Loading...
1/*
2 * Derived from arch/i386/kernel/irq.c
3 * Copyright (C) 1992 Linus Torvalds
4 * Adapted from arch/i386 by Gary Thomas
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Updated and modified by Cort Dougan <cort@fsmlabs.com>
7 * Copyright (C) 1996-2001 Cort Dougan
8 * Adapted for Power Macintosh by Paul Mackerras
9 * Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 *
16 * This file contains the code used to make IRQ descriptions in the
17 * device tree to actual irq numbers on an interrupt controller
18 * driver.
19 */
20
21#include <linux/device.h>
22#include <linux/errno.h>
23#include <linux/list.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/of_irq.h>
27#include <linux/string.h>
28#include <linux/slab.h>
29
30/**
31 * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
32 * @dev: Device node of the device whose interrupt is to be mapped
33 * @index: Index of the interrupt to map
34 *
35 * This function is a wrapper that chains of_irq_parse_one() and
36 * irq_create_of_mapping() to make things easier to callers
37 */
38unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
39{
40 struct of_phandle_args oirq;
41
42 if (of_irq_parse_one(dev, index, &oirq))
43 return 0;
44
45 return irq_create_of_mapping(&oirq);
46}
47EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
48
49/**
50 * of_irq_find_parent - Given a device node, find its interrupt parent node
51 * @child: pointer to device node
52 *
53 * Returns a pointer to the interrupt parent node, or NULL if the interrupt
54 * parent could not be determined.
55 */
56struct device_node *of_irq_find_parent(struct device_node *child)
57{
58 struct device_node *p;
59 const __be32 *parp;
60
61 if (!of_node_get(child))
62 return NULL;
63
64 do {
65 parp = of_get_property(child, "interrupt-parent", NULL);
66 if (parp == NULL)
67 p = of_get_parent(child);
68 else {
69 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
70 p = of_node_get(of_irq_dflt_pic);
71 else
72 p = of_find_node_by_phandle(be32_to_cpup(parp));
73 }
74 of_node_put(child);
75 child = p;
76 } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
77
78 return p;
79}
80EXPORT_SYMBOL_GPL(of_irq_find_parent);
81
82/**
83 * of_irq_parse_raw - Low level interrupt tree parsing
84 * @parent: the device interrupt parent
85 * @addr: address specifier (start of "reg" property of the device) in be32 format
86 * @out_irq: structure of_irq updated by this function
87 *
88 * Returns 0 on success and a negative number on error
89 *
90 * This function is a low-level interrupt tree walking function. It
91 * can be used to do a partial walk with synthetized reg and interrupts
92 * properties, for example when resolving PCI interrupts when no device
93 * node exist for the parent. It takes an interrupt specifier structure as
94 * input, walks the tree looking for any interrupt-map properties, translates
95 * the specifier for each map, and then returns the translated map.
96 */
97int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
98{
99 struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
100 __be32 initial_match_array[MAX_PHANDLE_ARGS];
101 const __be32 *match_array = initial_match_array;
102 const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
103 u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
104 int imaplen, match, i;
105
106#ifdef DEBUG
107 of_print_phandle_args("of_irq_parse_raw: ", out_irq);
108#endif
109
110 ipar = of_node_get(out_irq->np);
111
112 /* First get the #interrupt-cells property of the current cursor
113 * that tells us how to interpret the passed-in intspec. If there
114 * is none, we are nice and just walk up the tree
115 */
116 do {
117 tmp = of_get_property(ipar, "#interrupt-cells", NULL);
118 if (tmp != NULL) {
119 intsize = be32_to_cpu(*tmp);
120 break;
121 }
122 tnode = ipar;
123 ipar = of_irq_find_parent(ipar);
124 of_node_put(tnode);
125 } while (ipar);
126 if (ipar == NULL) {
127 pr_debug(" -> no parent found !\n");
128 goto fail;
129 }
130
131 pr_debug("of_irq_parse_raw: ipar=%s, size=%d\n", of_node_full_name(ipar), intsize);
132
133 if (out_irq->args_count != intsize)
134 return -EINVAL;
135
136 /* Look for this #address-cells. We have to implement the old linux
137 * trick of looking for the parent here as some device-trees rely on it
138 */
139 old = of_node_get(ipar);
140 do {
141 tmp = of_get_property(old, "#address-cells", NULL);
142 tnode = of_get_parent(old);
143 of_node_put(old);
144 old = tnode;
145 } while (old && tmp == NULL);
146 of_node_put(old);
147 old = NULL;
148 addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
149
150 pr_debug(" -> addrsize=%d\n", addrsize);
151
152 /* Range check so that the temporary buffer doesn't overflow */
153 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS))
154 goto fail;
155
156 /* Precalculate the match array - this simplifies match loop */
157 for (i = 0; i < addrsize; i++)
158 initial_match_array[i] = addr ? addr[i] : 0;
159 for (i = 0; i < intsize; i++)
160 initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
161
162 /* Now start the actual "proper" walk of the interrupt tree */
163 while (ipar != NULL) {
164 /* Now check if cursor is an interrupt-controller and if it is
165 * then we are done
166 */
167 if (of_get_property(ipar, "interrupt-controller", NULL) !=
168 NULL) {
169 pr_debug(" -> got it !\n");
170 return 0;
171 }
172
173 /*
174 * interrupt-map parsing does not work without a reg
175 * property when #address-cells != 0
176 */
177 if (addrsize && !addr) {
178 pr_debug(" -> no reg passed in when needed !\n");
179 goto fail;
180 }
181
182 /* Now look for an interrupt-map */
183 imap = of_get_property(ipar, "interrupt-map", &imaplen);
184 /* No interrupt map, check for an interrupt parent */
185 if (imap == NULL) {
186 pr_debug(" -> no map, getting parent\n");
187 newpar = of_irq_find_parent(ipar);
188 goto skiplevel;
189 }
190 imaplen /= sizeof(u32);
191
192 /* Look for a mask */
193 imask = of_get_property(ipar, "interrupt-map-mask", NULL);
194 if (!imask)
195 imask = dummy_imask;
196
197 /* Parse interrupt-map */
198 match = 0;
199 while (imaplen > (addrsize + intsize + 1) && !match) {
200 /* Compare specifiers */
201 match = 1;
202 for (i = 0; i < (addrsize + intsize); i++, imaplen--)
203 match &= !((match_array[i] ^ *imap++) & imask[i]);
204
205 pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
206
207 /* Get the interrupt parent */
208 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
209 newpar = of_node_get(of_irq_dflt_pic);
210 else
211 newpar = of_find_node_by_phandle(be32_to_cpup(imap));
212 imap++;
213 --imaplen;
214
215 /* Check if not found */
216 if (newpar == NULL) {
217 pr_debug(" -> imap parent not found !\n");
218 goto fail;
219 }
220
221 if (!of_device_is_available(newpar))
222 match = 0;
223
224 /* Get #interrupt-cells and #address-cells of new
225 * parent
226 */
227 tmp = of_get_property(newpar, "#interrupt-cells", NULL);
228 if (tmp == NULL) {
229 pr_debug(" -> parent lacks #interrupt-cells!\n");
230 goto fail;
231 }
232 newintsize = be32_to_cpu(*tmp);
233 tmp = of_get_property(newpar, "#address-cells", NULL);
234 newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);
235
236 pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
237 newintsize, newaddrsize);
238
239 /* Check for malformed properties */
240 if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS))
241 goto fail;
242 if (imaplen < (newaddrsize + newintsize))
243 goto fail;
244
245 imap += newaddrsize + newintsize;
246 imaplen -= newaddrsize + newintsize;
247
248 pr_debug(" -> imaplen=%d\n", imaplen);
249 }
250 if (!match)
251 goto fail;
252
253 /*
254 * Successfully parsed an interrrupt-map translation; copy new
255 * interrupt specifier into the out_irq structure
256 */
257 match_array = imap - newaddrsize - newintsize;
258 for (i = 0; i < newintsize; i++)
259 out_irq->args[i] = be32_to_cpup(imap - newintsize + i);
260 out_irq->args_count = intsize = newintsize;
261 addrsize = newaddrsize;
262
263 skiplevel:
264 /* Iterate again with new parent */
265 out_irq->np = newpar;
266 pr_debug(" -> new parent: %s\n", of_node_full_name(newpar));
267 of_node_put(ipar);
268 ipar = newpar;
269 newpar = NULL;
270 }
271 fail:
272 of_node_put(ipar);
273 of_node_put(newpar);
274
275 return -EINVAL;
276}
277EXPORT_SYMBOL_GPL(of_irq_parse_raw);
278
279/**
280 * of_irq_parse_one - Resolve an interrupt for a device
281 * @device: the device whose interrupt is to be resolved
282 * @index: index of the interrupt to resolve
283 * @out_irq: structure of_irq filled by this function
284 *
285 * This function resolves an interrupt for a node by walking the interrupt tree,
286 * finding which interrupt controller node it is attached to, and returning the
287 * interrupt specifier that can be used to retrieve a Linux IRQ number.
288 */
289int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
290{
291 struct device_node *p;
292 const __be32 *intspec, *tmp, *addr;
293 u32 intsize, intlen;
294 int i, res;
295
296 pr_debug("of_irq_parse_one: dev=%s, index=%d\n", of_node_full_name(device), index);
297
298 /* OldWorld mac stuff is "special", handle out of line */
299 if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
300 return of_irq_parse_oldworld(device, index, out_irq);
301
302 /* Get the reg property (if any) */
303 addr = of_get_property(device, "reg", NULL);
304
305 /* Try the new-style interrupts-extended first */
306 res = of_parse_phandle_with_args(device, "interrupts-extended",
307 "#interrupt-cells", index, out_irq);
308 if (!res)
309 return of_irq_parse_raw(addr, out_irq);
310
311 /* Get the interrupts property */
312 intspec = of_get_property(device, "interrupts", &intlen);
313 if (intspec == NULL)
314 return -EINVAL;
315
316 intlen /= sizeof(*intspec);
317
318 pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);
319
320 /* Look for the interrupt parent. */
321 p = of_irq_find_parent(device);
322 if (p == NULL)
323 return -EINVAL;
324
325 /* Get size of interrupt specifier */
326 tmp = of_get_property(p, "#interrupt-cells", NULL);
327 if (tmp == NULL) {
328 res = -EINVAL;
329 goto out;
330 }
331 intsize = be32_to_cpu(*tmp);
332
333 pr_debug(" intsize=%d intlen=%d\n", intsize, intlen);
334
335 /* Check index */
336 if ((index + 1) * intsize > intlen) {
337 res = -EINVAL;
338 goto out;
339 }
340
341 /* Copy intspec into irq structure */
342 intspec += index * intsize;
343 out_irq->np = p;
344 out_irq->args_count = intsize;
345 for (i = 0; i < intsize; i++)
346 out_irq->args[i] = be32_to_cpup(intspec++);
347
348 /* Check if there are any interrupt-map translations to process */
349 res = of_irq_parse_raw(addr, out_irq);
350 out:
351 of_node_put(p);
352 return res;
353}
354EXPORT_SYMBOL_GPL(of_irq_parse_one);
355
356/**
357 * of_irq_to_resource - Decode a node's IRQ and return it as a resource
358 * @dev: pointer to device tree node
359 * @index: zero-based index of the irq
360 * @r: pointer to resource structure to return result into.
361 */
362int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
363{
364 int irq = irq_of_parse_and_map(dev, index);
365
366 /* Only dereference the resource if both the
367 * resource and the irq are valid. */
368 if (r && irq) {
369 const char *name = NULL;
370
371 memset(r, 0, sizeof(*r));
372 /*
373 * Get optional "interrupt-names" property to add a name
374 * to the resource.
375 */
376 of_property_read_string_index(dev, "interrupt-names", index,
377 &name);
378
379 r->start = r->end = irq;
380 r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));
381 r->name = name ? name : of_node_full_name(dev);
382 }
383
384 return irq;
385}
386EXPORT_SYMBOL_GPL(of_irq_to_resource);
387
388/**
389 * of_irq_get - Decode a node's IRQ and return it as a Linux irq number
390 * @dev: pointer to device tree node
391 * @index: zero-based index of the irq
392 *
393 * Returns Linux irq number on success, or -EPROBE_DEFER if the irq domain
394 * is not yet created.
395 *
396 */
397int of_irq_get(struct device_node *dev, int index)
398{
399 int rc;
400 struct of_phandle_args oirq;
401 struct irq_domain *domain;
402
403 rc = of_irq_parse_one(dev, index, &oirq);
404 if (rc)
405 return rc;
406
407 domain = irq_find_host(oirq.np);
408 if (!domain)
409 return -EPROBE_DEFER;
410
411 return irq_create_of_mapping(&oirq);
412}
413EXPORT_SYMBOL_GPL(of_irq_get);
414
415/**
416 * of_irq_get_byname - Decode a node's IRQ and return it as a Linux irq number
417 * @dev: pointer to device tree node
418 * @name: irq name
419 *
420 * Returns Linux irq number on success, or -EPROBE_DEFER if the irq domain
421 * is not yet created, or error code in case of any other failure.
422 */
423int of_irq_get_byname(struct device_node *dev, const char *name)
424{
425 int index;
426
427 if (unlikely(!name))
428 return -EINVAL;
429
430 index = of_property_match_string(dev, "interrupt-names", name);
431 if (index < 0)
432 return index;
433
434 return of_irq_get(dev, index);
435}
436EXPORT_SYMBOL_GPL(of_irq_get_byname);
437
438/**
439 * of_irq_count - Count the number of IRQs a node uses
440 * @dev: pointer to device tree node
441 */
442int of_irq_count(struct device_node *dev)
443{
444 struct of_phandle_args irq;
445 int nr = 0;
446
447 while (of_irq_parse_one(dev, nr, &irq) == 0)
448 nr++;
449
450 return nr;
451}
452
453/**
454 * of_irq_to_resource_table - Fill in resource table with node's IRQ info
455 * @dev: pointer to device tree node
456 * @res: array of resources to fill in
457 * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
458 *
459 * Returns the size of the filled in table (up to @nr_irqs).
460 */
461int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
462 int nr_irqs)
463{
464 int i;
465
466 for (i = 0; i < nr_irqs; i++, res++)
467 if (!of_irq_to_resource(dev, i, res))
468 break;
469
470 return i;
471}
472EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
473
474struct of_intc_desc {
475 struct list_head list;
476 of_irq_init_cb_t irq_init_cb;
477 struct device_node *dev;
478 struct device_node *interrupt_parent;
479};
480
481/**
482 * of_irq_init - Scan and init matching interrupt controllers in DT
483 * @matches: 0 terminated array of nodes to match and init function to call
484 *
485 * This function scans the device tree for matching interrupt controller nodes,
486 * and calls their initialization functions in order with parents first.
487 */
488void __init of_irq_init(const struct of_device_id *matches)
489{
490 const struct of_device_id *match;
491 struct device_node *np, *parent = NULL;
492 struct of_intc_desc *desc, *temp_desc;
493 struct list_head intc_desc_list, intc_parent_list;
494
495 INIT_LIST_HEAD(&intc_desc_list);
496 INIT_LIST_HEAD(&intc_parent_list);
497
498 for_each_matching_node_and_match(np, matches, &match) {
499 if (!of_find_property(np, "interrupt-controller", NULL) ||
500 !of_device_is_available(np))
501 continue;
502
503 if (WARN(!match->data, "of_irq_init: no init function for %s\n",
504 match->compatible))
505 continue;
506
507 /*
508 * Here, we allocate and populate an of_intc_desc with the node
509 * pointer, interrupt-parent device_node etc.
510 */
511 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
512 if (WARN_ON(!desc)) {
513 of_node_put(np);
514 goto err;
515 }
516
517 desc->irq_init_cb = match->data;
518 desc->dev = of_node_get(np);
519 desc->interrupt_parent = of_irq_find_parent(np);
520 if (desc->interrupt_parent == np)
521 desc->interrupt_parent = NULL;
522 list_add_tail(&desc->list, &intc_desc_list);
523 }
524
525 /*
526 * The root irq controller is the one without an interrupt-parent.
527 * That one goes first, followed by the controllers that reference it,
528 * followed by the ones that reference the 2nd level controllers, etc.
529 */
530 while (!list_empty(&intc_desc_list)) {
531 /*
532 * Process all controllers with the current 'parent'.
533 * First pass will be looking for NULL as the parent.
534 * The assumption is that NULL parent means a root controller.
535 */
536 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
537 int ret;
538
539 if (desc->interrupt_parent != parent)
540 continue;
541
542 list_del(&desc->list);
543
544 pr_debug("of_irq_init: init %s (%p), parent %p\n",
545 desc->dev->full_name,
546 desc->dev, desc->interrupt_parent);
547 ret = desc->irq_init_cb(desc->dev,
548 desc->interrupt_parent);
549 if (ret) {
550 kfree(desc);
551 continue;
552 }
553
554 /*
555 * This one is now set up; add it to the parent list so
556 * its children can get processed in a subsequent pass.
557 */
558 list_add_tail(&desc->list, &intc_parent_list);
559 }
560
561 /* Get the next pending parent that might have children */
562 desc = list_first_entry_or_null(&intc_parent_list,
563 typeof(*desc), list);
564 if (!desc) {
565 pr_err("of_irq_init: children remain, but no parents\n");
566 break;
567 }
568 list_del(&desc->list);
569 parent = desc->dev;
570 kfree(desc);
571 }
572
573 list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
574 list_del(&desc->list);
575 kfree(desc);
576 }
577err:
578 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
579 list_del(&desc->list);
580 of_node_put(desc->dev);
581 kfree(desc);
582 }
583}
584
585static u32 __of_msi_map_rid(struct device *dev, struct device_node **np,
586 u32 rid_in)
587{
588 struct device *parent_dev;
589 struct device_node *msi_controller_node;
590 struct device_node *msi_np = *np;
591 u32 map_mask, masked_rid, rid_base, msi_base, rid_len, phandle;
592 int msi_map_len;
593 bool matched;
594 u32 rid_out = rid_in;
595 const __be32 *msi_map = NULL;
596
597 /*
598 * Walk up the device parent links looking for one with a
599 * "msi-map" property.
600 */
601 for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent) {
602 if (!parent_dev->of_node)
603 continue;
604
605 msi_map = of_get_property(parent_dev->of_node,
606 "msi-map", &msi_map_len);
607 if (!msi_map)
608 continue;
609
610 if (msi_map_len % (4 * sizeof(__be32))) {
611 dev_err(parent_dev, "Error: Bad msi-map length: %d\n",
612 msi_map_len);
613 return rid_out;
614 }
615 /* We have a good parent_dev and msi_map, let's use them. */
616 break;
617 }
618 if (!msi_map)
619 return rid_out;
620
621 /* The default is to select all bits. */
622 map_mask = 0xffffffff;
623
624 /*
625 * Can be overridden by "msi-map-mask" property. If
626 * of_property_read_u32() fails, the default is used.
627 */
628 of_property_read_u32(parent_dev->of_node, "msi-map-mask", &map_mask);
629
630 masked_rid = map_mask & rid_in;
631 matched = false;
632 while (!matched && msi_map_len >= 4 * sizeof(__be32)) {
633 rid_base = be32_to_cpup(msi_map + 0);
634 phandle = be32_to_cpup(msi_map + 1);
635 msi_base = be32_to_cpup(msi_map + 2);
636 rid_len = be32_to_cpup(msi_map + 3);
637
638 if (rid_base & ~map_mask) {
639 dev_err(parent_dev,
640 "Invalid msi-map translation - msi-map-mask (0x%x) ignores rid-base (0x%x)\n",
641 map_mask, rid_base);
642 return rid_out;
643 }
644
645 msi_controller_node = of_find_node_by_phandle(phandle);
646
647 matched = (masked_rid >= rid_base &&
648 masked_rid < rid_base + rid_len);
649 if (msi_np)
650 matched &= msi_np == msi_controller_node;
651
652 if (matched && !msi_np) {
653 *np = msi_np = msi_controller_node;
654 break;
655 }
656
657 of_node_put(msi_controller_node);
658 msi_map_len -= 4 * sizeof(__be32);
659 msi_map += 4;
660 }
661 if (!matched)
662 return rid_out;
663
664 rid_out = masked_rid - rid_base + msi_base;
665 dev_dbg(dev,
666 "msi-map at: %s, using mask %08x, rid-base: %08x, msi-base: %08x, length: %08x, rid: %08x -> %08x\n",
667 dev_name(parent_dev), map_mask, rid_base, msi_base,
668 rid_len, rid_in, rid_out);
669
670 return rid_out;
671}
672
673/**
674 * of_msi_map_rid - Map a MSI requester ID for a device.
675 * @dev: device for which the mapping is to be done.
676 * @msi_np: device node of the expected msi controller.
677 * @rid_in: unmapped MSI requester ID for the device.
678 *
679 * Walk up the device hierarchy looking for devices with a "msi-map"
680 * property. If found, apply the mapping to @rid_in.
681 *
682 * Returns the mapped MSI requester ID.
683 */
684u32 of_msi_map_rid(struct device *dev, struct device_node *msi_np, u32 rid_in)
685{
686 return __of_msi_map_rid(dev, &msi_np, rid_in);
687}
688
689/**
690 * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain
691 * @dev: device for which the mapping is to be done.
692 * @rid: Requester ID for the device.
693 *
694 * Walk up the device hierarchy looking for devices with a "msi-map"
695 * property.
696 *
697 * Returns: the MSI domain for this device (or NULL on failure)
698 */
699struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 rid)
700{
701 struct device_node *np = NULL;
702
703 __of_msi_map_rid(dev, &np, rid);
704 return irq_find_matching_host(np, DOMAIN_BUS_PCI_MSI);
705}
706
707/**
708 * of_msi_get_domain - Use msi-parent to find the relevant MSI domain
709 * @dev: device for which the domain is requested
710 * @np: device node for @dev
711 * @token: bus type for this domain
712 *
713 * Parse the msi-parent property (both the simple and the complex
714 * versions), and returns the corresponding MSI domain.
715 *
716 * Returns: the MSI domain for this device (or NULL on failure).
717 */
718struct irq_domain *of_msi_get_domain(struct device *dev,
719 struct device_node *np,
720 enum irq_domain_bus_token token)
721{
722 struct device_node *msi_np;
723 struct irq_domain *d;
724
725 /* Check for a single msi-parent property */
726 msi_np = of_parse_phandle(np, "msi-parent", 0);
727 if (msi_np && !of_property_read_bool(msi_np, "#msi-cells")) {
728 d = irq_find_matching_host(msi_np, token);
729 if (!d)
730 of_node_put(msi_np);
731 return d;
732 }
733
734 if (token == DOMAIN_BUS_PLATFORM_MSI) {
735 /* Check for the complex msi-parent version */
736 struct of_phandle_args args;
737 int index = 0;
738
739 while (!of_parse_phandle_with_args(np, "msi-parent",
740 "#msi-cells",
741 index, &args)) {
742 d = irq_find_matching_host(args.np, token);
743 if (d)
744 return d;
745
746 of_node_put(args.np);
747 index++;
748 }
749 }
750
751 return NULL;
752}
753
754/**
755 * of_msi_configure - Set the msi_domain field of a device
756 * @dev: device structure to associate with an MSI irq domain
757 * @np: device node for that device
758 */
759void of_msi_configure(struct device *dev, struct device_node *np)
760{
761 dev_set_msi_domain(dev,
762 of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI));
763}
1/*
2 * Derived from arch/i386/kernel/irq.c
3 * Copyright (C) 1992 Linus Torvalds
4 * Adapted from arch/i386 by Gary Thomas
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Updated and modified by Cort Dougan <cort@fsmlabs.com>
7 * Copyright (C) 1996-2001 Cort Dougan
8 * Adapted for Power Macintosh by Paul Mackerras
9 * Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 *
16 * This file contains the code used to make IRQ descriptions in the
17 * device tree to actual irq numbers on an interrupt controller
18 * driver.
19 */
20
21#include <linux/errno.h>
22#include <linux/list.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_irq.h>
26#include <linux/string.h>
27#include <linux/slab.h>
28
29/**
30 * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
31 * @dev: Device node of the device whose interrupt is to be mapped
32 * @index: Index of the interrupt to map
33 *
34 * This function is a wrapper that chains of_irq_parse_one() and
35 * irq_create_of_mapping() to make things easier to callers
36 */
37unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
38{
39 struct of_phandle_args oirq;
40
41 if (of_irq_parse_one(dev, index, &oirq))
42 return 0;
43
44 return irq_create_of_mapping(&oirq);
45}
46EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
47
48/**
49 * of_irq_find_parent - Given a device node, find its interrupt parent node
50 * @child: pointer to device node
51 *
52 * Returns a pointer to the interrupt parent node, or NULL if the interrupt
53 * parent could not be determined.
54 */
55struct device_node *of_irq_find_parent(struct device_node *child)
56{
57 struct device_node *p;
58 const __be32 *parp;
59
60 if (!of_node_get(child))
61 return NULL;
62
63 do {
64 parp = of_get_property(child, "interrupt-parent", NULL);
65 if (parp == NULL)
66 p = of_get_parent(child);
67 else {
68 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
69 p = of_node_get(of_irq_dflt_pic);
70 else
71 p = of_find_node_by_phandle(be32_to_cpup(parp));
72 }
73 of_node_put(child);
74 child = p;
75 } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
76
77 return p;
78}
79
80/**
81 * of_irq_parse_raw - Low level interrupt tree parsing
82 * @parent: the device interrupt parent
83 * @addr: address specifier (start of "reg" property of the device) in be32 format
84 * @out_irq: structure of_irq updated by this function
85 *
86 * Returns 0 on success and a negative number on error
87 *
88 * This function is a low-level interrupt tree walking function. It
89 * can be used to do a partial walk with synthetized reg and interrupts
90 * properties, for example when resolving PCI interrupts when no device
91 * node exist for the parent. It takes an interrupt specifier structure as
92 * input, walks the tree looking for any interrupt-map properties, translates
93 * the specifier for each map, and then returns the translated map.
94 */
95int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
96{
97 struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
98 __be32 initial_match_array[MAX_PHANDLE_ARGS];
99 const __be32 *match_array = initial_match_array;
100 const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
101 u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
102 int imaplen, match, i;
103
104#ifdef DEBUG
105 of_print_phandle_args("of_irq_parse_raw: ", out_irq);
106#endif
107
108 ipar = of_node_get(out_irq->np);
109
110 /* First get the #interrupt-cells property of the current cursor
111 * that tells us how to interpret the passed-in intspec. If there
112 * is none, we are nice and just walk up the tree
113 */
114 do {
115 tmp = of_get_property(ipar, "#interrupt-cells", NULL);
116 if (tmp != NULL) {
117 intsize = be32_to_cpu(*tmp);
118 break;
119 }
120 tnode = ipar;
121 ipar = of_irq_find_parent(ipar);
122 of_node_put(tnode);
123 } while (ipar);
124 if (ipar == NULL) {
125 pr_debug(" -> no parent found !\n");
126 goto fail;
127 }
128
129 pr_debug("of_irq_parse_raw: ipar=%s, size=%d\n", of_node_full_name(ipar), intsize);
130
131 if (out_irq->args_count != intsize)
132 return -EINVAL;
133
134 /* Look for this #address-cells. We have to implement the old linux
135 * trick of looking for the parent here as some device-trees rely on it
136 */
137 old = of_node_get(ipar);
138 do {
139 tmp = of_get_property(old, "#address-cells", NULL);
140 tnode = of_get_parent(old);
141 of_node_put(old);
142 old = tnode;
143 } while (old && tmp == NULL);
144 of_node_put(old);
145 old = NULL;
146 addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
147
148 pr_debug(" -> addrsize=%d\n", addrsize);
149
150 /* Range check so that the temporary buffer doesn't overflow */
151 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS))
152 goto fail;
153
154 /* Precalculate the match array - this simplifies match loop */
155 for (i = 0; i < addrsize; i++)
156 initial_match_array[i] = addr ? addr[i] : 0;
157 for (i = 0; i < intsize; i++)
158 initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
159
160 /* Now start the actual "proper" walk of the interrupt tree */
161 while (ipar != NULL) {
162 /* Now check if cursor is an interrupt-controller and if it is
163 * then we are done
164 */
165 if (of_get_property(ipar, "interrupt-controller", NULL) !=
166 NULL) {
167 pr_debug(" -> got it !\n");
168 return 0;
169 }
170
171 /*
172 * interrupt-map parsing does not work without a reg
173 * property when #address-cells != 0
174 */
175 if (addrsize && !addr) {
176 pr_debug(" -> no reg passed in when needed !\n");
177 goto fail;
178 }
179
180 /* Now look for an interrupt-map */
181 imap = of_get_property(ipar, "interrupt-map", &imaplen);
182 /* No interrupt map, check for an interrupt parent */
183 if (imap == NULL) {
184 pr_debug(" -> no map, getting parent\n");
185 newpar = of_irq_find_parent(ipar);
186 goto skiplevel;
187 }
188 imaplen /= sizeof(u32);
189
190 /* Look for a mask */
191 imask = of_get_property(ipar, "interrupt-map-mask", NULL);
192 if (!imask)
193 imask = dummy_imask;
194
195 /* Parse interrupt-map */
196 match = 0;
197 while (imaplen > (addrsize + intsize + 1) && !match) {
198 /* Compare specifiers */
199 match = 1;
200 for (i = 0; i < (addrsize + intsize); i++, imaplen--)
201 match &= !((match_array[i] ^ *imap++) & imask[i]);
202
203 pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
204
205 /* Get the interrupt parent */
206 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
207 newpar = of_node_get(of_irq_dflt_pic);
208 else
209 newpar = of_find_node_by_phandle(be32_to_cpup(imap));
210 imap++;
211 --imaplen;
212
213 /* Check if not found */
214 if (newpar == NULL) {
215 pr_debug(" -> imap parent not found !\n");
216 goto fail;
217 }
218
219 if (!of_device_is_available(newpar))
220 match = 0;
221
222 /* Get #interrupt-cells and #address-cells of new
223 * parent
224 */
225 tmp = of_get_property(newpar, "#interrupt-cells", NULL);
226 if (tmp == NULL) {
227 pr_debug(" -> parent lacks #interrupt-cells!\n");
228 goto fail;
229 }
230 newintsize = be32_to_cpu(*tmp);
231 tmp = of_get_property(newpar, "#address-cells", NULL);
232 newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);
233
234 pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
235 newintsize, newaddrsize);
236
237 /* Check for malformed properties */
238 if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS))
239 goto fail;
240 if (imaplen < (newaddrsize + newintsize))
241 goto fail;
242
243 imap += newaddrsize + newintsize;
244 imaplen -= newaddrsize + newintsize;
245
246 pr_debug(" -> imaplen=%d\n", imaplen);
247 }
248 if (!match)
249 goto fail;
250
251 /*
252 * Successfully parsed an interrrupt-map translation; copy new
253 * interrupt specifier into the out_irq structure
254 */
255 out_irq->np = newpar;
256
257 match_array = imap - newaddrsize - newintsize;
258 for (i = 0; i < newintsize; i++)
259 out_irq->args[i] = be32_to_cpup(imap - newintsize + i);
260 out_irq->args_count = intsize = newintsize;
261 addrsize = newaddrsize;
262
263 skiplevel:
264 /* Iterate again with new parent */
265 pr_debug(" -> new parent: %s\n", of_node_full_name(newpar));
266 of_node_put(ipar);
267 ipar = newpar;
268 newpar = NULL;
269 }
270 fail:
271 of_node_put(ipar);
272 of_node_put(newpar);
273
274 return -EINVAL;
275}
276EXPORT_SYMBOL_GPL(of_irq_parse_raw);
277
278/**
279 * of_irq_parse_one - Resolve an interrupt for a device
280 * @device: the device whose interrupt is to be resolved
281 * @index: index of the interrupt to resolve
282 * @out_irq: structure of_irq filled by this function
283 *
284 * This function resolves an interrupt for a node by walking the interrupt tree,
285 * finding which interrupt controller node it is attached to, and returning the
286 * interrupt specifier that can be used to retrieve a Linux IRQ number.
287 */
288int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
289{
290 struct device_node *p;
291 const __be32 *intspec, *tmp, *addr;
292 u32 intsize, intlen;
293 int i, res = -EINVAL;
294
295 pr_debug("of_irq_parse_one: dev=%s, index=%d\n", of_node_full_name(device), index);
296
297 /* OldWorld mac stuff is "special", handle out of line */
298 if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
299 return of_irq_parse_oldworld(device, index, out_irq);
300
301 /* Get the reg property (if any) */
302 addr = of_get_property(device, "reg", NULL);
303
304 /* Get the interrupts property */
305 intspec = of_get_property(device, "interrupts", &intlen);
306 if (intspec == NULL) {
307 /* Try the new-style interrupts-extended */
308 res = of_parse_phandle_with_args(device, "interrupts-extended",
309 "#interrupt-cells", index, out_irq);
310 if (res)
311 return -EINVAL;
312 return of_irq_parse_raw(addr, out_irq);
313 }
314 intlen /= sizeof(*intspec);
315
316 pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);
317
318 /* Look for the interrupt parent. */
319 p = of_irq_find_parent(device);
320 if (p == NULL)
321 return -EINVAL;
322
323 /* Get size of interrupt specifier */
324 tmp = of_get_property(p, "#interrupt-cells", NULL);
325 if (tmp == NULL)
326 goto out;
327 intsize = be32_to_cpu(*tmp);
328
329 pr_debug(" intsize=%d intlen=%d\n", intsize, intlen);
330
331 /* Check index */
332 if ((index + 1) * intsize > intlen)
333 goto out;
334
335 /* Copy intspec into irq structure */
336 intspec += index * intsize;
337 out_irq->np = p;
338 out_irq->args_count = intsize;
339 for (i = 0; i < intsize; i++)
340 out_irq->args[i] = be32_to_cpup(intspec++);
341
342 /* Check if there are any interrupt-map translations to process */
343 res = of_irq_parse_raw(addr, out_irq);
344 out:
345 of_node_put(p);
346 return res;
347}
348EXPORT_SYMBOL_GPL(of_irq_parse_one);
349
350/**
351 * of_irq_to_resource - Decode a node's IRQ and return it as a resource
352 * @dev: pointer to device tree node
353 * @index: zero-based index of the irq
354 * @r: pointer to resource structure to return result into.
355 */
356int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
357{
358 int irq = irq_of_parse_and_map(dev, index);
359
360 /* Only dereference the resource if both the
361 * resource and the irq are valid. */
362 if (r && irq) {
363 const char *name = NULL;
364
365 memset(r, 0, sizeof(*r));
366 /*
367 * Get optional "interrupt-names" property to add a name
368 * to the resource.
369 */
370 of_property_read_string_index(dev, "interrupt-names", index,
371 &name);
372
373 r->start = r->end = irq;
374 r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));
375 r->name = name ? name : of_node_full_name(dev);
376 }
377
378 return irq;
379}
380EXPORT_SYMBOL_GPL(of_irq_to_resource);
381
382/**
383 * of_irq_get - Decode a node's IRQ and return it as a Linux irq number
384 * @dev: pointer to device tree node
385 * @index: zero-based index of the irq
386 *
387 * Returns Linux irq number on success, or -EPROBE_DEFER if the irq domain
388 * is not yet created.
389 *
390 */
391int of_irq_get(struct device_node *dev, int index)
392{
393 int rc;
394 struct of_phandle_args oirq;
395 struct irq_domain *domain;
396
397 rc = of_irq_parse_one(dev, index, &oirq);
398 if (rc)
399 return rc;
400
401 domain = irq_find_host(oirq.np);
402 if (!domain)
403 return -EPROBE_DEFER;
404
405 return irq_create_of_mapping(&oirq);
406}
407
408/**
409 * of_irq_count - Count the number of IRQs a node uses
410 * @dev: pointer to device tree node
411 */
412int of_irq_count(struct device_node *dev)
413{
414 struct of_phandle_args irq;
415 int nr = 0;
416
417 while (of_irq_parse_one(dev, nr, &irq) == 0)
418 nr++;
419
420 return nr;
421}
422
423/**
424 * of_irq_to_resource_table - Fill in resource table with node's IRQ info
425 * @dev: pointer to device tree node
426 * @res: array of resources to fill in
427 * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
428 *
429 * Returns the size of the filled in table (up to @nr_irqs).
430 */
431int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
432 int nr_irqs)
433{
434 int i;
435
436 for (i = 0; i < nr_irqs; i++, res++)
437 if (!of_irq_to_resource(dev, i, res))
438 break;
439
440 return i;
441}
442EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
443
444struct intc_desc {
445 struct list_head list;
446 struct device_node *dev;
447 struct device_node *interrupt_parent;
448};
449
450/**
451 * of_irq_init - Scan and init matching interrupt controllers in DT
452 * @matches: 0 terminated array of nodes to match and init function to call
453 *
454 * This function scans the device tree for matching interrupt controller nodes,
455 * and calls their initialization functions in order with parents first.
456 */
457void __init of_irq_init(const struct of_device_id *matches)
458{
459 struct device_node *np, *parent = NULL;
460 struct intc_desc *desc, *temp_desc;
461 struct list_head intc_desc_list, intc_parent_list;
462
463 INIT_LIST_HEAD(&intc_desc_list);
464 INIT_LIST_HEAD(&intc_parent_list);
465
466 for_each_matching_node(np, matches) {
467 if (!of_find_property(np, "interrupt-controller", NULL) ||
468 !of_device_is_available(np))
469 continue;
470 /*
471 * Here, we allocate and populate an intc_desc with the node
472 * pointer, interrupt-parent device_node etc.
473 */
474 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
475 if (WARN_ON(!desc))
476 goto err;
477
478 desc->dev = np;
479 desc->interrupt_parent = of_irq_find_parent(np);
480 if (desc->interrupt_parent == np)
481 desc->interrupt_parent = NULL;
482 list_add_tail(&desc->list, &intc_desc_list);
483 }
484
485 /*
486 * The root irq controller is the one without an interrupt-parent.
487 * That one goes first, followed by the controllers that reference it,
488 * followed by the ones that reference the 2nd level controllers, etc.
489 */
490 while (!list_empty(&intc_desc_list)) {
491 /*
492 * Process all controllers with the current 'parent'.
493 * First pass will be looking for NULL as the parent.
494 * The assumption is that NULL parent means a root controller.
495 */
496 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
497 const struct of_device_id *match;
498 int ret;
499 of_irq_init_cb_t irq_init_cb;
500
501 if (desc->interrupt_parent != parent)
502 continue;
503
504 list_del(&desc->list);
505 match = of_match_node(matches, desc->dev);
506 if (WARN(!match->data,
507 "of_irq_init: no init function for %s\n",
508 match->compatible)) {
509 kfree(desc);
510 continue;
511 }
512
513 pr_debug("of_irq_init: init %s @ %p, parent %p\n",
514 match->compatible,
515 desc->dev, desc->interrupt_parent);
516 irq_init_cb = (of_irq_init_cb_t)match->data;
517 ret = irq_init_cb(desc->dev, desc->interrupt_parent);
518 if (ret) {
519 kfree(desc);
520 continue;
521 }
522
523 /*
524 * This one is now set up; add it to the parent list so
525 * its children can get processed in a subsequent pass.
526 */
527 list_add_tail(&desc->list, &intc_parent_list);
528 }
529
530 /* Get the next pending parent that might have children */
531 desc = list_first_entry_or_null(&intc_parent_list,
532 typeof(*desc), list);
533 if (!desc) {
534 pr_err("of_irq_init: children remain, but no parents\n");
535 break;
536 }
537 list_del(&desc->list);
538 parent = desc->dev;
539 kfree(desc);
540 }
541
542 list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
543 list_del(&desc->list);
544 kfree(desc);
545 }
546err:
547 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
548 list_del(&desc->list);
549 kfree(desc);
550 }
551}