nr_item = number of items node would have if operation is
1749 * performed without balancing (new_nr_item);
1750 */
1751 create_virtual_node(tb, h);
1752
1753 if (!Fh) { /* S[h] is the root. */
1754 /* no balancing for higher levels needed */
1755 if (vn->vn_nr_item > 0) {
1756 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1757 return NO_BALANCING_NEEDED;
1758 }
1759 /*
1760 * new_nr_item == 0.
1761 * Current root will be deleted resulting in
1762 * decrementing the tree height.
1763 */
1764 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1765 return CARRY_ON;
1766 }
1767
1768 if ((ret = get_parents(tb, h)) != CARRY_ON)
1769 return ret;
1770
1771 /* get free space of neighbors */
1772 rfree = get_rfree(tb, h);
1773 lfree = get_lfree(tb, h);
1774
1775 /* determine maximal number of items we can fit into neighbors */
1776 check_left(tb, h, lfree);
1777 check_right(tb, h, rfree);
1778
1779 /*
1780 * Balance condition for the internal node is valid.
1781 * In this case we balance only if it leads to better packing.
1782 */
1783 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
1784 /*
1785 * Here we join S[h] with one of its neighbors,
1786 * which is impossible with greater values of new_nr_item.
1787 */
1788 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
1789 /* All contents of S[h] can be moved to L[h]. */
1790 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1791 int n;
1792 int order_L;
1793
1794 order_L =
1795 ((n =
1796 PATH_H_B_ITEM_ORDER(tb->tb_path,
1797 h)) ==
1798 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1799 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1800 (DC_SIZE + KEY_SIZE);
1801 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1802 -1);
1803 return CARRY_ON;
1804 }
1805
1806 /* All contents of S[h] can be moved to R[h]. */
1807 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1808 int n;
1809 int order_R;
1810
1811 order_R =
1812 ((n =
1813 PATH_H_B_ITEM_ORDER(tb->tb_path,
1814 h)) ==
1815 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1816 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1817 (DC_SIZE + KEY_SIZE);
1818 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1819 -1);
1820 return CARRY_ON;
1821 }
1822 }
1823
1824 /*
1825 * All contents of S[h] can be moved to the neighbors
1826 * (L[h] & R[h]).
1827 */
1828 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1829 int to_r;
1830
1831 to_r =
1832 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1833 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1834 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1835 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1836 0, NULL, -1, -1);
1837 return CARRY_ON;
1838 }
1839
1840 /* Balancing does not lead to better packing. */
1841 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1842 return NO_BALANCING_NEEDED;
1843 }
1844
1845 /*
1846 * Current node contain insufficient number of items.
1847 * Balancing is required.
1848 */
1849 /* Check whether we can merge S[h] with left neighbor. */
1850 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1851 if (is_left_neighbor_in_cache(tb, h)
1852 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1853 int n;
1854 int order_L;
1855
1856 order_L =
1857 ((n =
1858 PATH_H_B_ITEM_ORDER(tb->tb_path,
1859 h)) ==
1860 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1861 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1862 KEY_SIZE);
1863 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1864 return CARRY_ON;
1865 }
1866
1867 /* Check whether we can merge S[h] with right neighbor. */
1868 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1869 int n;
1870 int order_R;
1871
1872 order_R =
1873 ((n =
1874 PATH_H_B_ITEM_ORDER(tb->tb_path,
1875 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1876 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1877 KEY_SIZE);
1878 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1879 return CARRY_ON;
1880 }
1881
1882 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1883 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1884 int to_r;
1885
1886 to_r =
1887 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1888 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1889 tb->rnum[h]);
1890 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1891 -1, -1);
1892 return CARRY_ON;
1893 }
1894
1895 /* For internal nodes try to borrow item from a neighbor */
1896 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1897
1898 /* Borrow one or two items from caching neighbor */
1899 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1900 int from_l;
1901
1902 from_l =
1903 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1904 1) / 2 - (vn->vn_nr_item + 1);
1905 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1906 return CARRY_ON;
1907 }
1908
1909 set_parameters(tb, h, 0,
1910 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1911 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1912 return CARRY_ON;
1913}
1914
1915/*
1916 * Check whether current node S[h] is balanced when Decreasing its size by
1917 * Deleting or Truncating for LEAF node of S+tree.
1918 * Calculate parameters for balancing for current level h.
1919 * Parameters:
1920 * tb tree_balance structure;
1921 * h current level of the node;
1922 * inum item number in S[h];
1923 * mode i - insert, p - paste;
1924 * Returns: 1 - schedule occurred;
1925 * 0 - balancing for higher levels needed;
1926 * -1 - no balancing for higher levels needed;
1927 * -2 - no disk space.
1928 */
1929static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1930{
1931 struct virtual_node *vn = tb->tb_vn;
1932
1933 /*
1934 * Number of bytes that must be deleted from
1935 * (value is negative if bytes are deleted) buffer which
1936 * contains node being balanced. The mnemonic is that the
1937 * attempted change in node space used level is levbytes bytes.
1938 */
1939 int levbytes;
1940
1941 /* the maximal item size */
1942 int maxsize, ret;
1943
1944 /*
1945 * S0 is the node whose balance is currently being checked,
1946 * and F0 is its father.
1947 */
1948 struct buffer_head *S0, *F0;
1949 int lfree, rfree /* free space in L and R */ ;
1950
1951 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1952 F0 = PATH_H_PPARENT(tb->tb_path, 0);
1953
1954 levbytes = tb->insert_size[h];
1955
1956 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1957
1958 if (!F0) { /* S[0] is the root now. */
1959
1960 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1961 "vs-8240: attempt to create empty buffer tree");
1962
1963 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1964 return NO_BALANCING_NEEDED;
1965 }
1966
1967 if ((ret = get_parents(tb, h)) != CARRY_ON)
1968 return ret;
1969
1970 /* get free space of neighbors */
1971 rfree = get_rfree(tb, h);
1972 lfree = get_lfree(tb, h);
1973
1974 create_virtual_node(tb, h);
1975
1976 /* if 3 leaves can be merge to one, set parameters and return */
1977 if (are_leaves_removable(tb, lfree, rfree))
1978 return CARRY_ON;
1979
1980 /*
1981 * determine maximal number of items we can shift to the left/right
1982 * neighbor and the maximal number of bytes that can flow to the
1983 * left/right neighbor from the left/right most liquid item that
1984 * cannot be shifted from S[0] entirely
1985 */
1986 check_left(tb, h, lfree);
1987 check_right(tb, h, rfree);
1988
1989 /* check whether we can merge S with left neighbor. */
1990 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1991 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1992 !tb->FR[h]) {
1993
1994 RFALSE(!tb->FL[h],
1995 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1996
1997 /* set parameter to merge S[0] with its left neighbor */
1998 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1999 return CARRY_ON;
2000 }
2001
2002 /* check whether we can merge S[0] with right neighbor. */
2003 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
2004 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
2005 return CARRY_ON;
2006 }
2007
2008 /*
2009 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
2010 * Set parameters and return
2011 */
2012 if (is_leaf_removable(tb))
2013 return CARRY_ON;
2014
2015 /* Balancing is not required. */
2016 tb->s0num = vn->vn_nr_item;
2017 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
2018 return NO_BALANCING_NEEDED;
2019}
2020
2021/*
2022 * Check whether current node S[h] is balanced when Decreasing its size by
2023 * Deleting or Cutting.
2024 * Calculate parameters for balancing for current level h.
2025 * Parameters:
2026 * tb tree_balance structure;
2027 * h current level of the node;
2028 * inum item number in S[h];
2029 * mode d - delete, c - cut.
2030 * Returns: 1 - schedule occurred;
2031 * 0 - balancing for higher levels needed;
2032 * -1 - no balancing for higher levels needed;
2033 * -2 - no disk space.
2034 */
2035static int dc_check_balance(struct tree_balance *tb, int h)
2036{
2037 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
2038 "vs-8250: S is not initialized");
2039
2040 if (h)
2041 return dc_check_balance_internal(tb, h);
2042 else
2043 return dc_check_balance_leaf(tb, h);
2044}
2045
2046/*
2047 * Check whether current node S[h] is balanced.
2048 * Calculate parameters for balancing for current level h.
2049 * Parameters:
2050 *
2051 * tb tree_balance structure:
2052 *
2053 * tb is a large structure that must be read about in the header
2054 * file at the same time as this procedure if the reader is
2055 * to successfully understand this procedure
2056 *
2057 * h current level of the node;
2058 * inum item number in S[h];
2059 * mode i - insert, p - paste, d - delete, c - cut.
2060 * Returns: 1 - schedule occurred;
2061 * 0 - balancing for higher levels needed;
2062 * -1 - no balancing for higher levels needed;
2063 * -2 - no disk space.
2064 */
2065static int check_balance(int mode,
2066 struct tree_balance *tb,
2067 int h,
2068 int inum,
2069 int pos_in_item,
2070 struct item_head *ins_ih, const void *data)
2071{
2072 struct virtual_node *vn;
2073
2074 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
2075 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
2076 vn->vn_mode = mode;
2077 vn->vn_affected_item_num = inum;
2078 vn->vn_pos_in_item = pos_in_item;
2079 vn->vn_ins_ih = ins_ih;
2080 vn->vn_data = data;
2081
2082 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
2083 "vs-8255: ins_ih can not be 0 in insert mode");
2084
2085 /* Calculate balance parameters when size of node is increasing. */
2086 if (tb->insert_size[h] > 0)
2087 return ip_check_balance(tb, h);
2088
2089 /* Calculate balance parameters when size of node is decreasing. */
2090 return dc_check_balance(tb, h);
2091}
2092
2093/* Check whether parent at the path is the really parent of the current node.*/
2094static int get_direct_parent(struct tree_balance *tb, int h)
2095{
2096 struct buffer_head *bh;
2097 struct treepath *path = tb->tb_path;
2098 int position,
2099 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
2100
2101 /* We are in the root or in the new root. */
2102 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
2103
2104 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
2105 "PAP-8260: invalid offset in the path");
2106
2107 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
2108 b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
2109 /* Root is not changed. */
2110 PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
2111 PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
2112 return CARRY_ON;
2113 }
2114 /* Root is changed and we must recalculate the path. */
2115 return REPEAT_SEARCH;
2116 }
2117
2118 /* Parent in the path is not in the tree. */
2119 if (!B_IS_IN_TREE
2120 (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
2121 return REPEAT_SEARCH;
2122
2123 if ((position =
2124 PATH_OFFSET_POSITION(path,
2125 path_offset - 1)) > B_NR_ITEMS(bh))
2126 return REPEAT_SEARCH;
2127
2128 /* Parent in the path is not parent of the current node in the tree. */
2129 if (B_N_CHILD_NUM(bh, position) !=
2130 PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
2131 return REPEAT_SEARCH;
2132
2133 if (buffer_locked(bh)) {
2134 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2135 __wait_on_buffer(bh);
2136 reiserfs_write_lock_nested(tb->tb_sb, depth);
2137 if (FILESYSTEM_CHANGED_TB(tb))
2138 return REPEAT_SEARCH;
2139 }
2140
2141 /*
2142 * Parent in the path is unlocked and really parent
2143 * of the current node.
2144 */
2145 return CARRY_ON;
2146}
2147
2148/*
2149 * Using lnum[h] and rnum[h] we should determine what neighbors
2150 * of S[h] we
2151 * need in order to balance S[h], and get them if necessary.
2152 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
2153 * CARRY_ON - schedule didn't occur while the function worked;
2154 */
2155static int get_neighbors(struct tree_balance *tb, int h)
2156{
2157 int child_position,
2158 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
2159 unsigned long son_number;
2160 struct super_block *sb = tb->tb_sb;
2161 struct buffer_head *bh;
2162 int depth;
2163
2164 PROC_INFO_INC(sb, get_neighbors[h]);
2165
2166 if (tb->lnum[h]) {
2167 /* We need left neighbor to balance S[h]. */
2168 PROC_INFO_INC(sb, need_l_neighbor[h]);
2169 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2170
2171 RFALSE(bh == tb->FL[h] &&
2172 !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
2173 "PAP-8270: invalid position in the parent");
2174
2175 child_position =
2176 (bh ==
2177 tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
2178 FL[h]);
2179 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
2180 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2181 bh = sb_bread(sb, son_number);
2182 reiserfs_write_lock_nested(tb->tb_sb, depth);
2183 if (!bh)
2184 return IO_ERROR;
2185 if (FILESYSTEM_CHANGED_TB(tb)) {
2186 brelse(bh);
2187 PROC_INFO_INC(sb, get_neighbors_restart[h]);
2188 return REPEAT_SEARCH;
2189 }
2190
2191 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
2192 child_position > B_NR_ITEMS(tb->FL[h]) ||
2193 B_N_CHILD_NUM(tb->FL[h], child_position) !=
2194 bh->b_blocknr, "PAP-8275: invalid parent");
2195 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
2196 RFALSE(!h &&
2197 B_FREE_SPACE(bh) !=
2198 MAX_CHILD_SIZE(bh) -
2199 dc_size(B_N_CHILD(tb->FL[0], child_position)),
2200 "PAP-8290: invalid child size of left neighbor");
2201
2202 brelse(tb->L[h]);
2203 tb->L[h] = bh;
2204 }
2205
2206 /* We need right neighbor to balance S[path_offset]. */
2207 if (tb->rnum[h]) {
2208 PROC_INFO_INC(sb, need_r_neighbor[h]);
2209 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2210
2211 RFALSE(bh == tb->FR[h] &&
2212 PATH_OFFSET_POSITION(tb->tb_path,
2213 path_offset) >=
2214 B_NR_ITEMS(bh),
2215 "PAP-8295: invalid position in the parent");
2216
2217 child_position =
2218 (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2219 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2220 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2221 bh = sb_bread(sb, son_number);
2222 reiserfs_write_lock_nested(tb->tb_sb, depth);
2223 if (!bh)
2224 return IO_ERROR;
2225 if (FILESYSTEM_CHANGED_TB(tb)) {
2226 brelse(bh);
2227 PROC_INFO_INC(sb, get_neighbors_restart[h]);
2228 return REPEAT_SEARCH;
2229 }
2230 brelse(tb->R[h]);
2231 tb->R[h] = bh;
2232
2233 RFALSE(!h
2234 && B_FREE_SPACE(bh) !=
2235 MAX_CHILD_SIZE(bh) -
2236 dc_size(B_N_CHILD(tb->FR[0], child_position)),
2237 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2238 B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2239 dc_size(B_N_CHILD(tb->FR[0], child_position)));
2240
2241 }
2242 return CARRY_ON;
2243}
2244
2245static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2246{
2247 int max_num_of_items;
2248 int max_num_of_entries;
2249 unsigned long blocksize = sb->s_blocksize;
2250
2251#define MIN_NAME_LEN 1
2252
2253 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2254 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2255 (DEH_SIZE + MIN_NAME_LEN);
2256
2257 return sizeof(struct virtual_node) +
2258 max(max_num_of_items * sizeof(struct virtual_item),
2259 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2260 (max_num_of_entries - 1) * sizeof(__u16));
2261}
2262
2263/*
2264 * maybe we should fail balancing we are going to perform when kmalloc
2265 * fails several times. But now it will loop until kmalloc gets
2266 * required memory
2267 */
2268static int get_mem_for_virtual_node(struct tree_balance *tb)
2269{
2270 int check_fs = 0;
2271 int size;
2272 char *buf;
2273
2274 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2275
2276 /* we have to allocate more memory for virtual node */
2277 if (size > tb->vn_buf_size) {
2278 if (tb->vn_buf) {
2279 /* free memory allocated before */
2280 kfree(tb->vn_buf);
2281 /* this is not needed if kfree is atomic */
2282 check_fs = 1;
2283 }
2284
2285 /* virtual node requires now more memory */
2286 tb->vn_buf_size = size;
2287
2288 /* get memory for virtual item */
2289 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2290 if (!buf) {
2291 /*
2292 * getting memory with GFP_KERNEL priority may involve
2293 * balancing now (due to indirect_to_direct conversion
2294 * on dcache shrinking). So, release path and collected
2295 * resources here
2296 */
2297 free_buffers_in_tb(tb);
2298 buf = kmalloc(size, GFP_NOFS);
2299 if (!buf) {
2300 tb->vn_buf_size = 0;
2301 }
2302 tb->vn_buf = buf;
2303 schedule();
2304 return REPEAT_SEARCH;
2305 }
2306
2307 tb->vn_buf = buf;
2308 }
2309
2310 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2311 return REPEAT_SEARCH;
2312
2313 return CARRY_ON;
2314}
2315
2316#ifdef CONFIG_REISERFS_CHECK
2317static void tb_buffer_sanity_check(struct super_block *sb,
2318 struct buffer_head *bh,
2319 const char *descr, int level)
2320{
2321 if (bh) {
2322 if (atomic_read(&(bh->b_count)) <= 0)
2323
2324 reiserfs_panic(sb, "jmacd-1", "negative or zero "
2325 "reference counter for buffer %s[%d] "
2326 "(%b)", descr, level, bh);
2327
2328 if (!buffer_uptodate(bh))
2329 reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2330 "to date %s[%d] (%b)",
2331 descr, level, bh);
2332
2333 if (!B_IS_IN_TREE(bh))
2334 reiserfs_panic(sb, "jmacd-3", "buffer is not "
2335 "in tree %s[%d] (%b)",
2336 descr, level, bh);
2337
2338 if (bh->b_bdev != sb->s_bdev)
2339 reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2340 "device %s[%d] (%b)",
2341 descr, level, bh);
2342
2343 if (bh->b_size != sb->s_blocksize)
2344 reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2345 "blocksize %s[%d] (%b)",
2346 descr, level, bh);
2347
2348 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2349 reiserfs_panic(sb, "jmacd-6", "buffer block "
2350 "number too high %s[%d] (%b)",
2351 descr, level, bh);
2352 }
2353}
2354#else
2355static void tb_buffer_sanity_check(struct super_block *sb,
2356 struct buffer_head *bh,
2357 const char *descr, int level)
2358{;
2359}
2360#endif
2361
2362static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2363{
2364 return reiserfs_prepare_for_journal(s, bh, 0);
2365}
2366
2367static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2368{
2369 struct buffer_head *locked;
2370#ifdef CONFIG_REISERFS_CHECK
2371 int repeat_counter = 0;
2372#endif
2373 int i;
2374
2375 do {
2376
2377 locked = NULL;
2378
2379 for (i = tb->tb_path->path_length;
2380 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2381 if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2382 /*
2383 * if I understand correctly, we can only
2384 * be sure the last buffer in the path is
2385 * in the tree --clm
2386 */
2387#ifdef CONFIG_REISERFS_CHECK
2388 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2389 PATH_OFFSET_PBUFFER(tb->tb_path, i))
2390 tb_buffer_sanity_check(tb->tb_sb,
2391 PATH_OFFSET_PBUFFER
2392 (tb->tb_path,
2393 i), "S",
2394 tb->tb_path->
2395 path_length - i);
2396#endif
2397 if (!clear_all_dirty_bits(tb->tb_sb,
2398 PATH_OFFSET_PBUFFER
2399 (tb->tb_path,
2400 i))) {
2401 locked =
2402 PATH_OFFSET_PBUFFER(tb->tb_path,
2403 i);
2404 }
2405 }
2406 }
2407
2408 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2409 i++) {
2410
2411 if (tb->lnum[i]) {
2412
2413 if (tb->L[i]) {
2414 tb_buffer_sanity_check(tb->tb_sb,
2415 tb->L[i],
2416 "L", i);
2417 if (!clear_all_dirty_bits
2418 (tb->tb_sb, tb->L[i]))
2419 locked = tb->L[i];
2420 }
2421
2422 if (!locked && tb->FL[i]) {
2423 tb_buffer_sanity_check(tb->tb_sb,
2424 tb->FL[i],
2425 "FL", i);
2426 if (!clear_all_dirty_bits
2427 (tb->tb_sb, tb->FL[i]))
2428 locked = tb->FL[i];
2429 }
2430
2431 if (!locked && tb->CFL[i]) {
2432 tb_buffer_sanity_check(tb->tb_sb,
2433 tb->CFL[i],
2434 "CFL", i);
2435 if (!clear_all_dirty_bits
2436 (tb->tb_sb, tb->CFL[i]))
2437 locked = tb->CFL[i];
2438 }
2439
2440 }
2441
2442 if (!locked && (tb->rnum[i])) {
2443
2444 if (tb->R[i]) {
2445 tb_buffer_sanity_check(tb->tb_sb,
2446 tb->R[i],
2447 "R", i);
2448 if (!clear_all_dirty_bits
2449 (tb->tb_sb, tb->R[i]))
2450 locked = tb->R[i];
2451 }
2452
2453 if (!locked && tb->FR[i]) {
2454 tb_buffer_sanity_check(tb->tb_sb,
2455 tb->FR[i],
2456 "FR", i);
2457 if (!clear_all_dirty_bits
2458 (tb->tb_sb, tb->FR[i]))
2459 locked = tb->FR[i];
2460 }
2461
2462 if (!locked && tb->CFR[i]) {
2463 tb_buffer_sanity_check(tb->tb_sb,
2464 tb->CFR[i],
2465 "CFR", i);
2466 if (!clear_all_dirty_bits
2467 (tb->tb_sb, tb->CFR[i]))
2468 locked = tb->CFR[i];
2469 }
2470 }
2471 }
2472
2473 /*
2474 * as far as I can tell, this is not required. The FEB list
2475 * seems to be full of newly allocated nodes, which will
2476 * never be locked, dirty, or anything else.
2477 * To be safe, I'm putting in the checks and waits in.
2478 * For the moment, they are needed to keep the code in
2479 * journal.c from complaining about the buffer.
2480 * That code is inside CONFIG_REISERFS_CHECK as well. --clm
2481 */
2482 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2483 if (tb->FEB[i]) {
2484 if (!clear_all_dirty_bits
2485 (tb->tb_sb, tb->FEB[i]))
2486 locked = tb->FEB[i];
2487 }
2488 }
2489
2490 if (locked) {
2491 int depth;
2492#ifdef CONFIG_REISERFS_CHECK
2493 repeat_counter++;
2494 if ((repeat_counter % 10000) == 0) {
2495 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2496 "too many iterations waiting "
2497 "for buffer to unlock "
2498 "(%b)", locked);
2499
2500 /* Don't loop forever. Try to recover from possible error. */
2501
2502 return (FILESYSTEM_CHANGED_TB(tb)) ?
2503 REPEAT_SEARCH : CARRY_ON;
2504 }
2505#endif
2506 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2507 __wait_on_buffer(locked);
2508 reiserfs_write_lock_nested(tb->tb_sb, depth);
2509 if (FILESYSTEM_CHANGED_TB(tb))
2510 return REPEAT_SEARCH;
2511 }
2512
2513 } while (locked);
2514
2515 return CARRY_ON;
2516}
2517
2518/*
2519 * Prepare for balancing, that is
2520 * get all necessary parents, and neighbors;
2521 * analyze what and where should be moved;
2522 * get sufficient number of new nodes;
2523 * Balancing will start only after all resources will be collected at a time.
2524 *
2525 * When ported to SMP kernels, only at the last moment after all needed nodes
2526 * are collected in cache, will the resources be locked using the usual
2527 * textbook ordered lock acquisition algorithms. Note that ensuring that
2528 * this code neither write locks what it does not need to write lock nor locks
2529 * out of order will be a pain in the butt that could have been avoided.
2530 * Grumble grumble. -Hans
2531 *
2532 * fix is meant in the sense of render unchanging
2533 *
2534 * Latency might be improved by first gathering a list of what buffers
2535 * are needed and then getting as many of them in parallel as possible? -Hans
2536 *
2537 * Parameters:
2538 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2539 * tb tree_balance structure;
2540 * inum item number in S[h];
2541 * pos_in_item - comment this if you can
2542 * ins_ih item head of item being inserted
2543 * data inserted item or data to be pasted
2544 * Returns: 1 - schedule occurred while the function worked;
2545 * 0 - schedule didn't occur while the function worked;
2546 * -1 - if no_disk_space
2547 */
2548
2549int fix_nodes(int op_mode, struct tree_balance *tb,
2550 struct item_head *ins_ih, const void *data)
2551{
2552 int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2553 int pos_in_item;
2554
2555 /*
2556 * we set wait_tb_buffers_run when we have to restore any dirty
2557 * bits cleared during wait_tb_buffers_run
2558 */
2559 int wait_tb_buffers_run = 0;
2560 struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2561
2562 ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2563
2564 pos_in_item = tb->tb_path->pos_in_item;
2565
2566 tb->fs_gen = get_generation(tb->tb_sb);
2567
2568 /*
2569 * we prepare and log the super here so it will already be in the
2570 * transaction when do_balance needs to change it.
2571 * This way do_balance won't have to schedule when trying to prepare
2572 * the super for logging
2573 */
2574 reiserfs_prepare_for_journal(tb->tb_sb,
2575 SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2576 journal_mark_dirty(tb->transaction_handle,
2577 SB_BUFFER_WITH_SB(tb->tb_sb));
2578 if (FILESYSTEM_CHANGED_TB(tb))
2579 return REPEAT_SEARCH;
2580
2581 /* if it possible in indirect_to_direct conversion */
2582 if (buffer_locked(tbS0)) {
2583 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2584 __wait_on_buffer(tbS0);
2585 reiserfs_write_lock_nested(tb->tb_sb, depth);
2586 if (FILESYSTEM_CHANGED_TB(tb))
2587 return REPEAT_SEARCH;
2588 }
2589#ifdef CONFIG_REISERFS_CHECK
2590 if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2591 print_cur_tb("fix_nodes");
2592 reiserfs_panic(tb->tb_sb, "PAP-8305",
2593 "there is pending do_balance");
2594 }
2595
2596 if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2597 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2598 "not uptodate at the beginning of fix_nodes "
2599 "or not in tree (mode %c)",
2600 tbS0, tbS0, op_mode);
2601
2602 /* Check parameters. */
2603 switch (op_mode) {
2604 case M_INSERT:
2605 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2606 reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2607 "item number %d (in S0 - %d) in case "
2608 "of insert", item_num,
2609 B_NR_ITEMS(tbS0));
2610 break;
2611 case M_PASTE:
2612 case M_DELETE:
2613 case M_CUT:
2614 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2615 print_block(tbS0, 0, -1, -1);
2616 reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2617 "item number(%d); mode = %c "
2618 "insert_size = %d",
2619 item_num, op_mode,
2620 tb->insert_size[0]);
2621 }
2622 break;
2623 default:
2624 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2625 "of operation");
2626 }
2627#endif
2628
2629 if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2630 /* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
2631 return REPEAT_SEARCH;
2632
2633 /* Starting from the leaf level; for all levels h of the tree. */
2634 for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2635 ret = get_direct_parent(tb, h);
2636 if (ret != CARRY_ON)
2637 goto repeat;
2638
2639 ret = check_balance(op_mode, tb, h, item_num,
2640 pos_in_item, ins_ih, data);
2641 if (ret != CARRY_ON) {
2642 if (ret == NO_BALANCING_NEEDED) {
2643 /* No balancing for higher levels needed. */
2644 ret = get_neighbors(tb, h);
2645 if (ret != CARRY_ON)
2646 goto repeat;
2647 if (h != MAX_HEIGHT - 1)
2648 tb->insert_size[h + 1] = 0;
2649 /*
2650 * ok, analysis and resource gathering
2651 * are complete
2652 */
2653 break;
2654 }
2655 goto repeat;
2656 }
2657
2658 ret = get_neighbors(tb, h);
2659 if (ret != CARRY_ON)
2660 goto repeat;
2661
2662 /*
2663 * No disk space, or schedule occurred and analysis may be
2664 * invalid and needs to be redone.
2665 */
2666 ret = get_empty_nodes(tb, h);
2667 if (ret != CARRY_ON)
2668 goto repeat;
2669
2670 /*
2671 * We have a positive insert size but no nodes exist on this
2672 * level, this means that we are creating a new root.
2673 */
2674 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2675
2676 RFALSE(tb->blknum[h] != 1,
2677 "PAP-8350: creating new empty root");
2678
2679 if (h < MAX_HEIGHT - 1)
2680 tb->insert_size[h + 1] = 0;
2681 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2682 /*
2683 * The tree needs to be grown, so this node S[h]
2684 * which is the root node is split into two nodes,
2685 * and a new node (S[h+1]) will be created to
2686 * become the root node.
2687 */
2688 if (tb->blknum[h] > 1) {
2689
2690 RFALSE(h == MAX_HEIGHT - 1,
2691 "PAP-8355: attempt to create too high of a tree");
2692
2693 tb->insert_size[h + 1] =
2694 (DC_SIZE +
2695 KEY_SIZE) * (tb->blknum[h] - 1) +
2696 DC_SIZE;
2697 } else if (h < MAX_HEIGHT - 1)
2698 tb->insert_size[h + 1] = 0;
2699 } else
2700 tb->insert_size[h + 1] =
2701 (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2702 }
2703
2704 ret = wait_tb_buffers_until_unlocked(tb);
2705 if (ret == CARRY_ON) {
2706 if (FILESYSTEM_CHANGED_TB(tb)) {
2707 wait_tb_buffers_run = 1;
2708 ret = REPEAT_SEARCH;
2709 goto repeat;
2710 } else {
2711 return CARRY_ON;
2712 }
2713 } else {
2714 wait_tb_buffers_run = 1;
2715 goto repeat;
2716 }
2717
2718repeat:
2719 /*
2720 * fix_nodes was unable to perform its calculation due to
2721 * filesystem got changed under us, lack of free disk space or i/o
2722 * failure. If the first is the case - the search will be
2723 * repeated. For now - free all resources acquired so far except
2724 * for the new allocated nodes
2725 */
2726 {
2727 int i;
2728
2729 /* Release path buffers. */
2730 if (wait_tb_buffers_run) {
2731 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2732 } else {
2733 pathrelse(tb->tb_path);
2734 }
2735 /* brelse all resources collected for balancing */
2736 for (i = 0; i < MAX_HEIGHT; i++) {
2737 if (wait_tb_buffers_run) {
2738 reiserfs_restore_prepared_buffer(tb->tb_sb,
2739 tb->L[i]);
2740 reiserfs_restore_prepared_buffer(tb->tb_sb,
2741 tb->R[i]);
2742 reiserfs_restore_prepared_buffer(tb->tb_sb,
2743 tb->FL[i]);
2744 reiserfs_restore_prepared_buffer(tb->tb_sb,
2745 tb->FR[i]);
2746 reiserfs_restore_prepared_buffer(tb->tb_sb,
2747 tb->
2748 CFL[i]);
2749 reiserfs_restore_prepared_buffer(tb->tb_sb,
2750 tb->
2751 CFR[i]);
2752 }
2753
2754 brelse(tb->L[i]);
2755 brelse(tb->R[i]);
2756 brelse(tb->FL[i]);
2757 brelse(tb->FR[i]);
2758 brelse(tb->CFL[i]);
2759 brelse(tb->CFR[i]);
2760
2761 tb->L[i] = NULL;
2762 tb->R[i] = NULL;
2763 tb->FL[i] = NULL;
2764 tb->FR[i] = NULL;
2765 tb->CFL[i] = NULL;
2766 tb->CFR[i] = NULL;
2767 }
2768
2769 if (wait_tb_buffers_run) {
2770 for (i = 0; i < MAX_FEB_SIZE; i++) {
2771 if (tb->FEB[i])
2772 reiserfs_restore_prepared_buffer
2773 (tb->tb_sb, tb->FEB[i]);
2774 }
2775 }
2776 return ret;
2777 }
2778
2779}
2780
2781void unfix_nodes(struct tree_balance *tb)
2782{
2783 int i;
2784
2785 /* Release path buffers. */
2786 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2787
2788 /* brelse all resources collected for balancing */
2789 for (i = 0; i < MAX_HEIGHT; i++) {
2790 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2791 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2792 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2793 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2794 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2795 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2796
2797 brelse(tb->L[i]);
2798 brelse(tb->R[i]);
2799 brelse(tb->FL[i]);
2800 brelse(tb->FR[i]);
2801 brelse(tb->CFL[i]);
2802 brelse(tb->CFR[i]);
2803 }
2804
2805 /* deal with list of allocated (used and unused) nodes */
2806 for (i = 0; i < MAX_FEB_SIZE; i++) {
2807 if (tb->FEB[i]) {
2808 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2809 /*
2810 * de-allocated block which was not used by
2811 * balancing and bforget about buffer for it
2812 */
2813 brelse(tb->FEB[i]);
2814 reiserfs_free_block(tb->transaction_handle, NULL,
2815 blocknr, 0);
2816 }
2817 if (tb->used[i]) {
2818 /* release used as new nodes including a new root */
2819 brelse(tb->used[i]);
2820 }
2821 }
2822
2823 kfree(tb->vn_buf);
2824
2825}
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/**
6 ** old_item_num
7 ** old_entry_num
8 ** set_entry_sizes
9 ** create_virtual_node
10 ** check_left
11 ** check_right
12 ** directory_part_size
13 ** get_num_ver
14 ** set_parameters
15 ** is_leaf_removable
16 ** are_leaves_removable
17 ** get_empty_nodes
18 ** get_lfree
19 ** get_rfree
20 ** is_left_neighbor_in_cache
21 ** decrement_key
22 ** get_far_parent
23 ** get_parents
24 ** can_node_be_removed
25 ** ip_check_balance
26 ** dc_check_balance_internal
27 ** dc_check_balance_leaf
28 ** dc_check_balance
29 ** check_balance
30 ** get_direct_parent
31 ** get_neighbors
32 ** fix_nodes
33 **
34 **
35 **/
36
37#include <linux/time.h>
38#include <linux/slab.h>
39#include <linux/string.h>
40#include "reiserfs.h"
41#include <linux/buffer_head.h>
42
43/* To make any changes in the tree we find a node, that contains item
44 to be changed/deleted or position in the node we insert a new item
45 to. We call this node S. To do balancing we need to decide what we
46 will shift to left/right neighbor, or to a new node, where new item
47 will be etc. To make this analysis simpler we build virtual
48 node. Virtual node is an array of items, that will replace items of
49 node S. (For instance if we are going to delete an item, virtual
50 node does not contain it). Virtual node keeps information about
51 item sizes and types, mergeability of first and last items, sizes
52 of all entries in directory item. We use this array of items when
53 calculating what we can shift to neighbors and how many nodes we
54 have to have if we do not any shiftings, if we shift to left/right
55 neighbor or to both. */
56
57/* taking item number in virtual node, returns number of item, that it has in source buffer */
58static inline int old_item_num(int new_num, int affected_item_num, int mode)
59{
60 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
61 return new_num;
62
63 if (mode == M_INSERT) {
64
65 RFALSE(new_num == 0,
66 "vs-8005: for INSERT mode and item number of inserted item");
67
68 return new_num - 1;
69 }
70
71 RFALSE(mode != M_DELETE,
72 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
73 mode);
74 /* delete mode */
75 return new_num + 1;
76}
77
78static void create_virtual_node(struct tree_balance *tb, int h)
79{
80 struct item_head *ih;
81 struct virtual_node *vn = tb->tb_vn;
82 int new_num;
83 struct buffer_head *Sh; /* this comes from tb->S[h] */
84
85 Sh = PATH_H_PBUFFER(tb->tb_path, h);
86
87 /* size of changed node */
88 vn->vn_size =
89 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
90
91 /* for internal nodes array if virtual items is not created */
92 if (h) {
93 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
94 return;
95 }
96
97 /* number of items in virtual node */
98 vn->vn_nr_item =
99 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
100 ((vn->vn_mode == M_DELETE) ? 1 : 0);
101
102 /* first virtual item */
103 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
104 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
105 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
106
107 /* first item in the node */
108 ih = B_N_PITEM_HEAD(Sh, 0);
109
110 /* define the mergeability for 0-th item (if it is not being deleted) */
111 if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
112 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
113 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
114
115 /* go through all items those remain in the virtual node (except for the new (inserted) one) */
116 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
117 int j;
118 struct virtual_item *vi = vn->vn_vi + new_num;
119 int is_affected =
120 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
121
122 if (is_affected && vn->vn_mode == M_INSERT)
123 continue;
124
125 /* get item number in source node */
126 j = old_item_num(new_num, vn->vn_affected_item_num,
127 vn->vn_mode);
128
129 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
130 vi->vi_ih = ih + j;
131 vi->vi_item = B_I_PITEM(Sh, ih + j);
132 vi->vi_uarea = vn->vn_free_ptr;
133
134 // FIXME: there is no check, that item operation did not
135 // consume too much memory
136 vn->vn_free_ptr +=
137 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
138 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
139 reiserfs_panic(tb->tb_sb, "vs-8030",
140 "virtual node space consumed");
141
142 if (!is_affected)
143 /* this is not being changed */
144 continue;
145
146 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
147 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
148 vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
149 }
150 }
151
152 /* virtual inserted item is not defined yet */
153 if (vn->vn_mode == M_INSERT) {
154 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
155
156 RFALSE(vn->vn_ins_ih == NULL,
157 "vs-8040: item header of inserted item is not specified");
158 vi->vi_item_len = tb->insert_size[0];
159 vi->vi_ih = vn->vn_ins_ih;
160 vi->vi_item = vn->vn_data;
161 vi->vi_uarea = vn->vn_free_ptr;
162
163 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
164 tb->insert_size[0]);
165 }
166
167 /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
168 if (tb->CFR[0]) {
169 struct reiserfs_key *key;
170
171 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
172 if (op_is_left_mergeable(key, Sh->b_size)
173 && (vn->vn_mode != M_DELETE
174 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
175 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
176 VI_TYPE_RIGHT_MERGEABLE;
177
178#ifdef CONFIG_REISERFS_CHECK
179 if (op_is_left_mergeable(key, Sh->b_size) &&
180 !(vn->vn_mode != M_DELETE
181 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
182 /* we delete last item and it could be merged with right neighbor's first item */
183 if (!
184 (B_NR_ITEMS(Sh) == 1
185 && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
186 && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
187 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
188 print_block(Sh, 0, -1, -1);
189 reiserfs_panic(tb->tb_sb, "vs-8045",
190 "rdkey %k, affected item==%d "
191 "(mode==%c) Must be %c",
192 key, vn->vn_affected_item_num,
193 vn->vn_mode, M_DELETE);
194 }
195 }
196#endif
197
198 }
199}
200
201/* using virtual node check, how many items can be shifted to left
202 neighbor */
203static void check_left(struct tree_balance *tb, int h, int cur_free)
204{
205 int i;
206 struct virtual_node *vn = tb->tb_vn;
207 struct virtual_item *vi;
208 int d_size, ih_size;
209
210 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
211
212 /* internal level */
213 if (h > 0) {
214 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
215 return;
216 }
217
218 /* leaf level */
219
220 if (!cur_free || !vn->vn_nr_item) {
221 /* no free space or nothing to move */
222 tb->lnum[h] = 0;
223 tb->lbytes = -1;
224 return;
225 }
226
227 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
228 "vs-8055: parent does not exist or invalid");
229
230 vi = vn->vn_vi;
231 if ((unsigned int)cur_free >=
232 (vn->vn_size -
233 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
234 /* all contents of S[0] fits into L[0] */
235
236 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
237 "vs-8055: invalid mode or balance condition failed");
238
239 tb->lnum[0] = vn->vn_nr_item;
240 tb->lbytes = -1;
241 return;
242 }
243
244 d_size = 0, ih_size = IH_SIZE;
245
246 /* first item may be merge with last item in left neighbor */
247 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
248 d_size = -((int)IH_SIZE), ih_size = 0;
249
250 tb->lnum[0] = 0;
251 for (i = 0; i < vn->vn_nr_item;
252 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
253 d_size += vi->vi_item_len;
254 if (cur_free >= d_size) {
255 /* the item can be shifted entirely */
256 cur_free -= d_size;
257 tb->lnum[0]++;
258 continue;
259 }
260
261 /* the item cannot be shifted entirely, try to split it */
262 /* check whether L[0] can hold ih and at least one byte of the item body */
263 if (cur_free <= ih_size) {
264 /* cannot shift even a part of the current item */
265 tb->lbytes = -1;
266 return;
267 }
268 cur_free -= ih_size;
269
270 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
271 if (tb->lbytes != -1)
272 /* count partially shifted item */
273 tb->lnum[0]++;
274
275 break;
276 }
277
278 return;
279}
280
281/* using virtual node check, how many items can be shifted to right
282 neighbor */
283static void check_right(struct tree_balance *tb, int h, int cur_free)
284{
285 int i;
286 struct virtual_node *vn = tb->tb_vn;
287 struct virtual_item *vi;
288 int d_size, ih_size;
289
290 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
291
292 /* internal level */
293 if (h > 0) {
294 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
295 return;
296 }
297
298 /* leaf level */
299
300 if (!cur_free || !vn->vn_nr_item) {
301 /* no free space */
302 tb->rnum[h] = 0;
303 tb->rbytes = -1;
304 return;
305 }
306
307 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
308 "vs-8075: parent does not exist or invalid");
309
310 vi = vn->vn_vi + vn->vn_nr_item - 1;
311 if ((unsigned int)cur_free >=
312 (vn->vn_size -
313 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
314 /* all contents of S[0] fits into R[0] */
315
316 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
317 "vs-8080: invalid mode or balance condition failed");
318
319 tb->rnum[h] = vn->vn_nr_item;
320 tb->rbytes = -1;
321 return;
322 }
323
324 d_size = 0, ih_size = IH_SIZE;
325
326 /* last item may be merge with first item in right neighbor */
327 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
328 d_size = -(int)IH_SIZE, ih_size = 0;
329
330 tb->rnum[0] = 0;
331 for (i = vn->vn_nr_item - 1; i >= 0;
332 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
333 d_size += vi->vi_item_len;
334 if (cur_free >= d_size) {
335 /* the item can be shifted entirely */
336 cur_free -= d_size;
337 tb->rnum[0]++;
338 continue;
339 }
340
341 /* check whether R[0] can hold ih and at least one byte of the item body */
342 if (cur_free <= ih_size) { /* cannot shift even a part of the current item */
343 tb->rbytes = -1;
344 return;
345 }
346
347 /* R[0] can hold the header of the item and at least one byte of its body */
348 cur_free -= ih_size; /* cur_free is still > 0 */
349
350 tb->rbytes = op_check_right(vi, cur_free);
351 if (tb->rbytes != -1)
352 /* count partially shifted item */
353 tb->rnum[0]++;
354
355 break;
356 }
357
358 return;
359}
360
361/*
362 * from - number of items, which are shifted to left neighbor entirely
363 * to - number of item, which are shifted to right neighbor entirely
364 * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
365 * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
366static int get_num_ver(int mode, struct tree_balance *tb, int h,
367 int from, int from_bytes,
368 int to, int to_bytes, short *snum012, int flow)
369{
370 int i;
371 int cur_free;
372 // int bytes;
373 int units;
374 struct virtual_node *vn = tb->tb_vn;
375 // struct virtual_item * vi;
376
377 int total_node_size, max_node_size, current_item_size;
378 int needed_nodes;
379 int start_item, /* position of item we start filling node from */
380 end_item, /* position of item we finish filling node by */
381 start_bytes, /* number of first bytes (entries for directory) of start_item-th item
382 we do not include into node that is being filled */
383 end_bytes; /* number of last bytes (entries for directory) of end_item-th item
384 we do node include into node that is being filled */
385 int split_item_positions[2]; /* these are positions in virtual item of
386 items, that are split between S[0] and
387 S1new and S1new and S2new */
388
389 split_item_positions[0] = -1;
390 split_item_positions[1] = -1;
391
392 /* We only create additional nodes if we are in insert or paste mode
393 or we are in replace mode at the internal level. If h is 0 and
394 the mode is M_REPLACE then in fix_nodes we change the mode to
395 paste or insert before we get here in the code. */
396 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
397 "vs-8100: insert_size < 0 in overflow");
398
399 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
400
401 /* snum012 [0-2] - number of items, that lay
402 to S[0], first new node and second new node */
403 snum012[3] = -1; /* s1bytes */
404 snum012[4] = -1; /* s2bytes */
405
406 /* internal level */
407 if (h > 0) {
408 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
409 if (i == max_node_size)
410 return 1;
411 return (i / max_node_size + 1);
412 }
413
414 /* leaf level */
415 needed_nodes = 1;
416 total_node_size = 0;
417 cur_free = max_node_size;
418
419 // start from 'from'-th item
420 start_item = from;
421 // skip its first 'start_bytes' units
422 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
423
424 // last included item is the 'end_item'-th one
425 end_item = vn->vn_nr_item - to - 1;
426 // do not count last 'end_bytes' units of 'end_item'-th item
427 end_bytes = (to_bytes != -1) ? to_bytes : 0;
428
429 /* go through all item beginning from the start_item-th item and ending by
430 the end_item-th item. Do not count first 'start_bytes' units of
431 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
432
433 for (i = start_item; i <= end_item; i++) {
434 struct virtual_item *vi = vn->vn_vi + i;
435 int skip_from_end = ((i == end_item) ? end_bytes : 0);
436
437 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
438
439 /* get size of current item */
440 current_item_size = vi->vi_item_len;
441
442 /* do not take in calculation head part (from_bytes) of from-th item */
443 current_item_size -=
444 op_part_size(vi, 0 /*from start */ , start_bytes);
445
446 /* do not take in calculation tail part of last item */
447 current_item_size -=
448 op_part_size(vi, 1 /*from end */ , skip_from_end);
449
450 /* if item fits into current node entierly */
451 if (total_node_size + current_item_size <= max_node_size) {
452 snum012[needed_nodes - 1]++;
453 total_node_size += current_item_size;
454 start_bytes = 0;
455 continue;
456 }
457
458 if (current_item_size > max_node_size) {
459 /* virtual item length is longer, than max size of item in
460 a node. It is impossible for direct item */
461 RFALSE(is_direct_le_ih(vi->vi_ih),
462 "vs-8110: "
463 "direct item length is %d. It can not be longer than %d",
464 current_item_size, max_node_size);
465 /* we will try to split it */
466 flow = 1;
467 }
468
469 if (!flow) {
470 /* as we do not split items, take new node and continue */
471 needed_nodes++;
472 i--;
473 total_node_size = 0;
474 continue;
475 }
476 // calculate number of item units which fit into node being
477 // filled
478 {
479 int free_space;
480
481 free_space = max_node_size - total_node_size - IH_SIZE;
482 units =
483 op_check_left(vi, free_space, start_bytes,
484 skip_from_end);
485 if (units == -1) {
486 /* nothing fits into current node, take new node and continue */
487 needed_nodes++, i--, total_node_size = 0;
488 continue;
489 }
490 }
491
492 /* something fits into the current node */
493 //if (snum012[3] != -1 || needed_nodes != 1)
494 // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
495 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
496 start_bytes += units;
497 snum012[needed_nodes - 1 + 3] = units;
498
499 if (needed_nodes > 2)
500 reiserfs_warning(tb->tb_sb, "vs-8111",
501 "split_item_position is out of range");
502 snum012[needed_nodes - 1]++;
503 split_item_positions[needed_nodes - 1] = i;
504 needed_nodes++;
505 /* continue from the same item with start_bytes != -1 */
506 start_item = i;
507 i--;
508 total_node_size = 0;
509 }
510
511 // sum012[4] (if it is not -1) contains number of units of which
512 // are to be in S1new, snum012[3] - to be in S0. They are supposed
513 // to be S1bytes and S2bytes correspondingly, so recalculate
514 if (snum012[4] > 0) {
515 int split_item_num;
516 int bytes_to_r, bytes_to_l;
517 int bytes_to_S1new;
518
519 split_item_num = split_item_positions[1];
520 bytes_to_l =
521 ((from == split_item_num
522 && from_bytes != -1) ? from_bytes : 0);
523 bytes_to_r =
524 ((end_item == split_item_num
525 && end_bytes != -1) ? end_bytes : 0);
526 bytes_to_S1new =
527 ((split_item_positions[0] ==
528 split_item_positions[1]) ? snum012[3] : 0);
529
530 // s2bytes
531 snum012[4] =
532 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
533 bytes_to_r - bytes_to_l - bytes_to_S1new;
534
535 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
536 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
537 reiserfs_warning(tb->tb_sb, "vs-8115",
538 "not directory or indirect item");
539 }
540
541 /* now we know S2bytes, calculate S1bytes */
542 if (snum012[3] > 0) {
543 int split_item_num;
544 int bytes_to_r, bytes_to_l;
545 int bytes_to_S2new;
546
547 split_item_num = split_item_positions[0];
548 bytes_to_l =
549 ((from == split_item_num
550 && from_bytes != -1) ? from_bytes : 0);
551 bytes_to_r =
552 ((end_item == split_item_num
553 && end_bytes != -1) ? end_bytes : 0);
554 bytes_to_S2new =
555 ((split_item_positions[0] == split_item_positions[1]
556 && snum012[4] != -1) ? snum012[4] : 0);
557
558 // s1bytes
559 snum012[3] =
560 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
561 bytes_to_r - bytes_to_l - bytes_to_S2new;
562 }
563
564 return needed_nodes;
565}
566
567
568/* Set parameters for balancing.
569 * Performs write of results of analysis of balancing into structure tb,
570 * where it will later be used by the functions that actually do the balancing.
571 * Parameters:
572 * tb tree_balance structure;
573 * h current level of the node;
574 * lnum number of items from S[h] that must be shifted to L[h];
575 * rnum number of items from S[h] that must be shifted to R[h];
576 * blk_num number of blocks that S[h] will be splitted into;
577 * s012 number of items that fall into splitted nodes.
578 * lbytes number of bytes which flow to the left neighbor from the item that is not
579 * not shifted entirely
580 * rbytes number of bytes which flow to the right neighbor from the item that is not
581 * not shifted entirely
582 * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
583 */
584
585static void set_parameters(struct tree_balance *tb, int h, int lnum,
586 int rnum, int blk_num, short *s012, int lb, int rb)
587{
588
589 tb->lnum[h] = lnum;
590 tb->rnum[h] = rnum;
591 tb->blknum[h] = blk_num;
592
593 if (h == 0) { /* only for leaf level */
594 if (s012 != NULL) {
595 tb->s0num = *s012++,
596 tb->s1num = *s012++, tb->s2num = *s012++;
597 tb->s1bytes = *s012++;
598 tb->s2bytes = *s012;
599 }
600 tb->lbytes = lb;
601 tb->rbytes = rb;
602 }
603 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
604 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
605
606 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
607 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
608}
609
610/* check, does node disappear if we shift tb->lnum[0] items to left
611 neighbor and tb->rnum[0] to the right one. */
612static int is_leaf_removable(struct tree_balance *tb)
613{
614 struct virtual_node *vn = tb->tb_vn;
615 int to_left, to_right;
616 int size;
617 int remain_items;
618
619 /* number of items, that will be shifted to left (right) neighbor
620 entirely */
621 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
622 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
623 remain_items = vn->vn_nr_item;
624
625 /* how many items remain in S[0] after shiftings to neighbors */
626 remain_items -= (to_left + to_right);
627
628 if (remain_items < 1) {
629 /* all content of node can be shifted to neighbors */
630 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
631 NULL, -1, -1);
632 return 1;
633 }
634
635 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
636 /* S[0] is not removable */
637 return 0;
638
639 /* check, whether we can divide 1 remaining item between neighbors */
640
641 /* get size of remaining item (in item units) */
642 size = op_unit_num(&(vn->vn_vi[to_left]));
643
644 if (tb->lbytes + tb->rbytes >= size) {
645 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
646 tb->lbytes, -1);
647 return 1;
648 }
649
650 return 0;
651}
652
653/* check whether L, S, R can be joined in one node */
654static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
655{
656 struct virtual_node *vn = tb->tb_vn;
657 int ih_size;
658 struct buffer_head *S0;
659
660 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
661
662 ih_size = 0;
663 if (vn->vn_nr_item) {
664 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
665 ih_size += IH_SIZE;
666
667 if (vn->vn_vi[vn->vn_nr_item - 1].
668 vi_type & VI_TYPE_RIGHT_MERGEABLE)
669 ih_size += IH_SIZE;
670 } else {
671 /* there was only one item and it will be deleted */
672 struct item_head *ih;
673
674 RFALSE(B_NR_ITEMS(S0) != 1,
675 "vs-8125: item number must be 1: it is %d",
676 B_NR_ITEMS(S0));
677
678 ih = B_N_PITEM_HEAD(S0, 0);
679 if (tb->CFR[0]
680 && !comp_short_le_keys(&(ih->ih_key),
681 B_N_PDELIM_KEY(tb->CFR[0],
682 tb->rkey[0])))
683 if (is_direntry_le_ih(ih)) {
684 /* Directory must be in correct state here: that is
685 somewhere at the left side should exist first directory
686 item. But the item being deleted can not be that first
687 one because its right neighbor is item of the same
688 directory. (But first item always gets deleted in last
689 turn). So, neighbors of deleted item can be merged, so
690 we can save ih_size */
691 ih_size = IH_SIZE;
692
693 /* we might check that left neighbor exists and is of the
694 same directory */
695 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
696 "vs-8130: first directory item can not be removed until directory is not empty");
697 }
698
699 }
700
701 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
702 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
703 PROC_INFO_INC(tb->tb_sb, leaves_removable);
704 return 1;
705 }
706 return 0;
707
708}
709
710/* when we do not split item, lnum and rnum are numbers of entire items */
711#define SET_PAR_SHIFT_LEFT \
712if (h)\
713{\
714 int to_l;\
715 \
716 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
717 (MAX_NR_KEY(Sh) + 1 - lpar);\
718 \
719 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
720}\
721else \
722{\
723 if (lset==LEFT_SHIFT_FLOW)\
724 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
725 tb->lbytes, -1);\
726 else\
727 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
728 -1, -1);\
729}
730
731#define SET_PAR_SHIFT_RIGHT \
732if (h)\
733{\
734 int to_r;\
735 \
736 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
737 \
738 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
739}\
740else \
741{\
742 if (rset==RIGHT_SHIFT_FLOW)\
743 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
744 -1, tb->rbytes);\
745 else\
746 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
747 -1, -1);\
748}
749
750static void free_buffers_in_tb(struct tree_balance *tb)
751{
752 int i;
753
754 pathrelse(tb->tb_path);
755
756 for (i = 0; i < MAX_HEIGHT; i++) {
757 brelse(tb->L[i]);
758 brelse(tb->R[i]);
759 brelse(tb->FL[i]);
760 brelse(tb->FR[i]);
761 brelse(tb->CFL[i]);
762 brelse(tb->CFR[i]);
763
764 tb->L[i] = NULL;
765 tb->R[i] = NULL;
766 tb->FL[i] = NULL;
767 tb->FR[i] = NULL;
768 tb->CFL[i] = NULL;
769 tb->CFR[i] = NULL;
770 }
771}
772
773/* Get new buffers for storing new nodes that are created while balancing.
774 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
775 * CARRY_ON - schedule didn't occur while the function worked;
776 * NO_DISK_SPACE - no disk space.
777 */
778/* The function is NOT SCHEDULE-SAFE! */
779static int get_empty_nodes(struct tree_balance *tb, int h)
780{
781 struct buffer_head *new_bh,
782 *Sh = PATH_H_PBUFFER(tb->tb_path, h);
783 b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
784 int counter, number_of_freeblk, amount_needed, /* number of needed empty blocks */
785 retval = CARRY_ON;
786 struct super_block *sb = tb->tb_sb;
787
788 /* number_of_freeblk is the number of empty blocks which have been
789 acquired for use by the balancing algorithm minus the number of
790 empty blocks used in the previous levels of the analysis,
791 number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
792 after empty blocks are acquired, and the balancing analysis is
793 then restarted, amount_needed is the number needed by this level
794 (h) of the balancing analysis.
795
796 Note that for systems with many processes writing, it would be
797 more layout optimal to calculate the total number needed by all
798 levels and then to run reiserfs_new_blocks to get all of them at once. */
799
800 /* Initiate number_of_freeblk to the amount acquired prior to the restart of
801 the analysis or 0 if not restarted, then subtract the amount needed
802 by all of the levels of the tree below h. */
803 /* blknum includes S[h], so we subtract 1 in this calculation */
804 for (counter = 0, number_of_freeblk = tb->cur_blknum;
805 counter < h; counter++)
806 number_of_freeblk -=
807 (tb->blknum[counter]) ? (tb->blknum[counter] -
808 1) : 0;
809
810 /* Allocate missing empty blocks. */
811 /* if Sh == 0 then we are getting a new root */
812 amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
813 /* Amount_needed = the amount that we need more than the amount that we have. */
814 if (amount_needed > number_of_freeblk)
815 amount_needed -= number_of_freeblk;
816 else /* If we have enough already then there is nothing to do. */
817 return CARRY_ON;
818
819 /* No need to check quota - is not allocated for blocks used for formatted nodes */
820 if (reiserfs_new_form_blocknrs(tb, blocknrs,
821 amount_needed) == NO_DISK_SPACE)
822 return NO_DISK_SPACE;
823
824 /* for each blocknumber we just got, get a buffer and stick it on FEB */
825 for (blocknr = blocknrs, counter = 0;
826 counter < amount_needed; blocknr++, counter++) {
827
828 RFALSE(!*blocknr,
829 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
830
831 new_bh = sb_getblk(sb, *blocknr);
832 RFALSE(buffer_dirty(new_bh) ||
833 buffer_journaled(new_bh) ||
834 buffer_journal_dirty(new_bh),
835 "PAP-8140: journaled or dirty buffer %b for the new block",
836 new_bh);
837
838 /* Put empty buffers into the array. */
839 RFALSE(tb->FEB[tb->cur_blknum],
840 "PAP-8141: busy slot for new buffer");
841
842 set_buffer_journal_new(new_bh);
843 tb->FEB[tb->cur_blknum++] = new_bh;
844 }
845
846 if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
847 retval = REPEAT_SEARCH;
848
849 return retval;
850}
851
852/* Get free space of the left neighbor, which is stored in the parent
853 * node of the left neighbor. */
854static int get_lfree(struct tree_balance *tb, int h)
855{
856 struct buffer_head *l, *f;
857 int order;
858
859 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
860 (l = tb->FL[h]) == NULL)
861 return 0;
862
863 if (f == l)
864 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
865 else {
866 order = B_NR_ITEMS(l);
867 f = l;
868 }
869
870 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
871}
872
873/* Get free space of the right neighbor,
874 * which is stored in the parent node of the right neighbor.
875 */
876static int get_rfree(struct tree_balance *tb, int h)
877{
878 struct buffer_head *r, *f;
879 int order;
880
881 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
882 (r = tb->FR[h]) == NULL)
883 return 0;
884
885 if (f == r)
886 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
887 else {
888 order = 0;
889 f = r;
890 }
891
892 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
893
894}
895
896/* Check whether left neighbor is in memory. */
897static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
898{
899 struct buffer_head *father, *left;
900 struct super_block *sb = tb->tb_sb;
901 b_blocknr_t left_neighbor_blocknr;
902 int left_neighbor_position;
903
904 /* Father of the left neighbor does not exist. */
905 if (!tb->FL[h])
906 return 0;
907
908 /* Calculate father of the node to be balanced. */
909 father = PATH_H_PBUFFER(tb->tb_path, h + 1);
910
911 RFALSE(!father ||
912 !B_IS_IN_TREE(father) ||
913 !B_IS_IN_TREE(tb->FL[h]) ||
914 !buffer_uptodate(father) ||
915 !buffer_uptodate(tb->FL[h]),
916 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
917 father, tb->FL[h]);
918
919 /* Get position of the pointer to the left neighbor into the left father. */
920 left_neighbor_position = (father == tb->FL[h]) ?
921 tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
922 /* Get left neighbor block number. */
923 left_neighbor_blocknr =
924 B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
925 /* Look for the left neighbor in the cache. */
926 if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
927
928 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
929 "vs-8170: left neighbor (%b %z) is not in the tree",
930 left, left);
931 put_bh(left);
932 return 1;
933 }
934
935 return 0;
936}
937
938#define LEFT_PARENTS 'l'
939#define RIGHT_PARENTS 'r'
940
941static void decrement_key(struct cpu_key *key)
942{
943 // call item specific function for this key
944 item_ops[cpu_key_k_type(key)]->decrement_key(key);
945}
946
947/* Calculate far left/right parent of the left/right neighbor of the current node, that
948 * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
949 * Calculate left/right common parent of the current node and L[h]/R[h].
950 * Calculate left/right delimiting key position.
951 * Returns: PATH_INCORRECT - path in the tree is not correct;
952 SCHEDULE_OCCURRED - schedule occurred while the function worked;
953 * CARRY_ON - schedule didn't occur while the function worked;
954 */
955static int get_far_parent(struct tree_balance *tb,
956 int h,
957 struct buffer_head **pfather,
958 struct buffer_head **pcom_father, char c_lr_par)
959{
960 struct buffer_head *parent;
961 INITIALIZE_PATH(s_path_to_neighbor_father);
962 struct treepath *path = tb->tb_path;
963 struct cpu_key s_lr_father_key;
964 int counter,
965 position = INT_MAX,
966 first_last_position = 0,
967 path_offset = PATH_H_PATH_OFFSET(path, h);
968
969 /* Starting from F[h] go upwards in the tree, and look for the common
970 ancestor of F[h], and its neighbor l/r, that should be obtained. */
971
972 counter = path_offset;
973
974 RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
975 "PAP-8180: invalid path length");
976
977 for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
978 /* Check whether parent of the current buffer in the path is really parent in the tree. */
979 if (!B_IS_IN_TREE
980 (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
981 return REPEAT_SEARCH;
982 /* Check whether position in the parent is correct. */
983 if ((position =
984 PATH_OFFSET_POSITION(path,
985 counter - 1)) >
986 B_NR_ITEMS(parent))
987 return REPEAT_SEARCH;
988 /* Check whether parent at the path really points to the child. */
989 if (B_N_CHILD_NUM(parent, position) !=
990 PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
991 return REPEAT_SEARCH;
992 /* Return delimiting key if position in the parent is not equal to first/last one. */
993 if (c_lr_par == RIGHT_PARENTS)
994 first_last_position = B_NR_ITEMS(parent);
995 if (position != first_last_position) {
996 *pcom_father = parent;
997 get_bh(*pcom_father);
998 /*(*pcom_father = parent)->b_count++; */
999 break;
1000 }
1001 }
1002
1003 /* if we are in the root of the tree, then there is no common father */
1004 if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1005 /* Check whether first buffer in the path is the root of the tree. */
1006 if (PATH_OFFSET_PBUFFER
1007 (tb->tb_path,
1008 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1009 SB_ROOT_BLOCK(tb->tb_sb)) {
1010 *pfather = *pcom_father = NULL;
1011 return CARRY_ON;
1012 }
1013 return REPEAT_SEARCH;
1014 }
1015
1016 RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1017 "PAP-8185: (%b %z) level too small",
1018 *pcom_father, *pcom_father);
1019
1020 /* Check whether the common parent is locked. */
1021
1022 if (buffer_locked(*pcom_father)) {
1023
1024 /* Release the write lock while the buffer is busy */
1025 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1026 __wait_on_buffer(*pcom_father);
1027 reiserfs_write_lock_nested(tb->tb_sb, depth);
1028 if (FILESYSTEM_CHANGED_TB(tb)) {
1029 brelse(*pcom_father);
1030 return REPEAT_SEARCH;
1031 }
1032 }
1033
1034 /* So, we got common parent of the current node and its left/right neighbor.
1035 Now we are geting the parent of the left/right neighbor. */
1036
1037 /* Form key to get parent of the left/right neighbor. */
1038 le_key2cpu_key(&s_lr_father_key,
1039 B_N_PDELIM_KEY(*pcom_father,
1040 (c_lr_par ==
1041 LEFT_PARENTS) ? (tb->lkey[h - 1] =
1042 position -
1043 1) : (tb->rkey[h -
1044 1] =
1045 position)));
1046
1047 if (c_lr_par == LEFT_PARENTS)
1048 decrement_key(&s_lr_father_key);
1049
1050 if (search_by_key
1051 (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1052 h + 1) == IO_ERROR)
1053 // path is released
1054 return IO_ERROR;
1055
1056 if (FILESYSTEM_CHANGED_TB(tb)) {
1057 pathrelse(&s_path_to_neighbor_father);
1058 brelse(*pcom_father);
1059 return REPEAT_SEARCH;
1060 }
1061
1062 *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1063
1064 RFALSE(B_LEVEL(*pfather) != h + 1,
1065 "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1066 RFALSE(s_path_to_neighbor_father.path_length <
1067 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1068
1069 s_path_to_neighbor_father.path_length--;
1070 pathrelse(&s_path_to_neighbor_father);
1071 return CARRY_ON;
1072}
1073
1074/* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
1075 * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
1076 * FR[path_offset], CFL[path_offset], CFR[path_offset].
1077 * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
1078 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1079 * CARRY_ON - schedule didn't occur while the function worked;
1080 */
1081static int get_parents(struct tree_balance *tb, int h)
1082{
1083 struct treepath *path = tb->tb_path;
1084 int position,
1085 ret,
1086 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1087 struct buffer_head *curf, *curcf;
1088
1089 /* Current node is the root of the tree or will be root of the tree */
1090 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1091 /* The root can not have parents.
1092 Release nodes which previously were obtained as parents of the current node neighbors. */
1093 brelse(tb->FL[h]);
1094 brelse(tb->CFL[h]);
1095 brelse(tb->FR[h]);
1096 brelse(tb->CFR[h]);
1097 tb->FL[h] = NULL;
1098 tb->CFL[h] = NULL;
1099 tb->FR[h] = NULL;
1100 tb->CFR[h] = NULL;
1101 return CARRY_ON;
1102 }
1103
1104 /* Get parent FL[path_offset] of L[path_offset]. */
1105 position = PATH_OFFSET_POSITION(path, path_offset - 1);
1106 if (position) {
1107 /* Current node is not the first child of its parent. */
1108 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1109 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1110 get_bh(curf);
1111 get_bh(curf);
1112 tb->lkey[h] = position - 1;
1113 } else {
1114 /* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
1115 Calculate current common parent of L[path_offset] and the current node. Note that
1116 CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
1117 Calculate lkey[path_offset]. */
1118 if ((ret = get_far_parent(tb, h + 1, &curf,
1119 &curcf,
1120 LEFT_PARENTS)) != CARRY_ON)
1121 return ret;
1122 }
1123
1124 brelse(tb->FL[h]);
1125 tb->FL[h] = curf; /* New initialization of FL[h]. */
1126 brelse(tb->CFL[h]);
1127 tb->CFL[h] = curcf; /* New initialization of CFL[h]. */
1128
1129 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1130 (curcf && !B_IS_IN_TREE(curcf)),
1131 "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1132
1133/* Get parent FR[h] of R[h]. */
1134
1135/* Current node is the last child of F[h]. FR[h] != F[h]. */
1136 if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1137/* Calculate current parent of R[h], which is the right neighbor of F[h].
1138 Calculate current common parent of R[h] and current node. Note that CFR[h]
1139 not equal FR[path_offset] and CFR[h] not equal F[h]. */
1140 if ((ret =
1141 get_far_parent(tb, h + 1, &curf, &curcf,
1142 RIGHT_PARENTS)) != CARRY_ON)
1143 return ret;
1144 } else {
1145/* Current node is not the last child of its parent F[h]. */
1146 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1147 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1148 get_bh(curf);
1149 get_bh(curf);
1150 tb->rkey[h] = position;
1151 }
1152
1153 brelse(tb->FR[h]);
1154 /* New initialization of FR[path_offset]. */
1155 tb->FR[h] = curf;
1156
1157 brelse(tb->CFR[h]);
1158 /* New initialization of CFR[path_offset]. */
1159 tb->CFR[h] = curcf;
1160
1161 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1162 (curcf && !B_IS_IN_TREE(curcf)),
1163 "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1164
1165 return CARRY_ON;
1166}
1167
1168/* it is possible to remove node as result of shiftings to
1169 neighbors even when we insert or paste item. */
1170static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1171 struct tree_balance *tb, int h)
1172{
1173 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1174 int levbytes = tb->insert_size[h];
1175 struct item_head *ih;
1176 struct reiserfs_key *r_key = NULL;
1177
1178 ih = B_N_PITEM_HEAD(Sh, 0);
1179 if (tb->CFR[h])
1180 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1181
1182 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1183 /* shifting may merge items which might save space */
1184 -
1185 ((!h
1186 && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1187 -
1188 ((!h && r_key
1189 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1190 + ((h) ? KEY_SIZE : 0)) {
1191 /* node can not be removed */
1192 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1193 if (!h)
1194 tb->s0num =
1195 B_NR_ITEMS(Sh) +
1196 ((mode == M_INSERT) ? 1 : 0);
1197 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1198 return NO_BALANCING_NEEDED;
1199 }
1200 }
1201 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1202 return !NO_BALANCING_NEEDED;
1203}
1204
1205/* Check whether current node S[h] is balanced when increasing its size by
1206 * Inserting or Pasting.
1207 * Calculate parameters for balancing for current level h.
1208 * Parameters:
1209 * tb tree_balance structure;
1210 * h current level of the node;
1211 * inum item number in S[h];
1212 * mode i - insert, p - paste;
1213 * Returns: 1 - schedule occurred;
1214 * 0 - balancing for higher levels needed;
1215 * -1 - no balancing for higher levels needed;
1216 * -2 - no disk space.
1217 */
1218/* ip means Inserting or Pasting */
1219static int ip_check_balance(struct tree_balance *tb, int h)
1220{
1221 struct virtual_node *vn = tb->tb_vn;
1222 int levbytes, /* Number of bytes that must be inserted into (value
1223 is negative if bytes are deleted) buffer which
1224 contains node being balanced. The mnemonic is
1225 that the attempted change in node space used level
1226 is levbytes bytes. */
1227 ret;
1228
1229 int lfree, sfree, rfree /* free space in L, S and R */ ;
1230
1231 /* nver is short for number of vertixes, and lnver is the number if
1232 we shift to the left, rnver is the number if we shift to the
1233 right, and lrnver is the number if we shift in both directions.
1234 The goal is to minimize first the number of vertixes, and second,
1235 the number of vertixes whose contents are changed by shifting,
1236 and third the number of uncached vertixes whose contents are
1237 changed by shifting and must be read from disk. */
1238 int nver, lnver, rnver, lrnver;
1239
1240 /* used at leaf level only, S0 = S[0] is the node being balanced,
1241 sInum [ I = 0,1,2 ] is the number of items that will
1242 remain in node SI after balancing. S1 and S2 are new
1243 nodes that might be created. */
1244
1245 /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
1246 where 4th parameter is s1bytes and 5th - s2bytes
1247 */
1248 short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
1249 0,1 - do not shift and do not shift but bottle
1250 2 - shift only whole item to left
1251 3 - shift to left and bottle as much as possible
1252 4,5 - shift to right (whole items and as much as possible
1253 6,7 - shift to both directions (whole items and as much as possible)
1254 */
1255
1256 /* Sh is the node whose balance is currently being checked */
1257 struct buffer_head *Sh;
1258
1259 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1260 levbytes = tb->insert_size[h];
1261
1262 /* Calculate balance parameters for creating new root. */
1263 if (!Sh) {
1264 if (!h)
1265 reiserfs_panic(tb->tb_sb, "vs-8210",
1266 "S[0] can not be 0");
1267 switch (ret = get_empty_nodes(tb, h)) {
1268 case CARRY_ON:
1269 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1270 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1271
1272 case NO_DISK_SPACE:
1273 case REPEAT_SEARCH:
1274 return ret;
1275 default:
1276 reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1277 "return value of get_empty_nodes");
1278 }
1279 }
1280
1281 if ((ret = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */
1282 return ret;
1283
1284 sfree = B_FREE_SPACE(Sh);
1285
1286 /* get free space of neighbors */
1287 rfree = get_rfree(tb, h);
1288 lfree = get_lfree(tb, h);
1289
1290 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1291 NO_BALANCING_NEEDED)
1292 /* and new item fits into node S[h] without any shifting */
1293 return NO_BALANCING_NEEDED;
1294
1295 create_virtual_node(tb, h);
1296
1297 /*
1298 determine maximal number of items we can shift to the left neighbor (in tb structure)
1299 and the maximal number of bytes that can flow to the left neighbor
1300 from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1301 */
1302 check_left(tb, h, lfree);
1303
1304 /*
1305 determine maximal number of items we can shift to the right neighbor (in tb structure)
1306 and the maximal number of bytes that can flow to the right neighbor
1307 from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1308 */
1309 check_right(tb, h, rfree);
1310
1311 /* all contents of internal node S[h] can be moved into its
1312 neighbors, S[h] will be removed after balancing */
1313 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1314 int to_r;
1315
1316 /* Since we are working on internal nodes, and our internal
1317 nodes have fixed size entries, then we can balance by the
1318 number of items rather than the space they consume. In this
1319 routine we set the left node equal to the right node,
1320 allowing a difference of less than or equal to 1 child
1321 pointer. */
1322 to_r =
1323 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1324 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1325 tb->rnum[h]);
1326 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1327 -1, -1);
1328 return CARRY_ON;
1329 }
1330
1331 /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1332 RFALSE(h &&
1333 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1334 tb->rnum[h] >= vn->vn_nr_item + 1),
1335 "vs-8220: tree is not balanced on internal level");
1336 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1337 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1338 "vs-8225: tree is not balanced on leaf level");
1339
1340 /* all contents of S[0] can be moved into its neighbors
1341 S[0] will be removed after balancing. */
1342 if (!h && is_leaf_removable(tb))
1343 return CARRY_ON;
1344
1345 /* why do we perform this check here rather than earlier??
1346 Answer: we can win 1 node in some cases above. Moreover we
1347 checked it above, when we checked, that S[0] is not removable
1348 in principle */
1349 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1350 if (!h)
1351 tb->s0num = vn->vn_nr_item;
1352 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1353 return NO_BALANCING_NEEDED;
1354 }
1355
1356 {
1357 int lpar, rpar, nset, lset, rset, lrset;
1358 /*
1359 * regular overflowing of the node
1360 */
1361
1362 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1363 lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1364 nset, lset, rset, lrset - shows, whether flowing items give better packing
1365 */
1366#define FLOW 1
1367#define NO_FLOW 0 /* do not any splitting */
1368
1369 /* we choose one the following */
1370#define NOTHING_SHIFT_NO_FLOW 0
1371#define NOTHING_SHIFT_FLOW 5
1372#define LEFT_SHIFT_NO_FLOW 10
1373#define LEFT_SHIFT_FLOW 15
1374#define RIGHT_SHIFT_NO_FLOW 20
1375#define RIGHT_SHIFT_FLOW 25
1376#define LR_SHIFT_NO_FLOW 30
1377#define LR_SHIFT_FLOW 35
1378
1379 lpar = tb->lnum[h];
1380 rpar = tb->rnum[h];
1381
1382 /* calculate number of blocks S[h] must be split into when
1383 nothing is shifted to the neighbors,
1384 as well as number of items in each part of the split node (s012 numbers),
1385 and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1386 nset = NOTHING_SHIFT_NO_FLOW;
1387 nver = get_num_ver(vn->vn_mode, tb, h,
1388 0, -1, h ? vn->vn_nr_item : 0, -1,
1389 snum012, NO_FLOW);
1390
1391 if (!h) {
1392 int nver1;
1393
1394 /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1395 nver1 = get_num_ver(vn->vn_mode, tb, h,
1396 0, -1, 0, -1,
1397 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1398 if (nver > nver1)
1399 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1400 }
1401
1402 /* calculate number of blocks S[h] must be split into when
1403 l_shift_num first items and l_shift_bytes of the right most
1404 liquid item to be shifted are shifted to the left neighbor,
1405 as well as number of items in each part of the splitted node (s012 numbers),
1406 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1407 */
1408 lset = LEFT_SHIFT_NO_FLOW;
1409 lnver = get_num_ver(vn->vn_mode, tb, h,
1410 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1411 -1, h ? vn->vn_nr_item : 0, -1,
1412 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1413 if (!h) {
1414 int lnver1;
1415
1416 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1417 lpar -
1418 ((tb->lbytes != -1) ? 1 : 0),
1419 tb->lbytes, 0, -1,
1420 snum012 + LEFT_SHIFT_FLOW, FLOW);
1421 if (lnver > lnver1)
1422 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1423 }
1424
1425 /* calculate number of blocks S[h] must be split into when
1426 r_shift_num first items and r_shift_bytes of the left most
1427 liquid item to be shifted are shifted to the right neighbor,
1428 as well as number of items in each part of the splitted node (s012 numbers),
1429 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1430 */
1431 rset = RIGHT_SHIFT_NO_FLOW;
1432 rnver = get_num_ver(vn->vn_mode, tb, h,
1433 0, -1,
1434 h ? (vn->vn_nr_item - rpar) : (rpar -
1435 ((tb->
1436 rbytes !=
1437 -1) ? 1 :
1438 0)), -1,
1439 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1440 if (!h) {
1441 int rnver1;
1442
1443 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1444 0, -1,
1445 (rpar -
1446 ((tb->rbytes != -1) ? 1 : 0)),
1447 tb->rbytes,
1448 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1449
1450 if (rnver > rnver1)
1451 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1452 }
1453
1454 /* calculate number of blocks S[h] must be split into when
1455 items are shifted in both directions,
1456 as well as number of items in each part of the splitted node (s012 numbers),
1457 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1458 */
1459 lrset = LR_SHIFT_NO_FLOW;
1460 lrnver = get_num_ver(vn->vn_mode, tb, h,
1461 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1462 -1,
1463 h ? (vn->vn_nr_item - rpar) : (rpar -
1464 ((tb->
1465 rbytes !=
1466 -1) ? 1 :
1467 0)), -1,
1468 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1469 if (!h) {
1470 int lrnver1;
1471
1472 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1473 lpar -
1474 ((tb->lbytes != -1) ? 1 : 0),
1475 tb->lbytes,
1476 (rpar -
1477 ((tb->rbytes != -1) ? 1 : 0)),
1478 tb->rbytes,
1479 snum012 + LR_SHIFT_FLOW, FLOW);
1480 if (lrnver > lrnver1)
1481 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1482 }
1483
1484 /* Our general shifting strategy is:
1485 1) to minimized number of new nodes;
1486 2) to minimized number of neighbors involved in shifting;
1487 3) to minimized number of disk reads; */
1488
1489 /* we can win TWO or ONE nodes by shifting in both directions */
1490 if (lrnver < lnver && lrnver < rnver) {
1491 RFALSE(h &&
1492 (tb->lnum[h] != 1 ||
1493 tb->rnum[h] != 1 ||
1494 lrnver != 1 || rnver != 2 || lnver != 2
1495 || h != 1), "vs-8230: bad h");
1496 if (lrset == LR_SHIFT_FLOW)
1497 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1498 lrnver, snum012 + lrset,
1499 tb->lbytes, tb->rbytes);
1500 else
1501 set_parameters(tb, h,
1502 tb->lnum[h] -
1503 ((tb->lbytes == -1) ? 0 : 1),
1504 tb->rnum[h] -
1505 ((tb->rbytes == -1) ? 0 : 1),
1506 lrnver, snum012 + lrset, -1, -1);
1507
1508 return CARRY_ON;
1509 }
1510
1511 /* if shifting doesn't lead to better packing then don't shift */
1512 if (nver == lrnver) {
1513 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1514 -1);
1515 return CARRY_ON;
1516 }
1517
1518 /* now we know that for better packing shifting in only one
1519 direction either to the left or to the right is required */
1520
1521 /* if shifting to the left is better than shifting to the right */
1522 if (lnver < rnver) {
1523 SET_PAR_SHIFT_LEFT;
1524 return CARRY_ON;
1525 }
1526
1527 /* if shifting to the right is better than shifting to the left */
1528 if (lnver > rnver) {
1529 SET_PAR_SHIFT_RIGHT;
1530 return CARRY_ON;
1531 }
1532
1533 /* now shifting in either direction gives the same number
1534 of nodes and we can make use of the cached neighbors */
1535 if (is_left_neighbor_in_cache(tb, h)) {
1536 SET_PAR_SHIFT_LEFT;
1537 return CARRY_ON;
1538 }
1539
1540 /* shift to the right independently on whether the right neighbor in cache or not */
1541 SET_PAR_SHIFT_RIGHT;
1542 return CARRY_ON;
1543 }
1544}
1545
1546/* Check whether current node S[h] is balanced when Decreasing its size by
1547 * Deleting or Cutting for INTERNAL node of S+tree.
1548 * Calculate parameters for balancing for current level h.
1549 * Parameters:
1550 * tb tree_balance structure;
1551 * h current level of the node;
1552 * inum item number in S[h];
1553 * mode i - insert, p - paste;
1554 * Returns: 1 - schedule occurred;
1555 * 0 - balancing for higher levels needed;
1556 * -1 - no balancing for higher levels needed;
1557 * -2 - no disk space.
1558 *
1559 * Note: Items of internal nodes have fixed size, so the balance condition for
1560 * the internal part of S+tree is as for the B-trees.
1561 */
1562static int dc_check_balance_internal(struct tree_balance *tb, int h)
1563{
1564 struct virtual_node *vn = tb->tb_vn;
1565
1566 /* Sh is the node whose balance is currently being checked,
1567 and Fh is its father. */
1568 struct buffer_head *Sh, *Fh;
1569 int maxsize, ret;
1570 int lfree, rfree /* free space in L and R */ ;
1571
1572 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1573 Fh = PATH_H_PPARENT(tb->tb_path, h);
1574
1575 maxsize = MAX_CHILD_SIZE(Sh);
1576
1577/* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1578/* new_nr_item = number of items node would have if operation is */
1579/* performed without balancing (new_nr_item); */
1580 create_virtual_node(tb, h);
1581
1582 if (!Fh) { /* S[h] is the root. */
1583 if (vn->vn_nr_item > 0) {
1584 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1585 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1586 }
1587 /* new_nr_item == 0.
1588 * Current root will be deleted resulting in
1589 * decrementing the tree height. */
1590 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1591 return CARRY_ON;
1592 }
1593
1594 if ((ret = get_parents(tb, h)) != CARRY_ON)
1595 return ret;
1596
1597 /* get free space of neighbors */
1598 rfree = get_rfree(tb, h);
1599 lfree = get_lfree(tb, h);
1600
1601 /* determine maximal number of items we can fit into neighbors */
1602 check_left(tb, h, lfree);
1603 check_right(tb, h, rfree);
1604
1605 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1606 * In this case we balance only if it leads to better packing. */
1607 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1608 * which is impossible with greater values of new_nr_item. */
1609 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1610 /* All contents of S[h] can be moved to L[h]. */
1611 int n;
1612 int order_L;
1613
1614 order_L =
1615 ((n =
1616 PATH_H_B_ITEM_ORDER(tb->tb_path,
1617 h)) ==
1618 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1619 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1620 (DC_SIZE + KEY_SIZE);
1621 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1622 -1);
1623 return CARRY_ON;
1624 }
1625
1626 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1627 /* All contents of S[h] can be moved to R[h]. */
1628 int n;
1629 int order_R;
1630
1631 order_R =
1632 ((n =
1633 PATH_H_B_ITEM_ORDER(tb->tb_path,
1634 h)) ==
1635 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1636 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1637 (DC_SIZE + KEY_SIZE);
1638 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1639 -1);
1640 return CARRY_ON;
1641 }
1642 }
1643
1644 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1645 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1646 int to_r;
1647
1648 to_r =
1649 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1650 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1651 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1652 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1653 0, NULL, -1, -1);
1654 return CARRY_ON;
1655 }
1656
1657 /* Balancing does not lead to better packing. */
1658 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1659 return NO_BALANCING_NEEDED;
1660 }
1661
1662 /* Current node contain insufficient number of items. Balancing is required. */
1663 /* Check whether we can merge S[h] with left neighbor. */
1664 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1665 if (is_left_neighbor_in_cache(tb, h)
1666 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1667 int n;
1668 int order_L;
1669
1670 order_L =
1671 ((n =
1672 PATH_H_B_ITEM_ORDER(tb->tb_path,
1673 h)) ==
1674 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1675 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1676 KEY_SIZE);
1677 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1678 return CARRY_ON;
1679 }
1680
1681 /* Check whether we can merge S[h] with right neighbor. */
1682 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1683 int n;
1684 int order_R;
1685
1686 order_R =
1687 ((n =
1688 PATH_H_B_ITEM_ORDER(tb->tb_path,
1689 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1690 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1691 KEY_SIZE);
1692 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1693 return CARRY_ON;
1694 }
1695
1696 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1697 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1698 int to_r;
1699
1700 to_r =
1701 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1702 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1703 tb->rnum[h]);
1704 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1705 -1, -1);
1706 return CARRY_ON;
1707 }
1708
1709 /* For internal nodes try to borrow item from a neighbor */
1710 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1711
1712 /* Borrow one or two items from caching neighbor */
1713 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1714 int from_l;
1715
1716 from_l =
1717 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1718 1) / 2 - (vn->vn_nr_item + 1);
1719 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1720 return CARRY_ON;
1721 }
1722
1723 set_parameters(tb, h, 0,
1724 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1725 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1726 return CARRY_ON;
1727}
1728
1729/* Check whether current node S[h] is balanced when Decreasing its size by
1730 * Deleting or Truncating for LEAF node of S+tree.
1731 * Calculate parameters for balancing for current level h.
1732 * Parameters:
1733 * tb tree_balance structure;
1734 * h current level of the node;
1735 * inum item number in S[h];
1736 * mode i - insert, p - paste;
1737 * Returns: 1 - schedule occurred;
1738 * 0 - balancing for higher levels needed;
1739 * -1 - no balancing for higher levels needed;
1740 * -2 - no disk space.
1741 */
1742static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1743{
1744 struct virtual_node *vn = tb->tb_vn;
1745
1746 /* Number of bytes that must be deleted from
1747 (value is negative if bytes are deleted) buffer which
1748 contains node being balanced. The mnemonic is that the
1749 attempted change in node space used level is levbytes bytes. */
1750 int levbytes;
1751 /* the maximal item size */
1752 int maxsize, ret;
1753 /* S0 is the node whose balance is currently being checked,
1754 and F0 is its father. */
1755 struct buffer_head *S0, *F0;
1756 int lfree, rfree /* free space in L and R */ ;
1757
1758 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1759 F0 = PATH_H_PPARENT(tb->tb_path, 0);
1760
1761 levbytes = tb->insert_size[h];
1762
1763 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1764
1765 if (!F0) { /* S[0] is the root now. */
1766
1767 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1768 "vs-8240: attempt to create empty buffer tree");
1769
1770 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1771 return NO_BALANCING_NEEDED;
1772 }
1773
1774 if ((ret = get_parents(tb, h)) != CARRY_ON)
1775 return ret;
1776
1777 /* get free space of neighbors */
1778 rfree = get_rfree(tb, h);
1779 lfree = get_lfree(tb, h);
1780
1781 create_virtual_node(tb, h);
1782
1783 /* if 3 leaves can be merge to one, set parameters and return */
1784 if (are_leaves_removable(tb, lfree, rfree))
1785 return CARRY_ON;
1786
1787 /* determine maximal number of items we can shift to the left/right neighbor
1788 and the maximal number of bytes that can flow to the left/right neighbor
1789 from the left/right most liquid item that cannot be shifted from S[0] entirely
1790 */
1791 check_left(tb, h, lfree);
1792 check_right(tb, h, rfree);
1793
1794 /* check whether we can merge S with left neighbor. */
1795 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1796 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1797 !tb->FR[h]) {
1798
1799 RFALSE(!tb->FL[h],
1800 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1801
1802 /* set parameter to merge S[0] with its left neighbor */
1803 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1804 return CARRY_ON;
1805 }
1806
1807 /* check whether we can merge S[0] with right neighbor. */
1808 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1809 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1810 return CARRY_ON;
1811 }
1812
1813 /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1814 if (is_leaf_removable(tb))
1815 return CARRY_ON;
1816
1817 /* Balancing is not required. */
1818 tb->s0num = vn->vn_nr_item;
1819 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1820 return NO_BALANCING_NEEDED;
1821}
1822
1823/* Check whether current node S[h] is balanced when Decreasing its size by
1824 * Deleting or Cutting.
1825 * Calculate parameters for balancing for current level h.
1826 * Parameters:
1827 * tb tree_balance structure;
1828 * h current level of the node;
1829 * inum item number in S[h];
1830 * mode d - delete, c - cut.
1831 * Returns: 1 - schedule occurred;
1832 * 0 - balancing for higher levels needed;
1833 * -1 - no balancing for higher levels needed;
1834 * -2 - no disk space.
1835 */
1836static int dc_check_balance(struct tree_balance *tb, int h)
1837{
1838 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1839 "vs-8250: S is not initialized");
1840
1841 if (h)
1842 return dc_check_balance_internal(tb, h);
1843 else
1844 return dc_check_balance_leaf(tb, h);
1845}
1846
1847/* Check whether current node S[h] is balanced.
1848 * Calculate parameters for balancing for current level h.
1849 * Parameters:
1850 *
1851 * tb tree_balance structure:
1852 *
1853 * tb is a large structure that must be read about in the header file
1854 * at the same time as this procedure if the reader is to successfully
1855 * understand this procedure
1856 *
1857 * h current level of the node;
1858 * inum item number in S[h];
1859 * mode i - insert, p - paste, d - delete, c - cut.
1860 * Returns: 1 - schedule occurred;
1861 * 0 - balancing for higher levels needed;
1862 * -1 - no balancing for higher levels needed;
1863 * -2 - no disk space.
1864 */
1865static int check_balance(int mode,
1866 struct tree_balance *tb,
1867 int h,
1868 int inum,
1869 int pos_in_item,
1870 struct item_head *ins_ih, const void *data)
1871{
1872 struct virtual_node *vn;
1873
1874 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1875 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1876 vn->vn_mode = mode;
1877 vn->vn_affected_item_num = inum;
1878 vn->vn_pos_in_item = pos_in_item;
1879 vn->vn_ins_ih = ins_ih;
1880 vn->vn_data = data;
1881
1882 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1883 "vs-8255: ins_ih can not be 0 in insert mode");
1884
1885 if (tb->insert_size[h] > 0)
1886 /* Calculate balance parameters when size of node is increasing. */
1887 return ip_check_balance(tb, h);
1888
1889 /* Calculate balance parameters when size of node is decreasing. */
1890 return dc_check_balance(tb, h);
1891}
1892
1893/* Check whether parent at the path is the really parent of the current node.*/
1894static int get_direct_parent(struct tree_balance *tb, int h)
1895{
1896 struct buffer_head *bh;
1897 struct treepath *path = tb->tb_path;
1898 int position,
1899 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1900
1901 /* We are in the root or in the new root. */
1902 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1903
1904 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1905 "PAP-8260: invalid offset in the path");
1906
1907 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
1908 b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
1909 /* Root is not changed. */
1910 PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
1911 PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
1912 return CARRY_ON;
1913 }
1914 return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
1915 }
1916
1917 if (!B_IS_IN_TREE
1918 (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
1919 return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
1920
1921 if ((position =
1922 PATH_OFFSET_POSITION(path,
1923 path_offset - 1)) > B_NR_ITEMS(bh))
1924 return REPEAT_SEARCH;
1925
1926 if (B_N_CHILD_NUM(bh, position) !=
1927 PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
1928 /* Parent in the path is not parent of the current node in the tree. */
1929 return REPEAT_SEARCH;
1930
1931 if (buffer_locked(bh)) {
1932 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1933 __wait_on_buffer(bh);
1934 reiserfs_write_lock_nested(tb->tb_sb, depth);
1935 if (FILESYSTEM_CHANGED_TB(tb))
1936 return REPEAT_SEARCH;
1937 }
1938
1939 return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
1940}
1941
1942/* Using lnum[h] and rnum[h] we should determine what neighbors
1943 * of S[h] we
1944 * need in order to balance S[h], and get them if necessary.
1945 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1946 * CARRY_ON - schedule didn't occur while the function worked;
1947 */
1948static int get_neighbors(struct tree_balance *tb, int h)
1949{
1950 int child_position,
1951 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
1952 unsigned long son_number;
1953 struct super_block *sb = tb->tb_sb;
1954 struct buffer_head *bh;
1955 int depth;
1956
1957 PROC_INFO_INC(sb, get_neighbors[h]);
1958
1959 if (tb->lnum[h]) {
1960 /* We need left neighbor to balance S[h]. */
1961 PROC_INFO_INC(sb, need_l_neighbor[h]);
1962 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
1963
1964 RFALSE(bh == tb->FL[h] &&
1965 !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
1966 "PAP-8270: invalid position in the parent");
1967
1968 child_position =
1969 (bh ==
1970 tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
1971 FL[h]);
1972 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
1973 depth = reiserfs_write_unlock_nested(tb->tb_sb);
1974 bh = sb_bread(sb, son_number);
1975 reiserfs_write_lock_nested(tb->tb_sb, depth);
1976 if (!bh)
1977 return IO_ERROR;
1978 if (FILESYSTEM_CHANGED_TB(tb)) {
1979 brelse(bh);
1980 PROC_INFO_INC(sb, get_neighbors_restart[h]);
1981 return REPEAT_SEARCH;
1982 }
1983
1984 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
1985 child_position > B_NR_ITEMS(tb->FL[h]) ||
1986 B_N_CHILD_NUM(tb->FL[h], child_position) !=
1987 bh->b_blocknr, "PAP-8275: invalid parent");
1988 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
1989 RFALSE(!h &&
1990 B_FREE_SPACE(bh) !=
1991 MAX_CHILD_SIZE(bh) -
1992 dc_size(B_N_CHILD(tb->FL[0], child_position)),
1993 "PAP-8290: invalid child size of left neighbor");
1994
1995 brelse(tb->L[h]);
1996 tb->L[h] = bh;
1997 }
1998
1999 /* We need right neighbor to balance S[path_offset]. */
2000 if (tb->rnum[h]) { /* We need right neighbor to balance S[path_offset]. */
2001 PROC_INFO_INC(sb, need_r_neighbor[h]);
2002 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2003
2004 RFALSE(bh == tb->FR[h] &&
2005 PATH_OFFSET_POSITION(tb->tb_path,
2006 path_offset) >=
2007 B_NR_ITEMS(bh),
2008 "PAP-8295: invalid position in the parent");
2009
2010 child_position =
2011 (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2012 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2013 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2014 bh = sb_bread(sb, son_number);
2015 reiserfs_write_lock_nested(tb->tb_sb, depth);
2016 if (!bh)
2017 return IO_ERROR;
2018 if (FILESYSTEM_CHANGED_TB(tb)) {
2019 brelse(bh);
2020 PROC_INFO_INC(sb, get_neighbors_restart[h]);
2021 return REPEAT_SEARCH;
2022 }
2023 brelse(tb->R[h]);
2024 tb->R[h] = bh;
2025
2026 RFALSE(!h
2027 && B_FREE_SPACE(bh) !=
2028 MAX_CHILD_SIZE(bh) -
2029 dc_size(B_N_CHILD(tb->FR[0], child_position)),
2030 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2031 B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2032 dc_size(B_N_CHILD(tb->FR[0], child_position)));
2033
2034 }
2035 return CARRY_ON;
2036}
2037
2038static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2039{
2040 int max_num_of_items;
2041 int max_num_of_entries;
2042 unsigned long blocksize = sb->s_blocksize;
2043
2044#define MIN_NAME_LEN 1
2045
2046 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2047 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2048 (DEH_SIZE + MIN_NAME_LEN);
2049
2050 return sizeof(struct virtual_node) +
2051 max(max_num_of_items * sizeof(struct virtual_item),
2052 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2053 (max_num_of_entries - 1) * sizeof(__u16));
2054}
2055
2056/* maybe we should fail balancing we are going to perform when kmalloc
2057 fails several times. But now it will loop until kmalloc gets
2058 required memory */
2059static int get_mem_for_virtual_node(struct tree_balance *tb)
2060{
2061 int check_fs = 0;
2062 int size;
2063 char *buf;
2064
2065 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2066
2067 if (size > tb->vn_buf_size) {
2068 /* we have to allocate more memory for virtual node */
2069 if (tb->vn_buf) {
2070 /* free memory allocated before */
2071 kfree(tb->vn_buf);
2072 /* this is not needed if kfree is atomic */
2073 check_fs = 1;
2074 }
2075
2076 /* virtual node requires now more memory */
2077 tb->vn_buf_size = size;
2078
2079 /* get memory for virtual item */
2080 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2081 if (!buf) {
2082 /* getting memory with GFP_KERNEL priority may involve
2083 balancing now (due to indirect_to_direct conversion on
2084 dcache shrinking). So, release path and collected
2085 resources here */
2086 free_buffers_in_tb(tb);
2087 buf = kmalloc(size, GFP_NOFS);
2088 if (!buf) {
2089 tb->vn_buf_size = 0;
2090 }
2091 tb->vn_buf = buf;
2092 schedule();
2093 return REPEAT_SEARCH;
2094 }
2095
2096 tb->vn_buf = buf;
2097 }
2098
2099 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2100 return REPEAT_SEARCH;
2101
2102 return CARRY_ON;
2103}
2104
2105#ifdef CONFIG_REISERFS_CHECK
2106static void tb_buffer_sanity_check(struct super_block *sb,
2107 struct buffer_head *bh,
2108 const char *descr, int level)
2109{
2110 if (bh) {
2111 if (atomic_read(&(bh->b_count)) <= 0)
2112
2113 reiserfs_panic(sb, "jmacd-1", "negative or zero "
2114 "reference counter for buffer %s[%d] "
2115 "(%b)", descr, level, bh);
2116
2117 if (!buffer_uptodate(bh))
2118 reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2119 "to date %s[%d] (%b)",
2120 descr, level, bh);
2121
2122 if (!B_IS_IN_TREE(bh))
2123 reiserfs_panic(sb, "jmacd-3", "buffer is not "
2124 "in tree %s[%d] (%b)",
2125 descr, level, bh);
2126
2127 if (bh->b_bdev != sb->s_bdev)
2128 reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2129 "device %s[%d] (%b)",
2130 descr, level, bh);
2131
2132 if (bh->b_size != sb->s_blocksize)
2133 reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2134 "blocksize %s[%d] (%b)",
2135 descr, level, bh);
2136
2137 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2138 reiserfs_panic(sb, "jmacd-6", "buffer block "
2139 "number too high %s[%d] (%b)",
2140 descr, level, bh);
2141 }
2142}
2143#else
2144static void tb_buffer_sanity_check(struct super_block *sb,
2145 struct buffer_head *bh,
2146 const char *descr, int level)
2147{;
2148}
2149#endif
2150
2151static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2152{
2153 return reiserfs_prepare_for_journal(s, bh, 0);
2154}
2155
2156static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2157{
2158 struct buffer_head *locked;
2159#ifdef CONFIG_REISERFS_CHECK
2160 int repeat_counter = 0;
2161#endif
2162 int i;
2163
2164 do {
2165
2166 locked = NULL;
2167
2168 for (i = tb->tb_path->path_length;
2169 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2170 if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2171 /* if I understand correctly, we can only be sure the last buffer
2172 ** in the path is in the tree --clm
2173 */
2174#ifdef CONFIG_REISERFS_CHECK
2175 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2176 PATH_OFFSET_PBUFFER(tb->tb_path, i))
2177 tb_buffer_sanity_check(tb->tb_sb,
2178 PATH_OFFSET_PBUFFER
2179 (tb->tb_path,
2180 i), "S",
2181 tb->tb_path->
2182 path_length - i);
2183#endif
2184 if (!clear_all_dirty_bits(tb->tb_sb,
2185 PATH_OFFSET_PBUFFER
2186 (tb->tb_path,
2187 i))) {
2188 locked =
2189 PATH_OFFSET_PBUFFER(tb->tb_path,
2190 i);
2191 }
2192 }
2193 }
2194
2195 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2196 i++) {
2197
2198 if (tb->lnum[i]) {
2199
2200 if (tb->L[i]) {
2201 tb_buffer_sanity_check(tb->tb_sb,
2202 tb->L[i],
2203 "L", i);
2204 if (!clear_all_dirty_bits
2205 (tb->tb_sb, tb->L[i]))
2206 locked = tb->L[i];
2207 }
2208
2209 if (!locked && tb->FL[i]) {
2210 tb_buffer_sanity_check(tb->tb_sb,
2211 tb->FL[i],
2212 "FL", i);
2213 if (!clear_all_dirty_bits
2214 (tb->tb_sb, tb->FL[i]))
2215 locked = tb->FL[i];
2216 }
2217
2218 if (!locked && tb->CFL[i]) {
2219 tb_buffer_sanity_check(tb->tb_sb,
2220 tb->CFL[i],
2221 "CFL", i);
2222 if (!clear_all_dirty_bits
2223 (tb->tb_sb, tb->CFL[i]))
2224 locked = tb->CFL[i];
2225 }
2226
2227 }
2228
2229 if (!locked && (tb->rnum[i])) {
2230
2231 if (tb->R[i]) {
2232 tb_buffer_sanity_check(tb->tb_sb,
2233 tb->R[i],
2234 "R", i);
2235 if (!clear_all_dirty_bits
2236 (tb->tb_sb, tb->R[i]))
2237 locked = tb->R[i];
2238 }
2239
2240 if (!locked && tb->FR[i]) {
2241 tb_buffer_sanity_check(tb->tb_sb,
2242 tb->FR[i],
2243 "FR", i);
2244 if (!clear_all_dirty_bits
2245 (tb->tb_sb, tb->FR[i]))
2246 locked = tb->FR[i];
2247 }
2248
2249 if (!locked && tb->CFR[i]) {
2250 tb_buffer_sanity_check(tb->tb_sb,
2251 tb->CFR[i],
2252 "CFR", i);
2253 if (!clear_all_dirty_bits
2254 (tb->tb_sb, tb->CFR[i]))
2255 locked = tb->CFR[i];
2256 }
2257 }
2258 }
2259 /* as far as I can tell, this is not required. The FEB list seems
2260 ** to be full of newly allocated nodes, which will never be locked,
2261 ** dirty, or anything else.
2262 ** To be safe, I'm putting in the checks and waits in. For the moment,
2263 ** they are needed to keep the code in journal.c from complaining
2264 ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
2265 ** --clm
2266 */
2267 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2268 if (tb->FEB[i]) {
2269 if (!clear_all_dirty_bits
2270 (tb->tb_sb, tb->FEB[i]))
2271 locked = tb->FEB[i];
2272 }
2273 }
2274
2275 if (locked) {
2276 int depth;
2277#ifdef CONFIG_REISERFS_CHECK
2278 repeat_counter++;
2279 if ((repeat_counter % 10000) == 0) {
2280 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2281 "too many iterations waiting "
2282 "for buffer to unlock "
2283 "(%b)", locked);
2284
2285 /* Don't loop forever. Try to recover from possible error. */
2286
2287 return (FILESYSTEM_CHANGED_TB(tb)) ?
2288 REPEAT_SEARCH : CARRY_ON;
2289 }
2290#endif
2291 depth = reiserfs_write_unlock_nested(tb->tb_sb);
2292 __wait_on_buffer(locked);
2293 reiserfs_write_lock_nested(tb->tb_sb, depth);
2294 if (FILESYSTEM_CHANGED_TB(tb))
2295 return REPEAT_SEARCH;
2296 }
2297
2298 } while (locked);
2299
2300 return CARRY_ON;
2301}
2302
2303/* Prepare for balancing, that is
2304 * get all necessary parents, and neighbors;
2305 * analyze what and where should be moved;
2306 * get sufficient number of new nodes;
2307 * Balancing will start only after all resources will be collected at a time.
2308 *
2309 * When ported to SMP kernels, only at the last moment after all needed nodes
2310 * are collected in cache, will the resources be locked using the usual
2311 * textbook ordered lock acquisition algorithms. Note that ensuring that
2312 * this code neither write locks what it does not need to write lock nor locks out of order
2313 * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
2314 *
2315 * fix is meant in the sense of render unchanging
2316 *
2317 * Latency might be improved by first gathering a list of what buffers are needed
2318 * and then getting as many of them in parallel as possible? -Hans
2319 *
2320 * Parameters:
2321 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2322 * tb tree_balance structure;
2323 * inum item number in S[h];
2324 * pos_in_item - comment this if you can
2325 * ins_ih item head of item being inserted
2326 * data inserted item or data to be pasted
2327 * Returns: 1 - schedule occurred while the function worked;
2328 * 0 - schedule didn't occur while the function worked;
2329 * -1 - if no_disk_space
2330 */
2331
2332int fix_nodes(int op_mode, struct tree_balance *tb,
2333 struct item_head *ins_ih, const void *data)
2334{
2335 int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2336 int pos_in_item;
2337
2338 /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2339 ** during wait_tb_buffers_run
2340 */
2341 int wait_tb_buffers_run = 0;
2342 struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2343
2344 ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2345
2346 pos_in_item = tb->tb_path->pos_in_item;
2347
2348 tb->fs_gen = get_generation(tb->tb_sb);
2349
2350 /* we prepare and log the super here so it will already be in the
2351 ** transaction when do_balance needs to change it.
2352 ** This way do_balance won't have to schedule when trying to prepare
2353 ** the super for logging
2354 */
2355 reiserfs_prepare_for_journal(tb->tb_sb,
2356 SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2357 journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
2358 SB_BUFFER_WITH_SB(tb->tb_sb));
2359 if (FILESYSTEM_CHANGED_TB(tb))
2360 return REPEAT_SEARCH;
2361
2362 /* if it possible in indirect_to_direct conversion */
2363 if (buffer_locked(tbS0)) {
2364 int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2365 __wait_on_buffer(tbS0);
2366 reiserfs_write_lock_nested(tb->tb_sb, depth);
2367 if (FILESYSTEM_CHANGED_TB(tb))
2368 return REPEAT_SEARCH;
2369 }
2370#ifdef CONFIG_REISERFS_CHECK
2371 if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2372 print_cur_tb("fix_nodes");
2373 reiserfs_panic(tb->tb_sb, "PAP-8305",
2374 "there is pending do_balance");
2375 }
2376
2377 if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2378 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2379 "not uptodate at the beginning of fix_nodes "
2380 "or not in tree (mode %c)",
2381 tbS0, tbS0, op_mode);
2382
2383 /* Check parameters. */
2384 switch (op_mode) {
2385 case M_INSERT:
2386 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2387 reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2388 "item number %d (in S0 - %d) in case "
2389 "of insert", item_num,
2390 B_NR_ITEMS(tbS0));
2391 break;
2392 case M_PASTE:
2393 case M_DELETE:
2394 case M_CUT:
2395 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2396 print_block(tbS0, 0, -1, -1);
2397 reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2398 "item number(%d); mode = %c "
2399 "insert_size = %d",
2400 item_num, op_mode,
2401 tb->insert_size[0]);
2402 }
2403 break;
2404 default:
2405 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2406 "of operation");
2407 }
2408#endif
2409
2410 if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2411 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2412 return REPEAT_SEARCH;
2413
2414 /* Starting from the leaf level; for all levels h of the tree. */
2415 for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2416 ret = get_direct_parent(tb, h);
2417 if (ret != CARRY_ON)
2418 goto repeat;
2419
2420 ret = check_balance(op_mode, tb, h, item_num,
2421 pos_in_item, ins_ih, data);
2422 if (ret != CARRY_ON) {
2423 if (ret == NO_BALANCING_NEEDED) {
2424 /* No balancing for higher levels needed. */
2425 ret = get_neighbors(tb, h);
2426 if (ret != CARRY_ON)
2427 goto repeat;
2428 if (h != MAX_HEIGHT - 1)
2429 tb->insert_size[h + 1] = 0;
2430 /* ok, analysis and resource gathering are complete */
2431 break;
2432 }
2433 goto repeat;
2434 }
2435
2436 ret = get_neighbors(tb, h);
2437 if (ret != CARRY_ON)
2438 goto repeat;
2439
2440 /* No disk space, or schedule occurred and analysis may be
2441 * invalid and needs to be redone. */
2442 ret = get_empty_nodes(tb, h);
2443 if (ret != CARRY_ON)
2444 goto repeat;
2445
2446 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2447 /* We have a positive insert size but no nodes exist on this
2448 level, this means that we are creating a new root. */
2449
2450 RFALSE(tb->blknum[h] != 1,
2451 "PAP-8350: creating new empty root");
2452
2453 if (h < MAX_HEIGHT - 1)
2454 tb->insert_size[h + 1] = 0;
2455 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2456 if (tb->blknum[h] > 1) {
2457 /* The tree needs to be grown, so this node S[h]
2458 which is the root node is split into two nodes,
2459 and a new node (S[h+1]) will be created to
2460 become the root node. */
2461
2462 RFALSE(h == MAX_HEIGHT - 1,
2463 "PAP-8355: attempt to create too high of a tree");
2464
2465 tb->insert_size[h + 1] =
2466 (DC_SIZE +
2467 KEY_SIZE) * (tb->blknum[h] - 1) +
2468 DC_SIZE;
2469 } else if (h < MAX_HEIGHT - 1)
2470 tb->insert_size[h + 1] = 0;
2471 } else
2472 tb->insert_size[h + 1] =
2473 (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2474 }
2475
2476 ret = wait_tb_buffers_until_unlocked(tb);
2477 if (ret == CARRY_ON) {
2478 if (FILESYSTEM_CHANGED_TB(tb)) {
2479 wait_tb_buffers_run = 1;
2480 ret = REPEAT_SEARCH;
2481 goto repeat;
2482 } else {
2483 return CARRY_ON;
2484 }
2485 } else {
2486 wait_tb_buffers_run = 1;
2487 goto repeat;
2488 }
2489
2490 repeat:
2491 // fix_nodes was unable to perform its calculation due to
2492 // filesystem got changed under us, lack of free disk space or i/o
2493 // failure. If the first is the case - the search will be
2494 // repeated. For now - free all resources acquired so far except
2495 // for the new allocated nodes
2496 {
2497 int i;
2498
2499 /* Release path buffers. */
2500 if (wait_tb_buffers_run) {
2501 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2502 } else {
2503 pathrelse(tb->tb_path);
2504 }
2505 /* brelse all resources collected for balancing */
2506 for (i = 0; i < MAX_HEIGHT; i++) {
2507 if (wait_tb_buffers_run) {
2508 reiserfs_restore_prepared_buffer(tb->tb_sb,
2509 tb->L[i]);
2510 reiserfs_restore_prepared_buffer(tb->tb_sb,
2511 tb->R[i]);
2512 reiserfs_restore_prepared_buffer(tb->tb_sb,
2513 tb->FL[i]);
2514 reiserfs_restore_prepared_buffer(tb->tb_sb,
2515 tb->FR[i]);
2516 reiserfs_restore_prepared_buffer(tb->tb_sb,
2517 tb->
2518 CFL[i]);
2519 reiserfs_restore_prepared_buffer(tb->tb_sb,
2520 tb->
2521 CFR[i]);
2522 }
2523
2524 brelse(tb->L[i]);
2525 brelse(tb->R[i]);
2526 brelse(tb->FL[i]);
2527 brelse(tb->FR[i]);
2528 brelse(tb->CFL[i]);
2529 brelse(tb->CFR[i]);
2530
2531 tb->L[i] = NULL;
2532 tb->R[i] = NULL;
2533 tb->FL[i] = NULL;
2534 tb->FR[i] = NULL;
2535 tb->CFL[i] = NULL;
2536 tb->CFR[i] = NULL;
2537 }
2538
2539 if (wait_tb_buffers_run) {
2540 for (i = 0; i < MAX_FEB_SIZE; i++) {
2541 if (tb->FEB[i])
2542 reiserfs_restore_prepared_buffer
2543 (tb->tb_sb, tb->FEB[i]);
2544 }
2545 }
2546 return ret;
2547 }
2548
2549}
2550
2551/* Anatoly will probably forgive me renaming tb to tb. I just
2552 wanted to make lines shorter */
2553void unfix_nodes(struct tree_balance *tb)
2554{
2555 int i;
2556
2557 /* Release path buffers. */
2558 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2559
2560 /* brelse all resources collected for balancing */
2561 for (i = 0; i < MAX_HEIGHT; i++) {
2562 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2563 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2564 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2565 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2566 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2567 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2568
2569 brelse(tb->L[i]);
2570 brelse(tb->R[i]);
2571 brelse(tb->FL[i]);
2572 brelse(tb->FR[i]);
2573 brelse(tb->CFL[i]);
2574 brelse(tb->CFR[i]);
2575 }
2576
2577 /* deal with list of allocated (used and unused) nodes */
2578 for (i = 0; i < MAX_FEB_SIZE; i++) {
2579 if (tb->FEB[i]) {
2580 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2581 /* de-allocated block which was not used by balancing and
2582 bforget about buffer for it */
2583 brelse(tb->FEB[i]);
2584 reiserfs_free_block(tb->transaction_handle, NULL,
2585 blocknr, 0);
2586 }
2587 if (tb->used[i]) {
2588 /* release used as new nodes including a new root */
2589 brelse(tb->used[i]);
2590 }
2591 }
2592
2593 kfree(tb->vn_buf);
2594
2595}