Loading...
1/*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/sched.h>
23#include <linux/errno.h>
24#include <linux/interrupt.h>
25#include <linux/platform_device.h>
26#include <linux/io.h>
27#include <linux/clk.h>
28#include <linux/dmaengine.h>
29#include <linux/dma-mapping.h>
30#include <linux/of_device.h>
31#include <linux/pm_runtime.h>
32#include <linux/sh_dma.h>
33#include <linux/spi/spi.h>
34#include <linux/spi/rspi.h>
35
36#define RSPI_SPCR 0x00 /* Control Register */
37#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
38#define RSPI_SPPCR 0x02 /* Pin Control Register */
39#define RSPI_SPSR 0x03 /* Status Register */
40#define RSPI_SPDR 0x04 /* Data Register */
41#define RSPI_SPSCR 0x08 /* Sequence Control Register */
42#define RSPI_SPSSR 0x09 /* Sequence Status Register */
43#define RSPI_SPBR 0x0a /* Bit Rate Register */
44#define RSPI_SPDCR 0x0b /* Data Control Register */
45#define RSPI_SPCKD 0x0c /* Clock Delay Register */
46#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
47#define RSPI_SPND 0x0e /* Next-Access Delay Register */
48#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
49#define RSPI_SPCMD0 0x10 /* Command Register 0 */
50#define RSPI_SPCMD1 0x12 /* Command Register 1 */
51#define RSPI_SPCMD2 0x14 /* Command Register 2 */
52#define RSPI_SPCMD3 0x16 /* Command Register 3 */
53#define RSPI_SPCMD4 0x18 /* Command Register 4 */
54#define RSPI_SPCMD5 0x1a /* Command Register 5 */
55#define RSPI_SPCMD6 0x1c /* Command Register 6 */
56#define RSPI_SPCMD7 0x1e /* Command Register 7 */
57#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
58#define RSPI_NUM_SPCMD 8
59#define RSPI_RZ_NUM_SPCMD 4
60#define QSPI_NUM_SPCMD 4
61
62/* RSPI on RZ only */
63#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
64#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
65
66/* QSPI only */
67#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
68#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
69#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
70#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
71#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
72#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
73#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
74
75/* SPCR - Control Register */
76#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
77#define SPCR_SPE 0x40 /* Function Enable */
78#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
79#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
80#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
81#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
82/* RSPI on SH only */
83#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
84#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
85/* QSPI on R-Car Gen2 only */
86#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
87#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
88
89/* SSLP - Slave Select Polarity Register */
90#define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
91#define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
92
93/* SPPCR - Pin Control Register */
94#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
95#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
96#define SPPCR_SPOM 0x04
97#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
98#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
99
100#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102
103/* SPSR - Status Register */
104#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
105#define SPSR_TEND 0x40 /* Transmit End */
106#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
107#define SPSR_PERF 0x08 /* Parity Error Flag */
108#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
109#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
110#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
111
112/* SPSCR - Sequence Control Register */
113#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
114
115/* SPSSR - Sequence Status Register */
116#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
117#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
118
119/* SPDCR - Data Control Register */
120#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
121#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
122#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
123#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
124#define SPDCR_SPLWORD SPDCR_SPLW1
125#define SPDCR_SPLBYTE SPDCR_SPLW0
126#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
127#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
128#define SPDCR_SLSEL1 0x08
129#define SPDCR_SLSEL0 0x04
130#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
131#define SPDCR_SPFC1 0x02
132#define SPDCR_SPFC0 0x01
133#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
134
135/* SPCKD - Clock Delay Register */
136#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
137
138/* SSLND - Slave Select Negation Delay Register */
139#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
140
141/* SPND - Next-Access Delay Register */
142#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
143
144/* SPCR2 - Control Register 2 */
145#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
146#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
147#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
148#define SPCR2_SPPE 0x01 /* Parity Enable */
149
150/* SPCMDn - Command Registers */
151#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
152#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
153#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
154#define SPCMD_LSBF 0x1000 /* LSB First */
155#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
156#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
157#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
158#define SPCMD_SPB_16BIT 0x0100
159#define SPCMD_SPB_20BIT 0x0000
160#define SPCMD_SPB_24BIT 0x0100
161#define SPCMD_SPB_32BIT 0x0200
162#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
163#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
164#define SPCMD_SPIMOD1 0x0040
165#define SPCMD_SPIMOD0 0x0020
166#define SPCMD_SPIMOD_SINGLE 0
167#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
168#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
169#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
170#define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
171#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
172#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
173#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
174
175/* SPBFCR - Buffer Control Register */
176#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
177#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
178#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
179#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
180/* QSPI on R-Car Gen2 */
181#define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
182#define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
183#define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
184#define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
185
186#define QSPI_BUFFER_SIZE 32u
187
188struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
199
200 unsigned dma_callbacked:1;
201 unsigned byte_access:1;
202};
203
204static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
205{
206 iowrite8(data, rspi->addr + offset);
207}
208
209static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
210{
211 iowrite16(data, rspi->addr + offset);
212}
213
214static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
215{
216 iowrite32(data, rspi->addr + offset);
217}
218
219static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
220{
221 return ioread8(rspi->addr + offset);
222}
223
224static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
225{
226 return ioread16(rspi->addr + offset);
227}
228
229static void rspi_write_data(const struct rspi_data *rspi, u16 data)
230{
231 if (rspi->byte_access)
232 rspi_write8(rspi, data, RSPI_SPDR);
233 else /* 16 bit */
234 rspi_write16(rspi, data, RSPI_SPDR);
235}
236
237static u16 rspi_read_data(const struct rspi_data *rspi)
238{
239 if (rspi->byte_access)
240 return rspi_read8(rspi, RSPI_SPDR);
241 else /* 16 bit */
242 return rspi_read16(rspi, RSPI_SPDR);
243}
244
245/* optional functions */
246struct spi_ops {
247 int (*set_config_register)(struct rspi_data *rspi, int access_size);
248 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249 struct spi_transfer *xfer);
250 u16 mode_bits;
251 u16 flags;
252 u16 fifo_size;
253};
254
255/*
256 * functions for RSPI on legacy SH
257 */
258static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
259{
260 int spbr;
261
262 /* Sets output mode, MOSI signal, and (optionally) loopback */
263 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
264
265 /* Sets transfer bit rate */
266 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267 2 * rspi->max_speed_hz) - 1;
268 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
269
270 /* Disable dummy transmission, set 16-bit word access, 1 frame */
271 rspi_write8(rspi, 0, RSPI_SPDCR);
272 rspi->byte_access = 0;
273
274 /* Sets RSPCK, SSL, next-access delay value */
275 rspi_write8(rspi, 0x00, RSPI_SPCKD);
276 rspi_write8(rspi, 0x00, RSPI_SSLND);
277 rspi_write8(rspi, 0x00, RSPI_SPND);
278
279 /* Sets parity, interrupt mask */
280 rspi_write8(rspi, 0x00, RSPI_SPCR2);
281
282 /* Sets SPCMD */
283 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
285
286 /* Sets RSPI mode */
287 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
288
289 return 0;
290}
291
292/*
293 * functions for RSPI on RZ
294 */
295static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
296{
297 int spbr;
298
299 /* Sets output mode, MOSI signal, and (optionally) loopback */
300 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
301
302 /* Sets transfer bit rate */
303 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
304 2 * rspi->max_speed_hz) - 1;
305 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
306
307 /* Disable dummy transmission, set byte access */
308 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
309 rspi->byte_access = 1;
310
311 /* Sets RSPCK, SSL, next-access delay value */
312 rspi_write8(rspi, 0x00, RSPI_SPCKD);
313 rspi_write8(rspi, 0x00, RSPI_SSLND);
314 rspi_write8(rspi, 0x00, RSPI_SPND);
315
316 /* Sets SPCMD */
317 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
318 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
319
320 /* Sets RSPI mode */
321 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
322
323 return 0;
324}
325
326/*
327 * functions for QSPI
328 */
329static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
330{
331 int spbr;
332
333 /* Sets output mode, MOSI signal, and (optionally) loopback */
334 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
335
336 /* Sets transfer bit rate */
337 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
338 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
339
340 /* Disable dummy transmission, set byte access */
341 rspi_write8(rspi, 0, RSPI_SPDCR);
342 rspi->byte_access = 1;
343
344 /* Sets RSPCK, SSL, next-access delay value */
345 rspi_write8(rspi, 0x00, RSPI_SPCKD);
346 rspi_write8(rspi, 0x00, RSPI_SSLND);
347 rspi_write8(rspi, 0x00, RSPI_SPND);
348
349 /* Data Length Setting */
350 if (access_size == 8)
351 rspi->spcmd |= SPCMD_SPB_8BIT;
352 else if (access_size == 16)
353 rspi->spcmd |= SPCMD_SPB_16BIT;
354 else
355 rspi->spcmd |= SPCMD_SPB_32BIT;
356
357 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
358
359 /* Resets transfer data length */
360 rspi_write32(rspi, 0, QSPI_SPBMUL0);
361
362 /* Resets transmit and receive buffer */
363 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
364 /* Sets buffer to allow normal operation */
365 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
366
367 /* Sets SPCMD */
368 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
369
370 /* Enables SPI function in master mode */
371 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
372
373 return 0;
374}
375
376static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
377{
378 u8 data;
379
380 data = rspi_read8(rspi, reg);
381 data &= ~mask;
382 data |= (val & mask);
383 rspi_write8(rspi, data, reg);
384}
385
386static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
387 unsigned int len)
388{
389 unsigned int n;
390
391 n = min(len, QSPI_BUFFER_SIZE);
392
393 if (len >= QSPI_BUFFER_SIZE) {
394 /* sets triggering number to 32 bytes */
395 qspi_update(rspi, SPBFCR_TXTRG_MASK,
396 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
397 } else {
398 /* sets triggering number to 1 byte */
399 qspi_update(rspi, SPBFCR_TXTRG_MASK,
400 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
401 }
402
403 return n;
404}
405
406static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
407{
408 unsigned int n;
409
410 n = min(len, QSPI_BUFFER_SIZE);
411
412 if (len >= QSPI_BUFFER_SIZE) {
413 /* sets triggering number to 32 bytes */
414 qspi_update(rspi, SPBFCR_RXTRG_MASK,
415 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
416 } else {
417 /* sets triggering number to 1 byte */
418 qspi_update(rspi, SPBFCR_RXTRG_MASK,
419 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
420 }
421}
422
423#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
424
425static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
426{
427 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
428}
429
430static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
431{
432 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
433}
434
435static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
436 u8 enable_bit)
437{
438 int ret;
439
440 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
441 if (rspi->spsr & wait_mask)
442 return 0;
443
444 rspi_enable_irq(rspi, enable_bit);
445 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
446 if (ret == 0 && !(rspi->spsr & wait_mask))
447 return -ETIMEDOUT;
448
449 return 0;
450}
451
452static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
453{
454 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
455}
456
457static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
458{
459 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
460}
461
462static int rspi_data_out(struct rspi_data *rspi, u8 data)
463{
464 int error = rspi_wait_for_tx_empty(rspi);
465 if (error < 0) {
466 dev_err(&rspi->master->dev, "transmit timeout\n");
467 return error;
468 }
469 rspi_write_data(rspi, data);
470 return 0;
471}
472
473static int rspi_data_in(struct rspi_data *rspi)
474{
475 int error;
476 u8 data;
477
478 error = rspi_wait_for_rx_full(rspi);
479 if (error < 0) {
480 dev_err(&rspi->master->dev, "receive timeout\n");
481 return error;
482 }
483 data = rspi_read_data(rspi);
484 return data;
485}
486
487static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
488 unsigned int n)
489{
490 while (n-- > 0) {
491 if (tx) {
492 int ret = rspi_data_out(rspi, *tx++);
493 if (ret < 0)
494 return ret;
495 }
496 if (rx) {
497 int ret = rspi_data_in(rspi);
498 if (ret < 0)
499 return ret;
500 *rx++ = ret;
501 }
502 }
503
504 return 0;
505}
506
507static void rspi_dma_complete(void *arg)
508{
509 struct rspi_data *rspi = arg;
510
511 rspi->dma_callbacked = 1;
512 wake_up_interruptible(&rspi->wait);
513}
514
515static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
516 struct sg_table *rx)
517{
518 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
519 u8 irq_mask = 0;
520 unsigned int other_irq = 0;
521 dma_cookie_t cookie;
522 int ret;
523
524 /* First prepare and submit the DMA request(s), as this may fail */
525 if (rx) {
526 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
527 rx->sgl, rx->nents, DMA_FROM_DEVICE,
528 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
529 if (!desc_rx) {
530 ret = -EAGAIN;
531 goto no_dma_rx;
532 }
533
534 desc_rx->callback = rspi_dma_complete;
535 desc_rx->callback_param = rspi;
536 cookie = dmaengine_submit(desc_rx);
537 if (dma_submit_error(cookie)) {
538 ret = cookie;
539 goto no_dma_rx;
540 }
541
542 irq_mask |= SPCR_SPRIE;
543 }
544
545 if (tx) {
546 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
547 tx->sgl, tx->nents, DMA_TO_DEVICE,
548 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
549 if (!desc_tx) {
550 ret = -EAGAIN;
551 goto no_dma_tx;
552 }
553
554 if (rx) {
555 /* No callback */
556 desc_tx->callback = NULL;
557 } else {
558 desc_tx->callback = rspi_dma_complete;
559 desc_tx->callback_param = rspi;
560 }
561 cookie = dmaengine_submit(desc_tx);
562 if (dma_submit_error(cookie)) {
563 ret = cookie;
564 goto no_dma_tx;
565 }
566
567 irq_mask |= SPCR_SPTIE;
568 }
569
570 /*
571 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
572 * called. So, this driver disables the IRQ while DMA transfer.
573 */
574 if (tx)
575 disable_irq(other_irq = rspi->tx_irq);
576 if (rx && rspi->rx_irq != other_irq)
577 disable_irq(rspi->rx_irq);
578
579 rspi_enable_irq(rspi, irq_mask);
580 rspi->dma_callbacked = 0;
581
582 /* Now start DMA */
583 if (rx)
584 dma_async_issue_pending(rspi->master->dma_rx);
585 if (tx)
586 dma_async_issue_pending(rspi->master->dma_tx);
587
588 ret = wait_event_interruptible_timeout(rspi->wait,
589 rspi->dma_callbacked, HZ);
590 if (ret > 0 && rspi->dma_callbacked)
591 ret = 0;
592 else if (!ret) {
593 dev_err(&rspi->master->dev, "DMA timeout\n");
594 ret = -ETIMEDOUT;
595 if (tx)
596 dmaengine_terminate_all(rspi->master->dma_tx);
597 if (rx)
598 dmaengine_terminate_all(rspi->master->dma_rx);
599 }
600
601 rspi_disable_irq(rspi, irq_mask);
602
603 if (tx)
604 enable_irq(rspi->tx_irq);
605 if (rx && rspi->rx_irq != other_irq)
606 enable_irq(rspi->rx_irq);
607
608 return ret;
609
610no_dma_tx:
611 if (rx)
612 dmaengine_terminate_all(rspi->master->dma_rx);
613no_dma_rx:
614 if (ret == -EAGAIN) {
615 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
616 dev_driver_string(&rspi->master->dev),
617 dev_name(&rspi->master->dev));
618 }
619 return ret;
620}
621
622static void rspi_receive_init(const struct rspi_data *rspi)
623{
624 u8 spsr;
625
626 spsr = rspi_read8(rspi, RSPI_SPSR);
627 if (spsr & SPSR_SPRF)
628 rspi_read_data(rspi); /* dummy read */
629 if (spsr & SPSR_OVRF)
630 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
631 RSPI_SPSR);
632}
633
634static void rspi_rz_receive_init(const struct rspi_data *rspi)
635{
636 rspi_receive_init(rspi);
637 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
638 rspi_write8(rspi, 0, RSPI_SPBFCR);
639}
640
641static void qspi_receive_init(const struct rspi_data *rspi)
642{
643 u8 spsr;
644
645 spsr = rspi_read8(rspi, RSPI_SPSR);
646 if (spsr & SPSR_SPRF)
647 rspi_read_data(rspi); /* dummy read */
648 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
649 rspi_write8(rspi, 0, QSPI_SPBFCR);
650}
651
652static bool __rspi_can_dma(const struct rspi_data *rspi,
653 const struct spi_transfer *xfer)
654{
655 return xfer->len > rspi->ops->fifo_size;
656}
657
658static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
659 struct spi_transfer *xfer)
660{
661 struct rspi_data *rspi = spi_master_get_devdata(master);
662
663 return __rspi_can_dma(rspi, xfer);
664}
665
666static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
667 struct spi_transfer *xfer)
668{
669 if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
670 return -EAGAIN;
671
672 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
673 return rspi_dma_transfer(rspi, &xfer->tx_sg,
674 xfer->rx_buf ? &xfer->rx_sg : NULL);
675}
676
677static int rspi_common_transfer(struct rspi_data *rspi,
678 struct spi_transfer *xfer)
679{
680 int ret;
681
682 ret = rspi_dma_check_then_transfer(rspi, xfer);
683 if (ret != -EAGAIN)
684 return ret;
685
686 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
687 if (ret < 0)
688 return ret;
689
690 /* Wait for the last transmission */
691 rspi_wait_for_tx_empty(rspi);
692
693 return 0;
694}
695
696static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
697 struct spi_transfer *xfer)
698{
699 struct rspi_data *rspi = spi_master_get_devdata(master);
700 u8 spcr;
701
702 spcr = rspi_read8(rspi, RSPI_SPCR);
703 if (xfer->rx_buf) {
704 rspi_receive_init(rspi);
705 spcr &= ~SPCR_TXMD;
706 } else {
707 spcr |= SPCR_TXMD;
708 }
709 rspi_write8(rspi, spcr, RSPI_SPCR);
710
711 return rspi_common_transfer(rspi, xfer);
712}
713
714static int rspi_rz_transfer_one(struct spi_master *master,
715 struct spi_device *spi,
716 struct spi_transfer *xfer)
717{
718 struct rspi_data *rspi = spi_master_get_devdata(master);
719
720 rspi_rz_receive_init(rspi);
721
722 return rspi_common_transfer(rspi, xfer);
723}
724
725static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
726 u8 *rx, unsigned int len)
727{
728 unsigned int i, n;
729 int ret;
730
731 while (len > 0) {
732 n = qspi_set_send_trigger(rspi, len);
733 qspi_set_receive_trigger(rspi, len);
734 if (n == QSPI_BUFFER_SIZE) {
735 ret = rspi_wait_for_tx_empty(rspi);
736 if (ret < 0) {
737 dev_err(&rspi->master->dev, "transmit timeout\n");
738 return ret;
739 }
740 for (i = 0; i < n; i++)
741 rspi_write_data(rspi, *tx++);
742
743 ret = rspi_wait_for_rx_full(rspi);
744 if (ret < 0) {
745 dev_err(&rspi->master->dev, "receive timeout\n");
746 return ret;
747 }
748 for (i = 0; i < n; i++)
749 *rx++ = rspi_read_data(rspi);
750 } else {
751 ret = rspi_pio_transfer(rspi, tx, rx, n);
752 if (ret < 0)
753 return ret;
754 }
755 len -= n;
756 }
757
758 return 0;
759}
760
761static int qspi_transfer_out_in(struct rspi_data *rspi,
762 struct spi_transfer *xfer)
763{
764 int ret;
765
766 qspi_receive_init(rspi);
767
768 ret = rspi_dma_check_then_transfer(rspi, xfer);
769 if (ret != -EAGAIN)
770 return ret;
771
772 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
773 xfer->rx_buf, xfer->len);
774}
775
776static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
777{
778 int ret;
779
780 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
781 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
782 if (ret != -EAGAIN)
783 return ret;
784 }
785
786 ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
787 if (ret < 0)
788 return ret;
789
790 /* Wait for the last transmission */
791 rspi_wait_for_tx_empty(rspi);
792
793 return 0;
794}
795
796static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
797{
798 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
799 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
800 if (ret != -EAGAIN)
801 return ret;
802 }
803
804 return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
805}
806
807static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
808 struct spi_transfer *xfer)
809{
810 struct rspi_data *rspi = spi_master_get_devdata(master);
811
812 if (spi->mode & SPI_LOOP) {
813 return qspi_transfer_out_in(rspi, xfer);
814 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
815 /* Quad or Dual SPI Write */
816 return qspi_transfer_out(rspi, xfer);
817 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
818 /* Quad or Dual SPI Read */
819 return qspi_transfer_in(rspi, xfer);
820 } else {
821 /* Single SPI Transfer */
822 return qspi_transfer_out_in(rspi, xfer);
823 }
824}
825
826static int rspi_setup(struct spi_device *spi)
827{
828 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
829
830 rspi->max_speed_hz = spi->max_speed_hz;
831
832 rspi->spcmd = SPCMD_SSLKP;
833 if (spi->mode & SPI_CPOL)
834 rspi->spcmd |= SPCMD_CPOL;
835 if (spi->mode & SPI_CPHA)
836 rspi->spcmd |= SPCMD_CPHA;
837
838 /* CMOS output mode and MOSI signal from previous transfer */
839 rspi->sppcr = 0;
840 if (spi->mode & SPI_LOOP)
841 rspi->sppcr |= SPPCR_SPLP;
842
843 set_config_register(rspi, 8);
844
845 return 0;
846}
847
848static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
849{
850 if (xfer->tx_buf)
851 switch (xfer->tx_nbits) {
852 case SPI_NBITS_QUAD:
853 return SPCMD_SPIMOD_QUAD;
854 case SPI_NBITS_DUAL:
855 return SPCMD_SPIMOD_DUAL;
856 default:
857 return 0;
858 }
859 if (xfer->rx_buf)
860 switch (xfer->rx_nbits) {
861 case SPI_NBITS_QUAD:
862 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
863 case SPI_NBITS_DUAL:
864 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
865 default:
866 return 0;
867 }
868
869 return 0;
870}
871
872static int qspi_setup_sequencer(struct rspi_data *rspi,
873 const struct spi_message *msg)
874{
875 const struct spi_transfer *xfer;
876 unsigned int i = 0, len = 0;
877 u16 current_mode = 0xffff, mode;
878
879 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
880 mode = qspi_transfer_mode(xfer);
881 if (mode == current_mode) {
882 len += xfer->len;
883 continue;
884 }
885
886 /* Transfer mode change */
887 if (i) {
888 /* Set transfer data length of previous transfer */
889 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
890 }
891
892 if (i >= QSPI_NUM_SPCMD) {
893 dev_err(&msg->spi->dev,
894 "Too many different transfer modes");
895 return -EINVAL;
896 }
897
898 /* Program transfer mode for this transfer */
899 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
900 current_mode = mode;
901 len = xfer->len;
902 i++;
903 }
904 if (i) {
905 /* Set final transfer data length and sequence length */
906 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
907 rspi_write8(rspi, i - 1, RSPI_SPSCR);
908 }
909
910 return 0;
911}
912
913static int rspi_prepare_message(struct spi_master *master,
914 struct spi_message *msg)
915{
916 struct rspi_data *rspi = spi_master_get_devdata(master);
917 int ret;
918
919 if (msg->spi->mode &
920 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
921 /* Setup sequencer for messages with multiple transfer modes */
922 ret = qspi_setup_sequencer(rspi, msg);
923 if (ret < 0)
924 return ret;
925 }
926
927 /* Enable SPI function in master mode */
928 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
929 return 0;
930}
931
932static int rspi_unprepare_message(struct spi_master *master,
933 struct spi_message *msg)
934{
935 struct rspi_data *rspi = spi_master_get_devdata(master);
936
937 /* Disable SPI function */
938 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
939
940 /* Reset sequencer for Single SPI Transfers */
941 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
942 rspi_write8(rspi, 0, RSPI_SPSCR);
943 return 0;
944}
945
946static irqreturn_t rspi_irq_mux(int irq, void *_sr)
947{
948 struct rspi_data *rspi = _sr;
949 u8 spsr;
950 irqreturn_t ret = IRQ_NONE;
951 u8 disable_irq = 0;
952
953 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
954 if (spsr & SPSR_SPRF)
955 disable_irq |= SPCR_SPRIE;
956 if (spsr & SPSR_SPTEF)
957 disable_irq |= SPCR_SPTIE;
958
959 if (disable_irq) {
960 ret = IRQ_HANDLED;
961 rspi_disable_irq(rspi, disable_irq);
962 wake_up(&rspi->wait);
963 }
964
965 return ret;
966}
967
968static irqreturn_t rspi_irq_rx(int irq, void *_sr)
969{
970 struct rspi_data *rspi = _sr;
971 u8 spsr;
972
973 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
974 if (spsr & SPSR_SPRF) {
975 rspi_disable_irq(rspi, SPCR_SPRIE);
976 wake_up(&rspi->wait);
977 return IRQ_HANDLED;
978 }
979
980 return 0;
981}
982
983static irqreturn_t rspi_irq_tx(int irq, void *_sr)
984{
985 struct rspi_data *rspi = _sr;
986 u8 spsr;
987
988 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
989 if (spsr & SPSR_SPTEF) {
990 rspi_disable_irq(rspi, SPCR_SPTIE);
991 wake_up(&rspi->wait);
992 return IRQ_HANDLED;
993 }
994
995 return 0;
996}
997
998static struct dma_chan *rspi_request_dma_chan(struct device *dev,
999 enum dma_transfer_direction dir,
1000 unsigned int id,
1001 dma_addr_t port_addr)
1002{
1003 dma_cap_mask_t mask;
1004 struct dma_chan *chan;
1005 struct dma_slave_config cfg;
1006 int ret;
1007
1008 dma_cap_zero(mask);
1009 dma_cap_set(DMA_SLAVE, mask);
1010
1011 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1012 (void *)(unsigned long)id, dev,
1013 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1014 if (!chan) {
1015 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1016 return NULL;
1017 }
1018
1019 memset(&cfg, 0, sizeof(cfg));
1020 cfg.direction = dir;
1021 if (dir == DMA_MEM_TO_DEV) {
1022 cfg.dst_addr = port_addr;
1023 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1024 } else {
1025 cfg.src_addr = port_addr;
1026 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1027 }
1028
1029 ret = dmaengine_slave_config(chan, &cfg);
1030 if (ret) {
1031 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1032 dma_release_channel(chan);
1033 return NULL;
1034 }
1035
1036 return chan;
1037}
1038
1039static int rspi_request_dma(struct device *dev, struct spi_master *master,
1040 const struct resource *res)
1041{
1042 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1043 unsigned int dma_tx_id, dma_rx_id;
1044
1045 if (dev->of_node) {
1046 /* In the OF case we will get the slave IDs from the DT */
1047 dma_tx_id = 0;
1048 dma_rx_id = 0;
1049 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1050 dma_tx_id = rspi_pd->dma_tx_id;
1051 dma_rx_id = rspi_pd->dma_rx_id;
1052 } else {
1053 /* The driver assumes no error. */
1054 return 0;
1055 }
1056
1057 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1058 res->start + RSPI_SPDR);
1059 if (!master->dma_tx)
1060 return -ENODEV;
1061
1062 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1063 res->start + RSPI_SPDR);
1064 if (!master->dma_rx) {
1065 dma_release_channel(master->dma_tx);
1066 master->dma_tx = NULL;
1067 return -ENODEV;
1068 }
1069
1070 master->can_dma = rspi_can_dma;
1071 dev_info(dev, "DMA available");
1072 return 0;
1073}
1074
1075static void rspi_release_dma(struct spi_master *master)
1076{
1077 if (master->dma_tx)
1078 dma_release_channel(master->dma_tx);
1079 if (master->dma_rx)
1080 dma_release_channel(master->dma_rx);
1081}
1082
1083static int rspi_remove(struct platform_device *pdev)
1084{
1085 struct rspi_data *rspi = platform_get_drvdata(pdev);
1086
1087 rspi_release_dma(rspi->master);
1088 pm_runtime_disable(&pdev->dev);
1089
1090 return 0;
1091}
1092
1093static const struct spi_ops rspi_ops = {
1094 .set_config_register = rspi_set_config_register,
1095 .transfer_one = rspi_transfer_one,
1096 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1097 .flags = SPI_MASTER_MUST_TX,
1098 .fifo_size = 8,
1099};
1100
1101static const struct spi_ops rspi_rz_ops = {
1102 .set_config_register = rspi_rz_set_config_register,
1103 .transfer_one = rspi_rz_transfer_one,
1104 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1105 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1106 .fifo_size = 8, /* 8 for TX, 32 for RX */
1107};
1108
1109static const struct spi_ops qspi_ops = {
1110 .set_config_register = qspi_set_config_register,
1111 .transfer_one = qspi_transfer_one,
1112 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1113 SPI_TX_DUAL | SPI_TX_QUAD |
1114 SPI_RX_DUAL | SPI_RX_QUAD,
1115 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1116 .fifo_size = 32,
1117};
1118
1119#ifdef CONFIG_OF
1120static const struct of_device_id rspi_of_match[] = {
1121 /* RSPI on legacy SH */
1122 { .compatible = "renesas,rspi", .data = &rspi_ops },
1123 /* RSPI on RZ/A1H */
1124 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1125 /* QSPI on R-Car Gen2 */
1126 { .compatible = "renesas,qspi", .data = &qspi_ops },
1127 { /* sentinel */ }
1128};
1129
1130MODULE_DEVICE_TABLE(of, rspi_of_match);
1131
1132static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1133{
1134 u32 num_cs;
1135 int error;
1136
1137 /* Parse DT properties */
1138 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1139 if (error) {
1140 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1141 return error;
1142 }
1143
1144 master->num_chipselect = num_cs;
1145 return 0;
1146}
1147#else
1148#define rspi_of_match NULL
1149static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1150{
1151 return -EINVAL;
1152}
1153#endif /* CONFIG_OF */
1154
1155static int rspi_request_irq(struct device *dev, unsigned int irq,
1156 irq_handler_t handler, const char *suffix,
1157 void *dev_id)
1158{
1159 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1160 dev_name(dev), suffix);
1161 if (!name)
1162 return -ENOMEM;
1163
1164 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1165}
1166
1167static int rspi_probe(struct platform_device *pdev)
1168{
1169 struct resource *res;
1170 struct spi_master *master;
1171 struct rspi_data *rspi;
1172 int ret;
1173 const struct of_device_id *of_id;
1174 const struct rspi_plat_data *rspi_pd;
1175 const struct spi_ops *ops;
1176
1177 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1178 if (master == NULL) {
1179 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1180 return -ENOMEM;
1181 }
1182
1183 of_id = of_match_device(rspi_of_match, &pdev->dev);
1184 if (of_id) {
1185 ops = of_id->data;
1186 ret = rspi_parse_dt(&pdev->dev, master);
1187 if (ret)
1188 goto error1;
1189 } else {
1190 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1191 rspi_pd = dev_get_platdata(&pdev->dev);
1192 if (rspi_pd && rspi_pd->num_chipselect)
1193 master->num_chipselect = rspi_pd->num_chipselect;
1194 else
1195 master->num_chipselect = 2; /* default */
1196 }
1197
1198 /* ops parameter check */
1199 if (!ops->set_config_register) {
1200 dev_err(&pdev->dev, "there is no set_config_register\n");
1201 ret = -ENODEV;
1202 goto error1;
1203 }
1204
1205 rspi = spi_master_get_devdata(master);
1206 platform_set_drvdata(pdev, rspi);
1207 rspi->ops = ops;
1208 rspi->master = master;
1209
1210 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1211 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1212 if (IS_ERR(rspi->addr)) {
1213 ret = PTR_ERR(rspi->addr);
1214 goto error1;
1215 }
1216
1217 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1218 if (IS_ERR(rspi->clk)) {
1219 dev_err(&pdev->dev, "cannot get clock\n");
1220 ret = PTR_ERR(rspi->clk);
1221 goto error1;
1222 }
1223
1224 pm_runtime_enable(&pdev->dev);
1225
1226 init_waitqueue_head(&rspi->wait);
1227
1228 master->bus_num = pdev->id;
1229 master->setup = rspi_setup;
1230 master->auto_runtime_pm = true;
1231 master->transfer_one = ops->transfer_one;
1232 master->prepare_message = rspi_prepare_message;
1233 master->unprepare_message = rspi_unprepare_message;
1234 master->mode_bits = ops->mode_bits;
1235 master->flags = ops->flags;
1236 master->dev.of_node = pdev->dev.of_node;
1237
1238 ret = platform_get_irq_byname(pdev, "rx");
1239 if (ret < 0) {
1240 ret = platform_get_irq_byname(pdev, "mux");
1241 if (ret < 0)
1242 ret = platform_get_irq(pdev, 0);
1243 if (ret >= 0)
1244 rspi->rx_irq = rspi->tx_irq = ret;
1245 } else {
1246 rspi->rx_irq = ret;
1247 ret = platform_get_irq_byname(pdev, "tx");
1248 if (ret >= 0)
1249 rspi->tx_irq = ret;
1250 }
1251 if (ret < 0) {
1252 dev_err(&pdev->dev, "platform_get_irq error\n");
1253 goto error2;
1254 }
1255
1256 if (rspi->rx_irq == rspi->tx_irq) {
1257 /* Single multiplexed interrupt */
1258 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1259 "mux", rspi);
1260 } else {
1261 /* Multi-interrupt mode, only SPRI and SPTI are used */
1262 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1263 "rx", rspi);
1264 if (!ret)
1265 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1266 rspi_irq_tx, "tx", rspi);
1267 }
1268 if (ret < 0) {
1269 dev_err(&pdev->dev, "request_irq error\n");
1270 goto error2;
1271 }
1272
1273 ret = rspi_request_dma(&pdev->dev, master, res);
1274 if (ret < 0)
1275 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1276
1277 ret = devm_spi_register_master(&pdev->dev, master);
1278 if (ret < 0) {
1279 dev_err(&pdev->dev, "spi_register_master error.\n");
1280 goto error3;
1281 }
1282
1283 dev_info(&pdev->dev, "probed\n");
1284
1285 return 0;
1286
1287error3:
1288 rspi_release_dma(master);
1289error2:
1290 pm_runtime_disable(&pdev->dev);
1291error1:
1292 spi_master_put(master);
1293
1294 return ret;
1295}
1296
1297static const struct platform_device_id spi_driver_ids[] = {
1298 { "rspi", (kernel_ulong_t)&rspi_ops },
1299 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1300 { "qspi", (kernel_ulong_t)&qspi_ops },
1301 {},
1302};
1303
1304MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1305
1306static struct platform_driver rspi_driver = {
1307 .probe = rspi_probe,
1308 .remove = rspi_remove,
1309 .id_table = spi_driver_ids,
1310 .driver = {
1311 .name = "renesas_spi",
1312 .of_match_table = of_match_ptr(rspi_of_match),
1313 },
1314};
1315module_platform_driver(rspi_driver);
1316
1317MODULE_DESCRIPTION("Renesas RSPI bus driver");
1318MODULE_LICENSE("GPL v2");
1319MODULE_AUTHOR("Yoshihiro Shimoda");
1320MODULE_ALIAS("platform:rspi");
1/*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/sched.h>
28#include <linux/errno.h>
29#include <linux/interrupt.h>
30#include <linux/platform_device.h>
31#include <linux/io.h>
32#include <linux/clk.h>
33#include <linux/dmaengine.h>
34#include <linux/dma-mapping.h>
35#include <linux/of_device.h>
36#include <linux/pm_runtime.h>
37#include <linux/sh_dma.h>
38#include <linux/spi/spi.h>
39#include <linux/spi/rspi.h>
40
41#define RSPI_SPCR 0x00 /* Control Register */
42#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
43#define RSPI_SPPCR 0x02 /* Pin Control Register */
44#define RSPI_SPSR 0x03 /* Status Register */
45#define RSPI_SPDR 0x04 /* Data Register */
46#define RSPI_SPSCR 0x08 /* Sequence Control Register */
47#define RSPI_SPSSR 0x09 /* Sequence Status Register */
48#define RSPI_SPBR 0x0a /* Bit Rate Register */
49#define RSPI_SPDCR 0x0b /* Data Control Register */
50#define RSPI_SPCKD 0x0c /* Clock Delay Register */
51#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
52#define RSPI_SPND 0x0e /* Next-Access Delay Register */
53#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
54#define RSPI_SPCMD0 0x10 /* Command Register 0 */
55#define RSPI_SPCMD1 0x12 /* Command Register 1 */
56#define RSPI_SPCMD2 0x14 /* Command Register 2 */
57#define RSPI_SPCMD3 0x16 /* Command Register 3 */
58#define RSPI_SPCMD4 0x18 /* Command Register 4 */
59#define RSPI_SPCMD5 0x1a /* Command Register 5 */
60#define RSPI_SPCMD6 0x1c /* Command Register 6 */
61#define RSPI_SPCMD7 0x1e /* Command Register 7 */
62#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
63#define RSPI_NUM_SPCMD 8
64#define RSPI_RZ_NUM_SPCMD 4
65#define QSPI_NUM_SPCMD 4
66
67/* RSPI on RZ only */
68#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
69#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
70
71/* QSPI only */
72#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
73#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
74#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
75#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
76#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
77#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
78#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
79
80/* SPCR - Control Register */
81#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
82#define SPCR_SPE 0x40 /* Function Enable */
83#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
84#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
85#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
86#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
87/* RSPI on SH only */
88#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
89#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
90/* QSPI on R-Car M2 only */
91#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
92#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
93
94/* SSLP - Slave Select Polarity Register */
95#define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
96#define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
97
98/* SPPCR - Pin Control Register */
99#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
100#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
101#define SPPCR_SPOM 0x04
102#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
103#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
104
105#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
106#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
107
108/* SPSR - Status Register */
109#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
110#define SPSR_TEND 0x40 /* Transmit End */
111#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
112#define SPSR_PERF 0x08 /* Parity Error Flag */
113#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
114#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
115#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
116
117/* SPSCR - Sequence Control Register */
118#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
119
120/* SPSSR - Sequence Status Register */
121#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
122#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
123
124/* SPDCR - Data Control Register */
125#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
126#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
127#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
128#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
129#define SPDCR_SPLWORD SPDCR_SPLW1
130#define SPDCR_SPLBYTE SPDCR_SPLW0
131#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
132#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
133#define SPDCR_SLSEL1 0x08
134#define SPDCR_SLSEL0 0x04
135#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
136#define SPDCR_SPFC1 0x02
137#define SPDCR_SPFC0 0x01
138#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
139
140/* SPCKD - Clock Delay Register */
141#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
142
143/* SSLND - Slave Select Negation Delay Register */
144#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
145
146/* SPND - Next-Access Delay Register */
147#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
148
149/* SPCR2 - Control Register 2 */
150#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
151#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
152#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
153#define SPCR2_SPPE 0x01 /* Parity Enable */
154
155/* SPCMDn - Command Registers */
156#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
157#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
158#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
159#define SPCMD_LSBF 0x1000 /* LSB First */
160#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
161#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
162#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
163#define SPCMD_SPB_16BIT 0x0100
164#define SPCMD_SPB_20BIT 0x0000
165#define SPCMD_SPB_24BIT 0x0100
166#define SPCMD_SPB_32BIT 0x0200
167#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
168#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
169#define SPCMD_SPIMOD1 0x0040
170#define SPCMD_SPIMOD0 0x0020
171#define SPCMD_SPIMOD_SINGLE 0
172#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
173#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
174#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
175#define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
176#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
177#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
178#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
179
180/* SPBFCR - Buffer Control Register */
181#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
182#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
183#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
184#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
185
186#define DUMMY_DATA 0x00
187
188struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
199
200 /* for dmaengine */
201 struct dma_chan *chan_tx;
202 struct dma_chan *chan_rx;
203
204 unsigned dma_width_16bit:1;
205 unsigned dma_callbacked:1;
206 unsigned byte_access:1;
207};
208
209static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
210{
211 iowrite8(data, rspi->addr + offset);
212}
213
214static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
215{
216 iowrite16(data, rspi->addr + offset);
217}
218
219static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
220{
221 iowrite32(data, rspi->addr + offset);
222}
223
224static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
225{
226 return ioread8(rspi->addr + offset);
227}
228
229static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
230{
231 return ioread16(rspi->addr + offset);
232}
233
234static void rspi_write_data(const struct rspi_data *rspi, u16 data)
235{
236 if (rspi->byte_access)
237 rspi_write8(rspi, data, RSPI_SPDR);
238 else /* 16 bit */
239 rspi_write16(rspi, data, RSPI_SPDR);
240}
241
242static u16 rspi_read_data(const struct rspi_data *rspi)
243{
244 if (rspi->byte_access)
245 return rspi_read8(rspi, RSPI_SPDR);
246 else /* 16 bit */
247 return rspi_read16(rspi, RSPI_SPDR);
248}
249
250/* optional functions */
251struct spi_ops {
252 int (*set_config_register)(struct rspi_data *rspi, int access_size);
253 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
254 struct spi_transfer *xfer);
255 u16 mode_bits;
256};
257
258/*
259 * functions for RSPI on legacy SH
260 */
261static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
262{
263 int spbr;
264
265 /* Sets output mode, MOSI signal, and (optionally) loopback */
266 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
267
268 /* Sets transfer bit rate */
269 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
270 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
271
272 /* Disable dummy transmission, set 16-bit word access, 1 frame */
273 rspi_write8(rspi, 0, RSPI_SPDCR);
274 rspi->byte_access = 0;
275
276 /* Sets RSPCK, SSL, next-access delay value */
277 rspi_write8(rspi, 0x00, RSPI_SPCKD);
278 rspi_write8(rspi, 0x00, RSPI_SSLND);
279 rspi_write8(rspi, 0x00, RSPI_SPND);
280
281 /* Sets parity, interrupt mask */
282 rspi_write8(rspi, 0x00, RSPI_SPCR2);
283
284 /* Sets SPCMD */
285 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
286 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
287
288 /* Sets RSPI mode */
289 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
290
291 return 0;
292}
293
294/*
295 * functions for RSPI on RZ
296 */
297static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
298{
299 int spbr;
300
301 /* Sets output mode, MOSI signal, and (optionally) loopback */
302 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
303
304 /* Sets transfer bit rate */
305 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
306 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
307
308 /* Disable dummy transmission, set byte access */
309 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
310 rspi->byte_access = 1;
311
312 /* Sets RSPCK, SSL, next-access delay value */
313 rspi_write8(rspi, 0x00, RSPI_SPCKD);
314 rspi_write8(rspi, 0x00, RSPI_SSLND);
315 rspi_write8(rspi, 0x00, RSPI_SPND);
316
317 /* Sets SPCMD */
318 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
319 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
320
321 /* Sets RSPI mode */
322 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
323
324 return 0;
325}
326
327/*
328 * functions for QSPI
329 */
330static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
331{
332 int spbr;
333
334 /* Sets output mode, MOSI signal, and (optionally) loopback */
335 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
336
337 /* Sets transfer bit rate */
338 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
339 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
340
341 /* Disable dummy transmission, set byte access */
342 rspi_write8(rspi, 0, RSPI_SPDCR);
343 rspi->byte_access = 1;
344
345 /* Sets RSPCK, SSL, next-access delay value */
346 rspi_write8(rspi, 0x00, RSPI_SPCKD);
347 rspi_write8(rspi, 0x00, RSPI_SSLND);
348 rspi_write8(rspi, 0x00, RSPI_SPND);
349
350 /* Data Length Setting */
351 if (access_size == 8)
352 rspi->spcmd |= SPCMD_SPB_8BIT;
353 else if (access_size == 16)
354 rspi->spcmd |= SPCMD_SPB_16BIT;
355 else
356 rspi->spcmd |= SPCMD_SPB_32BIT;
357
358 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
359
360 /* Resets transfer data length */
361 rspi_write32(rspi, 0, QSPI_SPBMUL0);
362
363 /* Resets transmit and receive buffer */
364 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
365 /* Sets buffer to allow normal operation */
366 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
367
368 /* Sets SPCMD */
369 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
370
371 /* Enables SPI function in master mode */
372 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
373
374 return 0;
375}
376
377#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
378
379static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
380{
381 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
382}
383
384static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
385{
386 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
387}
388
389static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
390 u8 enable_bit)
391{
392 int ret;
393
394 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
395 if (rspi->spsr & wait_mask)
396 return 0;
397
398 rspi_enable_irq(rspi, enable_bit);
399 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
400 if (ret == 0 && !(rspi->spsr & wait_mask))
401 return -ETIMEDOUT;
402
403 return 0;
404}
405
406static int rspi_data_out(struct rspi_data *rspi, u8 data)
407{
408 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
409 dev_err(&rspi->master->dev, "transmit timeout\n");
410 return -ETIMEDOUT;
411 }
412 rspi_write_data(rspi, data);
413 return 0;
414}
415
416static int rspi_data_in(struct rspi_data *rspi)
417{
418 u8 data;
419
420 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
421 dev_err(&rspi->master->dev, "receive timeout\n");
422 return -ETIMEDOUT;
423 }
424 data = rspi_read_data(rspi);
425 return data;
426}
427
428static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
429{
430 int ret;
431
432 ret = rspi_data_out(rspi, data);
433 if (ret < 0)
434 return ret;
435
436 return rspi_data_in(rspi);
437}
438
439static void rspi_dma_complete(void *arg)
440{
441 struct rspi_data *rspi = arg;
442
443 rspi->dma_callbacked = 1;
444 wake_up_interruptible(&rspi->wait);
445}
446
447static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
448 unsigned len, struct dma_chan *chan,
449 enum dma_transfer_direction dir)
450{
451 sg_init_table(sg, 1);
452 sg_set_buf(sg, buf, len);
453 sg_dma_len(sg) = len;
454 return dma_map_sg(chan->device->dev, sg, 1, dir);
455}
456
457static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
458 enum dma_transfer_direction dir)
459{
460 dma_unmap_sg(chan->device->dev, sg, 1, dir);
461}
462
463static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
464{
465 u16 *dst = buf;
466 const u8 *src = data;
467
468 while (len) {
469 *dst++ = (u16)(*src++);
470 len--;
471 }
472}
473
474static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
475{
476 u8 *dst = buf;
477 const u16 *src = data;
478
479 while (len) {
480 *dst++ = (u8)*src++;
481 len--;
482 }
483}
484
485static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
486{
487 struct scatterlist sg;
488 const void *buf = NULL;
489 struct dma_async_tx_descriptor *desc;
490 unsigned int len;
491 int ret = 0;
492
493 if (rspi->dma_width_16bit) {
494 void *tmp;
495 /*
496 * If DMAC bus width is 16-bit, the driver allocates a dummy
497 * buffer. And, the driver converts original data into the
498 * DMAC data as the following format:
499 * original data: 1st byte, 2nd byte ...
500 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
501 */
502 len = t->len * 2;
503 tmp = kmalloc(len, GFP_KERNEL);
504 if (!tmp)
505 return -ENOMEM;
506 rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
507 buf = tmp;
508 } else {
509 len = t->len;
510 buf = t->tx_buf;
511 }
512
513 if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
514 ret = -EFAULT;
515 goto end_nomap;
516 }
517 desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
518 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
519 if (!desc) {
520 ret = -EIO;
521 goto end;
522 }
523
524 /*
525 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
526 * called. So, this driver disables the IRQ while DMA transfer.
527 */
528 disable_irq(rspi->tx_irq);
529
530 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
531 rspi_enable_irq(rspi, SPCR_SPTIE);
532 rspi->dma_callbacked = 0;
533
534 desc->callback = rspi_dma_complete;
535 desc->callback_param = rspi;
536 dmaengine_submit(desc);
537 dma_async_issue_pending(rspi->chan_tx);
538
539 ret = wait_event_interruptible_timeout(rspi->wait,
540 rspi->dma_callbacked, HZ);
541 if (ret > 0 && rspi->dma_callbacked)
542 ret = 0;
543 else if (!ret)
544 ret = -ETIMEDOUT;
545 rspi_disable_irq(rspi, SPCR_SPTIE);
546
547 enable_irq(rspi->tx_irq);
548
549end:
550 rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
551end_nomap:
552 if (rspi->dma_width_16bit)
553 kfree(buf);
554
555 return ret;
556}
557
558static void rspi_receive_init(const struct rspi_data *rspi)
559{
560 u8 spsr;
561
562 spsr = rspi_read8(rspi, RSPI_SPSR);
563 if (spsr & SPSR_SPRF)
564 rspi_read_data(rspi); /* dummy read */
565 if (spsr & SPSR_OVRF)
566 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
567 RSPI_SPSR);
568}
569
570static void rspi_rz_receive_init(const struct rspi_data *rspi)
571{
572 rspi_receive_init(rspi);
573 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
574 rspi_write8(rspi, 0, RSPI_SPBFCR);
575}
576
577static void qspi_receive_init(const struct rspi_data *rspi)
578{
579 u8 spsr;
580
581 spsr = rspi_read8(rspi, RSPI_SPSR);
582 if (spsr & SPSR_SPRF)
583 rspi_read_data(rspi); /* dummy read */
584 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
585 rspi_write8(rspi, 0, QSPI_SPBFCR);
586}
587
588static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
589{
590 struct scatterlist sg, sg_dummy;
591 void *dummy = NULL, *rx_buf = NULL;
592 struct dma_async_tx_descriptor *desc, *desc_dummy;
593 unsigned int len;
594 int ret = 0;
595
596 if (rspi->dma_width_16bit) {
597 /*
598 * If DMAC bus width is 16-bit, the driver allocates a dummy
599 * buffer. And, finally the driver converts the DMAC data into
600 * actual data as the following format:
601 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
602 * actual data: 1st byte, 2nd byte ...
603 */
604 len = t->len * 2;
605 rx_buf = kmalloc(len, GFP_KERNEL);
606 if (!rx_buf)
607 return -ENOMEM;
608 } else {
609 len = t->len;
610 rx_buf = t->rx_buf;
611 }
612
613 /* prepare dummy transfer to generate SPI clocks */
614 dummy = kzalloc(len, GFP_KERNEL);
615 if (!dummy) {
616 ret = -ENOMEM;
617 goto end_nomap;
618 }
619 if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
620 DMA_TO_DEVICE)) {
621 ret = -EFAULT;
622 goto end_nomap;
623 }
624 desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
625 DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
626 if (!desc_dummy) {
627 ret = -EIO;
628 goto end_dummy_mapped;
629 }
630
631 /* prepare receive transfer */
632 if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
633 DMA_FROM_DEVICE)) {
634 ret = -EFAULT;
635 goto end_dummy_mapped;
636
637 }
638 desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
639 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
640 if (!desc) {
641 ret = -EIO;
642 goto end;
643 }
644
645 rspi_receive_init(rspi);
646
647 /*
648 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
649 * called. So, this driver disables the IRQ while DMA transfer.
650 */
651 disable_irq(rspi->tx_irq);
652 if (rspi->rx_irq != rspi->tx_irq)
653 disable_irq(rspi->rx_irq);
654
655 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
656 rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
657 rspi->dma_callbacked = 0;
658
659 desc->callback = rspi_dma_complete;
660 desc->callback_param = rspi;
661 dmaengine_submit(desc);
662 dma_async_issue_pending(rspi->chan_rx);
663
664 desc_dummy->callback = NULL; /* No callback */
665 dmaengine_submit(desc_dummy);
666 dma_async_issue_pending(rspi->chan_tx);
667
668 ret = wait_event_interruptible_timeout(rspi->wait,
669 rspi->dma_callbacked, HZ);
670 if (ret > 0 && rspi->dma_callbacked)
671 ret = 0;
672 else if (!ret)
673 ret = -ETIMEDOUT;
674 rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
675
676 enable_irq(rspi->tx_irq);
677 if (rspi->rx_irq != rspi->tx_irq)
678 enable_irq(rspi->rx_irq);
679
680end:
681 rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
682end_dummy_mapped:
683 rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
684end_nomap:
685 if (rspi->dma_width_16bit) {
686 if (!ret)
687 rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
688 kfree(rx_buf);
689 }
690 kfree(dummy);
691
692 return ret;
693}
694
695static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
696{
697 if (t->tx_buf && rspi->chan_tx)
698 return 1;
699 /* If the module receives data by DMAC, it also needs TX DMAC */
700 if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
701 return 1;
702
703 return 0;
704}
705
706static int rspi_transfer_out_in(struct rspi_data *rspi,
707 struct spi_transfer *xfer)
708{
709 int remain = xfer->len, ret;
710 const u8 *tx_buf = xfer->tx_buf;
711 u8 *rx_buf = xfer->rx_buf;
712 u8 spcr, data;
713
714 rspi_receive_init(rspi);
715
716 spcr = rspi_read8(rspi, RSPI_SPCR);
717 if (rx_buf)
718 spcr &= ~SPCR_TXMD;
719 else
720 spcr |= SPCR_TXMD;
721 rspi_write8(rspi, spcr, RSPI_SPCR);
722
723 while (remain > 0) {
724 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
725 ret = rspi_data_out(rspi, data);
726 if (ret < 0)
727 return ret;
728 if (rx_buf) {
729 ret = rspi_data_in(rspi);
730 if (ret < 0)
731 return ret;
732 *rx_buf++ = ret;
733 }
734 remain--;
735 }
736
737 /* Wait for the last transmission */
738 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
739
740 return 0;
741}
742
743static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
744 struct spi_transfer *xfer)
745{
746 struct rspi_data *rspi = spi_master_get_devdata(master);
747 int ret;
748
749 if (!rspi_is_dma(rspi, xfer))
750 return rspi_transfer_out_in(rspi, xfer);
751
752 if (xfer->tx_buf) {
753 ret = rspi_send_dma(rspi, xfer);
754 if (ret < 0)
755 return ret;
756 }
757 if (xfer->rx_buf)
758 return rspi_receive_dma(rspi, xfer);
759
760 return 0;
761}
762
763static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
764 struct spi_transfer *xfer)
765{
766 int remain = xfer->len, ret;
767 const u8 *tx_buf = xfer->tx_buf;
768 u8 *rx_buf = xfer->rx_buf;
769 u8 data;
770
771 rspi_rz_receive_init(rspi);
772
773 while (remain > 0) {
774 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
775 ret = rspi_data_out_in(rspi, data);
776 if (ret < 0)
777 return ret;
778 if (rx_buf)
779 *rx_buf++ = ret;
780 remain--;
781 }
782
783 /* Wait for the last transmission */
784 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
785
786 return 0;
787}
788
789static int rspi_rz_transfer_one(struct spi_master *master,
790 struct spi_device *spi,
791 struct spi_transfer *xfer)
792{
793 struct rspi_data *rspi = spi_master_get_devdata(master);
794
795 return rspi_rz_transfer_out_in(rspi, xfer);
796}
797
798static int qspi_transfer_out_in(struct rspi_data *rspi,
799 struct spi_transfer *xfer)
800{
801 int remain = xfer->len, ret;
802 const u8 *tx_buf = xfer->tx_buf;
803 u8 *rx_buf = xfer->rx_buf;
804 u8 data;
805
806 qspi_receive_init(rspi);
807
808 while (remain > 0) {
809 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
810 ret = rspi_data_out_in(rspi, data);
811 if (ret < 0)
812 return ret;
813 if (rx_buf)
814 *rx_buf++ = ret;
815 remain--;
816 }
817
818 /* Wait for the last transmission */
819 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
820
821 return 0;
822}
823
824static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
825{
826 const u8 *buf = xfer->tx_buf;
827 unsigned int i;
828 int ret;
829
830 for (i = 0; i < xfer->len; i++) {
831 ret = rspi_data_out(rspi, *buf++);
832 if (ret < 0)
833 return ret;
834 }
835
836 /* Wait for the last transmission */
837 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
838
839 return 0;
840}
841
842static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
843{
844 u8 *buf = xfer->rx_buf;
845 unsigned int i;
846 int ret;
847
848 for (i = 0; i < xfer->len; i++) {
849 ret = rspi_data_in(rspi);
850 if (ret < 0)
851 return ret;
852 *buf++ = ret;
853 }
854
855 return 0;
856}
857
858static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
859 struct spi_transfer *xfer)
860{
861 struct rspi_data *rspi = spi_master_get_devdata(master);
862
863 if (spi->mode & SPI_LOOP) {
864 return qspi_transfer_out_in(rspi, xfer);
865 } else if (xfer->tx_buf && xfer->tx_nbits > SPI_NBITS_SINGLE) {
866 /* Quad or Dual SPI Write */
867 return qspi_transfer_out(rspi, xfer);
868 } else if (xfer->rx_buf && xfer->rx_nbits > SPI_NBITS_SINGLE) {
869 /* Quad or Dual SPI Read */
870 return qspi_transfer_in(rspi, xfer);
871 } else {
872 /* Single SPI Transfer */
873 return qspi_transfer_out_in(rspi, xfer);
874 }
875}
876
877static int rspi_setup(struct spi_device *spi)
878{
879 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
880
881 rspi->max_speed_hz = spi->max_speed_hz;
882
883 rspi->spcmd = SPCMD_SSLKP;
884 if (spi->mode & SPI_CPOL)
885 rspi->spcmd |= SPCMD_CPOL;
886 if (spi->mode & SPI_CPHA)
887 rspi->spcmd |= SPCMD_CPHA;
888
889 /* CMOS output mode and MOSI signal from previous transfer */
890 rspi->sppcr = 0;
891 if (spi->mode & SPI_LOOP)
892 rspi->sppcr |= SPPCR_SPLP;
893
894 set_config_register(rspi, 8);
895
896 return 0;
897}
898
899static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
900{
901 if (xfer->tx_buf)
902 switch (xfer->tx_nbits) {
903 case SPI_NBITS_QUAD:
904 return SPCMD_SPIMOD_QUAD;
905 case SPI_NBITS_DUAL:
906 return SPCMD_SPIMOD_DUAL;
907 default:
908 return 0;
909 }
910 if (xfer->rx_buf)
911 switch (xfer->rx_nbits) {
912 case SPI_NBITS_QUAD:
913 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
914 case SPI_NBITS_DUAL:
915 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
916 default:
917 return 0;
918 }
919
920 return 0;
921}
922
923static int qspi_setup_sequencer(struct rspi_data *rspi,
924 const struct spi_message *msg)
925{
926 const struct spi_transfer *xfer;
927 unsigned int i = 0, len = 0;
928 u16 current_mode = 0xffff, mode;
929
930 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931 mode = qspi_transfer_mode(xfer);
932 if (mode == current_mode) {
933 len += xfer->len;
934 continue;
935 }
936
937 /* Transfer mode change */
938 if (i) {
939 /* Set transfer data length of previous transfer */
940 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
941 }
942
943 if (i >= QSPI_NUM_SPCMD) {
944 dev_err(&msg->spi->dev,
945 "Too many different transfer modes");
946 return -EINVAL;
947 }
948
949 /* Program transfer mode for this transfer */
950 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
951 current_mode = mode;
952 len = xfer->len;
953 i++;
954 }
955 if (i) {
956 /* Set final transfer data length and sequence length */
957 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
958 rspi_write8(rspi, i - 1, RSPI_SPSCR);
959 }
960
961 return 0;
962}
963
964static int rspi_prepare_message(struct spi_master *master,
965 struct spi_message *msg)
966{
967 struct rspi_data *rspi = spi_master_get_devdata(master);
968 int ret;
969
970 if (msg->spi->mode &
971 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
972 /* Setup sequencer for messages with multiple transfer modes */
973 ret = qspi_setup_sequencer(rspi, msg);
974 if (ret < 0)
975 return ret;
976 }
977
978 /* Enable SPI function in master mode */
979 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
980 return 0;
981}
982
983static int rspi_unprepare_message(struct spi_master *master,
984 struct spi_message *msg)
985{
986 struct rspi_data *rspi = spi_master_get_devdata(master);
987
988 /* Disable SPI function */
989 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
990
991 /* Reset sequencer for Single SPI Transfers */
992 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
993 rspi_write8(rspi, 0, RSPI_SPSCR);
994 return 0;
995}
996
997static irqreturn_t rspi_irq_mux(int irq, void *_sr)
998{
999 struct rspi_data *rspi = _sr;
1000 u8 spsr;
1001 irqreturn_t ret = IRQ_NONE;
1002 u8 disable_irq = 0;
1003
1004 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1005 if (spsr & SPSR_SPRF)
1006 disable_irq |= SPCR_SPRIE;
1007 if (spsr & SPSR_SPTEF)
1008 disable_irq |= SPCR_SPTIE;
1009
1010 if (disable_irq) {
1011 ret = IRQ_HANDLED;
1012 rspi_disable_irq(rspi, disable_irq);
1013 wake_up(&rspi->wait);
1014 }
1015
1016 return ret;
1017}
1018
1019static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1020{
1021 struct rspi_data *rspi = _sr;
1022 u8 spsr;
1023
1024 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1025 if (spsr & SPSR_SPRF) {
1026 rspi_disable_irq(rspi, SPCR_SPRIE);
1027 wake_up(&rspi->wait);
1028 return IRQ_HANDLED;
1029 }
1030
1031 return 0;
1032}
1033
1034static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1035{
1036 struct rspi_data *rspi = _sr;
1037 u8 spsr;
1038
1039 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1040 if (spsr & SPSR_SPTEF) {
1041 rspi_disable_irq(rspi, SPCR_SPTIE);
1042 wake_up(&rspi->wait);
1043 return IRQ_HANDLED;
1044 }
1045
1046 return 0;
1047}
1048
1049static int rspi_request_dma(struct rspi_data *rspi,
1050 struct platform_device *pdev)
1051{
1052 const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
1053 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054 dma_cap_mask_t mask;
1055 struct dma_slave_config cfg;
1056 int ret;
1057
1058 if (!res || !rspi_pd)
1059 return 0; /* The driver assumes no error. */
1060
1061 rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
1062
1063 /* If the module receives data by DMAC, it also needs TX DMAC */
1064 if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
1065 dma_cap_zero(mask);
1066 dma_cap_set(DMA_SLAVE, mask);
1067 rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
1068 (void *)rspi_pd->dma_rx_id);
1069 if (rspi->chan_rx) {
1070 cfg.slave_id = rspi_pd->dma_rx_id;
1071 cfg.direction = DMA_DEV_TO_MEM;
1072 cfg.dst_addr = 0;
1073 cfg.src_addr = res->start + RSPI_SPDR;
1074 ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
1075 if (!ret)
1076 dev_info(&pdev->dev, "Use DMA when rx.\n");
1077 else
1078 return ret;
1079 }
1080 }
1081 if (rspi_pd->dma_tx_id) {
1082 dma_cap_zero(mask);
1083 dma_cap_set(DMA_SLAVE, mask);
1084 rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
1085 (void *)rspi_pd->dma_tx_id);
1086 if (rspi->chan_tx) {
1087 cfg.slave_id = rspi_pd->dma_tx_id;
1088 cfg.direction = DMA_MEM_TO_DEV;
1089 cfg.dst_addr = res->start + RSPI_SPDR;
1090 cfg.src_addr = 0;
1091 ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
1092 if (!ret)
1093 dev_info(&pdev->dev, "Use DMA when tx\n");
1094 else
1095 return ret;
1096 }
1097 }
1098
1099 return 0;
1100}
1101
1102static void rspi_release_dma(struct rspi_data *rspi)
1103{
1104 if (rspi->chan_tx)
1105 dma_release_channel(rspi->chan_tx);
1106 if (rspi->chan_rx)
1107 dma_release_channel(rspi->chan_rx);
1108}
1109
1110static int rspi_remove(struct platform_device *pdev)
1111{
1112 struct rspi_data *rspi = platform_get_drvdata(pdev);
1113
1114 rspi_release_dma(rspi);
1115 pm_runtime_disable(&pdev->dev);
1116
1117 return 0;
1118}
1119
1120static const struct spi_ops rspi_ops = {
1121 .set_config_register = rspi_set_config_register,
1122 .transfer_one = rspi_transfer_one,
1123 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1124};
1125
1126static const struct spi_ops rspi_rz_ops = {
1127 .set_config_register = rspi_rz_set_config_register,
1128 .transfer_one = rspi_rz_transfer_one,
1129 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1130};
1131
1132static const struct spi_ops qspi_ops = {
1133 .set_config_register = qspi_set_config_register,
1134 .transfer_one = qspi_transfer_one,
1135 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1136 SPI_TX_DUAL | SPI_TX_QUAD |
1137 SPI_RX_DUAL | SPI_RX_QUAD,
1138};
1139
1140#ifdef CONFIG_OF
1141static const struct of_device_id rspi_of_match[] = {
1142 /* RSPI on legacy SH */
1143 { .compatible = "renesas,rspi", .data = &rspi_ops },
1144 /* RSPI on RZ/A1H */
1145 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1146 /* QSPI on R-Car Gen2 */
1147 { .compatible = "renesas,qspi", .data = &qspi_ops },
1148 { /* sentinel */ }
1149};
1150
1151MODULE_DEVICE_TABLE(of, rspi_of_match);
1152
1153static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1154{
1155 u32 num_cs;
1156 int error;
1157
1158 /* Parse DT properties */
1159 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1160 if (error) {
1161 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1162 return error;
1163 }
1164
1165 master->num_chipselect = num_cs;
1166 return 0;
1167}
1168#else
1169#define rspi_of_match NULL
1170static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1171{
1172 return -EINVAL;
1173}
1174#endif /* CONFIG_OF */
1175
1176static int rspi_request_irq(struct device *dev, unsigned int irq,
1177 irq_handler_t handler, const char *suffix,
1178 void *dev_id)
1179{
1180 const char *base = dev_name(dev);
1181 size_t len = strlen(base) + strlen(suffix) + 2;
1182 char *name = devm_kzalloc(dev, len, GFP_KERNEL);
1183 if (!name)
1184 return -ENOMEM;
1185 snprintf(name, len, "%s:%s", base, suffix);
1186 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1187}
1188
1189static int rspi_probe(struct platform_device *pdev)
1190{
1191 struct resource *res;
1192 struct spi_master *master;
1193 struct rspi_data *rspi;
1194 int ret;
1195 const struct of_device_id *of_id;
1196 const struct rspi_plat_data *rspi_pd;
1197 const struct spi_ops *ops;
1198
1199 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1200 if (master == NULL) {
1201 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1202 return -ENOMEM;
1203 }
1204
1205 of_id = of_match_device(rspi_of_match, &pdev->dev);
1206 if (of_id) {
1207 ops = of_id->data;
1208 ret = rspi_parse_dt(&pdev->dev, master);
1209 if (ret)
1210 goto error1;
1211 } else {
1212 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1213 rspi_pd = dev_get_platdata(&pdev->dev);
1214 if (rspi_pd && rspi_pd->num_chipselect)
1215 master->num_chipselect = rspi_pd->num_chipselect;
1216 else
1217 master->num_chipselect = 2; /* default */
1218 };
1219
1220 /* ops parameter check */
1221 if (!ops->set_config_register) {
1222 dev_err(&pdev->dev, "there is no set_config_register\n");
1223 ret = -ENODEV;
1224 goto error1;
1225 }
1226
1227 rspi = spi_master_get_devdata(master);
1228 platform_set_drvdata(pdev, rspi);
1229 rspi->ops = ops;
1230 rspi->master = master;
1231
1232 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1233 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1234 if (IS_ERR(rspi->addr)) {
1235 ret = PTR_ERR(rspi->addr);
1236 goto error1;
1237 }
1238
1239 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1240 if (IS_ERR(rspi->clk)) {
1241 dev_err(&pdev->dev, "cannot get clock\n");
1242 ret = PTR_ERR(rspi->clk);
1243 goto error1;
1244 }
1245
1246 pm_runtime_enable(&pdev->dev);
1247
1248 init_waitqueue_head(&rspi->wait);
1249
1250 master->bus_num = pdev->id;
1251 master->setup = rspi_setup;
1252 master->auto_runtime_pm = true;
1253 master->transfer_one = ops->transfer_one;
1254 master->prepare_message = rspi_prepare_message;
1255 master->unprepare_message = rspi_unprepare_message;
1256 master->mode_bits = ops->mode_bits;
1257 master->dev.of_node = pdev->dev.of_node;
1258
1259 ret = platform_get_irq_byname(pdev, "rx");
1260 if (ret < 0) {
1261 ret = platform_get_irq_byname(pdev, "mux");
1262 if (ret < 0)
1263 ret = platform_get_irq(pdev, 0);
1264 if (ret >= 0)
1265 rspi->rx_irq = rspi->tx_irq = ret;
1266 } else {
1267 rspi->rx_irq = ret;
1268 ret = platform_get_irq_byname(pdev, "tx");
1269 if (ret >= 0)
1270 rspi->tx_irq = ret;
1271 }
1272 if (ret < 0) {
1273 dev_err(&pdev->dev, "platform_get_irq error\n");
1274 goto error2;
1275 }
1276
1277 if (rspi->rx_irq == rspi->tx_irq) {
1278 /* Single multiplexed interrupt */
1279 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1280 "mux", rspi);
1281 } else {
1282 /* Multi-interrupt mode, only SPRI and SPTI are used */
1283 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1284 "rx", rspi);
1285 if (!ret)
1286 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1287 rspi_irq_tx, "tx", rspi);
1288 }
1289 if (ret < 0) {
1290 dev_err(&pdev->dev, "request_irq error\n");
1291 goto error2;
1292 }
1293
1294 ret = rspi_request_dma(rspi, pdev);
1295 if (ret < 0) {
1296 dev_err(&pdev->dev, "rspi_request_dma failed.\n");
1297 goto error3;
1298 }
1299
1300 ret = devm_spi_register_master(&pdev->dev, master);
1301 if (ret < 0) {
1302 dev_err(&pdev->dev, "spi_register_master error.\n");
1303 goto error3;
1304 }
1305
1306 dev_info(&pdev->dev, "probed\n");
1307
1308 return 0;
1309
1310error3:
1311 rspi_release_dma(rspi);
1312error2:
1313 pm_runtime_disable(&pdev->dev);
1314error1:
1315 spi_master_put(master);
1316
1317 return ret;
1318}
1319
1320static struct platform_device_id spi_driver_ids[] = {
1321 { "rspi", (kernel_ulong_t)&rspi_ops },
1322 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1323 { "qspi", (kernel_ulong_t)&qspi_ops },
1324 {},
1325};
1326
1327MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1328
1329static struct platform_driver rspi_driver = {
1330 .probe = rspi_probe,
1331 .remove = rspi_remove,
1332 .id_table = spi_driver_ids,
1333 .driver = {
1334 .name = "renesas_spi",
1335 .owner = THIS_MODULE,
1336 .of_match_table = of_match_ptr(rspi_of_match),
1337 },
1338};
1339module_platform_driver(rspi_driver);
1340
1341MODULE_DESCRIPTION("Renesas RSPI bus driver");
1342MODULE_LICENSE("GPL v2");
1343MODULE_AUTHOR("Yoshihiro Shimoda");
1344MODULE_ALIAS("platform:rspi");