Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
  1/*
  2 * Driver for Cirrus Logic EP93xx SPI controller.
  3 *
  4 * Copyright (C) 2010-2011 Mika Westerberg
  5 *
  6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
  7 *
  8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
  9 *
 10 * For more information about the SPI controller see documentation on Cirrus
 11 * Logic web site:
 12 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18
 19#include <linux/io.h>
 20#include <linux/clk.h>
 21#include <linux/err.h>
 22#include <linux/delay.h>
 23#include <linux/device.h>
 24#include <linux/dmaengine.h>
 25#include <linux/bitops.h>
 26#include <linux/interrupt.h>
 27#include <linux/module.h>
 28#include <linux/platform_device.h>
 29#include <linux/sched.h>
 30#include <linux/scatterlist.h>
 31#include <linux/spi/spi.h>
 32
 33#include <linux/platform_data/dma-ep93xx.h>
 34#include <linux/platform_data/spi-ep93xx.h>
 35
 36#define SSPCR0			0x0000
 37#define SSPCR0_MODE_SHIFT	6
 38#define SSPCR0_SCR_SHIFT	8
 39
 40#define SSPCR1			0x0004
 41#define SSPCR1_RIE		BIT(0)
 42#define SSPCR1_TIE		BIT(1)
 43#define SSPCR1_RORIE		BIT(2)
 44#define SSPCR1_LBM		BIT(3)
 45#define SSPCR1_SSE		BIT(4)
 46#define SSPCR1_MS		BIT(5)
 47#define SSPCR1_SOD		BIT(6)
 48
 49#define SSPDR			0x0008
 50
 51#define SSPSR			0x000c
 52#define SSPSR_TFE		BIT(0)
 53#define SSPSR_TNF		BIT(1)
 54#define SSPSR_RNE		BIT(2)
 55#define SSPSR_RFF		BIT(3)
 56#define SSPSR_BSY		BIT(4)
 57#define SSPCPSR			0x0010
 58
 59#define SSPIIR			0x0014
 60#define SSPIIR_RIS		BIT(0)
 61#define SSPIIR_TIS		BIT(1)
 62#define SSPIIR_RORIS		BIT(2)
 63#define SSPICR			SSPIIR
 64
 65/* timeout in milliseconds */
 66#define SPI_TIMEOUT		5
 67/* maximum depth of RX/TX FIFO */
 68#define SPI_FIFO_SIZE		8
 69
 70/**
 71 * struct ep93xx_spi - EP93xx SPI controller structure
 72 * @pdev: pointer to platform device
 73 * @clk: clock for the controller
 74 * @regs_base: pointer to ioremap()'d registers
 75 * @sspdr_phys: physical address of the SSPDR register
 76 * @wait: wait here until given transfer is completed
 77 * @current_msg: message that is currently processed (or %NULL if none)
 78 * @tx: current byte in transfer to transmit
 79 * @rx: current byte in transfer to receive
 80 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 81 *              frame decreases this level and sending one frame increases it.
 82 * @dma_rx: RX DMA channel
 83 * @dma_tx: TX DMA channel
 84 * @dma_rx_data: RX parameters passed to the DMA engine
 85 * @dma_tx_data: TX parameters passed to the DMA engine
 86 * @rx_sgt: sg table for RX transfers
 87 * @tx_sgt: sg table for TX transfers
 88 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 89 *            the client
 90 */
 91struct ep93xx_spi {
 92	const struct platform_device	*pdev;
 93	struct clk			*clk;
 94	void __iomem			*regs_base;
 95	unsigned long			sspdr_phys;
 96	struct completion		wait;
 97	struct spi_message		*current_msg;
 98	size_t				tx;
 99	size_t				rx;
100	size_t				fifo_level;
101	struct dma_chan			*dma_rx;
102	struct dma_chan			*dma_tx;
103	struct ep93xx_dma_data		dma_rx_data;
104	struct ep93xx_dma_data		dma_tx_data;
105	struct sg_table			rx_sgt;
106	struct sg_table			tx_sgt;
107	void				*zeropage;
108};
109
110/**
111 * struct ep93xx_spi_chip - SPI device hardware settings
112 * @spi: back pointer to the SPI device
113 * @ops: private chip operations
114 */
115struct ep93xx_spi_chip {
116	const struct spi_device		*spi;
117	struct ep93xx_spi_chip_ops	*ops;
118};
119
120/* converts bits per word to CR0.DSS value */
121#define bits_per_word_to_dss(bpw)	((bpw) - 1)
122
123static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
124				u16 reg, u8 value)
125{
126	writeb(value, espi->regs_base + reg);
127}
128
129static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
130{
131	return readb(spi->regs_base + reg);
132}
133
134static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
135				 u16 reg, u16 value)
136{
137	writew(value, espi->regs_base + reg);
138}
139
140static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
141{
142	return readw(spi->regs_base + reg);
143}
144
145static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
146{
147	u8 regval;
148	int err;
149
150	err = clk_enable(espi->clk);
151	if (err)
152		return err;
153
154	regval = ep93xx_spi_read_u8(espi, SSPCR1);
155	regval |= SSPCR1_SSE;
156	ep93xx_spi_write_u8(espi, SSPCR1, regval);
157
158	return 0;
159}
160
161static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
162{
163	u8 regval;
164
165	regval = ep93xx_spi_read_u8(espi, SSPCR1);
166	regval &= ~SSPCR1_SSE;
167	ep93xx_spi_write_u8(espi, SSPCR1, regval);
168
169	clk_disable(espi->clk);
170}
171
172static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
173{
174	u8 regval;
175
176	regval = ep93xx_spi_read_u8(espi, SSPCR1);
177	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
178	ep93xx_spi_write_u8(espi, SSPCR1, regval);
179}
180
181static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
182{
183	u8 regval;
184
185	regval = ep93xx_spi_read_u8(espi, SSPCR1);
186	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
187	ep93xx_spi_write_u8(espi, SSPCR1, regval);
188}
189
190/**
191 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
192 * @espi: ep93xx SPI controller struct
193 * @rate: desired SPI output clock rate
194 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
195 * @div_scr: pointer to return the scr divider
196 */
197static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
198				    u32 rate, u8 *div_cpsr, u8 *div_scr)
199{
200	struct spi_master *master = platform_get_drvdata(espi->pdev);
201	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
202	int cpsr, scr;
203
204	/*
205	 * Make sure that max value is between values supported by the
206	 * controller. Note that minimum value is already checked in
207	 * ep93xx_spi_transfer_one_message().
208	 */
209	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
210
211	/*
212	 * Calculate divisors so that we can get speed according the
213	 * following formula:
214	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
215	 *
216	 * cpsr must be even number and starts from 2, scr can be any number
217	 * between 0 and 255.
218	 */
219	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
220		for (scr = 0; scr <= 255; scr++) {
221			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
222				*div_scr = (u8)scr;
223				*div_cpsr = (u8)cpsr;
224				return 0;
225			}
226		}
227	}
228
229	return -EINVAL;
230}
231
232static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
233{
234	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
235	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
236
237	if (chip->ops && chip->ops->cs_control)
238		chip->ops->cs_control(spi, value);
239}
240
241/**
242 * ep93xx_spi_setup() - setup an SPI device
243 * @spi: SPI device to setup
244 *
245 * This function sets up SPI device mode, speed etc. Can be called multiple
246 * times for a single device. Returns %0 in case of success, negative error in
247 * case of failure. When this function returns success, the device is
248 * deselected.
249 */
250static int ep93xx_spi_setup(struct spi_device *spi)
251{
252	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
253	struct ep93xx_spi_chip *chip;
254
255	chip = spi_get_ctldata(spi);
256	if (!chip) {
257		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
258			spi->modalias);
259
260		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
261		if (!chip)
262			return -ENOMEM;
263
264		chip->spi = spi;
265		chip->ops = spi->controller_data;
266
267		if (chip->ops && chip->ops->setup) {
268			int ret = chip->ops->setup(spi);
269
270			if (ret) {
271				kfree(chip);
272				return ret;
273			}
274		}
275
276		spi_set_ctldata(spi, chip);
277	}
278
279	ep93xx_spi_cs_control(spi, false);
280	return 0;
281}
282
283/**
284 * ep93xx_spi_cleanup() - cleans up master controller specific state
285 * @spi: SPI device to cleanup
286 *
287 * This function releases master controller specific state for given @spi
288 * device.
289 */
290static void ep93xx_spi_cleanup(struct spi_device *spi)
291{
292	struct ep93xx_spi_chip *chip;
293
294	chip = spi_get_ctldata(spi);
295	if (chip) {
296		if (chip->ops && chip->ops->cleanup)
297			chip->ops->cleanup(spi);
298		spi_set_ctldata(spi, NULL);
299		kfree(chip);
300	}
301}
302
303/**
304 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
305 * @espi: ep93xx SPI controller struct
306 * @chip: chip specific settings
307 * @speed_hz: transfer speed
308 * @bits_per_word: transfer bits_per_word
309 */
310static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
311				 const struct ep93xx_spi_chip *chip,
312				 u32 speed_hz, u8 bits_per_word)
313{
314	u8 dss = bits_per_word_to_dss(bits_per_word);
315	u8 div_cpsr = 0;
316	u8 div_scr = 0;
317	u16 cr0;
318	int err;
319
320	err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
321	if (err)
322		return err;
323
324	cr0 = div_scr << SSPCR0_SCR_SHIFT;
325	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
326	cr0 |= dss;
327
328	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
329		chip->spi->mode, div_cpsr, div_scr, dss);
330	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0);
331
332	ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
333	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
334
335	return 0;
336}
337
338static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
339{
340	if (t->bits_per_word > 8) {
341		u16 tx_val = 0;
342
343		if (t->tx_buf)
344			tx_val = ((u16 *)t->tx_buf)[espi->tx];
345		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
346		espi->tx += sizeof(tx_val);
347	} else {
348		u8 tx_val = 0;
349
350		if (t->tx_buf)
351			tx_val = ((u8 *)t->tx_buf)[espi->tx];
352		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
353		espi->tx += sizeof(tx_val);
354	}
355}
356
357static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
358{
359	if (t->bits_per_word > 8) {
360		u16 rx_val;
361
362		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
363		if (t->rx_buf)
364			((u16 *)t->rx_buf)[espi->rx] = rx_val;
365		espi->rx += sizeof(rx_val);
366	} else {
367		u8 rx_val;
368
369		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
370		if (t->rx_buf)
371			((u8 *)t->rx_buf)[espi->rx] = rx_val;
372		espi->rx += sizeof(rx_val);
373	}
374}
375
376/**
377 * ep93xx_spi_read_write() - perform next RX/TX transfer
378 * @espi: ep93xx SPI controller struct
379 *
380 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
381 * called several times, the whole transfer will be completed. Returns
382 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
383 *
384 * When this function is finished, RX FIFO should be empty and TX FIFO should be
385 * full.
386 */
387static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
388{
389	struct spi_message *msg = espi->current_msg;
390	struct spi_transfer *t = msg->state;
391
392	/* read as long as RX FIFO has frames in it */
393	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
394		ep93xx_do_read(espi, t);
395		espi->fifo_level--;
396	}
397
398	/* write as long as TX FIFO has room */
399	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
400		ep93xx_do_write(espi, t);
401		espi->fifo_level++;
402	}
403
404	if (espi->rx == t->len)
405		return 0;
406
407	return -EINPROGRESS;
408}
409
410static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
411{
412	/*
413	 * Now everything is set up for the current transfer. We prime the TX
414	 * FIFO, enable interrupts, and wait for the transfer to complete.
415	 */
416	if (ep93xx_spi_read_write(espi)) {
417		ep93xx_spi_enable_interrupts(espi);
418		wait_for_completion(&espi->wait);
419	}
420}
421
422/**
423 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
424 * @espi: ep93xx SPI controller struct
425 * @dir: DMA transfer direction
426 *
427 * Function configures the DMA, maps the buffer and prepares the DMA
428 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
429 * in case of failure.
430 */
431static struct dma_async_tx_descriptor *
432ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
433{
434	struct spi_transfer *t = espi->current_msg->state;
435	struct dma_async_tx_descriptor *txd;
436	enum dma_slave_buswidth buswidth;
437	struct dma_slave_config conf;
438	struct scatterlist *sg;
439	struct sg_table *sgt;
440	struct dma_chan *chan;
441	const void *buf, *pbuf;
442	size_t len = t->len;
443	int i, ret, nents;
444
445	if (t->bits_per_word > 8)
446		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
447	else
448		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
449
450	memset(&conf, 0, sizeof(conf));
451	conf.direction = dir;
452
453	if (dir == DMA_DEV_TO_MEM) {
454		chan = espi->dma_rx;
455		buf = t->rx_buf;
456		sgt = &espi->rx_sgt;
457
458		conf.src_addr = espi->sspdr_phys;
459		conf.src_addr_width = buswidth;
460	} else {
461		chan = espi->dma_tx;
462		buf = t->tx_buf;
463		sgt = &espi->tx_sgt;
464
465		conf.dst_addr = espi->sspdr_phys;
466		conf.dst_addr_width = buswidth;
467	}
468
469	ret = dmaengine_slave_config(chan, &conf);
470	if (ret)
471		return ERR_PTR(ret);
472
473	/*
474	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
475	 * because we are using @espi->zeropage to provide a zero RX buffer
476	 * for the TX transfers and we have only allocated one page for that.
477	 *
478	 * For performance reasons we allocate a new sg_table only when
479	 * needed. Otherwise we will re-use the current one. Eventually the
480	 * last sg_table is released in ep93xx_spi_release_dma().
481	 */
482
483	nents = DIV_ROUND_UP(len, PAGE_SIZE);
484	if (nents != sgt->nents) {
485		sg_free_table(sgt);
486
487		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
488		if (ret)
489			return ERR_PTR(ret);
490	}
491
492	pbuf = buf;
493	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
494		size_t bytes = min_t(size_t, len, PAGE_SIZE);
495
496		if (buf) {
497			sg_set_page(sg, virt_to_page(pbuf), bytes,
498				    offset_in_page(pbuf));
499		} else {
500			sg_set_page(sg, virt_to_page(espi->zeropage),
501				    bytes, 0);
502		}
503
504		pbuf += bytes;
505		len -= bytes;
506	}
507
508	if (WARN_ON(len)) {
509		dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len);
510		return ERR_PTR(-EINVAL);
511	}
512
513	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
514	if (!nents)
515		return ERR_PTR(-ENOMEM);
516
517	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
518	if (!txd) {
519		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
520		return ERR_PTR(-ENOMEM);
521	}
522	return txd;
523}
524
525/**
526 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
527 * @espi: ep93xx SPI controller struct
528 * @dir: DMA transfer direction
529 *
530 * Function finishes with the DMA transfer. After this, the DMA buffer is
531 * unmapped.
532 */
533static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
534				  enum dma_transfer_direction dir)
535{
536	struct dma_chan *chan;
537	struct sg_table *sgt;
538
539	if (dir == DMA_DEV_TO_MEM) {
540		chan = espi->dma_rx;
541		sgt = &espi->rx_sgt;
542	} else {
543		chan = espi->dma_tx;
544		sgt = &espi->tx_sgt;
545	}
546
547	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
548}
549
550static void ep93xx_spi_dma_callback(void *callback_param)
551{
552	complete(callback_param);
553}
554
555static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
556{
557	struct spi_message *msg = espi->current_msg;
558	struct dma_async_tx_descriptor *rxd, *txd;
559
560	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
561	if (IS_ERR(rxd)) {
562		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
563		msg->status = PTR_ERR(rxd);
564		return;
565	}
566
567	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
568	if (IS_ERR(txd)) {
569		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
570		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
571		msg->status = PTR_ERR(txd);
572		return;
573	}
574
575	/* We are ready when RX is done */
576	rxd->callback = ep93xx_spi_dma_callback;
577	rxd->callback_param = &espi->wait;
578
579	/* Now submit both descriptors and wait while they finish */
580	dmaengine_submit(rxd);
581	dmaengine_submit(txd);
582
583	dma_async_issue_pending(espi->dma_rx);
584	dma_async_issue_pending(espi->dma_tx);
585
586	wait_for_completion(&espi->wait);
587
588	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
589	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
590}
591
592/**
593 * ep93xx_spi_process_transfer() - processes one SPI transfer
594 * @espi: ep93xx SPI controller struct
595 * @msg: current message
596 * @t: transfer to process
597 *
598 * This function processes one SPI transfer given in @t. Function waits until
599 * transfer is complete (may sleep) and updates @msg->status based on whether
600 * transfer was successfully processed or not.
601 */
602static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
603					struct spi_message *msg,
604					struct spi_transfer *t)
605{
606	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
607	int err;
608
609	msg->state = t;
610
611	err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
612	if (err) {
613		dev_err(&espi->pdev->dev,
614			"failed to setup chip for transfer\n");
615		msg->status = err;
616		return;
617	}
618
619	espi->rx = 0;
620	espi->tx = 0;
621
622	/*
623	 * There is no point of setting up DMA for the transfers which will
624	 * fit into the FIFO and can be transferred with a single interrupt.
625	 * So in these cases we will be using PIO and don't bother for DMA.
626	 */
627	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
628		ep93xx_spi_dma_transfer(espi);
629	else
630		ep93xx_spi_pio_transfer(espi);
631
632	/*
633	 * In case of error during transmit, we bail out from processing
634	 * the message.
635	 */
636	if (msg->status)
637		return;
638
639	msg->actual_length += t->len;
640
641	/*
642	 * After this transfer is finished, perform any possible
643	 * post-transfer actions requested by the protocol driver.
644	 */
645	if (t->delay_usecs) {
646		set_current_state(TASK_UNINTERRUPTIBLE);
647		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
648	}
649	if (t->cs_change) {
650		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
651			/*
652			 * In case protocol driver is asking us to drop the
653			 * chipselect briefly, we let the scheduler to handle
654			 * any "delay" here.
655			 */
656			ep93xx_spi_cs_control(msg->spi, false);
657			cond_resched();
658			ep93xx_spi_cs_control(msg->spi, true);
659		}
660	}
661}
662
663/*
664 * ep93xx_spi_process_message() - process one SPI message
665 * @espi: ep93xx SPI controller struct
666 * @msg: message to process
667 *
668 * This function processes a single SPI message. We go through all transfers in
669 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
670 * asserted during the whole message (unless per transfer cs_change is set).
671 *
672 * @msg->status contains %0 in case of success or negative error code in case of
673 * failure.
674 */
675static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
676				       struct spi_message *msg)
677{
678	unsigned long timeout;
679	struct spi_transfer *t;
680	int err;
681
682	/*
683	 * Enable the SPI controller and its clock.
684	 */
685	err = ep93xx_spi_enable(espi);
686	if (err) {
687		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
688		msg->status = err;
689		return;
690	}
691
692	/*
693	 * Just to be sure: flush any data from RX FIFO.
694	 */
695	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
696	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
697		if (time_after(jiffies, timeout)) {
698			dev_warn(&espi->pdev->dev,
699				 "timeout while flushing RX FIFO\n");
700			msg->status = -ETIMEDOUT;
701			return;
702		}
703		ep93xx_spi_read_u16(espi, SSPDR);
704	}
705
706	/*
707	 * We explicitly handle FIFO level. This way we don't have to check TX
708	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
709	 */
710	espi->fifo_level = 0;
711
712	/*
713	 * Assert the chipselect.
714	 */
715	ep93xx_spi_cs_control(msg->spi, true);
716
717	list_for_each_entry(t, &msg->transfers, transfer_list) {
718		ep93xx_spi_process_transfer(espi, msg, t);
719		if (msg->status)
720			break;
721	}
722
723	/*
724	 * Now the whole message is transferred (or failed for some reason). We
725	 * deselect the device and disable the SPI controller.
726	 */
727	ep93xx_spi_cs_control(msg->spi, false);
728	ep93xx_spi_disable(espi);
729}
730
731static int ep93xx_spi_transfer_one_message(struct spi_master *master,
732					   struct spi_message *msg)
733{
734	struct ep93xx_spi *espi = spi_master_get_devdata(master);
735
736	msg->state = NULL;
737	msg->status = 0;
738	msg->actual_length = 0;
739
740	espi->current_msg = msg;
741	ep93xx_spi_process_message(espi, msg);
742	espi->current_msg = NULL;
743
744	spi_finalize_current_message(master);
745
746	return 0;
747}
748
749static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
750{
751	struct ep93xx_spi *espi = dev_id;
752	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
753
754	/*
755	 * If we got ROR (receive overrun) interrupt we know that something is
756	 * wrong. Just abort the message.
757	 */
758	if (unlikely(irq_status & SSPIIR_RORIS)) {
759		/* clear the overrun interrupt */
760		ep93xx_spi_write_u8(espi, SSPICR, 0);
761		dev_warn(&espi->pdev->dev,
762			 "receive overrun, aborting the message\n");
763		espi->current_msg->status = -EIO;
764	} else {
765		/*
766		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
767		 * simply execute next data transfer.
768		 */
769		if (ep93xx_spi_read_write(espi)) {
770			/*
771			 * In normal case, there still is some processing left
772			 * for current transfer. Let's wait for the next
773			 * interrupt then.
774			 */
775			return IRQ_HANDLED;
776		}
777	}
778
779	/*
780	 * Current transfer is finished, either with error or with success. In
781	 * any case we disable interrupts and notify the worker to handle
782	 * any post-processing of the message.
783	 */
784	ep93xx_spi_disable_interrupts(espi);
785	complete(&espi->wait);
786	return IRQ_HANDLED;
787}
788
789static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
790{
791	if (ep93xx_dma_chan_is_m2p(chan))
792		return false;
793
794	chan->private = filter_param;
795	return true;
796}
797
798static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
799{
800	dma_cap_mask_t mask;
801	int ret;
802
803	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
804	if (!espi->zeropage)
805		return -ENOMEM;
806
807	dma_cap_zero(mask);
808	dma_cap_set(DMA_SLAVE, mask);
809
810	espi->dma_rx_data.port = EP93XX_DMA_SSP;
811	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
812	espi->dma_rx_data.name = "ep93xx-spi-rx";
813
814	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
815					   &espi->dma_rx_data);
816	if (!espi->dma_rx) {
817		ret = -ENODEV;
818		goto fail_free_page;
819	}
820
821	espi->dma_tx_data.port = EP93XX_DMA_SSP;
822	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
823	espi->dma_tx_data.name = "ep93xx-spi-tx";
824
825	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
826					   &espi->dma_tx_data);
827	if (!espi->dma_tx) {
828		ret = -ENODEV;
829		goto fail_release_rx;
830	}
831
832	return 0;
833
834fail_release_rx:
835	dma_release_channel(espi->dma_rx);
836	espi->dma_rx = NULL;
837fail_free_page:
838	free_page((unsigned long)espi->zeropage);
839
840	return ret;
841}
842
843static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
844{
845	if (espi->dma_rx) {
846		dma_release_channel(espi->dma_rx);
847		sg_free_table(&espi->rx_sgt);
848	}
849	if (espi->dma_tx) {
850		dma_release_channel(espi->dma_tx);
851		sg_free_table(&espi->tx_sgt);
852	}
853
854	if (espi->zeropage)
855		free_page((unsigned long)espi->zeropage);
856}
857
858static int ep93xx_spi_probe(struct platform_device *pdev)
859{
860	struct spi_master *master;
861	struct ep93xx_spi_info *info;
862	struct ep93xx_spi *espi;
863	struct resource *res;
864	int irq;
865	int error;
866
867	info = dev_get_platdata(&pdev->dev);
868
869	irq = platform_get_irq(pdev, 0);
870	if (irq < 0) {
871		dev_err(&pdev->dev, "failed to get irq resources\n");
872		return -EBUSY;
873	}
874
875	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
876	if (!res) {
877		dev_err(&pdev->dev, "unable to get iomem resource\n");
878		return -ENODEV;
879	}
880
881	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
882	if (!master)
883		return -ENOMEM;
884
885	master->setup = ep93xx_spi_setup;
886	master->transfer_one_message = ep93xx_spi_transfer_one_message;
887	master->cleanup = ep93xx_spi_cleanup;
888	master->bus_num = pdev->id;
889	master->num_chipselect = info->num_chipselect;
890	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
891	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
892
893	platform_set_drvdata(pdev, master);
894
895	espi = spi_master_get_devdata(master);
896
897	espi->clk = devm_clk_get(&pdev->dev, NULL);
898	if (IS_ERR(espi->clk)) {
899		dev_err(&pdev->dev, "unable to get spi clock\n");
900		error = PTR_ERR(espi->clk);
901		goto fail_release_master;
902	}
903
904	init_completion(&espi->wait);
905
906	/*
907	 * Calculate maximum and minimum supported clock rates
908	 * for the controller.
909	 */
910	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
911	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
912	espi->pdev = pdev;
913
914	espi->sspdr_phys = res->start + SSPDR;
915
916	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
917	if (IS_ERR(espi->regs_base)) {
918		error = PTR_ERR(espi->regs_base);
919		goto fail_release_master;
920	}
921
922	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
923				0, "ep93xx-spi", espi);
924	if (error) {
925		dev_err(&pdev->dev, "failed to request irq\n");
926		goto fail_release_master;
927	}
928
929	if (info->use_dma && ep93xx_spi_setup_dma(espi))
930		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
931
932	/* make sure that the hardware is disabled */
933	ep93xx_spi_write_u8(espi, SSPCR1, 0);
934
935	error = devm_spi_register_master(&pdev->dev, master);
936	if (error) {
937		dev_err(&pdev->dev, "failed to register SPI master\n");
938		goto fail_free_dma;
939	}
940
941	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
942		 (unsigned long)res->start, irq);
943
944	return 0;
945
946fail_free_dma:
947	ep93xx_spi_release_dma(espi);
948fail_release_master:
949	spi_master_put(master);
950
951	return error;
952}
953
954static int ep93xx_spi_remove(struct platform_device *pdev)
955{
956	struct spi_master *master = platform_get_drvdata(pdev);
957	struct ep93xx_spi *espi = spi_master_get_devdata(master);
958
959	ep93xx_spi_release_dma(espi);
960
961	return 0;
962}
963
964static struct platform_driver ep93xx_spi_driver = {
965	.driver		= {
966		.name	= "ep93xx-spi",
 
967	},
968	.probe		= ep93xx_spi_probe,
969	.remove		= ep93xx_spi_remove,
970};
971module_platform_driver(ep93xx_spi_driver);
972
973MODULE_DESCRIPTION("EP93xx SPI Controller driver");
974MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
975MODULE_LICENSE("GPL");
976MODULE_ALIAS("platform:ep93xx-spi");
  1/*
  2 * Driver for Cirrus Logic EP93xx SPI controller.
  3 *
  4 * Copyright (C) 2010-2011 Mika Westerberg
  5 *
  6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
  7 *
  8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
  9 *
 10 * For more information about the SPI controller see documentation on Cirrus
 11 * Logic web site:
 12 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 13 *
 14 * This program is free software; you can redistribute it and/or modify
 15 * it under the terms of the GNU General Public License version 2 as
 16 * published by the Free Software Foundation.
 17 */
 18
 19#include <linux/io.h>
 20#include <linux/clk.h>
 21#include <linux/err.h>
 22#include <linux/delay.h>
 23#include <linux/device.h>
 24#include <linux/dmaengine.h>
 25#include <linux/bitops.h>
 26#include <linux/interrupt.h>
 27#include <linux/module.h>
 28#include <linux/platform_device.h>
 29#include <linux/sched.h>
 30#include <linux/scatterlist.h>
 31#include <linux/spi/spi.h>
 32
 33#include <linux/platform_data/dma-ep93xx.h>
 34#include <linux/platform_data/spi-ep93xx.h>
 35
 36#define SSPCR0			0x0000
 37#define SSPCR0_MODE_SHIFT	6
 38#define SSPCR0_SCR_SHIFT	8
 39
 40#define SSPCR1			0x0004
 41#define SSPCR1_RIE		BIT(0)
 42#define SSPCR1_TIE		BIT(1)
 43#define SSPCR1_RORIE		BIT(2)
 44#define SSPCR1_LBM		BIT(3)
 45#define SSPCR1_SSE		BIT(4)
 46#define SSPCR1_MS		BIT(5)
 47#define SSPCR1_SOD		BIT(6)
 48
 49#define SSPDR			0x0008
 50
 51#define SSPSR			0x000c
 52#define SSPSR_TFE		BIT(0)
 53#define SSPSR_TNF		BIT(1)
 54#define SSPSR_RNE		BIT(2)
 55#define SSPSR_RFF		BIT(3)
 56#define SSPSR_BSY		BIT(4)
 57#define SSPCPSR			0x0010
 58
 59#define SSPIIR			0x0014
 60#define SSPIIR_RIS		BIT(0)
 61#define SSPIIR_TIS		BIT(1)
 62#define SSPIIR_RORIS		BIT(2)
 63#define SSPICR			SSPIIR
 64
 65/* timeout in milliseconds */
 66#define SPI_TIMEOUT		5
 67/* maximum depth of RX/TX FIFO */
 68#define SPI_FIFO_SIZE		8
 69
 70/**
 71 * struct ep93xx_spi - EP93xx SPI controller structure
 72 * @pdev: pointer to platform device
 73 * @clk: clock for the controller
 74 * @regs_base: pointer to ioremap()'d registers
 75 * @sspdr_phys: physical address of the SSPDR register
 76 * @wait: wait here until given transfer is completed
 77 * @current_msg: message that is currently processed (or %NULL if none)
 78 * @tx: current byte in transfer to transmit
 79 * @rx: current byte in transfer to receive
 80 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 81 *              frame decreases this level and sending one frame increases it.
 82 * @dma_rx: RX DMA channel
 83 * @dma_tx: TX DMA channel
 84 * @dma_rx_data: RX parameters passed to the DMA engine
 85 * @dma_tx_data: TX parameters passed to the DMA engine
 86 * @rx_sgt: sg table for RX transfers
 87 * @tx_sgt: sg table for TX transfers
 88 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 89 *            the client
 90 */
 91struct ep93xx_spi {
 92	const struct platform_device	*pdev;
 93	struct clk			*clk;
 94	void __iomem			*regs_base;
 95	unsigned long			sspdr_phys;
 96	struct completion		wait;
 97	struct spi_message		*current_msg;
 98	size_t				tx;
 99	size_t				rx;
100	size_t				fifo_level;
101	struct dma_chan			*dma_rx;
102	struct dma_chan			*dma_tx;
103	struct ep93xx_dma_data		dma_rx_data;
104	struct ep93xx_dma_data		dma_tx_data;
105	struct sg_table			rx_sgt;
106	struct sg_table			tx_sgt;
107	void				*zeropage;
108};
109
110/**
111 * struct ep93xx_spi_chip - SPI device hardware settings
112 * @spi: back pointer to the SPI device
113 * @ops: private chip operations
114 */
115struct ep93xx_spi_chip {
116	const struct spi_device		*spi;
117	struct ep93xx_spi_chip_ops	*ops;
118};
119
120/* converts bits per word to CR0.DSS value */
121#define bits_per_word_to_dss(bpw)	((bpw) - 1)
122
123static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
124				u16 reg, u8 value)
125{
126	writeb(value, espi->regs_base + reg);
127}
128
129static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
130{
131	return readb(spi->regs_base + reg);
132}
133
134static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
135				 u16 reg, u16 value)
136{
137	writew(value, espi->regs_base + reg);
138}
139
140static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
141{
142	return readw(spi->regs_base + reg);
143}
144
145static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
146{
147	u8 regval;
148	int err;
149
150	err = clk_enable(espi->clk);
151	if (err)
152		return err;
153
154	regval = ep93xx_spi_read_u8(espi, SSPCR1);
155	regval |= SSPCR1_SSE;
156	ep93xx_spi_write_u8(espi, SSPCR1, regval);
157
158	return 0;
159}
160
161static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
162{
163	u8 regval;
164
165	regval = ep93xx_spi_read_u8(espi, SSPCR1);
166	regval &= ~SSPCR1_SSE;
167	ep93xx_spi_write_u8(espi, SSPCR1, regval);
168
169	clk_disable(espi->clk);
170}
171
172static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
173{
174	u8 regval;
175
176	regval = ep93xx_spi_read_u8(espi, SSPCR1);
177	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
178	ep93xx_spi_write_u8(espi, SSPCR1, regval);
179}
180
181static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
182{
183	u8 regval;
184
185	regval = ep93xx_spi_read_u8(espi, SSPCR1);
186	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
187	ep93xx_spi_write_u8(espi, SSPCR1, regval);
188}
189
190/**
191 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
192 * @espi: ep93xx SPI controller struct
193 * @rate: desired SPI output clock rate
194 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
195 * @div_scr: pointer to return the scr divider
196 */
197static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
198				    u32 rate, u8 *div_cpsr, u8 *div_scr)
199{
200	struct spi_master *master = platform_get_drvdata(espi->pdev);
201	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
202	int cpsr, scr;
203
204	/*
205	 * Make sure that max value is between values supported by the
206	 * controller. Note that minimum value is already checked in
207	 * ep93xx_spi_transfer_one_message().
208	 */
209	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
210
211	/*
212	 * Calculate divisors so that we can get speed according the
213	 * following formula:
214	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
215	 *
216	 * cpsr must be even number and starts from 2, scr can be any number
217	 * between 0 and 255.
218	 */
219	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
220		for (scr = 0; scr <= 255; scr++) {
221			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
222				*div_scr = (u8)scr;
223				*div_cpsr = (u8)cpsr;
224				return 0;
225			}
226		}
227	}
228
229	return -EINVAL;
230}
231
232static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
233{
234	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
235	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
236
237	if (chip->ops && chip->ops->cs_control)
238		chip->ops->cs_control(spi, value);
239}
240
241/**
242 * ep93xx_spi_setup() - setup an SPI device
243 * @spi: SPI device to setup
244 *
245 * This function sets up SPI device mode, speed etc. Can be called multiple
246 * times for a single device. Returns %0 in case of success, negative error in
247 * case of failure. When this function returns success, the device is
248 * deselected.
249 */
250static int ep93xx_spi_setup(struct spi_device *spi)
251{
252	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
253	struct ep93xx_spi_chip *chip;
254
255	chip = spi_get_ctldata(spi);
256	if (!chip) {
257		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
258			spi->modalias);
259
260		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
261		if (!chip)
262			return -ENOMEM;
263
264		chip->spi = spi;
265		chip->ops = spi->controller_data;
266
267		if (chip->ops && chip->ops->setup) {
268			int ret = chip->ops->setup(spi);
 
269			if (ret) {
270				kfree(chip);
271				return ret;
272			}
273		}
274
275		spi_set_ctldata(spi, chip);
276	}
277
278	ep93xx_spi_cs_control(spi, false);
279	return 0;
280}
281
282/**
283 * ep93xx_spi_cleanup() - cleans up master controller specific state
284 * @spi: SPI device to cleanup
285 *
286 * This function releases master controller specific state for given @spi
287 * device.
288 */
289static void ep93xx_spi_cleanup(struct spi_device *spi)
290{
291	struct ep93xx_spi_chip *chip;
292
293	chip = spi_get_ctldata(spi);
294	if (chip) {
295		if (chip->ops && chip->ops->cleanup)
296			chip->ops->cleanup(spi);
297		spi_set_ctldata(spi, NULL);
298		kfree(chip);
299	}
300}
301
302/**
303 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
304 * @espi: ep93xx SPI controller struct
305 * @chip: chip specific settings
306 * @speed_hz: transfer speed
307 * @bits_per_word: transfer bits_per_word
308 */
309static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
310				 const struct ep93xx_spi_chip *chip,
311				 u32 speed_hz, u8 bits_per_word)
312{
313	u8 dss = bits_per_word_to_dss(bits_per_word);
314	u8 div_cpsr = 0;
315	u8 div_scr = 0;
316	u16 cr0;
317	int err;
318
319	err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
320	if (err)
321		return err;
322
323	cr0 = div_scr << SSPCR0_SCR_SHIFT;
324	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
325	cr0 |= dss;
326
327	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
328		chip->spi->mode, div_cpsr, div_scr, dss);
329	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0);
330
331	ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
332	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
333
334	return 0;
335}
336
337static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
338{
339	if (t->bits_per_word > 8) {
340		u16 tx_val = 0;
341
342		if (t->tx_buf)
343			tx_val = ((u16 *)t->tx_buf)[espi->tx];
344		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
345		espi->tx += sizeof(tx_val);
346	} else {
347		u8 tx_val = 0;
348
349		if (t->tx_buf)
350			tx_val = ((u8 *)t->tx_buf)[espi->tx];
351		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
352		espi->tx += sizeof(tx_val);
353	}
354}
355
356static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
357{
358	if (t->bits_per_word > 8) {
359		u16 rx_val;
360
361		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
362		if (t->rx_buf)
363			((u16 *)t->rx_buf)[espi->rx] = rx_val;
364		espi->rx += sizeof(rx_val);
365	} else {
366		u8 rx_val;
367
368		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
369		if (t->rx_buf)
370			((u8 *)t->rx_buf)[espi->rx] = rx_val;
371		espi->rx += sizeof(rx_val);
372	}
373}
374
375/**
376 * ep93xx_spi_read_write() - perform next RX/TX transfer
377 * @espi: ep93xx SPI controller struct
378 *
379 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
380 * called several times, the whole transfer will be completed. Returns
381 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
382 *
383 * When this function is finished, RX FIFO should be empty and TX FIFO should be
384 * full.
385 */
386static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
387{
388	struct spi_message *msg = espi->current_msg;
389	struct spi_transfer *t = msg->state;
390
391	/* read as long as RX FIFO has frames in it */
392	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
393		ep93xx_do_read(espi, t);
394		espi->fifo_level--;
395	}
396
397	/* write as long as TX FIFO has room */
398	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
399		ep93xx_do_write(espi, t);
400		espi->fifo_level++;
401	}
402
403	if (espi->rx == t->len)
404		return 0;
405
406	return -EINPROGRESS;
407}
408
409static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
410{
411	/*
412	 * Now everything is set up for the current transfer. We prime the TX
413	 * FIFO, enable interrupts, and wait for the transfer to complete.
414	 */
415	if (ep93xx_spi_read_write(espi)) {
416		ep93xx_spi_enable_interrupts(espi);
417		wait_for_completion(&espi->wait);
418	}
419}
420
421/**
422 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
423 * @espi: ep93xx SPI controller struct
424 * @dir: DMA transfer direction
425 *
426 * Function configures the DMA, maps the buffer and prepares the DMA
427 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
428 * in case of failure.
429 */
430static struct dma_async_tx_descriptor *
431ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
432{
433	struct spi_transfer *t = espi->current_msg->state;
434	struct dma_async_tx_descriptor *txd;
435	enum dma_slave_buswidth buswidth;
436	struct dma_slave_config conf;
437	struct scatterlist *sg;
438	struct sg_table *sgt;
439	struct dma_chan *chan;
440	const void *buf, *pbuf;
441	size_t len = t->len;
442	int i, ret, nents;
443
444	if (t->bits_per_word > 8)
445		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
446	else
447		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
448
449	memset(&conf, 0, sizeof(conf));
450	conf.direction = dir;
451
452	if (dir == DMA_DEV_TO_MEM) {
453		chan = espi->dma_rx;
454		buf = t->rx_buf;
455		sgt = &espi->rx_sgt;
456
457		conf.src_addr = espi->sspdr_phys;
458		conf.src_addr_width = buswidth;
459	} else {
460		chan = espi->dma_tx;
461		buf = t->tx_buf;
462		sgt = &espi->tx_sgt;
463
464		conf.dst_addr = espi->sspdr_phys;
465		conf.dst_addr_width = buswidth;
466	}
467
468	ret = dmaengine_slave_config(chan, &conf);
469	if (ret)
470		return ERR_PTR(ret);
471
472	/*
473	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
474	 * because we are using @espi->zeropage to provide a zero RX buffer
475	 * for the TX transfers and we have only allocated one page for that.
476	 *
477	 * For performance reasons we allocate a new sg_table only when
478	 * needed. Otherwise we will re-use the current one. Eventually the
479	 * last sg_table is released in ep93xx_spi_release_dma().
480	 */
481
482	nents = DIV_ROUND_UP(len, PAGE_SIZE);
483	if (nents != sgt->nents) {
484		sg_free_table(sgt);
485
486		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
487		if (ret)
488			return ERR_PTR(ret);
489	}
490
491	pbuf = buf;
492	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
493		size_t bytes = min_t(size_t, len, PAGE_SIZE);
494
495		if (buf) {
496			sg_set_page(sg, virt_to_page(pbuf), bytes,
497				    offset_in_page(pbuf));
498		} else {
499			sg_set_page(sg, virt_to_page(espi->zeropage),
500				    bytes, 0);
501		}
502
503		pbuf += bytes;
504		len -= bytes;
505	}
506
507	if (WARN_ON(len)) {
508		dev_warn(&espi->pdev->dev, "len = %zu expected 0!\n", len);
509		return ERR_PTR(-EINVAL);
510	}
511
512	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
513	if (!nents)
514		return ERR_PTR(-ENOMEM);
515
516	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
517	if (!txd) {
518		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
519		return ERR_PTR(-ENOMEM);
520	}
521	return txd;
522}
523
524/**
525 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
526 * @espi: ep93xx SPI controller struct
527 * @dir: DMA transfer direction
528 *
529 * Function finishes with the DMA transfer. After this, the DMA buffer is
530 * unmapped.
531 */
532static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
533				  enum dma_transfer_direction dir)
534{
535	struct dma_chan *chan;
536	struct sg_table *sgt;
537
538	if (dir == DMA_DEV_TO_MEM) {
539		chan = espi->dma_rx;
540		sgt = &espi->rx_sgt;
541	} else {
542		chan = espi->dma_tx;
543		sgt = &espi->tx_sgt;
544	}
545
546	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
547}
548
549static void ep93xx_spi_dma_callback(void *callback_param)
550{
551	complete(callback_param);
552}
553
554static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
555{
556	struct spi_message *msg = espi->current_msg;
557	struct dma_async_tx_descriptor *rxd, *txd;
558
559	rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
560	if (IS_ERR(rxd)) {
561		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
562		msg->status = PTR_ERR(rxd);
563		return;
564	}
565
566	txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
567	if (IS_ERR(txd)) {
568		ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
569		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
570		msg->status = PTR_ERR(txd);
571		return;
572	}
573
574	/* We are ready when RX is done */
575	rxd->callback = ep93xx_spi_dma_callback;
576	rxd->callback_param = &espi->wait;
577
578	/* Now submit both descriptors and wait while they finish */
579	dmaengine_submit(rxd);
580	dmaengine_submit(txd);
581
582	dma_async_issue_pending(espi->dma_rx);
583	dma_async_issue_pending(espi->dma_tx);
584
585	wait_for_completion(&espi->wait);
586
587	ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
588	ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
589}
590
591/**
592 * ep93xx_spi_process_transfer() - processes one SPI transfer
593 * @espi: ep93xx SPI controller struct
594 * @msg: current message
595 * @t: transfer to process
596 *
597 * This function processes one SPI transfer given in @t. Function waits until
598 * transfer is complete (may sleep) and updates @msg->status based on whether
599 * transfer was successfully processed or not.
600 */
601static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
602					struct spi_message *msg,
603					struct spi_transfer *t)
604{
605	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
606	int err;
607
608	msg->state = t;
609
610	err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
611	if (err) {
612		dev_err(&espi->pdev->dev,
613			"failed to setup chip for transfer\n");
614		msg->status = err;
615		return;
616	}
617
618	espi->rx = 0;
619	espi->tx = 0;
620
621	/*
622	 * There is no point of setting up DMA for the transfers which will
623	 * fit into the FIFO and can be transferred with a single interrupt.
624	 * So in these cases we will be using PIO and don't bother for DMA.
625	 */
626	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
627		ep93xx_spi_dma_transfer(espi);
628	else
629		ep93xx_spi_pio_transfer(espi);
630
631	/*
632	 * In case of error during transmit, we bail out from processing
633	 * the message.
634	 */
635	if (msg->status)
636		return;
637
638	msg->actual_length += t->len;
639
640	/*
641	 * After this transfer is finished, perform any possible
642	 * post-transfer actions requested by the protocol driver.
643	 */
644	if (t->delay_usecs) {
645		set_current_state(TASK_UNINTERRUPTIBLE);
646		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
647	}
648	if (t->cs_change) {
649		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
650			/*
651			 * In case protocol driver is asking us to drop the
652			 * chipselect briefly, we let the scheduler to handle
653			 * any "delay" here.
654			 */
655			ep93xx_spi_cs_control(msg->spi, false);
656			cond_resched();
657			ep93xx_spi_cs_control(msg->spi, true);
658		}
659	}
660}
661
662/*
663 * ep93xx_spi_process_message() - process one SPI message
664 * @espi: ep93xx SPI controller struct
665 * @msg: message to process
666 *
667 * This function processes a single SPI message. We go through all transfers in
668 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
669 * asserted during the whole message (unless per transfer cs_change is set).
670 *
671 * @msg->status contains %0 in case of success or negative error code in case of
672 * failure.
673 */
674static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
675				       struct spi_message *msg)
676{
677	unsigned long timeout;
678	struct spi_transfer *t;
679	int err;
680
681	/*
682	 * Enable the SPI controller and its clock.
683	 */
684	err = ep93xx_spi_enable(espi);
685	if (err) {
686		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
687		msg->status = err;
688		return;
689	}
690
691	/*
692	 * Just to be sure: flush any data from RX FIFO.
693	 */
694	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
695	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
696		if (time_after(jiffies, timeout)) {
697			dev_warn(&espi->pdev->dev,
698				 "timeout while flushing RX FIFO\n");
699			msg->status = -ETIMEDOUT;
700			return;
701		}
702		ep93xx_spi_read_u16(espi, SSPDR);
703	}
704
705	/*
706	 * We explicitly handle FIFO level. This way we don't have to check TX
707	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
708	 */
709	espi->fifo_level = 0;
710
711	/*
712	 * Assert the chipselect.
713	 */
714	ep93xx_spi_cs_control(msg->spi, true);
715
716	list_for_each_entry(t, &msg->transfers, transfer_list) {
717		ep93xx_spi_process_transfer(espi, msg, t);
718		if (msg->status)
719			break;
720	}
721
722	/*
723	 * Now the whole message is transferred (or failed for some reason). We
724	 * deselect the device and disable the SPI controller.
725	 */
726	ep93xx_spi_cs_control(msg->spi, false);
727	ep93xx_spi_disable(espi);
728}
729
730static int ep93xx_spi_transfer_one_message(struct spi_master *master,
731					   struct spi_message *msg)
732{
733	struct ep93xx_spi *espi = spi_master_get_devdata(master);
734
735	msg->state = NULL;
736	msg->status = 0;
737	msg->actual_length = 0;
738
739	espi->current_msg = msg;
740	ep93xx_spi_process_message(espi, msg);
741	espi->current_msg = NULL;
742
743	spi_finalize_current_message(master);
744
745	return 0;
746}
747
748static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
749{
750	struct ep93xx_spi *espi = dev_id;
751	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
752
753	/*
754	 * If we got ROR (receive overrun) interrupt we know that something is
755	 * wrong. Just abort the message.
756	 */
757	if (unlikely(irq_status & SSPIIR_RORIS)) {
758		/* clear the overrun interrupt */
759		ep93xx_spi_write_u8(espi, SSPICR, 0);
760		dev_warn(&espi->pdev->dev,
761			 "receive overrun, aborting the message\n");
762		espi->current_msg->status = -EIO;
763	} else {
764		/*
765		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
766		 * simply execute next data transfer.
767		 */
768		if (ep93xx_spi_read_write(espi)) {
769			/*
770			 * In normal case, there still is some processing left
771			 * for current transfer. Let's wait for the next
772			 * interrupt then.
773			 */
774			return IRQ_HANDLED;
775		}
776	}
777
778	/*
779	 * Current transfer is finished, either with error or with success. In
780	 * any case we disable interrupts and notify the worker to handle
781	 * any post-processing of the message.
782	 */
783	ep93xx_spi_disable_interrupts(espi);
784	complete(&espi->wait);
785	return IRQ_HANDLED;
786}
787
788static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
789{
790	if (ep93xx_dma_chan_is_m2p(chan))
791		return false;
792
793	chan->private = filter_param;
794	return true;
795}
796
797static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
798{
799	dma_cap_mask_t mask;
800	int ret;
801
802	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
803	if (!espi->zeropage)
804		return -ENOMEM;
805
806	dma_cap_zero(mask);
807	dma_cap_set(DMA_SLAVE, mask);
808
809	espi->dma_rx_data.port = EP93XX_DMA_SSP;
810	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
811	espi->dma_rx_data.name = "ep93xx-spi-rx";
812
813	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
814					   &espi->dma_rx_data);
815	if (!espi->dma_rx) {
816		ret = -ENODEV;
817		goto fail_free_page;
818	}
819
820	espi->dma_tx_data.port = EP93XX_DMA_SSP;
821	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
822	espi->dma_tx_data.name = "ep93xx-spi-tx";
823
824	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
825					   &espi->dma_tx_data);
826	if (!espi->dma_tx) {
827		ret = -ENODEV;
828		goto fail_release_rx;
829	}
830
831	return 0;
832
833fail_release_rx:
834	dma_release_channel(espi->dma_rx);
835	espi->dma_rx = NULL;
836fail_free_page:
837	free_page((unsigned long)espi->zeropage);
838
839	return ret;
840}
841
842static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
843{
844	if (espi->dma_rx) {
845		dma_release_channel(espi->dma_rx);
846		sg_free_table(&espi->rx_sgt);
847	}
848	if (espi->dma_tx) {
849		dma_release_channel(espi->dma_tx);
850		sg_free_table(&espi->tx_sgt);
851	}
852
853	if (espi->zeropage)
854		free_page((unsigned long)espi->zeropage);
855}
856
857static int ep93xx_spi_probe(struct platform_device *pdev)
858{
859	struct spi_master *master;
860	struct ep93xx_spi_info *info;
861	struct ep93xx_spi *espi;
862	struct resource *res;
863	int irq;
864	int error;
865
866	info = dev_get_platdata(&pdev->dev);
867
868	irq = platform_get_irq(pdev, 0);
869	if (irq < 0) {
870		dev_err(&pdev->dev, "failed to get irq resources\n");
871		return -EBUSY;
872	}
873
874	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
875	if (!res) {
876		dev_err(&pdev->dev, "unable to get iomem resource\n");
877		return -ENODEV;
878	}
879
880	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
881	if (!master)
882		return -ENOMEM;
883
884	master->setup = ep93xx_spi_setup;
885	master->transfer_one_message = ep93xx_spi_transfer_one_message;
886	master->cleanup = ep93xx_spi_cleanup;
887	master->bus_num = pdev->id;
888	master->num_chipselect = info->num_chipselect;
889	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
890	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
891
892	platform_set_drvdata(pdev, master);
893
894	espi = spi_master_get_devdata(master);
895
896	espi->clk = devm_clk_get(&pdev->dev, NULL);
897	if (IS_ERR(espi->clk)) {
898		dev_err(&pdev->dev, "unable to get spi clock\n");
899		error = PTR_ERR(espi->clk);
900		goto fail_release_master;
901	}
902
903	init_completion(&espi->wait);
904
905	/*
906	 * Calculate maximum and minimum supported clock rates
907	 * for the controller.
908	 */
909	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
910	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
911	espi->pdev = pdev;
912
913	espi->sspdr_phys = res->start + SSPDR;
914
915	espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
916	if (IS_ERR(espi->regs_base)) {
917		error = PTR_ERR(espi->regs_base);
918		goto fail_release_master;
919	}
920
921	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
922				0, "ep93xx-spi", espi);
923	if (error) {
924		dev_err(&pdev->dev, "failed to request irq\n");
925		goto fail_release_master;
926	}
927
928	if (info->use_dma && ep93xx_spi_setup_dma(espi))
929		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
930
931	/* make sure that the hardware is disabled */
932	ep93xx_spi_write_u8(espi, SSPCR1, 0);
933
934	error = devm_spi_register_master(&pdev->dev, master);
935	if (error) {
936		dev_err(&pdev->dev, "failed to register SPI master\n");
937		goto fail_free_dma;
938	}
939
940	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
941		 (unsigned long)res->start, irq);
942
943	return 0;
944
945fail_free_dma:
946	ep93xx_spi_release_dma(espi);
947fail_release_master:
948	spi_master_put(master);
949
950	return error;
951}
952
953static int ep93xx_spi_remove(struct platform_device *pdev)
954{
955	struct spi_master *master = platform_get_drvdata(pdev);
956	struct ep93xx_spi *espi = spi_master_get_devdata(master);
957
958	ep93xx_spi_release_dma(espi);
959
960	return 0;
961}
962
963static struct platform_driver ep93xx_spi_driver = {
964	.driver		= {
965		.name	= "ep93xx-spi",
966		.owner	= THIS_MODULE,
967	},
968	.probe		= ep93xx_spi_probe,
969	.remove		= ep93xx_spi_remove,
970};
971module_platform_driver(ep93xx_spi_driver);
972
973MODULE_DESCRIPTION("EP93xx SPI Controller driver");
974MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
975MODULE_LICENSE("GPL");
976MODULE_ALIAS("platform:ep93xx-spi");