Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
   3 *
   4 * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
   5 *
   6 * This program/include file is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as published
   8 * by the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program/include file is distributed in the hope that it will be
  12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program (in the main directory of the Linux-NTFS
  18 * distribution in the file COPYING); if not, write to the Free Software
  19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  20 */
  21
  22#include <linux/backing-dev.h>
  23#include <linux/buffer_head.h>
  24#include <linux/gfp.h>
  25#include <linux/pagemap.h>
  26#include <linux/pagevec.h>
  27#include <linux/sched.h>
  28#include <linux/swap.h>
  29#include <linux/uio.h>
  30#include <linux/writeback.h>
 
  31
  32#include <asm/page.h>
  33#include <asm/uaccess.h>
  34
  35#include "attrib.h"
  36#include "bitmap.h"
  37#include "inode.h"
  38#include "debug.h"
  39#include "lcnalloc.h"
  40#include "malloc.h"
  41#include "mft.h"
  42#include "ntfs.h"
  43
  44/**
  45 * ntfs_file_open - called when an inode is about to be opened
  46 * @vi:		inode to be opened
  47 * @filp:	file structure describing the inode
  48 *
  49 * Limit file size to the page cache limit on architectures where unsigned long
  50 * is 32-bits. This is the most we can do for now without overflowing the page
  51 * cache page index. Doing it this way means we don't run into problems because
  52 * of existing too large files. It would be better to allow the user to read
  53 * the beginning of the file but I doubt very much anyone is going to hit this
  54 * check on a 32-bit architecture, so there is no point in adding the extra
  55 * complexity required to support this.
  56 *
  57 * On 64-bit architectures, the check is hopefully optimized away by the
  58 * compiler.
  59 *
  60 * After the check passes, just call generic_file_open() to do its work.
  61 */
  62static int ntfs_file_open(struct inode *vi, struct file *filp)
  63{
  64	if (sizeof(unsigned long) < 8) {
  65		if (i_size_read(vi) > MAX_LFS_FILESIZE)
  66			return -EOVERFLOW;
  67	}
  68	return generic_file_open(vi, filp);
  69}
  70
  71#ifdef NTFS_RW
  72
  73/**
  74 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
  75 * @ni:			ntfs inode of the attribute to extend
  76 * @new_init_size:	requested new initialized size in bytes
 
 
  77 *
  78 * Extend the initialized size of an attribute described by the ntfs inode @ni
  79 * to @new_init_size bytes.  This involves zeroing any non-sparse space between
  80 * the old initialized size and @new_init_size both in the page cache and on
  81 * disk (if relevant complete pages are already uptodate in the page cache then
  82 * these are simply marked dirty).
  83 *
  84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
  85 * in the resident attribute case, it is tied to the initialized size and, in
  86 * the non-resident attribute case, it may not fall below the initialized size.
  87 *
  88 * Note that if the attribute is resident, we do not need to touch the page
  89 * cache at all.  This is because if the page cache page is not uptodate we
  90 * bring it uptodate later, when doing the write to the mft record since we
  91 * then already have the page mapped.  And if the page is uptodate, the
  92 * non-initialized region will already have been zeroed when the page was
  93 * brought uptodate and the region may in fact already have been overwritten
  94 * with new data via mmap() based writes, so we cannot just zero it.  And since
  95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
  96 * is unspecified, we choose not to do zeroing and thus we do not need to touch
  97 * the page at all.  For a more detailed explanation see ntfs_truncate() in
  98 * fs/ntfs/inode.c.
  99 *
 100 * Return 0 on success and -errno on error.  In the case that an error is
 101 * encountered it is possible that the initialized size will already have been
 102 * incremented some way towards @new_init_size but it is guaranteed that if
 103 * this is the case, the necessary zeroing will also have happened and that all
 104 * metadata is self-consistent.
 105 *
 106 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
 107 *	    held by the caller.
 108 */
 109static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
 110{
 111	s64 old_init_size;
 112	loff_t old_i_size;
 113	pgoff_t index, end_index;
 114	unsigned long flags;
 115	struct inode *vi = VFS_I(ni);
 116	ntfs_inode *base_ni;
 117	MFT_RECORD *m = NULL;
 118	ATTR_RECORD *a;
 119	ntfs_attr_search_ctx *ctx = NULL;
 120	struct address_space *mapping;
 121	struct page *page = NULL;
 122	u8 *kattr;
 123	int err;
 124	u32 attr_len;
 125
 126	read_lock_irqsave(&ni->size_lock, flags);
 127	old_init_size = ni->initialized_size;
 128	old_i_size = i_size_read(vi);
 129	BUG_ON(new_init_size > ni->allocated_size);
 130	read_unlock_irqrestore(&ni->size_lock, flags);
 131	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
 132			"old_initialized_size 0x%llx, "
 133			"new_initialized_size 0x%llx, i_size 0x%llx.",
 134			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
 135			(unsigned long long)old_init_size,
 136			(unsigned long long)new_init_size, old_i_size);
 137	if (!NInoAttr(ni))
 138		base_ni = ni;
 139	else
 140		base_ni = ni->ext.base_ntfs_ino;
 141	/* Use goto to reduce indentation and we need the label below anyway. */
 142	if (NInoNonResident(ni))
 143		goto do_non_resident_extend;
 144	BUG_ON(old_init_size != old_i_size);
 145	m = map_mft_record(base_ni);
 146	if (IS_ERR(m)) {
 147		err = PTR_ERR(m);
 148		m = NULL;
 149		goto err_out;
 150	}
 151	ctx = ntfs_attr_get_search_ctx(base_ni, m);
 152	if (unlikely(!ctx)) {
 153		err = -ENOMEM;
 154		goto err_out;
 155	}
 156	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 157			CASE_SENSITIVE, 0, NULL, 0, ctx);
 158	if (unlikely(err)) {
 159		if (err == -ENOENT)
 160			err = -EIO;
 161		goto err_out;
 162	}
 163	m = ctx->mrec;
 164	a = ctx->attr;
 165	BUG_ON(a->non_resident);
 166	/* The total length of the attribute value. */
 167	attr_len = le32_to_cpu(a->data.resident.value_length);
 168	BUG_ON(old_i_size != (loff_t)attr_len);
 169	/*
 170	 * Do the zeroing in the mft record and update the attribute size in
 171	 * the mft record.
 172	 */
 173	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
 174	memset(kattr + attr_len, 0, new_init_size - attr_len);
 175	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
 176	/* Finally, update the sizes in the vfs and ntfs inodes. */
 177	write_lock_irqsave(&ni->size_lock, flags);
 178	i_size_write(vi, new_init_size);
 179	ni->initialized_size = new_init_size;
 180	write_unlock_irqrestore(&ni->size_lock, flags);
 181	goto done;
 182do_non_resident_extend:
 183	/*
 184	 * If the new initialized size @new_init_size exceeds the current file
 185	 * size (vfs inode->i_size), we need to extend the file size to the
 186	 * new initialized size.
 187	 */
 188	if (new_init_size > old_i_size) {
 189		m = map_mft_record(base_ni);
 190		if (IS_ERR(m)) {
 191			err = PTR_ERR(m);
 192			m = NULL;
 193			goto err_out;
 194		}
 195		ctx = ntfs_attr_get_search_ctx(base_ni, m);
 196		if (unlikely(!ctx)) {
 197			err = -ENOMEM;
 198			goto err_out;
 199		}
 200		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 201				CASE_SENSITIVE, 0, NULL, 0, ctx);
 202		if (unlikely(err)) {
 203			if (err == -ENOENT)
 204				err = -EIO;
 205			goto err_out;
 206		}
 207		m = ctx->mrec;
 208		a = ctx->attr;
 209		BUG_ON(!a->non_resident);
 210		BUG_ON(old_i_size != (loff_t)
 211				sle64_to_cpu(a->data.non_resident.data_size));
 212		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
 213		flush_dcache_mft_record_page(ctx->ntfs_ino);
 214		mark_mft_record_dirty(ctx->ntfs_ino);
 215		/* Update the file size in the vfs inode. */
 216		i_size_write(vi, new_init_size);
 217		ntfs_attr_put_search_ctx(ctx);
 218		ctx = NULL;
 219		unmap_mft_record(base_ni);
 220		m = NULL;
 221	}
 222	mapping = vi->i_mapping;
 223	index = old_init_size >> PAGE_SHIFT;
 224	end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 225	do {
 226		/*
 227		 * Read the page.  If the page is not present, this will zero
 228		 * the uninitialized regions for us.
 229		 */
 230		page = read_mapping_page(mapping, index, NULL);
 231		if (IS_ERR(page)) {
 232			err = PTR_ERR(page);
 233			goto init_err_out;
 234		}
 235		if (unlikely(PageError(page))) {
 236			put_page(page);
 237			err = -EIO;
 238			goto init_err_out;
 239		}
 240		/*
 241		 * Update the initialized size in the ntfs inode.  This is
 242		 * enough to make ntfs_writepage() work.
 243		 */
 244		write_lock_irqsave(&ni->size_lock, flags);
 245		ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
 246		if (ni->initialized_size > new_init_size)
 247			ni->initialized_size = new_init_size;
 248		write_unlock_irqrestore(&ni->size_lock, flags);
 249		/* Set the page dirty so it gets written out. */
 250		set_page_dirty(page);
 251		put_page(page);
 252		/*
 253		 * Play nice with the vm and the rest of the system.  This is
 254		 * very much needed as we can potentially be modifying the
 255		 * initialised size from a very small value to a really huge
 256		 * value, e.g.
 257		 *	f = open(somefile, O_TRUNC);
 258		 *	truncate(f, 10GiB);
 259		 *	seek(f, 10GiB);
 260		 *	write(f, 1);
 261		 * And this would mean we would be marking dirty hundreds of
 262		 * thousands of pages or as in the above example more than
 263		 * two and a half million pages!
 264		 *
 265		 * TODO: For sparse pages could optimize this workload by using
 266		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
 267		 * would be set in readpage for sparse pages and here we would
 268		 * not need to mark dirty any pages which have this bit set.
 269		 * The only caveat is that we have to clear the bit everywhere
 270		 * where we allocate any clusters that lie in the page or that
 271		 * contain the page.
 272		 *
 273		 * TODO: An even greater optimization would be for us to only
 274		 * call readpage() on pages which are not in sparse regions as
 275		 * determined from the runlist.  This would greatly reduce the
 276		 * number of pages we read and make dirty in the case of sparse
 277		 * files.
 278		 */
 279		balance_dirty_pages_ratelimited(mapping);
 280		cond_resched();
 281	} while (++index < end_index);
 282	read_lock_irqsave(&ni->size_lock, flags);
 283	BUG_ON(ni->initialized_size != new_init_size);
 284	read_unlock_irqrestore(&ni->size_lock, flags);
 285	/* Now bring in sync the initialized_size in the mft record. */
 286	m = map_mft_record(base_ni);
 287	if (IS_ERR(m)) {
 288		err = PTR_ERR(m);
 289		m = NULL;
 290		goto init_err_out;
 291	}
 292	ctx = ntfs_attr_get_search_ctx(base_ni, m);
 293	if (unlikely(!ctx)) {
 294		err = -ENOMEM;
 295		goto init_err_out;
 296	}
 297	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 298			CASE_SENSITIVE, 0, NULL, 0, ctx);
 299	if (unlikely(err)) {
 300		if (err == -ENOENT)
 301			err = -EIO;
 302		goto init_err_out;
 303	}
 304	m = ctx->mrec;
 305	a = ctx->attr;
 306	BUG_ON(!a->non_resident);
 307	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
 308done:
 309	flush_dcache_mft_record_page(ctx->ntfs_ino);
 310	mark_mft_record_dirty(ctx->ntfs_ino);
 311	if (ctx)
 312		ntfs_attr_put_search_ctx(ctx);
 313	if (m)
 314		unmap_mft_record(base_ni);
 315	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
 316			(unsigned long long)new_init_size, i_size_read(vi));
 317	return 0;
 318init_err_out:
 319	write_lock_irqsave(&ni->size_lock, flags);
 320	ni->initialized_size = old_init_size;
 321	write_unlock_irqrestore(&ni->size_lock, flags);
 322err_out:
 323	if (ctx)
 324		ntfs_attr_put_search_ctx(ctx);
 325	if (m)
 326		unmap_mft_record(base_ni);
 327	ntfs_debug("Failed.  Returning error code %i.", err);
 328	return err;
 329}
 330
 331static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
 332		struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333{
 334	loff_t pos;
 335	s64 end, ll;
 336	ssize_t err;
 337	unsigned long flags;
 338	struct file *file = iocb->ki_filp;
 339	struct inode *vi = file_inode(file);
 340	ntfs_inode *base_ni, *ni = NTFS_I(vi);
 341	ntfs_volume *vol = ni->vol;
 342
 343	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
 344			"0x%llx, count 0x%zx.", vi->i_ino,
 345			(unsigned)le32_to_cpu(ni->type),
 346			(unsigned long long)iocb->ki_pos,
 347			iov_iter_count(from));
 348	err = generic_write_checks(iocb, from);
 349	if (unlikely(err <= 0))
 350		goto out;
 351	/*
 352	 * All checks have passed.  Before we start doing any writing we want
 353	 * to abort any totally illegal writes.
 354	 */
 355	BUG_ON(NInoMstProtected(ni));
 356	BUG_ON(ni->type != AT_DATA);
 357	/* If file is encrypted, deny access, just like NT4. */
 358	if (NInoEncrypted(ni)) {
 359		/* Only $DATA attributes can be encrypted. */
 360		/*
 361		 * Reminder for later: Encrypted files are _always_
 362		 * non-resident so that the content can always be encrypted.
 363		 */
 364		ntfs_debug("Denying write access to encrypted file.");
 365		err = -EACCES;
 366		goto out;
 367	}
 368	if (NInoCompressed(ni)) {
 369		/* Only unnamed $DATA attribute can be compressed. */
 370		BUG_ON(ni->name_len);
 371		/*
 372		 * Reminder for later: If resident, the data is not actually
 373		 * compressed.  Only on the switch to non-resident does
 374		 * compression kick in.  This is in contrast to encrypted files
 375		 * (see above).
 376		 */
 377		ntfs_error(vi->i_sb, "Writing to compressed files is not "
 378				"implemented yet.  Sorry.");
 379		err = -EOPNOTSUPP;
 380		goto out;
 381	}
 382	base_ni = ni;
 383	if (NInoAttr(ni))
 384		base_ni = ni->ext.base_ntfs_ino;
 385	err = file_remove_privs(file);
 386	if (unlikely(err))
 387		goto out;
 388	/*
 389	 * Our ->update_time method always succeeds thus file_update_time()
 390	 * cannot fail either so there is no need to check the return code.
 391	 */
 392	file_update_time(file);
 393	pos = iocb->ki_pos;
 394	/* The first byte after the last cluster being written to. */
 395	end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
 396			~(u64)vol->cluster_size_mask;
 397	/*
 398	 * If the write goes beyond the allocated size, extend the allocation
 399	 * to cover the whole of the write, rounded up to the nearest cluster.
 400	 */
 401	read_lock_irqsave(&ni->size_lock, flags);
 402	ll = ni->allocated_size;
 403	read_unlock_irqrestore(&ni->size_lock, flags);
 404	if (end > ll) {
 405		/*
 406		 * Extend the allocation without changing the data size.
 407		 *
 408		 * Note we ensure the allocation is big enough to at least
 409		 * write some data but we do not require the allocation to be
 410		 * complete, i.e. it may be partial.
 411		 */
 412		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
 413		if (likely(ll >= 0)) {
 414			BUG_ON(pos >= ll);
 415			/* If the extension was partial truncate the write. */
 416			if (end > ll) {
 417				ntfs_debug("Truncating write to inode 0x%lx, "
 418						"attribute type 0x%x, because "
 419						"the allocation was only "
 420						"partially extended.",
 421						vi->i_ino, (unsigned)
 422						le32_to_cpu(ni->type));
 423				iov_iter_truncate(from, ll - pos);
 424			}
 425		} else {
 426			err = ll;
 427			read_lock_irqsave(&ni->size_lock, flags);
 428			ll = ni->allocated_size;
 429			read_unlock_irqrestore(&ni->size_lock, flags);
 430			/* Perform a partial write if possible or fail. */
 431			if (pos < ll) {
 432				ntfs_debug("Truncating write to inode 0x%lx "
 433						"attribute type 0x%x, because "
 434						"extending the allocation "
 435						"failed (error %d).",
 436						vi->i_ino, (unsigned)
 437						le32_to_cpu(ni->type),
 438						(int)-err);
 439				iov_iter_truncate(from, ll - pos);
 440			} else {
 441				if (err != -ENOSPC)
 442					ntfs_error(vi->i_sb, "Cannot perform "
 443							"write to inode "
 444							"0x%lx, attribute "
 445							"type 0x%x, because "
 446							"extending the "
 447							"allocation failed "
 448							"(error %ld).",
 449							vi->i_ino, (unsigned)
 450							le32_to_cpu(ni->type),
 451							(long)-err);
 452				else
 453					ntfs_debug("Cannot perform write to "
 454							"inode 0x%lx, "
 455							"attribute type 0x%x, "
 456							"because there is not "
 457							"space left.",
 458							vi->i_ino, (unsigned)
 459							le32_to_cpu(ni->type));
 460				goto out;
 461			}
 462		}
 463	}
 464	/*
 465	 * If the write starts beyond the initialized size, extend it up to the
 466	 * beginning of the write and initialize all non-sparse space between
 467	 * the old initialized size and the new one.  This automatically also
 468	 * increments the vfs inode->i_size to keep it above or equal to the
 469	 * initialized_size.
 470	 */
 471	read_lock_irqsave(&ni->size_lock, flags);
 472	ll = ni->initialized_size;
 473	read_unlock_irqrestore(&ni->size_lock, flags);
 474	if (pos > ll) {
 475		/*
 476		 * Wait for ongoing direct i/o to complete before proceeding.
 477		 * New direct i/o cannot start as we hold i_mutex.
 478		 */
 479		inode_dio_wait(vi);
 480		err = ntfs_attr_extend_initialized(ni, pos);
 481		if (unlikely(err < 0))
 482			ntfs_error(vi->i_sb, "Cannot perform write to inode "
 483					"0x%lx, attribute type 0x%x, because "
 484					"extending the initialized size "
 485					"failed (error %d).", vi->i_ino,
 486					(unsigned)le32_to_cpu(ni->type),
 487					(int)-err);
 488	}
 489out:
 490	return err;
 491}
 492
 493/**
 494 * __ntfs_grab_cache_pages - obtain a number of locked pages
 495 * @mapping:	address space mapping from which to obtain page cache pages
 496 * @index:	starting index in @mapping at which to begin obtaining pages
 497 * @nr_pages:	number of page cache pages to obtain
 498 * @pages:	array of pages in which to return the obtained page cache pages
 499 * @cached_page: allocated but as yet unused page
 
 500 *
 501 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
 502 * starting at index @index.
 503 *
 504 * If a page is newly created, add it to lru list
 505 *
 506 * Note, the page locks are obtained in ascending page index order.
 507 */
 508static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
 509		pgoff_t index, const unsigned nr_pages, struct page **pages,
 510		struct page **cached_page)
 511{
 512	int err, nr;
 513
 514	BUG_ON(!nr_pages);
 515	err = nr = 0;
 516	do {
 517		pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
 518				FGP_ACCESSED);
 519		if (!pages[nr]) {
 520			if (!*cached_page) {
 521				*cached_page = page_cache_alloc(mapping);
 522				if (unlikely(!*cached_page)) {
 523					err = -ENOMEM;
 524					goto err_out;
 525				}
 526			}
 527			err = add_to_page_cache_lru(*cached_page, mapping,
 528				   index,
 529				   mapping_gfp_constraint(mapping, GFP_KERNEL));
 530			if (unlikely(err)) {
 531				if (err == -EEXIST)
 532					continue;
 533				goto err_out;
 534			}
 535			pages[nr] = *cached_page;
 536			*cached_page = NULL;
 537		}
 538		index++;
 539		nr++;
 540	} while (nr < nr_pages);
 541out:
 542	return err;
 543err_out:
 544	while (nr > 0) {
 545		unlock_page(pages[--nr]);
 546		put_page(pages[nr]);
 547	}
 548	goto out;
 549}
 550
 551static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
 552{
 553	lock_buffer(bh);
 554	get_bh(bh);
 555	bh->b_end_io = end_buffer_read_sync;
 556	return submit_bh(READ, bh);
 557}
 558
 559/**
 560 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
 561 * @pages:	array of destination pages
 562 * @nr_pages:	number of pages in @pages
 563 * @pos:	byte position in file at which the write begins
 564 * @bytes:	number of bytes to be written
 565 *
 566 * This is called for non-resident attributes from ntfs_file_buffered_write()
 567 * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
 568 * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
 569 * data has not yet been copied into the @pages.
 570 * 
 571 * Need to fill any holes with actual clusters, allocate buffers if necessary,
 572 * ensure all the buffers are mapped, and bring uptodate any buffers that are
 573 * only partially being written to.
 574 *
 575 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
 576 * greater than PAGE_SIZE, that all pages in @pages are entirely inside
 577 * the same cluster and that they are the entirety of that cluster, and that
 578 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
 579 *
 580 * i_size is not to be modified yet.
 581 *
 582 * Return 0 on success or -errno on error.
 583 */
 584static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
 585		unsigned nr_pages, s64 pos, size_t bytes)
 586{
 587	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
 588	LCN lcn;
 589	s64 bh_pos, vcn_len, end, initialized_size;
 590	sector_t lcn_block;
 591	struct page *page;
 592	struct inode *vi;
 593	ntfs_inode *ni, *base_ni = NULL;
 594	ntfs_volume *vol;
 595	runlist_element *rl, *rl2;
 596	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
 597	ntfs_attr_search_ctx *ctx = NULL;
 598	MFT_RECORD *m = NULL;
 599	ATTR_RECORD *a = NULL;
 600	unsigned long flags;
 601	u32 attr_rec_len = 0;
 602	unsigned blocksize, u;
 603	int err, mp_size;
 604	bool rl_write_locked, was_hole, is_retry;
 605	unsigned char blocksize_bits;
 606	struct {
 607		u8 runlist_merged:1;
 608		u8 mft_attr_mapped:1;
 609		u8 mp_rebuilt:1;
 610		u8 attr_switched:1;
 611	} status = { 0, 0, 0, 0 };
 612
 613	BUG_ON(!nr_pages);
 614	BUG_ON(!pages);
 615	BUG_ON(!*pages);
 616	vi = pages[0]->mapping->host;
 617	ni = NTFS_I(vi);
 618	vol = ni->vol;
 619	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
 620			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
 621			vi->i_ino, ni->type, pages[0]->index, nr_pages,
 622			(long long)pos, bytes);
 623	blocksize = vol->sb->s_blocksize;
 624	blocksize_bits = vol->sb->s_blocksize_bits;
 625	u = 0;
 626	do {
 627		page = pages[u];
 628		BUG_ON(!page);
 629		/*
 630		 * create_empty_buffers() will create uptodate/dirty buffers if
 631		 * the page is uptodate/dirty.
 632		 */
 633		if (!page_has_buffers(page)) {
 634			create_empty_buffers(page, blocksize, 0);
 635			if (unlikely(!page_has_buffers(page)))
 636				return -ENOMEM;
 637		}
 638	} while (++u < nr_pages);
 639	rl_write_locked = false;
 640	rl = NULL;
 641	err = 0;
 642	vcn = lcn = -1;
 643	vcn_len = 0;
 644	lcn_block = -1;
 645	was_hole = false;
 646	cpos = pos >> vol->cluster_size_bits;
 647	end = pos + bytes;
 648	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
 649	/*
 650	 * Loop over each page and for each page over each buffer.  Use goto to
 651	 * reduce indentation.
 652	 */
 653	u = 0;
 654do_next_page:
 655	page = pages[u];
 656	bh_pos = (s64)page->index << PAGE_SHIFT;
 657	bh = head = page_buffers(page);
 658	do {
 659		VCN cdelta;
 660		s64 bh_end;
 661		unsigned bh_cofs;
 662
 663		/* Clear buffer_new on all buffers to reinitialise state. */
 664		if (buffer_new(bh))
 665			clear_buffer_new(bh);
 666		bh_end = bh_pos + blocksize;
 667		bh_cpos = bh_pos >> vol->cluster_size_bits;
 668		bh_cofs = bh_pos & vol->cluster_size_mask;
 669		if (buffer_mapped(bh)) {
 670			/*
 671			 * The buffer is already mapped.  If it is uptodate,
 672			 * ignore it.
 673			 */
 674			if (buffer_uptodate(bh))
 675				continue;
 676			/*
 677			 * The buffer is not uptodate.  If the page is uptodate
 678			 * set the buffer uptodate and otherwise ignore it.
 679			 */
 680			if (PageUptodate(page)) {
 681				set_buffer_uptodate(bh);
 682				continue;
 683			}
 684			/*
 685			 * Neither the page nor the buffer are uptodate.  If
 686			 * the buffer is only partially being written to, we
 687			 * need to read it in before the write, i.e. now.
 688			 */
 689			if ((bh_pos < pos && bh_end > pos) ||
 690					(bh_pos < end && bh_end > end)) {
 691				/*
 692				 * If the buffer is fully or partially within
 693				 * the initialized size, do an actual read.
 694				 * Otherwise, simply zero the buffer.
 695				 */
 696				read_lock_irqsave(&ni->size_lock, flags);
 697				initialized_size = ni->initialized_size;
 698				read_unlock_irqrestore(&ni->size_lock, flags);
 699				if (bh_pos < initialized_size) {
 700					ntfs_submit_bh_for_read(bh);
 701					*wait_bh++ = bh;
 702				} else {
 703					zero_user(page, bh_offset(bh),
 704							blocksize);
 705					set_buffer_uptodate(bh);
 706				}
 707			}
 708			continue;
 709		}
 710		/* Unmapped buffer.  Need to map it. */
 711		bh->b_bdev = vol->sb->s_bdev;
 712		/*
 713		 * If the current buffer is in the same clusters as the map
 714		 * cache, there is no need to check the runlist again.  The
 715		 * map cache is made up of @vcn, which is the first cached file
 716		 * cluster, @vcn_len which is the number of cached file
 717		 * clusters, @lcn is the device cluster corresponding to @vcn,
 718		 * and @lcn_block is the block number corresponding to @lcn.
 719		 */
 720		cdelta = bh_cpos - vcn;
 721		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
 722map_buffer_cached:
 723			BUG_ON(lcn < 0);
 724			bh->b_blocknr = lcn_block +
 725					(cdelta << (vol->cluster_size_bits -
 726					blocksize_bits)) +
 727					(bh_cofs >> blocksize_bits);
 728			set_buffer_mapped(bh);
 729			/*
 730			 * If the page is uptodate so is the buffer.  If the
 731			 * buffer is fully outside the write, we ignore it if
 732			 * it was already allocated and we mark it dirty so it
 733			 * gets written out if we allocated it.  On the other
 734			 * hand, if we allocated the buffer but we are not
 735			 * marking it dirty we set buffer_new so we can do
 736			 * error recovery.
 737			 */
 738			if (PageUptodate(page)) {
 739				if (!buffer_uptodate(bh))
 740					set_buffer_uptodate(bh);
 741				if (unlikely(was_hole)) {
 742					/* We allocated the buffer. */
 743					unmap_underlying_metadata(bh->b_bdev,
 744							bh->b_blocknr);
 745					if (bh_end <= pos || bh_pos >= end)
 746						mark_buffer_dirty(bh);
 747					else
 748						set_buffer_new(bh);
 749				}
 750				continue;
 751			}
 752			/* Page is _not_ uptodate. */
 753			if (likely(!was_hole)) {
 754				/*
 755				 * Buffer was already allocated.  If it is not
 756				 * uptodate and is only partially being written
 757				 * to, we need to read it in before the write,
 758				 * i.e. now.
 759				 */
 760				if (!buffer_uptodate(bh) && bh_pos < end &&
 761						bh_end > pos &&
 762						(bh_pos < pos ||
 763						bh_end > end)) {
 764					/*
 765					 * If the buffer is fully or partially
 766					 * within the initialized size, do an
 767					 * actual read.  Otherwise, simply zero
 768					 * the buffer.
 769					 */
 770					read_lock_irqsave(&ni->size_lock,
 771							flags);
 772					initialized_size = ni->initialized_size;
 773					read_unlock_irqrestore(&ni->size_lock,
 774							flags);
 775					if (bh_pos < initialized_size) {
 776						ntfs_submit_bh_for_read(bh);
 777						*wait_bh++ = bh;
 778					} else {
 779						zero_user(page, bh_offset(bh),
 780								blocksize);
 781						set_buffer_uptodate(bh);
 782					}
 783				}
 784				continue;
 785			}
 786			/* We allocated the buffer. */
 787			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 788			/*
 789			 * If the buffer is fully outside the write, zero it,
 790			 * set it uptodate, and mark it dirty so it gets
 791			 * written out.  If it is partially being written to,
 792			 * zero region surrounding the write but leave it to
 793			 * commit write to do anything else.  Finally, if the
 794			 * buffer is fully being overwritten, do nothing.
 795			 */
 796			if (bh_end <= pos || bh_pos >= end) {
 797				if (!buffer_uptodate(bh)) {
 798					zero_user(page, bh_offset(bh),
 799							blocksize);
 800					set_buffer_uptodate(bh);
 801				}
 802				mark_buffer_dirty(bh);
 803				continue;
 804			}
 805			set_buffer_new(bh);
 806			if (!buffer_uptodate(bh) &&
 807					(bh_pos < pos || bh_end > end)) {
 808				u8 *kaddr;
 809				unsigned pofs;
 810					
 811				kaddr = kmap_atomic(page);
 812				if (bh_pos < pos) {
 813					pofs = bh_pos & ~PAGE_MASK;
 814					memset(kaddr + pofs, 0, pos - bh_pos);
 815				}
 816				if (bh_end > end) {
 817					pofs = end & ~PAGE_MASK;
 818					memset(kaddr + pofs, 0, bh_end - end);
 819				}
 820				kunmap_atomic(kaddr);
 821				flush_dcache_page(page);
 822			}
 823			continue;
 824		}
 825		/*
 826		 * Slow path: this is the first buffer in the cluster.  If it
 827		 * is outside allocated size and is not uptodate, zero it and
 828		 * set it uptodate.
 829		 */
 830		read_lock_irqsave(&ni->size_lock, flags);
 831		initialized_size = ni->allocated_size;
 832		read_unlock_irqrestore(&ni->size_lock, flags);
 833		if (bh_pos > initialized_size) {
 834			if (PageUptodate(page)) {
 835				if (!buffer_uptodate(bh))
 836					set_buffer_uptodate(bh);
 837			} else if (!buffer_uptodate(bh)) {
 838				zero_user(page, bh_offset(bh), blocksize);
 839				set_buffer_uptodate(bh);
 840			}
 841			continue;
 842		}
 843		is_retry = false;
 844		if (!rl) {
 845			down_read(&ni->runlist.lock);
 846retry_remap:
 847			rl = ni->runlist.rl;
 848		}
 849		if (likely(rl != NULL)) {
 850			/* Seek to element containing target cluster. */
 851			while (rl->length && rl[1].vcn <= bh_cpos)
 852				rl++;
 853			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
 854			if (likely(lcn >= 0)) {
 855				/*
 856				 * Successful remap, setup the map cache and
 857				 * use that to deal with the buffer.
 858				 */
 859				was_hole = false;
 860				vcn = bh_cpos;
 861				vcn_len = rl[1].vcn - vcn;
 862				lcn_block = lcn << (vol->cluster_size_bits -
 863						blocksize_bits);
 864				cdelta = 0;
 865				/*
 866				 * If the number of remaining clusters touched
 867				 * by the write is smaller or equal to the
 868				 * number of cached clusters, unlock the
 869				 * runlist as the map cache will be used from
 870				 * now on.
 871				 */
 872				if (likely(vcn + vcn_len >= cend)) {
 873					if (rl_write_locked) {
 874						up_write(&ni->runlist.lock);
 875						rl_write_locked = false;
 876					} else
 877						up_read(&ni->runlist.lock);
 878					rl = NULL;
 879				}
 880				goto map_buffer_cached;
 881			}
 882		} else
 883			lcn = LCN_RL_NOT_MAPPED;
 884		/*
 885		 * If it is not a hole and not out of bounds, the runlist is
 886		 * probably unmapped so try to map it now.
 887		 */
 888		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
 889			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
 890				/* Attempt to map runlist. */
 891				if (!rl_write_locked) {
 892					/*
 893					 * We need the runlist locked for
 894					 * writing, so if it is locked for
 895					 * reading relock it now and retry in
 896					 * case it changed whilst we dropped
 897					 * the lock.
 898					 */
 899					up_read(&ni->runlist.lock);
 900					down_write(&ni->runlist.lock);
 901					rl_write_locked = true;
 902					goto retry_remap;
 903				}
 904				err = ntfs_map_runlist_nolock(ni, bh_cpos,
 905						NULL);
 906				if (likely(!err)) {
 907					is_retry = true;
 908					goto retry_remap;
 909				}
 910				/*
 911				 * If @vcn is out of bounds, pretend @lcn is
 912				 * LCN_ENOENT.  As long as the buffer is out
 913				 * of bounds this will work fine.
 914				 */
 915				if (err == -ENOENT) {
 916					lcn = LCN_ENOENT;
 917					err = 0;
 918					goto rl_not_mapped_enoent;
 919				}
 920			} else
 921				err = -EIO;
 922			/* Failed to map the buffer, even after retrying. */
 923			bh->b_blocknr = -1;
 924			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
 925					"attribute type 0x%x, vcn 0x%llx, "
 926					"vcn offset 0x%x, because its "
 927					"location on disk could not be "
 928					"determined%s (error code %i).",
 929					ni->mft_no, ni->type,
 930					(unsigned long long)bh_cpos,
 931					(unsigned)bh_pos &
 932					vol->cluster_size_mask,
 933					is_retry ? " even after retrying" : "",
 934					err);
 935			break;
 936		}
 937rl_not_mapped_enoent:
 938		/*
 939		 * The buffer is in a hole or out of bounds.  We need to fill
 940		 * the hole, unless the buffer is in a cluster which is not
 941		 * touched by the write, in which case we just leave the buffer
 942		 * unmapped.  This can only happen when the cluster size is
 943		 * less than the page cache size.
 944		 */
 945		if (unlikely(vol->cluster_size < PAGE_SIZE)) {
 946			bh_cend = (bh_end + vol->cluster_size - 1) >>
 947					vol->cluster_size_bits;
 948			if ((bh_cend <= cpos || bh_cpos >= cend)) {
 949				bh->b_blocknr = -1;
 950				/*
 951				 * If the buffer is uptodate we skip it.  If it
 952				 * is not but the page is uptodate, we can set
 953				 * the buffer uptodate.  If the page is not
 954				 * uptodate, we can clear the buffer and set it
 955				 * uptodate.  Whether this is worthwhile is
 956				 * debatable and this could be removed.
 957				 */
 958				if (PageUptodate(page)) {
 959					if (!buffer_uptodate(bh))
 960						set_buffer_uptodate(bh);
 961				} else if (!buffer_uptodate(bh)) {
 962					zero_user(page, bh_offset(bh),
 963						blocksize);
 964					set_buffer_uptodate(bh);
 965				}
 966				continue;
 967			}
 968		}
 969		/*
 970		 * Out of bounds buffer is invalid if it was not really out of
 971		 * bounds.
 972		 */
 973		BUG_ON(lcn != LCN_HOLE);
 974		/*
 975		 * We need the runlist locked for writing, so if it is locked
 976		 * for reading relock it now and retry in case it changed
 977		 * whilst we dropped the lock.
 978		 */
 979		BUG_ON(!rl);
 980		if (!rl_write_locked) {
 981			up_read(&ni->runlist.lock);
 982			down_write(&ni->runlist.lock);
 983			rl_write_locked = true;
 984			goto retry_remap;
 985		}
 986		/* Find the previous last allocated cluster. */
 987		BUG_ON(rl->lcn != LCN_HOLE);
 988		lcn = -1;
 989		rl2 = rl;
 990		while (--rl2 >= ni->runlist.rl) {
 991			if (rl2->lcn >= 0) {
 992				lcn = rl2->lcn + rl2->length;
 993				break;
 994			}
 995		}
 996		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
 997				false);
 998		if (IS_ERR(rl2)) {
 999			err = PTR_ERR(rl2);
1000			ntfs_debug("Failed to allocate cluster, error code %i.",
1001					err);
1002			break;
1003		}
1004		lcn = rl2->lcn;
1005		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
1006		if (IS_ERR(rl)) {
1007			err = PTR_ERR(rl);
1008			if (err != -ENOMEM)
1009				err = -EIO;
1010			if (ntfs_cluster_free_from_rl(vol, rl2)) {
1011				ntfs_error(vol->sb, "Failed to release "
1012						"allocated cluster in error "
1013						"code path.  Run chkdsk to "
1014						"recover the lost cluster.");
1015				NVolSetErrors(vol);
1016			}
1017			ntfs_free(rl2);
1018			break;
1019		}
1020		ni->runlist.rl = rl;
1021		status.runlist_merged = 1;
1022		ntfs_debug("Allocated cluster, lcn 0x%llx.",
1023				(unsigned long long)lcn);
1024		/* Map and lock the mft record and get the attribute record. */
1025		if (!NInoAttr(ni))
1026			base_ni = ni;
1027		else
1028			base_ni = ni->ext.base_ntfs_ino;
1029		m = map_mft_record(base_ni);
1030		if (IS_ERR(m)) {
1031			err = PTR_ERR(m);
1032			break;
1033		}
1034		ctx = ntfs_attr_get_search_ctx(base_ni, m);
1035		if (unlikely(!ctx)) {
1036			err = -ENOMEM;
1037			unmap_mft_record(base_ni);
1038			break;
1039		}
1040		status.mft_attr_mapped = 1;
1041		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1042				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1043		if (unlikely(err)) {
1044			if (err == -ENOENT)
1045				err = -EIO;
1046			break;
1047		}
1048		m = ctx->mrec;
1049		a = ctx->attr;
1050		/*
1051		 * Find the runlist element with which the attribute extent
1052		 * starts.  Note, we cannot use the _attr_ version because we
1053		 * have mapped the mft record.  That is ok because we know the
1054		 * runlist fragment must be mapped already to have ever gotten
1055		 * here, so we can just use the _rl_ version.
1056		 */
1057		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1058		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1059		BUG_ON(!rl2);
1060		BUG_ON(!rl2->length);
1061		BUG_ON(rl2->lcn < LCN_HOLE);
1062		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1063		/*
1064		 * If @highest_vcn is zero, calculate the real highest_vcn
1065		 * (which can really be zero).
1066		 */
1067		if (!highest_vcn)
1068			highest_vcn = (sle64_to_cpu(
1069					a->data.non_resident.allocated_size) >>
1070					vol->cluster_size_bits) - 1;
1071		/*
1072		 * Determine the size of the mapping pairs array for the new
1073		 * extent, i.e. the old extent with the hole filled.
1074		 */
1075		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1076				highest_vcn);
1077		if (unlikely(mp_size <= 0)) {
1078			if (!(err = mp_size))
1079				err = -EIO;
1080			ntfs_debug("Failed to get size for mapping pairs "
1081					"array, error code %i.", err);
1082			break;
1083		}
1084		/*
1085		 * Resize the attribute record to fit the new mapping pairs
1086		 * array.
1087		 */
1088		attr_rec_len = le32_to_cpu(a->length);
1089		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1090				a->data.non_resident.mapping_pairs_offset));
1091		if (unlikely(err)) {
1092			BUG_ON(err != -ENOSPC);
1093			// TODO: Deal with this by using the current attribute
1094			// and fill it with as much of the mapping pairs
1095			// array as possible.  Then loop over each attribute
1096			// extent rewriting the mapping pairs arrays as we go
1097			// along and if when we reach the end we have not
1098			// enough space, try to resize the last attribute
1099			// extent and if even that fails, add a new attribute
1100			// extent.
1101			// We could also try to resize at each step in the hope
1102			// that we will not need to rewrite every single extent.
1103			// Note, we may need to decompress some extents to fill
1104			// the runlist as we are walking the extents...
1105			ntfs_error(vol->sb, "Not enough space in the mft "
1106					"record for the extended attribute "
1107					"record.  This case is not "
1108					"implemented yet.");
1109			err = -EOPNOTSUPP;
1110			break ;
1111		}
1112		status.mp_rebuilt = 1;
1113		/*
1114		 * Generate the mapping pairs array directly into the attribute
1115		 * record.
1116		 */
1117		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1118				a->data.non_resident.mapping_pairs_offset),
1119				mp_size, rl2, vcn, highest_vcn, NULL);
1120		if (unlikely(err)) {
1121			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1122					"attribute type 0x%x, because building "
1123					"the mapping pairs failed with error "
1124					"code %i.", vi->i_ino,
1125					(unsigned)le32_to_cpu(ni->type), err);
1126			err = -EIO;
1127			break;
1128		}
1129		/* Update the highest_vcn but only if it was not set. */
1130		if (unlikely(!a->data.non_resident.highest_vcn))
1131			a->data.non_resident.highest_vcn =
1132					cpu_to_sle64(highest_vcn);
1133		/*
1134		 * If the attribute is sparse/compressed, update the compressed
1135		 * size in the ntfs_inode structure and the attribute record.
1136		 */
1137		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1138			/*
1139			 * If we are not in the first attribute extent, switch
1140			 * to it, but first ensure the changes will make it to
1141			 * disk later.
1142			 */
1143			if (a->data.non_resident.lowest_vcn) {
1144				flush_dcache_mft_record_page(ctx->ntfs_ino);
1145				mark_mft_record_dirty(ctx->ntfs_ino);
1146				ntfs_attr_reinit_search_ctx(ctx);
1147				err = ntfs_attr_lookup(ni->type, ni->name,
1148						ni->name_len, CASE_SENSITIVE,
1149						0, NULL, 0, ctx);
1150				if (unlikely(err)) {
1151					status.attr_switched = 1;
1152					break;
1153				}
1154				/* @m is not used any more so do not set it. */
1155				a = ctx->attr;
1156			}
1157			write_lock_irqsave(&ni->size_lock, flags);
1158			ni->itype.compressed.size += vol->cluster_size;
1159			a->data.non_resident.compressed_size =
1160					cpu_to_sle64(ni->itype.compressed.size);
1161			write_unlock_irqrestore(&ni->size_lock, flags);
1162		}
1163		/* Ensure the changes make it to disk. */
1164		flush_dcache_mft_record_page(ctx->ntfs_ino);
1165		mark_mft_record_dirty(ctx->ntfs_ino);
1166		ntfs_attr_put_search_ctx(ctx);
1167		unmap_mft_record(base_ni);
1168		/* Successfully filled the hole. */
1169		status.runlist_merged = 0;
1170		status.mft_attr_mapped = 0;
1171		status.mp_rebuilt = 0;
1172		/* Setup the map cache and use that to deal with the buffer. */
1173		was_hole = true;
1174		vcn = bh_cpos;
1175		vcn_len = 1;
1176		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1177		cdelta = 0;
1178		/*
1179		 * If the number of remaining clusters in the @pages is smaller
1180		 * or equal to the number of cached clusters, unlock the
1181		 * runlist as the map cache will be used from now on.
1182		 */
1183		if (likely(vcn + vcn_len >= cend)) {
1184			up_write(&ni->runlist.lock);
1185			rl_write_locked = false;
1186			rl = NULL;
1187		}
1188		goto map_buffer_cached;
1189	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1190	/* If there are no errors, do the next page. */
1191	if (likely(!err && ++u < nr_pages))
1192		goto do_next_page;
1193	/* If there are no errors, release the runlist lock if we took it. */
1194	if (likely(!err)) {
1195		if (unlikely(rl_write_locked)) {
1196			up_write(&ni->runlist.lock);
1197			rl_write_locked = false;
1198		} else if (unlikely(rl))
1199			up_read(&ni->runlist.lock);
1200		rl = NULL;
1201	}
1202	/* If we issued read requests, let them complete. */
1203	read_lock_irqsave(&ni->size_lock, flags);
1204	initialized_size = ni->initialized_size;
1205	read_unlock_irqrestore(&ni->size_lock, flags);
1206	while (wait_bh > wait) {
1207		bh = *--wait_bh;
1208		wait_on_buffer(bh);
1209		if (likely(buffer_uptodate(bh))) {
1210			page = bh->b_page;
1211			bh_pos = ((s64)page->index << PAGE_SHIFT) +
1212					bh_offset(bh);
1213			/*
1214			 * If the buffer overflows the initialized size, need
1215			 * to zero the overflowing region.
1216			 */
1217			if (unlikely(bh_pos + blocksize > initialized_size)) {
1218				int ofs = 0;
1219
1220				if (likely(bh_pos < initialized_size))
1221					ofs = initialized_size - bh_pos;
1222				zero_user_segment(page, bh_offset(bh) + ofs,
1223						blocksize);
1224			}
1225		} else /* if (unlikely(!buffer_uptodate(bh))) */
1226			err = -EIO;
1227	}
1228	if (likely(!err)) {
1229		/* Clear buffer_new on all buffers. */
1230		u = 0;
1231		do {
1232			bh = head = page_buffers(pages[u]);
1233			do {
1234				if (buffer_new(bh))
1235					clear_buffer_new(bh);
1236			} while ((bh = bh->b_this_page) != head);
1237		} while (++u < nr_pages);
1238		ntfs_debug("Done.");
1239		return err;
1240	}
1241	if (status.attr_switched) {
1242		/* Get back to the attribute extent we modified. */
1243		ntfs_attr_reinit_search_ctx(ctx);
1244		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1245				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1246			ntfs_error(vol->sb, "Failed to find required "
1247					"attribute extent of attribute in "
1248					"error code path.  Run chkdsk to "
1249					"recover.");
1250			write_lock_irqsave(&ni->size_lock, flags);
1251			ni->itype.compressed.size += vol->cluster_size;
1252			write_unlock_irqrestore(&ni->size_lock, flags);
1253			flush_dcache_mft_record_page(ctx->ntfs_ino);
1254			mark_mft_record_dirty(ctx->ntfs_ino);
1255			/*
1256			 * The only thing that is now wrong is the compressed
1257			 * size of the base attribute extent which chkdsk
1258			 * should be able to fix.
1259			 */
1260			NVolSetErrors(vol);
1261		} else {
1262			m = ctx->mrec;
1263			a = ctx->attr;
1264			status.attr_switched = 0;
1265		}
1266	}
1267	/*
1268	 * If the runlist has been modified, need to restore it by punching a
1269	 * hole into it and we then need to deallocate the on-disk cluster as
1270	 * well.  Note, we only modify the runlist if we are able to generate a
1271	 * new mapping pairs array, i.e. only when the mapped attribute extent
1272	 * is not switched.
1273	 */
1274	if (status.runlist_merged && !status.attr_switched) {
1275		BUG_ON(!rl_write_locked);
1276		/* Make the file cluster we allocated sparse in the runlist. */
1277		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1278			ntfs_error(vol->sb, "Failed to punch hole into "
1279					"attribute runlist in error code "
1280					"path.  Run chkdsk to recover the "
1281					"lost cluster.");
1282			NVolSetErrors(vol);
1283		} else /* if (success) */ {
1284			status.runlist_merged = 0;
1285			/*
1286			 * Deallocate the on-disk cluster we allocated but only
1287			 * if we succeeded in punching its vcn out of the
1288			 * runlist.
1289			 */
1290			down_write(&vol->lcnbmp_lock);
1291			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1292				ntfs_error(vol->sb, "Failed to release "
1293						"allocated cluster in error "
1294						"code path.  Run chkdsk to "
1295						"recover the lost cluster.");
1296				NVolSetErrors(vol);
1297			}
1298			up_write(&vol->lcnbmp_lock);
1299		}
1300	}
1301	/*
1302	 * Resize the attribute record to its old size and rebuild the mapping
1303	 * pairs array.  Note, we only can do this if the runlist has been
1304	 * restored to its old state which also implies that the mapped
1305	 * attribute extent is not switched.
1306	 */
1307	if (status.mp_rebuilt && !status.runlist_merged) {
1308		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1309			ntfs_error(vol->sb, "Failed to restore attribute "
1310					"record in error code path.  Run "
1311					"chkdsk to recover.");
1312			NVolSetErrors(vol);
1313		} else /* if (success) */ {
1314			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1315					le16_to_cpu(a->data.non_resident.
1316					mapping_pairs_offset), attr_rec_len -
1317					le16_to_cpu(a->data.non_resident.
1318					mapping_pairs_offset), ni->runlist.rl,
1319					vcn, highest_vcn, NULL)) {
1320				ntfs_error(vol->sb, "Failed to restore "
1321						"mapping pairs array in error "
1322						"code path.  Run chkdsk to "
1323						"recover.");
1324				NVolSetErrors(vol);
1325			}
1326			flush_dcache_mft_record_page(ctx->ntfs_ino);
1327			mark_mft_record_dirty(ctx->ntfs_ino);
1328		}
1329	}
1330	/* Release the mft record and the attribute. */
1331	if (status.mft_attr_mapped) {
1332		ntfs_attr_put_search_ctx(ctx);
1333		unmap_mft_record(base_ni);
1334	}
1335	/* Release the runlist lock. */
1336	if (rl_write_locked)
1337		up_write(&ni->runlist.lock);
1338	else if (rl)
1339		up_read(&ni->runlist.lock);
1340	/*
1341	 * Zero out any newly allocated blocks to avoid exposing stale data.
1342	 * If BH_New is set, we know that the block was newly allocated above
1343	 * and that it has not been fully zeroed and marked dirty yet.
1344	 */
1345	nr_pages = u;
1346	u = 0;
1347	end = bh_cpos << vol->cluster_size_bits;
1348	do {
1349		page = pages[u];
1350		bh = head = page_buffers(page);
1351		do {
1352			if (u == nr_pages &&
1353					((s64)page->index << PAGE_SHIFT) +
1354					bh_offset(bh) >= end)
1355				break;
1356			if (!buffer_new(bh))
1357				continue;
1358			clear_buffer_new(bh);
1359			if (!buffer_uptodate(bh)) {
1360				if (PageUptodate(page))
1361					set_buffer_uptodate(bh);
1362				else {
1363					zero_user(page, bh_offset(bh),
1364							blocksize);
1365					set_buffer_uptodate(bh);
1366				}
1367			}
1368			mark_buffer_dirty(bh);
1369		} while ((bh = bh->b_this_page) != head);
1370	} while (++u <= nr_pages);
1371	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1372	return err;
1373}
1374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375static inline void ntfs_flush_dcache_pages(struct page **pages,
1376		unsigned nr_pages)
1377{
1378	BUG_ON(!nr_pages);
1379	/*
1380	 * Warning: Do not do the decrement at the same time as the call to
1381	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1382	 * decrement never happens so the loop never terminates.
1383	 */
1384	do {
1385		--nr_pages;
1386		flush_dcache_page(pages[nr_pages]);
1387	} while (nr_pages > 0);
1388}
1389
1390/**
1391 * ntfs_commit_pages_after_non_resident_write - commit the received data
1392 * @pages:	array of destination pages
1393 * @nr_pages:	number of pages in @pages
1394 * @pos:	byte position in file at which the write begins
1395 * @bytes:	number of bytes to be written
1396 *
1397 * See description of ntfs_commit_pages_after_write(), below.
1398 */
1399static inline int ntfs_commit_pages_after_non_resident_write(
1400		struct page **pages, const unsigned nr_pages,
1401		s64 pos, size_t bytes)
1402{
1403	s64 end, initialized_size;
1404	struct inode *vi;
1405	ntfs_inode *ni, *base_ni;
1406	struct buffer_head *bh, *head;
1407	ntfs_attr_search_ctx *ctx;
1408	MFT_RECORD *m;
1409	ATTR_RECORD *a;
1410	unsigned long flags;
1411	unsigned blocksize, u;
1412	int err;
1413
1414	vi = pages[0]->mapping->host;
1415	ni = NTFS_I(vi);
1416	blocksize = vi->i_sb->s_blocksize;
1417	end = pos + bytes;
1418	u = 0;
1419	do {
1420		s64 bh_pos;
1421		struct page *page;
1422		bool partial;
1423
1424		page = pages[u];
1425		bh_pos = (s64)page->index << PAGE_SHIFT;
1426		bh = head = page_buffers(page);
1427		partial = false;
1428		do {
1429			s64 bh_end;
1430
1431			bh_end = bh_pos + blocksize;
1432			if (bh_end <= pos || bh_pos >= end) {
1433				if (!buffer_uptodate(bh))
1434					partial = true;
1435			} else {
1436				set_buffer_uptodate(bh);
1437				mark_buffer_dirty(bh);
1438			}
1439		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1440		/*
1441		 * If all buffers are now uptodate but the page is not, set the
1442		 * page uptodate.
1443		 */
1444		if (!partial && !PageUptodate(page))
1445			SetPageUptodate(page);
1446	} while (++u < nr_pages);
1447	/*
1448	 * Finally, if we do not need to update initialized_size or i_size we
1449	 * are finished.
1450	 */
1451	read_lock_irqsave(&ni->size_lock, flags);
1452	initialized_size = ni->initialized_size;
1453	read_unlock_irqrestore(&ni->size_lock, flags);
1454	if (end <= initialized_size) {
1455		ntfs_debug("Done.");
1456		return 0;
1457	}
1458	/*
1459	 * Update initialized_size/i_size as appropriate, both in the inode and
1460	 * the mft record.
1461	 */
1462	if (!NInoAttr(ni))
1463		base_ni = ni;
1464	else
1465		base_ni = ni->ext.base_ntfs_ino;
1466	/* Map, pin, and lock the mft record. */
1467	m = map_mft_record(base_ni);
1468	if (IS_ERR(m)) {
1469		err = PTR_ERR(m);
1470		m = NULL;
1471		ctx = NULL;
1472		goto err_out;
1473	}
1474	BUG_ON(!NInoNonResident(ni));
1475	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1476	if (unlikely(!ctx)) {
1477		err = -ENOMEM;
1478		goto err_out;
1479	}
1480	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1481			CASE_SENSITIVE, 0, NULL, 0, ctx);
1482	if (unlikely(err)) {
1483		if (err == -ENOENT)
1484			err = -EIO;
1485		goto err_out;
1486	}
1487	a = ctx->attr;
1488	BUG_ON(!a->non_resident);
1489	write_lock_irqsave(&ni->size_lock, flags);
1490	BUG_ON(end > ni->allocated_size);
1491	ni->initialized_size = end;
1492	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1493	if (end > i_size_read(vi)) {
1494		i_size_write(vi, end);
1495		a->data.non_resident.data_size =
1496				a->data.non_resident.initialized_size;
1497	}
1498	write_unlock_irqrestore(&ni->size_lock, flags);
1499	/* Mark the mft record dirty, so it gets written back. */
1500	flush_dcache_mft_record_page(ctx->ntfs_ino);
1501	mark_mft_record_dirty(ctx->ntfs_ino);
1502	ntfs_attr_put_search_ctx(ctx);
1503	unmap_mft_record(base_ni);
1504	ntfs_debug("Done.");
1505	return 0;
1506err_out:
1507	if (ctx)
1508		ntfs_attr_put_search_ctx(ctx);
1509	if (m)
1510		unmap_mft_record(base_ni);
1511	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1512			"code %i).", err);
1513	if (err != -ENOMEM)
1514		NVolSetErrors(ni->vol);
1515	return err;
1516}
1517
1518/**
1519 * ntfs_commit_pages_after_write - commit the received data
1520 * @pages:	array of destination pages
1521 * @nr_pages:	number of pages in @pages
1522 * @pos:	byte position in file at which the write begins
1523 * @bytes:	number of bytes to be written
1524 *
1525 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1526 * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1527 * locked but not kmap()ped.  The source data has already been copied into the
1528 * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1529 * the data was copied (for non-resident attributes only) and it returned
1530 * success.
1531 *
1532 * Need to set uptodate and mark dirty all buffers within the boundary of the
1533 * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1534 *
1535 * Setting the buffers dirty ensures that they get written out later when
1536 * ntfs_writepage() is invoked by the VM.
1537 *
1538 * Finally, we need to update i_size and initialized_size as appropriate both
1539 * in the inode and the mft record.
1540 *
1541 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1542 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1543 * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1544 * that case, it also marks the inode dirty.
1545 *
1546 * If things have gone as outlined in
1547 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1548 * content modifications here for non-resident attributes.  For resident
1549 * attributes we need to do the uptodate bringing here which we combine with
1550 * the copying into the mft record which means we save one atomic kmap.
1551 *
1552 * Return 0 on success or -errno on error.
1553 */
1554static int ntfs_commit_pages_after_write(struct page **pages,
1555		const unsigned nr_pages, s64 pos, size_t bytes)
1556{
1557	s64 end, initialized_size;
1558	loff_t i_size;
1559	struct inode *vi;
1560	ntfs_inode *ni, *base_ni;
1561	struct page *page;
1562	ntfs_attr_search_ctx *ctx;
1563	MFT_RECORD *m;
1564	ATTR_RECORD *a;
1565	char *kattr, *kaddr;
1566	unsigned long flags;
1567	u32 attr_len;
1568	int err;
1569
1570	BUG_ON(!nr_pages);
1571	BUG_ON(!pages);
1572	page = pages[0];
1573	BUG_ON(!page);
1574	vi = page->mapping->host;
1575	ni = NTFS_I(vi);
1576	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1577			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1578			vi->i_ino, ni->type, page->index, nr_pages,
1579			(long long)pos, bytes);
1580	if (NInoNonResident(ni))
1581		return ntfs_commit_pages_after_non_resident_write(pages,
1582				nr_pages, pos, bytes);
1583	BUG_ON(nr_pages > 1);
1584	/*
1585	 * Attribute is resident, implying it is not compressed, encrypted, or
1586	 * sparse.
1587	 */
1588	if (!NInoAttr(ni))
1589		base_ni = ni;
1590	else
1591		base_ni = ni->ext.base_ntfs_ino;
1592	BUG_ON(NInoNonResident(ni));
1593	/* Map, pin, and lock the mft record. */
1594	m = map_mft_record(base_ni);
1595	if (IS_ERR(m)) {
1596		err = PTR_ERR(m);
1597		m = NULL;
1598		ctx = NULL;
1599		goto err_out;
1600	}
1601	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1602	if (unlikely(!ctx)) {
1603		err = -ENOMEM;
1604		goto err_out;
1605	}
1606	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1607			CASE_SENSITIVE, 0, NULL, 0, ctx);
1608	if (unlikely(err)) {
1609		if (err == -ENOENT)
1610			err = -EIO;
1611		goto err_out;
1612	}
1613	a = ctx->attr;
1614	BUG_ON(a->non_resident);
1615	/* The total length of the attribute value. */
1616	attr_len = le32_to_cpu(a->data.resident.value_length);
1617	i_size = i_size_read(vi);
1618	BUG_ON(attr_len != i_size);
1619	BUG_ON(pos > attr_len);
1620	end = pos + bytes;
1621	BUG_ON(end > le32_to_cpu(a->length) -
1622			le16_to_cpu(a->data.resident.value_offset));
1623	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1624	kaddr = kmap_atomic(page);
1625	/* Copy the received data from the page to the mft record. */
1626	memcpy(kattr + pos, kaddr + pos, bytes);
1627	/* Update the attribute length if necessary. */
1628	if (end > attr_len) {
1629		attr_len = end;
1630		a->data.resident.value_length = cpu_to_le32(attr_len);
1631	}
1632	/*
1633	 * If the page is not uptodate, bring the out of bounds area(s)
1634	 * uptodate by copying data from the mft record to the page.
1635	 */
1636	if (!PageUptodate(page)) {
1637		if (pos > 0)
1638			memcpy(kaddr, kattr, pos);
1639		if (end < attr_len)
1640			memcpy(kaddr + end, kattr + end, attr_len - end);
1641		/* Zero the region outside the end of the attribute value. */
1642		memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
1643		flush_dcache_page(page);
1644		SetPageUptodate(page);
1645	}
1646	kunmap_atomic(kaddr);
1647	/* Update initialized_size/i_size if necessary. */
1648	read_lock_irqsave(&ni->size_lock, flags);
1649	initialized_size = ni->initialized_size;
1650	BUG_ON(end > ni->allocated_size);
1651	read_unlock_irqrestore(&ni->size_lock, flags);
1652	BUG_ON(initialized_size != i_size);
1653	if (end > initialized_size) {
1654		write_lock_irqsave(&ni->size_lock, flags);
1655		ni->initialized_size = end;
1656		i_size_write(vi, end);
1657		write_unlock_irqrestore(&ni->size_lock, flags);
1658	}
1659	/* Mark the mft record dirty, so it gets written back. */
1660	flush_dcache_mft_record_page(ctx->ntfs_ino);
1661	mark_mft_record_dirty(ctx->ntfs_ino);
1662	ntfs_attr_put_search_ctx(ctx);
1663	unmap_mft_record(base_ni);
1664	ntfs_debug("Done.");
1665	return 0;
1666err_out:
1667	if (err == -ENOMEM) {
1668		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1669				"commit the write.");
1670		if (PageUptodate(page)) {
1671			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1672					"dirty so the write will be retried "
1673					"later on by the VM.");
1674			/*
1675			 * Put the page on mapping->dirty_pages, but leave its
1676			 * buffers' dirty state as-is.
1677			 */
1678			__set_page_dirty_nobuffers(page);
1679			err = 0;
1680		} else
1681			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1682					"data has been lost.");
1683	} else {
1684		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1685				"with error %i.", err);
1686		NVolSetErrors(ni->vol);
1687	}
1688	if (ctx)
1689		ntfs_attr_put_search_ctx(ctx);
1690	if (m)
1691		unmap_mft_record(base_ni);
1692	return err;
1693}
1694
1695/*
1696 * Copy as much as we can into the pages and return the number of bytes which
1697 * were successfully copied.  If a fault is encountered then clear the pages
1698 * out to (ofs + bytes) and return the number of bytes which were copied.
1699 */
1700static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1701		unsigned ofs, struct iov_iter *i, size_t bytes)
1702{
1703	struct page **last_page = pages + nr_pages;
1704	size_t total = 0;
1705	struct iov_iter data = *i;
1706	unsigned len, copied;
1707
1708	do {
1709		len = PAGE_SIZE - ofs;
1710		if (len > bytes)
1711			len = bytes;
1712		copied = iov_iter_copy_from_user_atomic(*pages, &data, ofs,
1713				len);
1714		total += copied;
1715		bytes -= copied;
1716		if (!bytes)
1717			break;
1718		iov_iter_advance(&data, copied);
1719		if (copied < len)
1720			goto err;
1721		ofs = 0;
1722	} while (++pages < last_page);
1723out:
1724	return total;
1725err:
1726	/* Zero the rest of the target like __copy_from_user(). */
1727	len = PAGE_SIZE - copied;
1728	do {
1729		if (len > bytes)
1730			len = bytes;
1731		zero_user(*pages, copied, len);
1732		bytes -= len;
1733		copied = 0;
1734		len = PAGE_SIZE;
1735	} while (++pages < last_page);
1736	goto out;
1737}
1738
1739/**
1740 * ntfs_perform_write - perform buffered write to a file
1741 * @file:	file to write to
1742 * @i:		iov_iter with data to write
1743 * @pos:	byte offset in file at which to begin writing to
1744 */
1745static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1746		loff_t pos)
 
1747{
 
1748	struct address_space *mapping = file->f_mapping;
1749	struct inode *vi = mapping->host;
1750	ntfs_inode *ni = NTFS_I(vi);
1751	ntfs_volume *vol = ni->vol;
1752	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1753	struct page *cached_page = NULL;
 
 
1754	VCN last_vcn;
1755	LCN lcn;
1756	size_t bytes;
1757	ssize_t status, written = 0;
 
1758	unsigned nr_pages;
 
1759
1760	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1761			"0x%llx, count 0x%lx.", vi->i_ino,
1762			(unsigned)le32_to_cpu(ni->type),
1763			(unsigned long long)pos,
1764			(unsigned long)iov_iter_count(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	/*
1766	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1767	 * fails again.
1768	 */
1769	if (unlikely(NInoTruncateFailed(ni))) {
1770		int err;
1771
1772		inode_dio_wait(vi);
1773		err = ntfs_truncate(vi);
1774		if (err || NInoTruncateFailed(ni)) {
1775			if (!err)
1776				err = -EIO;
1777			ntfs_error(vol->sb, "Cannot perform write to inode "
1778					"0x%lx, attribute type 0x%x, because "
1779					"ntfs_truncate() failed (error code "
1780					"%i).", vi->i_ino,
1781					(unsigned)le32_to_cpu(ni->type), err);
1782			return err;
1783		}
1784	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785	/*
1786	 * Determine the number of pages per cluster for non-resident
1787	 * attributes.
1788	 */
1789	nr_pages = 1;
1790	if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
1791		nr_pages = vol->cluster_size >> PAGE_SHIFT;
 
1792	last_vcn = -1;
 
 
1793	do {
1794		VCN vcn;
1795		pgoff_t idx, start_idx;
1796		unsigned ofs, do_pages, u;
1797		size_t copied;
1798
1799		start_idx = idx = pos >> PAGE_SHIFT;
1800		ofs = pos & ~PAGE_MASK;
1801		bytes = PAGE_SIZE - ofs;
1802		do_pages = 1;
1803		if (nr_pages > 1) {
1804			vcn = pos >> vol->cluster_size_bits;
1805			if (vcn != last_vcn) {
1806				last_vcn = vcn;
1807				/*
1808				 * Get the lcn of the vcn the write is in.  If
1809				 * it is a hole, need to lock down all pages in
1810				 * the cluster.
1811				 */
1812				down_read(&ni->runlist.lock);
1813				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1814						vol->cluster_size_bits, false);
1815				up_read(&ni->runlist.lock);
1816				if (unlikely(lcn < LCN_HOLE)) {
 
1817					if (lcn == LCN_ENOMEM)
1818						status = -ENOMEM;
1819					else {
1820						status = -EIO;
1821						ntfs_error(vol->sb, "Cannot "
1822							"perform write to "
1823							"inode 0x%lx, "
1824							"attribute type 0x%x, "
1825							"because the attribute "
1826							"is corrupt.",
1827							vi->i_ino, (unsigned)
1828							le32_to_cpu(ni->type));
1829					}
1830					break;
1831				}
1832				if (lcn == LCN_HOLE) {
1833					start_idx = (pos & ~(s64)
1834							vol->cluster_size_mask)
1835							>> PAGE_SHIFT;
1836					bytes = vol->cluster_size - (pos &
1837							vol->cluster_size_mask);
1838					do_pages = nr_pages;
1839				}
1840			}
1841		}
1842		if (bytes > iov_iter_count(i))
1843			bytes = iov_iter_count(i);
1844again:
1845		/*
1846		 * Bring in the user page(s) that we will copy from _first_.
1847		 * Otherwise there is a nasty deadlock on copying from the same
1848		 * page(s) as we are writing to, without it/them being marked
1849		 * up-to-date.  Note, at present there is nothing to stop the
1850		 * pages being swapped out between us bringing them into memory
1851		 * and doing the actual copying.
1852		 */
1853		if (unlikely(iov_iter_fault_in_multipages_readable(i, bytes))) {
1854			status = -EFAULT;
1855			break;
1856		}
1857		/* Get and lock @do_pages starting at index @start_idx. */
1858		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1859				pages, &cached_page);
1860		if (unlikely(status))
1861			break;
1862		/*
1863		 * For non-resident attributes, we need to fill any holes with
1864		 * actual clusters and ensure all bufferes are mapped.  We also
1865		 * need to bring uptodate any buffers that are only partially
1866		 * being written to.
1867		 */
1868		if (NInoNonResident(ni)) {
1869			status = ntfs_prepare_pages_for_non_resident_write(
1870					pages, do_pages, pos, bytes);
1871			if (unlikely(status)) {
 
 
1872				do {
1873					unlock_page(pages[--do_pages]);
1874					put_page(pages[do_pages]);
1875				} while (do_pages);
 
 
 
 
 
 
 
 
 
 
 
1876				break;
1877			}
1878		}
1879		u = (pos >> PAGE_SHIFT) - pages[0]->index;
1880		copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1881					i, bytes);
 
 
 
 
 
 
1882		ntfs_flush_dcache_pages(pages + u, do_pages - u);
1883		status = 0;
1884		if (likely(copied == bytes)) {
1885			status = ntfs_commit_pages_after_write(pages, do_pages,
1886					pos, bytes);
1887			if (!status)
1888				status = bytes;
 
 
1889		}
1890		do {
1891			unlock_page(pages[--do_pages]);
1892			put_page(pages[do_pages]);
 
1893		} while (do_pages);
1894		if (unlikely(status < 0))
1895			break;
1896		copied = status;
1897		cond_resched();
1898		if (unlikely(!copied)) {
1899			size_t sc;
1900
1901			/*
1902			 * We failed to copy anything.  Fall back to single
1903			 * segment length write.
1904			 *
1905			 * This is needed to avoid possible livelock in the
1906			 * case that all segments in the iov cannot be copied
1907			 * at once without a pagefault.
1908			 */
1909			sc = iov_iter_single_seg_count(i);
1910			if (bytes > sc)
1911				bytes = sc;
1912			goto again;
1913		}
1914		iov_iter_advance(i, copied);
1915		pos += copied;
1916		written += copied;
1917		balance_dirty_pages_ratelimited(mapping);
1918		if (fatal_signal_pending(current)) {
1919			status = -EINTR;
1920			break;
1921		}
1922	} while (iov_iter_count(i));
1923	if (cached_page)
1924		put_page(cached_page);
1925	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
1926			written ? "written" : "status", (unsigned long)written,
1927			(long)status);
1928	return written ? written : status;
1929}
1930
1931/**
1932 * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1933 * @iocb:	IO state structure
1934 * @from:	iov_iter with data to write
1935 *
1936 * Basically the same as generic_file_write_iter() except that it ends up
1937 * up calling ntfs_perform_write() instead of generic_perform_write() and that
1938 * O_DIRECT is not implemented.
1939 */
1940static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
1941{
1942	struct file *file = iocb->ki_filp;
1943	struct inode *vi = file_inode(file);
1944	ssize_t written = 0;
1945	ssize_t err;
 
 
1946
1947	inode_lock(vi);
 
 
 
 
1948	/* We can write back this queue in page reclaim. */
1949	current->backing_dev_info = inode_to_bdi(vi);
1950	err = ntfs_prepare_file_for_write(iocb, from);
1951	if (iov_iter_count(from) && !err)
1952		written = ntfs_perform_write(file, from, iocb->ki_pos);
 
 
 
 
 
 
 
 
 
 
 
 
1953	current->backing_dev_info = NULL;
1954	inode_unlock(vi);
1955	if (likely(written > 0)) {
1956		err = generic_write_sync(file, iocb->ki_pos, written);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1957		if (err < 0)
1958			written = 0;
1959	}
1960	iocb->ki_pos += written;
1961	return written ? written : err;
1962}
1963
1964/**
1965 * ntfs_file_fsync - sync a file to disk
1966 * @filp:	file to be synced
1967 * @datasync:	if non-zero only flush user data and not metadata
1968 *
1969 * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
1970 * system calls.  This function is inspired by fs/buffer.c::file_fsync().
1971 *
1972 * If @datasync is false, write the mft record and all associated extent mft
1973 * records as well as the $DATA attribute and then sync the block device.
1974 *
1975 * If @datasync is true and the attribute is non-resident, we skip the writing
1976 * of the mft record and all associated extent mft records (this might still
1977 * happen due to the write_inode_now() call).
1978 *
1979 * Also, if @datasync is true, we do not wait on the inode to be written out
1980 * but we always wait on the page cache pages to be written out.
1981 *
1982 * Locking: Caller must hold i_mutex on the inode.
1983 *
1984 * TODO: We should probably also write all attribute/index inodes associated
1985 * with this inode but since we have no simple way of getting to them we ignore
1986 * this problem for now.
1987 */
1988static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1989			   int datasync)
1990{
1991	struct inode *vi = filp->f_mapping->host;
1992	int err, ret = 0;
1993
1994	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1995
1996	err = filemap_write_and_wait_range(vi->i_mapping, start, end);
1997	if (err)
1998		return err;
1999	inode_lock(vi);
2000
2001	BUG_ON(S_ISDIR(vi->i_mode));
2002	if (!datasync || !NInoNonResident(NTFS_I(vi)))
2003		ret = __ntfs_write_inode(vi, 1);
2004	write_inode_now(vi, !datasync);
2005	/*
2006	 * NOTE: If we were to use mapping->private_list (see ext2 and
2007	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2008	 * sync_mapping_buffers(vi->i_mapping).
2009	 */
2010	err = sync_blockdev(vi->i_sb->s_bdev);
2011	if (unlikely(err && !ret))
2012		ret = err;
2013	if (likely(!ret))
2014		ntfs_debug("Done.");
2015	else
2016		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2017				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2018	inode_unlock(vi);
2019	return ret;
2020}
2021
2022#endif /* NTFS_RW */
2023
2024const struct file_operations ntfs_file_ops = {
2025	.llseek		= generic_file_llseek,
2026	.read_iter	= generic_file_read_iter,
 
2027#ifdef NTFS_RW
2028	.write_iter	= ntfs_file_write_iter,
2029	.fsync		= ntfs_file_fsync,
 
 
 
 
 
 
 
 
 
 
2030#endif /* NTFS_RW */
2031	.mmap		= generic_file_mmap,
2032	.open		= ntfs_file_open,
2033	.splice_read	= generic_file_splice_read,
 
 
 
 
 
 
 
 
 
 
 
2034};
2035
2036const struct inode_operations ntfs_file_inode_ops = {
2037#ifdef NTFS_RW
2038	.setattr	= ntfs_setattr,
2039#endif /* NTFS_RW */
2040};
2041
2042const struct file_operations ntfs_empty_file_ops = {};
2043
2044const struct inode_operations ntfs_empty_inode_ops = {};
v3.15
   1/*
   2 * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
   3 *
   4 * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.
   5 *
   6 * This program/include file is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as published
   8 * by the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program/include file is distributed in the hope that it will be
  12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program (in the main directory of the Linux-NTFS
  18 * distribution in the file COPYING); if not, write to the Free Software
  19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  20 */
  21
 
  22#include <linux/buffer_head.h>
  23#include <linux/gfp.h>
  24#include <linux/pagemap.h>
  25#include <linux/pagevec.h>
  26#include <linux/sched.h>
  27#include <linux/swap.h>
  28#include <linux/uio.h>
  29#include <linux/writeback.h>
  30#include <linux/aio.h>
  31
  32#include <asm/page.h>
  33#include <asm/uaccess.h>
  34
  35#include "attrib.h"
  36#include "bitmap.h"
  37#include "inode.h"
  38#include "debug.h"
  39#include "lcnalloc.h"
  40#include "malloc.h"
  41#include "mft.h"
  42#include "ntfs.h"
  43
  44/**
  45 * ntfs_file_open - called when an inode is about to be opened
  46 * @vi:		inode to be opened
  47 * @filp:	file structure describing the inode
  48 *
  49 * Limit file size to the page cache limit on architectures where unsigned long
  50 * is 32-bits. This is the most we can do for now without overflowing the page
  51 * cache page index. Doing it this way means we don't run into problems because
  52 * of existing too large files. It would be better to allow the user to read
  53 * the beginning of the file but I doubt very much anyone is going to hit this
  54 * check on a 32-bit architecture, so there is no point in adding the extra
  55 * complexity required to support this.
  56 *
  57 * On 64-bit architectures, the check is hopefully optimized away by the
  58 * compiler.
  59 *
  60 * After the check passes, just call generic_file_open() to do its work.
  61 */
  62static int ntfs_file_open(struct inode *vi, struct file *filp)
  63{
  64	if (sizeof(unsigned long) < 8) {
  65		if (i_size_read(vi) > MAX_LFS_FILESIZE)
  66			return -EOVERFLOW;
  67	}
  68	return generic_file_open(vi, filp);
  69}
  70
  71#ifdef NTFS_RW
  72
  73/**
  74 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
  75 * @ni:			ntfs inode of the attribute to extend
  76 * @new_init_size:	requested new initialized size in bytes
  77 * @cached_page:	store any allocated but unused page here
  78 * @lru_pvec:		lru-buffering pagevec of the caller
  79 *
  80 * Extend the initialized size of an attribute described by the ntfs inode @ni
  81 * to @new_init_size bytes.  This involves zeroing any non-sparse space between
  82 * the old initialized size and @new_init_size both in the page cache and on
  83 * disk (if relevant complete pages are already uptodate in the page cache then
  84 * these are simply marked dirty).
  85 *
  86 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
  87 * in the resident attribute case, it is tied to the initialized size and, in
  88 * the non-resident attribute case, it may not fall below the initialized size.
  89 *
  90 * Note that if the attribute is resident, we do not need to touch the page
  91 * cache at all.  This is because if the page cache page is not uptodate we
  92 * bring it uptodate later, when doing the write to the mft record since we
  93 * then already have the page mapped.  And if the page is uptodate, the
  94 * non-initialized region will already have been zeroed when the page was
  95 * brought uptodate and the region may in fact already have been overwritten
  96 * with new data via mmap() based writes, so we cannot just zero it.  And since
  97 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
  98 * is unspecified, we choose not to do zeroing and thus we do not need to touch
  99 * the page at all.  For a more detailed explanation see ntfs_truncate() in
 100 * fs/ntfs/inode.c.
 101 *
 102 * Return 0 on success and -errno on error.  In the case that an error is
 103 * encountered it is possible that the initialized size will already have been
 104 * incremented some way towards @new_init_size but it is guaranteed that if
 105 * this is the case, the necessary zeroing will also have happened and that all
 106 * metadata is self-consistent.
 107 *
 108 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
 109 *	    held by the caller.
 110 */
 111static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
 112{
 113	s64 old_init_size;
 114	loff_t old_i_size;
 115	pgoff_t index, end_index;
 116	unsigned long flags;
 117	struct inode *vi = VFS_I(ni);
 118	ntfs_inode *base_ni;
 119	MFT_RECORD *m = NULL;
 120	ATTR_RECORD *a;
 121	ntfs_attr_search_ctx *ctx = NULL;
 122	struct address_space *mapping;
 123	struct page *page = NULL;
 124	u8 *kattr;
 125	int err;
 126	u32 attr_len;
 127
 128	read_lock_irqsave(&ni->size_lock, flags);
 129	old_init_size = ni->initialized_size;
 130	old_i_size = i_size_read(vi);
 131	BUG_ON(new_init_size > ni->allocated_size);
 132	read_unlock_irqrestore(&ni->size_lock, flags);
 133	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
 134			"old_initialized_size 0x%llx, "
 135			"new_initialized_size 0x%llx, i_size 0x%llx.",
 136			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
 137			(unsigned long long)old_init_size,
 138			(unsigned long long)new_init_size, old_i_size);
 139	if (!NInoAttr(ni))
 140		base_ni = ni;
 141	else
 142		base_ni = ni->ext.base_ntfs_ino;
 143	/* Use goto to reduce indentation and we need the label below anyway. */
 144	if (NInoNonResident(ni))
 145		goto do_non_resident_extend;
 146	BUG_ON(old_init_size != old_i_size);
 147	m = map_mft_record(base_ni);
 148	if (IS_ERR(m)) {
 149		err = PTR_ERR(m);
 150		m = NULL;
 151		goto err_out;
 152	}
 153	ctx = ntfs_attr_get_search_ctx(base_ni, m);
 154	if (unlikely(!ctx)) {
 155		err = -ENOMEM;
 156		goto err_out;
 157	}
 158	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 159			CASE_SENSITIVE, 0, NULL, 0, ctx);
 160	if (unlikely(err)) {
 161		if (err == -ENOENT)
 162			err = -EIO;
 163		goto err_out;
 164	}
 165	m = ctx->mrec;
 166	a = ctx->attr;
 167	BUG_ON(a->non_resident);
 168	/* The total length of the attribute value. */
 169	attr_len = le32_to_cpu(a->data.resident.value_length);
 170	BUG_ON(old_i_size != (loff_t)attr_len);
 171	/*
 172	 * Do the zeroing in the mft record and update the attribute size in
 173	 * the mft record.
 174	 */
 175	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
 176	memset(kattr + attr_len, 0, new_init_size - attr_len);
 177	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
 178	/* Finally, update the sizes in the vfs and ntfs inodes. */
 179	write_lock_irqsave(&ni->size_lock, flags);
 180	i_size_write(vi, new_init_size);
 181	ni->initialized_size = new_init_size;
 182	write_unlock_irqrestore(&ni->size_lock, flags);
 183	goto done;
 184do_non_resident_extend:
 185	/*
 186	 * If the new initialized size @new_init_size exceeds the current file
 187	 * size (vfs inode->i_size), we need to extend the file size to the
 188	 * new initialized size.
 189	 */
 190	if (new_init_size > old_i_size) {
 191		m = map_mft_record(base_ni);
 192		if (IS_ERR(m)) {
 193			err = PTR_ERR(m);
 194			m = NULL;
 195			goto err_out;
 196		}
 197		ctx = ntfs_attr_get_search_ctx(base_ni, m);
 198		if (unlikely(!ctx)) {
 199			err = -ENOMEM;
 200			goto err_out;
 201		}
 202		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 203				CASE_SENSITIVE, 0, NULL, 0, ctx);
 204		if (unlikely(err)) {
 205			if (err == -ENOENT)
 206				err = -EIO;
 207			goto err_out;
 208		}
 209		m = ctx->mrec;
 210		a = ctx->attr;
 211		BUG_ON(!a->non_resident);
 212		BUG_ON(old_i_size != (loff_t)
 213				sle64_to_cpu(a->data.non_resident.data_size));
 214		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
 215		flush_dcache_mft_record_page(ctx->ntfs_ino);
 216		mark_mft_record_dirty(ctx->ntfs_ino);
 217		/* Update the file size in the vfs inode. */
 218		i_size_write(vi, new_init_size);
 219		ntfs_attr_put_search_ctx(ctx);
 220		ctx = NULL;
 221		unmap_mft_record(base_ni);
 222		m = NULL;
 223	}
 224	mapping = vi->i_mapping;
 225	index = old_init_size >> PAGE_CACHE_SHIFT;
 226	end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 227	do {
 228		/*
 229		 * Read the page.  If the page is not present, this will zero
 230		 * the uninitialized regions for us.
 231		 */
 232		page = read_mapping_page(mapping, index, NULL);
 233		if (IS_ERR(page)) {
 234			err = PTR_ERR(page);
 235			goto init_err_out;
 236		}
 237		if (unlikely(PageError(page))) {
 238			page_cache_release(page);
 239			err = -EIO;
 240			goto init_err_out;
 241		}
 242		/*
 243		 * Update the initialized size in the ntfs inode.  This is
 244		 * enough to make ntfs_writepage() work.
 245		 */
 246		write_lock_irqsave(&ni->size_lock, flags);
 247		ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
 248		if (ni->initialized_size > new_init_size)
 249			ni->initialized_size = new_init_size;
 250		write_unlock_irqrestore(&ni->size_lock, flags);
 251		/* Set the page dirty so it gets written out. */
 252		set_page_dirty(page);
 253		page_cache_release(page);
 254		/*
 255		 * Play nice with the vm and the rest of the system.  This is
 256		 * very much needed as we can potentially be modifying the
 257		 * initialised size from a very small value to a really huge
 258		 * value, e.g.
 259		 *	f = open(somefile, O_TRUNC);
 260		 *	truncate(f, 10GiB);
 261		 *	seek(f, 10GiB);
 262		 *	write(f, 1);
 263		 * And this would mean we would be marking dirty hundreds of
 264		 * thousands of pages or as in the above example more than
 265		 * two and a half million pages!
 266		 *
 267		 * TODO: For sparse pages could optimize this workload by using
 268		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
 269		 * would be set in readpage for sparse pages and here we would
 270		 * not need to mark dirty any pages which have this bit set.
 271		 * The only caveat is that we have to clear the bit everywhere
 272		 * where we allocate any clusters that lie in the page or that
 273		 * contain the page.
 274		 *
 275		 * TODO: An even greater optimization would be for us to only
 276		 * call readpage() on pages which are not in sparse regions as
 277		 * determined from the runlist.  This would greatly reduce the
 278		 * number of pages we read and make dirty in the case of sparse
 279		 * files.
 280		 */
 281		balance_dirty_pages_ratelimited(mapping);
 282		cond_resched();
 283	} while (++index < end_index);
 284	read_lock_irqsave(&ni->size_lock, flags);
 285	BUG_ON(ni->initialized_size != new_init_size);
 286	read_unlock_irqrestore(&ni->size_lock, flags);
 287	/* Now bring in sync the initialized_size in the mft record. */
 288	m = map_mft_record(base_ni);
 289	if (IS_ERR(m)) {
 290		err = PTR_ERR(m);
 291		m = NULL;
 292		goto init_err_out;
 293	}
 294	ctx = ntfs_attr_get_search_ctx(base_ni, m);
 295	if (unlikely(!ctx)) {
 296		err = -ENOMEM;
 297		goto init_err_out;
 298	}
 299	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 300			CASE_SENSITIVE, 0, NULL, 0, ctx);
 301	if (unlikely(err)) {
 302		if (err == -ENOENT)
 303			err = -EIO;
 304		goto init_err_out;
 305	}
 306	m = ctx->mrec;
 307	a = ctx->attr;
 308	BUG_ON(!a->non_resident);
 309	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
 310done:
 311	flush_dcache_mft_record_page(ctx->ntfs_ino);
 312	mark_mft_record_dirty(ctx->ntfs_ino);
 313	if (ctx)
 314		ntfs_attr_put_search_ctx(ctx);
 315	if (m)
 316		unmap_mft_record(base_ni);
 317	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
 318			(unsigned long long)new_init_size, i_size_read(vi));
 319	return 0;
 320init_err_out:
 321	write_lock_irqsave(&ni->size_lock, flags);
 322	ni->initialized_size = old_init_size;
 323	write_unlock_irqrestore(&ni->size_lock, flags);
 324err_out:
 325	if (ctx)
 326		ntfs_attr_put_search_ctx(ctx);
 327	if (m)
 328		unmap_mft_record(base_ni);
 329	ntfs_debug("Failed.  Returning error code %i.", err);
 330	return err;
 331}
 332
 333/**
 334 * ntfs_fault_in_pages_readable -
 335 *
 336 * Fault a number of userspace pages into pagetables.
 337 *
 338 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
 339 * with more than two userspace pages as well as handling the single page case
 340 * elegantly.
 341 *
 342 * If you find this difficult to understand, then think of the while loop being
 343 * the following code, except that we do without the integer variable ret:
 344 *
 345 *	do {
 346 *		ret = __get_user(c, uaddr);
 347 *		uaddr += PAGE_SIZE;
 348 *	} while (!ret && uaddr < end);
 349 *
 350 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
 351 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
 352 * this is only a read and not a write, and since it is still in the same page,
 353 * it should not matter and this makes the code much simpler.
 354 */
 355static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
 356		int bytes)
 357{
 358	const char __user *end;
 359	volatile char c;
 
 
 
 
 
 
 360
 361	/* Set @end to the first byte outside the last page we care about. */
 362	end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
 363
 364	while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
 365		;
 366}
 367
 368/**
 369 * ntfs_fault_in_pages_readable_iovec -
 370 *
 371 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
 372 */
 373static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
 374		size_t iov_ofs, int bytes)
 375{
 376	do {
 377		const char __user *buf;
 378		unsigned len;
 379
 380		buf = iov->iov_base + iov_ofs;
 381		len = iov->iov_len - iov_ofs;
 382		if (len > bytes)
 383			len = bytes;
 384		ntfs_fault_in_pages_readable(buf, len);
 385		bytes -= len;
 386		iov++;
 387		iov_ofs = 0;
 388	} while (bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389}
 390
 391/**
 392 * __ntfs_grab_cache_pages - obtain a number of locked pages
 393 * @mapping:	address space mapping from which to obtain page cache pages
 394 * @index:	starting index in @mapping at which to begin obtaining pages
 395 * @nr_pages:	number of page cache pages to obtain
 396 * @pages:	array of pages in which to return the obtained page cache pages
 397 * @cached_page: allocated but as yet unused page
 398 * @lru_pvec:	lru-buffering pagevec of caller
 399 *
 400 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
 401 * starting at index @index.
 402 *
 403 * If a page is newly created, add it to lru list
 404 *
 405 * Note, the page locks are obtained in ascending page index order.
 406 */
 407static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
 408		pgoff_t index, const unsigned nr_pages, struct page **pages,
 409		struct page **cached_page)
 410{
 411	int err, nr;
 412
 413	BUG_ON(!nr_pages);
 414	err = nr = 0;
 415	do {
 416		pages[nr] = find_lock_page(mapping, index);
 
 417		if (!pages[nr]) {
 418			if (!*cached_page) {
 419				*cached_page = page_cache_alloc(mapping);
 420				if (unlikely(!*cached_page)) {
 421					err = -ENOMEM;
 422					goto err_out;
 423				}
 424			}
 425			err = add_to_page_cache_lru(*cached_page, mapping, index,
 426					GFP_KERNEL);
 
 427			if (unlikely(err)) {
 428				if (err == -EEXIST)
 429					continue;
 430				goto err_out;
 431			}
 432			pages[nr] = *cached_page;
 433			*cached_page = NULL;
 434		}
 435		index++;
 436		nr++;
 437	} while (nr < nr_pages);
 438out:
 439	return err;
 440err_out:
 441	while (nr > 0) {
 442		unlock_page(pages[--nr]);
 443		page_cache_release(pages[nr]);
 444	}
 445	goto out;
 446}
 447
 448static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
 449{
 450	lock_buffer(bh);
 451	get_bh(bh);
 452	bh->b_end_io = end_buffer_read_sync;
 453	return submit_bh(READ, bh);
 454}
 455
 456/**
 457 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
 458 * @pages:	array of destination pages
 459 * @nr_pages:	number of pages in @pages
 460 * @pos:	byte position in file at which the write begins
 461 * @bytes:	number of bytes to be written
 462 *
 463 * This is called for non-resident attributes from ntfs_file_buffered_write()
 464 * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
 465 * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
 466 * data has not yet been copied into the @pages.
 467 * 
 468 * Need to fill any holes with actual clusters, allocate buffers if necessary,
 469 * ensure all the buffers are mapped, and bring uptodate any buffers that are
 470 * only partially being written to.
 471 *
 472 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
 473 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
 474 * the same cluster and that they are the entirety of that cluster, and that
 475 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
 476 *
 477 * i_size is not to be modified yet.
 478 *
 479 * Return 0 on success or -errno on error.
 480 */
 481static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
 482		unsigned nr_pages, s64 pos, size_t bytes)
 483{
 484	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
 485	LCN lcn;
 486	s64 bh_pos, vcn_len, end, initialized_size;
 487	sector_t lcn_block;
 488	struct page *page;
 489	struct inode *vi;
 490	ntfs_inode *ni, *base_ni = NULL;
 491	ntfs_volume *vol;
 492	runlist_element *rl, *rl2;
 493	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
 494	ntfs_attr_search_ctx *ctx = NULL;
 495	MFT_RECORD *m = NULL;
 496	ATTR_RECORD *a = NULL;
 497	unsigned long flags;
 498	u32 attr_rec_len = 0;
 499	unsigned blocksize, u;
 500	int err, mp_size;
 501	bool rl_write_locked, was_hole, is_retry;
 502	unsigned char blocksize_bits;
 503	struct {
 504		u8 runlist_merged:1;
 505		u8 mft_attr_mapped:1;
 506		u8 mp_rebuilt:1;
 507		u8 attr_switched:1;
 508	} status = { 0, 0, 0, 0 };
 509
 510	BUG_ON(!nr_pages);
 511	BUG_ON(!pages);
 512	BUG_ON(!*pages);
 513	vi = pages[0]->mapping->host;
 514	ni = NTFS_I(vi);
 515	vol = ni->vol;
 516	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
 517			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
 518			vi->i_ino, ni->type, pages[0]->index, nr_pages,
 519			(long long)pos, bytes);
 520	blocksize = vol->sb->s_blocksize;
 521	blocksize_bits = vol->sb->s_blocksize_bits;
 522	u = 0;
 523	do {
 524		page = pages[u];
 525		BUG_ON(!page);
 526		/*
 527		 * create_empty_buffers() will create uptodate/dirty buffers if
 528		 * the page is uptodate/dirty.
 529		 */
 530		if (!page_has_buffers(page)) {
 531			create_empty_buffers(page, blocksize, 0);
 532			if (unlikely(!page_has_buffers(page)))
 533				return -ENOMEM;
 534		}
 535	} while (++u < nr_pages);
 536	rl_write_locked = false;
 537	rl = NULL;
 538	err = 0;
 539	vcn = lcn = -1;
 540	vcn_len = 0;
 541	lcn_block = -1;
 542	was_hole = false;
 543	cpos = pos >> vol->cluster_size_bits;
 544	end = pos + bytes;
 545	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
 546	/*
 547	 * Loop over each page and for each page over each buffer.  Use goto to
 548	 * reduce indentation.
 549	 */
 550	u = 0;
 551do_next_page:
 552	page = pages[u];
 553	bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
 554	bh = head = page_buffers(page);
 555	do {
 556		VCN cdelta;
 557		s64 bh_end;
 558		unsigned bh_cofs;
 559
 560		/* Clear buffer_new on all buffers to reinitialise state. */
 561		if (buffer_new(bh))
 562			clear_buffer_new(bh);
 563		bh_end = bh_pos + blocksize;
 564		bh_cpos = bh_pos >> vol->cluster_size_bits;
 565		bh_cofs = bh_pos & vol->cluster_size_mask;
 566		if (buffer_mapped(bh)) {
 567			/*
 568			 * The buffer is already mapped.  If it is uptodate,
 569			 * ignore it.
 570			 */
 571			if (buffer_uptodate(bh))
 572				continue;
 573			/*
 574			 * The buffer is not uptodate.  If the page is uptodate
 575			 * set the buffer uptodate and otherwise ignore it.
 576			 */
 577			if (PageUptodate(page)) {
 578				set_buffer_uptodate(bh);
 579				continue;
 580			}
 581			/*
 582			 * Neither the page nor the buffer are uptodate.  If
 583			 * the buffer is only partially being written to, we
 584			 * need to read it in before the write, i.e. now.
 585			 */
 586			if ((bh_pos < pos && bh_end > pos) ||
 587					(bh_pos < end && bh_end > end)) {
 588				/*
 589				 * If the buffer is fully or partially within
 590				 * the initialized size, do an actual read.
 591				 * Otherwise, simply zero the buffer.
 592				 */
 593				read_lock_irqsave(&ni->size_lock, flags);
 594				initialized_size = ni->initialized_size;
 595				read_unlock_irqrestore(&ni->size_lock, flags);
 596				if (bh_pos < initialized_size) {
 597					ntfs_submit_bh_for_read(bh);
 598					*wait_bh++ = bh;
 599				} else {
 600					zero_user(page, bh_offset(bh),
 601							blocksize);
 602					set_buffer_uptodate(bh);
 603				}
 604			}
 605			continue;
 606		}
 607		/* Unmapped buffer.  Need to map it. */
 608		bh->b_bdev = vol->sb->s_bdev;
 609		/*
 610		 * If the current buffer is in the same clusters as the map
 611		 * cache, there is no need to check the runlist again.  The
 612		 * map cache is made up of @vcn, which is the first cached file
 613		 * cluster, @vcn_len which is the number of cached file
 614		 * clusters, @lcn is the device cluster corresponding to @vcn,
 615		 * and @lcn_block is the block number corresponding to @lcn.
 616		 */
 617		cdelta = bh_cpos - vcn;
 618		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
 619map_buffer_cached:
 620			BUG_ON(lcn < 0);
 621			bh->b_blocknr = lcn_block +
 622					(cdelta << (vol->cluster_size_bits -
 623					blocksize_bits)) +
 624					(bh_cofs >> blocksize_bits);
 625			set_buffer_mapped(bh);
 626			/*
 627			 * If the page is uptodate so is the buffer.  If the
 628			 * buffer is fully outside the write, we ignore it if
 629			 * it was already allocated and we mark it dirty so it
 630			 * gets written out if we allocated it.  On the other
 631			 * hand, if we allocated the buffer but we are not
 632			 * marking it dirty we set buffer_new so we can do
 633			 * error recovery.
 634			 */
 635			if (PageUptodate(page)) {
 636				if (!buffer_uptodate(bh))
 637					set_buffer_uptodate(bh);
 638				if (unlikely(was_hole)) {
 639					/* We allocated the buffer. */
 640					unmap_underlying_metadata(bh->b_bdev,
 641							bh->b_blocknr);
 642					if (bh_end <= pos || bh_pos >= end)
 643						mark_buffer_dirty(bh);
 644					else
 645						set_buffer_new(bh);
 646				}
 647				continue;
 648			}
 649			/* Page is _not_ uptodate. */
 650			if (likely(!was_hole)) {
 651				/*
 652				 * Buffer was already allocated.  If it is not
 653				 * uptodate and is only partially being written
 654				 * to, we need to read it in before the write,
 655				 * i.e. now.
 656				 */
 657				if (!buffer_uptodate(bh) && bh_pos < end &&
 658						bh_end > pos &&
 659						(bh_pos < pos ||
 660						bh_end > end)) {
 661					/*
 662					 * If the buffer is fully or partially
 663					 * within the initialized size, do an
 664					 * actual read.  Otherwise, simply zero
 665					 * the buffer.
 666					 */
 667					read_lock_irqsave(&ni->size_lock,
 668							flags);
 669					initialized_size = ni->initialized_size;
 670					read_unlock_irqrestore(&ni->size_lock,
 671							flags);
 672					if (bh_pos < initialized_size) {
 673						ntfs_submit_bh_for_read(bh);
 674						*wait_bh++ = bh;
 675					} else {
 676						zero_user(page, bh_offset(bh),
 677								blocksize);
 678						set_buffer_uptodate(bh);
 679					}
 680				}
 681				continue;
 682			}
 683			/* We allocated the buffer. */
 684			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 685			/*
 686			 * If the buffer is fully outside the write, zero it,
 687			 * set it uptodate, and mark it dirty so it gets
 688			 * written out.  If it is partially being written to,
 689			 * zero region surrounding the write but leave it to
 690			 * commit write to do anything else.  Finally, if the
 691			 * buffer is fully being overwritten, do nothing.
 692			 */
 693			if (bh_end <= pos || bh_pos >= end) {
 694				if (!buffer_uptodate(bh)) {
 695					zero_user(page, bh_offset(bh),
 696							blocksize);
 697					set_buffer_uptodate(bh);
 698				}
 699				mark_buffer_dirty(bh);
 700				continue;
 701			}
 702			set_buffer_new(bh);
 703			if (!buffer_uptodate(bh) &&
 704					(bh_pos < pos || bh_end > end)) {
 705				u8 *kaddr;
 706				unsigned pofs;
 707					
 708				kaddr = kmap_atomic(page);
 709				if (bh_pos < pos) {
 710					pofs = bh_pos & ~PAGE_CACHE_MASK;
 711					memset(kaddr + pofs, 0, pos - bh_pos);
 712				}
 713				if (bh_end > end) {
 714					pofs = end & ~PAGE_CACHE_MASK;
 715					memset(kaddr + pofs, 0, bh_end - end);
 716				}
 717				kunmap_atomic(kaddr);
 718				flush_dcache_page(page);
 719			}
 720			continue;
 721		}
 722		/*
 723		 * Slow path: this is the first buffer in the cluster.  If it
 724		 * is outside allocated size and is not uptodate, zero it and
 725		 * set it uptodate.
 726		 */
 727		read_lock_irqsave(&ni->size_lock, flags);
 728		initialized_size = ni->allocated_size;
 729		read_unlock_irqrestore(&ni->size_lock, flags);
 730		if (bh_pos > initialized_size) {
 731			if (PageUptodate(page)) {
 732				if (!buffer_uptodate(bh))
 733					set_buffer_uptodate(bh);
 734			} else if (!buffer_uptodate(bh)) {
 735				zero_user(page, bh_offset(bh), blocksize);
 736				set_buffer_uptodate(bh);
 737			}
 738			continue;
 739		}
 740		is_retry = false;
 741		if (!rl) {
 742			down_read(&ni->runlist.lock);
 743retry_remap:
 744			rl = ni->runlist.rl;
 745		}
 746		if (likely(rl != NULL)) {
 747			/* Seek to element containing target cluster. */
 748			while (rl->length && rl[1].vcn <= bh_cpos)
 749				rl++;
 750			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
 751			if (likely(lcn >= 0)) {
 752				/*
 753				 * Successful remap, setup the map cache and
 754				 * use that to deal with the buffer.
 755				 */
 756				was_hole = false;
 757				vcn = bh_cpos;
 758				vcn_len = rl[1].vcn - vcn;
 759				lcn_block = lcn << (vol->cluster_size_bits -
 760						blocksize_bits);
 761				cdelta = 0;
 762				/*
 763				 * If the number of remaining clusters touched
 764				 * by the write is smaller or equal to the
 765				 * number of cached clusters, unlock the
 766				 * runlist as the map cache will be used from
 767				 * now on.
 768				 */
 769				if (likely(vcn + vcn_len >= cend)) {
 770					if (rl_write_locked) {
 771						up_write(&ni->runlist.lock);
 772						rl_write_locked = false;
 773					} else
 774						up_read(&ni->runlist.lock);
 775					rl = NULL;
 776				}
 777				goto map_buffer_cached;
 778			}
 779		} else
 780			lcn = LCN_RL_NOT_MAPPED;
 781		/*
 782		 * If it is not a hole and not out of bounds, the runlist is
 783		 * probably unmapped so try to map it now.
 784		 */
 785		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
 786			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
 787				/* Attempt to map runlist. */
 788				if (!rl_write_locked) {
 789					/*
 790					 * We need the runlist locked for
 791					 * writing, so if it is locked for
 792					 * reading relock it now and retry in
 793					 * case it changed whilst we dropped
 794					 * the lock.
 795					 */
 796					up_read(&ni->runlist.lock);
 797					down_write(&ni->runlist.lock);
 798					rl_write_locked = true;
 799					goto retry_remap;
 800				}
 801				err = ntfs_map_runlist_nolock(ni, bh_cpos,
 802						NULL);
 803				if (likely(!err)) {
 804					is_retry = true;
 805					goto retry_remap;
 806				}
 807				/*
 808				 * If @vcn is out of bounds, pretend @lcn is
 809				 * LCN_ENOENT.  As long as the buffer is out
 810				 * of bounds this will work fine.
 811				 */
 812				if (err == -ENOENT) {
 813					lcn = LCN_ENOENT;
 814					err = 0;
 815					goto rl_not_mapped_enoent;
 816				}
 817			} else
 818				err = -EIO;
 819			/* Failed to map the buffer, even after retrying. */
 820			bh->b_blocknr = -1;
 821			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
 822					"attribute type 0x%x, vcn 0x%llx, "
 823					"vcn offset 0x%x, because its "
 824					"location on disk could not be "
 825					"determined%s (error code %i).",
 826					ni->mft_no, ni->type,
 827					(unsigned long long)bh_cpos,
 828					(unsigned)bh_pos &
 829					vol->cluster_size_mask,
 830					is_retry ? " even after retrying" : "",
 831					err);
 832			break;
 833		}
 834rl_not_mapped_enoent:
 835		/*
 836		 * The buffer is in a hole or out of bounds.  We need to fill
 837		 * the hole, unless the buffer is in a cluster which is not
 838		 * touched by the write, in which case we just leave the buffer
 839		 * unmapped.  This can only happen when the cluster size is
 840		 * less than the page cache size.
 841		 */
 842		if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
 843			bh_cend = (bh_end + vol->cluster_size - 1) >>
 844					vol->cluster_size_bits;
 845			if ((bh_cend <= cpos || bh_cpos >= cend)) {
 846				bh->b_blocknr = -1;
 847				/*
 848				 * If the buffer is uptodate we skip it.  If it
 849				 * is not but the page is uptodate, we can set
 850				 * the buffer uptodate.  If the page is not
 851				 * uptodate, we can clear the buffer and set it
 852				 * uptodate.  Whether this is worthwhile is
 853				 * debatable and this could be removed.
 854				 */
 855				if (PageUptodate(page)) {
 856					if (!buffer_uptodate(bh))
 857						set_buffer_uptodate(bh);
 858				} else if (!buffer_uptodate(bh)) {
 859					zero_user(page, bh_offset(bh),
 860						blocksize);
 861					set_buffer_uptodate(bh);
 862				}
 863				continue;
 864			}
 865		}
 866		/*
 867		 * Out of bounds buffer is invalid if it was not really out of
 868		 * bounds.
 869		 */
 870		BUG_ON(lcn != LCN_HOLE);
 871		/*
 872		 * We need the runlist locked for writing, so if it is locked
 873		 * for reading relock it now and retry in case it changed
 874		 * whilst we dropped the lock.
 875		 */
 876		BUG_ON(!rl);
 877		if (!rl_write_locked) {
 878			up_read(&ni->runlist.lock);
 879			down_write(&ni->runlist.lock);
 880			rl_write_locked = true;
 881			goto retry_remap;
 882		}
 883		/* Find the previous last allocated cluster. */
 884		BUG_ON(rl->lcn != LCN_HOLE);
 885		lcn = -1;
 886		rl2 = rl;
 887		while (--rl2 >= ni->runlist.rl) {
 888			if (rl2->lcn >= 0) {
 889				lcn = rl2->lcn + rl2->length;
 890				break;
 891			}
 892		}
 893		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
 894				false);
 895		if (IS_ERR(rl2)) {
 896			err = PTR_ERR(rl2);
 897			ntfs_debug("Failed to allocate cluster, error code %i.",
 898					err);
 899			break;
 900		}
 901		lcn = rl2->lcn;
 902		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
 903		if (IS_ERR(rl)) {
 904			err = PTR_ERR(rl);
 905			if (err != -ENOMEM)
 906				err = -EIO;
 907			if (ntfs_cluster_free_from_rl(vol, rl2)) {
 908				ntfs_error(vol->sb, "Failed to release "
 909						"allocated cluster in error "
 910						"code path.  Run chkdsk to "
 911						"recover the lost cluster.");
 912				NVolSetErrors(vol);
 913			}
 914			ntfs_free(rl2);
 915			break;
 916		}
 917		ni->runlist.rl = rl;
 918		status.runlist_merged = 1;
 919		ntfs_debug("Allocated cluster, lcn 0x%llx.",
 920				(unsigned long long)lcn);
 921		/* Map and lock the mft record and get the attribute record. */
 922		if (!NInoAttr(ni))
 923			base_ni = ni;
 924		else
 925			base_ni = ni->ext.base_ntfs_ino;
 926		m = map_mft_record(base_ni);
 927		if (IS_ERR(m)) {
 928			err = PTR_ERR(m);
 929			break;
 930		}
 931		ctx = ntfs_attr_get_search_ctx(base_ni, m);
 932		if (unlikely(!ctx)) {
 933			err = -ENOMEM;
 934			unmap_mft_record(base_ni);
 935			break;
 936		}
 937		status.mft_attr_mapped = 1;
 938		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 939				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
 940		if (unlikely(err)) {
 941			if (err == -ENOENT)
 942				err = -EIO;
 943			break;
 944		}
 945		m = ctx->mrec;
 946		a = ctx->attr;
 947		/*
 948		 * Find the runlist element with which the attribute extent
 949		 * starts.  Note, we cannot use the _attr_ version because we
 950		 * have mapped the mft record.  That is ok because we know the
 951		 * runlist fragment must be mapped already to have ever gotten
 952		 * here, so we can just use the _rl_ version.
 953		 */
 954		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
 955		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
 956		BUG_ON(!rl2);
 957		BUG_ON(!rl2->length);
 958		BUG_ON(rl2->lcn < LCN_HOLE);
 959		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
 960		/*
 961		 * If @highest_vcn is zero, calculate the real highest_vcn
 962		 * (which can really be zero).
 963		 */
 964		if (!highest_vcn)
 965			highest_vcn = (sle64_to_cpu(
 966					a->data.non_resident.allocated_size) >>
 967					vol->cluster_size_bits) - 1;
 968		/*
 969		 * Determine the size of the mapping pairs array for the new
 970		 * extent, i.e. the old extent with the hole filled.
 971		 */
 972		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
 973				highest_vcn);
 974		if (unlikely(mp_size <= 0)) {
 975			if (!(err = mp_size))
 976				err = -EIO;
 977			ntfs_debug("Failed to get size for mapping pairs "
 978					"array, error code %i.", err);
 979			break;
 980		}
 981		/*
 982		 * Resize the attribute record to fit the new mapping pairs
 983		 * array.
 984		 */
 985		attr_rec_len = le32_to_cpu(a->length);
 986		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
 987				a->data.non_resident.mapping_pairs_offset));
 988		if (unlikely(err)) {
 989			BUG_ON(err != -ENOSPC);
 990			// TODO: Deal with this by using the current attribute
 991			// and fill it with as much of the mapping pairs
 992			// array as possible.  Then loop over each attribute
 993			// extent rewriting the mapping pairs arrays as we go
 994			// along and if when we reach the end we have not
 995			// enough space, try to resize the last attribute
 996			// extent and if even that fails, add a new attribute
 997			// extent.
 998			// We could also try to resize at each step in the hope
 999			// that we will not need to rewrite every single extent.
1000			// Note, we may need to decompress some extents to fill
1001			// the runlist as we are walking the extents...
1002			ntfs_error(vol->sb, "Not enough space in the mft "
1003					"record for the extended attribute "
1004					"record.  This case is not "
1005					"implemented yet.");
1006			err = -EOPNOTSUPP;
1007			break ;
1008		}
1009		status.mp_rebuilt = 1;
1010		/*
1011		 * Generate the mapping pairs array directly into the attribute
1012		 * record.
1013		 */
1014		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1015				a->data.non_resident.mapping_pairs_offset),
1016				mp_size, rl2, vcn, highest_vcn, NULL);
1017		if (unlikely(err)) {
1018			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1019					"attribute type 0x%x, because building "
1020					"the mapping pairs failed with error "
1021					"code %i.", vi->i_ino,
1022					(unsigned)le32_to_cpu(ni->type), err);
1023			err = -EIO;
1024			break;
1025		}
1026		/* Update the highest_vcn but only if it was not set. */
1027		if (unlikely(!a->data.non_resident.highest_vcn))
1028			a->data.non_resident.highest_vcn =
1029					cpu_to_sle64(highest_vcn);
1030		/*
1031		 * If the attribute is sparse/compressed, update the compressed
1032		 * size in the ntfs_inode structure and the attribute record.
1033		 */
1034		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1035			/*
1036			 * If we are not in the first attribute extent, switch
1037			 * to it, but first ensure the changes will make it to
1038			 * disk later.
1039			 */
1040			if (a->data.non_resident.lowest_vcn) {
1041				flush_dcache_mft_record_page(ctx->ntfs_ino);
1042				mark_mft_record_dirty(ctx->ntfs_ino);
1043				ntfs_attr_reinit_search_ctx(ctx);
1044				err = ntfs_attr_lookup(ni->type, ni->name,
1045						ni->name_len, CASE_SENSITIVE,
1046						0, NULL, 0, ctx);
1047				if (unlikely(err)) {
1048					status.attr_switched = 1;
1049					break;
1050				}
1051				/* @m is not used any more so do not set it. */
1052				a = ctx->attr;
1053			}
1054			write_lock_irqsave(&ni->size_lock, flags);
1055			ni->itype.compressed.size += vol->cluster_size;
1056			a->data.non_resident.compressed_size =
1057					cpu_to_sle64(ni->itype.compressed.size);
1058			write_unlock_irqrestore(&ni->size_lock, flags);
1059		}
1060		/* Ensure the changes make it to disk. */
1061		flush_dcache_mft_record_page(ctx->ntfs_ino);
1062		mark_mft_record_dirty(ctx->ntfs_ino);
1063		ntfs_attr_put_search_ctx(ctx);
1064		unmap_mft_record(base_ni);
1065		/* Successfully filled the hole. */
1066		status.runlist_merged = 0;
1067		status.mft_attr_mapped = 0;
1068		status.mp_rebuilt = 0;
1069		/* Setup the map cache and use that to deal with the buffer. */
1070		was_hole = true;
1071		vcn = bh_cpos;
1072		vcn_len = 1;
1073		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1074		cdelta = 0;
1075		/*
1076		 * If the number of remaining clusters in the @pages is smaller
1077		 * or equal to the number of cached clusters, unlock the
1078		 * runlist as the map cache will be used from now on.
1079		 */
1080		if (likely(vcn + vcn_len >= cend)) {
1081			up_write(&ni->runlist.lock);
1082			rl_write_locked = false;
1083			rl = NULL;
1084		}
1085		goto map_buffer_cached;
1086	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1087	/* If there are no errors, do the next page. */
1088	if (likely(!err && ++u < nr_pages))
1089		goto do_next_page;
1090	/* If there are no errors, release the runlist lock if we took it. */
1091	if (likely(!err)) {
1092		if (unlikely(rl_write_locked)) {
1093			up_write(&ni->runlist.lock);
1094			rl_write_locked = false;
1095		} else if (unlikely(rl))
1096			up_read(&ni->runlist.lock);
1097		rl = NULL;
1098	}
1099	/* If we issued read requests, let them complete. */
1100	read_lock_irqsave(&ni->size_lock, flags);
1101	initialized_size = ni->initialized_size;
1102	read_unlock_irqrestore(&ni->size_lock, flags);
1103	while (wait_bh > wait) {
1104		bh = *--wait_bh;
1105		wait_on_buffer(bh);
1106		if (likely(buffer_uptodate(bh))) {
1107			page = bh->b_page;
1108			bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1109					bh_offset(bh);
1110			/*
1111			 * If the buffer overflows the initialized size, need
1112			 * to zero the overflowing region.
1113			 */
1114			if (unlikely(bh_pos + blocksize > initialized_size)) {
1115				int ofs = 0;
1116
1117				if (likely(bh_pos < initialized_size))
1118					ofs = initialized_size - bh_pos;
1119				zero_user_segment(page, bh_offset(bh) + ofs,
1120						blocksize);
1121			}
1122		} else /* if (unlikely(!buffer_uptodate(bh))) */
1123			err = -EIO;
1124	}
1125	if (likely(!err)) {
1126		/* Clear buffer_new on all buffers. */
1127		u = 0;
1128		do {
1129			bh = head = page_buffers(pages[u]);
1130			do {
1131				if (buffer_new(bh))
1132					clear_buffer_new(bh);
1133			} while ((bh = bh->b_this_page) != head);
1134		} while (++u < nr_pages);
1135		ntfs_debug("Done.");
1136		return err;
1137	}
1138	if (status.attr_switched) {
1139		/* Get back to the attribute extent we modified. */
1140		ntfs_attr_reinit_search_ctx(ctx);
1141		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1142				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1143			ntfs_error(vol->sb, "Failed to find required "
1144					"attribute extent of attribute in "
1145					"error code path.  Run chkdsk to "
1146					"recover.");
1147			write_lock_irqsave(&ni->size_lock, flags);
1148			ni->itype.compressed.size += vol->cluster_size;
1149			write_unlock_irqrestore(&ni->size_lock, flags);
1150			flush_dcache_mft_record_page(ctx->ntfs_ino);
1151			mark_mft_record_dirty(ctx->ntfs_ino);
1152			/*
1153			 * The only thing that is now wrong is the compressed
1154			 * size of the base attribute extent which chkdsk
1155			 * should be able to fix.
1156			 */
1157			NVolSetErrors(vol);
1158		} else {
1159			m = ctx->mrec;
1160			a = ctx->attr;
1161			status.attr_switched = 0;
1162		}
1163	}
1164	/*
1165	 * If the runlist has been modified, need to restore it by punching a
1166	 * hole into it and we then need to deallocate the on-disk cluster as
1167	 * well.  Note, we only modify the runlist if we are able to generate a
1168	 * new mapping pairs array, i.e. only when the mapped attribute extent
1169	 * is not switched.
1170	 */
1171	if (status.runlist_merged && !status.attr_switched) {
1172		BUG_ON(!rl_write_locked);
1173		/* Make the file cluster we allocated sparse in the runlist. */
1174		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1175			ntfs_error(vol->sb, "Failed to punch hole into "
1176					"attribute runlist in error code "
1177					"path.  Run chkdsk to recover the "
1178					"lost cluster.");
1179			NVolSetErrors(vol);
1180		} else /* if (success) */ {
1181			status.runlist_merged = 0;
1182			/*
1183			 * Deallocate the on-disk cluster we allocated but only
1184			 * if we succeeded in punching its vcn out of the
1185			 * runlist.
1186			 */
1187			down_write(&vol->lcnbmp_lock);
1188			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1189				ntfs_error(vol->sb, "Failed to release "
1190						"allocated cluster in error "
1191						"code path.  Run chkdsk to "
1192						"recover the lost cluster.");
1193				NVolSetErrors(vol);
1194			}
1195			up_write(&vol->lcnbmp_lock);
1196		}
1197	}
1198	/*
1199	 * Resize the attribute record to its old size and rebuild the mapping
1200	 * pairs array.  Note, we only can do this if the runlist has been
1201	 * restored to its old state which also implies that the mapped
1202	 * attribute extent is not switched.
1203	 */
1204	if (status.mp_rebuilt && !status.runlist_merged) {
1205		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1206			ntfs_error(vol->sb, "Failed to restore attribute "
1207					"record in error code path.  Run "
1208					"chkdsk to recover.");
1209			NVolSetErrors(vol);
1210		} else /* if (success) */ {
1211			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1212					le16_to_cpu(a->data.non_resident.
1213					mapping_pairs_offset), attr_rec_len -
1214					le16_to_cpu(a->data.non_resident.
1215					mapping_pairs_offset), ni->runlist.rl,
1216					vcn, highest_vcn, NULL)) {
1217				ntfs_error(vol->sb, "Failed to restore "
1218						"mapping pairs array in error "
1219						"code path.  Run chkdsk to "
1220						"recover.");
1221				NVolSetErrors(vol);
1222			}
1223			flush_dcache_mft_record_page(ctx->ntfs_ino);
1224			mark_mft_record_dirty(ctx->ntfs_ino);
1225		}
1226	}
1227	/* Release the mft record and the attribute. */
1228	if (status.mft_attr_mapped) {
1229		ntfs_attr_put_search_ctx(ctx);
1230		unmap_mft_record(base_ni);
1231	}
1232	/* Release the runlist lock. */
1233	if (rl_write_locked)
1234		up_write(&ni->runlist.lock);
1235	else if (rl)
1236		up_read(&ni->runlist.lock);
1237	/*
1238	 * Zero out any newly allocated blocks to avoid exposing stale data.
1239	 * If BH_New is set, we know that the block was newly allocated above
1240	 * and that it has not been fully zeroed and marked dirty yet.
1241	 */
1242	nr_pages = u;
1243	u = 0;
1244	end = bh_cpos << vol->cluster_size_bits;
1245	do {
1246		page = pages[u];
1247		bh = head = page_buffers(page);
1248		do {
1249			if (u == nr_pages &&
1250					((s64)page->index << PAGE_CACHE_SHIFT) +
1251					bh_offset(bh) >= end)
1252				break;
1253			if (!buffer_new(bh))
1254				continue;
1255			clear_buffer_new(bh);
1256			if (!buffer_uptodate(bh)) {
1257				if (PageUptodate(page))
1258					set_buffer_uptodate(bh);
1259				else {
1260					zero_user(page, bh_offset(bh),
1261							blocksize);
1262					set_buffer_uptodate(bh);
1263				}
1264			}
1265			mark_buffer_dirty(bh);
1266		} while ((bh = bh->b_this_page) != head);
1267	} while (++u <= nr_pages);
1268	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1269	return err;
1270}
1271
1272/*
1273 * Copy as much as we can into the pages and return the number of bytes which
1274 * were successfully copied.  If a fault is encountered then clear the pages
1275 * out to (ofs + bytes) and return the number of bytes which were copied.
1276 */
1277static inline size_t ntfs_copy_from_user(struct page **pages,
1278		unsigned nr_pages, unsigned ofs, const char __user *buf,
1279		size_t bytes)
1280{
1281	struct page **last_page = pages + nr_pages;
1282	char *addr;
1283	size_t total = 0;
1284	unsigned len;
1285	int left;
1286
1287	do {
1288		len = PAGE_CACHE_SIZE - ofs;
1289		if (len > bytes)
1290			len = bytes;
1291		addr = kmap_atomic(*pages);
1292		left = __copy_from_user_inatomic(addr + ofs, buf, len);
1293		kunmap_atomic(addr);
1294		if (unlikely(left)) {
1295			/* Do it the slow way. */
1296			addr = kmap(*pages);
1297			left = __copy_from_user(addr + ofs, buf, len);
1298			kunmap(*pages);
1299			if (unlikely(left))
1300				goto err_out;
1301		}
1302		total += len;
1303		bytes -= len;
1304		if (!bytes)
1305			break;
1306		buf += len;
1307		ofs = 0;
1308	} while (++pages < last_page);
1309out:
1310	return total;
1311err_out:
1312	total += len - left;
1313	/* Zero the rest of the target like __copy_from_user(). */
1314	while (++pages < last_page) {
1315		bytes -= len;
1316		if (!bytes)
1317			break;
1318		len = PAGE_CACHE_SIZE;
1319		if (len > bytes)
1320			len = bytes;
1321		zero_user(*pages, 0, len);
1322	}
1323	goto out;
1324}
1325
1326static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1327		const struct iovec *iov, size_t iov_ofs, size_t bytes)
1328{
1329	size_t total = 0;
1330
1331	while (1) {
1332		const char __user *buf = iov->iov_base + iov_ofs;
1333		unsigned len;
1334		size_t left;
1335
1336		len = iov->iov_len - iov_ofs;
1337		if (len > bytes)
1338			len = bytes;
1339		left = __copy_from_user_inatomic(vaddr, buf, len);
1340		total += len;
1341		bytes -= len;
1342		vaddr += len;
1343		if (unlikely(left)) {
1344			total -= left;
1345			break;
1346		}
1347		if (!bytes)
1348			break;
1349		iov++;
1350		iov_ofs = 0;
1351	}
1352	return total;
1353}
1354
1355static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1356		size_t *iov_ofsp, size_t bytes)
1357{
1358	const struct iovec *iov = *iovp;
1359	size_t iov_ofs = *iov_ofsp;
1360
1361	while (bytes) {
1362		unsigned len;
1363
1364		len = iov->iov_len - iov_ofs;
1365		if (len > bytes)
1366			len = bytes;
1367		bytes -= len;
1368		iov_ofs += len;
1369		if (iov->iov_len == iov_ofs) {
1370			iov++;
1371			iov_ofs = 0;
1372		}
1373	}
1374	*iovp = iov;
1375	*iov_ofsp = iov_ofs;
1376}
1377
1378/*
1379 * This has the same side-effects and return value as ntfs_copy_from_user().
1380 * The difference is that on a fault we need to memset the remainder of the
1381 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1382 * single-segment behaviour.
1383 *
1384 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1385 * atomic and when not atomic.  This is ok because it calls
1386 * __copy_from_user_inatomic() and it is ok to call this when non-atomic.  In
1387 * fact, the only difference between __copy_from_user_inatomic() and
1388 * __copy_from_user() is that the latter calls might_sleep() and the former
1389 * should not zero the tail of the buffer on error.  And on many architectures
1390 * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1391 * makes no difference at all on those architectures.
1392 */
1393static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1394		unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1395		size_t *iov_ofs, size_t bytes)
1396{
1397	struct page **last_page = pages + nr_pages;
1398	char *addr;
1399	size_t copied, len, total = 0;
1400
1401	do {
1402		len = PAGE_CACHE_SIZE - ofs;
1403		if (len > bytes)
1404			len = bytes;
1405		addr = kmap_atomic(*pages);
1406		copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1407				*iov, *iov_ofs, len);
1408		kunmap_atomic(addr);
1409		if (unlikely(copied != len)) {
1410			/* Do it the slow way. */
1411			addr = kmap(*pages);
1412			copied = __ntfs_copy_from_user_iovec_inatomic(addr +
1413					ofs, *iov, *iov_ofs, len);
1414			if (unlikely(copied != len))
1415				goto err_out;
1416			kunmap(*pages);
1417		}
1418		total += len;
1419		ntfs_set_next_iovec(iov, iov_ofs, len);
1420		bytes -= len;
1421		if (!bytes)
1422			break;
1423		ofs = 0;
1424	} while (++pages < last_page);
1425out:
1426	return total;
1427err_out:
1428	BUG_ON(copied > len);
1429	/* Zero the rest of the target like __copy_from_user(). */
1430	memset(addr + ofs + copied, 0, len - copied);
1431	kunmap(*pages);
1432	total += copied;
1433	ntfs_set_next_iovec(iov, iov_ofs, copied);
1434	while (++pages < last_page) {
1435		bytes -= len;
1436		if (!bytes)
1437			break;
1438		len = PAGE_CACHE_SIZE;
1439		if (len > bytes)
1440			len = bytes;
1441		zero_user(*pages, 0, len);
1442	}
1443	goto out;
1444}
1445
1446static inline void ntfs_flush_dcache_pages(struct page **pages,
1447		unsigned nr_pages)
1448{
1449	BUG_ON(!nr_pages);
1450	/*
1451	 * Warning: Do not do the decrement at the same time as the call to
1452	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1453	 * decrement never happens so the loop never terminates.
1454	 */
1455	do {
1456		--nr_pages;
1457		flush_dcache_page(pages[nr_pages]);
1458	} while (nr_pages > 0);
1459}
1460
1461/**
1462 * ntfs_commit_pages_after_non_resident_write - commit the received data
1463 * @pages:	array of destination pages
1464 * @nr_pages:	number of pages in @pages
1465 * @pos:	byte position in file at which the write begins
1466 * @bytes:	number of bytes to be written
1467 *
1468 * See description of ntfs_commit_pages_after_write(), below.
1469 */
1470static inline int ntfs_commit_pages_after_non_resident_write(
1471		struct page **pages, const unsigned nr_pages,
1472		s64 pos, size_t bytes)
1473{
1474	s64 end, initialized_size;
1475	struct inode *vi;
1476	ntfs_inode *ni, *base_ni;
1477	struct buffer_head *bh, *head;
1478	ntfs_attr_search_ctx *ctx;
1479	MFT_RECORD *m;
1480	ATTR_RECORD *a;
1481	unsigned long flags;
1482	unsigned blocksize, u;
1483	int err;
1484
1485	vi = pages[0]->mapping->host;
1486	ni = NTFS_I(vi);
1487	blocksize = vi->i_sb->s_blocksize;
1488	end = pos + bytes;
1489	u = 0;
1490	do {
1491		s64 bh_pos;
1492		struct page *page;
1493		bool partial;
1494
1495		page = pages[u];
1496		bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1497		bh = head = page_buffers(page);
1498		partial = false;
1499		do {
1500			s64 bh_end;
1501
1502			bh_end = bh_pos + blocksize;
1503			if (bh_end <= pos || bh_pos >= end) {
1504				if (!buffer_uptodate(bh))
1505					partial = true;
1506			} else {
1507				set_buffer_uptodate(bh);
1508				mark_buffer_dirty(bh);
1509			}
1510		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1511		/*
1512		 * If all buffers are now uptodate but the page is not, set the
1513		 * page uptodate.
1514		 */
1515		if (!partial && !PageUptodate(page))
1516			SetPageUptodate(page);
1517	} while (++u < nr_pages);
1518	/*
1519	 * Finally, if we do not need to update initialized_size or i_size we
1520	 * are finished.
1521	 */
1522	read_lock_irqsave(&ni->size_lock, flags);
1523	initialized_size = ni->initialized_size;
1524	read_unlock_irqrestore(&ni->size_lock, flags);
1525	if (end <= initialized_size) {
1526		ntfs_debug("Done.");
1527		return 0;
1528	}
1529	/*
1530	 * Update initialized_size/i_size as appropriate, both in the inode and
1531	 * the mft record.
1532	 */
1533	if (!NInoAttr(ni))
1534		base_ni = ni;
1535	else
1536		base_ni = ni->ext.base_ntfs_ino;
1537	/* Map, pin, and lock the mft record. */
1538	m = map_mft_record(base_ni);
1539	if (IS_ERR(m)) {
1540		err = PTR_ERR(m);
1541		m = NULL;
1542		ctx = NULL;
1543		goto err_out;
1544	}
1545	BUG_ON(!NInoNonResident(ni));
1546	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1547	if (unlikely(!ctx)) {
1548		err = -ENOMEM;
1549		goto err_out;
1550	}
1551	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1552			CASE_SENSITIVE, 0, NULL, 0, ctx);
1553	if (unlikely(err)) {
1554		if (err == -ENOENT)
1555			err = -EIO;
1556		goto err_out;
1557	}
1558	a = ctx->attr;
1559	BUG_ON(!a->non_resident);
1560	write_lock_irqsave(&ni->size_lock, flags);
1561	BUG_ON(end > ni->allocated_size);
1562	ni->initialized_size = end;
1563	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1564	if (end > i_size_read(vi)) {
1565		i_size_write(vi, end);
1566		a->data.non_resident.data_size =
1567				a->data.non_resident.initialized_size;
1568	}
1569	write_unlock_irqrestore(&ni->size_lock, flags);
1570	/* Mark the mft record dirty, so it gets written back. */
1571	flush_dcache_mft_record_page(ctx->ntfs_ino);
1572	mark_mft_record_dirty(ctx->ntfs_ino);
1573	ntfs_attr_put_search_ctx(ctx);
1574	unmap_mft_record(base_ni);
1575	ntfs_debug("Done.");
1576	return 0;
1577err_out:
1578	if (ctx)
1579		ntfs_attr_put_search_ctx(ctx);
1580	if (m)
1581		unmap_mft_record(base_ni);
1582	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1583			"code %i).", err);
1584	if (err != -ENOMEM)
1585		NVolSetErrors(ni->vol);
1586	return err;
1587}
1588
1589/**
1590 * ntfs_commit_pages_after_write - commit the received data
1591 * @pages:	array of destination pages
1592 * @nr_pages:	number of pages in @pages
1593 * @pos:	byte position in file at which the write begins
1594 * @bytes:	number of bytes to be written
1595 *
1596 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1597 * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1598 * locked but not kmap()ped.  The source data has already been copied into the
1599 * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1600 * the data was copied (for non-resident attributes only) and it returned
1601 * success.
1602 *
1603 * Need to set uptodate and mark dirty all buffers within the boundary of the
1604 * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1605 *
1606 * Setting the buffers dirty ensures that they get written out later when
1607 * ntfs_writepage() is invoked by the VM.
1608 *
1609 * Finally, we need to update i_size and initialized_size as appropriate both
1610 * in the inode and the mft record.
1611 *
1612 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1613 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1614 * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1615 * that case, it also marks the inode dirty.
1616 *
1617 * If things have gone as outlined in
1618 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1619 * content modifications here for non-resident attributes.  For resident
1620 * attributes we need to do the uptodate bringing here which we combine with
1621 * the copying into the mft record which means we save one atomic kmap.
1622 *
1623 * Return 0 on success or -errno on error.
1624 */
1625static int ntfs_commit_pages_after_write(struct page **pages,
1626		const unsigned nr_pages, s64 pos, size_t bytes)
1627{
1628	s64 end, initialized_size;
1629	loff_t i_size;
1630	struct inode *vi;
1631	ntfs_inode *ni, *base_ni;
1632	struct page *page;
1633	ntfs_attr_search_ctx *ctx;
1634	MFT_RECORD *m;
1635	ATTR_RECORD *a;
1636	char *kattr, *kaddr;
1637	unsigned long flags;
1638	u32 attr_len;
1639	int err;
1640
1641	BUG_ON(!nr_pages);
1642	BUG_ON(!pages);
1643	page = pages[0];
1644	BUG_ON(!page);
1645	vi = page->mapping->host;
1646	ni = NTFS_I(vi);
1647	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1648			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1649			vi->i_ino, ni->type, page->index, nr_pages,
1650			(long long)pos, bytes);
1651	if (NInoNonResident(ni))
1652		return ntfs_commit_pages_after_non_resident_write(pages,
1653				nr_pages, pos, bytes);
1654	BUG_ON(nr_pages > 1);
1655	/*
1656	 * Attribute is resident, implying it is not compressed, encrypted, or
1657	 * sparse.
1658	 */
1659	if (!NInoAttr(ni))
1660		base_ni = ni;
1661	else
1662		base_ni = ni->ext.base_ntfs_ino;
1663	BUG_ON(NInoNonResident(ni));
1664	/* Map, pin, and lock the mft record. */
1665	m = map_mft_record(base_ni);
1666	if (IS_ERR(m)) {
1667		err = PTR_ERR(m);
1668		m = NULL;
1669		ctx = NULL;
1670		goto err_out;
1671	}
1672	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1673	if (unlikely(!ctx)) {
1674		err = -ENOMEM;
1675		goto err_out;
1676	}
1677	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1678			CASE_SENSITIVE, 0, NULL, 0, ctx);
1679	if (unlikely(err)) {
1680		if (err == -ENOENT)
1681			err = -EIO;
1682		goto err_out;
1683	}
1684	a = ctx->attr;
1685	BUG_ON(a->non_resident);
1686	/* The total length of the attribute value. */
1687	attr_len = le32_to_cpu(a->data.resident.value_length);
1688	i_size = i_size_read(vi);
1689	BUG_ON(attr_len != i_size);
1690	BUG_ON(pos > attr_len);
1691	end = pos + bytes;
1692	BUG_ON(end > le32_to_cpu(a->length) -
1693			le16_to_cpu(a->data.resident.value_offset));
1694	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1695	kaddr = kmap_atomic(page);
1696	/* Copy the received data from the page to the mft record. */
1697	memcpy(kattr + pos, kaddr + pos, bytes);
1698	/* Update the attribute length if necessary. */
1699	if (end > attr_len) {
1700		attr_len = end;
1701		a->data.resident.value_length = cpu_to_le32(attr_len);
1702	}
1703	/*
1704	 * If the page is not uptodate, bring the out of bounds area(s)
1705	 * uptodate by copying data from the mft record to the page.
1706	 */
1707	if (!PageUptodate(page)) {
1708		if (pos > 0)
1709			memcpy(kaddr, kattr, pos);
1710		if (end < attr_len)
1711			memcpy(kaddr + end, kattr + end, attr_len - end);
1712		/* Zero the region outside the end of the attribute value. */
1713		memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1714		flush_dcache_page(page);
1715		SetPageUptodate(page);
1716	}
1717	kunmap_atomic(kaddr);
1718	/* Update initialized_size/i_size if necessary. */
1719	read_lock_irqsave(&ni->size_lock, flags);
1720	initialized_size = ni->initialized_size;
1721	BUG_ON(end > ni->allocated_size);
1722	read_unlock_irqrestore(&ni->size_lock, flags);
1723	BUG_ON(initialized_size != i_size);
1724	if (end > initialized_size) {
1725		write_lock_irqsave(&ni->size_lock, flags);
1726		ni->initialized_size = end;
1727		i_size_write(vi, end);
1728		write_unlock_irqrestore(&ni->size_lock, flags);
1729	}
1730	/* Mark the mft record dirty, so it gets written back. */
1731	flush_dcache_mft_record_page(ctx->ntfs_ino);
1732	mark_mft_record_dirty(ctx->ntfs_ino);
1733	ntfs_attr_put_search_ctx(ctx);
1734	unmap_mft_record(base_ni);
1735	ntfs_debug("Done.");
1736	return 0;
1737err_out:
1738	if (err == -ENOMEM) {
1739		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1740				"commit the write.");
1741		if (PageUptodate(page)) {
1742			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1743					"dirty so the write will be retried "
1744					"later on by the VM.");
1745			/*
1746			 * Put the page on mapping->dirty_pages, but leave its
1747			 * buffers' dirty state as-is.
1748			 */
1749			__set_page_dirty_nobuffers(page);
1750			err = 0;
1751		} else
1752			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1753					"data has been lost.");
1754	} else {
1755		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1756				"with error %i.", err);
1757		NVolSetErrors(ni->vol);
1758	}
1759	if (ctx)
1760		ntfs_attr_put_search_ctx(ctx);
1761	if (m)
1762		unmap_mft_record(base_ni);
1763	return err;
1764}
1765
1766static void ntfs_write_failed(struct address_space *mapping, loff_t to)
 
 
 
 
 
 
1767{
1768	struct inode *inode = mapping->host;
 
 
 
1769
1770	if (to > inode->i_size) {
1771		truncate_pagecache(inode, inode->i_size);
1772		ntfs_truncate_vfs(inode);
1773	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774}
1775
1776/**
1777 * ntfs_file_buffered_write -
1778 *
1779 * Locking: The vfs is holding ->i_mutex on the inode.
 
1780 */
1781static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1782		const struct iovec *iov, unsigned long nr_segs,
1783		loff_t pos, loff_t *ppos, size_t count)
1784{
1785	struct file *file = iocb->ki_filp;
1786	struct address_space *mapping = file->f_mapping;
1787	struct inode *vi = mapping->host;
1788	ntfs_inode *ni = NTFS_I(vi);
1789	ntfs_volume *vol = ni->vol;
1790	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1791	struct page *cached_page = NULL;
1792	char __user *buf = NULL;
1793	s64 end, ll;
1794	VCN last_vcn;
1795	LCN lcn;
1796	unsigned long flags;
1797	size_t bytes, iov_ofs = 0;	/* Offset in the current iovec. */
1798	ssize_t status, written;
1799	unsigned nr_pages;
1800	int err;
1801
1802	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1803			"pos 0x%llx, count 0x%lx.",
1804			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1805			(unsigned long long)pos, (unsigned long)count);
1806	if (unlikely(!count))
1807		return 0;
1808	BUG_ON(NInoMstProtected(ni));
1809	/*
1810	 * If the attribute is not an index root and it is encrypted or
1811	 * compressed, we cannot write to it yet.  Note we need to check for
1812	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1813	 * index inodes.
1814	 */
1815	if (ni->type != AT_INDEX_ALLOCATION) {
1816		/* If file is encrypted, deny access, just like NT4. */
1817		if (NInoEncrypted(ni)) {
1818			/*
1819			 * Reminder for later: Encrypted files are _always_
1820			 * non-resident so that the content can always be
1821			 * encrypted.
1822			 */
1823			ntfs_debug("Denying write access to encrypted file.");
1824			return -EACCES;
1825		}
1826		if (NInoCompressed(ni)) {
1827			/* Only unnamed $DATA attribute can be compressed. */
1828			BUG_ON(ni->type != AT_DATA);
1829			BUG_ON(ni->name_len);
1830			/*
1831			 * Reminder for later: If resident, the data is not
1832			 * actually compressed.  Only on the switch to non-
1833			 * resident does compression kick in.  This is in
1834			 * contrast to encrypted files (see above).
1835			 */
1836			ntfs_error(vi->i_sb, "Writing to compressed files is "
1837					"not implemented yet.  Sorry.");
1838			return -EOPNOTSUPP;
1839		}
1840	}
1841	/*
1842	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1843	 * fails again.
1844	 */
1845	if (unlikely(NInoTruncateFailed(ni))) {
 
 
1846		inode_dio_wait(vi);
1847		err = ntfs_truncate(vi);
1848		if (err || NInoTruncateFailed(ni)) {
1849			if (!err)
1850				err = -EIO;
1851			ntfs_error(vol->sb, "Cannot perform write to inode "
1852					"0x%lx, attribute type 0x%x, because "
1853					"ntfs_truncate() failed (error code "
1854					"%i).", vi->i_ino,
1855					(unsigned)le32_to_cpu(ni->type), err);
1856			return err;
1857		}
1858	}
1859	/* The first byte after the write. */
1860	end = pos + count;
1861	/*
1862	 * If the write goes beyond the allocated size, extend the allocation
1863	 * to cover the whole of the write, rounded up to the nearest cluster.
1864	 */
1865	read_lock_irqsave(&ni->size_lock, flags);
1866	ll = ni->allocated_size;
1867	read_unlock_irqrestore(&ni->size_lock, flags);
1868	if (end > ll) {
1869		/* Extend the allocation without changing the data size. */
1870		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1871		if (likely(ll >= 0)) {
1872			BUG_ON(pos >= ll);
1873			/* If the extension was partial truncate the write. */
1874			if (end > ll) {
1875				ntfs_debug("Truncating write to inode 0x%lx, "
1876						"attribute type 0x%x, because "
1877						"the allocation was only "
1878						"partially extended.",
1879						vi->i_ino, (unsigned)
1880						le32_to_cpu(ni->type));
1881				end = ll;
1882				count = ll - pos;
1883			}
1884		} else {
1885			err = ll;
1886			read_lock_irqsave(&ni->size_lock, flags);
1887			ll = ni->allocated_size;
1888			read_unlock_irqrestore(&ni->size_lock, flags);
1889			/* Perform a partial write if possible or fail. */
1890			if (pos < ll) {
1891				ntfs_debug("Truncating write to inode 0x%lx, "
1892						"attribute type 0x%x, because "
1893						"extending the allocation "
1894						"failed (error code %i).",
1895						vi->i_ino, (unsigned)
1896						le32_to_cpu(ni->type), err);
1897				end = ll;
1898				count = ll - pos;
1899			} else {
1900				ntfs_error(vol->sb, "Cannot perform write to "
1901						"inode 0x%lx, attribute type "
1902						"0x%x, because extending the "
1903						"allocation failed (error "
1904						"code %i).", vi->i_ino,
1905						(unsigned)
1906						le32_to_cpu(ni->type), err);
1907				return err;
1908			}
1909		}
1910	}
1911	written = 0;
1912	/*
1913	 * If the write starts beyond the initialized size, extend it up to the
1914	 * beginning of the write and initialize all non-sparse space between
1915	 * the old initialized size and the new one.  This automatically also
1916	 * increments the vfs inode->i_size to keep it above or equal to the
1917	 * initialized_size.
1918	 */
1919	read_lock_irqsave(&ni->size_lock, flags);
1920	ll = ni->initialized_size;
1921	read_unlock_irqrestore(&ni->size_lock, flags);
1922	if (pos > ll) {
1923		err = ntfs_attr_extend_initialized(ni, pos);
1924		if (err < 0) {
1925			ntfs_error(vol->sb, "Cannot perform write to inode "
1926					"0x%lx, attribute type 0x%x, because "
1927					"extending the initialized size "
1928					"failed (error code %i).", vi->i_ino,
1929					(unsigned)le32_to_cpu(ni->type), err);
1930			status = err;
1931			goto err_out;
1932		}
1933	}
1934	/*
1935	 * Determine the number of pages per cluster for non-resident
1936	 * attributes.
1937	 */
1938	nr_pages = 1;
1939	if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1940		nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1941	/* Finally, perform the actual write. */
1942	last_vcn = -1;
1943	if (likely(nr_segs == 1))
1944		buf = iov->iov_base;
1945	do {
1946		VCN vcn;
1947		pgoff_t idx, start_idx;
1948		unsigned ofs, do_pages, u;
1949		size_t copied;
1950
1951		start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1952		ofs = pos & ~PAGE_CACHE_MASK;
1953		bytes = PAGE_CACHE_SIZE - ofs;
1954		do_pages = 1;
1955		if (nr_pages > 1) {
1956			vcn = pos >> vol->cluster_size_bits;
1957			if (vcn != last_vcn) {
1958				last_vcn = vcn;
1959				/*
1960				 * Get the lcn of the vcn the write is in.  If
1961				 * it is a hole, need to lock down all pages in
1962				 * the cluster.
1963				 */
1964				down_read(&ni->runlist.lock);
1965				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1966						vol->cluster_size_bits, false);
1967				up_read(&ni->runlist.lock);
1968				if (unlikely(lcn < LCN_HOLE)) {
1969					status = -EIO;
1970					if (lcn == LCN_ENOMEM)
1971						status = -ENOMEM;
1972					else
 
1973						ntfs_error(vol->sb, "Cannot "
1974							"perform write to "
1975							"inode 0x%lx, "
1976							"attribute type 0x%x, "
1977							"because the attribute "
1978							"is corrupt.",
1979							vi->i_ino, (unsigned)
1980							le32_to_cpu(ni->type));
 
1981					break;
1982				}
1983				if (lcn == LCN_HOLE) {
1984					start_idx = (pos & ~(s64)
1985							vol->cluster_size_mask)
1986							>> PAGE_CACHE_SHIFT;
1987					bytes = vol->cluster_size - (pos &
1988							vol->cluster_size_mask);
1989					do_pages = nr_pages;
1990				}
1991			}
1992		}
1993		if (bytes > count)
1994			bytes = count;
 
1995		/*
1996		 * Bring in the user page(s) that we will copy from _first_.
1997		 * Otherwise there is a nasty deadlock on copying from the same
1998		 * page(s) as we are writing to, without it/them being marked
1999		 * up-to-date.  Note, at present there is nothing to stop the
2000		 * pages being swapped out between us bringing them into memory
2001		 * and doing the actual copying.
2002		 */
2003		if (likely(nr_segs == 1))
2004			ntfs_fault_in_pages_readable(buf, bytes);
2005		else
2006			ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2007		/* Get and lock @do_pages starting at index @start_idx. */
2008		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2009				pages, &cached_page);
2010		if (unlikely(status))
2011			break;
2012		/*
2013		 * For non-resident attributes, we need to fill any holes with
2014		 * actual clusters and ensure all bufferes are mapped.  We also
2015		 * need to bring uptodate any buffers that are only partially
2016		 * being written to.
2017		 */
2018		if (NInoNonResident(ni)) {
2019			status = ntfs_prepare_pages_for_non_resident_write(
2020					pages, do_pages, pos, bytes);
2021			if (unlikely(status)) {
2022				loff_t i_size;
2023
2024				do {
2025					unlock_page(pages[--do_pages]);
2026					page_cache_release(pages[do_pages]);
2027				} while (do_pages);
2028				/*
2029				 * The write preparation may have instantiated
2030				 * allocated space outside i_size.  Trim this
2031				 * off again.  We can ignore any errors in this
2032				 * case as we will just be waisting a bit of
2033				 * allocated space, which is not a disaster.
2034				 */
2035				i_size = i_size_read(vi);
2036				if (pos + bytes > i_size) {
2037					ntfs_write_failed(mapping, pos + bytes);
2038				}
2039				break;
2040			}
2041		}
2042		u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2043		if (likely(nr_segs == 1)) {
2044			copied = ntfs_copy_from_user(pages + u, do_pages - u,
2045					ofs, buf, bytes);
2046			buf += copied;
2047		} else
2048			copied = ntfs_copy_from_user_iovec(pages + u,
2049					do_pages - u, ofs, &iov, &iov_ofs,
2050					bytes);
2051		ntfs_flush_dcache_pages(pages + u, do_pages - u);
2052		status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2053				bytes);
2054		if (likely(!status)) {
2055			written += copied;
2056			count -= copied;
2057			pos += copied;
2058			if (unlikely(copied != bytes))
2059				status = -EFAULT;
2060		}
2061		do {
2062			unlock_page(pages[--do_pages]);
2063			mark_page_accessed(pages[do_pages]);
2064			page_cache_release(pages[do_pages]);
2065		} while (do_pages);
2066		if (unlikely(status))
2067			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068		balance_dirty_pages_ratelimited(mapping);
2069		cond_resched();
2070	} while (count);
2071err_out:
2072	*ppos = pos;
 
2073	if (cached_page)
2074		page_cache_release(cached_page);
2075	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2076			written ? "written" : "status", (unsigned long)written,
2077			(long)status);
2078	return written ? written : status;
2079}
2080
2081/**
2082 * ntfs_file_aio_write_nolock -
 
 
 
 
 
 
2083 */
2084static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2085		const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2086{
2087	struct file *file = iocb->ki_filp;
2088	struct address_space *mapping = file->f_mapping;
2089	struct inode *inode = mapping->host;
2090	loff_t pos;
2091	size_t count;		/* after file limit checks */
2092	ssize_t written, err;
2093
2094	count = 0;
2095	err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2096	if (err)
2097		return err;
2098	pos = *ppos;
2099	/* We can write back this queue in page reclaim. */
2100	current->backing_dev_info = mapping->backing_dev_info;
2101	written = 0;
2102	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2103	if (err)
2104		goto out;
2105	if (!count)
2106		goto out;
2107	err = file_remove_suid(file);
2108	if (err)
2109		goto out;
2110	err = file_update_time(file);
2111	if (err)
2112		goto out;
2113	written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2114			count);
2115out:
2116	current->backing_dev_info = NULL;
2117	return written ? written : err;
2118}
2119
2120/**
2121 * ntfs_file_aio_write -
2122 */
2123static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2124		unsigned long nr_segs, loff_t pos)
2125{
2126	struct file *file = iocb->ki_filp;
2127	struct address_space *mapping = file->f_mapping;
2128	struct inode *inode = mapping->host;
2129	ssize_t ret;
2130
2131	BUG_ON(iocb->ki_pos != pos);
2132
2133	mutex_lock(&inode->i_mutex);
2134	ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2135	mutex_unlock(&inode->i_mutex);
2136	if (ret > 0) {
2137		int err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2138		if (err < 0)
2139			ret = err;
2140	}
2141	return ret;
 
2142}
2143
2144/**
2145 * ntfs_file_fsync - sync a file to disk
2146 * @filp:	file to be synced
2147 * @datasync:	if non-zero only flush user data and not metadata
2148 *
2149 * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2150 * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2151 *
2152 * If @datasync is false, write the mft record and all associated extent mft
2153 * records as well as the $DATA attribute and then sync the block device.
2154 *
2155 * If @datasync is true and the attribute is non-resident, we skip the writing
2156 * of the mft record and all associated extent mft records (this might still
2157 * happen due to the write_inode_now() call).
2158 *
2159 * Also, if @datasync is true, we do not wait on the inode to be written out
2160 * but we always wait on the page cache pages to be written out.
2161 *
2162 * Locking: Caller must hold i_mutex on the inode.
2163 *
2164 * TODO: We should probably also write all attribute/index inodes associated
2165 * with this inode but since we have no simple way of getting to them we ignore
2166 * this problem for now.
2167 */
2168static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
2169			   int datasync)
2170{
2171	struct inode *vi = filp->f_mapping->host;
2172	int err, ret = 0;
2173
2174	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2175
2176	err = filemap_write_and_wait_range(vi->i_mapping, start, end);
2177	if (err)
2178		return err;
2179	mutex_lock(&vi->i_mutex);
2180
2181	BUG_ON(S_ISDIR(vi->i_mode));
2182	if (!datasync || !NInoNonResident(NTFS_I(vi)))
2183		ret = __ntfs_write_inode(vi, 1);
2184	write_inode_now(vi, !datasync);
2185	/*
2186	 * NOTE: If we were to use mapping->private_list (see ext2 and
2187	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2188	 * sync_mapping_buffers(vi->i_mapping).
2189	 */
2190	err = sync_blockdev(vi->i_sb->s_bdev);
2191	if (unlikely(err && !ret))
2192		ret = err;
2193	if (likely(!ret))
2194		ntfs_debug("Done.");
2195	else
2196		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2197				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2198	mutex_unlock(&vi->i_mutex);
2199	return ret;
2200}
2201
2202#endif /* NTFS_RW */
2203
2204const struct file_operations ntfs_file_ops = {
2205	.llseek		= generic_file_llseek,	 /* Seek inside file. */
2206	.read		= do_sync_read,		 /* Read from file. */
2207	.aio_read	= generic_file_aio_read, /* Async read from file. */
2208#ifdef NTFS_RW
2209	.write		= do_sync_write,	 /* Write to file. */
2210	.aio_write	= ntfs_file_aio_write,	 /* Async write to file. */
2211	/*.release	= ,*/			 /* Last file is closed.  See
2212						    fs/ext2/file.c::
2213						    ext2_release_file() for
2214						    how to use this to discard
2215						    preallocated space for
2216						    write opened files. */
2217	.fsync		= ntfs_file_fsync,	 /* Sync a file to disk. */
2218	/*.aio_fsync	= ,*/			 /* Sync all outstanding async
2219						    i/o operations on a
2220						    kiocb. */
2221#endif /* NTFS_RW */
2222	/*.ioctl	= ,*/			 /* Perform function on the
2223						    mounted filesystem. */
2224	.mmap		= generic_file_mmap,	 /* Mmap file. */
2225	.open		= ntfs_file_open,	 /* Open file. */
2226	.splice_read	= generic_file_splice_read /* Zero-copy data send with
2227						    the data source being on
2228						    the ntfs partition.  We do
2229						    not need to care about the
2230						    data destination. */
2231	/*.sendpage	= ,*/			 /* Zero-copy data send with
2232						    the data destination being
2233						    on the ntfs partition.  We
2234						    do not need to care about
2235						    the data source. */
2236};
2237
2238const struct inode_operations ntfs_file_inode_ops = {
2239#ifdef NTFS_RW
2240	.setattr	= ntfs_setattr,
2241#endif /* NTFS_RW */
2242};
2243
2244const struct file_operations ntfs_empty_file_ops = {};
2245
2246const struct inode_operations ntfs_empty_inode_ops = {};