Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Tty buffer allocation management
  3 */
  4
  5#include <linux/types.h>
  6#include <linux/errno.h>
  7#include <linux/tty.h>
  8#include <linux/tty_driver.h>
  9#include <linux/tty_flip.h>
 10#include <linux/timer.h>
 11#include <linux/string.h>
 12#include <linux/slab.h>
 13#include <linux/sched.h>
 14#include <linux/wait.h>
 15#include <linux/bitops.h>
 16#include <linux/delay.h>
 17#include <linux/module.h>
 18#include <linux/ratelimit.h>
 19
 20
 21#define MIN_TTYB_SIZE	256
 22#define TTYB_ALIGN_MASK	255
 23
 24/*
 25 * Byte threshold to limit memory consumption for flip buffers.
 26 * The actual memory limit is > 2x this amount.
 27 */
 28#define TTYB_DEFAULT_MEM_LIMIT	65536
 29
 30/*
 31 * We default to dicing tty buffer allocations to this many characters
 32 * in order to avoid multiple page allocations. We know the size of
 33 * tty_buffer itself but it must also be taken into account that the
 34 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation
 35 * logic this must match
 36 */
 37
 38#define TTY_BUFFER_PAGE	(((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
 39
 40/*
 41 * If all tty flip buffers have been processed by flush_to_ldisc() or
 42 * dropped by tty_buffer_flush(), check if the linked pty has been closed.
 43 * If so, wake the reader/poll to process
 44 */
 45static inline void check_other_closed(struct tty_struct *tty)
 46{
 47	unsigned long flags, old;
 48
 49	/* transition from TTY_OTHER_CLOSED => TTY_OTHER_DONE must be atomic */
 50	for (flags = ACCESS_ONCE(tty->flags);
 51	     test_bit(TTY_OTHER_CLOSED, &flags);
 52	     ) {
 53		old = flags;
 54		__set_bit(TTY_OTHER_DONE, &flags);
 55		flags = cmpxchg(&tty->flags, old, flags);
 56		if (old == flags) {
 57			wake_up_interruptible(&tty->read_wait);
 58			break;
 59		}
 60	}
 61}
 62
 63/**
 64 *	tty_buffer_lock_exclusive	-	gain exclusive access to buffer
 65 *	tty_buffer_unlock_exclusive	-	release exclusive access
 66 *
 67 *	@port - tty_port owning the flip buffer
 68 *
 69 *	Guarantees safe use of the line discipline's receive_buf() method by
 70 *	excluding the buffer work and any pending flush from using the flip
 71 *	buffer. Data can continue to be added concurrently to the flip buffer
 72 *	from the driver side.
 73 *
 74 *	On release, the buffer work is restarted if there is data in the
 75 *	flip buffer
 76 */
 77
 78void tty_buffer_lock_exclusive(struct tty_port *port)
 79{
 80	struct tty_bufhead *buf = &port->buf;
 81
 82	atomic_inc(&buf->priority);
 83	mutex_lock(&buf->lock);
 84}
 85EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive);
 86
 87void tty_buffer_unlock_exclusive(struct tty_port *port)
 88{
 89	struct tty_bufhead *buf = &port->buf;
 90	int restart;
 91
 92	restart = buf->head->commit != buf->head->read;
 93
 94	atomic_dec(&buf->priority);
 95	mutex_unlock(&buf->lock);
 96	if (restart)
 97		queue_work(system_unbound_wq, &buf->work);
 98}
 99EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive);
100
101/**
102 *	tty_buffer_space_avail	-	return unused buffer space
103 *	@port - tty_port owning the flip buffer
104 *
105 *	Returns the # of bytes which can be written by the driver without
106 *	reaching the buffer limit.
107 *
108 *	Note: this does not guarantee that memory is available to write
109 *	the returned # of bytes (use tty_prepare_flip_string_xxx() to
110 *	pre-allocate if memory guarantee is required).
111 */
112
113int tty_buffer_space_avail(struct tty_port *port)
114{
115	int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
116	return max(space, 0);
117}
118EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
119
120static void tty_buffer_reset(struct tty_buffer *p, size_t size)
121{
122	p->used = 0;
123	p->size = size;
124	p->next = NULL;
125	p->commit = 0;
126	p->read = 0;
127	p->flags = 0;
128}
129
130/**
131 *	tty_buffer_free_all		-	free buffers used by a tty
132 *	@tty: tty to free from
133 *
134 *	Remove all the buffers pending on a tty whether queued with data
135 *	or in the free ring. Must be called when the tty is no longer in use
136 */
137
138void tty_buffer_free_all(struct tty_port *port)
139{
140	struct tty_bufhead *buf = &port->buf;
141	struct tty_buffer *p, *next;
142	struct llist_node *llist;
143
144	while ((p = buf->head) != NULL) {
145		buf->head = p->next;
146		if (p->size > 0)
147			kfree(p);
148	}
149	llist = llist_del_all(&buf->free);
150	llist_for_each_entry_safe(p, next, llist, free)
151		kfree(p);
152
153	tty_buffer_reset(&buf->sentinel, 0);
154	buf->head = &buf->sentinel;
155	buf->tail = &buf->sentinel;
156
157	atomic_set(&buf->mem_used, 0);
158}
159
160/**
161 *	tty_buffer_alloc	-	allocate a tty buffer
162 *	@tty: tty device
163 *	@size: desired size (characters)
164 *
165 *	Allocate a new tty buffer to hold the desired number of characters.
166 *	We round our buffers off in 256 character chunks to get better
167 *	allocation behaviour.
168 *	Return NULL if out of memory or the allocation would exceed the
169 *	per device queue
170 */
171
172static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
173{
174	struct llist_node *free;
175	struct tty_buffer *p;
176
177	/* Round the buffer size out */
178	size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
179
180	if (size <= MIN_TTYB_SIZE) {
181		free = llist_del_first(&port->buf.free);
182		if (free) {
183			p = llist_entry(free, struct tty_buffer, free);
184			goto found;
185		}
186	}
187
188	/* Should possibly check if this fails for the largest buffer we
189	   have queued and recycle that ? */
190	if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
191		return NULL;
192	p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
193	if (p == NULL)
194		return NULL;
195
196found:
197	tty_buffer_reset(p, size);
198	atomic_add(size, &port->buf.mem_used);
199	return p;
200}
201
202/**
203 *	tty_buffer_free		-	free a tty buffer
204 *	@tty: tty owning the buffer
205 *	@b: the buffer to free
206 *
207 *	Free a tty buffer, or add it to the free list according to our
208 *	internal strategy
209 */
210
211static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
212{
213	struct tty_bufhead *buf = &port->buf;
214
215	/* Dumb strategy for now - should keep some stats */
216	WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
217
218	if (b->size > MIN_TTYB_SIZE)
219		kfree(b);
220	else if (b->size > 0)
221		llist_add(&b->free, &buf->free);
222}
223
224/**
225 *	tty_buffer_flush		-	flush full tty buffers
226 *	@tty: tty to flush
227 *	@ld:  optional ldisc ptr (must be referenced)
228 *
229 *	flush all the buffers containing receive data. If ld != NULL,
230 *	flush the ldisc input buffer.
231 *
232 *	Locking: takes buffer lock to ensure single-threaded flip buffer
233 *		 'consumer'
234 */
235
236void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld)
237{
238	struct tty_port *port = tty->port;
239	struct tty_bufhead *buf = &port->buf;
240	struct tty_buffer *next;
241
242	atomic_inc(&buf->priority);
243
244	mutex_lock(&buf->lock);
245	/* paired w/ release in __tty_buffer_request_room; ensures there are
246	 * no pending memory accesses to the freed buffer
247	 */
248	while ((next = smp_load_acquire(&buf->head->next)) != NULL) {
249		tty_buffer_free(port, buf->head);
250		buf->head = next;
251	}
252	buf->head->read = buf->head->commit;
253
254	if (ld && ld->ops->flush_buffer)
255		ld->ops->flush_buffer(tty);
256
257	check_other_closed(tty);
258
259	atomic_dec(&buf->priority);
260	mutex_unlock(&buf->lock);
261}
262
263/**
264 *	tty_buffer_request_room		-	grow tty buffer if needed
265 *	@tty: tty structure
266 *	@size: size desired
267 *	@flags: buffer flags if new buffer allocated (default = 0)
268 *
269 *	Make at least size bytes of linear space available for the tty
270 *	buffer. If we fail return the size we managed to find.
271 *
272 *	Will change over to a new buffer if the current buffer is encoded as
273 *	TTY_NORMAL (so has no flags buffer) and the new buffer requires
274 *	a flags buffer.
275 */
276static int __tty_buffer_request_room(struct tty_port *port, size_t size,
277				     int flags)
278{
279	struct tty_bufhead *buf = &port->buf;
280	struct tty_buffer *b, *n;
281	int left, change;
282
283	b = buf->tail;
284	if (b->flags & TTYB_NORMAL)
285		left = 2 * b->size - b->used;
286	else
287		left = b->size - b->used;
288
289	change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
290	if (change || left < size) {
291		/* This is the slow path - looking for new buffers to use */
292		n = tty_buffer_alloc(port, size);
293		if (n != NULL) {
294			n->flags = flags;
295			buf->tail = n;
296			/* paired w/ acquire in flush_to_ldisc(); ensures
297			 * flush_to_ldisc() sees buffer data.
298			 */
299			smp_store_release(&b->commit, b->used);
300			/* paired w/ acquire in flush_to_ldisc(); ensures the
301			 * latest commit value can be read before the head is
302			 * advanced to the next buffer
303			 */
304			smp_store_release(&b->next, n);
 
305		} else if (change)
306			size = 0;
307		else
308			size = left;
309	}
310	return size;
311}
312
313int tty_buffer_request_room(struct tty_port *port, size_t size)
314{
315	return __tty_buffer_request_room(port, size, 0);
316}
317EXPORT_SYMBOL_GPL(tty_buffer_request_room);
318
319/**
320 *	tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
321 *	@port: tty port
322 *	@chars: characters
323 *	@flag: flag value for each character
324 *	@size: size
325 *
326 *	Queue a series of bytes to the tty buffering. All the characters
327 *	passed are marked with the supplied flag. Returns the number added.
328 */
329
330int tty_insert_flip_string_fixed_flag(struct tty_port *port,
331		const unsigned char *chars, char flag, size_t size)
332{
333	int copied = 0;
334	do {
335		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
336		int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
337		int space = __tty_buffer_request_room(port, goal, flags);
338		struct tty_buffer *tb = port->buf.tail;
339		if (unlikely(space == 0))
340			break;
341		memcpy(char_buf_ptr(tb, tb->used), chars, space);
342		if (~tb->flags & TTYB_NORMAL)
343			memset(flag_buf_ptr(tb, tb->used), flag, space);
344		tb->used += space;
345		copied += space;
346		chars += space;
347		/* There is a small chance that we need to split the data over
348		   several buffers. If this is the case we must loop */
349	} while (unlikely(size > copied));
350	return copied;
351}
352EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
353
354/**
355 *	tty_insert_flip_string_flags	-	Add characters to the tty buffer
356 *	@port: tty port
357 *	@chars: characters
358 *	@flags: flag bytes
359 *	@size: size
360 *
361 *	Queue a series of bytes to the tty buffering. For each character
362 *	the flags array indicates the status of the character. Returns the
363 *	number added.
364 */
365
366int tty_insert_flip_string_flags(struct tty_port *port,
367		const unsigned char *chars, const char *flags, size_t size)
368{
369	int copied = 0;
370	do {
371		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
372		int space = tty_buffer_request_room(port, goal);
373		struct tty_buffer *tb = port->buf.tail;
374		if (unlikely(space == 0))
375			break;
376		memcpy(char_buf_ptr(tb, tb->used), chars, space);
377		memcpy(flag_buf_ptr(tb, tb->used), flags, space);
378		tb->used += space;
379		copied += space;
380		chars += space;
381		flags += space;
382		/* There is a small chance that we need to split the data over
383		   several buffers. If this is the case we must loop */
384	} while (unlikely(size > copied));
385	return copied;
386}
387EXPORT_SYMBOL(tty_insert_flip_string_flags);
388
389/**
390 *	tty_schedule_flip	-	push characters to ldisc
391 *	@port: tty port to push from
392 *
393 *	Takes any pending buffers and transfers their ownership to the
394 *	ldisc side of the queue. It then schedules those characters for
395 *	processing by the line discipline.
396 */
397
398void tty_schedule_flip(struct tty_port *port)
399{
400	struct tty_bufhead *buf = &port->buf;
401
402	/* paired w/ acquire in flush_to_ldisc(); ensures
403	 * flush_to_ldisc() sees buffer data.
404	 */
405	smp_store_release(&buf->tail->commit, buf->tail->used);
406	queue_work(system_unbound_wq, &buf->work);
407}
408EXPORT_SYMBOL(tty_schedule_flip);
409
410/**
411 *	tty_prepare_flip_string		-	make room for characters
412 *	@port: tty port
413 *	@chars: return pointer for character write area
414 *	@size: desired size
415 *
416 *	Prepare a block of space in the buffer for data. Returns the length
417 *	available and buffer pointer to the space which is now allocated and
418 *	accounted for as ready for normal characters. This is used for drivers
419 *	that need their own block copy routines into the buffer. There is no
420 *	guarantee the buffer is a DMA target!
421 */
422
423int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
424		size_t size)
425{
426	int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
427	if (likely(space)) {
428		struct tty_buffer *tb = port->buf.tail;
429		*chars = char_buf_ptr(tb, tb->used);
430		if (~tb->flags & TTYB_NORMAL)
431			memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
432		tb->used += space;
433	}
434	return space;
435}
436EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
437
438/**
439 *	tty_ldisc_receive_buf		-	forward data to line discipline
440 *	@ld:	line discipline to process input
441 *	@p:	char buffer
442 *	@f:	TTY_* flags buffer
443 *	@count:	number of bytes to process
444 *
445 *	Callers other than flush_to_ldisc() need to exclude the kworker
446 *	from concurrent use of the line discipline, see paste_selection().
447 *
448 *	Returns the number of bytes not processed
449 */
450int tty_ldisc_receive_buf(struct tty_ldisc *ld, unsigned char *p,
451			  char *f, int count)
452{
453	if (ld->ops->receive_buf2)
454		count = ld->ops->receive_buf2(ld->tty, p, f, count);
455	else {
456		count = min_t(int, count, ld->tty->receive_room);
457		if (count && ld->ops->receive_buf)
458			ld->ops->receive_buf(ld->tty, p, f, count);
459	}
460	return count;
461}
462EXPORT_SYMBOL_GPL(tty_ldisc_receive_buf);
463
464static int
465receive_buf(struct tty_ldisc *ld, struct tty_buffer *head, int count)
466{
 
467	unsigned char *p = char_buf_ptr(head, head->read);
468	char	      *f = NULL;
469
470	if (~head->flags & TTYB_NORMAL)
471		f = flag_buf_ptr(head, head->read);
472
473	return tty_ldisc_receive_buf(ld, p, f, count);
 
 
 
 
 
 
 
 
474}
475
476/**
477 *	flush_to_ldisc
478 *	@work: tty structure passed from work queue.
479 *
480 *	This routine is called out of the software interrupt to flush data
481 *	from the buffer chain to the line discipline.
482 *
483 *	The receive_buf method is single threaded for each tty instance.
484 *
485 *	Locking: takes buffer lock to ensure single-threaded flip buffer
486 *		 'consumer'
487 */
488
489static void flush_to_ldisc(struct work_struct *work)
490{
491	struct tty_port *port = container_of(work, struct tty_port, buf.work);
492	struct tty_bufhead *buf = &port->buf;
493	struct tty_struct *tty;
494	struct tty_ldisc *disc;
495
496	tty = READ_ONCE(port->itty);
497	if (tty == NULL)
498		return;
499
500	disc = tty_ldisc_ref(tty);
501	if (disc == NULL)
502		return;
503
504	mutex_lock(&buf->lock);
505
506	while (1) {
507		struct tty_buffer *head = buf->head;
508		struct tty_buffer *next;
509		int count;
510
511		/* Ldisc or user is trying to gain exclusive access */
512		if (atomic_read(&buf->priority))
513			break;
514
515		/* paired w/ release in __tty_buffer_request_room();
 
516		 * ensures commit value read is not stale if the head
517		 * is advancing to the next buffer
518		 */
519		next = smp_load_acquire(&head->next);
520		/* paired w/ release in __tty_buffer_request_room() or in
521		 * tty_buffer_flush(); ensures we see the committed buffer data
522		 */
523		count = smp_load_acquire(&head->commit) - head->read;
524		if (!count) {
525			if (next == NULL) {
526				check_other_closed(tty);
527				break;
528			}
529			buf->head = next;
530			tty_buffer_free(port, head);
531			continue;
532		}
533
534		count = receive_buf(disc, head, count);
535		if (!count)
536			break;
537		head->read += count;
538	}
539
540	mutex_unlock(&buf->lock);
541
542	tty_ldisc_deref(disc);
543}
544
545/**
 
 
 
 
 
 
 
 
 
 
 
 
 
546 *	tty_flip_buffer_push	-	terminal
547 *	@port: tty port to push
548 *
549 *	Queue a push of the terminal flip buffers to the line discipline.
550 *	Can be called from IRQ/atomic context.
551 *
552 *	In the event of the queue being busy for flipping the work will be
553 *	held off and retried later.
554 */
555
556void tty_flip_buffer_push(struct tty_port *port)
557{
558	tty_schedule_flip(port);
559}
560EXPORT_SYMBOL(tty_flip_buffer_push);
561
562/**
563 *	tty_buffer_init		-	prepare a tty buffer structure
564 *	@tty: tty to initialise
565 *
566 *	Set up the initial state of the buffer management for a tty device.
567 *	Must be called before the other tty buffer functions are used.
568 */
569
570void tty_buffer_init(struct tty_port *port)
571{
572	struct tty_bufhead *buf = &port->buf;
573
574	mutex_init(&buf->lock);
575	tty_buffer_reset(&buf->sentinel, 0);
576	buf->head = &buf->sentinel;
577	buf->tail = &buf->sentinel;
578	init_llist_head(&buf->free);
579	atomic_set(&buf->mem_used, 0);
580	atomic_set(&buf->priority, 0);
581	INIT_WORK(&buf->work, flush_to_ldisc);
582	buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
583}
584
585/**
586 *	tty_buffer_set_limit	-	change the tty buffer memory limit
587 *	@port: tty port to change
588 *
589 *	Change the tty buffer memory limit.
590 *	Must be called before the other tty buffer functions are used.
591 */
592
593int tty_buffer_set_limit(struct tty_port *port, int limit)
594{
595	if (limit < MIN_TTYB_SIZE)
596		return -EINVAL;
597	port->buf.mem_limit = limit;
598	return 0;
599}
600EXPORT_SYMBOL_GPL(tty_buffer_set_limit);
601
602/* slave ptys can claim nested buffer lock when handling BRK and INTR */
603void tty_buffer_set_lock_subclass(struct tty_port *port)
604{
605	lockdep_set_subclass(&port->buf.lock, TTY_LOCK_SLAVE);
606}
607
608bool tty_buffer_restart_work(struct tty_port *port)
609{
610	return queue_work(system_unbound_wq, &port->buf.work);
611}
612
613bool tty_buffer_cancel_work(struct tty_port *port)
614{
615	return cancel_work_sync(&port->buf.work);
616}
v3.15
  1/*
  2 * Tty buffer allocation management
  3 */
  4
  5#include <linux/types.h>
  6#include <linux/errno.h>
  7#include <linux/tty.h>
  8#include <linux/tty_driver.h>
  9#include <linux/tty_flip.h>
 10#include <linux/timer.h>
 11#include <linux/string.h>
 12#include <linux/slab.h>
 13#include <linux/sched.h>
 14#include <linux/wait.h>
 15#include <linux/bitops.h>
 16#include <linux/delay.h>
 17#include <linux/module.h>
 18#include <linux/ratelimit.h>
 19
 20
 21#define MIN_TTYB_SIZE	256
 22#define TTYB_ALIGN_MASK	255
 23
 24/*
 25 * Byte threshold to limit memory consumption for flip buffers.
 26 * The actual memory limit is > 2x this amount.
 27 */
 28#define TTYB_DEFAULT_MEM_LIMIT	65536
 29
 30/*
 31 * We default to dicing tty buffer allocations to this many characters
 32 * in order to avoid multiple page allocations. We know the size of
 33 * tty_buffer itself but it must also be taken into account that the
 34 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation
 35 * logic this must match
 36 */
 37
 38#define TTY_BUFFER_PAGE	(((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40
 41/**
 42 *	tty_buffer_lock_exclusive	-	gain exclusive access to buffer
 43 *	tty_buffer_unlock_exclusive	-	release exclusive access
 44 *
 45 *	@port - tty_port owning the flip buffer
 46 *
 47 *	Guarantees safe use of the line discipline's receive_buf() method by
 48 *	excluding the buffer work and any pending flush from using the flip
 49 *	buffer. Data can continue to be added concurrently to the flip buffer
 50 *	from the driver side.
 51 *
 52 *	On release, the buffer work is restarted if there is data in the
 53 *	flip buffer
 54 */
 55
 56void tty_buffer_lock_exclusive(struct tty_port *port)
 57{
 58	struct tty_bufhead *buf = &port->buf;
 59
 60	atomic_inc(&buf->priority);
 61	mutex_lock(&buf->lock);
 62}
 63EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive);
 64
 65void tty_buffer_unlock_exclusive(struct tty_port *port)
 66{
 67	struct tty_bufhead *buf = &port->buf;
 68	int restart;
 69
 70	restart = buf->head->commit != buf->head->read;
 71
 72	atomic_dec(&buf->priority);
 73	mutex_unlock(&buf->lock);
 74	if (restart)
 75		queue_work(system_unbound_wq, &buf->work);
 76}
 77EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive);
 78
 79/**
 80 *	tty_buffer_space_avail	-	return unused buffer space
 81 *	@port - tty_port owning the flip buffer
 82 *
 83 *	Returns the # of bytes which can be written by the driver without
 84 *	reaching the buffer limit.
 85 *
 86 *	Note: this does not guarantee that memory is available to write
 87 *	the returned # of bytes (use tty_prepare_flip_string_xxx() to
 88 *	pre-allocate if memory guarantee is required).
 89 */
 90
 91int tty_buffer_space_avail(struct tty_port *port)
 92{
 93	int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
 94	return max(space, 0);
 95}
 96EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
 97
 98static void tty_buffer_reset(struct tty_buffer *p, size_t size)
 99{
100	p->used = 0;
101	p->size = size;
102	p->next = NULL;
103	p->commit = 0;
104	p->read = 0;
105	p->flags = 0;
106}
107
108/**
109 *	tty_buffer_free_all		-	free buffers used by a tty
110 *	@tty: tty to free from
111 *
112 *	Remove all the buffers pending on a tty whether queued with data
113 *	or in the free ring. Must be called when the tty is no longer in use
114 */
115
116void tty_buffer_free_all(struct tty_port *port)
117{
118	struct tty_bufhead *buf = &port->buf;
119	struct tty_buffer *p, *next;
120	struct llist_node *llist;
121
122	while ((p = buf->head) != NULL) {
123		buf->head = p->next;
124		if (p->size > 0)
125			kfree(p);
126	}
127	llist = llist_del_all(&buf->free);
128	llist_for_each_entry_safe(p, next, llist, free)
129		kfree(p);
130
131	tty_buffer_reset(&buf->sentinel, 0);
132	buf->head = &buf->sentinel;
133	buf->tail = &buf->sentinel;
134
135	atomic_set(&buf->mem_used, 0);
136}
137
138/**
139 *	tty_buffer_alloc	-	allocate a tty buffer
140 *	@tty: tty device
141 *	@size: desired size (characters)
142 *
143 *	Allocate a new tty buffer to hold the desired number of characters.
144 *	We round our buffers off in 256 character chunks to get better
145 *	allocation behaviour.
146 *	Return NULL if out of memory or the allocation would exceed the
147 *	per device queue
148 */
149
150static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
151{
152	struct llist_node *free;
153	struct tty_buffer *p;
154
155	/* Round the buffer size out */
156	size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
157
158	if (size <= MIN_TTYB_SIZE) {
159		free = llist_del_first(&port->buf.free);
160		if (free) {
161			p = llist_entry(free, struct tty_buffer, free);
162			goto found;
163		}
164	}
165
166	/* Should possibly check if this fails for the largest buffer we
167	   have queued and recycle that ? */
168	if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
169		return NULL;
170	p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
171	if (p == NULL)
172		return NULL;
173
174found:
175	tty_buffer_reset(p, size);
176	atomic_add(size, &port->buf.mem_used);
177	return p;
178}
179
180/**
181 *	tty_buffer_free		-	free a tty buffer
182 *	@tty: tty owning the buffer
183 *	@b: the buffer to free
184 *
185 *	Free a tty buffer, or add it to the free list according to our
186 *	internal strategy
187 */
188
189static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
190{
191	struct tty_bufhead *buf = &port->buf;
192
193	/* Dumb strategy for now - should keep some stats */
194	WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
195
196	if (b->size > MIN_TTYB_SIZE)
197		kfree(b);
198	else if (b->size > 0)
199		llist_add(&b->free, &buf->free);
200}
201
202/**
203 *	tty_buffer_flush		-	flush full tty buffers
204 *	@tty: tty to flush
 
205 *
206 *	flush all the buffers containing receive data.
 
207 *
208 *	Locking: takes buffer lock to ensure single-threaded flip buffer
209 *		 'consumer'
210 */
211
212void tty_buffer_flush(struct tty_struct *tty)
213{
214	struct tty_port *port = tty->port;
215	struct tty_bufhead *buf = &port->buf;
216	struct tty_buffer *next;
217
218	atomic_inc(&buf->priority);
219
220	mutex_lock(&buf->lock);
221	while ((next = buf->head->next) != NULL) {
 
 
 
222		tty_buffer_free(port, buf->head);
223		buf->head = next;
224	}
225	buf->head->read = buf->head->commit;
 
 
 
 
 
 
226	atomic_dec(&buf->priority);
227	mutex_unlock(&buf->lock);
228}
229
230/**
231 *	tty_buffer_request_room		-	grow tty buffer if needed
232 *	@tty: tty structure
233 *	@size: size desired
234 *	@flags: buffer flags if new buffer allocated (default = 0)
235 *
236 *	Make at least size bytes of linear space available for the tty
237 *	buffer. If we fail return the size we managed to find.
238 *
239 *	Will change over to a new buffer if the current buffer is encoded as
240 *	TTY_NORMAL (so has no flags buffer) and the new buffer requires
241 *	a flags buffer.
242 */
243static int __tty_buffer_request_room(struct tty_port *port, size_t size,
244				     int flags)
245{
246	struct tty_bufhead *buf = &port->buf;
247	struct tty_buffer *b, *n;
248	int left, change;
249
250	b = buf->tail;
251	if (b->flags & TTYB_NORMAL)
252		left = 2 * b->size - b->used;
253	else
254		left = b->size - b->used;
255
256	change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
257	if (change || left < size) {
258		/* This is the slow path - looking for new buffers to use */
259		if ((n = tty_buffer_alloc(port, size)) != NULL) {
 
260			n->flags = flags;
261			buf->tail = n;
262			b->commit = b->used;
263			/* paired w/ barrier in flush_to_ldisc(); ensures the
 
 
 
264			 * latest commit value can be read before the head is
265			 * advanced to the next buffer
266			 */
267			smp_wmb();
268			b->next = n;
269		} else if (change)
270			size = 0;
271		else
272			size = left;
273	}
274	return size;
275}
276
277int tty_buffer_request_room(struct tty_port *port, size_t size)
278{
279	return __tty_buffer_request_room(port, size, 0);
280}
281EXPORT_SYMBOL_GPL(tty_buffer_request_room);
282
283/**
284 *	tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
285 *	@port: tty port
286 *	@chars: characters
287 *	@flag: flag value for each character
288 *	@size: size
289 *
290 *	Queue a series of bytes to the tty buffering. All the characters
291 *	passed are marked with the supplied flag. Returns the number added.
292 */
293
294int tty_insert_flip_string_fixed_flag(struct tty_port *port,
295		const unsigned char *chars, char flag, size_t size)
296{
297	int copied = 0;
298	do {
299		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
300		int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
301		int space = __tty_buffer_request_room(port, goal, flags);
302		struct tty_buffer *tb = port->buf.tail;
303		if (unlikely(space == 0))
304			break;
305		memcpy(char_buf_ptr(tb, tb->used), chars, space);
306		if (~tb->flags & TTYB_NORMAL)
307			memset(flag_buf_ptr(tb, tb->used), flag, space);
308		tb->used += space;
309		copied += space;
310		chars += space;
311		/* There is a small chance that we need to split the data over
312		   several buffers. If this is the case we must loop */
313	} while (unlikely(size > copied));
314	return copied;
315}
316EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
317
318/**
319 *	tty_insert_flip_string_flags	-	Add characters to the tty buffer
320 *	@port: tty port
321 *	@chars: characters
322 *	@flags: flag bytes
323 *	@size: size
324 *
325 *	Queue a series of bytes to the tty buffering. For each character
326 *	the flags array indicates the status of the character. Returns the
327 *	number added.
328 */
329
330int tty_insert_flip_string_flags(struct tty_port *port,
331		const unsigned char *chars, const char *flags, size_t size)
332{
333	int copied = 0;
334	do {
335		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
336		int space = tty_buffer_request_room(port, goal);
337		struct tty_buffer *tb = port->buf.tail;
338		if (unlikely(space == 0))
339			break;
340		memcpy(char_buf_ptr(tb, tb->used), chars, space);
341		memcpy(flag_buf_ptr(tb, tb->used), flags, space);
342		tb->used += space;
343		copied += space;
344		chars += space;
345		flags += space;
346		/* There is a small chance that we need to split the data over
347		   several buffers. If this is the case we must loop */
348	} while (unlikely(size > copied));
349	return copied;
350}
351EXPORT_SYMBOL(tty_insert_flip_string_flags);
352
353/**
354 *	tty_schedule_flip	-	push characters to ldisc
355 *	@port: tty port to push from
356 *
357 *	Takes any pending buffers and transfers their ownership to the
358 *	ldisc side of the queue. It then schedules those characters for
359 *	processing by the line discipline.
360 */
361
362void tty_schedule_flip(struct tty_port *port)
363{
364	struct tty_bufhead *buf = &port->buf;
365
366	buf->tail->commit = buf->tail->used;
367	schedule_work(&buf->work);
 
 
 
368}
369EXPORT_SYMBOL(tty_schedule_flip);
370
371/**
372 *	tty_prepare_flip_string		-	make room for characters
373 *	@port: tty port
374 *	@chars: return pointer for character write area
375 *	@size: desired size
376 *
377 *	Prepare a block of space in the buffer for data. Returns the length
378 *	available and buffer pointer to the space which is now allocated and
379 *	accounted for as ready for normal characters. This is used for drivers
380 *	that need their own block copy routines into the buffer. There is no
381 *	guarantee the buffer is a DMA target!
382 */
383
384int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
385		size_t size)
386{
387	int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
388	if (likely(space)) {
389		struct tty_buffer *tb = port->buf.tail;
390		*chars = char_buf_ptr(tb, tb->used);
391		if (~tb->flags & TTYB_NORMAL)
392			memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
393		tb->used += space;
394	}
395	return space;
396}
397EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399
400static int
401receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count)
402{
403	struct tty_ldisc *disc = tty->ldisc;
404	unsigned char *p = char_buf_ptr(head, head->read);
405	char	      *f = NULL;
406
407	if (~head->flags & TTYB_NORMAL)
408		f = flag_buf_ptr(head, head->read);
409
410	if (disc->ops->receive_buf2)
411		count = disc->ops->receive_buf2(tty, p, f, count);
412	else {
413		count = min_t(int, count, tty->receive_room);
414		if (count)
415			disc->ops->receive_buf(tty, p, f, count);
416	}
417	head->read += count;
418	return count;
419}
420
421/**
422 *	flush_to_ldisc
423 *	@work: tty structure passed from work queue.
424 *
425 *	This routine is called out of the software interrupt to flush data
426 *	from the buffer chain to the line discipline.
427 *
428 *	The receive_buf method is single threaded for each tty instance.
429 *
430 *	Locking: takes buffer lock to ensure single-threaded flip buffer
431 *		 'consumer'
432 */
433
434static void flush_to_ldisc(struct work_struct *work)
435{
436	struct tty_port *port = container_of(work, struct tty_port, buf.work);
437	struct tty_bufhead *buf = &port->buf;
438	struct tty_struct *tty;
439	struct tty_ldisc *disc;
440
441	tty = port->itty;
442	if (tty == NULL)
443		return;
444
445	disc = tty_ldisc_ref(tty);
446	if (disc == NULL)
447		return;
448
449	mutex_lock(&buf->lock);
450
451	while (1) {
452		struct tty_buffer *head = buf->head;
453		struct tty_buffer *next;
454		int count;
455
456		/* Ldisc or user is trying to gain exclusive access */
457		if (atomic_read(&buf->priority))
458			break;
459
460		next = head->next;
461		/* paired w/ barrier in __tty_buffer_request_room();
462		 * ensures commit value read is not stale if the head
463		 * is advancing to the next buffer
464		 */
465		smp_rmb();
466		count = head->commit - head->read;
 
 
 
467		if (!count) {
468			if (next == NULL)
 
469				break;
 
470			buf->head = next;
471			tty_buffer_free(port, head);
472			continue;
473		}
474
475		count = receive_buf(tty, head, count);
476		if (!count)
477			break;
 
478	}
479
480	mutex_unlock(&buf->lock);
481
482	tty_ldisc_deref(disc);
483}
484
485/**
486 *	tty_flush_to_ldisc
487 *	@tty: tty to push
488 *
489 *	Push the terminal flip buffers to the line discipline.
490 *
491 *	Must not be called from IRQ context.
492 */
493void tty_flush_to_ldisc(struct tty_struct *tty)
494{
495	flush_work(&tty->port->buf.work);
496}
497
498/**
499 *	tty_flip_buffer_push	-	terminal
500 *	@port: tty port to push
501 *
502 *	Queue a push of the terminal flip buffers to the line discipline.
503 *	Can be called from IRQ/atomic context.
504 *
505 *	In the event of the queue being busy for flipping the work will be
506 *	held off and retried later.
507 */
508
509void tty_flip_buffer_push(struct tty_port *port)
510{
511	tty_schedule_flip(port);
512}
513EXPORT_SYMBOL(tty_flip_buffer_push);
514
515/**
516 *	tty_buffer_init		-	prepare a tty buffer structure
517 *	@tty: tty to initialise
518 *
519 *	Set up the initial state of the buffer management for a tty device.
520 *	Must be called before the other tty buffer functions are used.
521 */
522
523void tty_buffer_init(struct tty_port *port)
524{
525	struct tty_bufhead *buf = &port->buf;
526
527	mutex_init(&buf->lock);
528	tty_buffer_reset(&buf->sentinel, 0);
529	buf->head = &buf->sentinel;
530	buf->tail = &buf->sentinel;
531	init_llist_head(&buf->free);
532	atomic_set(&buf->mem_used, 0);
533	atomic_set(&buf->priority, 0);
534	INIT_WORK(&buf->work, flush_to_ldisc);
535	buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
536}
537
538/**
539 *	tty_buffer_set_limit	-	change the tty buffer memory limit
540 *	@port: tty port to change
541 *
542 *	Change the tty buffer memory limit.
543 *	Must be called before the other tty buffer functions are used.
544 */
545
546int tty_buffer_set_limit(struct tty_port *port, int limit)
547{
548	if (limit < MIN_TTYB_SIZE)
549		return -EINVAL;
550	port->buf.mem_limit = limit;
551	return 0;
552}
553EXPORT_SYMBOL_GPL(tty_buffer_set_limit);