Loading...
1/*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
25#include <linux/dax.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30#include <linux/pagevec.h>
31#include <linux/mpage.h>
32#include <linux/namei.h>
33#include <linux/uio.h>
34#include <linux/bio.h>
35#include <linux/workqueue.h>
36#include <linux/kernel.h>
37#include <linux/printk.h>
38#include <linux/slab.h>
39#include <linux/bitops.h>
40
41#include "ext4_jbd2.h"
42#include "xattr.h"
43#include "acl.h"
44#include "truncate.h"
45
46#include <trace/events/ext4.h>
47
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96}
97
98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100{
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113}
114
115static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117{
118 trace_ext4_begin_ordered_truncate(inode, new_size);
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
130}
131
132static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
138
139/*
140 * Test whether an inode is a fast symlink.
141 */
142int ext4_inode_is_fast_symlink(struct inode *inode)
143{
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147 if (ext4_has_inline_data(inode))
148 return 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160{
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
182void ext4_evict_inode(struct inode *inode)
183{
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages_final(&inode->i_data);
218
219 goto no_delete;
220 }
221
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages_final(&inode->i_data);
229
230 /*
231 * Protect us against freezing - iput() caller didn't have to have any
232 * protection against it
233 */
234 sb_start_intwrite(inode->i_sb);
235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 ext4_blocks_for_truncate(inode)+3);
237 if (IS_ERR(handle)) {
238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 /*
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
243 */
244 ext4_orphan_del(NULL, inode);
245 sb_end_intwrite(inode->i_sb);
246 goto no_delete;
247 }
248
249 if (IS_SYNC(inode))
250 ext4_handle_sync(handle);
251 inode->i_size = 0;
252 err = ext4_mark_inode_dirty(handle, inode);
253 if (err) {
254 ext4_warning(inode->i_sb,
255 "couldn't mark inode dirty (err %d)", err);
256 goto stop_handle;
257 }
258 if (inode->i_blocks)
259 ext4_truncate(inode);
260
261 /*
262 * ext4_ext_truncate() doesn't reserve any slop when it
263 * restarts journal transactions; therefore there may not be
264 * enough credits left in the handle to remove the inode from
265 * the orphan list and set the dtime field.
266 */
267 if (!ext4_handle_has_enough_credits(handle, 3)) {
268 err = ext4_journal_extend(handle, 3);
269 if (err > 0)
270 err = ext4_journal_restart(handle, 3);
271 if (err != 0) {
272 ext4_warning(inode->i_sb,
273 "couldn't extend journal (err %d)", err);
274 stop_handle:
275 ext4_journal_stop(handle);
276 ext4_orphan_del(NULL, inode);
277 sb_end_intwrite(inode->i_sb);
278 goto no_delete;
279 }
280 }
281
282 /*
283 * Kill off the orphan record which ext4_truncate created.
284 * AKPM: I think this can be inside the above `if'.
285 * Note that ext4_orphan_del() has to be able to cope with the
286 * deletion of a non-existent orphan - this is because we don't
287 * know if ext4_truncate() actually created an orphan record.
288 * (Well, we could do this if we need to, but heck - it works)
289 */
290 ext4_orphan_del(handle, inode);
291 EXT4_I(inode)->i_dtime = get_seconds();
292
293 /*
294 * One subtle ordering requirement: if anything has gone wrong
295 * (transaction abort, IO errors, whatever), then we can still
296 * do these next steps (the fs will already have been marked as
297 * having errors), but we can't free the inode if the mark_dirty
298 * fails.
299 */
300 if (ext4_mark_inode_dirty(handle, inode))
301 /* If that failed, just do the required in-core inode clear. */
302 ext4_clear_inode(inode);
303 else
304 ext4_free_inode(handle, inode);
305 ext4_journal_stop(handle);
306 sb_end_intwrite(inode->i_sb);
307 return;
308no_delete:
309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
310}
311
312#ifdef CONFIG_QUOTA
313qsize_t *ext4_get_reserved_space(struct inode *inode)
314{
315 return &EXT4_I(inode)->i_reserved_quota;
316}
317#endif
318
319/*
320 * Called with i_data_sem down, which is important since we can call
321 * ext4_discard_preallocations() from here.
322 */
323void ext4_da_update_reserve_space(struct inode *inode,
324 int used, int quota_claim)
325{
326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327 struct ext4_inode_info *ei = EXT4_I(inode);
328
329 spin_lock(&ei->i_block_reservation_lock);
330 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331 if (unlikely(used > ei->i_reserved_data_blocks)) {
332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333 "with only %d reserved data blocks",
334 __func__, inode->i_ino, used,
335 ei->i_reserved_data_blocks);
336 WARN_ON(1);
337 used = ei->i_reserved_data_blocks;
338 }
339
340 /* Update per-inode reservations */
341 ei->i_reserved_data_blocks -= used;
342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343
344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345
346 /* Update quota subsystem for data blocks */
347 if (quota_claim)
348 dquot_claim_block(inode, EXT4_C2B(sbi, used));
349 else {
350 /*
351 * We did fallocate with an offset that is already delayed
352 * allocated. So on delayed allocated writeback we should
353 * not re-claim the quota for fallocated blocks.
354 */
355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356 }
357
358 /*
359 * If we have done all the pending block allocations and if
360 * there aren't any writers on the inode, we can discard the
361 * inode's preallocations.
362 */
363 if ((ei->i_reserved_data_blocks == 0) &&
364 (atomic_read(&inode->i_writecount) == 0))
365 ext4_discard_preallocations(inode);
366}
367
368static int __check_block_validity(struct inode *inode, const char *func,
369 unsigned int line,
370 struct ext4_map_blocks *map)
371{
372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373 map->m_len)) {
374 ext4_error_inode(inode, func, line, map->m_pblk,
375 "lblock %lu mapped to illegal pblock "
376 "(length %d)", (unsigned long) map->m_lblk,
377 map->m_len);
378 return -EFSCORRUPTED;
379 }
380 return 0;
381}
382
383int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384 ext4_lblk_t len)
385{
386 int ret;
387
388 if (ext4_encrypted_inode(inode))
389 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390
391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392 if (ret > 0)
393 ret = 0;
394
395 return ret;
396}
397
398#define check_block_validity(inode, map) \
399 __check_block_validity((inode), __func__, __LINE__, (map))
400
401#ifdef ES_AGGRESSIVE_TEST
402static void ext4_map_blocks_es_recheck(handle_t *handle,
403 struct inode *inode,
404 struct ext4_map_blocks *es_map,
405 struct ext4_map_blocks *map,
406 int flags)
407{
408 int retval;
409
410 map->m_flags = 0;
411 /*
412 * There is a race window that the result is not the same.
413 * e.g. xfstests #223 when dioread_nolock enables. The reason
414 * is that we lookup a block mapping in extent status tree with
415 * out taking i_data_sem. So at the time the unwritten extent
416 * could be converted.
417 */
418 down_read(&EXT4_I(inode)->i_data_sem);
419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 EXT4_GET_BLOCKS_KEEP_SIZE);
422 } else {
423 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
425 }
426 up_read((&EXT4_I(inode)->i_data_sem));
427
428 /*
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
431 */
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
435 printk("ES cache assertion failed for inode: %lu "
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
442 }
443}
444#endif /* ES_AGGRESSIVE_TEST */
445
446/*
447 * The ext4_map_blocks() function tries to look up the requested blocks,
448 * and returns if the blocks are already mapped.
449 *
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
453 *
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456 * based files
457 *
458 * On success, it returns the number of blocks being mapped or allocated. if
459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461 *
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, @map is returned as unmapped but we still do fill map->m_len to
464 * indicate the length of a hole starting at map->m_lblk.
465 *
466 * It returns the error in case of allocation failure.
467 */
468int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
470{
471 struct extent_status es;
472 int retval;
473 int ret = 0;
474#ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
476
477 memcpy(&orig_map, map, sizeof(*map));
478#endif
479
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
484
485 /*
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 */
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
490
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 return -EFSCORRUPTED;
494
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 map->m_pblk = ext4_es_pblock(&es) +
499 map->m_lblk - es.es_lblk;
500 map->m_flags |= ext4_es_is_written(&es) ?
501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 retval = es.es_len - (map->m_lblk - es.es_lblk);
503 if (retval > map->m_len)
504 retval = map->m_len;
505 map->m_len = retval;
506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507 map->m_pblk = 0;
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
510 retval = map->m_len;
511 map->m_len = retval;
512 retval = 0;
513 } else {
514 BUG_ON(1);
515 }
516#ifdef ES_AGGRESSIVE_TEST
517 ext4_map_blocks_es_recheck(handle, inode, map,
518 &orig_map, flags);
519#endif
520 goto found;
521 }
522
523 /*
524 * Try to see if we can get the block without requesting a new
525 * file system block.
526 */
527 down_read(&EXT4_I(inode)->i_data_sem);
528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
531 } else {
532 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 EXT4_GET_BLOCKS_KEEP_SIZE);
534 }
535 if (retval > 0) {
536 unsigned int status;
537
538 if (unlikely(retval != map->m_len)) {
539 ext4_warning(inode->i_sb,
540 "ES len assertion failed for inode "
541 "%lu: retval %d != map->m_len %d",
542 inode->i_ino, retval, map->m_len);
543 WARN_ON(1);
544 }
545
546 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549 !(status & EXTENT_STATUS_WRITTEN) &&
550 ext4_find_delalloc_range(inode, map->m_lblk,
551 map->m_lblk + map->m_len - 1))
552 status |= EXTENT_STATUS_DELAYED;
553 ret = ext4_es_insert_extent(inode, map->m_lblk,
554 map->m_len, map->m_pblk, status);
555 if (ret < 0)
556 retval = ret;
557 }
558 up_read((&EXT4_I(inode)->i_data_sem));
559
560found:
561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562 ret = check_block_validity(inode, map);
563 if (ret != 0)
564 return ret;
565 }
566
567 /* If it is only a block(s) look up */
568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569 return retval;
570
571 /*
572 * Returns if the blocks have already allocated
573 *
574 * Note that if blocks have been preallocated
575 * ext4_ext_get_block() returns the create = 0
576 * with buffer head unmapped.
577 */
578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579 /*
580 * If we need to convert extent to unwritten
581 * we continue and do the actual work in
582 * ext4_ext_map_blocks()
583 */
584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 return retval;
586
587 /*
588 * Here we clear m_flags because after allocating an new extent,
589 * it will be set again.
590 */
591 map->m_flags &= ~EXT4_MAP_FLAGS;
592
593 /*
594 * New blocks allocate and/or writing to unwritten extent
595 * will possibly result in updating i_data, so we take
596 * the write lock of i_data_sem, and call get_block()
597 * with create == 1 flag.
598 */
599 down_write(&EXT4_I(inode)->i_data_sem);
600
601 /*
602 * We need to check for EXT4 here because migrate
603 * could have changed the inode type in between
604 */
605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 retval = ext4_ext_map_blocks(handle, inode, map, flags);
607 } else {
608 retval = ext4_ind_map_blocks(handle, inode, map, flags);
609
610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611 /*
612 * We allocated new blocks which will result in
613 * i_data's format changing. Force the migrate
614 * to fail by clearing migrate flags
615 */
616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617 }
618
619 /*
620 * Update reserved blocks/metadata blocks after successful
621 * block allocation which had been deferred till now. We don't
622 * support fallocate for non extent files. So we can update
623 * reserve space here.
624 */
625 if ((retval > 0) &&
626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627 ext4_da_update_reserve_space(inode, retval, 1);
628 }
629
630 if (retval > 0) {
631 unsigned int status;
632
633 if (unlikely(retval != map->m_len)) {
634 ext4_warning(inode->i_sb,
635 "ES len assertion failed for inode "
636 "%lu: retval %d != map->m_len %d",
637 inode->i_ino, retval, map->m_len);
638 WARN_ON(1);
639 }
640
641 /*
642 * We have to zeroout blocks before inserting them into extent
643 * status tree. Otherwise someone could look them up there and
644 * use them before they are really zeroed.
645 */
646 if (flags & EXT4_GET_BLOCKS_ZERO &&
647 map->m_flags & EXT4_MAP_MAPPED &&
648 map->m_flags & EXT4_MAP_NEW) {
649 ret = ext4_issue_zeroout(inode, map->m_lblk,
650 map->m_pblk, map->m_len);
651 if (ret) {
652 retval = ret;
653 goto out_sem;
654 }
655 }
656
657 /*
658 * If the extent has been zeroed out, we don't need to update
659 * extent status tree.
660 */
661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 if (ext4_es_is_written(&es))
664 goto out_sem;
665 }
666 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669 !(status & EXTENT_STATUS_WRITTEN) &&
670 ext4_find_delalloc_range(inode, map->m_lblk,
671 map->m_lblk + map->m_len - 1))
672 status |= EXTENT_STATUS_DELAYED;
673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 map->m_pblk, status);
675 if (ret < 0) {
676 retval = ret;
677 goto out_sem;
678 }
679 }
680
681out_sem:
682 up_write((&EXT4_I(inode)->i_data_sem));
683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684 ret = check_block_validity(inode, map);
685 if (ret != 0)
686 return ret;
687 }
688 return retval;
689}
690
691/*
692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693 * we have to be careful as someone else may be manipulating b_state as well.
694 */
695static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
696{
697 unsigned long old_state;
698 unsigned long new_state;
699
700 flags &= EXT4_MAP_FLAGS;
701
702 /* Dummy buffer_head? Set non-atomically. */
703 if (!bh->b_page) {
704 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705 return;
706 }
707 /*
708 * Someone else may be modifying b_state. Be careful! This is ugly but
709 * once we get rid of using bh as a container for mapping information
710 * to pass to / from get_block functions, this can go away.
711 */
712 do {
713 old_state = READ_ONCE(bh->b_state);
714 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715 } while (unlikely(
716 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
717}
718
719static int _ext4_get_block(struct inode *inode, sector_t iblock,
720 struct buffer_head *bh, int flags)
721{
722 struct ext4_map_blocks map;
723 int ret = 0;
724
725 if (ext4_has_inline_data(inode))
726 return -ERANGE;
727
728 map.m_lblk = iblock;
729 map.m_len = bh->b_size >> inode->i_blkbits;
730
731 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732 flags);
733 if (ret > 0) {
734 map_bh(bh, inode->i_sb, map.m_pblk);
735 ext4_update_bh_state(bh, map.m_flags);
736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 ret = 0;
738 }
739 return ret;
740}
741
742int ext4_get_block(struct inode *inode, sector_t iblock,
743 struct buffer_head *bh, int create)
744{
745 return _ext4_get_block(inode, iblock, bh,
746 create ? EXT4_GET_BLOCKS_CREATE : 0);
747}
748
749/*
750 * Get block function used when preparing for buffered write if we require
751 * creating an unwritten extent if blocks haven't been allocated. The extent
752 * will be converted to written after the IO is complete.
753 */
754int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh_result, int create)
756{
757 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758 inode->i_ino, create);
759 return _ext4_get_block(inode, iblock, bh_result,
760 EXT4_GET_BLOCKS_IO_CREATE_EXT);
761}
762
763/* Maximum number of blocks we map for direct IO at once. */
764#define DIO_MAX_BLOCKS 4096
765
766/*
767 * Get blocks function for the cases that need to start a transaction -
768 * generally difference cases of direct IO and DAX IO. It also handles retries
769 * in case of ENOSPC.
770 */
771static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
772 struct buffer_head *bh_result, int flags)
773{
774 int dio_credits;
775 handle_t *handle;
776 int retries = 0;
777 int ret;
778
779 /* Trim mapping request to maximum we can map at once for DIO */
780 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
781 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
782 dio_credits = ext4_chunk_trans_blocks(inode,
783 bh_result->b_size >> inode->i_blkbits);
784retry:
785 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
786 if (IS_ERR(handle))
787 return PTR_ERR(handle);
788
789 ret = _ext4_get_block(inode, iblock, bh_result, flags);
790 ext4_journal_stop(handle);
791
792 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
793 goto retry;
794 return ret;
795}
796
797/* Get block function for DIO reads and writes to inodes without extents */
798int ext4_dio_get_block(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh, int create)
800{
801 /* We don't expect handle for direct IO */
802 WARN_ON_ONCE(ext4_journal_current_handle());
803
804 if (!create)
805 return _ext4_get_block(inode, iblock, bh, 0);
806 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
807}
808
809/*
810 * Get block function for AIO DIO writes when we create unwritten extent if
811 * blocks are not allocated yet. The extent will be converted to written
812 * after IO is complete.
813 */
814static int ext4_dio_get_block_unwritten_async(struct inode *inode,
815 sector_t iblock, struct buffer_head *bh_result, int create)
816{
817 int ret;
818
819 /* We don't expect handle for direct IO */
820 WARN_ON_ONCE(ext4_journal_current_handle());
821
822 ret = ext4_get_block_trans(inode, iblock, bh_result,
823 EXT4_GET_BLOCKS_IO_CREATE_EXT);
824
825 /*
826 * When doing DIO using unwritten extents, we need io_end to convert
827 * unwritten extents to written on IO completion. We allocate io_end
828 * once we spot unwritten extent and store it in b_private. Generic
829 * DIO code keeps b_private set and furthermore passes the value to
830 * our completion callback in 'private' argument.
831 */
832 if (!ret && buffer_unwritten(bh_result)) {
833 if (!bh_result->b_private) {
834 ext4_io_end_t *io_end;
835
836 io_end = ext4_init_io_end(inode, GFP_KERNEL);
837 if (!io_end)
838 return -ENOMEM;
839 bh_result->b_private = io_end;
840 ext4_set_io_unwritten_flag(inode, io_end);
841 }
842 set_buffer_defer_completion(bh_result);
843 }
844
845 return ret;
846}
847
848/*
849 * Get block function for non-AIO DIO writes when we create unwritten extent if
850 * blocks are not allocated yet. The extent will be converted to written
851 * after IO is complete from ext4_ext_direct_IO() function.
852 */
853static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
854 sector_t iblock, struct buffer_head *bh_result, int create)
855{
856 int ret;
857
858 /* We don't expect handle for direct IO */
859 WARN_ON_ONCE(ext4_journal_current_handle());
860
861 ret = ext4_get_block_trans(inode, iblock, bh_result,
862 EXT4_GET_BLOCKS_IO_CREATE_EXT);
863
864 /*
865 * Mark inode as having pending DIO writes to unwritten extents.
866 * ext4_ext_direct_IO() checks this flag and converts extents to
867 * written.
868 */
869 if (!ret && buffer_unwritten(bh_result))
870 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
871
872 return ret;
873}
874
875static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
876 struct buffer_head *bh_result, int create)
877{
878 int ret;
879
880 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
881 inode->i_ino, create);
882 /* We don't expect handle for direct IO */
883 WARN_ON_ONCE(ext4_journal_current_handle());
884
885 ret = _ext4_get_block(inode, iblock, bh_result, 0);
886 /*
887 * Blocks should have been preallocated! ext4_file_write_iter() checks
888 * that.
889 */
890 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
891
892 return ret;
893}
894
895
896/*
897 * `handle' can be NULL if create is zero
898 */
899struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
900 ext4_lblk_t block, int map_flags)
901{
902 struct ext4_map_blocks map;
903 struct buffer_head *bh;
904 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
905 int err;
906
907 J_ASSERT(handle != NULL || create == 0);
908
909 map.m_lblk = block;
910 map.m_len = 1;
911 err = ext4_map_blocks(handle, inode, &map, map_flags);
912
913 if (err == 0)
914 return create ? ERR_PTR(-ENOSPC) : NULL;
915 if (err < 0)
916 return ERR_PTR(err);
917
918 bh = sb_getblk(inode->i_sb, map.m_pblk);
919 if (unlikely(!bh))
920 return ERR_PTR(-ENOMEM);
921 if (map.m_flags & EXT4_MAP_NEW) {
922 J_ASSERT(create != 0);
923 J_ASSERT(handle != NULL);
924
925 /*
926 * Now that we do not always journal data, we should
927 * keep in mind whether this should always journal the
928 * new buffer as metadata. For now, regular file
929 * writes use ext4_get_block instead, so it's not a
930 * problem.
931 */
932 lock_buffer(bh);
933 BUFFER_TRACE(bh, "call get_create_access");
934 err = ext4_journal_get_create_access(handle, bh);
935 if (unlikely(err)) {
936 unlock_buffer(bh);
937 goto errout;
938 }
939 if (!buffer_uptodate(bh)) {
940 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
941 set_buffer_uptodate(bh);
942 }
943 unlock_buffer(bh);
944 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
945 err = ext4_handle_dirty_metadata(handle, inode, bh);
946 if (unlikely(err))
947 goto errout;
948 } else
949 BUFFER_TRACE(bh, "not a new buffer");
950 return bh;
951errout:
952 brelse(bh);
953 return ERR_PTR(err);
954}
955
956struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
957 ext4_lblk_t block, int map_flags)
958{
959 struct buffer_head *bh;
960
961 bh = ext4_getblk(handle, inode, block, map_flags);
962 if (IS_ERR(bh))
963 return bh;
964 if (!bh || buffer_uptodate(bh))
965 return bh;
966 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
967 wait_on_buffer(bh);
968 if (buffer_uptodate(bh))
969 return bh;
970 put_bh(bh);
971 return ERR_PTR(-EIO);
972}
973
974int ext4_walk_page_buffers(handle_t *handle,
975 struct buffer_head *head,
976 unsigned from,
977 unsigned to,
978 int *partial,
979 int (*fn)(handle_t *handle,
980 struct buffer_head *bh))
981{
982 struct buffer_head *bh;
983 unsigned block_start, block_end;
984 unsigned blocksize = head->b_size;
985 int err, ret = 0;
986 struct buffer_head *next;
987
988 for (bh = head, block_start = 0;
989 ret == 0 && (bh != head || !block_start);
990 block_start = block_end, bh = next) {
991 next = bh->b_this_page;
992 block_end = block_start + blocksize;
993 if (block_end <= from || block_start >= to) {
994 if (partial && !buffer_uptodate(bh))
995 *partial = 1;
996 continue;
997 }
998 err = (*fn)(handle, bh);
999 if (!ret)
1000 ret = err;
1001 }
1002 return ret;
1003}
1004
1005/*
1006 * To preserve ordering, it is essential that the hole instantiation and
1007 * the data write be encapsulated in a single transaction. We cannot
1008 * close off a transaction and start a new one between the ext4_get_block()
1009 * and the commit_write(). So doing the jbd2_journal_start at the start of
1010 * prepare_write() is the right place.
1011 *
1012 * Also, this function can nest inside ext4_writepage(). In that case, we
1013 * *know* that ext4_writepage() has generated enough buffer credits to do the
1014 * whole page. So we won't block on the journal in that case, which is good,
1015 * because the caller may be PF_MEMALLOC.
1016 *
1017 * By accident, ext4 can be reentered when a transaction is open via
1018 * quota file writes. If we were to commit the transaction while thus
1019 * reentered, there can be a deadlock - we would be holding a quota
1020 * lock, and the commit would never complete if another thread had a
1021 * transaction open and was blocking on the quota lock - a ranking
1022 * violation.
1023 *
1024 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1025 * will _not_ run commit under these circumstances because handle->h_ref
1026 * is elevated. We'll still have enough credits for the tiny quotafile
1027 * write.
1028 */
1029int do_journal_get_write_access(handle_t *handle,
1030 struct buffer_head *bh)
1031{
1032 int dirty = buffer_dirty(bh);
1033 int ret;
1034
1035 if (!buffer_mapped(bh) || buffer_freed(bh))
1036 return 0;
1037 /*
1038 * __block_write_begin() could have dirtied some buffers. Clean
1039 * the dirty bit as jbd2_journal_get_write_access() could complain
1040 * otherwise about fs integrity issues. Setting of the dirty bit
1041 * by __block_write_begin() isn't a real problem here as we clear
1042 * the bit before releasing a page lock and thus writeback cannot
1043 * ever write the buffer.
1044 */
1045 if (dirty)
1046 clear_buffer_dirty(bh);
1047 BUFFER_TRACE(bh, "get write access");
1048 ret = ext4_journal_get_write_access(handle, bh);
1049 if (!ret && dirty)
1050 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1051 return ret;
1052}
1053
1054#ifdef CONFIG_EXT4_FS_ENCRYPTION
1055static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1056 get_block_t *get_block)
1057{
1058 unsigned from = pos & (PAGE_SIZE - 1);
1059 unsigned to = from + len;
1060 struct inode *inode = page->mapping->host;
1061 unsigned block_start, block_end;
1062 sector_t block;
1063 int err = 0;
1064 unsigned blocksize = inode->i_sb->s_blocksize;
1065 unsigned bbits;
1066 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1067 bool decrypt = false;
1068
1069 BUG_ON(!PageLocked(page));
1070 BUG_ON(from > PAGE_SIZE);
1071 BUG_ON(to > PAGE_SIZE);
1072 BUG_ON(from > to);
1073
1074 if (!page_has_buffers(page))
1075 create_empty_buffers(page, blocksize, 0);
1076 head = page_buffers(page);
1077 bbits = ilog2(blocksize);
1078 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1079
1080 for (bh = head, block_start = 0; bh != head || !block_start;
1081 block++, block_start = block_end, bh = bh->b_this_page) {
1082 block_end = block_start + blocksize;
1083 if (block_end <= from || block_start >= to) {
1084 if (PageUptodate(page)) {
1085 if (!buffer_uptodate(bh))
1086 set_buffer_uptodate(bh);
1087 }
1088 continue;
1089 }
1090 if (buffer_new(bh))
1091 clear_buffer_new(bh);
1092 if (!buffer_mapped(bh)) {
1093 WARN_ON(bh->b_size != blocksize);
1094 err = get_block(inode, block, bh, 1);
1095 if (err)
1096 break;
1097 if (buffer_new(bh)) {
1098 unmap_underlying_metadata(bh->b_bdev,
1099 bh->b_blocknr);
1100 if (PageUptodate(page)) {
1101 clear_buffer_new(bh);
1102 set_buffer_uptodate(bh);
1103 mark_buffer_dirty(bh);
1104 continue;
1105 }
1106 if (block_end > to || block_start < from)
1107 zero_user_segments(page, to, block_end,
1108 block_start, from);
1109 continue;
1110 }
1111 }
1112 if (PageUptodate(page)) {
1113 if (!buffer_uptodate(bh))
1114 set_buffer_uptodate(bh);
1115 continue;
1116 }
1117 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118 !buffer_unwritten(bh) &&
1119 (block_start < from || block_end > to)) {
1120 ll_rw_block(READ, 1, &bh);
1121 *wait_bh++ = bh;
1122 decrypt = ext4_encrypted_inode(inode) &&
1123 S_ISREG(inode->i_mode);
1124 }
1125 }
1126 /*
1127 * If we issued read requests, let them complete.
1128 */
1129 while (wait_bh > wait) {
1130 wait_on_buffer(*--wait_bh);
1131 if (!buffer_uptodate(*wait_bh))
1132 err = -EIO;
1133 }
1134 if (unlikely(err))
1135 page_zero_new_buffers(page, from, to);
1136 else if (decrypt)
1137 err = ext4_decrypt(page);
1138 return err;
1139}
1140#endif
1141
1142static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143 loff_t pos, unsigned len, unsigned flags,
1144 struct page **pagep, void **fsdata)
1145{
1146 struct inode *inode = mapping->host;
1147 int ret, needed_blocks;
1148 handle_t *handle;
1149 int retries = 0;
1150 struct page *page;
1151 pgoff_t index;
1152 unsigned from, to;
1153
1154 trace_ext4_write_begin(inode, pos, len, flags);
1155 /*
1156 * Reserve one block more for addition to orphan list in case
1157 * we allocate blocks but write fails for some reason
1158 */
1159 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1160 index = pos >> PAGE_SHIFT;
1161 from = pos & (PAGE_SIZE - 1);
1162 to = from + len;
1163
1164 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1165 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1166 flags, pagep);
1167 if (ret < 0)
1168 return ret;
1169 if (ret == 1)
1170 return 0;
1171 }
1172
1173 /*
1174 * grab_cache_page_write_begin() can take a long time if the
1175 * system is thrashing due to memory pressure, or if the page
1176 * is being written back. So grab it first before we start
1177 * the transaction handle. This also allows us to allocate
1178 * the page (if needed) without using GFP_NOFS.
1179 */
1180retry_grab:
1181 page = grab_cache_page_write_begin(mapping, index, flags);
1182 if (!page)
1183 return -ENOMEM;
1184 unlock_page(page);
1185
1186retry_journal:
1187 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1188 if (IS_ERR(handle)) {
1189 put_page(page);
1190 return PTR_ERR(handle);
1191 }
1192
1193 lock_page(page);
1194 if (page->mapping != mapping) {
1195 /* The page got truncated from under us */
1196 unlock_page(page);
1197 put_page(page);
1198 ext4_journal_stop(handle);
1199 goto retry_grab;
1200 }
1201 /* In case writeback began while the page was unlocked */
1202 wait_for_stable_page(page);
1203
1204#ifdef CONFIG_EXT4_FS_ENCRYPTION
1205 if (ext4_should_dioread_nolock(inode))
1206 ret = ext4_block_write_begin(page, pos, len,
1207 ext4_get_block_unwritten);
1208 else
1209 ret = ext4_block_write_begin(page, pos, len,
1210 ext4_get_block);
1211#else
1212 if (ext4_should_dioread_nolock(inode))
1213 ret = __block_write_begin(page, pos, len,
1214 ext4_get_block_unwritten);
1215 else
1216 ret = __block_write_begin(page, pos, len, ext4_get_block);
1217#endif
1218 if (!ret && ext4_should_journal_data(inode)) {
1219 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1220 from, to, NULL,
1221 do_journal_get_write_access);
1222 }
1223
1224 if (ret) {
1225 unlock_page(page);
1226 /*
1227 * __block_write_begin may have instantiated a few blocks
1228 * outside i_size. Trim these off again. Don't need
1229 * i_size_read because we hold i_mutex.
1230 *
1231 * Add inode to orphan list in case we crash before
1232 * truncate finishes
1233 */
1234 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235 ext4_orphan_add(handle, inode);
1236
1237 ext4_journal_stop(handle);
1238 if (pos + len > inode->i_size) {
1239 ext4_truncate_failed_write(inode);
1240 /*
1241 * If truncate failed early the inode might
1242 * still be on the orphan list; we need to
1243 * make sure the inode is removed from the
1244 * orphan list in that case.
1245 */
1246 if (inode->i_nlink)
1247 ext4_orphan_del(NULL, inode);
1248 }
1249
1250 if (ret == -ENOSPC &&
1251 ext4_should_retry_alloc(inode->i_sb, &retries))
1252 goto retry_journal;
1253 put_page(page);
1254 return ret;
1255 }
1256 *pagep = page;
1257 return ret;
1258}
1259
1260/* For write_end() in data=journal mode */
1261static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1262{
1263 int ret;
1264 if (!buffer_mapped(bh) || buffer_freed(bh))
1265 return 0;
1266 set_buffer_uptodate(bh);
1267 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1268 clear_buffer_meta(bh);
1269 clear_buffer_prio(bh);
1270 return ret;
1271}
1272
1273/*
1274 * We need to pick up the new inode size which generic_commit_write gave us
1275 * `file' can be NULL - eg, when called from page_symlink().
1276 *
1277 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1278 * buffers are managed internally.
1279 */
1280static int ext4_write_end(struct file *file,
1281 struct address_space *mapping,
1282 loff_t pos, unsigned len, unsigned copied,
1283 struct page *page, void *fsdata)
1284{
1285 handle_t *handle = ext4_journal_current_handle();
1286 struct inode *inode = mapping->host;
1287 loff_t old_size = inode->i_size;
1288 int ret = 0, ret2;
1289 int i_size_changed = 0;
1290
1291 trace_ext4_write_end(inode, pos, len, copied);
1292 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1293 ret = ext4_jbd2_file_inode(handle, inode);
1294 if (ret) {
1295 unlock_page(page);
1296 put_page(page);
1297 goto errout;
1298 }
1299 }
1300
1301 if (ext4_has_inline_data(inode)) {
1302 ret = ext4_write_inline_data_end(inode, pos, len,
1303 copied, page);
1304 if (ret < 0)
1305 goto errout;
1306 copied = ret;
1307 } else
1308 copied = block_write_end(file, mapping, pos,
1309 len, copied, page, fsdata);
1310 /*
1311 * it's important to update i_size while still holding page lock:
1312 * page writeout could otherwise come in and zero beyond i_size.
1313 */
1314 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1315 unlock_page(page);
1316 put_page(page);
1317
1318 if (old_size < pos)
1319 pagecache_isize_extended(inode, old_size, pos);
1320 /*
1321 * Don't mark the inode dirty under page lock. First, it unnecessarily
1322 * makes the holding time of page lock longer. Second, it forces lock
1323 * ordering of page lock and transaction start for journaling
1324 * filesystems.
1325 */
1326 if (i_size_changed)
1327 ext4_mark_inode_dirty(handle, inode);
1328
1329 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1330 /* if we have allocated more blocks and copied
1331 * less. We will have blocks allocated outside
1332 * inode->i_size. So truncate them
1333 */
1334 ext4_orphan_add(handle, inode);
1335errout:
1336 ret2 = ext4_journal_stop(handle);
1337 if (!ret)
1338 ret = ret2;
1339
1340 if (pos + len > inode->i_size) {
1341 ext4_truncate_failed_write(inode);
1342 /*
1343 * If truncate failed early the inode might still be
1344 * on the orphan list; we need to make sure the inode
1345 * is removed from the orphan list in that case.
1346 */
1347 if (inode->i_nlink)
1348 ext4_orphan_del(NULL, inode);
1349 }
1350
1351 return ret ? ret : copied;
1352}
1353
1354/*
1355 * This is a private version of page_zero_new_buffers() which doesn't
1356 * set the buffer to be dirty, since in data=journalled mode we need
1357 * to call ext4_handle_dirty_metadata() instead.
1358 */
1359static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1360{
1361 unsigned int block_start = 0, block_end;
1362 struct buffer_head *head, *bh;
1363
1364 bh = head = page_buffers(page);
1365 do {
1366 block_end = block_start + bh->b_size;
1367 if (buffer_new(bh)) {
1368 if (block_end > from && block_start < to) {
1369 if (!PageUptodate(page)) {
1370 unsigned start, size;
1371
1372 start = max(from, block_start);
1373 size = min(to, block_end) - start;
1374
1375 zero_user(page, start, size);
1376 set_buffer_uptodate(bh);
1377 }
1378 clear_buffer_new(bh);
1379 }
1380 }
1381 block_start = block_end;
1382 bh = bh->b_this_page;
1383 } while (bh != head);
1384}
1385
1386static int ext4_journalled_write_end(struct file *file,
1387 struct address_space *mapping,
1388 loff_t pos, unsigned len, unsigned copied,
1389 struct page *page, void *fsdata)
1390{
1391 handle_t *handle = ext4_journal_current_handle();
1392 struct inode *inode = mapping->host;
1393 loff_t old_size = inode->i_size;
1394 int ret = 0, ret2;
1395 int partial = 0;
1396 unsigned from, to;
1397 int size_changed = 0;
1398
1399 trace_ext4_journalled_write_end(inode, pos, len, copied);
1400 from = pos & (PAGE_SIZE - 1);
1401 to = from + len;
1402
1403 BUG_ON(!ext4_handle_valid(handle));
1404
1405 if (ext4_has_inline_data(inode))
1406 copied = ext4_write_inline_data_end(inode, pos, len,
1407 copied, page);
1408 else {
1409 if (copied < len) {
1410 if (!PageUptodate(page))
1411 copied = 0;
1412 zero_new_buffers(page, from+copied, to);
1413 }
1414
1415 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1416 to, &partial, write_end_fn);
1417 if (!partial)
1418 SetPageUptodate(page);
1419 }
1420 size_changed = ext4_update_inode_size(inode, pos + copied);
1421 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423 unlock_page(page);
1424 put_page(page);
1425
1426 if (old_size < pos)
1427 pagecache_isize_extended(inode, old_size, pos);
1428
1429 if (size_changed) {
1430 ret2 = ext4_mark_inode_dirty(handle, inode);
1431 if (!ret)
1432 ret = ret2;
1433 }
1434
1435 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1436 /* if we have allocated more blocks and copied
1437 * less. We will have blocks allocated outside
1438 * inode->i_size. So truncate them
1439 */
1440 ext4_orphan_add(handle, inode);
1441
1442 ret2 = ext4_journal_stop(handle);
1443 if (!ret)
1444 ret = ret2;
1445 if (pos + len > inode->i_size) {
1446 ext4_truncate_failed_write(inode);
1447 /*
1448 * If truncate failed early the inode might still be
1449 * on the orphan list; we need to make sure the inode
1450 * is removed from the orphan list in that case.
1451 */
1452 if (inode->i_nlink)
1453 ext4_orphan_del(NULL, inode);
1454 }
1455
1456 return ret ? ret : copied;
1457}
1458
1459/*
1460 * Reserve space for a single cluster
1461 */
1462static int ext4_da_reserve_space(struct inode *inode)
1463{
1464 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465 struct ext4_inode_info *ei = EXT4_I(inode);
1466 int ret;
1467
1468 /*
1469 * We will charge metadata quota at writeout time; this saves
1470 * us from metadata over-estimation, though we may go over by
1471 * a small amount in the end. Here we just reserve for data.
1472 */
1473 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474 if (ret)
1475 return ret;
1476
1477 spin_lock(&ei->i_block_reservation_lock);
1478 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479 spin_unlock(&ei->i_block_reservation_lock);
1480 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481 return -ENOSPC;
1482 }
1483 ei->i_reserved_data_blocks++;
1484 trace_ext4_da_reserve_space(inode);
1485 spin_unlock(&ei->i_block_reservation_lock);
1486
1487 return 0; /* success */
1488}
1489
1490static void ext4_da_release_space(struct inode *inode, int to_free)
1491{
1492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493 struct ext4_inode_info *ei = EXT4_I(inode);
1494
1495 if (!to_free)
1496 return; /* Nothing to release, exit */
1497
1498 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499
1500 trace_ext4_da_release_space(inode, to_free);
1501 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502 /*
1503 * if there aren't enough reserved blocks, then the
1504 * counter is messed up somewhere. Since this
1505 * function is called from invalidate page, it's
1506 * harmless to return without any action.
1507 */
1508 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509 "ino %lu, to_free %d with only %d reserved "
1510 "data blocks", inode->i_ino, to_free,
1511 ei->i_reserved_data_blocks);
1512 WARN_ON(1);
1513 to_free = ei->i_reserved_data_blocks;
1514 }
1515 ei->i_reserved_data_blocks -= to_free;
1516
1517 /* update fs dirty data blocks counter */
1518 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519
1520 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523}
1524
1525static void ext4_da_page_release_reservation(struct page *page,
1526 unsigned int offset,
1527 unsigned int length)
1528{
1529 int to_release = 0, contiguous_blks = 0;
1530 struct buffer_head *head, *bh;
1531 unsigned int curr_off = 0;
1532 struct inode *inode = page->mapping->host;
1533 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1534 unsigned int stop = offset + length;
1535 int num_clusters;
1536 ext4_fsblk_t lblk;
1537
1538 BUG_ON(stop > PAGE_SIZE || stop < length);
1539
1540 head = page_buffers(page);
1541 bh = head;
1542 do {
1543 unsigned int next_off = curr_off + bh->b_size;
1544
1545 if (next_off > stop)
1546 break;
1547
1548 if ((offset <= curr_off) && (buffer_delay(bh))) {
1549 to_release++;
1550 contiguous_blks++;
1551 clear_buffer_delay(bh);
1552 } else if (contiguous_blks) {
1553 lblk = page->index <<
1554 (PAGE_SHIFT - inode->i_blkbits);
1555 lblk += (curr_off >> inode->i_blkbits) -
1556 contiguous_blks;
1557 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1558 contiguous_blks = 0;
1559 }
1560 curr_off = next_off;
1561 } while ((bh = bh->b_this_page) != head);
1562
1563 if (contiguous_blks) {
1564 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1565 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1566 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567 }
1568
1569 /* If we have released all the blocks belonging to a cluster, then we
1570 * need to release the reserved space for that cluster. */
1571 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1572 while (num_clusters > 0) {
1573 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1574 ((num_clusters - 1) << sbi->s_cluster_bits);
1575 if (sbi->s_cluster_ratio == 1 ||
1576 !ext4_find_delalloc_cluster(inode, lblk))
1577 ext4_da_release_space(inode, 1);
1578
1579 num_clusters--;
1580 }
1581}
1582
1583/*
1584 * Delayed allocation stuff
1585 */
1586
1587struct mpage_da_data {
1588 struct inode *inode;
1589 struct writeback_control *wbc;
1590
1591 pgoff_t first_page; /* The first page to write */
1592 pgoff_t next_page; /* Current page to examine */
1593 pgoff_t last_page; /* Last page to examine */
1594 /*
1595 * Extent to map - this can be after first_page because that can be
1596 * fully mapped. We somewhat abuse m_flags to store whether the extent
1597 * is delalloc or unwritten.
1598 */
1599 struct ext4_map_blocks map;
1600 struct ext4_io_submit io_submit; /* IO submission data */
1601};
1602
1603static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1604 bool invalidate)
1605{
1606 int nr_pages, i;
1607 pgoff_t index, end;
1608 struct pagevec pvec;
1609 struct inode *inode = mpd->inode;
1610 struct address_space *mapping = inode->i_mapping;
1611
1612 /* This is necessary when next_page == 0. */
1613 if (mpd->first_page >= mpd->next_page)
1614 return;
1615
1616 index = mpd->first_page;
1617 end = mpd->next_page - 1;
1618 if (invalidate) {
1619 ext4_lblk_t start, last;
1620 start = index << (PAGE_SHIFT - inode->i_blkbits);
1621 last = end << (PAGE_SHIFT - inode->i_blkbits);
1622 ext4_es_remove_extent(inode, start, last - start + 1);
1623 }
1624
1625 pagevec_init(&pvec, 0);
1626 while (index <= end) {
1627 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1628 if (nr_pages == 0)
1629 break;
1630 for (i = 0; i < nr_pages; i++) {
1631 struct page *page = pvec.pages[i];
1632 if (page->index > end)
1633 break;
1634 BUG_ON(!PageLocked(page));
1635 BUG_ON(PageWriteback(page));
1636 if (invalidate) {
1637 block_invalidatepage(page, 0, PAGE_SIZE);
1638 ClearPageUptodate(page);
1639 }
1640 unlock_page(page);
1641 }
1642 index = pvec.pages[nr_pages - 1]->index + 1;
1643 pagevec_release(&pvec);
1644 }
1645}
1646
1647static void ext4_print_free_blocks(struct inode *inode)
1648{
1649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650 struct super_block *sb = inode->i_sb;
1651 struct ext4_inode_info *ei = EXT4_I(inode);
1652
1653 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1654 EXT4_C2B(EXT4_SB(inode->i_sb),
1655 ext4_count_free_clusters(sb)));
1656 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1657 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1658 (long long) EXT4_C2B(EXT4_SB(sb),
1659 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1660 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1661 (long long) EXT4_C2B(EXT4_SB(sb),
1662 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1663 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1664 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1665 ei->i_reserved_data_blocks);
1666 return;
1667}
1668
1669static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1670{
1671 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1672}
1673
1674/*
1675 * This function is grabs code from the very beginning of
1676 * ext4_map_blocks, but assumes that the caller is from delayed write
1677 * time. This function looks up the requested blocks and sets the
1678 * buffer delay bit under the protection of i_data_sem.
1679 */
1680static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1681 struct ext4_map_blocks *map,
1682 struct buffer_head *bh)
1683{
1684 struct extent_status es;
1685 int retval;
1686 sector_t invalid_block = ~((sector_t) 0xffff);
1687#ifdef ES_AGGRESSIVE_TEST
1688 struct ext4_map_blocks orig_map;
1689
1690 memcpy(&orig_map, map, sizeof(*map));
1691#endif
1692
1693 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1694 invalid_block = ~0;
1695
1696 map->m_flags = 0;
1697 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1698 "logical block %lu\n", inode->i_ino, map->m_len,
1699 (unsigned long) map->m_lblk);
1700
1701 /* Lookup extent status tree firstly */
1702 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1703 if (ext4_es_is_hole(&es)) {
1704 retval = 0;
1705 down_read(&EXT4_I(inode)->i_data_sem);
1706 goto add_delayed;
1707 }
1708
1709 /*
1710 * Delayed extent could be allocated by fallocate.
1711 * So we need to check it.
1712 */
1713 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1714 map_bh(bh, inode->i_sb, invalid_block);
1715 set_buffer_new(bh);
1716 set_buffer_delay(bh);
1717 return 0;
1718 }
1719
1720 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1721 retval = es.es_len - (iblock - es.es_lblk);
1722 if (retval > map->m_len)
1723 retval = map->m_len;
1724 map->m_len = retval;
1725 if (ext4_es_is_written(&es))
1726 map->m_flags |= EXT4_MAP_MAPPED;
1727 else if (ext4_es_is_unwritten(&es))
1728 map->m_flags |= EXT4_MAP_UNWRITTEN;
1729 else
1730 BUG_ON(1);
1731
1732#ifdef ES_AGGRESSIVE_TEST
1733 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1734#endif
1735 return retval;
1736 }
1737
1738 /*
1739 * Try to see if we can get the block without requesting a new
1740 * file system block.
1741 */
1742 down_read(&EXT4_I(inode)->i_data_sem);
1743 if (ext4_has_inline_data(inode))
1744 retval = 0;
1745 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1746 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1747 else
1748 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1749
1750add_delayed:
1751 if (retval == 0) {
1752 int ret;
1753 /*
1754 * XXX: __block_prepare_write() unmaps passed block,
1755 * is it OK?
1756 */
1757 /*
1758 * If the block was allocated from previously allocated cluster,
1759 * then we don't need to reserve it again. However we still need
1760 * to reserve metadata for every block we're going to write.
1761 */
1762 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1763 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1764 ret = ext4_da_reserve_space(inode);
1765 if (ret) {
1766 /* not enough space to reserve */
1767 retval = ret;
1768 goto out_unlock;
1769 }
1770 }
1771
1772 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1773 ~0, EXTENT_STATUS_DELAYED);
1774 if (ret) {
1775 retval = ret;
1776 goto out_unlock;
1777 }
1778
1779 map_bh(bh, inode->i_sb, invalid_block);
1780 set_buffer_new(bh);
1781 set_buffer_delay(bh);
1782 } else if (retval > 0) {
1783 int ret;
1784 unsigned int status;
1785
1786 if (unlikely(retval != map->m_len)) {
1787 ext4_warning(inode->i_sb,
1788 "ES len assertion failed for inode "
1789 "%lu: retval %d != map->m_len %d",
1790 inode->i_ino, retval, map->m_len);
1791 WARN_ON(1);
1792 }
1793
1794 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797 map->m_pblk, status);
1798 if (ret != 0)
1799 retval = ret;
1800 }
1801
1802out_unlock:
1803 up_read((&EXT4_I(inode)->i_data_sem));
1804
1805 return retval;
1806}
1807
1808/*
1809 * This is a special get_block_t callback which is used by
1810 * ext4_da_write_begin(). It will either return mapped block or
1811 * reserve space for a single block.
1812 *
1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814 * We also have b_blocknr = -1 and b_bdev initialized properly
1815 *
1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818 * initialized properly.
1819 */
1820int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821 struct buffer_head *bh, int create)
1822{
1823 struct ext4_map_blocks map;
1824 int ret = 0;
1825
1826 BUG_ON(create == 0);
1827 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828
1829 map.m_lblk = iblock;
1830 map.m_len = 1;
1831
1832 /*
1833 * first, we need to know whether the block is allocated already
1834 * preallocated blocks are unmapped but should treated
1835 * the same as allocated blocks.
1836 */
1837 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838 if (ret <= 0)
1839 return ret;
1840
1841 map_bh(bh, inode->i_sb, map.m_pblk);
1842 ext4_update_bh_state(bh, map.m_flags);
1843
1844 if (buffer_unwritten(bh)) {
1845 /* A delayed write to unwritten bh should be marked
1846 * new and mapped. Mapped ensures that we don't do
1847 * get_block multiple times when we write to the same
1848 * offset and new ensures that we do proper zero out
1849 * for partial write.
1850 */
1851 set_buffer_new(bh);
1852 set_buffer_mapped(bh);
1853 }
1854 return 0;
1855}
1856
1857static int bget_one(handle_t *handle, struct buffer_head *bh)
1858{
1859 get_bh(bh);
1860 return 0;
1861}
1862
1863static int bput_one(handle_t *handle, struct buffer_head *bh)
1864{
1865 put_bh(bh);
1866 return 0;
1867}
1868
1869static int __ext4_journalled_writepage(struct page *page,
1870 unsigned int len)
1871{
1872 struct address_space *mapping = page->mapping;
1873 struct inode *inode = mapping->host;
1874 struct buffer_head *page_bufs = NULL;
1875 handle_t *handle = NULL;
1876 int ret = 0, err = 0;
1877 int inline_data = ext4_has_inline_data(inode);
1878 struct buffer_head *inode_bh = NULL;
1879
1880 ClearPageChecked(page);
1881
1882 if (inline_data) {
1883 BUG_ON(page->index != 0);
1884 BUG_ON(len > ext4_get_max_inline_size(inode));
1885 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1886 if (inode_bh == NULL)
1887 goto out;
1888 } else {
1889 page_bufs = page_buffers(page);
1890 if (!page_bufs) {
1891 BUG();
1892 goto out;
1893 }
1894 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1895 NULL, bget_one);
1896 }
1897 /*
1898 * We need to release the page lock before we start the
1899 * journal, so grab a reference so the page won't disappear
1900 * out from under us.
1901 */
1902 get_page(page);
1903 unlock_page(page);
1904
1905 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1906 ext4_writepage_trans_blocks(inode));
1907 if (IS_ERR(handle)) {
1908 ret = PTR_ERR(handle);
1909 put_page(page);
1910 goto out_no_pagelock;
1911 }
1912 BUG_ON(!ext4_handle_valid(handle));
1913
1914 lock_page(page);
1915 put_page(page);
1916 if (page->mapping != mapping) {
1917 /* The page got truncated from under us */
1918 ext4_journal_stop(handle);
1919 ret = 0;
1920 goto out;
1921 }
1922
1923 if (inline_data) {
1924 BUFFER_TRACE(inode_bh, "get write access");
1925 ret = ext4_journal_get_write_access(handle, inode_bh);
1926
1927 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1928
1929 } else {
1930 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931 do_journal_get_write_access);
1932
1933 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1934 write_end_fn);
1935 }
1936 if (ret == 0)
1937 ret = err;
1938 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939 err = ext4_journal_stop(handle);
1940 if (!ret)
1941 ret = err;
1942
1943 if (!ext4_has_inline_data(inode))
1944 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1945 NULL, bput_one);
1946 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1947out:
1948 unlock_page(page);
1949out_no_pagelock:
1950 brelse(inode_bh);
1951 return ret;
1952}
1953
1954/*
1955 * Note that we don't need to start a transaction unless we're journaling data
1956 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957 * need to file the inode to the transaction's list in ordered mode because if
1958 * we are writing back data added by write(), the inode is already there and if
1959 * we are writing back data modified via mmap(), no one guarantees in which
1960 * transaction the data will hit the disk. In case we are journaling data, we
1961 * cannot start transaction directly because transaction start ranks above page
1962 * lock so we have to do some magic.
1963 *
1964 * This function can get called via...
1965 * - ext4_writepages after taking page lock (have journal handle)
1966 * - journal_submit_inode_data_buffers (no journal handle)
1967 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968 * - grab_page_cache when doing write_begin (have journal handle)
1969 *
1970 * We don't do any block allocation in this function. If we have page with
1971 * multiple blocks we need to write those buffer_heads that are mapped. This
1972 * is important for mmaped based write. So if we do with blocksize 1K
1973 * truncate(f, 1024);
1974 * a = mmap(f, 0, 4096);
1975 * a[0] = 'a';
1976 * truncate(f, 4096);
1977 * we have in the page first buffer_head mapped via page_mkwrite call back
1978 * but other buffer_heads would be unmapped but dirty (dirty done via the
1979 * do_wp_page). So writepage should write the first block. If we modify
1980 * the mmap area beyond 1024 we will again get a page_fault and the
1981 * page_mkwrite callback will do the block allocation and mark the
1982 * buffer_heads mapped.
1983 *
1984 * We redirty the page if we have any buffer_heads that is either delay or
1985 * unwritten in the page.
1986 *
1987 * We can get recursively called as show below.
1988 *
1989 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990 * ext4_writepage()
1991 *
1992 * But since we don't do any block allocation we should not deadlock.
1993 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1994 */
1995static int ext4_writepage(struct page *page,
1996 struct writeback_control *wbc)
1997{
1998 int ret = 0;
1999 loff_t size;
2000 unsigned int len;
2001 struct buffer_head *page_bufs = NULL;
2002 struct inode *inode = page->mapping->host;
2003 struct ext4_io_submit io_submit;
2004 bool keep_towrite = false;
2005
2006 trace_ext4_writepage(page);
2007 size = i_size_read(inode);
2008 if (page->index == size >> PAGE_SHIFT)
2009 len = size & ~PAGE_MASK;
2010 else
2011 len = PAGE_SIZE;
2012
2013 page_bufs = page_buffers(page);
2014 /*
2015 * We cannot do block allocation or other extent handling in this
2016 * function. If there are buffers needing that, we have to redirty
2017 * the page. But we may reach here when we do a journal commit via
2018 * journal_submit_inode_data_buffers() and in that case we must write
2019 * allocated buffers to achieve data=ordered mode guarantees.
2020 *
2021 * Also, if there is only one buffer per page (the fs block
2022 * size == the page size), if one buffer needs block
2023 * allocation or needs to modify the extent tree to clear the
2024 * unwritten flag, we know that the page can't be written at
2025 * all, so we might as well refuse the write immediately.
2026 * Unfortunately if the block size != page size, we can't as
2027 * easily detect this case using ext4_walk_page_buffers(), but
2028 * for the extremely common case, this is an optimization that
2029 * skips a useless round trip through ext4_bio_write_page().
2030 */
2031 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2032 ext4_bh_delay_or_unwritten)) {
2033 redirty_page_for_writepage(wbc, page);
2034 if ((current->flags & PF_MEMALLOC) ||
2035 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2036 /*
2037 * For memory cleaning there's no point in writing only
2038 * some buffers. So just bail out. Warn if we came here
2039 * from direct reclaim.
2040 */
2041 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2042 == PF_MEMALLOC);
2043 unlock_page(page);
2044 return 0;
2045 }
2046 keep_towrite = true;
2047 }
2048
2049 if (PageChecked(page) && ext4_should_journal_data(inode))
2050 /*
2051 * It's mmapped pagecache. Add buffers and journal it. There
2052 * doesn't seem much point in redirtying the page here.
2053 */
2054 return __ext4_journalled_writepage(page, len);
2055
2056 ext4_io_submit_init(&io_submit, wbc);
2057 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2058 if (!io_submit.io_end) {
2059 redirty_page_for_writepage(wbc, page);
2060 unlock_page(page);
2061 return -ENOMEM;
2062 }
2063 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2064 ext4_io_submit(&io_submit);
2065 /* Drop io_end reference we got from init */
2066 ext4_put_io_end_defer(io_submit.io_end);
2067 return ret;
2068}
2069
2070static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2071{
2072 int len;
2073 loff_t size = i_size_read(mpd->inode);
2074 int err;
2075
2076 BUG_ON(page->index != mpd->first_page);
2077 if (page->index == size >> PAGE_SHIFT)
2078 len = size & ~PAGE_MASK;
2079 else
2080 len = PAGE_SIZE;
2081 clear_page_dirty_for_io(page);
2082 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083 if (!err)
2084 mpd->wbc->nr_to_write--;
2085 mpd->first_page++;
2086
2087 return err;
2088}
2089
2090#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2091
2092/*
2093 * mballoc gives us at most this number of blocks...
2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095 * The rest of mballoc seems to handle chunks up to full group size.
2096 */
2097#define MAX_WRITEPAGES_EXTENT_LEN 2048
2098
2099/*
2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101 *
2102 * @mpd - extent of blocks
2103 * @lblk - logical number of the block in the file
2104 * @bh - buffer head we want to add to the extent
2105 *
2106 * The function is used to collect contig. blocks in the same state. If the
2107 * buffer doesn't require mapping for writeback and we haven't started the
2108 * extent of buffers to map yet, the function returns 'true' immediately - the
2109 * caller can write the buffer right away. Otherwise the function returns true
2110 * if the block has been added to the extent, false if the block couldn't be
2111 * added.
2112 */
2113static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114 struct buffer_head *bh)
2115{
2116 struct ext4_map_blocks *map = &mpd->map;
2117
2118 /* Buffer that doesn't need mapping for writeback? */
2119 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121 /* So far no extent to map => we write the buffer right away */
2122 if (map->m_len == 0)
2123 return true;
2124 return false;
2125 }
2126
2127 /* First block in the extent? */
2128 if (map->m_len == 0) {
2129 map->m_lblk = lblk;
2130 map->m_len = 1;
2131 map->m_flags = bh->b_state & BH_FLAGS;
2132 return true;
2133 }
2134
2135 /* Don't go larger than mballoc is willing to allocate */
2136 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2137 return false;
2138
2139 /* Can we merge the block to our big extent? */
2140 if (lblk == map->m_lblk + map->m_len &&
2141 (bh->b_state & BH_FLAGS) == map->m_flags) {
2142 map->m_len++;
2143 return true;
2144 }
2145 return false;
2146}
2147
2148/*
2149 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2150 *
2151 * @mpd - extent of blocks for mapping
2152 * @head - the first buffer in the page
2153 * @bh - buffer we should start processing from
2154 * @lblk - logical number of the block in the file corresponding to @bh
2155 *
2156 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2157 * the page for IO if all buffers in this page were mapped and there's no
2158 * accumulated extent of buffers to map or add buffers in the page to the
2159 * extent of buffers to map. The function returns 1 if the caller can continue
2160 * by processing the next page, 0 if it should stop adding buffers to the
2161 * extent to map because we cannot extend it anymore. It can also return value
2162 * < 0 in case of error during IO submission.
2163 */
2164static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2165 struct buffer_head *head,
2166 struct buffer_head *bh,
2167 ext4_lblk_t lblk)
2168{
2169 struct inode *inode = mpd->inode;
2170 int err;
2171 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2172 >> inode->i_blkbits;
2173
2174 do {
2175 BUG_ON(buffer_locked(bh));
2176
2177 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2178 /* Found extent to map? */
2179 if (mpd->map.m_len)
2180 return 0;
2181 /* Everything mapped so far and we hit EOF */
2182 break;
2183 }
2184 } while (lblk++, (bh = bh->b_this_page) != head);
2185 /* So far everything mapped? Submit the page for IO. */
2186 if (mpd->map.m_len == 0) {
2187 err = mpage_submit_page(mpd, head->b_page);
2188 if (err < 0)
2189 return err;
2190 }
2191 return lblk < blocks;
2192}
2193
2194/*
2195 * mpage_map_buffers - update buffers corresponding to changed extent and
2196 * submit fully mapped pages for IO
2197 *
2198 * @mpd - description of extent to map, on return next extent to map
2199 *
2200 * Scan buffers corresponding to changed extent (we expect corresponding pages
2201 * to be already locked) and update buffer state according to new extent state.
2202 * We map delalloc buffers to their physical location, clear unwritten bits,
2203 * and mark buffers as uninit when we perform writes to unwritten extents
2204 * and do extent conversion after IO is finished. If the last page is not fully
2205 * mapped, we update @map to the next extent in the last page that needs
2206 * mapping. Otherwise we submit the page for IO.
2207 */
2208static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2209{
2210 struct pagevec pvec;
2211 int nr_pages, i;
2212 struct inode *inode = mpd->inode;
2213 struct buffer_head *head, *bh;
2214 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2215 pgoff_t start, end;
2216 ext4_lblk_t lblk;
2217 sector_t pblock;
2218 int err;
2219
2220 start = mpd->map.m_lblk >> bpp_bits;
2221 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2222 lblk = start << bpp_bits;
2223 pblock = mpd->map.m_pblk;
2224
2225 pagevec_init(&pvec, 0);
2226 while (start <= end) {
2227 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2228 PAGEVEC_SIZE);
2229 if (nr_pages == 0)
2230 break;
2231 for (i = 0; i < nr_pages; i++) {
2232 struct page *page = pvec.pages[i];
2233
2234 if (page->index > end)
2235 break;
2236 /* Up to 'end' pages must be contiguous */
2237 BUG_ON(page->index != start);
2238 bh = head = page_buffers(page);
2239 do {
2240 if (lblk < mpd->map.m_lblk)
2241 continue;
2242 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2243 /*
2244 * Buffer after end of mapped extent.
2245 * Find next buffer in the page to map.
2246 */
2247 mpd->map.m_len = 0;
2248 mpd->map.m_flags = 0;
2249 /*
2250 * FIXME: If dioread_nolock supports
2251 * blocksize < pagesize, we need to make
2252 * sure we add size mapped so far to
2253 * io_end->size as the following call
2254 * can submit the page for IO.
2255 */
2256 err = mpage_process_page_bufs(mpd, head,
2257 bh, lblk);
2258 pagevec_release(&pvec);
2259 if (err > 0)
2260 err = 0;
2261 return err;
2262 }
2263 if (buffer_delay(bh)) {
2264 clear_buffer_delay(bh);
2265 bh->b_blocknr = pblock++;
2266 }
2267 clear_buffer_unwritten(bh);
2268 } while (lblk++, (bh = bh->b_this_page) != head);
2269
2270 /*
2271 * FIXME: This is going to break if dioread_nolock
2272 * supports blocksize < pagesize as we will try to
2273 * convert potentially unmapped parts of inode.
2274 */
2275 mpd->io_submit.io_end->size += PAGE_SIZE;
2276 /* Page fully mapped - let IO run! */
2277 err = mpage_submit_page(mpd, page);
2278 if (err < 0) {
2279 pagevec_release(&pvec);
2280 return err;
2281 }
2282 start++;
2283 }
2284 pagevec_release(&pvec);
2285 }
2286 /* Extent fully mapped and matches with page boundary. We are done. */
2287 mpd->map.m_len = 0;
2288 mpd->map.m_flags = 0;
2289 return 0;
2290}
2291
2292static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2293{
2294 struct inode *inode = mpd->inode;
2295 struct ext4_map_blocks *map = &mpd->map;
2296 int get_blocks_flags;
2297 int err, dioread_nolock;
2298
2299 trace_ext4_da_write_pages_extent(inode, map);
2300 /*
2301 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2302 * to convert an unwritten extent to be initialized (in the case
2303 * where we have written into one or more preallocated blocks). It is
2304 * possible that we're going to need more metadata blocks than
2305 * previously reserved. However we must not fail because we're in
2306 * writeback and there is nothing we can do about it so it might result
2307 * in data loss. So use reserved blocks to allocate metadata if
2308 * possible.
2309 *
2310 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2311 * the blocks in question are delalloc blocks. This indicates
2312 * that the blocks and quotas has already been checked when
2313 * the data was copied into the page cache.
2314 */
2315 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2316 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2317 dioread_nolock = ext4_should_dioread_nolock(inode);
2318 if (dioread_nolock)
2319 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2320 if (map->m_flags & (1 << BH_Delay))
2321 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2322
2323 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2324 if (err < 0)
2325 return err;
2326 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2327 if (!mpd->io_submit.io_end->handle &&
2328 ext4_handle_valid(handle)) {
2329 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2330 handle->h_rsv_handle = NULL;
2331 }
2332 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2333 }
2334
2335 BUG_ON(map->m_len == 0);
2336 if (map->m_flags & EXT4_MAP_NEW) {
2337 struct block_device *bdev = inode->i_sb->s_bdev;
2338 int i;
2339
2340 for (i = 0; i < map->m_len; i++)
2341 unmap_underlying_metadata(bdev, map->m_pblk + i);
2342 }
2343 return 0;
2344}
2345
2346/*
2347 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2348 * mpd->len and submit pages underlying it for IO
2349 *
2350 * @handle - handle for journal operations
2351 * @mpd - extent to map
2352 * @give_up_on_write - we set this to true iff there is a fatal error and there
2353 * is no hope of writing the data. The caller should discard
2354 * dirty pages to avoid infinite loops.
2355 *
2356 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2357 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2358 * them to initialized or split the described range from larger unwritten
2359 * extent. Note that we need not map all the described range since allocation
2360 * can return less blocks or the range is covered by more unwritten extents. We
2361 * cannot map more because we are limited by reserved transaction credits. On
2362 * the other hand we always make sure that the last touched page is fully
2363 * mapped so that it can be written out (and thus forward progress is
2364 * guaranteed). After mapping we submit all mapped pages for IO.
2365 */
2366static int mpage_map_and_submit_extent(handle_t *handle,
2367 struct mpage_da_data *mpd,
2368 bool *give_up_on_write)
2369{
2370 struct inode *inode = mpd->inode;
2371 struct ext4_map_blocks *map = &mpd->map;
2372 int err;
2373 loff_t disksize;
2374 int progress = 0;
2375
2376 mpd->io_submit.io_end->offset =
2377 ((loff_t)map->m_lblk) << inode->i_blkbits;
2378 do {
2379 err = mpage_map_one_extent(handle, mpd);
2380 if (err < 0) {
2381 struct super_block *sb = inode->i_sb;
2382
2383 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2384 goto invalidate_dirty_pages;
2385 /*
2386 * Let the uper layers retry transient errors.
2387 * In the case of ENOSPC, if ext4_count_free_blocks()
2388 * is non-zero, a commit should free up blocks.
2389 */
2390 if ((err == -ENOMEM) ||
2391 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2392 if (progress)
2393 goto update_disksize;
2394 return err;
2395 }
2396 ext4_msg(sb, KERN_CRIT,
2397 "Delayed block allocation failed for "
2398 "inode %lu at logical offset %llu with"
2399 " max blocks %u with error %d",
2400 inode->i_ino,
2401 (unsigned long long)map->m_lblk,
2402 (unsigned)map->m_len, -err);
2403 ext4_msg(sb, KERN_CRIT,
2404 "This should not happen!! Data will "
2405 "be lost\n");
2406 if (err == -ENOSPC)
2407 ext4_print_free_blocks(inode);
2408 invalidate_dirty_pages:
2409 *give_up_on_write = true;
2410 return err;
2411 }
2412 progress = 1;
2413 /*
2414 * Update buffer state, submit mapped pages, and get us new
2415 * extent to map
2416 */
2417 err = mpage_map_and_submit_buffers(mpd);
2418 if (err < 0)
2419 goto update_disksize;
2420 } while (map->m_len);
2421
2422update_disksize:
2423 /*
2424 * Update on-disk size after IO is submitted. Races with
2425 * truncate are avoided by checking i_size under i_data_sem.
2426 */
2427 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2428 if (disksize > EXT4_I(inode)->i_disksize) {
2429 int err2;
2430 loff_t i_size;
2431
2432 down_write(&EXT4_I(inode)->i_data_sem);
2433 i_size = i_size_read(inode);
2434 if (disksize > i_size)
2435 disksize = i_size;
2436 if (disksize > EXT4_I(inode)->i_disksize)
2437 EXT4_I(inode)->i_disksize = disksize;
2438 err2 = ext4_mark_inode_dirty(handle, inode);
2439 up_write(&EXT4_I(inode)->i_data_sem);
2440 if (err2)
2441 ext4_error(inode->i_sb,
2442 "Failed to mark inode %lu dirty",
2443 inode->i_ino);
2444 if (!err)
2445 err = err2;
2446 }
2447 return err;
2448}
2449
2450/*
2451 * Calculate the total number of credits to reserve for one writepages
2452 * iteration. This is called from ext4_writepages(). We map an extent of
2453 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2454 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2455 * bpp - 1 blocks in bpp different extents.
2456 */
2457static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458{
2459 int bpp = ext4_journal_blocks_per_page(inode);
2460
2461 return ext4_meta_trans_blocks(inode,
2462 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2463}
2464
2465/*
2466 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2467 * and underlying extent to map
2468 *
2469 * @mpd - where to look for pages
2470 *
2471 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2472 * IO immediately. When we find a page which isn't mapped we start accumulating
2473 * extent of buffers underlying these pages that needs mapping (formed by
2474 * either delayed or unwritten buffers). We also lock the pages containing
2475 * these buffers. The extent found is returned in @mpd structure (starting at
2476 * mpd->lblk with length mpd->len blocks).
2477 *
2478 * Note that this function can attach bios to one io_end structure which are
2479 * neither logically nor physically contiguous. Although it may seem as an
2480 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2481 * case as we need to track IO to all buffers underlying a page in one io_end.
2482 */
2483static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2484{
2485 struct address_space *mapping = mpd->inode->i_mapping;
2486 struct pagevec pvec;
2487 unsigned int nr_pages;
2488 long left = mpd->wbc->nr_to_write;
2489 pgoff_t index = mpd->first_page;
2490 pgoff_t end = mpd->last_page;
2491 int tag;
2492 int i, err = 0;
2493 int blkbits = mpd->inode->i_blkbits;
2494 ext4_lblk_t lblk;
2495 struct buffer_head *head;
2496
2497 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2498 tag = PAGECACHE_TAG_TOWRITE;
2499 else
2500 tag = PAGECACHE_TAG_DIRTY;
2501
2502 pagevec_init(&pvec, 0);
2503 mpd->map.m_len = 0;
2504 mpd->next_page = index;
2505 while (index <= end) {
2506 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2507 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2508 if (nr_pages == 0)
2509 goto out;
2510
2511 for (i = 0; i < nr_pages; i++) {
2512 struct page *page = pvec.pages[i];
2513
2514 /*
2515 * At this point, the page may be truncated or
2516 * invalidated (changing page->mapping to NULL), or
2517 * even swizzled back from swapper_space to tmpfs file
2518 * mapping. However, page->index will not change
2519 * because we have a reference on the page.
2520 */
2521 if (page->index > end)
2522 goto out;
2523
2524 /*
2525 * Accumulated enough dirty pages? This doesn't apply
2526 * to WB_SYNC_ALL mode. For integrity sync we have to
2527 * keep going because someone may be concurrently
2528 * dirtying pages, and we might have synced a lot of
2529 * newly appeared dirty pages, but have not synced all
2530 * of the old dirty pages.
2531 */
2532 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2533 goto out;
2534
2535 /* If we can't merge this page, we are done. */
2536 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2537 goto out;
2538
2539 lock_page(page);
2540 /*
2541 * If the page is no longer dirty, or its mapping no
2542 * longer corresponds to inode we are writing (which
2543 * means it has been truncated or invalidated), or the
2544 * page is already under writeback and we are not doing
2545 * a data integrity writeback, skip the page
2546 */
2547 if (!PageDirty(page) ||
2548 (PageWriteback(page) &&
2549 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2550 unlikely(page->mapping != mapping)) {
2551 unlock_page(page);
2552 continue;
2553 }
2554
2555 wait_on_page_writeback(page);
2556 BUG_ON(PageWriteback(page));
2557
2558 if (mpd->map.m_len == 0)
2559 mpd->first_page = page->index;
2560 mpd->next_page = page->index + 1;
2561 /* Add all dirty buffers to mpd */
2562 lblk = ((ext4_lblk_t)page->index) <<
2563 (PAGE_SHIFT - blkbits);
2564 head = page_buffers(page);
2565 err = mpage_process_page_bufs(mpd, head, head, lblk);
2566 if (err <= 0)
2567 goto out;
2568 err = 0;
2569 left--;
2570 }
2571 pagevec_release(&pvec);
2572 cond_resched();
2573 }
2574 return 0;
2575out:
2576 pagevec_release(&pvec);
2577 return err;
2578}
2579
2580static int __writepage(struct page *page, struct writeback_control *wbc,
2581 void *data)
2582{
2583 struct address_space *mapping = data;
2584 int ret = ext4_writepage(page, wbc);
2585 mapping_set_error(mapping, ret);
2586 return ret;
2587}
2588
2589static int ext4_writepages(struct address_space *mapping,
2590 struct writeback_control *wbc)
2591{
2592 pgoff_t writeback_index = 0;
2593 long nr_to_write = wbc->nr_to_write;
2594 int range_whole = 0;
2595 int cycled = 1;
2596 handle_t *handle = NULL;
2597 struct mpage_da_data mpd;
2598 struct inode *inode = mapping->host;
2599 int needed_blocks, rsv_blocks = 0, ret = 0;
2600 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2601 bool done;
2602 struct blk_plug plug;
2603 bool give_up_on_write = false;
2604
2605 trace_ext4_writepages(inode, wbc);
2606
2607 if (dax_mapping(mapping))
2608 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2609 wbc);
2610
2611 /*
2612 * No pages to write? This is mainly a kludge to avoid starting
2613 * a transaction for special inodes like journal inode on last iput()
2614 * because that could violate lock ordering on umount
2615 */
2616 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2617 goto out_writepages;
2618
2619 if (ext4_should_journal_data(inode)) {
2620 struct blk_plug plug;
2621
2622 blk_start_plug(&plug);
2623 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2624 blk_finish_plug(&plug);
2625 goto out_writepages;
2626 }
2627
2628 /*
2629 * If the filesystem has aborted, it is read-only, so return
2630 * right away instead of dumping stack traces later on that
2631 * will obscure the real source of the problem. We test
2632 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2633 * the latter could be true if the filesystem is mounted
2634 * read-only, and in that case, ext4_writepages should
2635 * *never* be called, so if that ever happens, we would want
2636 * the stack trace.
2637 */
2638 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2639 ret = -EROFS;
2640 goto out_writepages;
2641 }
2642
2643 if (ext4_should_dioread_nolock(inode)) {
2644 /*
2645 * We may need to convert up to one extent per block in
2646 * the page and we may dirty the inode.
2647 */
2648 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2649 }
2650
2651 /*
2652 * If we have inline data and arrive here, it means that
2653 * we will soon create the block for the 1st page, so
2654 * we'd better clear the inline data here.
2655 */
2656 if (ext4_has_inline_data(inode)) {
2657 /* Just inode will be modified... */
2658 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2659 if (IS_ERR(handle)) {
2660 ret = PTR_ERR(handle);
2661 goto out_writepages;
2662 }
2663 BUG_ON(ext4_test_inode_state(inode,
2664 EXT4_STATE_MAY_INLINE_DATA));
2665 ext4_destroy_inline_data(handle, inode);
2666 ext4_journal_stop(handle);
2667 }
2668
2669 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2670 range_whole = 1;
2671
2672 if (wbc->range_cyclic) {
2673 writeback_index = mapping->writeback_index;
2674 if (writeback_index)
2675 cycled = 0;
2676 mpd.first_page = writeback_index;
2677 mpd.last_page = -1;
2678 } else {
2679 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2680 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2681 }
2682
2683 mpd.inode = inode;
2684 mpd.wbc = wbc;
2685 ext4_io_submit_init(&mpd.io_submit, wbc);
2686retry:
2687 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2688 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2689 done = false;
2690 blk_start_plug(&plug);
2691 while (!done && mpd.first_page <= mpd.last_page) {
2692 /* For each extent of pages we use new io_end */
2693 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2694 if (!mpd.io_submit.io_end) {
2695 ret = -ENOMEM;
2696 break;
2697 }
2698
2699 /*
2700 * We have two constraints: We find one extent to map and we
2701 * must always write out whole page (makes a difference when
2702 * blocksize < pagesize) so that we don't block on IO when we
2703 * try to write out the rest of the page. Journalled mode is
2704 * not supported by delalloc.
2705 */
2706 BUG_ON(ext4_should_journal_data(inode));
2707 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2708
2709 /* start a new transaction */
2710 handle = ext4_journal_start_with_reserve(inode,
2711 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2712 if (IS_ERR(handle)) {
2713 ret = PTR_ERR(handle);
2714 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2715 "%ld pages, ino %lu; err %d", __func__,
2716 wbc->nr_to_write, inode->i_ino, ret);
2717 /* Release allocated io_end */
2718 ext4_put_io_end(mpd.io_submit.io_end);
2719 break;
2720 }
2721
2722 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2723 ret = mpage_prepare_extent_to_map(&mpd);
2724 if (!ret) {
2725 if (mpd.map.m_len)
2726 ret = mpage_map_and_submit_extent(handle, &mpd,
2727 &give_up_on_write);
2728 else {
2729 /*
2730 * We scanned the whole range (or exhausted
2731 * nr_to_write), submitted what was mapped and
2732 * didn't find anything needing mapping. We are
2733 * done.
2734 */
2735 done = true;
2736 }
2737 }
2738 ext4_journal_stop(handle);
2739 /* Submit prepared bio */
2740 ext4_io_submit(&mpd.io_submit);
2741 /* Unlock pages we didn't use */
2742 mpage_release_unused_pages(&mpd, give_up_on_write);
2743 /* Drop our io_end reference we got from init */
2744 ext4_put_io_end(mpd.io_submit.io_end);
2745
2746 if (ret == -ENOSPC && sbi->s_journal) {
2747 /*
2748 * Commit the transaction which would
2749 * free blocks released in the transaction
2750 * and try again
2751 */
2752 jbd2_journal_force_commit_nested(sbi->s_journal);
2753 ret = 0;
2754 continue;
2755 }
2756 /* Fatal error - ENOMEM, EIO... */
2757 if (ret)
2758 break;
2759 }
2760 blk_finish_plug(&plug);
2761 if (!ret && !cycled && wbc->nr_to_write > 0) {
2762 cycled = 1;
2763 mpd.last_page = writeback_index - 1;
2764 mpd.first_page = 0;
2765 goto retry;
2766 }
2767
2768 /* Update index */
2769 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2770 /*
2771 * Set the writeback_index so that range_cyclic
2772 * mode will write it back later
2773 */
2774 mapping->writeback_index = mpd.first_page;
2775
2776out_writepages:
2777 trace_ext4_writepages_result(inode, wbc, ret,
2778 nr_to_write - wbc->nr_to_write);
2779 return ret;
2780}
2781
2782static int ext4_nonda_switch(struct super_block *sb)
2783{
2784 s64 free_clusters, dirty_clusters;
2785 struct ext4_sb_info *sbi = EXT4_SB(sb);
2786
2787 /*
2788 * switch to non delalloc mode if we are running low
2789 * on free block. The free block accounting via percpu
2790 * counters can get slightly wrong with percpu_counter_batch getting
2791 * accumulated on each CPU without updating global counters
2792 * Delalloc need an accurate free block accounting. So switch
2793 * to non delalloc when we are near to error range.
2794 */
2795 free_clusters =
2796 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2797 dirty_clusters =
2798 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2799 /*
2800 * Start pushing delalloc when 1/2 of free blocks are dirty.
2801 */
2802 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2803 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2804
2805 if (2 * free_clusters < 3 * dirty_clusters ||
2806 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2807 /*
2808 * free block count is less than 150% of dirty blocks
2809 * or free blocks is less than watermark
2810 */
2811 return 1;
2812 }
2813 return 0;
2814}
2815
2816/* We always reserve for an inode update; the superblock could be there too */
2817static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2818{
2819 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2820 return 1;
2821
2822 if (pos + len <= 0x7fffffffULL)
2823 return 1;
2824
2825 /* We might need to update the superblock to set LARGE_FILE */
2826 return 2;
2827}
2828
2829static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2830 loff_t pos, unsigned len, unsigned flags,
2831 struct page **pagep, void **fsdata)
2832{
2833 int ret, retries = 0;
2834 struct page *page;
2835 pgoff_t index;
2836 struct inode *inode = mapping->host;
2837 handle_t *handle;
2838
2839 index = pos >> PAGE_SHIFT;
2840
2841 if (ext4_nonda_switch(inode->i_sb)) {
2842 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2843 return ext4_write_begin(file, mapping, pos,
2844 len, flags, pagep, fsdata);
2845 }
2846 *fsdata = (void *)0;
2847 trace_ext4_da_write_begin(inode, pos, len, flags);
2848
2849 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2850 ret = ext4_da_write_inline_data_begin(mapping, inode,
2851 pos, len, flags,
2852 pagep, fsdata);
2853 if (ret < 0)
2854 return ret;
2855 if (ret == 1)
2856 return 0;
2857 }
2858
2859 /*
2860 * grab_cache_page_write_begin() can take a long time if the
2861 * system is thrashing due to memory pressure, or if the page
2862 * is being written back. So grab it first before we start
2863 * the transaction handle. This also allows us to allocate
2864 * the page (if needed) without using GFP_NOFS.
2865 */
2866retry_grab:
2867 page = grab_cache_page_write_begin(mapping, index, flags);
2868 if (!page)
2869 return -ENOMEM;
2870 unlock_page(page);
2871
2872 /*
2873 * With delayed allocation, we don't log the i_disksize update
2874 * if there is delayed block allocation. But we still need
2875 * to journalling the i_disksize update if writes to the end
2876 * of file which has an already mapped buffer.
2877 */
2878retry_journal:
2879 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2880 ext4_da_write_credits(inode, pos, len));
2881 if (IS_ERR(handle)) {
2882 put_page(page);
2883 return PTR_ERR(handle);
2884 }
2885
2886 lock_page(page);
2887 if (page->mapping != mapping) {
2888 /* The page got truncated from under us */
2889 unlock_page(page);
2890 put_page(page);
2891 ext4_journal_stop(handle);
2892 goto retry_grab;
2893 }
2894 /* In case writeback began while the page was unlocked */
2895 wait_for_stable_page(page);
2896
2897#ifdef CONFIG_EXT4_FS_ENCRYPTION
2898 ret = ext4_block_write_begin(page, pos, len,
2899 ext4_da_get_block_prep);
2900#else
2901 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2902#endif
2903 if (ret < 0) {
2904 unlock_page(page);
2905 ext4_journal_stop(handle);
2906 /*
2907 * block_write_begin may have instantiated a few blocks
2908 * outside i_size. Trim these off again. Don't need
2909 * i_size_read because we hold i_mutex.
2910 */
2911 if (pos + len > inode->i_size)
2912 ext4_truncate_failed_write(inode);
2913
2914 if (ret == -ENOSPC &&
2915 ext4_should_retry_alloc(inode->i_sb, &retries))
2916 goto retry_journal;
2917
2918 put_page(page);
2919 return ret;
2920 }
2921
2922 *pagep = page;
2923 return ret;
2924}
2925
2926/*
2927 * Check if we should update i_disksize
2928 * when write to the end of file but not require block allocation
2929 */
2930static int ext4_da_should_update_i_disksize(struct page *page,
2931 unsigned long offset)
2932{
2933 struct buffer_head *bh;
2934 struct inode *inode = page->mapping->host;
2935 unsigned int idx;
2936 int i;
2937
2938 bh = page_buffers(page);
2939 idx = offset >> inode->i_blkbits;
2940
2941 for (i = 0; i < idx; i++)
2942 bh = bh->b_this_page;
2943
2944 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2945 return 0;
2946 return 1;
2947}
2948
2949static int ext4_da_write_end(struct file *file,
2950 struct address_space *mapping,
2951 loff_t pos, unsigned len, unsigned copied,
2952 struct page *page, void *fsdata)
2953{
2954 struct inode *inode = mapping->host;
2955 int ret = 0, ret2;
2956 handle_t *handle = ext4_journal_current_handle();
2957 loff_t new_i_size;
2958 unsigned long start, end;
2959 int write_mode = (int)(unsigned long)fsdata;
2960
2961 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2962 return ext4_write_end(file, mapping, pos,
2963 len, copied, page, fsdata);
2964
2965 trace_ext4_da_write_end(inode, pos, len, copied);
2966 start = pos & (PAGE_SIZE - 1);
2967 end = start + copied - 1;
2968
2969 /*
2970 * generic_write_end() will run mark_inode_dirty() if i_size
2971 * changes. So let's piggyback the i_disksize mark_inode_dirty
2972 * into that.
2973 */
2974 new_i_size = pos + copied;
2975 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2976 if (ext4_has_inline_data(inode) ||
2977 ext4_da_should_update_i_disksize(page, end)) {
2978 ext4_update_i_disksize(inode, new_i_size);
2979 /* We need to mark inode dirty even if
2980 * new_i_size is less that inode->i_size
2981 * bu greater than i_disksize.(hint delalloc)
2982 */
2983 ext4_mark_inode_dirty(handle, inode);
2984 }
2985 }
2986
2987 if (write_mode != CONVERT_INLINE_DATA &&
2988 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2989 ext4_has_inline_data(inode))
2990 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2991 page);
2992 else
2993 ret2 = generic_write_end(file, mapping, pos, len, copied,
2994 page, fsdata);
2995
2996 copied = ret2;
2997 if (ret2 < 0)
2998 ret = ret2;
2999 ret2 = ext4_journal_stop(handle);
3000 if (!ret)
3001 ret = ret2;
3002
3003 return ret ? ret : copied;
3004}
3005
3006static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3007 unsigned int length)
3008{
3009 /*
3010 * Drop reserved blocks
3011 */
3012 BUG_ON(!PageLocked(page));
3013 if (!page_has_buffers(page))
3014 goto out;
3015
3016 ext4_da_page_release_reservation(page, offset, length);
3017
3018out:
3019 ext4_invalidatepage(page, offset, length);
3020
3021 return;
3022}
3023
3024/*
3025 * Force all delayed allocation blocks to be allocated for a given inode.
3026 */
3027int ext4_alloc_da_blocks(struct inode *inode)
3028{
3029 trace_ext4_alloc_da_blocks(inode);
3030
3031 if (!EXT4_I(inode)->i_reserved_data_blocks)
3032 return 0;
3033
3034 /*
3035 * We do something simple for now. The filemap_flush() will
3036 * also start triggering a write of the data blocks, which is
3037 * not strictly speaking necessary (and for users of
3038 * laptop_mode, not even desirable). However, to do otherwise
3039 * would require replicating code paths in:
3040 *
3041 * ext4_writepages() ->
3042 * write_cache_pages() ---> (via passed in callback function)
3043 * __mpage_da_writepage() -->
3044 * mpage_add_bh_to_extent()
3045 * mpage_da_map_blocks()
3046 *
3047 * The problem is that write_cache_pages(), located in
3048 * mm/page-writeback.c, marks pages clean in preparation for
3049 * doing I/O, which is not desirable if we're not planning on
3050 * doing I/O at all.
3051 *
3052 * We could call write_cache_pages(), and then redirty all of
3053 * the pages by calling redirty_page_for_writepage() but that
3054 * would be ugly in the extreme. So instead we would need to
3055 * replicate parts of the code in the above functions,
3056 * simplifying them because we wouldn't actually intend to
3057 * write out the pages, but rather only collect contiguous
3058 * logical block extents, call the multi-block allocator, and
3059 * then update the buffer heads with the block allocations.
3060 *
3061 * For now, though, we'll cheat by calling filemap_flush(),
3062 * which will map the blocks, and start the I/O, but not
3063 * actually wait for the I/O to complete.
3064 */
3065 return filemap_flush(inode->i_mapping);
3066}
3067
3068/*
3069 * bmap() is special. It gets used by applications such as lilo and by
3070 * the swapper to find the on-disk block of a specific piece of data.
3071 *
3072 * Naturally, this is dangerous if the block concerned is still in the
3073 * journal. If somebody makes a swapfile on an ext4 data-journaling
3074 * filesystem and enables swap, then they may get a nasty shock when the
3075 * data getting swapped to that swapfile suddenly gets overwritten by
3076 * the original zero's written out previously to the journal and
3077 * awaiting writeback in the kernel's buffer cache.
3078 *
3079 * So, if we see any bmap calls here on a modified, data-journaled file,
3080 * take extra steps to flush any blocks which might be in the cache.
3081 */
3082static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3083{
3084 struct inode *inode = mapping->host;
3085 journal_t *journal;
3086 int err;
3087
3088 /*
3089 * We can get here for an inline file via the FIBMAP ioctl
3090 */
3091 if (ext4_has_inline_data(inode))
3092 return 0;
3093
3094 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3095 test_opt(inode->i_sb, DELALLOC)) {
3096 /*
3097 * With delalloc we want to sync the file
3098 * so that we can make sure we allocate
3099 * blocks for file
3100 */
3101 filemap_write_and_wait(mapping);
3102 }
3103
3104 if (EXT4_JOURNAL(inode) &&
3105 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3106 /*
3107 * This is a REALLY heavyweight approach, but the use of
3108 * bmap on dirty files is expected to be extremely rare:
3109 * only if we run lilo or swapon on a freshly made file
3110 * do we expect this to happen.
3111 *
3112 * (bmap requires CAP_SYS_RAWIO so this does not
3113 * represent an unprivileged user DOS attack --- we'd be
3114 * in trouble if mortal users could trigger this path at
3115 * will.)
3116 *
3117 * NB. EXT4_STATE_JDATA is not set on files other than
3118 * regular files. If somebody wants to bmap a directory
3119 * or symlink and gets confused because the buffer
3120 * hasn't yet been flushed to disk, they deserve
3121 * everything they get.
3122 */
3123
3124 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3125 journal = EXT4_JOURNAL(inode);
3126 jbd2_journal_lock_updates(journal);
3127 err = jbd2_journal_flush(journal);
3128 jbd2_journal_unlock_updates(journal);
3129
3130 if (err)
3131 return 0;
3132 }
3133
3134 return generic_block_bmap(mapping, block, ext4_get_block);
3135}
3136
3137static int ext4_readpage(struct file *file, struct page *page)
3138{
3139 int ret = -EAGAIN;
3140 struct inode *inode = page->mapping->host;
3141
3142 trace_ext4_readpage(page);
3143
3144 if (ext4_has_inline_data(inode))
3145 ret = ext4_readpage_inline(inode, page);
3146
3147 if (ret == -EAGAIN)
3148 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3149
3150 return ret;
3151}
3152
3153static int
3154ext4_readpages(struct file *file, struct address_space *mapping,
3155 struct list_head *pages, unsigned nr_pages)
3156{
3157 struct inode *inode = mapping->host;
3158
3159 /* If the file has inline data, no need to do readpages. */
3160 if (ext4_has_inline_data(inode))
3161 return 0;
3162
3163 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3164}
3165
3166static void ext4_invalidatepage(struct page *page, unsigned int offset,
3167 unsigned int length)
3168{
3169 trace_ext4_invalidatepage(page, offset, length);
3170
3171 /* No journalling happens on data buffers when this function is used */
3172 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3173
3174 block_invalidatepage(page, offset, length);
3175}
3176
3177static int __ext4_journalled_invalidatepage(struct page *page,
3178 unsigned int offset,
3179 unsigned int length)
3180{
3181 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3182
3183 trace_ext4_journalled_invalidatepage(page, offset, length);
3184
3185 /*
3186 * If it's a full truncate we just forget about the pending dirtying
3187 */
3188 if (offset == 0 && length == PAGE_SIZE)
3189 ClearPageChecked(page);
3190
3191 return jbd2_journal_invalidatepage(journal, page, offset, length);
3192}
3193
3194/* Wrapper for aops... */
3195static void ext4_journalled_invalidatepage(struct page *page,
3196 unsigned int offset,
3197 unsigned int length)
3198{
3199 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3200}
3201
3202static int ext4_releasepage(struct page *page, gfp_t wait)
3203{
3204 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3205
3206 trace_ext4_releasepage(page);
3207
3208 /* Page has dirty journalled data -> cannot release */
3209 if (PageChecked(page))
3210 return 0;
3211 if (journal)
3212 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3213 else
3214 return try_to_free_buffers(page);
3215}
3216
3217#ifdef CONFIG_FS_DAX
3218int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3219 struct buffer_head *bh_result, int create)
3220{
3221 int ret, err;
3222 int credits;
3223 struct ext4_map_blocks map;
3224 handle_t *handle = NULL;
3225 int flags = 0;
3226
3227 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3228 inode->i_ino, create);
3229 map.m_lblk = iblock;
3230 map.m_len = bh_result->b_size >> inode->i_blkbits;
3231 credits = ext4_chunk_trans_blocks(inode, map.m_len);
3232 if (create) {
3233 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3234 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3235 if (IS_ERR(handle)) {
3236 ret = PTR_ERR(handle);
3237 return ret;
3238 }
3239 }
3240
3241 ret = ext4_map_blocks(handle, inode, &map, flags);
3242 if (create) {
3243 err = ext4_journal_stop(handle);
3244 if (ret >= 0 && err < 0)
3245 ret = err;
3246 }
3247 if (ret <= 0)
3248 goto out;
3249 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3250 int err2;
3251
3252 /*
3253 * We are protected by i_mmap_sem so we know block cannot go
3254 * away from under us even though we dropped i_data_sem.
3255 * Convert extent to written and write zeros there.
3256 *
3257 * Note: We may get here even when create == 0.
3258 */
3259 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3260 if (IS_ERR(handle)) {
3261 ret = PTR_ERR(handle);
3262 goto out;
3263 }
3264
3265 err = ext4_map_blocks(handle, inode, &map,
3266 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3267 if (err < 0)
3268 ret = err;
3269 err2 = ext4_journal_stop(handle);
3270 if (err2 < 0 && ret > 0)
3271 ret = err2;
3272 }
3273out:
3274 WARN_ON_ONCE(ret == 0 && create);
3275 if (ret > 0) {
3276 map_bh(bh_result, inode->i_sb, map.m_pblk);
3277 /*
3278 * At least for now we have to clear BH_New so that DAX code
3279 * doesn't attempt to zero blocks again in a racy way.
3280 */
3281 map.m_flags &= ~EXT4_MAP_NEW;
3282 ext4_update_bh_state(bh_result, map.m_flags);
3283 bh_result->b_size = map.m_len << inode->i_blkbits;
3284 ret = 0;
3285 }
3286 return ret;
3287}
3288#endif
3289
3290static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3291 ssize_t size, void *private)
3292{
3293 ext4_io_end_t *io_end = private;
3294
3295 /* if not async direct IO just return */
3296 if (!io_end)
3297 return 0;
3298
3299 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3300 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3301 io_end, io_end->inode->i_ino, iocb, offset, size);
3302
3303 /*
3304 * Error during AIO DIO. We cannot convert unwritten extents as the
3305 * data was not written. Just clear the unwritten flag and drop io_end.
3306 */
3307 if (size <= 0) {
3308 ext4_clear_io_unwritten_flag(io_end);
3309 size = 0;
3310 }
3311 io_end->offset = offset;
3312 io_end->size = size;
3313 ext4_put_io_end(io_end);
3314
3315 return 0;
3316}
3317
3318/*
3319 * For ext4 extent files, ext4 will do direct-io write to holes,
3320 * preallocated extents, and those write extend the file, no need to
3321 * fall back to buffered IO.
3322 *
3323 * For holes, we fallocate those blocks, mark them as unwritten
3324 * If those blocks were preallocated, we mark sure they are split, but
3325 * still keep the range to write as unwritten.
3326 *
3327 * The unwritten extents will be converted to written when DIO is completed.
3328 * For async direct IO, since the IO may still pending when return, we
3329 * set up an end_io call back function, which will do the conversion
3330 * when async direct IO completed.
3331 *
3332 * If the O_DIRECT write will extend the file then add this inode to the
3333 * orphan list. So recovery will truncate it back to the original size
3334 * if the machine crashes during the write.
3335 *
3336 */
3337static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3338 loff_t offset)
3339{
3340 struct file *file = iocb->ki_filp;
3341 struct inode *inode = file->f_mapping->host;
3342 ssize_t ret;
3343 size_t count = iov_iter_count(iter);
3344 int overwrite = 0;
3345 get_block_t *get_block_func = NULL;
3346 int dio_flags = 0;
3347 loff_t final_size = offset + count;
3348
3349 /* Use the old path for reads and writes beyond i_size. */
3350 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3351 return ext4_ind_direct_IO(iocb, iter, offset);
3352
3353 BUG_ON(iocb->private == NULL);
3354
3355 /*
3356 * Make all waiters for direct IO properly wait also for extent
3357 * conversion. This also disallows race between truncate() and
3358 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3359 */
3360 if (iov_iter_rw(iter) == WRITE)
3361 inode_dio_begin(inode);
3362
3363 /* If we do a overwrite dio, i_mutex locking can be released */
3364 overwrite = *((int *)iocb->private);
3365
3366 if (overwrite)
3367 inode_unlock(inode);
3368
3369 /*
3370 * We could direct write to holes and fallocate.
3371 *
3372 * Allocated blocks to fill the hole are marked as unwritten to prevent
3373 * parallel buffered read to expose the stale data before DIO complete
3374 * the data IO.
3375 *
3376 * As to previously fallocated extents, ext4 get_block will just simply
3377 * mark the buffer mapped but still keep the extents unwritten.
3378 *
3379 * For non AIO case, we will convert those unwritten extents to written
3380 * after return back from blockdev_direct_IO. That way we save us from
3381 * allocating io_end structure and also the overhead of offloading
3382 * the extent convertion to a workqueue.
3383 *
3384 * For async DIO, the conversion needs to be deferred when the
3385 * IO is completed. The ext4 end_io callback function will be
3386 * called to take care of the conversion work. Here for async
3387 * case, we allocate an io_end structure to hook to the iocb.
3388 */
3389 iocb->private = NULL;
3390 if (overwrite)
3391 get_block_func = ext4_dio_get_block_overwrite;
3392 else if (is_sync_kiocb(iocb)) {
3393 get_block_func = ext4_dio_get_block_unwritten_sync;
3394 dio_flags = DIO_LOCKING;
3395 } else {
3396 get_block_func = ext4_dio_get_block_unwritten_async;
3397 dio_flags = DIO_LOCKING;
3398 }
3399#ifdef CONFIG_EXT4_FS_ENCRYPTION
3400 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3401#endif
3402 if (IS_DAX(inode))
3403 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3404 ext4_end_io_dio, dio_flags);
3405 else
3406 ret = __blockdev_direct_IO(iocb, inode,
3407 inode->i_sb->s_bdev, iter, offset,
3408 get_block_func,
3409 ext4_end_io_dio, NULL, dio_flags);
3410
3411 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3412 EXT4_STATE_DIO_UNWRITTEN)) {
3413 int err;
3414 /*
3415 * for non AIO case, since the IO is already
3416 * completed, we could do the conversion right here
3417 */
3418 err = ext4_convert_unwritten_extents(NULL, inode,
3419 offset, ret);
3420 if (err < 0)
3421 ret = err;
3422 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3423 }
3424
3425 if (iov_iter_rw(iter) == WRITE)
3426 inode_dio_end(inode);
3427 /* take i_mutex locking again if we do a ovewrite dio */
3428 if (overwrite)
3429 inode_lock(inode);
3430
3431 return ret;
3432}
3433
3434static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3435 loff_t offset)
3436{
3437 struct file *file = iocb->ki_filp;
3438 struct inode *inode = file->f_mapping->host;
3439 size_t count = iov_iter_count(iter);
3440 ssize_t ret;
3441
3442#ifdef CONFIG_EXT4_FS_ENCRYPTION
3443 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3444 return 0;
3445#endif
3446
3447 /*
3448 * If we are doing data journalling we don't support O_DIRECT
3449 */
3450 if (ext4_should_journal_data(inode))
3451 return 0;
3452
3453 /* Let buffer I/O handle the inline data case. */
3454 if (ext4_has_inline_data(inode))
3455 return 0;
3456
3457 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3458 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3459 ret = ext4_ext_direct_IO(iocb, iter, offset);
3460 else
3461 ret = ext4_ind_direct_IO(iocb, iter, offset);
3462 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3463 return ret;
3464}
3465
3466/*
3467 * Pages can be marked dirty completely asynchronously from ext4's journalling
3468 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3469 * much here because ->set_page_dirty is called under VFS locks. The page is
3470 * not necessarily locked.
3471 *
3472 * We cannot just dirty the page and leave attached buffers clean, because the
3473 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3474 * or jbddirty because all the journalling code will explode.
3475 *
3476 * So what we do is to mark the page "pending dirty" and next time writepage
3477 * is called, propagate that into the buffers appropriately.
3478 */
3479static int ext4_journalled_set_page_dirty(struct page *page)
3480{
3481 SetPageChecked(page);
3482 return __set_page_dirty_nobuffers(page);
3483}
3484
3485static const struct address_space_operations ext4_aops = {
3486 .readpage = ext4_readpage,
3487 .readpages = ext4_readpages,
3488 .writepage = ext4_writepage,
3489 .writepages = ext4_writepages,
3490 .write_begin = ext4_write_begin,
3491 .write_end = ext4_write_end,
3492 .bmap = ext4_bmap,
3493 .invalidatepage = ext4_invalidatepage,
3494 .releasepage = ext4_releasepage,
3495 .direct_IO = ext4_direct_IO,
3496 .migratepage = buffer_migrate_page,
3497 .is_partially_uptodate = block_is_partially_uptodate,
3498 .error_remove_page = generic_error_remove_page,
3499};
3500
3501static const struct address_space_operations ext4_journalled_aops = {
3502 .readpage = ext4_readpage,
3503 .readpages = ext4_readpages,
3504 .writepage = ext4_writepage,
3505 .writepages = ext4_writepages,
3506 .write_begin = ext4_write_begin,
3507 .write_end = ext4_journalled_write_end,
3508 .set_page_dirty = ext4_journalled_set_page_dirty,
3509 .bmap = ext4_bmap,
3510 .invalidatepage = ext4_journalled_invalidatepage,
3511 .releasepage = ext4_releasepage,
3512 .direct_IO = ext4_direct_IO,
3513 .is_partially_uptodate = block_is_partially_uptodate,
3514 .error_remove_page = generic_error_remove_page,
3515};
3516
3517static const struct address_space_operations ext4_da_aops = {
3518 .readpage = ext4_readpage,
3519 .readpages = ext4_readpages,
3520 .writepage = ext4_writepage,
3521 .writepages = ext4_writepages,
3522 .write_begin = ext4_da_write_begin,
3523 .write_end = ext4_da_write_end,
3524 .bmap = ext4_bmap,
3525 .invalidatepage = ext4_da_invalidatepage,
3526 .releasepage = ext4_releasepage,
3527 .direct_IO = ext4_direct_IO,
3528 .migratepage = buffer_migrate_page,
3529 .is_partially_uptodate = block_is_partially_uptodate,
3530 .error_remove_page = generic_error_remove_page,
3531};
3532
3533void ext4_set_aops(struct inode *inode)
3534{
3535 switch (ext4_inode_journal_mode(inode)) {
3536 case EXT4_INODE_ORDERED_DATA_MODE:
3537 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3538 break;
3539 case EXT4_INODE_WRITEBACK_DATA_MODE:
3540 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3541 break;
3542 case EXT4_INODE_JOURNAL_DATA_MODE:
3543 inode->i_mapping->a_ops = &ext4_journalled_aops;
3544 return;
3545 default:
3546 BUG();
3547 }
3548 if (test_opt(inode->i_sb, DELALLOC))
3549 inode->i_mapping->a_ops = &ext4_da_aops;
3550 else
3551 inode->i_mapping->a_ops = &ext4_aops;
3552}
3553
3554static int __ext4_block_zero_page_range(handle_t *handle,
3555 struct address_space *mapping, loff_t from, loff_t length)
3556{
3557 ext4_fsblk_t index = from >> PAGE_SHIFT;
3558 unsigned offset = from & (PAGE_SIZE-1);
3559 unsigned blocksize, pos;
3560 ext4_lblk_t iblock;
3561 struct inode *inode = mapping->host;
3562 struct buffer_head *bh;
3563 struct page *page;
3564 int err = 0;
3565
3566 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3567 mapping_gfp_constraint(mapping, ~__GFP_FS));
3568 if (!page)
3569 return -ENOMEM;
3570
3571 blocksize = inode->i_sb->s_blocksize;
3572
3573 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3574
3575 if (!page_has_buffers(page))
3576 create_empty_buffers(page, blocksize, 0);
3577
3578 /* Find the buffer that contains "offset" */
3579 bh = page_buffers(page);
3580 pos = blocksize;
3581 while (offset >= pos) {
3582 bh = bh->b_this_page;
3583 iblock++;
3584 pos += blocksize;
3585 }
3586 if (buffer_freed(bh)) {
3587 BUFFER_TRACE(bh, "freed: skip");
3588 goto unlock;
3589 }
3590 if (!buffer_mapped(bh)) {
3591 BUFFER_TRACE(bh, "unmapped");
3592 ext4_get_block(inode, iblock, bh, 0);
3593 /* unmapped? It's a hole - nothing to do */
3594 if (!buffer_mapped(bh)) {
3595 BUFFER_TRACE(bh, "still unmapped");
3596 goto unlock;
3597 }
3598 }
3599
3600 /* Ok, it's mapped. Make sure it's up-to-date */
3601 if (PageUptodate(page))
3602 set_buffer_uptodate(bh);
3603
3604 if (!buffer_uptodate(bh)) {
3605 err = -EIO;
3606 ll_rw_block(READ, 1, &bh);
3607 wait_on_buffer(bh);
3608 /* Uhhuh. Read error. Complain and punt. */
3609 if (!buffer_uptodate(bh))
3610 goto unlock;
3611 if (S_ISREG(inode->i_mode) &&
3612 ext4_encrypted_inode(inode)) {
3613 /* We expect the key to be set. */
3614 BUG_ON(!ext4_has_encryption_key(inode));
3615 BUG_ON(blocksize != PAGE_SIZE);
3616 WARN_ON_ONCE(ext4_decrypt(page));
3617 }
3618 }
3619 if (ext4_should_journal_data(inode)) {
3620 BUFFER_TRACE(bh, "get write access");
3621 err = ext4_journal_get_write_access(handle, bh);
3622 if (err)
3623 goto unlock;
3624 }
3625 zero_user(page, offset, length);
3626 BUFFER_TRACE(bh, "zeroed end of block");
3627
3628 if (ext4_should_journal_data(inode)) {
3629 err = ext4_handle_dirty_metadata(handle, inode, bh);
3630 } else {
3631 err = 0;
3632 mark_buffer_dirty(bh);
3633 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3634 err = ext4_jbd2_file_inode(handle, inode);
3635 }
3636
3637unlock:
3638 unlock_page(page);
3639 put_page(page);
3640 return err;
3641}
3642
3643/*
3644 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3645 * starting from file offset 'from'. The range to be zero'd must
3646 * be contained with in one block. If the specified range exceeds
3647 * the end of the block it will be shortened to end of the block
3648 * that cooresponds to 'from'
3649 */
3650static int ext4_block_zero_page_range(handle_t *handle,
3651 struct address_space *mapping, loff_t from, loff_t length)
3652{
3653 struct inode *inode = mapping->host;
3654 unsigned offset = from & (PAGE_SIZE-1);
3655 unsigned blocksize = inode->i_sb->s_blocksize;
3656 unsigned max = blocksize - (offset & (blocksize - 1));
3657
3658 /*
3659 * correct length if it does not fall between
3660 * 'from' and the end of the block
3661 */
3662 if (length > max || length < 0)
3663 length = max;
3664
3665 if (IS_DAX(inode))
3666 return dax_zero_page_range(inode, from, length, ext4_get_block);
3667 return __ext4_block_zero_page_range(handle, mapping, from, length);
3668}
3669
3670/*
3671 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3672 * up to the end of the block which corresponds to `from'.
3673 * This required during truncate. We need to physically zero the tail end
3674 * of that block so it doesn't yield old data if the file is later grown.
3675 */
3676static int ext4_block_truncate_page(handle_t *handle,
3677 struct address_space *mapping, loff_t from)
3678{
3679 unsigned offset = from & (PAGE_SIZE-1);
3680 unsigned length;
3681 unsigned blocksize;
3682 struct inode *inode = mapping->host;
3683
3684 blocksize = inode->i_sb->s_blocksize;
3685 length = blocksize - (offset & (blocksize - 1));
3686
3687 return ext4_block_zero_page_range(handle, mapping, from, length);
3688}
3689
3690int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3691 loff_t lstart, loff_t length)
3692{
3693 struct super_block *sb = inode->i_sb;
3694 struct address_space *mapping = inode->i_mapping;
3695 unsigned partial_start, partial_end;
3696 ext4_fsblk_t start, end;
3697 loff_t byte_end = (lstart + length - 1);
3698 int err = 0;
3699
3700 partial_start = lstart & (sb->s_blocksize - 1);
3701 partial_end = byte_end & (sb->s_blocksize - 1);
3702
3703 start = lstart >> sb->s_blocksize_bits;
3704 end = byte_end >> sb->s_blocksize_bits;
3705
3706 /* Handle partial zero within the single block */
3707 if (start == end &&
3708 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3709 err = ext4_block_zero_page_range(handle, mapping,
3710 lstart, length);
3711 return err;
3712 }
3713 /* Handle partial zero out on the start of the range */
3714 if (partial_start) {
3715 err = ext4_block_zero_page_range(handle, mapping,
3716 lstart, sb->s_blocksize);
3717 if (err)
3718 return err;
3719 }
3720 /* Handle partial zero out on the end of the range */
3721 if (partial_end != sb->s_blocksize - 1)
3722 err = ext4_block_zero_page_range(handle, mapping,
3723 byte_end - partial_end,
3724 partial_end + 1);
3725 return err;
3726}
3727
3728int ext4_can_truncate(struct inode *inode)
3729{
3730 if (S_ISREG(inode->i_mode))
3731 return 1;
3732 if (S_ISDIR(inode->i_mode))
3733 return 1;
3734 if (S_ISLNK(inode->i_mode))
3735 return !ext4_inode_is_fast_symlink(inode);
3736 return 0;
3737}
3738
3739/*
3740 * We have to make sure i_disksize gets properly updated before we truncate
3741 * page cache due to hole punching or zero range. Otherwise i_disksize update
3742 * can get lost as it may have been postponed to submission of writeback but
3743 * that will never happen after we truncate page cache.
3744 */
3745int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3746 loff_t len)
3747{
3748 handle_t *handle;
3749 loff_t size = i_size_read(inode);
3750
3751 WARN_ON(!inode_is_locked(inode));
3752 if (offset > size || offset + len < size)
3753 return 0;
3754
3755 if (EXT4_I(inode)->i_disksize >= size)
3756 return 0;
3757
3758 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3759 if (IS_ERR(handle))
3760 return PTR_ERR(handle);
3761 ext4_update_i_disksize(inode, size);
3762 ext4_mark_inode_dirty(handle, inode);
3763 ext4_journal_stop(handle);
3764
3765 return 0;
3766}
3767
3768/*
3769 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3770 * associated with the given offset and length
3771 *
3772 * @inode: File inode
3773 * @offset: The offset where the hole will begin
3774 * @len: The length of the hole
3775 *
3776 * Returns: 0 on success or negative on failure
3777 */
3778
3779int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3780{
3781 struct super_block *sb = inode->i_sb;
3782 ext4_lblk_t first_block, stop_block;
3783 struct address_space *mapping = inode->i_mapping;
3784 loff_t first_block_offset, last_block_offset;
3785 handle_t *handle;
3786 unsigned int credits;
3787 int ret = 0;
3788
3789 if (!S_ISREG(inode->i_mode))
3790 return -EOPNOTSUPP;
3791
3792 trace_ext4_punch_hole(inode, offset, length, 0);
3793
3794 /*
3795 * Write out all dirty pages to avoid race conditions
3796 * Then release them.
3797 */
3798 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3799 ret = filemap_write_and_wait_range(mapping, offset,
3800 offset + length - 1);
3801 if (ret)
3802 return ret;
3803 }
3804
3805 inode_lock(inode);
3806
3807 /* No need to punch hole beyond i_size */
3808 if (offset >= inode->i_size)
3809 goto out_mutex;
3810
3811 /*
3812 * If the hole extends beyond i_size, set the hole
3813 * to end after the page that contains i_size
3814 */
3815 if (offset + length > inode->i_size) {
3816 length = inode->i_size +
3817 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3818 offset;
3819 }
3820
3821 if (offset & (sb->s_blocksize - 1) ||
3822 (offset + length) & (sb->s_blocksize - 1)) {
3823 /*
3824 * Attach jinode to inode for jbd2 if we do any zeroing of
3825 * partial block
3826 */
3827 ret = ext4_inode_attach_jinode(inode);
3828 if (ret < 0)
3829 goto out_mutex;
3830
3831 }
3832
3833 /* Wait all existing dio workers, newcomers will block on i_mutex */
3834 ext4_inode_block_unlocked_dio(inode);
3835 inode_dio_wait(inode);
3836
3837 /*
3838 * Prevent page faults from reinstantiating pages we have released from
3839 * page cache.
3840 */
3841 down_write(&EXT4_I(inode)->i_mmap_sem);
3842 first_block_offset = round_up(offset, sb->s_blocksize);
3843 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3844
3845 /* Now release the pages and zero block aligned part of pages*/
3846 if (last_block_offset > first_block_offset) {
3847 ret = ext4_update_disksize_before_punch(inode, offset, length);
3848 if (ret)
3849 goto out_dio;
3850 truncate_pagecache_range(inode, first_block_offset,
3851 last_block_offset);
3852 }
3853
3854 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3855 credits = ext4_writepage_trans_blocks(inode);
3856 else
3857 credits = ext4_blocks_for_truncate(inode);
3858 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3859 if (IS_ERR(handle)) {
3860 ret = PTR_ERR(handle);
3861 ext4_std_error(sb, ret);
3862 goto out_dio;
3863 }
3864
3865 ret = ext4_zero_partial_blocks(handle, inode, offset,
3866 length);
3867 if (ret)
3868 goto out_stop;
3869
3870 first_block = (offset + sb->s_blocksize - 1) >>
3871 EXT4_BLOCK_SIZE_BITS(sb);
3872 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3873
3874 /* If there are no blocks to remove, return now */
3875 if (first_block >= stop_block)
3876 goto out_stop;
3877
3878 down_write(&EXT4_I(inode)->i_data_sem);
3879 ext4_discard_preallocations(inode);
3880
3881 ret = ext4_es_remove_extent(inode, first_block,
3882 stop_block - first_block);
3883 if (ret) {
3884 up_write(&EXT4_I(inode)->i_data_sem);
3885 goto out_stop;
3886 }
3887
3888 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3889 ret = ext4_ext_remove_space(inode, first_block,
3890 stop_block - 1);
3891 else
3892 ret = ext4_ind_remove_space(handle, inode, first_block,
3893 stop_block);
3894
3895 up_write(&EXT4_I(inode)->i_data_sem);
3896 if (IS_SYNC(inode))
3897 ext4_handle_sync(handle);
3898
3899 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900 ext4_mark_inode_dirty(handle, inode);
3901out_stop:
3902 ext4_journal_stop(handle);
3903out_dio:
3904 up_write(&EXT4_I(inode)->i_mmap_sem);
3905 ext4_inode_resume_unlocked_dio(inode);
3906out_mutex:
3907 inode_unlock(inode);
3908 return ret;
3909}
3910
3911int ext4_inode_attach_jinode(struct inode *inode)
3912{
3913 struct ext4_inode_info *ei = EXT4_I(inode);
3914 struct jbd2_inode *jinode;
3915
3916 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3917 return 0;
3918
3919 jinode = jbd2_alloc_inode(GFP_KERNEL);
3920 spin_lock(&inode->i_lock);
3921 if (!ei->jinode) {
3922 if (!jinode) {
3923 spin_unlock(&inode->i_lock);
3924 return -ENOMEM;
3925 }
3926 ei->jinode = jinode;
3927 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3928 jinode = NULL;
3929 }
3930 spin_unlock(&inode->i_lock);
3931 if (unlikely(jinode != NULL))
3932 jbd2_free_inode(jinode);
3933 return 0;
3934}
3935
3936/*
3937 * ext4_truncate()
3938 *
3939 * We block out ext4_get_block() block instantiations across the entire
3940 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3941 * simultaneously on behalf of the same inode.
3942 *
3943 * As we work through the truncate and commit bits of it to the journal there
3944 * is one core, guiding principle: the file's tree must always be consistent on
3945 * disk. We must be able to restart the truncate after a crash.
3946 *
3947 * The file's tree may be transiently inconsistent in memory (although it
3948 * probably isn't), but whenever we close off and commit a journal transaction,
3949 * the contents of (the filesystem + the journal) must be consistent and
3950 * restartable. It's pretty simple, really: bottom up, right to left (although
3951 * left-to-right works OK too).
3952 *
3953 * Note that at recovery time, journal replay occurs *before* the restart of
3954 * truncate against the orphan inode list.
3955 *
3956 * The committed inode has the new, desired i_size (which is the same as
3957 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3958 * that this inode's truncate did not complete and it will again call
3959 * ext4_truncate() to have another go. So there will be instantiated blocks
3960 * to the right of the truncation point in a crashed ext4 filesystem. But
3961 * that's fine - as long as they are linked from the inode, the post-crash
3962 * ext4_truncate() run will find them and release them.
3963 */
3964void ext4_truncate(struct inode *inode)
3965{
3966 struct ext4_inode_info *ei = EXT4_I(inode);
3967 unsigned int credits;
3968 handle_t *handle;
3969 struct address_space *mapping = inode->i_mapping;
3970
3971 /*
3972 * There is a possibility that we're either freeing the inode
3973 * or it's a completely new inode. In those cases we might not
3974 * have i_mutex locked because it's not necessary.
3975 */
3976 if (!(inode->i_state & (I_NEW|I_FREEING)))
3977 WARN_ON(!inode_is_locked(inode));
3978 trace_ext4_truncate_enter(inode);
3979
3980 if (!ext4_can_truncate(inode))
3981 return;
3982
3983 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3984
3985 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3986 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3987
3988 if (ext4_has_inline_data(inode)) {
3989 int has_inline = 1;
3990
3991 ext4_inline_data_truncate(inode, &has_inline);
3992 if (has_inline)
3993 return;
3994 }
3995
3996 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3997 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3998 if (ext4_inode_attach_jinode(inode) < 0)
3999 return;
4000 }
4001
4002 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4003 credits = ext4_writepage_trans_blocks(inode);
4004 else
4005 credits = ext4_blocks_for_truncate(inode);
4006
4007 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008 if (IS_ERR(handle)) {
4009 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4010 return;
4011 }
4012
4013 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4014 ext4_block_truncate_page(handle, mapping, inode->i_size);
4015
4016 /*
4017 * We add the inode to the orphan list, so that if this
4018 * truncate spans multiple transactions, and we crash, we will
4019 * resume the truncate when the filesystem recovers. It also
4020 * marks the inode dirty, to catch the new size.
4021 *
4022 * Implication: the file must always be in a sane, consistent
4023 * truncatable state while each transaction commits.
4024 */
4025 if (ext4_orphan_add(handle, inode))
4026 goto out_stop;
4027
4028 down_write(&EXT4_I(inode)->i_data_sem);
4029
4030 ext4_discard_preallocations(inode);
4031
4032 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033 ext4_ext_truncate(handle, inode);
4034 else
4035 ext4_ind_truncate(handle, inode);
4036
4037 up_write(&ei->i_data_sem);
4038
4039 if (IS_SYNC(inode))
4040 ext4_handle_sync(handle);
4041
4042out_stop:
4043 /*
4044 * If this was a simple ftruncate() and the file will remain alive,
4045 * then we need to clear up the orphan record which we created above.
4046 * However, if this was a real unlink then we were called by
4047 * ext4_evict_inode(), and we allow that function to clean up the
4048 * orphan info for us.
4049 */
4050 if (inode->i_nlink)
4051 ext4_orphan_del(handle, inode);
4052
4053 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4054 ext4_mark_inode_dirty(handle, inode);
4055 ext4_journal_stop(handle);
4056
4057 trace_ext4_truncate_exit(inode);
4058}
4059
4060/*
4061 * ext4_get_inode_loc returns with an extra refcount against the inode's
4062 * underlying buffer_head on success. If 'in_mem' is true, we have all
4063 * data in memory that is needed to recreate the on-disk version of this
4064 * inode.
4065 */
4066static int __ext4_get_inode_loc(struct inode *inode,
4067 struct ext4_iloc *iloc, int in_mem)
4068{
4069 struct ext4_group_desc *gdp;
4070 struct buffer_head *bh;
4071 struct super_block *sb = inode->i_sb;
4072 ext4_fsblk_t block;
4073 int inodes_per_block, inode_offset;
4074
4075 iloc->bh = NULL;
4076 if (!ext4_valid_inum(sb, inode->i_ino))
4077 return -EFSCORRUPTED;
4078
4079 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4080 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4081 if (!gdp)
4082 return -EIO;
4083
4084 /*
4085 * Figure out the offset within the block group inode table
4086 */
4087 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4088 inode_offset = ((inode->i_ino - 1) %
4089 EXT4_INODES_PER_GROUP(sb));
4090 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4091 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4092
4093 bh = sb_getblk(sb, block);
4094 if (unlikely(!bh))
4095 return -ENOMEM;
4096 if (!buffer_uptodate(bh)) {
4097 lock_buffer(bh);
4098
4099 /*
4100 * If the buffer has the write error flag, we have failed
4101 * to write out another inode in the same block. In this
4102 * case, we don't have to read the block because we may
4103 * read the old inode data successfully.
4104 */
4105 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4106 set_buffer_uptodate(bh);
4107
4108 if (buffer_uptodate(bh)) {
4109 /* someone brought it uptodate while we waited */
4110 unlock_buffer(bh);
4111 goto has_buffer;
4112 }
4113
4114 /*
4115 * If we have all information of the inode in memory and this
4116 * is the only valid inode in the block, we need not read the
4117 * block.
4118 */
4119 if (in_mem) {
4120 struct buffer_head *bitmap_bh;
4121 int i, start;
4122
4123 start = inode_offset & ~(inodes_per_block - 1);
4124
4125 /* Is the inode bitmap in cache? */
4126 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4127 if (unlikely(!bitmap_bh))
4128 goto make_io;
4129
4130 /*
4131 * If the inode bitmap isn't in cache then the
4132 * optimisation may end up performing two reads instead
4133 * of one, so skip it.
4134 */
4135 if (!buffer_uptodate(bitmap_bh)) {
4136 brelse(bitmap_bh);
4137 goto make_io;
4138 }
4139 for (i = start; i < start + inodes_per_block; i++) {
4140 if (i == inode_offset)
4141 continue;
4142 if (ext4_test_bit(i, bitmap_bh->b_data))
4143 break;
4144 }
4145 brelse(bitmap_bh);
4146 if (i == start + inodes_per_block) {
4147 /* all other inodes are free, so skip I/O */
4148 memset(bh->b_data, 0, bh->b_size);
4149 set_buffer_uptodate(bh);
4150 unlock_buffer(bh);
4151 goto has_buffer;
4152 }
4153 }
4154
4155make_io:
4156 /*
4157 * If we need to do any I/O, try to pre-readahead extra
4158 * blocks from the inode table.
4159 */
4160 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4161 ext4_fsblk_t b, end, table;
4162 unsigned num;
4163 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4164
4165 table = ext4_inode_table(sb, gdp);
4166 /* s_inode_readahead_blks is always a power of 2 */
4167 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4168 if (table > b)
4169 b = table;
4170 end = b + ra_blks;
4171 num = EXT4_INODES_PER_GROUP(sb);
4172 if (ext4_has_group_desc_csum(sb))
4173 num -= ext4_itable_unused_count(sb, gdp);
4174 table += num / inodes_per_block;
4175 if (end > table)
4176 end = table;
4177 while (b <= end)
4178 sb_breadahead(sb, b++);
4179 }
4180
4181 /*
4182 * There are other valid inodes in the buffer, this inode
4183 * has in-inode xattrs, or we don't have this inode in memory.
4184 * Read the block from disk.
4185 */
4186 trace_ext4_load_inode(inode);
4187 get_bh(bh);
4188 bh->b_end_io = end_buffer_read_sync;
4189 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4190 wait_on_buffer(bh);
4191 if (!buffer_uptodate(bh)) {
4192 EXT4_ERROR_INODE_BLOCK(inode, block,
4193 "unable to read itable block");
4194 brelse(bh);
4195 return -EIO;
4196 }
4197 }
4198has_buffer:
4199 iloc->bh = bh;
4200 return 0;
4201}
4202
4203int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4204{
4205 /* We have all inode data except xattrs in memory here. */
4206 return __ext4_get_inode_loc(inode, iloc,
4207 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4208}
4209
4210void ext4_set_inode_flags(struct inode *inode)
4211{
4212 unsigned int flags = EXT4_I(inode)->i_flags;
4213 unsigned int new_fl = 0;
4214
4215 if (flags & EXT4_SYNC_FL)
4216 new_fl |= S_SYNC;
4217 if (flags & EXT4_APPEND_FL)
4218 new_fl |= S_APPEND;
4219 if (flags & EXT4_IMMUTABLE_FL)
4220 new_fl |= S_IMMUTABLE;
4221 if (flags & EXT4_NOATIME_FL)
4222 new_fl |= S_NOATIME;
4223 if (flags & EXT4_DIRSYNC_FL)
4224 new_fl |= S_DIRSYNC;
4225 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4226 new_fl |= S_DAX;
4227 inode_set_flags(inode, new_fl,
4228 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4229}
4230
4231/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4232void ext4_get_inode_flags(struct ext4_inode_info *ei)
4233{
4234 unsigned int vfs_fl;
4235 unsigned long old_fl, new_fl;
4236
4237 do {
4238 vfs_fl = ei->vfs_inode.i_flags;
4239 old_fl = ei->i_flags;
4240 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4241 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4242 EXT4_DIRSYNC_FL);
4243 if (vfs_fl & S_SYNC)
4244 new_fl |= EXT4_SYNC_FL;
4245 if (vfs_fl & S_APPEND)
4246 new_fl |= EXT4_APPEND_FL;
4247 if (vfs_fl & S_IMMUTABLE)
4248 new_fl |= EXT4_IMMUTABLE_FL;
4249 if (vfs_fl & S_NOATIME)
4250 new_fl |= EXT4_NOATIME_FL;
4251 if (vfs_fl & S_DIRSYNC)
4252 new_fl |= EXT4_DIRSYNC_FL;
4253 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4254}
4255
4256static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4257 struct ext4_inode_info *ei)
4258{
4259 blkcnt_t i_blocks ;
4260 struct inode *inode = &(ei->vfs_inode);
4261 struct super_block *sb = inode->i_sb;
4262
4263 if (ext4_has_feature_huge_file(sb)) {
4264 /* we are using combined 48 bit field */
4265 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4266 le32_to_cpu(raw_inode->i_blocks_lo);
4267 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4268 /* i_blocks represent file system block size */
4269 return i_blocks << (inode->i_blkbits - 9);
4270 } else {
4271 return i_blocks;
4272 }
4273 } else {
4274 return le32_to_cpu(raw_inode->i_blocks_lo);
4275 }
4276}
4277
4278static inline void ext4_iget_extra_inode(struct inode *inode,
4279 struct ext4_inode *raw_inode,
4280 struct ext4_inode_info *ei)
4281{
4282 __le32 *magic = (void *)raw_inode +
4283 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4284 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4285 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4286 ext4_find_inline_data_nolock(inode);
4287 } else
4288 EXT4_I(inode)->i_inline_off = 0;
4289}
4290
4291int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4292{
4293 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4294 return -EOPNOTSUPP;
4295 *projid = EXT4_I(inode)->i_projid;
4296 return 0;
4297}
4298
4299struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4300{
4301 struct ext4_iloc iloc;
4302 struct ext4_inode *raw_inode;
4303 struct ext4_inode_info *ei;
4304 struct inode *inode;
4305 journal_t *journal = EXT4_SB(sb)->s_journal;
4306 long ret;
4307 int block;
4308 uid_t i_uid;
4309 gid_t i_gid;
4310 projid_t i_projid;
4311
4312 inode = iget_locked(sb, ino);
4313 if (!inode)
4314 return ERR_PTR(-ENOMEM);
4315 if (!(inode->i_state & I_NEW))
4316 return inode;
4317
4318 ei = EXT4_I(inode);
4319 iloc.bh = NULL;
4320
4321 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4322 if (ret < 0)
4323 goto bad_inode;
4324 raw_inode = ext4_raw_inode(&iloc);
4325
4326 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4327 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4328 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4329 EXT4_INODE_SIZE(inode->i_sb)) {
4330 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4331 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4332 EXT4_INODE_SIZE(inode->i_sb));
4333 ret = -EFSCORRUPTED;
4334 goto bad_inode;
4335 }
4336 } else
4337 ei->i_extra_isize = 0;
4338
4339 /* Precompute checksum seed for inode metadata */
4340 if (ext4_has_metadata_csum(sb)) {
4341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4342 __u32 csum;
4343 __le32 inum = cpu_to_le32(inode->i_ino);
4344 __le32 gen = raw_inode->i_generation;
4345 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4346 sizeof(inum));
4347 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4348 sizeof(gen));
4349 }
4350
4351 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4352 EXT4_ERROR_INODE(inode, "checksum invalid");
4353 ret = -EFSBADCRC;
4354 goto bad_inode;
4355 }
4356
4357 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4358 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4359 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4360 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4361 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4362 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4363 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4364 else
4365 i_projid = EXT4_DEF_PROJID;
4366
4367 if (!(test_opt(inode->i_sb, NO_UID32))) {
4368 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4370 }
4371 i_uid_write(inode, i_uid);
4372 i_gid_write(inode, i_gid);
4373 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4374 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4375
4376 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4377 ei->i_inline_off = 0;
4378 ei->i_dir_start_lookup = 0;
4379 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4380 /* We now have enough fields to check if the inode was active or not.
4381 * This is needed because nfsd might try to access dead inodes
4382 * the test is that same one that e2fsck uses
4383 * NeilBrown 1999oct15
4384 */
4385 if (inode->i_nlink == 0) {
4386 if ((inode->i_mode == 0 ||
4387 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4388 ino != EXT4_BOOT_LOADER_INO) {
4389 /* this inode is deleted */
4390 ret = -ESTALE;
4391 goto bad_inode;
4392 }
4393 /* The only unlinked inodes we let through here have
4394 * valid i_mode and are being read by the orphan
4395 * recovery code: that's fine, we're about to complete
4396 * the process of deleting those.
4397 * OR it is the EXT4_BOOT_LOADER_INO which is
4398 * not initialized on a new filesystem. */
4399 }
4400 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4401 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4402 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4403 if (ext4_has_feature_64bit(sb))
4404 ei->i_file_acl |=
4405 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4406 inode->i_size = ext4_isize(raw_inode);
4407 ei->i_disksize = inode->i_size;
4408#ifdef CONFIG_QUOTA
4409 ei->i_reserved_quota = 0;
4410#endif
4411 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4412 ei->i_block_group = iloc.block_group;
4413 ei->i_last_alloc_group = ~0;
4414 /*
4415 * NOTE! The in-memory inode i_data array is in little-endian order
4416 * even on big-endian machines: we do NOT byteswap the block numbers!
4417 */
4418 for (block = 0; block < EXT4_N_BLOCKS; block++)
4419 ei->i_data[block] = raw_inode->i_block[block];
4420 INIT_LIST_HEAD(&ei->i_orphan);
4421
4422 /*
4423 * Set transaction id's of transactions that have to be committed
4424 * to finish f[data]sync. We set them to currently running transaction
4425 * as we cannot be sure that the inode or some of its metadata isn't
4426 * part of the transaction - the inode could have been reclaimed and
4427 * now it is reread from disk.
4428 */
4429 if (journal) {
4430 transaction_t *transaction;
4431 tid_t tid;
4432
4433 read_lock(&journal->j_state_lock);
4434 if (journal->j_running_transaction)
4435 transaction = journal->j_running_transaction;
4436 else
4437 transaction = journal->j_committing_transaction;
4438 if (transaction)
4439 tid = transaction->t_tid;
4440 else
4441 tid = journal->j_commit_sequence;
4442 read_unlock(&journal->j_state_lock);
4443 ei->i_sync_tid = tid;
4444 ei->i_datasync_tid = tid;
4445 }
4446
4447 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4448 if (ei->i_extra_isize == 0) {
4449 /* The extra space is currently unused. Use it. */
4450 ei->i_extra_isize = sizeof(struct ext4_inode) -
4451 EXT4_GOOD_OLD_INODE_SIZE;
4452 } else {
4453 ext4_iget_extra_inode(inode, raw_inode, ei);
4454 }
4455 }
4456
4457 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4461
4462 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4463 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4464 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4466 inode->i_version |=
4467 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4468 }
4469 }
4470
4471 ret = 0;
4472 if (ei->i_file_acl &&
4473 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4474 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4475 ei->i_file_acl);
4476 ret = -EFSCORRUPTED;
4477 goto bad_inode;
4478 } else if (!ext4_has_inline_data(inode)) {
4479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4480 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4481 (S_ISLNK(inode->i_mode) &&
4482 !ext4_inode_is_fast_symlink(inode))))
4483 /* Validate extent which is part of inode */
4484 ret = ext4_ext_check_inode(inode);
4485 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4486 (S_ISLNK(inode->i_mode) &&
4487 !ext4_inode_is_fast_symlink(inode))) {
4488 /* Validate block references which are part of inode */
4489 ret = ext4_ind_check_inode(inode);
4490 }
4491 }
4492 if (ret)
4493 goto bad_inode;
4494
4495 if (S_ISREG(inode->i_mode)) {
4496 inode->i_op = &ext4_file_inode_operations;
4497 inode->i_fop = &ext4_file_operations;
4498 ext4_set_aops(inode);
4499 } else if (S_ISDIR(inode->i_mode)) {
4500 inode->i_op = &ext4_dir_inode_operations;
4501 inode->i_fop = &ext4_dir_operations;
4502 } else if (S_ISLNK(inode->i_mode)) {
4503 if (ext4_encrypted_inode(inode)) {
4504 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4505 ext4_set_aops(inode);
4506 } else if (ext4_inode_is_fast_symlink(inode)) {
4507 inode->i_link = (char *)ei->i_data;
4508 inode->i_op = &ext4_fast_symlink_inode_operations;
4509 nd_terminate_link(ei->i_data, inode->i_size,
4510 sizeof(ei->i_data) - 1);
4511 } else {
4512 inode->i_op = &ext4_symlink_inode_operations;
4513 ext4_set_aops(inode);
4514 }
4515 inode_nohighmem(inode);
4516 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4517 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4518 inode->i_op = &ext4_special_inode_operations;
4519 if (raw_inode->i_block[0])
4520 init_special_inode(inode, inode->i_mode,
4521 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4522 else
4523 init_special_inode(inode, inode->i_mode,
4524 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4525 } else if (ino == EXT4_BOOT_LOADER_INO) {
4526 make_bad_inode(inode);
4527 } else {
4528 ret = -EFSCORRUPTED;
4529 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4530 goto bad_inode;
4531 }
4532 brelse(iloc.bh);
4533 ext4_set_inode_flags(inode);
4534 unlock_new_inode(inode);
4535 return inode;
4536
4537bad_inode:
4538 brelse(iloc.bh);
4539 iget_failed(inode);
4540 return ERR_PTR(ret);
4541}
4542
4543struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4544{
4545 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4546 return ERR_PTR(-EFSCORRUPTED);
4547 return ext4_iget(sb, ino);
4548}
4549
4550static int ext4_inode_blocks_set(handle_t *handle,
4551 struct ext4_inode *raw_inode,
4552 struct ext4_inode_info *ei)
4553{
4554 struct inode *inode = &(ei->vfs_inode);
4555 u64 i_blocks = inode->i_blocks;
4556 struct super_block *sb = inode->i_sb;
4557
4558 if (i_blocks <= ~0U) {
4559 /*
4560 * i_blocks can be represented in a 32 bit variable
4561 * as multiple of 512 bytes
4562 */
4563 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4564 raw_inode->i_blocks_high = 0;
4565 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4566 return 0;
4567 }
4568 if (!ext4_has_feature_huge_file(sb))
4569 return -EFBIG;
4570
4571 if (i_blocks <= 0xffffffffffffULL) {
4572 /*
4573 * i_blocks can be represented in a 48 bit variable
4574 * as multiple of 512 bytes
4575 */
4576 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4577 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4578 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4579 } else {
4580 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581 /* i_block is stored in file system block size */
4582 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4583 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4584 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4585 }
4586 return 0;
4587}
4588
4589struct other_inode {
4590 unsigned long orig_ino;
4591 struct ext4_inode *raw_inode;
4592};
4593
4594static int other_inode_match(struct inode * inode, unsigned long ino,
4595 void *data)
4596{
4597 struct other_inode *oi = (struct other_inode *) data;
4598
4599 if ((inode->i_ino != ino) ||
4600 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4601 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4602 ((inode->i_state & I_DIRTY_TIME) == 0))
4603 return 0;
4604 spin_lock(&inode->i_lock);
4605 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4606 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4607 (inode->i_state & I_DIRTY_TIME)) {
4608 struct ext4_inode_info *ei = EXT4_I(inode);
4609
4610 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4611 spin_unlock(&inode->i_lock);
4612
4613 spin_lock(&ei->i_raw_lock);
4614 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4615 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4616 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4617 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4618 spin_unlock(&ei->i_raw_lock);
4619 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4620 return -1;
4621 }
4622 spin_unlock(&inode->i_lock);
4623 return -1;
4624}
4625
4626/*
4627 * Opportunistically update the other time fields for other inodes in
4628 * the same inode table block.
4629 */
4630static void ext4_update_other_inodes_time(struct super_block *sb,
4631 unsigned long orig_ino, char *buf)
4632{
4633 struct other_inode oi;
4634 unsigned long ino;
4635 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4636 int inode_size = EXT4_INODE_SIZE(sb);
4637
4638 oi.orig_ino = orig_ino;
4639 /*
4640 * Calculate the first inode in the inode table block. Inode
4641 * numbers are one-based. That is, the first inode in a block
4642 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4643 */
4644 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4645 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4646 if (ino == orig_ino)
4647 continue;
4648 oi.raw_inode = (struct ext4_inode *) buf;
4649 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4650 }
4651}
4652
4653/*
4654 * Post the struct inode info into an on-disk inode location in the
4655 * buffer-cache. This gobbles the caller's reference to the
4656 * buffer_head in the inode location struct.
4657 *
4658 * The caller must have write access to iloc->bh.
4659 */
4660static int ext4_do_update_inode(handle_t *handle,
4661 struct inode *inode,
4662 struct ext4_iloc *iloc)
4663{
4664 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4665 struct ext4_inode_info *ei = EXT4_I(inode);
4666 struct buffer_head *bh = iloc->bh;
4667 struct super_block *sb = inode->i_sb;
4668 int err = 0, rc, block;
4669 int need_datasync = 0, set_large_file = 0;
4670 uid_t i_uid;
4671 gid_t i_gid;
4672 projid_t i_projid;
4673
4674 spin_lock(&ei->i_raw_lock);
4675
4676 /* For fields not tracked in the in-memory inode,
4677 * initialise them to zero for new inodes. */
4678 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4679 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4680
4681 ext4_get_inode_flags(ei);
4682 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4683 i_uid = i_uid_read(inode);
4684 i_gid = i_gid_read(inode);
4685 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4686 if (!(test_opt(inode->i_sb, NO_UID32))) {
4687 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4688 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4689/*
4690 * Fix up interoperability with old kernels. Otherwise, old inodes get
4691 * re-used with the upper 16 bits of the uid/gid intact
4692 */
4693 if (!ei->i_dtime) {
4694 raw_inode->i_uid_high =
4695 cpu_to_le16(high_16_bits(i_uid));
4696 raw_inode->i_gid_high =
4697 cpu_to_le16(high_16_bits(i_gid));
4698 } else {
4699 raw_inode->i_uid_high = 0;
4700 raw_inode->i_gid_high = 0;
4701 }
4702 } else {
4703 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4704 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4705 raw_inode->i_uid_high = 0;
4706 raw_inode->i_gid_high = 0;
4707 }
4708 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4709
4710 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4711 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4712 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4713 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4714
4715 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4716 if (err) {
4717 spin_unlock(&ei->i_raw_lock);
4718 goto out_brelse;
4719 }
4720 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4721 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4722 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4723 raw_inode->i_file_acl_high =
4724 cpu_to_le16(ei->i_file_acl >> 32);
4725 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4726 if (ei->i_disksize != ext4_isize(raw_inode)) {
4727 ext4_isize_set(raw_inode, ei->i_disksize);
4728 need_datasync = 1;
4729 }
4730 if (ei->i_disksize > 0x7fffffffULL) {
4731 if (!ext4_has_feature_large_file(sb) ||
4732 EXT4_SB(sb)->s_es->s_rev_level ==
4733 cpu_to_le32(EXT4_GOOD_OLD_REV))
4734 set_large_file = 1;
4735 }
4736 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4737 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4738 if (old_valid_dev(inode->i_rdev)) {
4739 raw_inode->i_block[0] =
4740 cpu_to_le32(old_encode_dev(inode->i_rdev));
4741 raw_inode->i_block[1] = 0;
4742 } else {
4743 raw_inode->i_block[0] = 0;
4744 raw_inode->i_block[1] =
4745 cpu_to_le32(new_encode_dev(inode->i_rdev));
4746 raw_inode->i_block[2] = 0;
4747 }
4748 } else if (!ext4_has_inline_data(inode)) {
4749 for (block = 0; block < EXT4_N_BLOCKS; block++)
4750 raw_inode->i_block[block] = ei->i_data[block];
4751 }
4752
4753 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4754 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4755 if (ei->i_extra_isize) {
4756 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4757 raw_inode->i_version_hi =
4758 cpu_to_le32(inode->i_version >> 32);
4759 raw_inode->i_extra_isize =
4760 cpu_to_le16(ei->i_extra_isize);
4761 }
4762 }
4763
4764 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4765 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4766 i_projid != EXT4_DEF_PROJID);
4767
4768 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4769 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4770 raw_inode->i_projid = cpu_to_le32(i_projid);
4771
4772 ext4_inode_csum_set(inode, raw_inode, ei);
4773 spin_unlock(&ei->i_raw_lock);
4774 if (inode->i_sb->s_flags & MS_LAZYTIME)
4775 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4776 bh->b_data);
4777
4778 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4779 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4780 if (!err)
4781 err = rc;
4782 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4783 if (set_large_file) {
4784 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4785 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4786 if (err)
4787 goto out_brelse;
4788 ext4_update_dynamic_rev(sb);
4789 ext4_set_feature_large_file(sb);
4790 ext4_handle_sync(handle);
4791 err = ext4_handle_dirty_super(handle, sb);
4792 }
4793 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4794out_brelse:
4795 brelse(bh);
4796 ext4_std_error(inode->i_sb, err);
4797 return err;
4798}
4799
4800/*
4801 * ext4_write_inode()
4802 *
4803 * We are called from a few places:
4804 *
4805 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4806 * Here, there will be no transaction running. We wait for any running
4807 * transaction to commit.
4808 *
4809 * - Within flush work (sys_sync(), kupdate and such).
4810 * We wait on commit, if told to.
4811 *
4812 * - Within iput_final() -> write_inode_now()
4813 * We wait on commit, if told to.
4814 *
4815 * In all cases it is actually safe for us to return without doing anything,
4816 * because the inode has been copied into a raw inode buffer in
4817 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4818 * writeback.
4819 *
4820 * Note that we are absolutely dependent upon all inode dirtiers doing the
4821 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4822 * which we are interested.
4823 *
4824 * It would be a bug for them to not do this. The code:
4825 *
4826 * mark_inode_dirty(inode)
4827 * stuff();
4828 * inode->i_size = expr;
4829 *
4830 * is in error because write_inode() could occur while `stuff()' is running,
4831 * and the new i_size will be lost. Plus the inode will no longer be on the
4832 * superblock's dirty inode list.
4833 */
4834int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4835{
4836 int err;
4837
4838 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4839 return 0;
4840
4841 if (EXT4_SB(inode->i_sb)->s_journal) {
4842 if (ext4_journal_current_handle()) {
4843 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4844 dump_stack();
4845 return -EIO;
4846 }
4847
4848 /*
4849 * No need to force transaction in WB_SYNC_NONE mode. Also
4850 * ext4_sync_fs() will force the commit after everything is
4851 * written.
4852 */
4853 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4854 return 0;
4855
4856 err = ext4_force_commit(inode->i_sb);
4857 } else {
4858 struct ext4_iloc iloc;
4859
4860 err = __ext4_get_inode_loc(inode, &iloc, 0);
4861 if (err)
4862 return err;
4863 /*
4864 * sync(2) will flush the whole buffer cache. No need to do
4865 * it here separately for each inode.
4866 */
4867 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4868 sync_dirty_buffer(iloc.bh);
4869 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4870 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4871 "IO error syncing inode");
4872 err = -EIO;
4873 }
4874 brelse(iloc.bh);
4875 }
4876 return err;
4877}
4878
4879/*
4880 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4881 * buffers that are attached to a page stradding i_size and are undergoing
4882 * commit. In that case we have to wait for commit to finish and try again.
4883 */
4884static void ext4_wait_for_tail_page_commit(struct inode *inode)
4885{
4886 struct page *page;
4887 unsigned offset;
4888 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4889 tid_t commit_tid = 0;
4890 int ret;
4891
4892 offset = inode->i_size & (PAGE_SIZE - 1);
4893 /*
4894 * All buffers in the last page remain valid? Then there's nothing to
4895 * do. We do the check mainly to optimize the common PAGE_SIZE ==
4896 * blocksize case
4897 */
4898 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4899 return;
4900 while (1) {
4901 page = find_lock_page(inode->i_mapping,
4902 inode->i_size >> PAGE_SHIFT);
4903 if (!page)
4904 return;
4905 ret = __ext4_journalled_invalidatepage(page, offset,
4906 PAGE_SIZE - offset);
4907 unlock_page(page);
4908 put_page(page);
4909 if (ret != -EBUSY)
4910 return;
4911 commit_tid = 0;
4912 read_lock(&journal->j_state_lock);
4913 if (journal->j_committing_transaction)
4914 commit_tid = journal->j_committing_transaction->t_tid;
4915 read_unlock(&journal->j_state_lock);
4916 if (commit_tid)
4917 jbd2_log_wait_commit(journal, commit_tid);
4918 }
4919}
4920
4921/*
4922 * ext4_setattr()
4923 *
4924 * Called from notify_change.
4925 *
4926 * We want to trap VFS attempts to truncate the file as soon as
4927 * possible. In particular, we want to make sure that when the VFS
4928 * shrinks i_size, we put the inode on the orphan list and modify
4929 * i_disksize immediately, so that during the subsequent flushing of
4930 * dirty pages and freeing of disk blocks, we can guarantee that any
4931 * commit will leave the blocks being flushed in an unused state on
4932 * disk. (On recovery, the inode will get truncated and the blocks will
4933 * be freed, so we have a strong guarantee that no future commit will
4934 * leave these blocks visible to the user.)
4935 *
4936 * Another thing we have to assure is that if we are in ordered mode
4937 * and inode is still attached to the committing transaction, we must
4938 * we start writeout of all the dirty pages which are being truncated.
4939 * This way we are sure that all the data written in the previous
4940 * transaction are already on disk (truncate waits for pages under
4941 * writeback).
4942 *
4943 * Called with inode->i_mutex down.
4944 */
4945int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4946{
4947 struct inode *inode = d_inode(dentry);
4948 int error, rc = 0;
4949 int orphan = 0;
4950 const unsigned int ia_valid = attr->ia_valid;
4951
4952 error = inode_change_ok(inode, attr);
4953 if (error)
4954 return error;
4955
4956 if (is_quota_modification(inode, attr)) {
4957 error = dquot_initialize(inode);
4958 if (error)
4959 return error;
4960 }
4961 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4962 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4963 handle_t *handle;
4964
4965 /* (user+group)*(old+new) structure, inode write (sb,
4966 * inode block, ? - but truncate inode update has it) */
4967 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4968 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4969 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4970 if (IS_ERR(handle)) {
4971 error = PTR_ERR(handle);
4972 goto err_out;
4973 }
4974 error = dquot_transfer(inode, attr);
4975 if (error) {
4976 ext4_journal_stop(handle);
4977 return error;
4978 }
4979 /* Update corresponding info in inode so that everything is in
4980 * one transaction */
4981 if (attr->ia_valid & ATTR_UID)
4982 inode->i_uid = attr->ia_uid;
4983 if (attr->ia_valid & ATTR_GID)
4984 inode->i_gid = attr->ia_gid;
4985 error = ext4_mark_inode_dirty(handle, inode);
4986 ext4_journal_stop(handle);
4987 }
4988
4989 if (attr->ia_valid & ATTR_SIZE) {
4990 handle_t *handle;
4991 loff_t oldsize = inode->i_size;
4992 int shrink = (attr->ia_size <= inode->i_size);
4993
4994 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4996
4997 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4998 return -EFBIG;
4999 }
5000 if (!S_ISREG(inode->i_mode))
5001 return -EINVAL;
5002
5003 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5004 inode_inc_iversion(inode);
5005
5006 if (ext4_should_order_data(inode) &&
5007 (attr->ia_size < inode->i_size)) {
5008 error = ext4_begin_ordered_truncate(inode,
5009 attr->ia_size);
5010 if (error)
5011 goto err_out;
5012 }
5013 if (attr->ia_size != inode->i_size) {
5014 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5015 if (IS_ERR(handle)) {
5016 error = PTR_ERR(handle);
5017 goto err_out;
5018 }
5019 if (ext4_handle_valid(handle) && shrink) {
5020 error = ext4_orphan_add(handle, inode);
5021 orphan = 1;
5022 }
5023 /*
5024 * Update c/mtime on truncate up, ext4_truncate() will
5025 * update c/mtime in shrink case below
5026 */
5027 if (!shrink) {
5028 inode->i_mtime = ext4_current_time(inode);
5029 inode->i_ctime = inode->i_mtime;
5030 }
5031 down_write(&EXT4_I(inode)->i_data_sem);
5032 EXT4_I(inode)->i_disksize = attr->ia_size;
5033 rc = ext4_mark_inode_dirty(handle, inode);
5034 if (!error)
5035 error = rc;
5036 /*
5037 * We have to update i_size under i_data_sem together
5038 * with i_disksize to avoid races with writeback code
5039 * running ext4_wb_update_i_disksize().
5040 */
5041 if (!error)
5042 i_size_write(inode, attr->ia_size);
5043 up_write(&EXT4_I(inode)->i_data_sem);
5044 ext4_journal_stop(handle);
5045 if (error) {
5046 if (orphan)
5047 ext4_orphan_del(NULL, inode);
5048 goto err_out;
5049 }
5050 }
5051 if (!shrink)
5052 pagecache_isize_extended(inode, oldsize, inode->i_size);
5053
5054 /*
5055 * Blocks are going to be removed from the inode. Wait
5056 * for dio in flight. Temporarily disable
5057 * dioread_nolock to prevent livelock.
5058 */
5059 if (orphan) {
5060 if (!ext4_should_journal_data(inode)) {
5061 ext4_inode_block_unlocked_dio(inode);
5062 inode_dio_wait(inode);
5063 ext4_inode_resume_unlocked_dio(inode);
5064 } else
5065 ext4_wait_for_tail_page_commit(inode);
5066 }
5067 down_write(&EXT4_I(inode)->i_mmap_sem);
5068 /*
5069 * Truncate pagecache after we've waited for commit
5070 * in data=journal mode to make pages freeable.
5071 */
5072 truncate_pagecache(inode, inode->i_size);
5073 if (shrink)
5074 ext4_truncate(inode);
5075 up_write(&EXT4_I(inode)->i_mmap_sem);
5076 }
5077
5078 if (!rc) {
5079 setattr_copy(inode, attr);
5080 mark_inode_dirty(inode);
5081 }
5082
5083 /*
5084 * If the call to ext4_truncate failed to get a transaction handle at
5085 * all, we need to clean up the in-core orphan list manually.
5086 */
5087 if (orphan && inode->i_nlink)
5088 ext4_orphan_del(NULL, inode);
5089
5090 if (!rc && (ia_valid & ATTR_MODE))
5091 rc = posix_acl_chmod(inode, inode->i_mode);
5092
5093err_out:
5094 ext4_std_error(inode->i_sb, error);
5095 if (!error)
5096 error = rc;
5097 return error;
5098}
5099
5100int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5101 struct kstat *stat)
5102{
5103 struct inode *inode;
5104 unsigned long long delalloc_blocks;
5105
5106 inode = d_inode(dentry);
5107 generic_fillattr(inode, stat);
5108
5109 /*
5110 * If there is inline data in the inode, the inode will normally not
5111 * have data blocks allocated (it may have an external xattr block).
5112 * Report at least one sector for such files, so tools like tar, rsync,
5113 * others doen't incorrectly think the file is completely sparse.
5114 */
5115 if (unlikely(ext4_has_inline_data(inode)))
5116 stat->blocks += (stat->size + 511) >> 9;
5117
5118 /*
5119 * We can't update i_blocks if the block allocation is delayed
5120 * otherwise in the case of system crash before the real block
5121 * allocation is done, we will have i_blocks inconsistent with
5122 * on-disk file blocks.
5123 * We always keep i_blocks updated together with real
5124 * allocation. But to not confuse with user, stat
5125 * will return the blocks that include the delayed allocation
5126 * blocks for this file.
5127 */
5128 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5129 EXT4_I(inode)->i_reserved_data_blocks);
5130 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5131 return 0;
5132}
5133
5134static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5135 int pextents)
5136{
5137 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5138 return ext4_ind_trans_blocks(inode, lblocks);
5139 return ext4_ext_index_trans_blocks(inode, pextents);
5140}
5141
5142/*
5143 * Account for index blocks, block groups bitmaps and block group
5144 * descriptor blocks if modify datablocks and index blocks
5145 * worse case, the indexs blocks spread over different block groups
5146 *
5147 * If datablocks are discontiguous, they are possible to spread over
5148 * different block groups too. If they are contiguous, with flexbg,
5149 * they could still across block group boundary.
5150 *
5151 * Also account for superblock, inode, quota and xattr blocks
5152 */
5153static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5154 int pextents)
5155{
5156 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5157 int gdpblocks;
5158 int idxblocks;
5159 int ret = 0;
5160
5161 /*
5162 * How many index blocks need to touch to map @lblocks logical blocks
5163 * to @pextents physical extents?
5164 */
5165 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5166
5167 ret = idxblocks;
5168
5169 /*
5170 * Now let's see how many group bitmaps and group descriptors need
5171 * to account
5172 */
5173 groups = idxblocks + pextents;
5174 gdpblocks = groups;
5175 if (groups > ngroups)
5176 groups = ngroups;
5177 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5178 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5179
5180 /* bitmaps and block group descriptor blocks */
5181 ret += groups + gdpblocks;
5182
5183 /* Blocks for super block, inode, quota and xattr blocks */
5184 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5185
5186 return ret;
5187}
5188
5189/*
5190 * Calculate the total number of credits to reserve to fit
5191 * the modification of a single pages into a single transaction,
5192 * which may include multiple chunks of block allocations.
5193 *
5194 * This could be called via ext4_write_begin()
5195 *
5196 * We need to consider the worse case, when
5197 * one new block per extent.
5198 */
5199int ext4_writepage_trans_blocks(struct inode *inode)
5200{
5201 int bpp = ext4_journal_blocks_per_page(inode);
5202 int ret;
5203
5204 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5205
5206 /* Account for data blocks for journalled mode */
5207 if (ext4_should_journal_data(inode))
5208 ret += bpp;
5209 return ret;
5210}
5211
5212/*
5213 * Calculate the journal credits for a chunk of data modification.
5214 *
5215 * This is called from DIO, fallocate or whoever calling
5216 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5217 *
5218 * journal buffers for data blocks are not included here, as DIO
5219 * and fallocate do no need to journal data buffers.
5220 */
5221int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5222{
5223 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5224}
5225
5226/*
5227 * The caller must have previously called ext4_reserve_inode_write().
5228 * Give this, we know that the caller already has write access to iloc->bh.
5229 */
5230int ext4_mark_iloc_dirty(handle_t *handle,
5231 struct inode *inode, struct ext4_iloc *iloc)
5232{
5233 int err = 0;
5234
5235 if (IS_I_VERSION(inode))
5236 inode_inc_iversion(inode);
5237
5238 /* the do_update_inode consumes one bh->b_count */
5239 get_bh(iloc->bh);
5240
5241 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5242 err = ext4_do_update_inode(handle, inode, iloc);
5243 put_bh(iloc->bh);
5244 return err;
5245}
5246
5247/*
5248 * On success, We end up with an outstanding reference count against
5249 * iloc->bh. This _must_ be cleaned up later.
5250 */
5251
5252int
5253ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5254 struct ext4_iloc *iloc)
5255{
5256 int err;
5257
5258 err = ext4_get_inode_loc(inode, iloc);
5259 if (!err) {
5260 BUFFER_TRACE(iloc->bh, "get_write_access");
5261 err = ext4_journal_get_write_access(handle, iloc->bh);
5262 if (err) {
5263 brelse(iloc->bh);
5264 iloc->bh = NULL;
5265 }
5266 }
5267 ext4_std_error(inode->i_sb, err);
5268 return err;
5269}
5270
5271/*
5272 * Expand an inode by new_extra_isize bytes.
5273 * Returns 0 on success or negative error number on failure.
5274 */
5275static int ext4_expand_extra_isize(struct inode *inode,
5276 unsigned int new_extra_isize,
5277 struct ext4_iloc iloc,
5278 handle_t *handle)
5279{
5280 struct ext4_inode *raw_inode;
5281 struct ext4_xattr_ibody_header *header;
5282
5283 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5284 return 0;
5285
5286 raw_inode = ext4_raw_inode(&iloc);
5287
5288 header = IHDR(inode, raw_inode);
5289
5290 /* No extended attributes present */
5291 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5292 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5293 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5294 new_extra_isize);
5295 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5296 return 0;
5297 }
5298
5299 /* try to expand with EAs present */
5300 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5301 raw_inode, handle);
5302}
5303
5304/*
5305 * What we do here is to mark the in-core inode as clean with respect to inode
5306 * dirtiness (it may still be data-dirty).
5307 * This means that the in-core inode may be reaped by prune_icache
5308 * without having to perform any I/O. This is a very good thing,
5309 * because *any* task may call prune_icache - even ones which
5310 * have a transaction open against a different journal.
5311 *
5312 * Is this cheating? Not really. Sure, we haven't written the
5313 * inode out, but prune_icache isn't a user-visible syncing function.
5314 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5315 * we start and wait on commits.
5316 */
5317int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5318{
5319 struct ext4_iloc iloc;
5320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5321 static unsigned int mnt_count;
5322 int err, ret;
5323
5324 might_sleep();
5325 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5326 err = ext4_reserve_inode_write(handle, inode, &iloc);
5327 if (err)
5328 return err;
5329 if (ext4_handle_valid(handle) &&
5330 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5331 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5332 /*
5333 * We need extra buffer credits since we may write into EA block
5334 * with this same handle. If journal_extend fails, then it will
5335 * only result in a minor loss of functionality for that inode.
5336 * If this is felt to be critical, then e2fsck should be run to
5337 * force a large enough s_min_extra_isize.
5338 */
5339 if ((jbd2_journal_extend(handle,
5340 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5341 ret = ext4_expand_extra_isize(inode,
5342 sbi->s_want_extra_isize,
5343 iloc, handle);
5344 if (ret) {
5345 ext4_set_inode_state(inode,
5346 EXT4_STATE_NO_EXPAND);
5347 if (mnt_count !=
5348 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5349 ext4_warning(inode->i_sb,
5350 "Unable to expand inode %lu. Delete"
5351 " some EAs or run e2fsck.",
5352 inode->i_ino);
5353 mnt_count =
5354 le16_to_cpu(sbi->s_es->s_mnt_count);
5355 }
5356 }
5357 }
5358 }
5359 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5360}
5361
5362/*
5363 * ext4_dirty_inode() is called from __mark_inode_dirty()
5364 *
5365 * We're really interested in the case where a file is being extended.
5366 * i_size has been changed by generic_commit_write() and we thus need
5367 * to include the updated inode in the current transaction.
5368 *
5369 * Also, dquot_alloc_block() will always dirty the inode when blocks
5370 * are allocated to the file.
5371 *
5372 * If the inode is marked synchronous, we don't honour that here - doing
5373 * so would cause a commit on atime updates, which we don't bother doing.
5374 * We handle synchronous inodes at the highest possible level.
5375 *
5376 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5377 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5378 * to copy into the on-disk inode structure are the timestamp files.
5379 */
5380void ext4_dirty_inode(struct inode *inode, int flags)
5381{
5382 handle_t *handle;
5383
5384 if (flags == I_DIRTY_TIME)
5385 return;
5386 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5387 if (IS_ERR(handle))
5388 goto out;
5389
5390 ext4_mark_inode_dirty(handle, inode);
5391
5392 ext4_journal_stop(handle);
5393out:
5394 return;
5395}
5396
5397#if 0
5398/*
5399 * Bind an inode's backing buffer_head into this transaction, to prevent
5400 * it from being flushed to disk early. Unlike
5401 * ext4_reserve_inode_write, this leaves behind no bh reference and
5402 * returns no iloc structure, so the caller needs to repeat the iloc
5403 * lookup to mark the inode dirty later.
5404 */
5405static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5406{
5407 struct ext4_iloc iloc;
5408
5409 int err = 0;
5410 if (handle) {
5411 err = ext4_get_inode_loc(inode, &iloc);
5412 if (!err) {
5413 BUFFER_TRACE(iloc.bh, "get_write_access");
5414 err = jbd2_journal_get_write_access(handle, iloc.bh);
5415 if (!err)
5416 err = ext4_handle_dirty_metadata(handle,
5417 NULL,
5418 iloc.bh);
5419 brelse(iloc.bh);
5420 }
5421 }
5422 ext4_std_error(inode->i_sb, err);
5423 return err;
5424}
5425#endif
5426
5427int ext4_change_inode_journal_flag(struct inode *inode, int val)
5428{
5429 journal_t *journal;
5430 handle_t *handle;
5431 int err;
5432
5433 /*
5434 * We have to be very careful here: changing a data block's
5435 * journaling status dynamically is dangerous. If we write a
5436 * data block to the journal, change the status and then delete
5437 * that block, we risk forgetting to revoke the old log record
5438 * from the journal and so a subsequent replay can corrupt data.
5439 * So, first we make sure that the journal is empty and that
5440 * nobody is changing anything.
5441 */
5442
5443 journal = EXT4_JOURNAL(inode);
5444 if (!journal)
5445 return 0;
5446 if (is_journal_aborted(journal))
5447 return -EROFS;
5448 /* We have to allocate physical blocks for delalloc blocks
5449 * before flushing journal. otherwise delalloc blocks can not
5450 * be allocated any more. even more truncate on delalloc blocks
5451 * could trigger BUG by flushing delalloc blocks in journal.
5452 * There is no delalloc block in non-journal data mode.
5453 */
5454 if (val && test_opt(inode->i_sb, DELALLOC)) {
5455 err = ext4_alloc_da_blocks(inode);
5456 if (err < 0)
5457 return err;
5458 }
5459
5460 /* Wait for all existing dio workers */
5461 ext4_inode_block_unlocked_dio(inode);
5462 inode_dio_wait(inode);
5463
5464 jbd2_journal_lock_updates(journal);
5465
5466 /*
5467 * OK, there are no updates running now, and all cached data is
5468 * synced to disk. We are now in a completely consistent state
5469 * which doesn't have anything in the journal, and we know that
5470 * no filesystem updates are running, so it is safe to modify
5471 * the inode's in-core data-journaling state flag now.
5472 */
5473
5474 if (val)
5475 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5476 else {
5477 err = jbd2_journal_flush(journal);
5478 if (err < 0) {
5479 jbd2_journal_unlock_updates(journal);
5480 ext4_inode_resume_unlocked_dio(inode);
5481 return err;
5482 }
5483 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5484 }
5485 ext4_set_aops(inode);
5486
5487 jbd2_journal_unlock_updates(journal);
5488 ext4_inode_resume_unlocked_dio(inode);
5489
5490 /* Finally we can mark the inode as dirty. */
5491
5492 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5493 if (IS_ERR(handle))
5494 return PTR_ERR(handle);
5495
5496 err = ext4_mark_inode_dirty(handle, inode);
5497 ext4_handle_sync(handle);
5498 ext4_journal_stop(handle);
5499 ext4_std_error(inode->i_sb, err);
5500
5501 return err;
5502}
5503
5504static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5505{
5506 return !buffer_mapped(bh);
5507}
5508
5509int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5510{
5511 struct page *page = vmf->page;
5512 loff_t size;
5513 unsigned long len;
5514 int ret;
5515 struct file *file = vma->vm_file;
5516 struct inode *inode = file_inode(file);
5517 struct address_space *mapping = inode->i_mapping;
5518 handle_t *handle;
5519 get_block_t *get_block;
5520 int retries = 0;
5521
5522 sb_start_pagefault(inode->i_sb);
5523 file_update_time(vma->vm_file);
5524
5525 down_read(&EXT4_I(inode)->i_mmap_sem);
5526 /* Delalloc case is easy... */
5527 if (test_opt(inode->i_sb, DELALLOC) &&
5528 !ext4_should_journal_data(inode) &&
5529 !ext4_nonda_switch(inode->i_sb)) {
5530 do {
5531 ret = block_page_mkwrite(vma, vmf,
5532 ext4_da_get_block_prep);
5533 } while (ret == -ENOSPC &&
5534 ext4_should_retry_alloc(inode->i_sb, &retries));
5535 goto out_ret;
5536 }
5537
5538 lock_page(page);
5539 size = i_size_read(inode);
5540 /* Page got truncated from under us? */
5541 if (page->mapping != mapping || page_offset(page) > size) {
5542 unlock_page(page);
5543 ret = VM_FAULT_NOPAGE;
5544 goto out;
5545 }
5546
5547 if (page->index == size >> PAGE_SHIFT)
5548 len = size & ~PAGE_MASK;
5549 else
5550 len = PAGE_SIZE;
5551 /*
5552 * Return if we have all the buffers mapped. This avoids the need to do
5553 * journal_start/journal_stop which can block and take a long time
5554 */
5555 if (page_has_buffers(page)) {
5556 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5557 0, len, NULL,
5558 ext4_bh_unmapped)) {
5559 /* Wait so that we don't change page under IO */
5560 wait_for_stable_page(page);
5561 ret = VM_FAULT_LOCKED;
5562 goto out;
5563 }
5564 }
5565 unlock_page(page);
5566 /* OK, we need to fill the hole... */
5567 if (ext4_should_dioread_nolock(inode))
5568 get_block = ext4_get_block_unwritten;
5569 else
5570 get_block = ext4_get_block;
5571retry_alloc:
5572 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5573 ext4_writepage_trans_blocks(inode));
5574 if (IS_ERR(handle)) {
5575 ret = VM_FAULT_SIGBUS;
5576 goto out;
5577 }
5578 ret = block_page_mkwrite(vma, vmf, get_block);
5579 if (!ret && ext4_should_journal_data(inode)) {
5580 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5581 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5582 unlock_page(page);
5583 ret = VM_FAULT_SIGBUS;
5584 ext4_journal_stop(handle);
5585 goto out;
5586 }
5587 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5588 }
5589 ext4_journal_stop(handle);
5590 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5591 goto retry_alloc;
5592out_ret:
5593 ret = block_page_mkwrite_return(ret);
5594out:
5595 up_read(&EXT4_I(inode)->i_mmap_sem);
5596 sb_end_pagefault(inode->i_sb);
5597 return ret;
5598}
5599
5600int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5601{
5602 struct inode *inode = file_inode(vma->vm_file);
5603 int err;
5604
5605 down_read(&EXT4_I(inode)->i_mmap_sem);
5606 err = filemap_fault(vma, vmf);
5607 up_read(&EXT4_I(inode)->i_mmap_sem);
5608
5609 return err;
5610}
5611
5612/*
5613 * Find the first extent at or after @lblk in an inode that is not a hole.
5614 * Search for @map_len blocks at most. The extent is returned in @result.
5615 *
5616 * The function returns 1 if we found an extent. The function returns 0 in
5617 * case there is no extent at or after @lblk and in that case also sets
5618 * @result->es_len to 0. In case of error, the error code is returned.
5619 */
5620int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5621 unsigned int map_len, struct extent_status *result)
5622{
5623 struct ext4_map_blocks map;
5624 struct extent_status es = {};
5625 int ret;
5626
5627 map.m_lblk = lblk;
5628 map.m_len = map_len;
5629
5630 /*
5631 * For non-extent based files this loop may iterate several times since
5632 * we do not determine full hole size.
5633 */
5634 while (map.m_len > 0) {
5635 ret = ext4_map_blocks(NULL, inode, &map, 0);
5636 if (ret < 0)
5637 return ret;
5638 /* There's extent covering m_lblk? Just return it. */
5639 if (ret > 0) {
5640 int status;
5641
5642 ext4_es_store_pblock(result, map.m_pblk);
5643 result->es_lblk = map.m_lblk;
5644 result->es_len = map.m_len;
5645 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5646 status = EXTENT_STATUS_UNWRITTEN;
5647 else
5648 status = EXTENT_STATUS_WRITTEN;
5649 ext4_es_store_status(result, status);
5650 return 1;
5651 }
5652 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5653 map.m_lblk + map.m_len - 1,
5654 &es);
5655 /* Is delalloc data before next block in extent tree? */
5656 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5657 ext4_lblk_t offset = 0;
5658
5659 if (es.es_lblk < lblk)
5660 offset = lblk - es.es_lblk;
5661 result->es_lblk = es.es_lblk + offset;
5662 ext4_es_store_pblock(result,
5663 ext4_es_pblock(&es) + offset);
5664 result->es_len = es.es_len - offset;
5665 ext4_es_store_status(result, ext4_es_status(&es));
5666
5667 return 1;
5668 }
5669 /* There's a hole at m_lblk, advance us after it */
5670 map.m_lblk += map.m_len;
5671 map_len -= map.m_len;
5672 map.m_len = map_len;
5673 cond_resched();
5674 }
5675 result->es_len = 0;
5676 return 0;
5677}
1/*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/jbd2.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30#include <linux/pagevec.h>
31#include <linux/mpage.h>
32#include <linux/namei.h>
33#include <linux/uio.h>
34#include <linux/bio.h>
35#include <linux/workqueue.h>
36#include <linux/kernel.h>
37#include <linux/printk.h>
38#include <linux/slab.h>
39#include <linux/ratelimit.h>
40#include <linux/aio.h>
41#include <linux/bitops.h>
42
43#include "ext4_jbd2.h"
44#include "xattr.h"
45#include "acl.h"
46#include "truncate.h"
47
48#include <trace/events/ext4.h>
49
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99}
100
101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103{
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117}
118
119static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121{
122 trace_ext4_begin_ordered_truncate(inode, new_size);
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
134}
135
136static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
142
143/*
144 * Test whether an inode is a fast symlink.
145 */
146static int ext4_inode_is_fast_symlink(struct inode *inode)
147{
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152}
153
154/*
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
158 */
159int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160 int nblocks)
161{
162 int ret;
163
164 /*
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
169 */
170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 jbd_debug(2, "restarting handle %p\n", handle);
172 up_write(&EXT4_I(inode)->i_data_sem);
173 ret = ext4_journal_restart(handle, nblocks);
174 down_write(&EXT4_I(inode)->i_data_sem);
175 ext4_discard_preallocations(inode);
176
177 return ret;
178}
179
180/*
181 * Called at the last iput() if i_nlink is zero.
182 */
183void ext4_evict_inode(struct inode *inode)
184{
185 handle_t *handle;
186 int err;
187
188 trace_ext4_evict_inode(inode);
189
190 if (inode->i_nlink) {
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215 jbd2_complete_transaction(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
217 }
218 truncate_inode_pages_final(&inode->i_data);
219
220 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221 goto no_delete;
222 }
223
224 if (!is_bad_inode(inode))
225 dquot_initialize(inode);
226
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages_final(&inode->i_data);
230
231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232 if (is_bad_inode(inode))
233 goto no_delete;
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315}
316
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
319{
320 return &EXT4_I(inode)->i_reserved_quota;
321}
322#endif
323
324/*
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
327 */
328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329{
330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333 return ext4_ind_calc_metadata_amount(inode, lblock);
334}
335
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 struct ext4_inode_info *ei = EXT4_I(inode);
345
346 spin_lock(&ei->i_block_reservation_lock);
347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
356
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode->i_ino, ei->i_allocated_meta_blocks,
362 ei->i_reserved_meta_blocks, used,
363 ei->i_reserved_data_blocks);
364 WARN_ON(1);
365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 }
367
368 /* Update per-inode reservations */
369 ei->i_reserved_data_blocks -= used;
370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372 used + ei->i_allocated_meta_blocks);
373 ei->i_allocated_meta_blocks = 0;
374
375 if (ei->i_reserved_data_blocks == 0) {
376 /*
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
379 * allocation blocks.
380 */
381 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382 ei->i_reserved_meta_blocks);
383 ei->i_reserved_meta_blocks = 0;
384 ei->i_da_metadata_calc_len = 0;
385 }
386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391 else {
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
395 * not re-claim the quota for fallocated blocks.
396 */
397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398 }
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
407 ext4_discard_preallocations(inode);
408}
409
410static int __check_block_validity(struct inode *inode, const char *func,
411 unsigned int line,
412 struct ext4_map_blocks *map)
413{
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
420 return -EIO;
421 }
422 return 0;
423}
424
425#define check_block_validity(inode, map) \
426 __check_block_validity((inode), __func__, __LINE__, (map))
427
428#ifdef ES_AGGRESSIVE_TEST
429static void ext4_map_blocks_es_recheck(handle_t *handle,
430 struct inode *inode,
431 struct ext4_map_blocks *es_map,
432 struct ext4_map_blocks *map,
433 int flags)
434{
435 int retval;
436
437 map->m_flags = 0;
438 /*
439 * There is a race window that the result is not the same.
440 * e.g. xfstests #223 when dioread_nolock enables. The reason
441 * is that we lookup a block mapping in extent status tree with
442 * out taking i_data_sem. So at the time the unwritten extent
443 * could be converted.
444 */
445 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446 down_read((&EXT4_I(inode)->i_data_sem));
447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449 EXT4_GET_BLOCKS_KEEP_SIZE);
450 } else {
451 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452 EXT4_GET_BLOCKS_KEEP_SIZE);
453 }
454 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455 up_read((&EXT4_I(inode)->i_data_sem));
456 /*
457 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458 * because it shouldn't be marked in es_map->m_flags.
459 */
460 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
480/*
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
483 *
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocate.
493 * if create==0 and the blocks are pre-allocated and uninitialized block,
494 * the result buffer head is unmapped. If the create ==1, it will make sure
495 * the buffer head is mapped.
496 *
497 * It returns 0 if plain look up failed (blocks have not been allocated), in
498 * that case, buffer head is unmapped
499 *
500 * It returns the error in case of allocation failure.
501 */
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
504{
505 struct extent_status es;
506 int retval;
507 int ret = 0;
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
513
514 map->m_flags = 0;
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 (unsigned long) map->m_lblk);
518
519 /*
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 */
522 if (unlikely(map->m_len > INT_MAX))
523 map->m_len = INT_MAX;
524
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 return -EIO;
528
529 /* Lookup extent status tree firstly */
530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531 ext4_es_lru_add(inode);
532 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
533 map->m_pblk = ext4_es_pblock(&es) +
534 map->m_lblk - es.es_lblk;
535 map->m_flags |= ext4_es_is_written(&es) ?
536 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
537 retval = es.es_len - (map->m_lblk - es.es_lblk);
538 if (retval > map->m_len)
539 retval = map->m_len;
540 map->m_len = retval;
541 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
546#ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549#endif
550 goto found;
551 }
552
553 /*
554 * Try to see if we can get the block without requesting a new
555 * file system block.
556 */
557 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
558 down_read((&EXT4_I(inode)->i_data_sem));
559 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
560 retval = ext4_ext_map_blocks(handle, inode, map, flags &
561 EXT4_GET_BLOCKS_KEEP_SIZE);
562 } else {
563 retval = ext4_ind_map_blocks(handle, inode, map, flags &
564 EXT4_GET_BLOCKS_KEEP_SIZE);
565 }
566 if (retval > 0) {
567 unsigned int status;
568
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
574 WARN_ON(1);
575 }
576
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
588 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
589 up_read((&EXT4_I(inode)->i_data_sem));
590
591found:
592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 ret = check_block_validity(inode, map);
594 if (ret != 0)
595 return ret;
596 }
597
598 /* If it is only a block(s) look up */
599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 return retval;
601
602 /*
603 * Returns if the blocks have already allocated
604 *
605 * Note that if blocks have been preallocated
606 * ext4_ext_get_block() returns the create = 0
607 * with buffer head unmapped.
608 */
609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 /*
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
614 */
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 return retval;
617
618 /*
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
621 */
622 map->m_flags &= ~EXT4_MAP_FLAGS;
623
624 /*
625 * New blocks allocate and/or writing to uninitialized extent
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_blocks()
628 * with create == 1 flag.
629 */
630 down_write((&EXT4_I(inode)->i_data_sem));
631
632 /*
633 * if the caller is from delayed allocation writeout path
634 * we have already reserved fs blocks for allocation
635 * let the underlying get_block() function know to
636 * avoid double accounting
637 */
638 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
639 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
640 /*
641 * We need to check for EXT4 here because migrate
642 * could have changed the inode type in between
643 */
644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645 retval = ext4_ext_map_blocks(handle, inode, map, flags);
646 } else {
647 retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650 /*
651 * We allocated new blocks which will result in
652 * i_data's format changing. Force the migrate
653 * to fail by clearing migrate flags
654 */
655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656 }
657
658 /*
659 * Update reserved blocks/metadata blocks after successful
660 * block allocation which had been deferred till now. We don't
661 * support fallocate for non extent files. So we can update
662 * reserve space here.
663 */
664 if ((retval > 0) &&
665 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666 ext4_da_update_reserve_space(inode, retval, 1);
667 }
668 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
669 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
670
671 if (retval > 0) {
672 unsigned int status;
673
674 if (unlikely(retval != map->m_len)) {
675 ext4_warning(inode->i_sb,
676 "ES len assertion failed for inode "
677 "%lu: retval %d != map->m_len %d",
678 inode->i_ino, retval, map->m_len);
679 WARN_ON(1);
680 }
681
682 /*
683 * If the extent has been zeroed out, we don't need to update
684 * extent status tree.
685 */
686 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688 if (ext4_es_is_written(&es))
689 goto has_zeroout;
690 }
691 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694 ext4_find_delalloc_range(inode, map->m_lblk,
695 map->m_lblk + map->m_len - 1))
696 status |= EXTENT_STATUS_DELAYED;
697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698 map->m_pblk, status);
699 if (ret < 0)
700 retval = ret;
701 }
702
703has_zeroout:
704 up_write((&EXT4_I(inode)->i_data_sem));
705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706 ret = check_block_validity(inode, map);
707 if (ret != 0)
708 return ret;
709 }
710 return retval;
711}
712
713/* Maximum number of blocks we map for direct IO at once. */
714#define DIO_MAX_BLOCKS 4096
715
716static int _ext4_get_block(struct inode *inode, sector_t iblock,
717 struct buffer_head *bh, int flags)
718{
719 handle_t *handle = ext4_journal_current_handle();
720 struct ext4_map_blocks map;
721 int ret = 0, started = 0;
722 int dio_credits;
723
724 if (ext4_has_inline_data(inode))
725 return -ERANGE;
726
727 map.m_lblk = iblock;
728 map.m_len = bh->b_size >> inode->i_blkbits;
729
730 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
731 /* Direct IO write... */
732 if (map.m_len > DIO_MAX_BLOCKS)
733 map.m_len = DIO_MAX_BLOCKS;
734 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
735 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
736 dio_credits);
737 if (IS_ERR(handle)) {
738 ret = PTR_ERR(handle);
739 return ret;
740 }
741 started = 1;
742 }
743
744 ret = ext4_map_blocks(handle, inode, &map, flags);
745 if (ret > 0) {
746 ext4_io_end_t *io_end = ext4_inode_aio(inode);
747
748 map_bh(bh, inode->i_sb, map.m_pblk);
749 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
750 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
751 set_buffer_defer_completion(bh);
752 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
753 ret = 0;
754 }
755 if (started)
756 ext4_journal_stop(handle);
757 return ret;
758}
759
760int ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int create)
762{
763 return _ext4_get_block(inode, iblock, bh,
764 create ? EXT4_GET_BLOCKS_CREATE : 0);
765}
766
767/*
768 * `handle' can be NULL if create is zero
769 */
770struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
771 ext4_lblk_t block, int create, int *errp)
772{
773 struct ext4_map_blocks map;
774 struct buffer_head *bh;
775 int fatal = 0, err;
776
777 J_ASSERT(handle != NULL || create == 0);
778
779 map.m_lblk = block;
780 map.m_len = 1;
781 err = ext4_map_blocks(handle, inode, &map,
782 create ? EXT4_GET_BLOCKS_CREATE : 0);
783
784 /* ensure we send some value back into *errp */
785 *errp = 0;
786
787 if (create && err == 0)
788 err = -ENOSPC; /* should never happen */
789 if (err < 0)
790 *errp = err;
791 if (err <= 0)
792 return NULL;
793
794 bh = sb_getblk(inode->i_sb, map.m_pblk);
795 if (unlikely(!bh)) {
796 *errp = -ENOMEM;
797 return NULL;
798 }
799 if (map.m_flags & EXT4_MAP_NEW) {
800 J_ASSERT(create != 0);
801 J_ASSERT(handle != NULL);
802
803 /*
804 * Now that we do not always journal data, we should
805 * keep in mind whether this should always journal the
806 * new buffer as metadata. For now, regular file
807 * writes use ext4_get_block instead, so it's not a
808 * problem.
809 */
810 lock_buffer(bh);
811 BUFFER_TRACE(bh, "call get_create_access");
812 fatal = ext4_journal_get_create_access(handle, bh);
813 if (!fatal && !buffer_uptodate(bh)) {
814 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
815 set_buffer_uptodate(bh);
816 }
817 unlock_buffer(bh);
818 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
819 err = ext4_handle_dirty_metadata(handle, inode, bh);
820 if (!fatal)
821 fatal = err;
822 } else {
823 BUFFER_TRACE(bh, "not a new buffer");
824 }
825 if (fatal) {
826 *errp = fatal;
827 brelse(bh);
828 bh = NULL;
829 }
830 return bh;
831}
832
833struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
834 ext4_lblk_t block, int create, int *err)
835{
836 struct buffer_head *bh;
837
838 bh = ext4_getblk(handle, inode, block, create, err);
839 if (!bh)
840 return bh;
841 if (buffer_uptodate(bh))
842 return bh;
843 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
844 wait_on_buffer(bh);
845 if (buffer_uptodate(bh))
846 return bh;
847 put_bh(bh);
848 *err = -EIO;
849 return NULL;
850}
851
852int ext4_walk_page_buffers(handle_t *handle,
853 struct buffer_head *head,
854 unsigned from,
855 unsigned to,
856 int *partial,
857 int (*fn)(handle_t *handle,
858 struct buffer_head *bh))
859{
860 struct buffer_head *bh;
861 unsigned block_start, block_end;
862 unsigned blocksize = head->b_size;
863 int err, ret = 0;
864 struct buffer_head *next;
865
866 for (bh = head, block_start = 0;
867 ret == 0 && (bh != head || !block_start);
868 block_start = block_end, bh = next) {
869 next = bh->b_this_page;
870 block_end = block_start + blocksize;
871 if (block_end <= from || block_start >= to) {
872 if (partial && !buffer_uptodate(bh))
873 *partial = 1;
874 continue;
875 }
876 err = (*fn)(handle, bh);
877 if (!ret)
878 ret = err;
879 }
880 return ret;
881}
882
883/*
884 * To preserve ordering, it is essential that the hole instantiation and
885 * the data write be encapsulated in a single transaction. We cannot
886 * close off a transaction and start a new one between the ext4_get_block()
887 * and the commit_write(). So doing the jbd2_journal_start at the start of
888 * prepare_write() is the right place.
889 *
890 * Also, this function can nest inside ext4_writepage(). In that case, we
891 * *know* that ext4_writepage() has generated enough buffer credits to do the
892 * whole page. So we won't block on the journal in that case, which is good,
893 * because the caller may be PF_MEMALLOC.
894 *
895 * By accident, ext4 can be reentered when a transaction is open via
896 * quota file writes. If we were to commit the transaction while thus
897 * reentered, there can be a deadlock - we would be holding a quota
898 * lock, and the commit would never complete if another thread had a
899 * transaction open and was blocking on the quota lock - a ranking
900 * violation.
901 *
902 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
903 * will _not_ run commit under these circumstances because handle->h_ref
904 * is elevated. We'll still have enough credits for the tiny quotafile
905 * write.
906 */
907int do_journal_get_write_access(handle_t *handle,
908 struct buffer_head *bh)
909{
910 int dirty = buffer_dirty(bh);
911 int ret;
912
913 if (!buffer_mapped(bh) || buffer_freed(bh))
914 return 0;
915 /*
916 * __block_write_begin() could have dirtied some buffers. Clean
917 * the dirty bit as jbd2_journal_get_write_access() could complain
918 * otherwise about fs integrity issues. Setting of the dirty bit
919 * by __block_write_begin() isn't a real problem here as we clear
920 * the bit before releasing a page lock and thus writeback cannot
921 * ever write the buffer.
922 */
923 if (dirty)
924 clear_buffer_dirty(bh);
925 ret = ext4_journal_get_write_access(handle, bh);
926 if (!ret && dirty)
927 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
928 return ret;
929}
930
931static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
932 struct buffer_head *bh_result, int create);
933static int ext4_write_begin(struct file *file, struct address_space *mapping,
934 loff_t pos, unsigned len, unsigned flags,
935 struct page **pagep, void **fsdata)
936{
937 struct inode *inode = mapping->host;
938 int ret, needed_blocks;
939 handle_t *handle;
940 int retries = 0;
941 struct page *page;
942 pgoff_t index;
943 unsigned from, to;
944
945 trace_ext4_write_begin(inode, pos, len, flags);
946 /*
947 * Reserve one block more for addition to orphan list in case
948 * we allocate blocks but write fails for some reason
949 */
950 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
951 index = pos >> PAGE_CACHE_SHIFT;
952 from = pos & (PAGE_CACHE_SIZE - 1);
953 to = from + len;
954
955 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
956 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
957 flags, pagep);
958 if (ret < 0)
959 return ret;
960 if (ret == 1)
961 return 0;
962 }
963
964 /*
965 * grab_cache_page_write_begin() can take a long time if the
966 * system is thrashing due to memory pressure, or if the page
967 * is being written back. So grab it first before we start
968 * the transaction handle. This also allows us to allocate
969 * the page (if needed) without using GFP_NOFS.
970 */
971retry_grab:
972 page = grab_cache_page_write_begin(mapping, index, flags);
973 if (!page)
974 return -ENOMEM;
975 unlock_page(page);
976
977retry_journal:
978 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
979 if (IS_ERR(handle)) {
980 page_cache_release(page);
981 return PTR_ERR(handle);
982 }
983
984 lock_page(page);
985 if (page->mapping != mapping) {
986 /* The page got truncated from under us */
987 unlock_page(page);
988 page_cache_release(page);
989 ext4_journal_stop(handle);
990 goto retry_grab;
991 }
992 /* In case writeback began while the page was unlocked */
993 wait_for_stable_page(page);
994
995 if (ext4_should_dioread_nolock(inode))
996 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
997 else
998 ret = __block_write_begin(page, pos, len, ext4_get_block);
999
1000 if (!ret && ext4_should_journal_data(inode)) {
1001 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002 from, to, NULL,
1003 do_journal_get_write_access);
1004 }
1005
1006 if (ret) {
1007 unlock_page(page);
1008 /*
1009 * __block_write_begin may have instantiated a few blocks
1010 * outside i_size. Trim these off again. Don't need
1011 * i_size_read because we hold i_mutex.
1012 *
1013 * Add inode to orphan list in case we crash before
1014 * truncate finishes
1015 */
1016 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1017 ext4_orphan_add(handle, inode);
1018
1019 ext4_journal_stop(handle);
1020 if (pos + len > inode->i_size) {
1021 ext4_truncate_failed_write(inode);
1022 /*
1023 * If truncate failed early the inode might
1024 * still be on the orphan list; we need to
1025 * make sure the inode is removed from the
1026 * orphan list in that case.
1027 */
1028 if (inode->i_nlink)
1029 ext4_orphan_del(NULL, inode);
1030 }
1031
1032 if (ret == -ENOSPC &&
1033 ext4_should_retry_alloc(inode->i_sb, &retries))
1034 goto retry_journal;
1035 page_cache_release(page);
1036 return ret;
1037 }
1038 *pagep = page;
1039 return ret;
1040}
1041
1042/* For write_end() in data=journal mode */
1043static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1044{
1045 int ret;
1046 if (!buffer_mapped(bh) || buffer_freed(bh))
1047 return 0;
1048 set_buffer_uptodate(bh);
1049 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050 clear_buffer_meta(bh);
1051 clear_buffer_prio(bh);
1052 return ret;
1053}
1054
1055/*
1056 * We need to pick up the new inode size which generic_commit_write gave us
1057 * `file' can be NULL - eg, when called from page_symlink().
1058 *
1059 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1060 * buffers are managed internally.
1061 */
1062static int ext4_write_end(struct file *file,
1063 struct address_space *mapping,
1064 loff_t pos, unsigned len, unsigned copied,
1065 struct page *page, void *fsdata)
1066{
1067 handle_t *handle = ext4_journal_current_handle();
1068 struct inode *inode = mapping->host;
1069 int ret = 0, ret2;
1070 int i_size_changed = 0;
1071
1072 trace_ext4_write_end(inode, pos, len, copied);
1073 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074 ret = ext4_jbd2_file_inode(handle, inode);
1075 if (ret) {
1076 unlock_page(page);
1077 page_cache_release(page);
1078 goto errout;
1079 }
1080 }
1081
1082 if (ext4_has_inline_data(inode)) {
1083 ret = ext4_write_inline_data_end(inode, pos, len,
1084 copied, page);
1085 if (ret < 0)
1086 goto errout;
1087 copied = ret;
1088 } else
1089 copied = block_write_end(file, mapping, pos,
1090 len, copied, page, fsdata);
1091
1092 /*
1093 * No need to use i_size_read() here, the i_size
1094 * cannot change under us because we hole i_mutex.
1095 *
1096 * But it's important to update i_size while still holding page lock:
1097 * page writeout could otherwise come in and zero beyond i_size.
1098 */
1099 if (pos + copied > inode->i_size) {
1100 i_size_write(inode, pos + copied);
1101 i_size_changed = 1;
1102 }
1103
1104 if (pos + copied > EXT4_I(inode)->i_disksize) {
1105 /* We need to mark inode dirty even if
1106 * new_i_size is less that inode->i_size
1107 * but greater than i_disksize. (hint delalloc)
1108 */
1109 ext4_update_i_disksize(inode, (pos + copied));
1110 i_size_changed = 1;
1111 }
1112 unlock_page(page);
1113 page_cache_release(page);
1114
1115 /*
1116 * Don't mark the inode dirty under page lock. First, it unnecessarily
1117 * makes the holding time of page lock longer. Second, it forces lock
1118 * ordering of page lock and transaction start for journaling
1119 * filesystems.
1120 */
1121 if (i_size_changed)
1122 ext4_mark_inode_dirty(handle, inode);
1123
1124 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1125 /* if we have allocated more blocks and copied
1126 * less. We will have blocks allocated outside
1127 * inode->i_size. So truncate them
1128 */
1129 ext4_orphan_add(handle, inode);
1130errout:
1131 ret2 = ext4_journal_stop(handle);
1132 if (!ret)
1133 ret = ret2;
1134
1135 if (pos + len > inode->i_size) {
1136 ext4_truncate_failed_write(inode);
1137 /*
1138 * If truncate failed early the inode might still be
1139 * on the orphan list; we need to make sure the inode
1140 * is removed from the orphan list in that case.
1141 */
1142 if (inode->i_nlink)
1143 ext4_orphan_del(NULL, inode);
1144 }
1145
1146 return ret ? ret : copied;
1147}
1148
1149static int ext4_journalled_write_end(struct file *file,
1150 struct address_space *mapping,
1151 loff_t pos, unsigned len, unsigned copied,
1152 struct page *page, void *fsdata)
1153{
1154 handle_t *handle = ext4_journal_current_handle();
1155 struct inode *inode = mapping->host;
1156 int ret = 0, ret2;
1157 int partial = 0;
1158 unsigned from, to;
1159 loff_t new_i_size;
1160
1161 trace_ext4_journalled_write_end(inode, pos, len, copied);
1162 from = pos & (PAGE_CACHE_SIZE - 1);
1163 to = from + len;
1164
1165 BUG_ON(!ext4_handle_valid(handle));
1166
1167 if (ext4_has_inline_data(inode))
1168 copied = ext4_write_inline_data_end(inode, pos, len,
1169 copied, page);
1170 else {
1171 if (copied < len) {
1172 if (!PageUptodate(page))
1173 copied = 0;
1174 page_zero_new_buffers(page, from+copied, to);
1175 }
1176
1177 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178 to, &partial, write_end_fn);
1179 if (!partial)
1180 SetPageUptodate(page);
1181 }
1182 new_i_size = pos + copied;
1183 if (new_i_size > inode->i_size)
1184 i_size_write(inode, pos+copied);
1185 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1186 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1187 if (new_i_size > EXT4_I(inode)->i_disksize) {
1188 ext4_update_i_disksize(inode, new_i_size);
1189 ret2 = ext4_mark_inode_dirty(handle, inode);
1190 if (!ret)
1191 ret = ret2;
1192 }
1193
1194 unlock_page(page);
1195 page_cache_release(page);
1196 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1197 /* if we have allocated more blocks and copied
1198 * less. We will have blocks allocated outside
1199 * inode->i_size. So truncate them
1200 */
1201 ext4_orphan_add(handle, inode);
1202
1203 ret2 = ext4_journal_stop(handle);
1204 if (!ret)
1205 ret = ret2;
1206 if (pos + len > inode->i_size) {
1207 ext4_truncate_failed_write(inode);
1208 /*
1209 * If truncate failed early the inode might still be
1210 * on the orphan list; we need to make sure the inode
1211 * is removed from the orphan list in that case.
1212 */
1213 if (inode->i_nlink)
1214 ext4_orphan_del(NULL, inode);
1215 }
1216
1217 return ret ? ret : copied;
1218}
1219
1220/*
1221 * Reserve a metadata for a single block located at lblock
1222 */
1223static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224{
1225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226 struct ext4_inode_info *ei = EXT4_I(inode);
1227 unsigned int md_needed;
1228 ext4_lblk_t save_last_lblock;
1229 int save_len;
1230
1231 /*
1232 * recalculate the amount of metadata blocks to reserve
1233 * in order to allocate nrblocks
1234 * worse case is one extent per block
1235 */
1236 spin_lock(&ei->i_block_reservation_lock);
1237 /*
1238 * ext4_calc_metadata_amount() has side effects, which we have
1239 * to be prepared undo if we fail to claim space.
1240 */
1241 save_len = ei->i_da_metadata_calc_len;
1242 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243 md_needed = EXT4_NUM_B2C(sbi,
1244 ext4_calc_metadata_amount(inode, lblock));
1245 trace_ext4_da_reserve_space(inode, md_needed);
1246
1247 /*
1248 * We do still charge estimated metadata to the sb though;
1249 * we cannot afford to run out of free blocks.
1250 */
1251 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252 ei->i_da_metadata_calc_len = save_len;
1253 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254 spin_unlock(&ei->i_block_reservation_lock);
1255 return -ENOSPC;
1256 }
1257 ei->i_reserved_meta_blocks += md_needed;
1258 spin_unlock(&ei->i_block_reservation_lock);
1259
1260 return 0; /* success */
1261}
1262
1263/*
1264 * Reserve a single cluster located at lblock
1265 */
1266static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267{
1268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269 struct ext4_inode_info *ei = EXT4_I(inode);
1270 unsigned int md_needed;
1271 int ret;
1272 ext4_lblk_t save_last_lblock;
1273 int save_len;
1274
1275 /*
1276 * We will charge metadata quota at writeout time; this saves
1277 * us from metadata over-estimation, though we may go over by
1278 * a small amount in the end. Here we just reserve for data.
1279 */
1280 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281 if (ret)
1282 return ret;
1283
1284 /*
1285 * recalculate the amount of metadata blocks to reserve
1286 * in order to allocate nrblocks
1287 * worse case is one extent per block
1288 */
1289 spin_lock(&ei->i_block_reservation_lock);
1290 /*
1291 * ext4_calc_metadata_amount() has side effects, which we have
1292 * to be prepared undo if we fail to claim space.
1293 */
1294 save_len = ei->i_da_metadata_calc_len;
1295 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1296 md_needed = EXT4_NUM_B2C(sbi,
1297 ext4_calc_metadata_amount(inode, lblock));
1298 trace_ext4_da_reserve_space(inode, md_needed);
1299
1300 /*
1301 * We do still charge estimated metadata to the sb though;
1302 * we cannot afford to run out of free blocks.
1303 */
1304 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1305 ei->i_da_metadata_calc_len = save_len;
1306 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307 spin_unlock(&ei->i_block_reservation_lock);
1308 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1309 return -ENOSPC;
1310 }
1311 ei->i_reserved_data_blocks++;
1312 ei->i_reserved_meta_blocks += md_needed;
1313 spin_unlock(&ei->i_block_reservation_lock);
1314
1315 return 0; /* success */
1316}
1317
1318static void ext4_da_release_space(struct inode *inode, int to_free)
1319{
1320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1321 struct ext4_inode_info *ei = EXT4_I(inode);
1322
1323 if (!to_free)
1324 return; /* Nothing to release, exit */
1325
1326 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1327
1328 trace_ext4_da_release_space(inode, to_free);
1329 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1330 /*
1331 * if there aren't enough reserved blocks, then the
1332 * counter is messed up somewhere. Since this
1333 * function is called from invalidate page, it's
1334 * harmless to return without any action.
1335 */
1336 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1337 "ino %lu, to_free %d with only %d reserved "
1338 "data blocks", inode->i_ino, to_free,
1339 ei->i_reserved_data_blocks);
1340 WARN_ON(1);
1341 to_free = ei->i_reserved_data_blocks;
1342 }
1343 ei->i_reserved_data_blocks -= to_free;
1344
1345 if (ei->i_reserved_data_blocks == 0) {
1346 /*
1347 * We can release all of the reserved metadata blocks
1348 * only when we have written all of the delayed
1349 * allocation blocks.
1350 * Note that in case of bigalloc, i_reserved_meta_blocks,
1351 * i_reserved_data_blocks, etc. refer to number of clusters.
1352 */
1353 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1354 ei->i_reserved_meta_blocks);
1355 ei->i_reserved_meta_blocks = 0;
1356 ei->i_da_metadata_calc_len = 0;
1357 }
1358
1359 /* update fs dirty data blocks counter */
1360 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1361
1362 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1363
1364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1365}
1366
1367static void ext4_da_page_release_reservation(struct page *page,
1368 unsigned int offset,
1369 unsigned int length)
1370{
1371 int to_release = 0;
1372 struct buffer_head *head, *bh;
1373 unsigned int curr_off = 0;
1374 struct inode *inode = page->mapping->host;
1375 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1376 unsigned int stop = offset + length;
1377 int num_clusters;
1378 ext4_fsblk_t lblk;
1379
1380 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381
1382 head = page_buffers(page);
1383 bh = head;
1384 do {
1385 unsigned int next_off = curr_off + bh->b_size;
1386
1387 if (next_off > stop)
1388 break;
1389
1390 if ((offset <= curr_off) && (buffer_delay(bh))) {
1391 to_release++;
1392 clear_buffer_delay(bh);
1393 }
1394 curr_off = next_off;
1395 } while ((bh = bh->b_this_page) != head);
1396
1397 if (to_release) {
1398 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399 ext4_es_remove_extent(inode, lblk, to_release);
1400 }
1401
1402 /* If we have released all the blocks belonging to a cluster, then we
1403 * need to release the reserved space for that cluster. */
1404 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405 while (num_clusters > 0) {
1406 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407 ((num_clusters - 1) << sbi->s_cluster_bits);
1408 if (sbi->s_cluster_ratio == 1 ||
1409 !ext4_find_delalloc_cluster(inode, lblk))
1410 ext4_da_release_space(inode, 1);
1411
1412 num_clusters--;
1413 }
1414}
1415
1416/*
1417 * Delayed allocation stuff
1418 */
1419
1420struct mpage_da_data {
1421 struct inode *inode;
1422 struct writeback_control *wbc;
1423
1424 pgoff_t first_page; /* The first page to write */
1425 pgoff_t next_page; /* Current page to examine */
1426 pgoff_t last_page; /* Last page to examine */
1427 /*
1428 * Extent to map - this can be after first_page because that can be
1429 * fully mapped. We somewhat abuse m_flags to store whether the extent
1430 * is delalloc or unwritten.
1431 */
1432 struct ext4_map_blocks map;
1433 struct ext4_io_submit io_submit; /* IO submission data */
1434};
1435
1436static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437 bool invalidate)
1438{
1439 int nr_pages, i;
1440 pgoff_t index, end;
1441 struct pagevec pvec;
1442 struct inode *inode = mpd->inode;
1443 struct address_space *mapping = inode->i_mapping;
1444
1445 /* This is necessary when next_page == 0. */
1446 if (mpd->first_page >= mpd->next_page)
1447 return;
1448
1449 index = mpd->first_page;
1450 end = mpd->next_page - 1;
1451 if (invalidate) {
1452 ext4_lblk_t start, last;
1453 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455 ext4_es_remove_extent(inode, start, last - start + 1);
1456 }
1457
1458 pagevec_init(&pvec, 0);
1459 while (index <= end) {
1460 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461 if (nr_pages == 0)
1462 break;
1463 for (i = 0; i < nr_pages; i++) {
1464 struct page *page = pvec.pages[i];
1465 if (page->index > end)
1466 break;
1467 BUG_ON(!PageLocked(page));
1468 BUG_ON(PageWriteback(page));
1469 if (invalidate) {
1470 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471 ClearPageUptodate(page);
1472 }
1473 unlock_page(page);
1474 }
1475 index = pvec.pages[nr_pages - 1]->index + 1;
1476 pagevec_release(&pvec);
1477 }
1478}
1479
1480static void ext4_print_free_blocks(struct inode *inode)
1481{
1482 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1483 struct super_block *sb = inode->i_sb;
1484 struct ext4_inode_info *ei = EXT4_I(inode);
1485
1486 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1487 EXT4_C2B(EXT4_SB(inode->i_sb),
1488 ext4_count_free_clusters(sb)));
1489 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1491 (long long) EXT4_C2B(EXT4_SB(sb),
1492 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1493 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1494 (long long) EXT4_C2B(EXT4_SB(sb),
1495 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1496 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1498 ei->i_reserved_data_blocks);
1499 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1500 ei->i_reserved_meta_blocks);
1501 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502 ei->i_allocated_meta_blocks);
1503 return;
1504}
1505
1506static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1507{
1508 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1509}
1510
1511/*
1512 * This function is grabs code from the very beginning of
1513 * ext4_map_blocks, but assumes that the caller is from delayed write
1514 * time. This function looks up the requested blocks and sets the
1515 * buffer delay bit under the protection of i_data_sem.
1516 */
1517static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518 struct ext4_map_blocks *map,
1519 struct buffer_head *bh)
1520{
1521 struct extent_status es;
1522 int retval;
1523 sector_t invalid_block = ~((sector_t) 0xffff);
1524#ifdef ES_AGGRESSIVE_TEST
1525 struct ext4_map_blocks orig_map;
1526
1527 memcpy(&orig_map, map, sizeof(*map));
1528#endif
1529
1530 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531 invalid_block = ~0;
1532
1533 map->m_flags = 0;
1534 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535 "logical block %lu\n", inode->i_ino, map->m_len,
1536 (unsigned long) map->m_lblk);
1537
1538 /* Lookup extent status tree firstly */
1539 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540 ext4_es_lru_add(inode);
1541 if (ext4_es_is_hole(&es)) {
1542 retval = 0;
1543 down_read((&EXT4_I(inode)->i_data_sem));
1544 goto add_delayed;
1545 }
1546
1547 /*
1548 * Delayed extent could be allocated by fallocate.
1549 * So we need to check it.
1550 */
1551 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552 map_bh(bh, inode->i_sb, invalid_block);
1553 set_buffer_new(bh);
1554 set_buffer_delay(bh);
1555 return 0;
1556 }
1557
1558 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559 retval = es.es_len - (iblock - es.es_lblk);
1560 if (retval > map->m_len)
1561 retval = map->m_len;
1562 map->m_len = retval;
1563 if (ext4_es_is_written(&es))
1564 map->m_flags |= EXT4_MAP_MAPPED;
1565 else if (ext4_es_is_unwritten(&es))
1566 map->m_flags |= EXT4_MAP_UNWRITTEN;
1567 else
1568 BUG_ON(1);
1569
1570#ifdef ES_AGGRESSIVE_TEST
1571 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572#endif
1573 return retval;
1574 }
1575
1576 /*
1577 * Try to see if we can get the block without requesting a new
1578 * file system block.
1579 */
1580 down_read((&EXT4_I(inode)->i_data_sem));
1581 if (ext4_has_inline_data(inode)) {
1582 /*
1583 * We will soon create blocks for this page, and let
1584 * us pretend as if the blocks aren't allocated yet.
1585 * In case of clusters, we have to handle the work
1586 * of mapping from cluster so that the reserved space
1587 * is calculated properly.
1588 */
1589 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590 ext4_find_delalloc_cluster(inode, map->m_lblk))
1591 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592 retval = 0;
1593 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1594 retval = ext4_ext_map_blocks(NULL, inode, map,
1595 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1596 else
1597 retval = ext4_ind_map_blocks(NULL, inode, map,
1598 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1599
1600add_delayed:
1601 if (retval == 0) {
1602 int ret;
1603 /*
1604 * XXX: __block_prepare_write() unmaps passed block,
1605 * is it OK?
1606 */
1607 /*
1608 * If the block was allocated from previously allocated cluster,
1609 * then we don't need to reserve it again. However we still need
1610 * to reserve metadata for every block we're going to write.
1611 */
1612 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1613 ret = ext4_da_reserve_space(inode, iblock);
1614 if (ret) {
1615 /* not enough space to reserve */
1616 retval = ret;
1617 goto out_unlock;
1618 }
1619 } else {
1620 ret = ext4_da_reserve_metadata(inode, iblock);
1621 if (ret) {
1622 /* not enough space to reserve */
1623 retval = ret;
1624 goto out_unlock;
1625 }
1626 }
1627
1628 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629 ~0, EXTENT_STATUS_DELAYED);
1630 if (ret) {
1631 retval = ret;
1632 goto out_unlock;
1633 }
1634
1635 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636 * and it should not appear on the bh->b_state.
1637 */
1638 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639
1640 map_bh(bh, inode->i_sb, invalid_block);
1641 set_buffer_new(bh);
1642 set_buffer_delay(bh);
1643 } else if (retval > 0) {
1644 int ret;
1645 unsigned int status;
1646
1647 if (unlikely(retval != map->m_len)) {
1648 ext4_warning(inode->i_sb,
1649 "ES len assertion failed for inode "
1650 "%lu: retval %d != map->m_len %d",
1651 inode->i_ino, retval, map->m_len);
1652 WARN_ON(1);
1653 }
1654
1655 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658 map->m_pblk, status);
1659 if (ret != 0)
1660 retval = ret;
1661 }
1662
1663out_unlock:
1664 up_read((&EXT4_I(inode)->i_data_sem));
1665
1666 return retval;
1667}
1668
1669/*
1670 * This is a special get_blocks_t callback which is used by
1671 * ext4_da_write_begin(). It will either return mapped block or
1672 * reserve space for a single block.
1673 *
1674 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675 * We also have b_blocknr = -1 and b_bdev initialized properly
1676 *
1677 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679 * initialized properly.
1680 */
1681int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682 struct buffer_head *bh, int create)
1683{
1684 struct ext4_map_blocks map;
1685 int ret = 0;
1686
1687 BUG_ON(create == 0);
1688 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689
1690 map.m_lblk = iblock;
1691 map.m_len = 1;
1692
1693 /*
1694 * first, we need to know whether the block is allocated already
1695 * preallocated blocks are unmapped but should treated
1696 * the same as allocated blocks.
1697 */
1698 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699 if (ret <= 0)
1700 return ret;
1701
1702 map_bh(bh, inode->i_sb, map.m_pblk);
1703 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704
1705 if (buffer_unwritten(bh)) {
1706 /* A delayed write to unwritten bh should be marked
1707 * new and mapped. Mapped ensures that we don't do
1708 * get_block multiple times when we write to the same
1709 * offset and new ensures that we do proper zero out
1710 * for partial write.
1711 */
1712 set_buffer_new(bh);
1713 set_buffer_mapped(bh);
1714 }
1715 return 0;
1716}
1717
1718static int bget_one(handle_t *handle, struct buffer_head *bh)
1719{
1720 get_bh(bh);
1721 return 0;
1722}
1723
1724static int bput_one(handle_t *handle, struct buffer_head *bh)
1725{
1726 put_bh(bh);
1727 return 0;
1728}
1729
1730static int __ext4_journalled_writepage(struct page *page,
1731 unsigned int len)
1732{
1733 struct address_space *mapping = page->mapping;
1734 struct inode *inode = mapping->host;
1735 struct buffer_head *page_bufs = NULL;
1736 handle_t *handle = NULL;
1737 int ret = 0, err = 0;
1738 int inline_data = ext4_has_inline_data(inode);
1739 struct buffer_head *inode_bh = NULL;
1740
1741 ClearPageChecked(page);
1742
1743 if (inline_data) {
1744 BUG_ON(page->index != 0);
1745 BUG_ON(len > ext4_get_max_inline_size(inode));
1746 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747 if (inode_bh == NULL)
1748 goto out;
1749 } else {
1750 page_bufs = page_buffers(page);
1751 if (!page_bufs) {
1752 BUG();
1753 goto out;
1754 }
1755 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756 NULL, bget_one);
1757 }
1758 /* As soon as we unlock the page, it can go away, but we have
1759 * references to buffers so we are safe */
1760 unlock_page(page);
1761
1762 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763 ext4_writepage_trans_blocks(inode));
1764 if (IS_ERR(handle)) {
1765 ret = PTR_ERR(handle);
1766 goto out;
1767 }
1768
1769 BUG_ON(!ext4_handle_valid(handle));
1770
1771 if (inline_data) {
1772 ret = ext4_journal_get_write_access(handle, inode_bh);
1773
1774 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775
1776 } else {
1777 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778 do_journal_get_write_access);
1779
1780 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781 write_end_fn);
1782 }
1783 if (ret == 0)
1784 ret = err;
1785 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1786 err = ext4_journal_stop(handle);
1787 if (!ret)
1788 ret = err;
1789
1790 if (!ext4_has_inline_data(inode))
1791 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1792 NULL, bput_one);
1793 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1794out:
1795 brelse(inode_bh);
1796 return ret;
1797}
1798
1799/*
1800 * Note that we don't need to start a transaction unless we're journaling data
1801 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802 * need to file the inode to the transaction's list in ordered mode because if
1803 * we are writing back data added by write(), the inode is already there and if
1804 * we are writing back data modified via mmap(), no one guarantees in which
1805 * transaction the data will hit the disk. In case we are journaling data, we
1806 * cannot start transaction directly because transaction start ranks above page
1807 * lock so we have to do some magic.
1808 *
1809 * This function can get called via...
1810 * - ext4_writepages after taking page lock (have journal handle)
1811 * - journal_submit_inode_data_buffers (no journal handle)
1812 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1813 * - grab_page_cache when doing write_begin (have journal handle)
1814 *
1815 * We don't do any block allocation in this function. If we have page with
1816 * multiple blocks we need to write those buffer_heads that are mapped. This
1817 * is important for mmaped based write. So if we do with blocksize 1K
1818 * truncate(f, 1024);
1819 * a = mmap(f, 0, 4096);
1820 * a[0] = 'a';
1821 * truncate(f, 4096);
1822 * we have in the page first buffer_head mapped via page_mkwrite call back
1823 * but other buffer_heads would be unmapped but dirty (dirty done via the
1824 * do_wp_page). So writepage should write the first block. If we modify
1825 * the mmap area beyond 1024 we will again get a page_fault and the
1826 * page_mkwrite callback will do the block allocation and mark the
1827 * buffer_heads mapped.
1828 *
1829 * We redirty the page if we have any buffer_heads that is either delay or
1830 * unwritten in the page.
1831 *
1832 * We can get recursively called as show below.
1833 *
1834 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835 * ext4_writepage()
1836 *
1837 * But since we don't do any block allocation we should not deadlock.
1838 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1839 */
1840static int ext4_writepage(struct page *page,
1841 struct writeback_control *wbc)
1842{
1843 int ret = 0;
1844 loff_t size;
1845 unsigned int len;
1846 struct buffer_head *page_bufs = NULL;
1847 struct inode *inode = page->mapping->host;
1848 struct ext4_io_submit io_submit;
1849
1850 trace_ext4_writepage(page);
1851 size = i_size_read(inode);
1852 if (page->index == size >> PAGE_CACHE_SHIFT)
1853 len = size & ~PAGE_CACHE_MASK;
1854 else
1855 len = PAGE_CACHE_SIZE;
1856
1857 page_bufs = page_buffers(page);
1858 /*
1859 * We cannot do block allocation or other extent handling in this
1860 * function. If there are buffers needing that, we have to redirty
1861 * the page. But we may reach here when we do a journal commit via
1862 * journal_submit_inode_data_buffers() and in that case we must write
1863 * allocated buffers to achieve data=ordered mode guarantees.
1864 */
1865 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1866 ext4_bh_delay_or_unwritten)) {
1867 redirty_page_for_writepage(wbc, page);
1868 if (current->flags & PF_MEMALLOC) {
1869 /*
1870 * For memory cleaning there's no point in writing only
1871 * some buffers. So just bail out. Warn if we came here
1872 * from direct reclaim.
1873 */
1874 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1875 == PF_MEMALLOC);
1876 unlock_page(page);
1877 return 0;
1878 }
1879 }
1880
1881 if (PageChecked(page) && ext4_should_journal_data(inode))
1882 /*
1883 * It's mmapped pagecache. Add buffers and journal it. There
1884 * doesn't seem much point in redirtying the page here.
1885 */
1886 return __ext4_journalled_writepage(page, len);
1887
1888 ext4_io_submit_init(&io_submit, wbc);
1889 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1890 if (!io_submit.io_end) {
1891 redirty_page_for_writepage(wbc, page);
1892 unlock_page(page);
1893 return -ENOMEM;
1894 }
1895 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1896 ext4_io_submit(&io_submit);
1897 /* Drop io_end reference we got from init */
1898 ext4_put_io_end_defer(io_submit.io_end);
1899 return ret;
1900}
1901
1902static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1903{
1904 int len;
1905 loff_t size = i_size_read(mpd->inode);
1906 int err;
1907
1908 BUG_ON(page->index != mpd->first_page);
1909 if (page->index == size >> PAGE_CACHE_SHIFT)
1910 len = size & ~PAGE_CACHE_MASK;
1911 else
1912 len = PAGE_CACHE_SIZE;
1913 clear_page_dirty_for_io(page);
1914 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1915 if (!err)
1916 mpd->wbc->nr_to_write--;
1917 mpd->first_page++;
1918
1919 return err;
1920}
1921
1922#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923
1924/*
1925 * mballoc gives us at most this number of blocks...
1926 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1927 * The rest of mballoc seems to handle chunks up to full group size.
1928 */
1929#define MAX_WRITEPAGES_EXTENT_LEN 2048
1930
1931/*
1932 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1933 *
1934 * @mpd - extent of blocks
1935 * @lblk - logical number of the block in the file
1936 * @bh - buffer head we want to add to the extent
1937 *
1938 * The function is used to collect contig. blocks in the same state. If the
1939 * buffer doesn't require mapping for writeback and we haven't started the
1940 * extent of buffers to map yet, the function returns 'true' immediately - the
1941 * caller can write the buffer right away. Otherwise the function returns true
1942 * if the block has been added to the extent, false if the block couldn't be
1943 * added.
1944 */
1945static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1946 struct buffer_head *bh)
1947{
1948 struct ext4_map_blocks *map = &mpd->map;
1949
1950 /* Buffer that doesn't need mapping for writeback? */
1951 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1952 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1953 /* So far no extent to map => we write the buffer right away */
1954 if (map->m_len == 0)
1955 return true;
1956 return false;
1957 }
1958
1959 /* First block in the extent? */
1960 if (map->m_len == 0) {
1961 map->m_lblk = lblk;
1962 map->m_len = 1;
1963 map->m_flags = bh->b_state & BH_FLAGS;
1964 return true;
1965 }
1966
1967 /* Don't go larger than mballoc is willing to allocate */
1968 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1969 return false;
1970
1971 /* Can we merge the block to our big extent? */
1972 if (lblk == map->m_lblk + map->m_len &&
1973 (bh->b_state & BH_FLAGS) == map->m_flags) {
1974 map->m_len++;
1975 return true;
1976 }
1977 return false;
1978}
1979
1980/*
1981 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1982 *
1983 * @mpd - extent of blocks for mapping
1984 * @head - the first buffer in the page
1985 * @bh - buffer we should start processing from
1986 * @lblk - logical number of the block in the file corresponding to @bh
1987 *
1988 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1989 * the page for IO if all buffers in this page were mapped and there's no
1990 * accumulated extent of buffers to map or add buffers in the page to the
1991 * extent of buffers to map. The function returns 1 if the caller can continue
1992 * by processing the next page, 0 if it should stop adding buffers to the
1993 * extent to map because we cannot extend it anymore. It can also return value
1994 * < 0 in case of error during IO submission.
1995 */
1996static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1997 struct buffer_head *head,
1998 struct buffer_head *bh,
1999 ext4_lblk_t lblk)
2000{
2001 struct inode *inode = mpd->inode;
2002 int err;
2003 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2004 >> inode->i_blkbits;
2005
2006 do {
2007 BUG_ON(buffer_locked(bh));
2008
2009 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2010 /* Found extent to map? */
2011 if (mpd->map.m_len)
2012 return 0;
2013 /* Everything mapped so far and we hit EOF */
2014 break;
2015 }
2016 } while (lblk++, (bh = bh->b_this_page) != head);
2017 /* So far everything mapped? Submit the page for IO. */
2018 if (mpd->map.m_len == 0) {
2019 err = mpage_submit_page(mpd, head->b_page);
2020 if (err < 0)
2021 return err;
2022 }
2023 return lblk < blocks;
2024}
2025
2026/*
2027 * mpage_map_buffers - update buffers corresponding to changed extent and
2028 * submit fully mapped pages for IO
2029 *
2030 * @mpd - description of extent to map, on return next extent to map
2031 *
2032 * Scan buffers corresponding to changed extent (we expect corresponding pages
2033 * to be already locked) and update buffer state according to new extent state.
2034 * We map delalloc buffers to their physical location, clear unwritten bits,
2035 * and mark buffers as uninit when we perform writes to uninitialized extents
2036 * and do extent conversion after IO is finished. If the last page is not fully
2037 * mapped, we update @map to the next extent in the last page that needs
2038 * mapping. Otherwise we submit the page for IO.
2039 */
2040static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2041{
2042 struct pagevec pvec;
2043 int nr_pages, i;
2044 struct inode *inode = mpd->inode;
2045 struct buffer_head *head, *bh;
2046 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2047 pgoff_t start, end;
2048 ext4_lblk_t lblk;
2049 sector_t pblock;
2050 int err;
2051
2052 start = mpd->map.m_lblk >> bpp_bits;
2053 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2054 lblk = start << bpp_bits;
2055 pblock = mpd->map.m_pblk;
2056
2057 pagevec_init(&pvec, 0);
2058 while (start <= end) {
2059 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2060 PAGEVEC_SIZE);
2061 if (nr_pages == 0)
2062 break;
2063 for (i = 0; i < nr_pages; i++) {
2064 struct page *page = pvec.pages[i];
2065
2066 if (page->index > end)
2067 break;
2068 /* Up to 'end' pages must be contiguous */
2069 BUG_ON(page->index != start);
2070 bh = head = page_buffers(page);
2071 do {
2072 if (lblk < mpd->map.m_lblk)
2073 continue;
2074 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2075 /*
2076 * Buffer after end of mapped extent.
2077 * Find next buffer in the page to map.
2078 */
2079 mpd->map.m_len = 0;
2080 mpd->map.m_flags = 0;
2081 /*
2082 * FIXME: If dioread_nolock supports
2083 * blocksize < pagesize, we need to make
2084 * sure we add size mapped so far to
2085 * io_end->size as the following call
2086 * can submit the page for IO.
2087 */
2088 err = mpage_process_page_bufs(mpd, head,
2089 bh, lblk);
2090 pagevec_release(&pvec);
2091 if (err > 0)
2092 err = 0;
2093 return err;
2094 }
2095 if (buffer_delay(bh)) {
2096 clear_buffer_delay(bh);
2097 bh->b_blocknr = pblock++;
2098 }
2099 clear_buffer_unwritten(bh);
2100 } while (lblk++, (bh = bh->b_this_page) != head);
2101
2102 /*
2103 * FIXME: This is going to break if dioread_nolock
2104 * supports blocksize < pagesize as we will try to
2105 * convert potentially unmapped parts of inode.
2106 */
2107 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2108 /* Page fully mapped - let IO run! */
2109 err = mpage_submit_page(mpd, page);
2110 if (err < 0) {
2111 pagevec_release(&pvec);
2112 return err;
2113 }
2114 start++;
2115 }
2116 pagevec_release(&pvec);
2117 }
2118 /* Extent fully mapped and matches with page boundary. We are done. */
2119 mpd->map.m_len = 0;
2120 mpd->map.m_flags = 0;
2121 return 0;
2122}
2123
2124static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2125{
2126 struct inode *inode = mpd->inode;
2127 struct ext4_map_blocks *map = &mpd->map;
2128 int get_blocks_flags;
2129 int err;
2130
2131 trace_ext4_da_write_pages_extent(inode, map);
2132 /*
2133 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2134 * to convert an uninitialized extent to be initialized (in the case
2135 * where we have written into one or more preallocated blocks). It is
2136 * possible that we're going to need more metadata blocks than
2137 * previously reserved. However we must not fail because we're in
2138 * writeback and there is nothing we can do about it so it might result
2139 * in data loss. So use reserved blocks to allocate metadata if
2140 * possible.
2141 *
2142 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2143 * in question are delalloc blocks. This affects functions in many
2144 * different parts of the allocation call path. This flag exists
2145 * primarily because we don't want to change *many* call functions, so
2146 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2147 * once the inode's allocation semaphore is taken.
2148 */
2149 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2150 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2151 if (ext4_should_dioread_nolock(inode))
2152 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2153 if (map->m_flags & (1 << BH_Delay))
2154 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2155
2156 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2157 if (err < 0)
2158 return err;
2159 if (map->m_flags & EXT4_MAP_UNINIT) {
2160 if (!mpd->io_submit.io_end->handle &&
2161 ext4_handle_valid(handle)) {
2162 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2163 handle->h_rsv_handle = NULL;
2164 }
2165 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2166 }
2167
2168 BUG_ON(map->m_len == 0);
2169 if (map->m_flags & EXT4_MAP_NEW) {
2170 struct block_device *bdev = inode->i_sb->s_bdev;
2171 int i;
2172
2173 for (i = 0; i < map->m_len; i++)
2174 unmap_underlying_metadata(bdev, map->m_pblk + i);
2175 }
2176 return 0;
2177}
2178
2179/*
2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181 * mpd->len and submit pages underlying it for IO
2182 *
2183 * @handle - handle for journal operations
2184 * @mpd - extent to map
2185 * @give_up_on_write - we set this to true iff there is a fatal error and there
2186 * is no hope of writing the data. The caller should discard
2187 * dirty pages to avoid infinite loops.
2188 *
2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191 * them to initialized or split the described range from larger unwritten
2192 * extent. Note that we need not map all the described range since allocation
2193 * can return less blocks or the range is covered by more unwritten extents. We
2194 * cannot map more because we are limited by reserved transaction credits. On
2195 * the other hand we always make sure that the last touched page is fully
2196 * mapped so that it can be written out (and thus forward progress is
2197 * guaranteed). After mapping we submit all mapped pages for IO.
2198 */
2199static int mpage_map_and_submit_extent(handle_t *handle,
2200 struct mpage_da_data *mpd,
2201 bool *give_up_on_write)
2202{
2203 struct inode *inode = mpd->inode;
2204 struct ext4_map_blocks *map = &mpd->map;
2205 int err;
2206 loff_t disksize;
2207
2208 mpd->io_submit.io_end->offset =
2209 ((loff_t)map->m_lblk) << inode->i_blkbits;
2210 do {
2211 err = mpage_map_one_extent(handle, mpd);
2212 if (err < 0) {
2213 struct super_block *sb = inode->i_sb;
2214
2215 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2216 goto invalidate_dirty_pages;
2217 /*
2218 * Let the uper layers retry transient errors.
2219 * In the case of ENOSPC, if ext4_count_free_blocks()
2220 * is non-zero, a commit should free up blocks.
2221 */
2222 if ((err == -ENOMEM) ||
2223 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2224 return err;
2225 ext4_msg(sb, KERN_CRIT,
2226 "Delayed block allocation failed for "
2227 "inode %lu at logical offset %llu with"
2228 " max blocks %u with error %d",
2229 inode->i_ino,
2230 (unsigned long long)map->m_lblk,
2231 (unsigned)map->m_len, -err);
2232 ext4_msg(sb, KERN_CRIT,
2233 "This should not happen!! Data will "
2234 "be lost\n");
2235 if (err == -ENOSPC)
2236 ext4_print_free_blocks(inode);
2237 invalidate_dirty_pages:
2238 *give_up_on_write = true;
2239 return err;
2240 }
2241 /*
2242 * Update buffer state, submit mapped pages, and get us new
2243 * extent to map
2244 */
2245 err = mpage_map_and_submit_buffers(mpd);
2246 if (err < 0)
2247 return err;
2248 } while (map->m_len);
2249
2250 /*
2251 * Update on-disk size after IO is submitted. Races with
2252 * truncate are avoided by checking i_size under i_data_sem.
2253 */
2254 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2255 if (disksize > EXT4_I(inode)->i_disksize) {
2256 int err2;
2257 loff_t i_size;
2258
2259 down_write(&EXT4_I(inode)->i_data_sem);
2260 i_size = i_size_read(inode);
2261 if (disksize > i_size)
2262 disksize = i_size;
2263 if (disksize > EXT4_I(inode)->i_disksize)
2264 EXT4_I(inode)->i_disksize = disksize;
2265 err2 = ext4_mark_inode_dirty(handle, inode);
2266 up_write(&EXT4_I(inode)->i_data_sem);
2267 if (err2)
2268 ext4_error(inode->i_sb,
2269 "Failed to mark inode %lu dirty",
2270 inode->i_ino);
2271 if (!err)
2272 err = err2;
2273 }
2274 return err;
2275}
2276
2277/*
2278 * Calculate the total number of credits to reserve for one writepages
2279 * iteration. This is called from ext4_writepages(). We map an extent of
2280 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2281 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2282 * bpp - 1 blocks in bpp different extents.
2283 */
2284static int ext4_da_writepages_trans_blocks(struct inode *inode)
2285{
2286 int bpp = ext4_journal_blocks_per_page(inode);
2287
2288 return ext4_meta_trans_blocks(inode,
2289 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2290}
2291
2292/*
2293 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2294 * and underlying extent to map
2295 *
2296 * @mpd - where to look for pages
2297 *
2298 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2299 * IO immediately. When we find a page which isn't mapped we start accumulating
2300 * extent of buffers underlying these pages that needs mapping (formed by
2301 * either delayed or unwritten buffers). We also lock the pages containing
2302 * these buffers. The extent found is returned in @mpd structure (starting at
2303 * mpd->lblk with length mpd->len blocks).
2304 *
2305 * Note that this function can attach bios to one io_end structure which are
2306 * neither logically nor physically contiguous. Although it may seem as an
2307 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2308 * case as we need to track IO to all buffers underlying a page in one io_end.
2309 */
2310static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2311{
2312 struct address_space *mapping = mpd->inode->i_mapping;
2313 struct pagevec pvec;
2314 unsigned int nr_pages;
2315 long left = mpd->wbc->nr_to_write;
2316 pgoff_t index = mpd->first_page;
2317 pgoff_t end = mpd->last_page;
2318 int tag;
2319 int i, err = 0;
2320 int blkbits = mpd->inode->i_blkbits;
2321 ext4_lblk_t lblk;
2322 struct buffer_head *head;
2323
2324 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2325 tag = PAGECACHE_TAG_TOWRITE;
2326 else
2327 tag = PAGECACHE_TAG_DIRTY;
2328
2329 pagevec_init(&pvec, 0);
2330 mpd->map.m_len = 0;
2331 mpd->next_page = index;
2332 while (index <= end) {
2333 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2334 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2335 if (nr_pages == 0)
2336 goto out;
2337
2338 for (i = 0; i < nr_pages; i++) {
2339 struct page *page = pvec.pages[i];
2340
2341 /*
2342 * At this point, the page may be truncated or
2343 * invalidated (changing page->mapping to NULL), or
2344 * even swizzled back from swapper_space to tmpfs file
2345 * mapping. However, page->index will not change
2346 * because we have a reference on the page.
2347 */
2348 if (page->index > end)
2349 goto out;
2350
2351 /*
2352 * Accumulated enough dirty pages? This doesn't apply
2353 * to WB_SYNC_ALL mode. For integrity sync we have to
2354 * keep going because someone may be concurrently
2355 * dirtying pages, and we might have synced a lot of
2356 * newly appeared dirty pages, but have not synced all
2357 * of the old dirty pages.
2358 */
2359 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2360 goto out;
2361
2362 /* If we can't merge this page, we are done. */
2363 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2364 goto out;
2365
2366 lock_page(page);
2367 /*
2368 * If the page is no longer dirty, or its mapping no
2369 * longer corresponds to inode we are writing (which
2370 * means it has been truncated or invalidated), or the
2371 * page is already under writeback and we are not doing
2372 * a data integrity writeback, skip the page
2373 */
2374 if (!PageDirty(page) ||
2375 (PageWriteback(page) &&
2376 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2377 unlikely(page->mapping != mapping)) {
2378 unlock_page(page);
2379 continue;
2380 }
2381
2382 wait_on_page_writeback(page);
2383 BUG_ON(PageWriteback(page));
2384
2385 if (mpd->map.m_len == 0)
2386 mpd->first_page = page->index;
2387 mpd->next_page = page->index + 1;
2388 /* Add all dirty buffers to mpd */
2389 lblk = ((ext4_lblk_t)page->index) <<
2390 (PAGE_CACHE_SHIFT - blkbits);
2391 head = page_buffers(page);
2392 err = mpage_process_page_bufs(mpd, head, head, lblk);
2393 if (err <= 0)
2394 goto out;
2395 err = 0;
2396 left--;
2397 }
2398 pagevec_release(&pvec);
2399 cond_resched();
2400 }
2401 return 0;
2402out:
2403 pagevec_release(&pvec);
2404 return err;
2405}
2406
2407static int __writepage(struct page *page, struct writeback_control *wbc,
2408 void *data)
2409{
2410 struct address_space *mapping = data;
2411 int ret = ext4_writepage(page, wbc);
2412 mapping_set_error(mapping, ret);
2413 return ret;
2414}
2415
2416static int ext4_writepages(struct address_space *mapping,
2417 struct writeback_control *wbc)
2418{
2419 pgoff_t writeback_index = 0;
2420 long nr_to_write = wbc->nr_to_write;
2421 int range_whole = 0;
2422 int cycled = 1;
2423 handle_t *handle = NULL;
2424 struct mpage_da_data mpd;
2425 struct inode *inode = mapping->host;
2426 int needed_blocks, rsv_blocks = 0, ret = 0;
2427 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2428 bool done;
2429 struct blk_plug plug;
2430 bool give_up_on_write = false;
2431
2432 trace_ext4_writepages(inode, wbc);
2433
2434 /*
2435 * No pages to write? This is mainly a kludge to avoid starting
2436 * a transaction for special inodes like journal inode on last iput()
2437 * because that could violate lock ordering on umount
2438 */
2439 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2440 goto out_writepages;
2441
2442 if (ext4_should_journal_data(inode)) {
2443 struct blk_plug plug;
2444
2445 blk_start_plug(&plug);
2446 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2447 blk_finish_plug(&plug);
2448 goto out_writepages;
2449 }
2450
2451 /*
2452 * If the filesystem has aborted, it is read-only, so return
2453 * right away instead of dumping stack traces later on that
2454 * will obscure the real source of the problem. We test
2455 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2456 * the latter could be true if the filesystem is mounted
2457 * read-only, and in that case, ext4_writepages should
2458 * *never* be called, so if that ever happens, we would want
2459 * the stack trace.
2460 */
2461 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2462 ret = -EROFS;
2463 goto out_writepages;
2464 }
2465
2466 if (ext4_should_dioread_nolock(inode)) {
2467 /*
2468 * We may need to convert up to one extent per block in
2469 * the page and we may dirty the inode.
2470 */
2471 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2472 }
2473
2474 /*
2475 * If we have inline data and arrive here, it means that
2476 * we will soon create the block for the 1st page, so
2477 * we'd better clear the inline data here.
2478 */
2479 if (ext4_has_inline_data(inode)) {
2480 /* Just inode will be modified... */
2481 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2482 if (IS_ERR(handle)) {
2483 ret = PTR_ERR(handle);
2484 goto out_writepages;
2485 }
2486 BUG_ON(ext4_test_inode_state(inode,
2487 EXT4_STATE_MAY_INLINE_DATA));
2488 ext4_destroy_inline_data(handle, inode);
2489 ext4_journal_stop(handle);
2490 }
2491
2492 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2493 range_whole = 1;
2494
2495 if (wbc->range_cyclic) {
2496 writeback_index = mapping->writeback_index;
2497 if (writeback_index)
2498 cycled = 0;
2499 mpd.first_page = writeback_index;
2500 mpd.last_page = -1;
2501 } else {
2502 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2503 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2504 }
2505
2506 mpd.inode = inode;
2507 mpd.wbc = wbc;
2508 ext4_io_submit_init(&mpd.io_submit, wbc);
2509retry:
2510 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2511 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2512 done = false;
2513 blk_start_plug(&plug);
2514 while (!done && mpd.first_page <= mpd.last_page) {
2515 /* For each extent of pages we use new io_end */
2516 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2517 if (!mpd.io_submit.io_end) {
2518 ret = -ENOMEM;
2519 break;
2520 }
2521
2522 /*
2523 * We have two constraints: We find one extent to map and we
2524 * must always write out whole page (makes a difference when
2525 * blocksize < pagesize) so that we don't block on IO when we
2526 * try to write out the rest of the page. Journalled mode is
2527 * not supported by delalloc.
2528 */
2529 BUG_ON(ext4_should_journal_data(inode));
2530 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2531
2532 /* start a new transaction */
2533 handle = ext4_journal_start_with_reserve(inode,
2534 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2535 if (IS_ERR(handle)) {
2536 ret = PTR_ERR(handle);
2537 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2538 "%ld pages, ino %lu; err %d", __func__,
2539 wbc->nr_to_write, inode->i_ino, ret);
2540 /* Release allocated io_end */
2541 ext4_put_io_end(mpd.io_submit.io_end);
2542 break;
2543 }
2544
2545 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2546 ret = mpage_prepare_extent_to_map(&mpd);
2547 if (!ret) {
2548 if (mpd.map.m_len)
2549 ret = mpage_map_and_submit_extent(handle, &mpd,
2550 &give_up_on_write);
2551 else {
2552 /*
2553 * We scanned the whole range (or exhausted
2554 * nr_to_write), submitted what was mapped and
2555 * didn't find anything needing mapping. We are
2556 * done.
2557 */
2558 done = true;
2559 }
2560 }
2561 ext4_journal_stop(handle);
2562 /* Submit prepared bio */
2563 ext4_io_submit(&mpd.io_submit);
2564 /* Unlock pages we didn't use */
2565 mpage_release_unused_pages(&mpd, give_up_on_write);
2566 /* Drop our io_end reference we got from init */
2567 ext4_put_io_end(mpd.io_submit.io_end);
2568
2569 if (ret == -ENOSPC && sbi->s_journal) {
2570 /*
2571 * Commit the transaction which would
2572 * free blocks released in the transaction
2573 * and try again
2574 */
2575 jbd2_journal_force_commit_nested(sbi->s_journal);
2576 ret = 0;
2577 continue;
2578 }
2579 /* Fatal error - ENOMEM, EIO... */
2580 if (ret)
2581 break;
2582 }
2583 blk_finish_plug(&plug);
2584 if (!ret && !cycled && wbc->nr_to_write > 0) {
2585 cycled = 1;
2586 mpd.last_page = writeback_index - 1;
2587 mpd.first_page = 0;
2588 goto retry;
2589 }
2590
2591 /* Update index */
2592 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2593 /*
2594 * Set the writeback_index so that range_cyclic
2595 * mode will write it back later
2596 */
2597 mapping->writeback_index = mpd.first_page;
2598
2599out_writepages:
2600 trace_ext4_writepages_result(inode, wbc, ret,
2601 nr_to_write - wbc->nr_to_write);
2602 return ret;
2603}
2604
2605static int ext4_nonda_switch(struct super_block *sb)
2606{
2607 s64 free_clusters, dirty_clusters;
2608 struct ext4_sb_info *sbi = EXT4_SB(sb);
2609
2610 /*
2611 * switch to non delalloc mode if we are running low
2612 * on free block. The free block accounting via percpu
2613 * counters can get slightly wrong with percpu_counter_batch getting
2614 * accumulated on each CPU without updating global counters
2615 * Delalloc need an accurate free block accounting. So switch
2616 * to non delalloc when we are near to error range.
2617 */
2618 free_clusters =
2619 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2620 dirty_clusters =
2621 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2622 /*
2623 * Start pushing delalloc when 1/2 of free blocks are dirty.
2624 */
2625 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2626 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2627
2628 if (2 * free_clusters < 3 * dirty_clusters ||
2629 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2630 /*
2631 * free block count is less than 150% of dirty blocks
2632 * or free blocks is less than watermark
2633 */
2634 return 1;
2635 }
2636 return 0;
2637}
2638
2639static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2640 loff_t pos, unsigned len, unsigned flags,
2641 struct page **pagep, void **fsdata)
2642{
2643 int ret, retries = 0;
2644 struct page *page;
2645 pgoff_t index;
2646 struct inode *inode = mapping->host;
2647 handle_t *handle;
2648
2649 index = pos >> PAGE_CACHE_SHIFT;
2650
2651 if (ext4_nonda_switch(inode->i_sb)) {
2652 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2653 return ext4_write_begin(file, mapping, pos,
2654 len, flags, pagep, fsdata);
2655 }
2656 *fsdata = (void *)0;
2657 trace_ext4_da_write_begin(inode, pos, len, flags);
2658
2659 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2660 ret = ext4_da_write_inline_data_begin(mapping, inode,
2661 pos, len, flags,
2662 pagep, fsdata);
2663 if (ret < 0)
2664 return ret;
2665 if (ret == 1)
2666 return 0;
2667 }
2668
2669 /*
2670 * grab_cache_page_write_begin() can take a long time if the
2671 * system is thrashing due to memory pressure, or if the page
2672 * is being written back. So grab it first before we start
2673 * the transaction handle. This also allows us to allocate
2674 * the page (if needed) without using GFP_NOFS.
2675 */
2676retry_grab:
2677 page = grab_cache_page_write_begin(mapping, index, flags);
2678 if (!page)
2679 return -ENOMEM;
2680 unlock_page(page);
2681
2682 /*
2683 * With delayed allocation, we don't log the i_disksize update
2684 * if there is delayed block allocation. But we still need
2685 * to journalling the i_disksize update if writes to the end
2686 * of file which has an already mapped buffer.
2687 */
2688retry_journal:
2689 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2690 if (IS_ERR(handle)) {
2691 page_cache_release(page);
2692 return PTR_ERR(handle);
2693 }
2694
2695 lock_page(page);
2696 if (page->mapping != mapping) {
2697 /* The page got truncated from under us */
2698 unlock_page(page);
2699 page_cache_release(page);
2700 ext4_journal_stop(handle);
2701 goto retry_grab;
2702 }
2703 /* In case writeback began while the page was unlocked */
2704 wait_for_stable_page(page);
2705
2706 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2707 if (ret < 0) {
2708 unlock_page(page);
2709 ext4_journal_stop(handle);
2710 /*
2711 * block_write_begin may have instantiated a few blocks
2712 * outside i_size. Trim these off again. Don't need
2713 * i_size_read because we hold i_mutex.
2714 */
2715 if (pos + len > inode->i_size)
2716 ext4_truncate_failed_write(inode);
2717
2718 if (ret == -ENOSPC &&
2719 ext4_should_retry_alloc(inode->i_sb, &retries))
2720 goto retry_journal;
2721
2722 page_cache_release(page);
2723 return ret;
2724 }
2725
2726 *pagep = page;
2727 return ret;
2728}
2729
2730/*
2731 * Check if we should update i_disksize
2732 * when write to the end of file but not require block allocation
2733 */
2734static int ext4_da_should_update_i_disksize(struct page *page,
2735 unsigned long offset)
2736{
2737 struct buffer_head *bh;
2738 struct inode *inode = page->mapping->host;
2739 unsigned int idx;
2740 int i;
2741
2742 bh = page_buffers(page);
2743 idx = offset >> inode->i_blkbits;
2744
2745 for (i = 0; i < idx; i++)
2746 bh = bh->b_this_page;
2747
2748 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2749 return 0;
2750 return 1;
2751}
2752
2753static int ext4_da_write_end(struct file *file,
2754 struct address_space *mapping,
2755 loff_t pos, unsigned len, unsigned copied,
2756 struct page *page, void *fsdata)
2757{
2758 struct inode *inode = mapping->host;
2759 int ret = 0, ret2;
2760 handle_t *handle = ext4_journal_current_handle();
2761 loff_t new_i_size;
2762 unsigned long start, end;
2763 int write_mode = (int)(unsigned long)fsdata;
2764
2765 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2766 return ext4_write_end(file, mapping, pos,
2767 len, copied, page, fsdata);
2768
2769 trace_ext4_da_write_end(inode, pos, len, copied);
2770 start = pos & (PAGE_CACHE_SIZE - 1);
2771 end = start + copied - 1;
2772
2773 /*
2774 * generic_write_end() will run mark_inode_dirty() if i_size
2775 * changes. So let's piggyback the i_disksize mark_inode_dirty
2776 * into that.
2777 */
2778 new_i_size = pos + copied;
2779 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2780 if (ext4_has_inline_data(inode) ||
2781 ext4_da_should_update_i_disksize(page, end)) {
2782 down_write(&EXT4_I(inode)->i_data_sem);
2783 if (new_i_size > EXT4_I(inode)->i_disksize)
2784 EXT4_I(inode)->i_disksize = new_i_size;
2785 up_write(&EXT4_I(inode)->i_data_sem);
2786 /* We need to mark inode dirty even if
2787 * new_i_size is less that inode->i_size
2788 * bu greater than i_disksize.(hint delalloc)
2789 */
2790 ext4_mark_inode_dirty(handle, inode);
2791 }
2792 }
2793
2794 if (write_mode != CONVERT_INLINE_DATA &&
2795 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2796 ext4_has_inline_data(inode))
2797 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2798 page);
2799 else
2800 ret2 = generic_write_end(file, mapping, pos, len, copied,
2801 page, fsdata);
2802
2803 copied = ret2;
2804 if (ret2 < 0)
2805 ret = ret2;
2806 ret2 = ext4_journal_stop(handle);
2807 if (!ret)
2808 ret = ret2;
2809
2810 return ret ? ret : copied;
2811}
2812
2813static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2814 unsigned int length)
2815{
2816 /*
2817 * Drop reserved blocks
2818 */
2819 BUG_ON(!PageLocked(page));
2820 if (!page_has_buffers(page))
2821 goto out;
2822
2823 ext4_da_page_release_reservation(page, offset, length);
2824
2825out:
2826 ext4_invalidatepage(page, offset, length);
2827
2828 return;
2829}
2830
2831/*
2832 * Force all delayed allocation blocks to be allocated for a given inode.
2833 */
2834int ext4_alloc_da_blocks(struct inode *inode)
2835{
2836 trace_ext4_alloc_da_blocks(inode);
2837
2838 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2839 !EXT4_I(inode)->i_reserved_meta_blocks)
2840 return 0;
2841
2842 /*
2843 * We do something simple for now. The filemap_flush() will
2844 * also start triggering a write of the data blocks, which is
2845 * not strictly speaking necessary (and for users of
2846 * laptop_mode, not even desirable). However, to do otherwise
2847 * would require replicating code paths in:
2848 *
2849 * ext4_writepages() ->
2850 * write_cache_pages() ---> (via passed in callback function)
2851 * __mpage_da_writepage() -->
2852 * mpage_add_bh_to_extent()
2853 * mpage_da_map_blocks()
2854 *
2855 * The problem is that write_cache_pages(), located in
2856 * mm/page-writeback.c, marks pages clean in preparation for
2857 * doing I/O, which is not desirable if we're not planning on
2858 * doing I/O at all.
2859 *
2860 * We could call write_cache_pages(), and then redirty all of
2861 * the pages by calling redirty_page_for_writepage() but that
2862 * would be ugly in the extreme. So instead we would need to
2863 * replicate parts of the code in the above functions,
2864 * simplifying them because we wouldn't actually intend to
2865 * write out the pages, but rather only collect contiguous
2866 * logical block extents, call the multi-block allocator, and
2867 * then update the buffer heads with the block allocations.
2868 *
2869 * For now, though, we'll cheat by calling filemap_flush(),
2870 * which will map the blocks, and start the I/O, but not
2871 * actually wait for the I/O to complete.
2872 */
2873 return filemap_flush(inode->i_mapping);
2874}
2875
2876/*
2877 * bmap() is special. It gets used by applications such as lilo and by
2878 * the swapper to find the on-disk block of a specific piece of data.
2879 *
2880 * Naturally, this is dangerous if the block concerned is still in the
2881 * journal. If somebody makes a swapfile on an ext4 data-journaling
2882 * filesystem and enables swap, then they may get a nasty shock when the
2883 * data getting swapped to that swapfile suddenly gets overwritten by
2884 * the original zero's written out previously to the journal and
2885 * awaiting writeback in the kernel's buffer cache.
2886 *
2887 * So, if we see any bmap calls here on a modified, data-journaled file,
2888 * take extra steps to flush any blocks which might be in the cache.
2889 */
2890static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2891{
2892 struct inode *inode = mapping->host;
2893 journal_t *journal;
2894 int err;
2895
2896 /*
2897 * We can get here for an inline file via the FIBMAP ioctl
2898 */
2899 if (ext4_has_inline_data(inode))
2900 return 0;
2901
2902 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2903 test_opt(inode->i_sb, DELALLOC)) {
2904 /*
2905 * With delalloc we want to sync the file
2906 * so that we can make sure we allocate
2907 * blocks for file
2908 */
2909 filemap_write_and_wait(mapping);
2910 }
2911
2912 if (EXT4_JOURNAL(inode) &&
2913 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2914 /*
2915 * This is a REALLY heavyweight approach, but the use of
2916 * bmap on dirty files is expected to be extremely rare:
2917 * only if we run lilo or swapon on a freshly made file
2918 * do we expect this to happen.
2919 *
2920 * (bmap requires CAP_SYS_RAWIO so this does not
2921 * represent an unprivileged user DOS attack --- we'd be
2922 * in trouble if mortal users could trigger this path at
2923 * will.)
2924 *
2925 * NB. EXT4_STATE_JDATA is not set on files other than
2926 * regular files. If somebody wants to bmap a directory
2927 * or symlink and gets confused because the buffer
2928 * hasn't yet been flushed to disk, they deserve
2929 * everything they get.
2930 */
2931
2932 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2933 journal = EXT4_JOURNAL(inode);
2934 jbd2_journal_lock_updates(journal);
2935 err = jbd2_journal_flush(journal);
2936 jbd2_journal_unlock_updates(journal);
2937
2938 if (err)
2939 return 0;
2940 }
2941
2942 return generic_block_bmap(mapping, block, ext4_get_block);
2943}
2944
2945static int ext4_readpage(struct file *file, struct page *page)
2946{
2947 int ret = -EAGAIN;
2948 struct inode *inode = page->mapping->host;
2949
2950 trace_ext4_readpage(page);
2951
2952 if (ext4_has_inline_data(inode))
2953 ret = ext4_readpage_inline(inode, page);
2954
2955 if (ret == -EAGAIN)
2956 return mpage_readpage(page, ext4_get_block);
2957
2958 return ret;
2959}
2960
2961static int
2962ext4_readpages(struct file *file, struct address_space *mapping,
2963 struct list_head *pages, unsigned nr_pages)
2964{
2965 struct inode *inode = mapping->host;
2966
2967 /* If the file has inline data, no need to do readpages. */
2968 if (ext4_has_inline_data(inode))
2969 return 0;
2970
2971 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2972}
2973
2974static void ext4_invalidatepage(struct page *page, unsigned int offset,
2975 unsigned int length)
2976{
2977 trace_ext4_invalidatepage(page, offset, length);
2978
2979 /* No journalling happens on data buffers when this function is used */
2980 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2981
2982 block_invalidatepage(page, offset, length);
2983}
2984
2985static int __ext4_journalled_invalidatepage(struct page *page,
2986 unsigned int offset,
2987 unsigned int length)
2988{
2989 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2990
2991 trace_ext4_journalled_invalidatepage(page, offset, length);
2992
2993 /*
2994 * If it's a full truncate we just forget about the pending dirtying
2995 */
2996 if (offset == 0 && length == PAGE_CACHE_SIZE)
2997 ClearPageChecked(page);
2998
2999 return jbd2_journal_invalidatepage(journal, page, offset, length);
3000}
3001
3002/* Wrapper for aops... */
3003static void ext4_journalled_invalidatepage(struct page *page,
3004 unsigned int offset,
3005 unsigned int length)
3006{
3007 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3008}
3009
3010static int ext4_releasepage(struct page *page, gfp_t wait)
3011{
3012 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3013
3014 trace_ext4_releasepage(page);
3015
3016 /* Page has dirty journalled data -> cannot release */
3017 if (PageChecked(page))
3018 return 0;
3019 if (journal)
3020 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3021 else
3022 return try_to_free_buffers(page);
3023}
3024
3025/*
3026 * ext4_get_block used when preparing for a DIO write or buffer write.
3027 * We allocate an uinitialized extent if blocks haven't been allocated.
3028 * The extent will be converted to initialized after the IO is complete.
3029 */
3030int ext4_get_block_write(struct inode *inode, sector_t iblock,
3031 struct buffer_head *bh_result, int create)
3032{
3033 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3034 inode->i_ino, create);
3035 return _ext4_get_block(inode, iblock, bh_result,
3036 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3037}
3038
3039static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3040 struct buffer_head *bh_result, int create)
3041{
3042 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3043 inode->i_ino, create);
3044 return _ext4_get_block(inode, iblock, bh_result,
3045 EXT4_GET_BLOCKS_NO_LOCK);
3046}
3047
3048static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3049 ssize_t size, void *private)
3050{
3051 ext4_io_end_t *io_end = iocb->private;
3052
3053 /* if not async direct IO just return */
3054 if (!io_end)
3055 return;
3056
3057 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3058 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3059 iocb->private, io_end->inode->i_ino, iocb, offset,
3060 size);
3061
3062 iocb->private = NULL;
3063 io_end->offset = offset;
3064 io_end->size = size;
3065 ext4_put_io_end(io_end);
3066}
3067
3068/*
3069 * For ext4 extent files, ext4 will do direct-io write to holes,
3070 * preallocated extents, and those write extend the file, no need to
3071 * fall back to buffered IO.
3072 *
3073 * For holes, we fallocate those blocks, mark them as uninitialized
3074 * If those blocks were preallocated, we mark sure they are split, but
3075 * still keep the range to write as uninitialized.
3076 *
3077 * The unwritten extents will be converted to written when DIO is completed.
3078 * For async direct IO, since the IO may still pending when return, we
3079 * set up an end_io call back function, which will do the conversion
3080 * when async direct IO completed.
3081 *
3082 * If the O_DIRECT write will extend the file then add this inode to the
3083 * orphan list. So recovery will truncate it back to the original size
3084 * if the machine crashes during the write.
3085 *
3086 */
3087static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3088 const struct iovec *iov, loff_t offset,
3089 unsigned long nr_segs)
3090{
3091 struct file *file = iocb->ki_filp;
3092 struct inode *inode = file->f_mapping->host;
3093 ssize_t ret;
3094 size_t count = iov_length(iov, nr_segs);
3095 int overwrite = 0;
3096 get_block_t *get_block_func = NULL;
3097 int dio_flags = 0;
3098 loff_t final_size = offset + count;
3099 ext4_io_end_t *io_end = NULL;
3100
3101 /* Use the old path for reads and writes beyond i_size. */
3102 if (rw != WRITE || final_size > inode->i_size)
3103 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3104
3105 BUG_ON(iocb->private == NULL);
3106
3107 /*
3108 * Make all waiters for direct IO properly wait also for extent
3109 * conversion. This also disallows race between truncate() and
3110 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3111 */
3112 if (rw == WRITE)
3113 atomic_inc(&inode->i_dio_count);
3114
3115 /* If we do a overwrite dio, i_mutex locking can be released */
3116 overwrite = *((int *)iocb->private);
3117
3118 if (overwrite) {
3119 down_read(&EXT4_I(inode)->i_data_sem);
3120 mutex_unlock(&inode->i_mutex);
3121 }
3122
3123 /*
3124 * We could direct write to holes and fallocate.
3125 *
3126 * Allocated blocks to fill the hole are marked as
3127 * uninitialized to prevent parallel buffered read to expose
3128 * the stale data before DIO complete the data IO.
3129 *
3130 * As to previously fallocated extents, ext4 get_block will
3131 * just simply mark the buffer mapped but still keep the
3132 * extents uninitialized.
3133 *
3134 * For non AIO case, we will convert those unwritten extents
3135 * to written after return back from blockdev_direct_IO.
3136 *
3137 * For async DIO, the conversion needs to be deferred when the
3138 * IO is completed. The ext4 end_io callback function will be
3139 * called to take care of the conversion work. Here for async
3140 * case, we allocate an io_end structure to hook to the iocb.
3141 */
3142 iocb->private = NULL;
3143 ext4_inode_aio_set(inode, NULL);
3144 if (!is_sync_kiocb(iocb)) {
3145 io_end = ext4_init_io_end(inode, GFP_NOFS);
3146 if (!io_end) {
3147 ret = -ENOMEM;
3148 goto retake_lock;
3149 }
3150 /*
3151 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3152 */
3153 iocb->private = ext4_get_io_end(io_end);
3154 /*
3155 * we save the io structure for current async direct
3156 * IO, so that later ext4_map_blocks() could flag the
3157 * io structure whether there is a unwritten extents
3158 * needs to be converted when IO is completed.
3159 */
3160 ext4_inode_aio_set(inode, io_end);
3161 }
3162
3163 if (overwrite) {
3164 get_block_func = ext4_get_block_write_nolock;
3165 } else {
3166 get_block_func = ext4_get_block_write;
3167 dio_flags = DIO_LOCKING;
3168 }
3169 ret = __blockdev_direct_IO(rw, iocb, inode,
3170 inode->i_sb->s_bdev, iov,
3171 offset, nr_segs,
3172 get_block_func,
3173 ext4_end_io_dio,
3174 NULL,
3175 dio_flags);
3176
3177 /*
3178 * Put our reference to io_end. This can free the io_end structure e.g.
3179 * in sync IO case or in case of error. It can even perform extent
3180 * conversion if all bios we submitted finished before we got here.
3181 * Note that in that case iocb->private can be already set to NULL
3182 * here.
3183 */
3184 if (io_end) {
3185 ext4_inode_aio_set(inode, NULL);
3186 ext4_put_io_end(io_end);
3187 /*
3188 * When no IO was submitted ext4_end_io_dio() was not
3189 * called so we have to put iocb's reference.
3190 */
3191 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3192 WARN_ON(iocb->private != io_end);
3193 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3194 ext4_put_io_end(io_end);
3195 iocb->private = NULL;
3196 }
3197 }
3198 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3199 EXT4_STATE_DIO_UNWRITTEN)) {
3200 int err;
3201 /*
3202 * for non AIO case, since the IO is already
3203 * completed, we could do the conversion right here
3204 */
3205 err = ext4_convert_unwritten_extents(NULL, inode,
3206 offset, ret);
3207 if (err < 0)
3208 ret = err;
3209 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3210 }
3211
3212retake_lock:
3213 if (rw == WRITE)
3214 inode_dio_done(inode);
3215 /* take i_mutex locking again if we do a ovewrite dio */
3216 if (overwrite) {
3217 up_read(&EXT4_I(inode)->i_data_sem);
3218 mutex_lock(&inode->i_mutex);
3219 }
3220
3221 return ret;
3222}
3223
3224static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3225 const struct iovec *iov, loff_t offset,
3226 unsigned long nr_segs)
3227{
3228 struct file *file = iocb->ki_filp;
3229 struct inode *inode = file->f_mapping->host;
3230 ssize_t ret;
3231
3232 /*
3233 * If we are doing data journalling we don't support O_DIRECT
3234 */
3235 if (ext4_should_journal_data(inode))
3236 return 0;
3237
3238 /* Let buffer I/O handle the inline data case. */
3239 if (ext4_has_inline_data(inode))
3240 return 0;
3241
3242 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3243 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3244 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3245 else
3246 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3247 trace_ext4_direct_IO_exit(inode, offset,
3248 iov_length(iov, nr_segs), rw, ret);
3249 return ret;
3250}
3251
3252/*
3253 * Pages can be marked dirty completely asynchronously from ext4's journalling
3254 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3255 * much here because ->set_page_dirty is called under VFS locks. The page is
3256 * not necessarily locked.
3257 *
3258 * We cannot just dirty the page and leave attached buffers clean, because the
3259 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3260 * or jbddirty because all the journalling code will explode.
3261 *
3262 * So what we do is to mark the page "pending dirty" and next time writepage
3263 * is called, propagate that into the buffers appropriately.
3264 */
3265static int ext4_journalled_set_page_dirty(struct page *page)
3266{
3267 SetPageChecked(page);
3268 return __set_page_dirty_nobuffers(page);
3269}
3270
3271static const struct address_space_operations ext4_aops = {
3272 .readpage = ext4_readpage,
3273 .readpages = ext4_readpages,
3274 .writepage = ext4_writepage,
3275 .writepages = ext4_writepages,
3276 .write_begin = ext4_write_begin,
3277 .write_end = ext4_write_end,
3278 .bmap = ext4_bmap,
3279 .invalidatepage = ext4_invalidatepage,
3280 .releasepage = ext4_releasepage,
3281 .direct_IO = ext4_direct_IO,
3282 .migratepage = buffer_migrate_page,
3283 .is_partially_uptodate = block_is_partially_uptodate,
3284 .error_remove_page = generic_error_remove_page,
3285};
3286
3287static const struct address_space_operations ext4_journalled_aops = {
3288 .readpage = ext4_readpage,
3289 .readpages = ext4_readpages,
3290 .writepage = ext4_writepage,
3291 .writepages = ext4_writepages,
3292 .write_begin = ext4_write_begin,
3293 .write_end = ext4_journalled_write_end,
3294 .set_page_dirty = ext4_journalled_set_page_dirty,
3295 .bmap = ext4_bmap,
3296 .invalidatepage = ext4_journalled_invalidatepage,
3297 .releasepage = ext4_releasepage,
3298 .direct_IO = ext4_direct_IO,
3299 .is_partially_uptodate = block_is_partially_uptodate,
3300 .error_remove_page = generic_error_remove_page,
3301};
3302
3303static const struct address_space_operations ext4_da_aops = {
3304 .readpage = ext4_readpage,
3305 .readpages = ext4_readpages,
3306 .writepage = ext4_writepage,
3307 .writepages = ext4_writepages,
3308 .write_begin = ext4_da_write_begin,
3309 .write_end = ext4_da_write_end,
3310 .bmap = ext4_bmap,
3311 .invalidatepage = ext4_da_invalidatepage,
3312 .releasepage = ext4_releasepage,
3313 .direct_IO = ext4_direct_IO,
3314 .migratepage = buffer_migrate_page,
3315 .is_partially_uptodate = block_is_partially_uptodate,
3316 .error_remove_page = generic_error_remove_page,
3317};
3318
3319void ext4_set_aops(struct inode *inode)
3320{
3321 switch (ext4_inode_journal_mode(inode)) {
3322 case EXT4_INODE_ORDERED_DATA_MODE:
3323 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3324 break;
3325 case EXT4_INODE_WRITEBACK_DATA_MODE:
3326 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3327 break;
3328 case EXT4_INODE_JOURNAL_DATA_MODE:
3329 inode->i_mapping->a_ops = &ext4_journalled_aops;
3330 return;
3331 default:
3332 BUG();
3333 }
3334 if (test_opt(inode->i_sb, DELALLOC))
3335 inode->i_mapping->a_ops = &ext4_da_aops;
3336 else
3337 inode->i_mapping->a_ops = &ext4_aops;
3338}
3339
3340/*
3341 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3342 * starting from file offset 'from'. The range to be zero'd must
3343 * be contained with in one block. If the specified range exceeds
3344 * the end of the block it will be shortened to end of the block
3345 * that cooresponds to 'from'
3346 */
3347static int ext4_block_zero_page_range(handle_t *handle,
3348 struct address_space *mapping, loff_t from, loff_t length)
3349{
3350 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3351 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3352 unsigned blocksize, max, pos;
3353 ext4_lblk_t iblock;
3354 struct inode *inode = mapping->host;
3355 struct buffer_head *bh;
3356 struct page *page;
3357 int err = 0;
3358
3359 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3360 mapping_gfp_mask(mapping) & ~__GFP_FS);
3361 if (!page)
3362 return -ENOMEM;
3363
3364 blocksize = inode->i_sb->s_blocksize;
3365 max = blocksize - (offset & (blocksize - 1));
3366
3367 /*
3368 * correct length if it does not fall between
3369 * 'from' and the end of the block
3370 */
3371 if (length > max || length < 0)
3372 length = max;
3373
3374 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3375
3376 if (!page_has_buffers(page))
3377 create_empty_buffers(page, blocksize, 0);
3378
3379 /* Find the buffer that contains "offset" */
3380 bh = page_buffers(page);
3381 pos = blocksize;
3382 while (offset >= pos) {
3383 bh = bh->b_this_page;
3384 iblock++;
3385 pos += blocksize;
3386 }
3387 if (buffer_freed(bh)) {
3388 BUFFER_TRACE(bh, "freed: skip");
3389 goto unlock;
3390 }
3391 if (!buffer_mapped(bh)) {
3392 BUFFER_TRACE(bh, "unmapped");
3393 ext4_get_block(inode, iblock, bh, 0);
3394 /* unmapped? It's a hole - nothing to do */
3395 if (!buffer_mapped(bh)) {
3396 BUFFER_TRACE(bh, "still unmapped");
3397 goto unlock;
3398 }
3399 }
3400
3401 /* Ok, it's mapped. Make sure it's up-to-date */
3402 if (PageUptodate(page))
3403 set_buffer_uptodate(bh);
3404
3405 if (!buffer_uptodate(bh)) {
3406 err = -EIO;
3407 ll_rw_block(READ, 1, &bh);
3408 wait_on_buffer(bh);
3409 /* Uhhuh. Read error. Complain and punt. */
3410 if (!buffer_uptodate(bh))
3411 goto unlock;
3412 }
3413 if (ext4_should_journal_data(inode)) {
3414 BUFFER_TRACE(bh, "get write access");
3415 err = ext4_journal_get_write_access(handle, bh);
3416 if (err)
3417 goto unlock;
3418 }
3419 zero_user(page, offset, length);
3420 BUFFER_TRACE(bh, "zeroed end of block");
3421
3422 if (ext4_should_journal_data(inode)) {
3423 err = ext4_handle_dirty_metadata(handle, inode, bh);
3424 } else {
3425 err = 0;
3426 mark_buffer_dirty(bh);
3427 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3428 err = ext4_jbd2_file_inode(handle, inode);
3429 }
3430
3431unlock:
3432 unlock_page(page);
3433 page_cache_release(page);
3434 return err;
3435}
3436
3437/*
3438 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3439 * up to the end of the block which corresponds to `from'.
3440 * This required during truncate. We need to physically zero the tail end
3441 * of that block so it doesn't yield old data if the file is later grown.
3442 */
3443int ext4_block_truncate_page(handle_t *handle,
3444 struct address_space *mapping, loff_t from)
3445{
3446 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3447 unsigned length;
3448 unsigned blocksize;
3449 struct inode *inode = mapping->host;
3450
3451 blocksize = inode->i_sb->s_blocksize;
3452 length = blocksize - (offset & (blocksize - 1));
3453
3454 return ext4_block_zero_page_range(handle, mapping, from, length);
3455}
3456
3457int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3458 loff_t lstart, loff_t length)
3459{
3460 struct super_block *sb = inode->i_sb;
3461 struct address_space *mapping = inode->i_mapping;
3462 unsigned partial_start, partial_end;
3463 ext4_fsblk_t start, end;
3464 loff_t byte_end = (lstart + length - 1);
3465 int err = 0;
3466
3467 partial_start = lstart & (sb->s_blocksize - 1);
3468 partial_end = byte_end & (sb->s_blocksize - 1);
3469
3470 start = lstart >> sb->s_blocksize_bits;
3471 end = byte_end >> sb->s_blocksize_bits;
3472
3473 /* Handle partial zero within the single block */
3474 if (start == end &&
3475 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3476 err = ext4_block_zero_page_range(handle, mapping,
3477 lstart, length);
3478 return err;
3479 }
3480 /* Handle partial zero out on the start of the range */
3481 if (partial_start) {
3482 err = ext4_block_zero_page_range(handle, mapping,
3483 lstart, sb->s_blocksize);
3484 if (err)
3485 return err;
3486 }
3487 /* Handle partial zero out on the end of the range */
3488 if (partial_end != sb->s_blocksize - 1)
3489 err = ext4_block_zero_page_range(handle, mapping,
3490 byte_end - partial_end,
3491 partial_end + 1);
3492 return err;
3493}
3494
3495int ext4_can_truncate(struct inode *inode)
3496{
3497 if (S_ISREG(inode->i_mode))
3498 return 1;
3499 if (S_ISDIR(inode->i_mode))
3500 return 1;
3501 if (S_ISLNK(inode->i_mode))
3502 return !ext4_inode_is_fast_symlink(inode);
3503 return 0;
3504}
3505
3506/*
3507 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3508 * associated with the given offset and length
3509 *
3510 * @inode: File inode
3511 * @offset: The offset where the hole will begin
3512 * @len: The length of the hole
3513 *
3514 * Returns: 0 on success or negative on failure
3515 */
3516
3517int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3518{
3519 struct super_block *sb = inode->i_sb;
3520 ext4_lblk_t first_block, stop_block;
3521 struct address_space *mapping = inode->i_mapping;
3522 loff_t first_block_offset, last_block_offset;
3523 handle_t *handle;
3524 unsigned int credits;
3525 int ret = 0;
3526
3527 if (!S_ISREG(inode->i_mode))
3528 return -EOPNOTSUPP;
3529
3530 trace_ext4_punch_hole(inode, offset, length, 0);
3531
3532 /*
3533 * Write out all dirty pages to avoid race conditions
3534 * Then release them.
3535 */
3536 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3537 ret = filemap_write_and_wait_range(mapping, offset,
3538 offset + length - 1);
3539 if (ret)
3540 return ret;
3541 }
3542
3543 mutex_lock(&inode->i_mutex);
3544
3545 /* No need to punch hole beyond i_size */
3546 if (offset >= inode->i_size)
3547 goto out_mutex;
3548
3549 /*
3550 * If the hole extends beyond i_size, set the hole
3551 * to end after the page that contains i_size
3552 */
3553 if (offset + length > inode->i_size) {
3554 length = inode->i_size +
3555 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3556 offset;
3557 }
3558
3559 if (offset & (sb->s_blocksize - 1) ||
3560 (offset + length) & (sb->s_blocksize - 1)) {
3561 /*
3562 * Attach jinode to inode for jbd2 if we do any zeroing of
3563 * partial block
3564 */
3565 ret = ext4_inode_attach_jinode(inode);
3566 if (ret < 0)
3567 goto out_mutex;
3568
3569 }
3570
3571 first_block_offset = round_up(offset, sb->s_blocksize);
3572 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3573
3574 /* Now release the pages and zero block aligned part of pages*/
3575 if (last_block_offset > first_block_offset)
3576 truncate_pagecache_range(inode, first_block_offset,
3577 last_block_offset);
3578
3579 /* Wait all existing dio workers, newcomers will block on i_mutex */
3580 ext4_inode_block_unlocked_dio(inode);
3581 inode_dio_wait(inode);
3582
3583 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3584 credits = ext4_writepage_trans_blocks(inode);
3585 else
3586 credits = ext4_blocks_for_truncate(inode);
3587 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3588 if (IS_ERR(handle)) {
3589 ret = PTR_ERR(handle);
3590 ext4_std_error(sb, ret);
3591 goto out_dio;
3592 }
3593
3594 ret = ext4_zero_partial_blocks(handle, inode, offset,
3595 length);
3596 if (ret)
3597 goto out_stop;
3598
3599 first_block = (offset + sb->s_blocksize - 1) >>
3600 EXT4_BLOCK_SIZE_BITS(sb);
3601 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3602
3603 /* If there are no blocks to remove, return now */
3604 if (first_block >= stop_block)
3605 goto out_stop;
3606
3607 down_write(&EXT4_I(inode)->i_data_sem);
3608 ext4_discard_preallocations(inode);
3609
3610 ret = ext4_es_remove_extent(inode, first_block,
3611 stop_block - first_block);
3612 if (ret) {
3613 up_write(&EXT4_I(inode)->i_data_sem);
3614 goto out_stop;
3615 }
3616
3617 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3618 ret = ext4_ext_remove_space(inode, first_block,
3619 stop_block - 1);
3620 else
3621 ret = ext4_free_hole_blocks(handle, inode, first_block,
3622 stop_block);
3623
3624 up_write(&EXT4_I(inode)->i_data_sem);
3625 if (IS_SYNC(inode))
3626 ext4_handle_sync(handle);
3627
3628 /* Now release the pages again to reduce race window */
3629 if (last_block_offset > first_block_offset)
3630 truncate_pagecache_range(inode, first_block_offset,
3631 last_block_offset);
3632
3633 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3634 ext4_mark_inode_dirty(handle, inode);
3635out_stop:
3636 ext4_journal_stop(handle);
3637out_dio:
3638 ext4_inode_resume_unlocked_dio(inode);
3639out_mutex:
3640 mutex_unlock(&inode->i_mutex);
3641 return ret;
3642}
3643
3644int ext4_inode_attach_jinode(struct inode *inode)
3645{
3646 struct ext4_inode_info *ei = EXT4_I(inode);
3647 struct jbd2_inode *jinode;
3648
3649 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3650 return 0;
3651
3652 jinode = jbd2_alloc_inode(GFP_KERNEL);
3653 spin_lock(&inode->i_lock);
3654 if (!ei->jinode) {
3655 if (!jinode) {
3656 spin_unlock(&inode->i_lock);
3657 return -ENOMEM;
3658 }
3659 ei->jinode = jinode;
3660 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3661 jinode = NULL;
3662 }
3663 spin_unlock(&inode->i_lock);
3664 if (unlikely(jinode != NULL))
3665 jbd2_free_inode(jinode);
3666 return 0;
3667}
3668
3669/*
3670 * ext4_truncate()
3671 *
3672 * We block out ext4_get_block() block instantiations across the entire
3673 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3674 * simultaneously on behalf of the same inode.
3675 *
3676 * As we work through the truncate and commit bits of it to the journal there
3677 * is one core, guiding principle: the file's tree must always be consistent on
3678 * disk. We must be able to restart the truncate after a crash.
3679 *
3680 * The file's tree may be transiently inconsistent in memory (although it
3681 * probably isn't), but whenever we close off and commit a journal transaction,
3682 * the contents of (the filesystem + the journal) must be consistent and
3683 * restartable. It's pretty simple, really: bottom up, right to left (although
3684 * left-to-right works OK too).
3685 *
3686 * Note that at recovery time, journal replay occurs *before* the restart of
3687 * truncate against the orphan inode list.
3688 *
3689 * The committed inode has the new, desired i_size (which is the same as
3690 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3691 * that this inode's truncate did not complete and it will again call
3692 * ext4_truncate() to have another go. So there will be instantiated blocks
3693 * to the right of the truncation point in a crashed ext4 filesystem. But
3694 * that's fine - as long as they are linked from the inode, the post-crash
3695 * ext4_truncate() run will find them and release them.
3696 */
3697void ext4_truncate(struct inode *inode)
3698{
3699 struct ext4_inode_info *ei = EXT4_I(inode);
3700 unsigned int credits;
3701 handle_t *handle;
3702 struct address_space *mapping = inode->i_mapping;
3703
3704 /*
3705 * There is a possibility that we're either freeing the inode
3706 * or it's a completely new inode. In those cases we might not
3707 * have i_mutex locked because it's not necessary.
3708 */
3709 if (!(inode->i_state & (I_NEW|I_FREEING)))
3710 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3711 trace_ext4_truncate_enter(inode);
3712
3713 if (!ext4_can_truncate(inode))
3714 return;
3715
3716 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3717
3718 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3719 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3720
3721 if (ext4_has_inline_data(inode)) {
3722 int has_inline = 1;
3723
3724 ext4_inline_data_truncate(inode, &has_inline);
3725 if (has_inline)
3726 return;
3727 }
3728
3729 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3730 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3731 if (ext4_inode_attach_jinode(inode) < 0)
3732 return;
3733 }
3734
3735 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3736 credits = ext4_writepage_trans_blocks(inode);
3737 else
3738 credits = ext4_blocks_for_truncate(inode);
3739
3740 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3741 if (IS_ERR(handle)) {
3742 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3743 return;
3744 }
3745
3746 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3747 ext4_block_truncate_page(handle, mapping, inode->i_size);
3748
3749 /*
3750 * We add the inode to the orphan list, so that if this
3751 * truncate spans multiple transactions, and we crash, we will
3752 * resume the truncate when the filesystem recovers. It also
3753 * marks the inode dirty, to catch the new size.
3754 *
3755 * Implication: the file must always be in a sane, consistent
3756 * truncatable state while each transaction commits.
3757 */
3758 if (ext4_orphan_add(handle, inode))
3759 goto out_stop;
3760
3761 down_write(&EXT4_I(inode)->i_data_sem);
3762
3763 ext4_discard_preallocations(inode);
3764
3765 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3766 ext4_ext_truncate(handle, inode);
3767 else
3768 ext4_ind_truncate(handle, inode);
3769
3770 up_write(&ei->i_data_sem);
3771
3772 if (IS_SYNC(inode))
3773 ext4_handle_sync(handle);
3774
3775out_stop:
3776 /*
3777 * If this was a simple ftruncate() and the file will remain alive,
3778 * then we need to clear up the orphan record which we created above.
3779 * However, if this was a real unlink then we were called by
3780 * ext4_delete_inode(), and we allow that function to clean up the
3781 * orphan info for us.
3782 */
3783 if (inode->i_nlink)
3784 ext4_orphan_del(handle, inode);
3785
3786 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3787 ext4_mark_inode_dirty(handle, inode);
3788 ext4_journal_stop(handle);
3789
3790 trace_ext4_truncate_exit(inode);
3791}
3792
3793/*
3794 * ext4_get_inode_loc returns with an extra refcount against the inode's
3795 * underlying buffer_head on success. If 'in_mem' is true, we have all
3796 * data in memory that is needed to recreate the on-disk version of this
3797 * inode.
3798 */
3799static int __ext4_get_inode_loc(struct inode *inode,
3800 struct ext4_iloc *iloc, int in_mem)
3801{
3802 struct ext4_group_desc *gdp;
3803 struct buffer_head *bh;
3804 struct super_block *sb = inode->i_sb;
3805 ext4_fsblk_t block;
3806 int inodes_per_block, inode_offset;
3807
3808 iloc->bh = NULL;
3809 if (!ext4_valid_inum(sb, inode->i_ino))
3810 return -EIO;
3811
3812 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3813 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3814 if (!gdp)
3815 return -EIO;
3816
3817 /*
3818 * Figure out the offset within the block group inode table
3819 */
3820 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3821 inode_offset = ((inode->i_ino - 1) %
3822 EXT4_INODES_PER_GROUP(sb));
3823 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3824 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3825
3826 bh = sb_getblk(sb, block);
3827 if (unlikely(!bh))
3828 return -ENOMEM;
3829 if (!buffer_uptodate(bh)) {
3830 lock_buffer(bh);
3831
3832 /*
3833 * If the buffer has the write error flag, we have failed
3834 * to write out another inode in the same block. In this
3835 * case, we don't have to read the block because we may
3836 * read the old inode data successfully.
3837 */
3838 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3839 set_buffer_uptodate(bh);
3840
3841 if (buffer_uptodate(bh)) {
3842 /* someone brought it uptodate while we waited */
3843 unlock_buffer(bh);
3844 goto has_buffer;
3845 }
3846
3847 /*
3848 * If we have all information of the inode in memory and this
3849 * is the only valid inode in the block, we need not read the
3850 * block.
3851 */
3852 if (in_mem) {
3853 struct buffer_head *bitmap_bh;
3854 int i, start;
3855
3856 start = inode_offset & ~(inodes_per_block - 1);
3857
3858 /* Is the inode bitmap in cache? */
3859 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3860 if (unlikely(!bitmap_bh))
3861 goto make_io;
3862
3863 /*
3864 * If the inode bitmap isn't in cache then the
3865 * optimisation may end up performing two reads instead
3866 * of one, so skip it.
3867 */
3868 if (!buffer_uptodate(bitmap_bh)) {
3869 brelse(bitmap_bh);
3870 goto make_io;
3871 }
3872 for (i = start; i < start + inodes_per_block; i++) {
3873 if (i == inode_offset)
3874 continue;
3875 if (ext4_test_bit(i, bitmap_bh->b_data))
3876 break;
3877 }
3878 brelse(bitmap_bh);
3879 if (i == start + inodes_per_block) {
3880 /* all other inodes are free, so skip I/O */
3881 memset(bh->b_data, 0, bh->b_size);
3882 set_buffer_uptodate(bh);
3883 unlock_buffer(bh);
3884 goto has_buffer;
3885 }
3886 }
3887
3888make_io:
3889 /*
3890 * If we need to do any I/O, try to pre-readahead extra
3891 * blocks from the inode table.
3892 */
3893 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3894 ext4_fsblk_t b, end, table;
3895 unsigned num;
3896 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3897
3898 table = ext4_inode_table(sb, gdp);
3899 /* s_inode_readahead_blks is always a power of 2 */
3900 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3901 if (table > b)
3902 b = table;
3903 end = b + ra_blks;
3904 num = EXT4_INODES_PER_GROUP(sb);
3905 if (ext4_has_group_desc_csum(sb))
3906 num -= ext4_itable_unused_count(sb, gdp);
3907 table += num / inodes_per_block;
3908 if (end > table)
3909 end = table;
3910 while (b <= end)
3911 sb_breadahead(sb, b++);
3912 }
3913
3914 /*
3915 * There are other valid inodes in the buffer, this inode
3916 * has in-inode xattrs, or we don't have this inode in memory.
3917 * Read the block from disk.
3918 */
3919 trace_ext4_load_inode(inode);
3920 get_bh(bh);
3921 bh->b_end_io = end_buffer_read_sync;
3922 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3923 wait_on_buffer(bh);
3924 if (!buffer_uptodate(bh)) {
3925 EXT4_ERROR_INODE_BLOCK(inode, block,
3926 "unable to read itable block");
3927 brelse(bh);
3928 return -EIO;
3929 }
3930 }
3931has_buffer:
3932 iloc->bh = bh;
3933 return 0;
3934}
3935
3936int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3937{
3938 /* We have all inode data except xattrs in memory here. */
3939 return __ext4_get_inode_loc(inode, iloc,
3940 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3941}
3942
3943void ext4_set_inode_flags(struct inode *inode)
3944{
3945 unsigned int flags = EXT4_I(inode)->i_flags;
3946 unsigned int new_fl = 0;
3947
3948 if (flags & EXT4_SYNC_FL)
3949 new_fl |= S_SYNC;
3950 if (flags & EXT4_APPEND_FL)
3951 new_fl |= S_APPEND;
3952 if (flags & EXT4_IMMUTABLE_FL)
3953 new_fl |= S_IMMUTABLE;
3954 if (flags & EXT4_NOATIME_FL)
3955 new_fl |= S_NOATIME;
3956 if (flags & EXT4_DIRSYNC_FL)
3957 new_fl |= S_DIRSYNC;
3958 inode_set_flags(inode, new_fl,
3959 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3960}
3961
3962/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3963void ext4_get_inode_flags(struct ext4_inode_info *ei)
3964{
3965 unsigned int vfs_fl;
3966 unsigned long old_fl, new_fl;
3967
3968 do {
3969 vfs_fl = ei->vfs_inode.i_flags;
3970 old_fl = ei->i_flags;
3971 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3972 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3973 EXT4_DIRSYNC_FL);
3974 if (vfs_fl & S_SYNC)
3975 new_fl |= EXT4_SYNC_FL;
3976 if (vfs_fl & S_APPEND)
3977 new_fl |= EXT4_APPEND_FL;
3978 if (vfs_fl & S_IMMUTABLE)
3979 new_fl |= EXT4_IMMUTABLE_FL;
3980 if (vfs_fl & S_NOATIME)
3981 new_fl |= EXT4_NOATIME_FL;
3982 if (vfs_fl & S_DIRSYNC)
3983 new_fl |= EXT4_DIRSYNC_FL;
3984 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3985}
3986
3987static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3988 struct ext4_inode_info *ei)
3989{
3990 blkcnt_t i_blocks ;
3991 struct inode *inode = &(ei->vfs_inode);
3992 struct super_block *sb = inode->i_sb;
3993
3994 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3995 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3996 /* we are using combined 48 bit field */
3997 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3998 le32_to_cpu(raw_inode->i_blocks_lo);
3999 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4000 /* i_blocks represent file system block size */
4001 return i_blocks << (inode->i_blkbits - 9);
4002 } else {
4003 return i_blocks;
4004 }
4005 } else {
4006 return le32_to_cpu(raw_inode->i_blocks_lo);
4007 }
4008}
4009
4010static inline void ext4_iget_extra_inode(struct inode *inode,
4011 struct ext4_inode *raw_inode,
4012 struct ext4_inode_info *ei)
4013{
4014 __le32 *magic = (void *)raw_inode +
4015 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4016 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4017 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4018 ext4_find_inline_data_nolock(inode);
4019 } else
4020 EXT4_I(inode)->i_inline_off = 0;
4021}
4022
4023struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4024{
4025 struct ext4_iloc iloc;
4026 struct ext4_inode *raw_inode;
4027 struct ext4_inode_info *ei;
4028 struct inode *inode;
4029 journal_t *journal = EXT4_SB(sb)->s_journal;
4030 long ret;
4031 int block;
4032 uid_t i_uid;
4033 gid_t i_gid;
4034
4035 inode = iget_locked(sb, ino);
4036 if (!inode)
4037 return ERR_PTR(-ENOMEM);
4038 if (!(inode->i_state & I_NEW))
4039 return inode;
4040
4041 ei = EXT4_I(inode);
4042 iloc.bh = NULL;
4043
4044 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4045 if (ret < 0)
4046 goto bad_inode;
4047 raw_inode = ext4_raw_inode(&iloc);
4048
4049 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4050 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4051 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4052 EXT4_INODE_SIZE(inode->i_sb)) {
4053 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4054 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4055 EXT4_INODE_SIZE(inode->i_sb));
4056 ret = -EIO;
4057 goto bad_inode;
4058 }
4059 } else
4060 ei->i_extra_isize = 0;
4061
4062 /* Precompute checksum seed for inode metadata */
4063 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4064 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4065 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4066 __u32 csum;
4067 __le32 inum = cpu_to_le32(inode->i_ino);
4068 __le32 gen = raw_inode->i_generation;
4069 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4070 sizeof(inum));
4071 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4072 sizeof(gen));
4073 }
4074
4075 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4076 EXT4_ERROR_INODE(inode, "checksum invalid");
4077 ret = -EIO;
4078 goto bad_inode;
4079 }
4080
4081 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4082 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4084 if (!(test_opt(inode->i_sb, NO_UID32))) {
4085 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4087 }
4088 i_uid_write(inode, i_uid);
4089 i_gid_write(inode, i_gid);
4090 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4091
4092 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4093 ei->i_inline_off = 0;
4094 ei->i_dir_start_lookup = 0;
4095 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4096 /* We now have enough fields to check if the inode was active or not.
4097 * This is needed because nfsd might try to access dead inodes
4098 * the test is that same one that e2fsck uses
4099 * NeilBrown 1999oct15
4100 */
4101 if (inode->i_nlink == 0) {
4102 if ((inode->i_mode == 0 ||
4103 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4104 ino != EXT4_BOOT_LOADER_INO) {
4105 /* this inode is deleted */
4106 ret = -ESTALE;
4107 goto bad_inode;
4108 }
4109 /* The only unlinked inodes we let through here have
4110 * valid i_mode and are being read by the orphan
4111 * recovery code: that's fine, we're about to complete
4112 * the process of deleting those.
4113 * OR it is the EXT4_BOOT_LOADER_INO which is
4114 * not initialized on a new filesystem. */
4115 }
4116 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4117 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4118 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4119 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4120 ei->i_file_acl |=
4121 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4122 inode->i_size = ext4_isize(raw_inode);
4123 ei->i_disksize = inode->i_size;
4124#ifdef CONFIG_QUOTA
4125 ei->i_reserved_quota = 0;
4126#endif
4127 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4128 ei->i_block_group = iloc.block_group;
4129 ei->i_last_alloc_group = ~0;
4130 /*
4131 * NOTE! The in-memory inode i_data array is in little-endian order
4132 * even on big-endian machines: we do NOT byteswap the block numbers!
4133 */
4134 for (block = 0; block < EXT4_N_BLOCKS; block++)
4135 ei->i_data[block] = raw_inode->i_block[block];
4136 INIT_LIST_HEAD(&ei->i_orphan);
4137
4138 /*
4139 * Set transaction id's of transactions that have to be committed
4140 * to finish f[data]sync. We set them to currently running transaction
4141 * as we cannot be sure that the inode or some of its metadata isn't
4142 * part of the transaction - the inode could have been reclaimed and
4143 * now it is reread from disk.
4144 */
4145 if (journal) {
4146 transaction_t *transaction;
4147 tid_t tid;
4148
4149 read_lock(&journal->j_state_lock);
4150 if (journal->j_running_transaction)
4151 transaction = journal->j_running_transaction;
4152 else
4153 transaction = journal->j_committing_transaction;
4154 if (transaction)
4155 tid = transaction->t_tid;
4156 else
4157 tid = journal->j_commit_sequence;
4158 read_unlock(&journal->j_state_lock);
4159 ei->i_sync_tid = tid;
4160 ei->i_datasync_tid = tid;
4161 }
4162
4163 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4164 if (ei->i_extra_isize == 0) {
4165 /* The extra space is currently unused. Use it. */
4166 ei->i_extra_isize = sizeof(struct ext4_inode) -
4167 EXT4_GOOD_OLD_INODE_SIZE;
4168 } else {
4169 ext4_iget_extra_inode(inode, raw_inode, ei);
4170 }
4171 }
4172
4173 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4174 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4175 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4176 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4177
4178 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4179 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4180 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4181 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4182 inode->i_version |=
4183 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4184 }
4185 }
4186
4187 ret = 0;
4188 if (ei->i_file_acl &&
4189 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4190 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4191 ei->i_file_acl);
4192 ret = -EIO;
4193 goto bad_inode;
4194 } else if (!ext4_has_inline_data(inode)) {
4195 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4196 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197 (S_ISLNK(inode->i_mode) &&
4198 !ext4_inode_is_fast_symlink(inode))))
4199 /* Validate extent which is part of inode */
4200 ret = ext4_ext_check_inode(inode);
4201 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202 (S_ISLNK(inode->i_mode) &&
4203 !ext4_inode_is_fast_symlink(inode))) {
4204 /* Validate block references which are part of inode */
4205 ret = ext4_ind_check_inode(inode);
4206 }
4207 }
4208 if (ret)
4209 goto bad_inode;
4210
4211 if (S_ISREG(inode->i_mode)) {
4212 inode->i_op = &ext4_file_inode_operations;
4213 inode->i_fop = &ext4_file_operations;
4214 ext4_set_aops(inode);
4215 } else if (S_ISDIR(inode->i_mode)) {
4216 inode->i_op = &ext4_dir_inode_operations;
4217 inode->i_fop = &ext4_dir_operations;
4218 } else if (S_ISLNK(inode->i_mode)) {
4219 if (ext4_inode_is_fast_symlink(inode)) {
4220 inode->i_op = &ext4_fast_symlink_inode_operations;
4221 nd_terminate_link(ei->i_data, inode->i_size,
4222 sizeof(ei->i_data) - 1);
4223 } else {
4224 inode->i_op = &ext4_symlink_inode_operations;
4225 ext4_set_aops(inode);
4226 }
4227 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4228 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4229 inode->i_op = &ext4_special_inode_operations;
4230 if (raw_inode->i_block[0])
4231 init_special_inode(inode, inode->i_mode,
4232 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4233 else
4234 init_special_inode(inode, inode->i_mode,
4235 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4236 } else if (ino == EXT4_BOOT_LOADER_INO) {
4237 make_bad_inode(inode);
4238 } else {
4239 ret = -EIO;
4240 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4241 goto bad_inode;
4242 }
4243 brelse(iloc.bh);
4244 ext4_set_inode_flags(inode);
4245 unlock_new_inode(inode);
4246 return inode;
4247
4248bad_inode:
4249 brelse(iloc.bh);
4250 iget_failed(inode);
4251 return ERR_PTR(ret);
4252}
4253
4254static int ext4_inode_blocks_set(handle_t *handle,
4255 struct ext4_inode *raw_inode,
4256 struct ext4_inode_info *ei)
4257{
4258 struct inode *inode = &(ei->vfs_inode);
4259 u64 i_blocks = inode->i_blocks;
4260 struct super_block *sb = inode->i_sb;
4261
4262 if (i_blocks <= ~0U) {
4263 /*
4264 * i_blocks can be represented in a 32 bit variable
4265 * as multiple of 512 bytes
4266 */
4267 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4268 raw_inode->i_blocks_high = 0;
4269 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4270 return 0;
4271 }
4272 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4273 return -EFBIG;
4274
4275 if (i_blocks <= 0xffffffffffffULL) {
4276 /*
4277 * i_blocks can be represented in a 48 bit variable
4278 * as multiple of 512 bytes
4279 */
4280 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4281 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4282 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4283 } else {
4284 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4285 /* i_block is stored in file system block size */
4286 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4287 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4288 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4289 }
4290 return 0;
4291}
4292
4293/*
4294 * Post the struct inode info into an on-disk inode location in the
4295 * buffer-cache. This gobbles the caller's reference to the
4296 * buffer_head in the inode location struct.
4297 *
4298 * The caller must have write access to iloc->bh.
4299 */
4300static int ext4_do_update_inode(handle_t *handle,
4301 struct inode *inode,
4302 struct ext4_iloc *iloc)
4303{
4304 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4305 struct ext4_inode_info *ei = EXT4_I(inode);
4306 struct buffer_head *bh = iloc->bh;
4307 int err = 0, rc, block;
4308 int need_datasync = 0;
4309 uid_t i_uid;
4310 gid_t i_gid;
4311
4312 /* For fields not not tracking in the in-memory inode,
4313 * initialise them to zero for new inodes. */
4314 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4315 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4316
4317 ext4_get_inode_flags(ei);
4318 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4319 i_uid = i_uid_read(inode);
4320 i_gid = i_gid_read(inode);
4321 if (!(test_opt(inode->i_sb, NO_UID32))) {
4322 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4323 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4324/*
4325 * Fix up interoperability with old kernels. Otherwise, old inodes get
4326 * re-used with the upper 16 bits of the uid/gid intact
4327 */
4328 if (!ei->i_dtime) {
4329 raw_inode->i_uid_high =
4330 cpu_to_le16(high_16_bits(i_uid));
4331 raw_inode->i_gid_high =
4332 cpu_to_le16(high_16_bits(i_gid));
4333 } else {
4334 raw_inode->i_uid_high = 0;
4335 raw_inode->i_gid_high = 0;
4336 }
4337 } else {
4338 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4339 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4340 raw_inode->i_uid_high = 0;
4341 raw_inode->i_gid_high = 0;
4342 }
4343 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4344
4345 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4346 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4347 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4348 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4349
4350 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4351 goto out_brelse;
4352 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4353 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4354 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4355 raw_inode->i_file_acl_high =
4356 cpu_to_le16(ei->i_file_acl >> 32);
4357 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4358 if (ei->i_disksize != ext4_isize(raw_inode)) {
4359 ext4_isize_set(raw_inode, ei->i_disksize);
4360 need_datasync = 1;
4361 }
4362 if (ei->i_disksize > 0x7fffffffULL) {
4363 struct super_block *sb = inode->i_sb;
4364 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4365 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4366 EXT4_SB(sb)->s_es->s_rev_level ==
4367 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4368 /* If this is the first large file
4369 * created, add a flag to the superblock.
4370 */
4371 err = ext4_journal_get_write_access(handle,
4372 EXT4_SB(sb)->s_sbh);
4373 if (err)
4374 goto out_brelse;
4375 ext4_update_dynamic_rev(sb);
4376 EXT4_SET_RO_COMPAT_FEATURE(sb,
4377 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4378 ext4_handle_sync(handle);
4379 err = ext4_handle_dirty_super(handle, sb);
4380 }
4381 }
4382 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4383 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4384 if (old_valid_dev(inode->i_rdev)) {
4385 raw_inode->i_block[0] =
4386 cpu_to_le32(old_encode_dev(inode->i_rdev));
4387 raw_inode->i_block[1] = 0;
4388 } else {
4389 raw_inode->i_block[0] = 0;
4390 raw_inode->i_block[1] =
4391 cpu_to_le32(new_encode_dev(inode->i_rdev));
4392 raw_inode->i_block[2] = 0;
4393 }
4394 } else if (!ext4_has_inline_data(inode)) {
4395 for (block = 0; block < EXT4_N_BLOCKS; block++)
4396 raw_inode->i_block[block] = ei->i_data[block];
4397 }
4398
4399 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4400 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4401 if (ei->i_extra_isize) {
4402 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4403 raw_inode->i_version_hi =
4404 cpu_to_le32(inode->i_version >> 32);
4405 raw_inode->i_extra_isize =
4406 cpu_to_le16(ei->i_extra_isize);
4407 }
4408 }
4409
4410 ext4_inode_csum_set(inode, raw_inode, ei);
4411
4412 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4413 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4414 if (!err)
4415 err = rc;
4416 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4417
4418 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4419out_brelse:
4420 brelse(bh);
4421 ext4_std_error(inode->i_sb, err);
4422 return err;
4423}
4424
4425/*
4426 * ext4_write_inode()
4427 *
4428 * We are called from a few places:
4429 *
4430 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4431 * Here, there will be no transaction running. We wait for any running
4432 * transaction to commit.
4433 *
4434 * - Within flush work (sys_sync(), kupdate and such).
4435 * We wait on commit, if told to.
4436 *
4437 * - Within iput_final() -> write_inode_now()
4438 * We wait on commit, if told to.
4439 *
4440 * In all cases it is actually safe for us to return without doing anything,
4441 * because the inode has been copied into a raw inode buffer in
4442 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4443 * writeback.
4444 *
4445 * Note that we are absolutely dependent upon all inode dirtiers doing the
4446 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4447 * which we are interested.
4448 *
4449 * It would be a bug for them to not do this. The code:
4450 *
4451 * mark_inode_dirty(inode)
4452 * stuff();
4453 * inode->i_size = expr;
4454 *
4455 * is in error because write_inode() could occur while `stuff()' is running,
4456 * and the new i_size will be lost. Plus the inode will no longer be on the
4457 * superblock's dirty inode list.
4458 */
4459int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4460{
4461 int err;
4462
4463 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4464 return 0;
4465
4466 if (EXT4_SB(inode->i_sb)->s_journal) {
4467 if (ext4_journal_current_handle()) {
4468 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4469 dump_stack();
4470 return -EIO;
4471 }
4472
4473 /*
4474 * No need to force transaction in WB_SYNC_NONE mode. Also
4475 * ext4_sync_fs() will force the commit after everything is
4476 * written.
4477 */
4478 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4479 return 0;
4480
4481 err = ext4_force_commit(inode->i_sb);
4482 } else {
4483 struct ext4_iloc iloc;
4484
4485 err = __ext4_get_inode_loc(inode, &iloc, 0);
4486 if (err)
4487 return err;
4488 /*
4489 * sync(2) will flush the whole buffer cache. No need to do
4490 * it here separately for each inode.
4491 */
4492 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4493 sync_dirty_buffer(iloc.bh);
4494 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4495 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4496 "IO error syncing inode");
4497 err = -EIO;
4498 }
4499 brelse(iloc.bh);
4500 }
4501 return err;
4502}
4503
4504/*
4505 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4506 * buffers that are attached to a page stradding i_size and are undergoing
4507 * commit. In that case we have to wait for commit to finish and try again.
4508 */
4509static void ext4_wait_for_tail_page_commit(struct inode *inode)
4510{
4511 struct page *page;
4512 unsigned offset;
4513 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4514 tid_t commit_tid = 0;
4515 int ret;
4516
4517 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4518 /*
4519 * All buffers in the last page remain valid? Then there's nothing to
4520 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4521 * blocksize case
4522 */
4523 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4524 return;
4525 while (1) {
4526 page = find_lock_page(inode->i_mapping,
4527 inode->i_size >> PAGE_CACHE_SHIFT);
4528 if (!page)
4529 return;
4530 ret = __ext4_journalled_invalidatepage(page, offset,
4531 PAGE_CACHE_SIZE - offset);
4532 unlock_page(page);
4533 page_cache_release(page);
4534 if (ret != -EBUSY)
4535 return;
4536 commit_tid = 0;
4537 read_lock(&journal->j_state_lock);
4538 if (journal->j_committing_transaction)
4539 commit_tid = journal->j_committing_transaction->t_tid;
4540 read_unlock(&journal->j_state_lock);
4541 if (commit_tid)
4542 jbd2_log_wait_commit(journal, commit_tid);
4543 }
4544}
4545
4546/*
4547 * ext4_setattr()
4548 *
4549 * Called from notify_change.
4550 *
4551 * We want to trap VFS attempts to truncate the file as soon as
4552 * possible. In particular, we want to make sure that when the VFS
4553 * shrinks i_size, we put the inode on the orphan list and modify
4554 * i_disksize immediately, so that during the subsequent flushing of
4555 * dirty pages and freeing of disk blocks, we can guarantee that any
4556 * commit will leave the blocks being flushed in an unused state on
4557 * disk. (On recovery, the inode will get truncated and the blocks will
4558 * be freed, so we have a strong guarantee that no future commit will
4559 * leave these blocks visible to the user.)
4560 *
4561 * Another thing we have to assure is that if we are in ordered mode
4562 * and inode is still attached to the committing transaction, we must
4563 * we start writeout of all the dirty pages which are being truncated.
4564 * This way we are sure that all the data written in the previous
4565 * transaction are already on disk (truncate waits for pages under
4566 * writeback).
4567 *
4568 * Called with inode->i_mutex down.
4569 */
4570int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4571{
4572 struct inode *inode = dentry->d_inode;
4573 int error, rc = 0;
4574 int orphan = 0;
4575 const unsigned int ia_valid = attr->ia_valid;
4576
4577 error = inode_change_ok(inode, attr);
4578 if (error)
4579 return error;
4580
4581 if (is_quota_modification(inode, attr))
4582 dquot_initialize(inode);
4583 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4584 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4585 handle_t *handle;
4586
4587 /* (user+group)*(old+new) structure, inode write (sb,
4588 * inode block, ? - but truncate inode update has it) */
4589 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4590 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4591 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4592 if (IS_ERR(handle)) {
4593 error = PTR_ERR(handle);
4594 goto err_out;
4595 }
4596 error = dquot_transfer(inode, attr);
4597 if (error) {
4598 ext4_journal_stop(handle);
4599 return error;
4600 }
4601 /* Update corresponding info in inode so that everything is in
4602 * one transaction */
4603 if (attr->ia_valid & ATTR_UID)
4604 inode->i_uid = attr->ia_uid;
4605 if (attr->ia_valid & ATTR_GID)
4606 inode->i_gid = attr->ia_gid;
4607 error = ext4_mark_inode_dirty(handle, inode);
4608 ext4_journal_stop(handle);
4609 }
4610
4611 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4612 handle_t *handle;
4613
4614 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4615 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4616
4617 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4618 return -EFBIG;
4619 }
4620
4621 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4622 inode_inc_iversion(inode);
4623
4624 if (S_ISREG(inode->i_mode) &&
4625 (attr->ia_size < inode->i_size)) {
4626 if (ext4_should_order_data(inode)) {
4627 error = ext4_begin_ordered_truncate(inode,
4628 attr->ia_size);
4629 if (error)
4630 goto err_out;
4631 }
4632 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4633 if (IS_ERR(handle)) {
4634 error = PTR_ERR(handle);
4635 goto err_out;
4636 }
4637 if (ext4_handle_valid(handle)) {
4638 error = ext4_orphan_add(handle, inode);
4639 orphan = 1;
4640 }
4641 down_write(&EXT4_I(inode)->i_data_sem);
4642 EXT4_I(inode)->i_disksize = attr->ia_size;
4643 rc = ext4_mark_inode_dirty(handle, inode);
4644 if (!error)
4645 error = rc;
4646 /*
4647 * We have to update i_size under i_data_sem together
4648 * with i_disksize to avoid races with writeback code
4649 * running ext4_wb_update_i_disksize().
4650 */
4651 if (!error)
4652 i_size_write(inode, attr->ia_size);
4653 up_write(&EXT4_I(inode)->i_data_sem);
4654 ext4_journal_stop(handle);
4655 if (error) {
4656 ext4_orphan_del(NULL, inode);
4657 goto err_out;
4658 }
4659 } else
4660 i_size_write(inode, attr->ia_size);
4661
4662 /*
4663 * Blocks are going to be removed from the inode. Wait
4664 * for dio in flight. Temporarily disable
4665 * dioread_nolock to prevent livelock.
4666 */
4667 if (orphan) {
4668 if (!ext4_should_journal_data(inode)) {
4669 ext4_inode_block_unlocked_dio(inode);
4670 inode_dio_wait(inode);
4671 ext4_inode_resume_unlocked_dio(inode);
4672 } else
4673 ext4_wait_for_tail_page_commit(inode);
4674 }
4675 /*
4676 * Truncate pagecache after we've waited for commit
4677 * in data=journal mode to make pages freeable.
4678 */
4679 truncate_pagecache(inode, inode->i_size);
4680 }
4681 /*
4682 * We want to call ext4_truncate() even if attr->ia_size ==
4683 * inode->i_size for cases like truncation of fallocated space
4684 */
4685 if (attr->ia_valid & ATTR_SIZE)
4686 ext4_truncate(inode);
4687
4688 if (!rc) {
4689 setattr_copy(inode, attr);
4690 mark_inode_dirty(inode);
4691 }
4692
4693 /*
4694 * If the call to ext4_truncate failed to get a transaction handle at
4695 * all, we need to clean up the in-core orphan list manually.
4696 */
4697 if (orphan && inode->i_nlink)
4698 ext4_orphan_del(NULL, inode);
4699
4700 if (!rc && (ia_valid & ATTR_MODE))
4701 rc = posix_acl_chmod(inode, inode->i_mode);
4702
4703err_out:
4704 ext4_std_error(inode->i_sb, error);
4705 if (!error)
4706 error = rc;
4707 return error;
4708}
4709
4710int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4711 struct kstat *stat)
4712{
4713 struct inode *inode;
4714 unsigned long long delalloc_blocks;
4715
4716 inode = dentry->d_inode;
4717 generic_fillattr(inode, stat);
4718
4719 /*
4720 * If there is inline data in the inode, the inode will normally not
4721 * have data blocks allocated (it may have an external xattr block).
4722 * Report at least one sector for such files, so tools like tar, rsync,
4723 * others doen't incorrectly think the file is completely sparse.
4724 */
4725 if (unlikely(ext4_has_inline_data(inode)))
4726 stat->blocks += (stat->size + 511) >> 9;
4727
4728 /*
4729 * We can't update i_blocks if the block allocation is delayed
4730 * otherwise in the case of system crash before the real block
4731 * allocation is done, we will have i_blocks inconsistent with
4732 * on-disk file blocks.
4733 * We always keep i_blocks updated together with real
4734 * allocation. But to not confuse with user, stat
4735 * will return the blocks that include the delayed allocation
4736 * blocks for this file.
4737 */
4738 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4739 EXT4_I(inode)->i_reserved_data_blocks);
4740 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4741 return 0;
4742}
4743
4744static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4745 int pextents)
4746{
4747 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4748 return ext4_ind_trans_blocks(inode, lblocks);
4749 return ext4_ext_index_trans_blocks(inode, pextents);
4750}
4751
4752/*
4753 * Account for index blocks, block groups bitmaps and block group
4754 * descriptor blocks if modify datablocks and index blocks
4755 * worse case, the indexs blocks spread over different block groups
4756 *
4757 * If datablocks are discontiguous, they are possible to spread over
4758 * different block groups too. If they are contiguous, with flexbg,
4759 * they could still across block group boundary.
4760 *
4761 * Also account for superblock, inode, quota and xattr blocks
4762 */
4763static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4764 int pextents)
4765{
4766 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4767 int gdpblocks;
4768 int idxblocks;
4769 int ret = 0;
4770
4771 /*
4772 * How many index blocks need to touch to map @lblocks logical blocks
4773 * to @pextents physical extents?
4774 */
4775 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4776
4777 ret = idxblocks;
4778
4779 /*
4780 * Now let's see how many group bitmaps and group descriptors need
4781 * to account
4782 */
4783 groups = idxblocks + pextents;
4784 gdpblocks = groups;
4785 if (groups > ngroups)
4786 groups = ngroups;
4787 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4788 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4789
4790 /* bitmaps and block group descriptor blocks */
4791 ret += groups + gdpblocks;
4792
4793 /* Blocks for super block, inode, quota and xattr blocks */
4794 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4795
4796 return ret;
4797}
4798
4799/*
4800 * Calculate the total number of credits to reserve to fit
4801 * the modification of a single pages into a single transaction,
4802 * which may include multiple chunks of block allocations.
4803 *
4804 * This could be called via ext4_write_begin()
4805 *
4806 * We need to consider the worse case, when
4807 * one new block per extent.
4808 */
4809int ext4_writepage_trans_blocks(struct inode *inode)
4810{
4811 int bpp = ext4_journal_blocks_per_page(inode);
4812 int ret;
4813
4814 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4815
4816 /* Account for data blocks for journalled mode */
4817 if (ext4_should_journal_data(inode))
4818 ret += bpp;
4819 return ret;
4820}
4821
4822/*
4823 * Calculate the journal credits for a chunk of data modification.
4824 *
4825 * This is called from DIO, fallocate or whoever calling
4826 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4827 *
4828 * journal buffers for data blocks are not included here, as DIO
4829 * and fallocate do no need to journal data buffers.
4830 */
4831int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4832{
4833 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4834}
4835
4836/*
4837 * The caller must have previously called ext4_reserve_inode_write().
4838 * Give this, we know that the caller already has write access to iloc->bh.
4839 */
4840int ext4_mark_iloc_dirty(handle_t *handle,
4841 struct inode *inode, struct ext4_iloc *iloc)
4842{
4843 int err = 0;
4844
4845 if (IS_I_VERSION(inode))
4846 inode_inc_iversion(inode);
4847
4848 /* the do_update_inode consumes one bh->b_count */
4849 get_bh(iloc->bh);
4850
4851 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4852 err = ext4_do_update_inode(handle, inode, iloc);
4853 put_bh(iloc->bh);
4854 return err;
4855}
4856
4857/*
4858 * On success, We end up with an outstanding reference count against
4859 * iloc->bh. This _must_ be cleaned up later.
4860 */
4861
4862int
4863ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4864 struct ext4_iloc *iloc)
4865{
4866 int err;
4867
4868 err = ext4_get_inode_loc(inode, iloc);
4869 if (!err) {
4870 BUFFER_TRACE(iloc->bh, "get_write_access");
4871 err = ext4_journal_get_write_access(handle, iloc->bh);
4872 if (err) {
4873 brelse(iloc->bh);
4874 iloc->bh = NULL;
4875 }
4876 }
4877 ext4_std_error(inode->i_sb, err);
4878 return err;
4879}
4880
4881/*
4882 * Expand an inode by new_extra_isize bytes.
4883 * Returns 0 on success or negative error number on failure.
4884 */
4885static int ext4_expand_extra_isize(struct inode *inode,
4886 unsigned int new_extra_isize,
4887 struct ext4_iloc iloc,
4888 handle_t *handle)
4889{
4890 struct ext4_inode *raw_inode;
4891 struct ext4_xattr_ibody_header *header;
4892
4893 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4894 return 0;
4895
4896 raw_inode = ext4_raw_inode(&iloc);
4897
4898 header = IHDR(inode, raw_inode);
4899
4900 /* No extended attributes present */
4901 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4902 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4903 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4904 new_extra_isize);
4905 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4906 return 0;
4907 }
4908
4909 /* try to expand with EAs present */
4910 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4911 raw_inode, handle);
4912}
4913
4914/*
4915 * What we do here is to mark the in-core inode as clean with respect to inode
4916 * dirtiness (it may still be data-dirty).
4917 * This means that the in-core inode may be reaped by prune_icache
4918 * without having to perform any I/O. This is a very good thing,
4919 * because *any* task may call prune_icache - even ones which
4920 * have a transaction open against a different journal.
4921 *
4922 * Is this cheating? Not really. Sure, we haven't written the
4923 * inode out, but prune_icache isn't a user-visible syncing function.
4924 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4925 * we start and wait on commits.
4926 */
4927int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4928{
4929 struct ext4_iloc iloc;
4930 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4931 static unsigned int mnt_count;
4932 int err, ret;
4933
4934 might_sleep();
4935 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4936 err = ext4_reserve_inode_write(handle, inode, &iloc);
4937 if (ext4_handle_valid(handle) &&
4938 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4939 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4940 /*
4941 * We need extra buffer credits since we may write into EA block
4942 * with this same handle. If journal_extend fails, then it will
4943 * only result in a minor loss of functionality for that inode.
4944 * If this is felt to be critical, then e2fsck should be run to
4945 * force a large enough s_min_extra_isize.
4946 */
4947 if ((jbd2_journal_extend(handle,
4948 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4949 ret = ext4_expand_extra_isize(inode,
4950 sbi->s_want_extra_isize,
4951 iloc, handle);
4952 if (ret) {
4953 ext4_set_inode_state(inode,
4954 EXT4_STATE_NO_EXPAND);
4955 if (mnt_count !=
4956 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4957 ext4_warning(inode->i_sb,
4958 "Unable to expand inode %lu. Delete"
4959 " some EAs or run e2fsck.",
4960 inode->i_ino);
4961 mnt_count =
4962 le16_to_cpu(sbi->s_es->s_mnt_count);
4963 }
4964 }
4965 }
4966 }
4967 if (!err)
4968 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4969 return err;
4970}
4971
4972/*
4973 * ext4_dirty_inode() is called from __mark_inode_dirty()
4974 *
4975 * We're really interested in the case where a file is being extended.
4976 * i_size has been changed by generic_commit_write() and we thus need
4977 * to include the updated inode in the current transaction.
4978 *
4979 * Also, dquot_alloc_block() will always dirty the inode when blocks
4980 * are allocated to the file.
4981 *
4982 * If the inode is marked synchronous, we don't honour that here - doing
4983 * so would cause a commit on atime updates, which we don't bother doing.
4984 * We handle synchronous inodes at the highest possible level.
4985 */
4986void ext4_dirty_inode(struct inode *inode, int flags)
4987{
4988 handle_t *handle;
4989
4990 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4991 if (IS_ERR(handle))
4992 goto out;
4993
4994 ext4_mark_inode_dirty(handle, inode);
4995
4996 ext4_journal_stop(handle);
4997out:
4998 return;
4999}
5000
5001#if 0
5002/*
5003 * Bind an inode's backing buffer_head into this transaction, to prevent
5004 * it from being flushed to disk early. Unlike
5005 * ext4_reserve_inode_write, this leaves behind no bh reference and
5006 * returns no iloc structure, so the caller needs to repeat the iloc
5007 * lookup to mark the inode dirty later.
5008 */
5009static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5010{
5011 struct ext4_iloc iloc;
5012
5013 int err = 0;
5014 if (handle) {
5015 err = ext4_get_inode_loc(inode, &iloc);
5016 if (!err) {
5017 BUFFER_TRACE(iloc.bh, "get_write_access");
5018 err = jbd2_journal_get_write_access(handle, iloc.bh);
5019 if (!err)
5020 err = ext4_handle_dirty_metadata(handle,
5021 NULL,
5022 iloc.bh);
5023 brelse(iloc.bh);
5024 }
5025 }
5026 ext4_std_error(inode->i_sb, err);
5027 return err;
5028}
5029#endif
5030
5031int ext4_change_inode_journal_flag(struct inode *inode, int val)
5032{
5033 journal_t *journal;
5034 handle_t *handle;
5035 int err;
5036
5037 /*
5038 * We have to be very careful here: changing a data block's
5039 * journaling status dynamically is dangerous. If we write a
5040 * data block to the journal, change the status and then delete
5041 * that block, we risk forgetting to revoke the old log record
5042 * from the journal and so a subsequent replay can corrupt data.
5043 * So, first we make sure that the journal is empty and that
5044 * nobody is changing anything.
5045 */
5046
5047 journal = EXT4_JOURNAL(inode);
5048 if (!journal)
5049 return 0;
5050 if (is_journal_aborted(journal))
5051 return -EROFS;
5052 /* We have to allocate physical blocks for delalloc blocks
5053 * before flushing journal. otherwise delalloc blocks can not
5054 * be allocated any more. even more truncate on delalloc blocks
5055 * could trigger BUG by flushing delalloc blocks in journal.
5056 * There is no delalloc block in non-journal data mode.
5057 */
5058 if (val && test_opt(inode->i_sb, DELALLOC)) {
5059 err = ext4_alloc_da_blocks(inode);
5060 if (err < 0)
5061 return err;
5062 }
5063
5064 /* Wait for all existing dio workers */
5065 ext4_inode_block_unlocked_dio(inode);
5066 inode_dio_wait(inode);
5067
5068 jbd2_journal_lock_updates(journal);
5069
5070 /*
5071 * OK, there are no updates running now, and all cached data is
5072 * synced to disk. We are now in a completely consistent state
5073 * which doesn't have anything in the journal, and we know that
5074 * no filesystem updates are running, so it is safe to modify
5075 * the inode's in-core data-journaling state flag now.
5076 */
5077
5078 if (val)
5079 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5080 else {
5081 jbd2_journal_flush(journal);
5082 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5083 }
5084 ext4_set_aops(inode);
5085
5086 jbd2_journal_unlock_updates(journal);
5087 ext4_inode_resume_unlocked_dio(inode);
5088
5089 /* Finally we can mark the inode as dirty. */
5090
5091 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5092 if (IS_ERR(handle))
5093 return PTR_ERR(handle);
5094
5095 err = ext4_mark_inode_dirty(handle, inode);
5096 ext4_handle_sync(handle);
5097 ext4_journal_stop(handle);
5098 ext4_std_error(inode->i_sb, err);
5099
5100 return err;
5101}
5102
5103static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5104{
5105 return !buffer_mapped(bh);
5106}
5107
5108int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5109{
5110 struct page *page = vmf->page;
5111 loff_t size;
5112 unsigned long len;
5113 int ret;
5114 struct file *file = vma->vm_file;
5115 struct inode *inode = file_inode(file);
5116 struct address_space *mapping = inode->i_mapping;
5117 handle_t *handle;
5118 get_block_t *get_block;
5119 int retries = 0;
5120
5121 sb_start_pagefault(inode->i_sb);
5122 file_update_time(vma->vm_file);
5123 /* Delalloc case is easy... */
5124 if (test_opt(inode->i_sb, DELALLOC) &&
5125 !ext4_should_journal_data(inode) &&
5126 !ext4_nonda_switch(inode->i_sb)) {
5127 do {
5128 ret = __block_page_mkwrite(vma, vmf,
5129 ext4_da_get_block_prep);
5130 } while (ret == -ENOSPC &&
5131 ext4_should_retry_alloc(inode->i_sb, &retries));
5132 goto out_ret;
5133 }
5134
5135 lock_page(page);
5136 size = i_size_read(inode);
5137 /* Page got truncated from under us? */
5138 if (page->mapping != mapping || page_offset(page) > size) {
5139 unlock_page(page);
5140 ret = VM_FAULT_NOPAGE;
5141 goto out;
5142 }
5143
5144 if (page->index == size >> PAGE_CACHE_SHIFT)
5145 len = size & ~PAGE_CACHE_MASK;
5146 else
5147 len = PAGE_CACHE_SIZE;
5148 /*
5149 * Return if we have all the buffers mapped. This avoids the need to do
5150 * journal_start/journal_stop which can block and take a long time
5151 */
5152 if (page_has_buffers(page)) {
5153 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5154 0, len, NULL,
5155 ext4_bh_unmapped)) {
5156 /* Wait so that we don't change page under IO */
5157 wait_for_stable_page(page);
5158 ret = VM_FAULT_LOCKED;
5159 goto out;
5160 }
5161 }
5162 unlock_page(page);
5163 /* OK, we need to fill the hole... */
5164 if (ext4_should_dioread_nolock(inode))
5165 get_block = ext4_get_block_write;
5166 else
5167 get_block = ext4_get_block;
5168retry_alloc:
5169 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5170 ext4_writepage_trans_blocks(inode));
5171 if (IS_ERR(handle)) {
5172 ret = VM_FAULT_SIGBUS;
5173 goto out;
5174 }
5175 ret = __block_page_mkwrite(vma, vmf, get_block);
5176 if (!ret && ext4_should_journal_data(inode)) {
5177 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5178 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5179 unlock_page(page);
5180 ret = VM_FAULT_SIGBUS;
5181 ext4_journal_stop(handle);
5182 goto out;
5183 }
5184 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5185 }
5186 ext4_journal_stop(handle);
5187 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5188 goto retry_alloc;
5189out_ret:
5190 ret = block_page_mkwrite_return(ret);
5191out:
5192 sb_end_pagefault(inode->i_sb);
5193 return ret;
5194}