Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Dave Airlie
  30 */
  31#include <linux/seq_file.h>
  32#include <linux/atomic.h>
  33#include <linux/wait.h>
  34#include <linux/kref.h>
  35#include <linux/slab.h>
  36#include <linux/firmware.h>
  37#include <drm/drmP.h>
  38#include "radeon_reg.h"
  39#include "radeon.h"
  40#include "radeon_trace.h"
  41
  42/*
  43 * Fences
  44 * Fences mark an event in the GPUs pipeline and are used
  45 * for GPU/CPU synchronization.  When the fence is written,
  46 * it is expected that all buffers associated with that fence
  47 * are no longer in use by the associated ring on the GPU and
  48 * that the the relevant GPU caches have been flushed.  Whether
  49 * we use a scratch register or memory location depends on the asic
  50 * and whether writeback is enabled.
  51 */
  52
  53/**
  54 * radeon_fence_write - write a fence value
  55 *
  56 * @rdev: radeon_device pointer
  57 * @seq: sequence number to write
  58 * @ring: ring index the fence is associated with
  59 *
  60 * Writes a fence value to memory or a scratch register (all asics).
  61 */
  62static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
  63{
  64	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
  65	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
  66		if (drv->cpu_addr) {
  67			*drv->cpu_addr = cpu_to_le32(seq);
  68		}
  69	} else {
  70		WREG32(drv->scratch_reg, seq);
  71	}
  72}
  73
  74/**
  75 * radeon_fence_read - read a fence value
  76 *
  77 * @rdev: radeon_device pointer
  78 * @ring: ring index the fence is associated with
  79 *
  80 * Reads a fence value from memory or a scratch register (all asics).
  81 * Returns the value of the fence read from memory or register.
  82 */
  83static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
  84{
  85	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
  86	u32 seq = 0;
  87
  88	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
  89		if (drv->cpu_addr) {
  90			seq = le32_to_cpu(*drv->cpu_addr);
  91		} else {
  92			seq = lower_32_bits(atomic64_read(&drv->last_seq));
  93		}
  94	} else {
  95		seq = RREG32(drv->scratch_reg);
  96	}
  97	return seq;
  98}
  99
 100/**
 101 * radeon_fence_schedule_check - schedule lockup check
 102 *
 103 * @rdev: radeon_device pointer
 104 * @ring: ring index we should work with
 105 *
 106 * Queues a delayed work item to check for lockups.
 107 */
 108static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
 109{
 110	/*
 111	 * Do not reset the timer here with mod_delayed_work,
 112	 * this can livelock in an interaction with TTM delayed destroy.
 113	 */
 114	queue_delayed_work(system_power_efficient_wq,
 115			   &rdev->fence_drv[ring].lockup_work,
 116			   RADEON_FENCE_JIFFIES_TIMEOUT);
 117}
 118
 119/**
 120 * radeon_fence_emit - emit a fence on the requested ring
 121 *
 122 * @rdev: radeon_device pointer
 123 * @fence: radeon fence object
 124 * @ring: ring index the fence is associated with
 125 *
 126 * Emits a fence command on the requested ring (all asics).
 127 * Returns 0 on success, -ENOMEM on failure.
 128 */
 129int radeon_fence_emit(struct radeon_device *rdev,
 130		      struct radeon_fence **fence,
 131		      int ring)
 132{
 133	u64 seq;
 134
 135	/* we are protected by the ring emission mutex */
 136	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
 137	if ((*fence) == NULL) {
 138		return -ENOMEM;
 139	}
 
 140	(*fence)->rdev = rdev;
 141	(*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
 142	(*fence)->ring = ring;
 143	(*fence)->is_vm_update = false;
 144	fence_init(&(*fence)->base, &radeon_fence_ops,
 145		   &rdev->fence_queue.lock, rdev->fence_context + ring, seq);
 146	radeon_fence_ring_emit(rdev, ring, *fence);
 147	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
 148	radeon_fence_schedule_check(rdev, ring);
 149	return 0;
 150}
 151
 152/**
 153 * radeon_fence_check_signaled - callback from fence_queue
 154 *
 155 * this function is called with fence_queue lock held, which is also used
 156 * for the fence locking itself, so unlocked variants are used for
 157 * fence_signal, and remove_wait_queue.
 158 */
 159static int radeon_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
 160{
 161	struct radeon_fence *fence;
 162	u64 seq;
 163
 164	fence = container_of(wait, struct radeon_fence, fence_wake);
 165
 166	/*
 167	 * We cannot use radeon_fence_process here because we're already
 168	 * in the waitqueue, in a call from wake_up_all.
 169	 */
 170	seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
 171	if (seq >= fence->seq) {
 172		int ret = fence_signal_locked(&fence->base);
 173
 174		if (!ret)
 175			FENCE_TRACE(&fence->base, "signaled from irq context\n");
 176		else
 177			FENCE_TRACE(&fence->base, "was already signaled\n");
 178
 179		radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
 180		__remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
 181		fence_put(&fence->base);
 182	} else
 183		FENCE_TRACE(&fence->base, "pending\n");
 184	return 0;
 185}
 186
 187/**
 188 * radeon_fence_activity - check for fence activity
 189 *
 190 * @rdev: radeon_device pointer
 191 * @ring: ring index the fence is associated with
 192 *
 193 * Checks the current fence value and calculates the last
 194 * signalled fence value. Returns true if activity occured
 195 * on the ring, and the fence_queue should be waken up.
 196 */
 197static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
 198{
 199	uint64_t seq, last_seq, last_emitted;
 200	unsigned count_loop = 0;
 201	bool wake = false;
 202
 203	/* Note there is a scenario here for an infinite loop but it's
 204	 * very unlikely to happen. For it to happen, the current polling
 205	 * process need to be interrupted by another process and another
 206	 * process needs to update the last_seq btw the atomic read and
 207	 * xchg of the current process.
 208	 *
 209	 * More over for this to go in infinite loop there need to be
 210	 * continuously new fence signaled ie radeon_fence_read needs
 211	 * to return a different value each time for both the currently
 212	 * polling process and the other process that xchg the last_seq
 213	 * btw atomic read and xchg of the current process. And the
 214	 * value the other process set as last seq must be higher than
 215	 * the seq value we just read. Which means that current process
 216	 * need to be interrupted after radeon_fence_read and before
 217	 * atomic xchg.
 218	 *
 219	 * To be even more safe we count the number of time we loop and
 220	 * we bail after 10 loop just accepting the fact that we might
 221	 * have temporarly set the last_seq not to the true real last
 222	 * seq but to an older one.
 223	 */
 224	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
 225	do {
 226		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
 227		seq = radeon_fence_read(rdev, ring);
 228		seq |= last_seq & 0xffffffff00000000LL;
 229		if (seq < last_seq) {
 230			seq &= 0xffffffff;
 231			seq |= last_emitted & 0xffffffff00000000LL;
 232		}
 233
 234		if (seq <= last_seq || seq > last_emitted) {
 235			break;
 236		}
 237		/* If we loop over we don't want to return without
 238		 * checking if a fence is signaled as it means that the
 239		 * seq we just read is different from the previous on.
 240		 */
 241		wake = true;
 242		last_seq = seq;
 243		if ((count_loop++) > 10) {
 244			/* We looped over too many time leave with the
 245			 * fact that we might have set an older fence
 246			 * seq then the current real last seq as signaled
 247			 * by the hw.
 248			 */
 249			break;
 250		}
 251	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
 252
 253	if (seq < last_emitted)
 254		radeon_fence_schedule_check(rdev, ring);
 255
 256	return wake;
 257}
 258
 259/**
 260 * radeon_fence_check_lockup - check for hardware lockup
 261 *
 262 * @work: delayed work item
 263 *
 264 * Checks for fence activity and if there is none probe
 265 * the hardware if a lockup occured.
 266 */
 267static void radeon_fence_check_lockup(struct work_struct *work)
 268{
 269	struct radeon_fence_driver *fence_drv;
 270	struct radeon_device *rdev;
 271	int ring;
 272
 273	fence_drv = container_of(work, struct radeon_fence_driver,
 274				 lockup_work.work);
 275	rdev = fence_drv->rdev;
 276	ring = fence_drv - &rdev->fence_drv[0];
 277
 278	if (!down_read_trylock(&rdev->exclusive_lock)) {
 279		/* just reschedule the check if a reset is going on */
 280		radeon_fence_schedule_check(rdev, ring);
 281		return;
 282	}
 283
 284	if (fence_drv->delayed_irq && rdev->ddev->irq_enabled) {
 285		unsigned long irqflags;
 286
 287		fence_drv->delayed_irq = false;
 288		spin_lock_irqsave(&rdev->irq.lock, irqflags);
 289		radeon_irq_set(rdev);
 290		spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
 291	}
 292
 293	if (radeon_fence_activity(rdev, ring))
 294		wake_up_all(&rdev->fence_queue);
 295
 296	else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
 297
 298		/* good news we believe it's a lockup */
 299		dev_warn(rdev->dev, "GPU lockup (current fence id "
 300			 "0x%016llx last fence id 0x%016llx on ring %d)\n",
 301			 (uint64_t)atomic64_read(&fence_drv->last_seq),
 302			 fence_drv->sync_seq[ring], ring);
 303
 304		/* remember that we need an reset */
 305		rdev->needs_reset = true;
 306		wake_up_all(&rdev->fence_queue);
 307	}
 308	up_read(&rdev->exclusive_lock);
 309}
 310
 311/**
 312 * radeon_fence_process - process a fence
 313 *
 314 * @rdev: radeon_device pointer
 315 * @ring: ring index the fence is associated with
 316 *
 317 * Checks the current fence value and wakes the fence queue
 318 * if the sequence number has increased (all asics).
 319 */
 320void radeon_fence_process(struct radeon_device *rdev, int ring)
 321{
 322	if (radeon_fence_activity(rdev, ring))
 323		wake_up_all(&rdev->fence_queue);
 
 
 324}
 325
 326/**
 327 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
 328 *
 329 * @rdev: radeon device pointer
 330 * @seq: sequence number
 331 * @ring: ring index the fence is associated with
 332 *
 333 * Check if the last signaled fence sequnce number is >= the requested
 334 * sequence number (all asics).
 335 * Returns true if the fence has signaled (current fence value
 336 * is >= requested value) or false if it has not (current fence
 337 * value is < the requested value.  Helper function for
 338 * radeon_fence_signaled().
 339 */
 340static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
 341				      u64 seq, unsigned ring)
 342{
 343	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 344		return true;
 345	}
 346	/* poll new last sequence at least once */
 347	radeon_fence_process(rdev, ring);
 348	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 349		return true;
 350	}
 351	return false;
 352}
 353
 354static bool radeon_fence_is_signaled(struct fence *f)
 355{
 356	struct radeon_fence *fence = to_radeon_fence(f);
 357	struct radeon_device *rdev = fence->rdev;
 358	unsigned ring = fence->ring;
 359	u64 seq = fence->seq;
 360
 361	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 362		return true;
 363	}
 364
 365	if (down_read_trylock(&rdev->exclusive_lock)) {
 366		radeon_fence_process(rdev, ring);
 367		up_read(&rdev->exclusive_lock);
 368
 369		if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
 370			return true;
 371		}
 372	}
 373	return false;
 374}
 375
 376/**
 377 * radeon_fence_enable_signaling - enable signalling on fence
 378 * @fence: fence
 379 *
 380 * This function is called with fence_queue lock held, and adds a callback
 381 * to fence_queue that checks if this fence is signaled, and if so it
 382 * signals the fence and removes itself.
 383 */
 384static bool radeon_fence_enable_signaling(struct fence *f)
 385{
 386	struct radeon_fence *fence = to_radeon_fence(f);
 387	struct radeon_device *rdev = fence->rdev;
 388
 389	if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
 390		return false;
 391
 392	if (down_read_trylock(&rdev->exclusive_lock)) {
 393		radeon_irq_kms_sw_irq_get(rdev, fence->ring);
 394
 395		if (radeon_fence_activity(rdev, fence->ring))
 396			wake_up_all_locked(&rdev->fence_queue);
 397
 398		/* did fence get signaled after we enabled the sw irq? */
 399		if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
 400			radeon_irq_kms_sw_irq_put(rdev, fence->ring);
 401			up_read(&rdev->exclusive_lock);
 402			return false;
 403		}
 404
 405		up_read(&rdev->exclusive_lock);
 406	} else {
 407		/* we're probably in a lockup, lets not fiddle too much */
 408		if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
 409			rdev->fence_drv[fence->ring].delayed_irq = true;
 410		radeon_fence_schedule_check(rdev, fence->ring);
 411	}
 412
 413	fence->fence_wake.flags = 0;
 414	fence->fence_wake.private = NULL;
 415	fence->fence_wake.func = radeon_fence_check_signaled;
 416	__add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
 417	fence_get(f);
 418
 419	FENCE_TRACE(&fence->base, "armed on ring %i!\n", fence->ring);
 420	return true;
 421}
 422
 423/**
 424 * radeon_fence_signaled - check if a fence has signaled
 425 *
 426 * @fence: radeon fence object
 427 *
 428 * Check if the requested fence has signaled (all asics).
 429 * Returns true if the fence has signaled or false if it has not.
 430 */
 431bool radeon_fence_signaled(struct radeon_fence *fence)
 432{
 433	if (!fence)
 434		return true;
 435
 
 
 
 436	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
 437		int ret;
 438
 439		ret = fence_signal(&fence->base);
 440		if (!ret)
 441			FENCE_TRACE(&fence->base, "signaled from radeon_fence_signaled\n");
 442		return true;
 443	}
 444	return false;
 445}
 446
 447/**
 448 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
 449 *
 450 * @rdev: radeon device pointer
 451 * @seq: sequence numbers
 452 *
 453 * Check if the last signaled fence sequnce number is >= the requested
 454 * sequence number (all asics).
 455 * Returns true if any has signaled (current value is >= requested value)
 456 * or false if it has not. Helper function for radeon_fence_wait_seq.
 457 */
 458static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
 459{
 460	unsigned i;
 461
 462	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 463		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
 464			return true;
 465	}
 466	return false;
 467}
 468
 469/**
 470 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
 471 *
 472 * @rdev: radeon device pointer
 473 * @target_seq: sequence number(s) we want to wait for
 474 * @intr: use interruptable sleep
 475 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
 476 *
 477 * Wait for the requested sequence number(s) to be written by any ring
 478 * (all asics).  Sequnce number array is indexed by ring id.
 479 * @intr selects whether to use interruptable (true) or non-interruptable
 480 * (false) sleep when waiting for the sequence number.  Helper function
 481 * for radeon_fence_wait_*().
 482 * Returns remaining time if the sequence number has passed, 0 when
 483 * the wait timeout, or an error for all other cases.
 484 * -EDEADLK is returned when a GPU lockup has been detected.
 485 */
 486static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
 487					  u64 *target_seq, bool intr,
 488					  long timeout)
 489{
 490	long r;
 491	int i;
 492
 493	if (radeon_fence_any_seq_signaled(rdev, target_seq))
 494		return timeout;
 495
 496	/* enable IRQs and tracing */
 497	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 498		if (!target_seq[i])
 499			continue;
 500
 501		trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
 502		radeon_irq_kms_sw_irq_get(rdev, i);
 503	}
 504
 505	if (intr) {
 506		r = wait_event_interruptible_timeout(rdev->fence_queue, (
 507			radeon_fence_any_seq_signaled(rdev, target_seq)
 508			 || rdev->needs_reset), timeout);
 509	} else {
 510		r = wait_event_timeout(rdev->fence_queue, (
 511			radeon_fence_any_seq_signaled(rdev, target_seq)
 512			 || rdev->needs_reset), timeout);
 513	}
 514
 515	if (rdev->needs_reset)
 516		r = -EDEADLK;
 
 
 517
 518	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 519		if (!target_seq[i])
 520			continue;
 
 521
 522		radeon_irq_kms_sw_irq_put(rdev, i);
 523		trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
 524	}
 
 
 
 
 
 
 525
 526	return r;
 527}
 
 528
 529/**
 530 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
 531 *
 532 * @fence: radeon fence object
 533 * @intr: use interruptible sleep
 534 *
 535 * Wait for the requested fence to signal (all asics).
 536 * @intr selects whether to use interruptable (true) or non-interruptable
 537 * (false) sleep when waiting for the fence.
 538 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
 539 * Returns remaining time if the sequence number has passed, 0 when
 540 * the wait timeout, or an error for all other cases.
 541 */
 542long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
 543{
 544	uint64_t seq[RADEON_NUM_RINGS] = {};
 545	long r;
 546	int r_sig;
 547
 548	/*
 549	 * This function should not be called on !radeon fences.
 550	 * If this is the case, it would mean this function can
 551	 * also be called on radeon fences belonging to another card.
 552	 * exclusive_lock is not held in that case.
 553	 */
 554	if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
 555		return fence_wait(&fence->base, intr);
 556
 557	seq[fence->ring] = fence->seq;
 558	r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
 559	if (r <= 0) {
 560		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561	}
 562
 563	r_sig = fence_signal(&fence->base);
 564	if (!r_sig)
 565		FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
 566	return r;
 567}
 568
 569/**
 570 * radeon_fence_wait - wait for a fence to signal
 571 *
 572 * @fence: radeon fence object
 573 * @intr: use interruptible sleep
 574 *
 575 * Wait for the requested fence to signal (all asics).
 576 * @intr selects whether to use interruptable (true) or non-interruptable
 577 * (false) sleep when waiting for the fence.
 578 * Returns 0 if the fence has passed, error for all other cases.
 579 */
 580int radeon_fence_wait(struct radeon_fence *fence, bool intr)
 581{
 582	long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
 583	if (r > 0) {
 
 
 
 
 
 
 
 
 584		return 0;
 585	} else {
 
 
 586		return r;
 587	}
 
 
 588}
 589
 590/**
 591 * radeon_fence_wait_any - wait for a fence to signal on any ring
 592 *
 593 * @rdev: radeon device pointer
 594 * @fences: radeon fence object(s)
 595 * @intr: use interruptable sleep
 596 *
 597 * Wait for any requested fence to signal (all asics).  Fence
 598 * array is indexed by ring id.  @intr selects whether to use
 599 * interruptable (true) or non-interruptable (false) sleep when
 600 * waiting for the fences. Used by the suballocator.
 601 * Returns 0 if any fence has passed, error for all other cases.
 602 */
 603int radeon_fence_wait_any(struct radeon_device *rdev,
 604			  struct radeon_fence **fences,
 605			  bool intr)
 606{
 607	uint64_t seq[RADEON_NUM_RINGS];
 608	unsigned i, num_rings = 0;
 609	long r;
 610
 611	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 612		seq[i] = 0;
 613
 614		if (!fences[i]) {
 615			continue;
 616		}
 617
 618		seq[i] = fences[i]->seq;
 619		++num_rings;
 
 
 
 
 620	}
 621
 622	/* nothing to wait for ? */
 623	if (num_rings == 0)
 624		return -ENOENT;
 625
 626	r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
 627	if (r < 0) {
 628		return r;
 629	}
 630	return 0;
 631}
 632
 633/**
 634 * radeon_fence_wait_next - wait for the next fence to signal
 635 *
 636 * @rdev: radeon device pointer
 637 * @ring: ring index the fence is associated with
 638 *
 639 * Wait for the next fence on the requested ring to signal (all asics).
 640 * Returns 0 if the next fence has passed, error for all other cases.
 641 * Caller must hold ring lock.
 642 */
 643int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
 644{
 645	uint64_t seq[RADEON_NUM_RINGS] = {};
 646	long r;
 647
 648	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
 649	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
 650		/* nothing to wait for, last_seq is
 651		   already the last emited fence */
 652		return -ENOENT;
 653	}
 654	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
 655	if (r < 0)
 656		return r;
 657	return 0;
 658}
 659
 660/**
 661 * radeon_fence_wait_empty - wait for all fences to signal
 662 *
 663 * @rdev: radeon device pointer
 664 * @ring: ring index the fence is associated with
 665 *
 666 * Wait for all fences on the requested ring to signal (all asics).
 667 * Returns 0 if the fences have passed, error for all other cases.
 668 * Caller must hold ring lock.
 669 */
 670int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
 671{
 672	uint64_t seq[RADEON_NUM_RINGS] = {};
 673	long r;
 674
 675	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
 676	if (!seq[ring])
 677		return 0;
 678
 679	r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
 680	if (r < 0) {
 681		if (r == -EDEADLK)
 682			return -EDEADLK;
 683
 684		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
 685			ring, r);
 686	}
 687	return 0;
 688}
 689
 690/**
 691 * radeon_fence_ref - take a ref on a fence
 692 *
 693 * @fence: radeon fence object
 694 *
 695 * Take a reference on a fence (all asics).
 696 * Returns the fence.
 697 */
 698struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
 699{
 700	fence_get(&fence->base);
 701	return fence;
 702}
 703
 704/**
 705 * radeon_fence_unref - remove a ref on a fence
 706 *
 707 * @fence: radeon fence object
 708 *
 709 * Remove a reference on a fence (all asics).
 710 */
 711void radeon_fence_unref(struct radeon_fence **fence)
 712{
 713	struct radeon_fence *tmp = *fence;
 714
 715	*fence = NULL;
 716	if (tmp) {
 717		fence_put(&tmp->base);
 718	}
 719}
 720
 721/**
 722 * radeon_fence_count_emitted - get the count of emitted fences
 723 *
 724 * @rdev: radeon device pointer
 725 * @ring: ring index the fence is associated with
 726 *
 727 * Get the number of fences emitted on the requested ring (all asics).
 728 * Returns the number of emitted fences on the ring.  Used by the
 729 * dynpm code to ring track activity.
 730 */
 731unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
 732{
 733	uint64_t emitted;
 734
 735	/* We are not protected by ring lock when reading the last sequence
 736	 * but it's ok to report slightly wrong fence count here.
 737	 */
 738	radeon_fence_process(rdev, ring);
 739	emitted = rdev->fence_drv[ring].sync_seq[ring]
 740		- atomic64_read(&rdev->fence_drv[ring].last_seq);
 741	/* to avoid 32bits warp around */
 742	if (emitted > 0x10000000) {
 743		emitted = 0x10000000;
 744	}
 745	return (unsigned)emitted;
 746}
 747
 748/**
 749 * radeon_fence_need_sync - do we need a semaphore
 750 *
 751 * @fence: radeon fence object
 752 * @dst_ring: which ring to check against
 753 *
 754 * Check if the fence needs to be synced against another ring
 755 * (all asics).  If so, we need to emit a semaphore.
 756 * Returns true if we need to sync with another ring, false if
 757 * not.
 758 */
 759bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
 760{
 761	struct radeon_fence_driver *fdrv;
 762
 763	if (!fence) {
 764		return false;
 765	}
 766
 767	if (fence->ring == dst_ring) {
 768		return false;
 769	}
 770
 771	/* we are protected by the ring mutex */
 772	fdrv = &fence->rdev->fence_drv[dst_ring];
 773	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
 774		return false;
 775	}
 776
 777	return true;
 778}
 779
 780/**
 781 * radeon_fence_note_sync - record the sync point
 782 *
 783 * @fence: radeon fence object
 784 * @dst_ring: which ring to check against
 785 *
 786 * Note the sequence number at which point the fence will
 787 * be synced with the requested ring (all asics).
 788 */
 789void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
 790{
 791	struct radeon_fence_driver *dst, *src;
 792	unsigned i;
 793
 794	if (!fence) {
 795		return;
 796	}
 797
 798	if (fence->ring == dst_ring) {
 799		return;
 800	}
 801
 802	/* we are protected by the ring mutex */
 803	src = &fence->rdev->fence_drv[fence->ring];
 804	dst = &fence->rdev->fence_drv[dst_ring];
 805	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 806		if (i == dst_ring) {
 807			continue;
 808		}
 809		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
 810	}
 811}
 812
 813/**
 814 * radeon_fence_driver_start_ring - make the fence driver
 815 * ready for use on the requested ring.
 816 *
 817 * @rdev: radeon device pointer
 818 * @ring: ring index to start the fence driver on
 819 *
 820 * Make the fence driver ready for processing (all asics).
 821 * Not all asics have all rings, so each asic will only
 822 * start the fence driver on the rings it has.
 823 * Returns 0 for success, errors for failure.
 824 */
 825int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
 826{
 827	uint64_t index;
 828	int r;
 829
 830	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
 831	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
 832		rdev->fence_drv[ring].scratch_reg = 0;
 833		if (ring != R600_RING_TYPE_UVD_INDEX) {
 834			index = R600_WB_EVENT_OFFSET + ring * 4;
 835			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
 836			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
 837							 index;
 838
 839		} else {
 840			/* put fence directly behind firmware */
 841			index = ALIGN(rdev->uvd_fw->size, 8);
 842			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
 843			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
 844		}
 845
 846	} else {
 847		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
 848		if (r) {
 849			dev_err(rdev->dev, "fence failed to get scratch register\n");
 850			return r;
 851		}
 852		index = RADEON_WB_SCRATCH_OFFSET +
 853			rdev->fence_drv[ring].scratch_reg -
 854			rdev->scratch.reg_base;
 855		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
 856		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
 857	}
 858	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
 859	rdev->fence_drv[ring].initialized = true;
 860	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
 861		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
 862	return 0;
 863}
 864
 865/**
 866 * radeon_fence_driver_init_ring - init the fence driver
 867 * for the requested ring.
 868 *
 869 * @rdev: radeon device pointer
 870 * @ring: ring index to start the fence driver on
 871 *
 872 * Init the fence driver for the requested ring (all asics).
 873 * Helper function for radeon_fence_driver_init().
 874 */
 875static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
 876{
 877	int i;
 878
 879	rdev->fence_drv[ring].scratch_reg = -1;
 880	rdev->fence_drv[ring].cpu_addr = NULL;
 881	rdev->fence_drv[ring].gpu_addr = 0;
 882	for (i = 0; i < RADEON_NUM_RINGS; ++i)
 883		rdev->fence_drv[ring].sync_seq[i] = 0;
 884	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
 885	rdev->fence_drv[ring].initialized = false;
 886	INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
 887			  radeon_fence_check_lockup);
 888	rdev->fence_drv[ring].rdev = rdev;
 889}
 890
 891/**
 892 * radeon_fence_driver_init - init the fence driver
 893 * for all possible rings.
 894 *
 895 * @rdev: radeon device pointer
 896 *
 897 * Init the fence driver for all possible rings (all asics).
 898 * Not all asics have all rings, so each asic will only
 899 * start the fence driver on the rings it has using
 900 * radeon_fence_driver_start_ring().
 901 * Returns 0 for success.
 902 */
 903int radeon_fence_driver_init(struct radeon_device *rdev)
 904{
 905	int ring;
 906
 907	init_waitqueue_head(&rdev->fence_queue);
 908	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
 909		radeon_fence_driver_init_ring(rdev, ring);
 910	}
 911	if (radeon_debugfs_fence_init(rdev)) {
 912		dev_err(rdev->dev, "fence debugfs file creation failed\n");
 913	}
 914	return 0;
 915}
 916
 917/**
 918 * radeon_fence_driver_fini - tear down the fence driver
 919 * for all possible rings.
 920 *
 921 * @rdev: radeon device pointer
 922 *
 923 * Tear down the fence driver for all possible rings (all asics).
 924 */
 925void radeon_fence_driver_fini(struct radeon_device *rdev)
 926{
 927	int ring, r;
 928
 929	mutex_lock(&rdev->ring_lock);
 930	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
 931		if (!rdev->fence_drv[ring].initialized)
 932			continue;
 933		r = radeon_fence_wait_empty(rdev, ring);
 934		if (r) {
 935			/* no need to trigger GPU reset as we are unloading */
 936			radeon_fence_driver_force_completion(rdev, ring);
 937		}
 938		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
 939		wake_up_all(&rdev->fence_queue);
 940		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
 941		rdev->fence_drv[ring].initialized = false;
 942	}
 943	mutex_unlock(&rdev->ring_lock);
 944}
 945
 946/**
 947 * radeon_fence_driver_force_completion - force all fence waiter to complete
 948 *
 949 * @rdev: radeon device pointer
 950 * @ring: the ring to complete
 951 *
 952 * In case of GPU reset failure make sure no process keep waiting on fence
 953 * that will never complete.
 954 */
 955void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
 956{
 957	if (rdev->fence_drv[ring].initialized) {
 
 
 
 
 958		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
 959		cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
 960	}
 961}
 962
 963
 964/*
 965 * Fence debugfs
 966 */
 967#if defined(CONFIG_DEBUG_FS)
 968static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
 969{
 970	struct drm_info_node *node = (struct drm_info_node *)m->private;
 971	struct drm_device *dev = node->minor->dev;
 972	struct radeon_device *rdev = dev->dev_private;
 973	int i, j;
 974
 975	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
 976		if (!rdev->fence_drv[i].initialized)
 977			continue;
 978
 979		radeon_fence_process(rdev, i);
 980
 981		seq_printf(m, "--- ring %d ---\n", i);
 982		seq_printf(m, "Last signaled fence 0x%016llx\n",
 983			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
 984		seq_printf(m, "Last emitted        0x%016llx\n",
 985			   rdev->fence_drv[i].sync_seq[i]);
 986
 987		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
 988			if (i != j && rdev->fence_drv[j].initialized)
 989				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
 990					   j, rdev->fence_drv[i].sync_seq[j]);
 991		}
 992	}
 993	return 0;
 994}
 995
 996/**
 997 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
 998 *
 999 * Manually trigger a gpu reset at the next fence wait.
1000 */
1001static int radeon_debugfs_gpu_reset(struct seq_file *m, void *data)
1002{
1003	struct drm_info_node *node = (struct drm_info_node *) m->private;
1004	struct drm_device *dev = node->minor->dev;
1005	struct radeon_device *rdev = dev->dev_private;
1006
1007	down_read(&rdev->exclusive_lock);
1008	seq_printf(m, "%d\n", rdev->needs_reset);
1009	rdev->needs_reset = true;
1010	wake_up_all(&rdev->fence_queue);
1011	up_read(&rdev->exclusive_lock);
1012
1013	return 0;
1014}
1015
1016static struct drm_info_list radeon_debugfs_fence_list[] = {
1017	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
1018	{"radeon_gpu_reset", &radeon_debugfs_gpu_reset, 0, NULL}
1019};
1020#endif
1021
1022int radeon_debugfs_fence_init(struct radeon_device *rdev)
1023{
1024#if defined(CONFIG_DEBUG_FS)
1025	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 2);
1026#else
1027	return 0;
1028#endif
1029}
1030
1031static const char *radeon_fence_get_driver_name(struct fence *fence)
1032{
1033	return "radeon";
1034}
1035
1036static const char *radeon_fence_get_timeline_name(struct fence *f)
1037{
1038	struct radeon_fence *fence = to_radeon_fence(f);
1039	switch (fence->ring) {
1040	case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1041	case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1042	case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1043	case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1044	case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1045	case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1046	case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1047	case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1048	default: WARN_ON_ONCE(1); return "radeon.unk";
1049	}
1050}
1051
1052static inline bool radeon_test_signaled(struct radeon_fence *fence)
1053{
1054	return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1055}
1056
1057struct radeon_wait_cb {
1058	struct fence_cb base;
1059	struct task_struct *task;
1060};
1061
1062static void
1063radeon_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
1064{
1065	struct radeon_wait_cb *wait =
1066		container_of(cb, struct radeon_wait_cb, base);
1067
1068	wake_up_process(wait->task);
1069}
1070
1071static signed long radeon_fence_default_wait(struct fence *f, bool intr,
1072					     signed long t)
1073{
1074	struct radeon_fence *fence = to_radeon_fence(f);
1075	struct radeon_device *rdev = fence->rdev;
1076	struct radeon_wait_cb cb;
1077
1078	cb.task = current;
1079
1080	if (fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1081		return t;
1082
1083	while (t > 0) {
1084		if (intr)
1085			set_current_state(TASK_INTERRUPTIBLE);
1086		else
1087			set_current_state(TASK_UNINTERRUPTIBLE);
1088
1089		/*
1090		 * radeon_test_signaled must be called after
1091		 * set_current_state to prevent a race with wake_up_process
1092		 */
1093		if (radeon_test_signaled(fence))
1094			break;
1095
1096		if (rdev->needs_reset) {
1097			t = -EDEADLK;
1098			break;
1099		}
1100
1101		t = schedule_timeout(t);
1102
1103		if (t > 0 && intr && signal_pending(current))
1104			t = -ERESTARTSYS;
1105	}
1106
1107	__set_current_state(TASK_RUNNING);
1108	fence_remove_callback(f, &cb.base);
1109
1110	return t;
1111}
1112
1113const struct fence_ops radeon_fence_ops = {
1114	.get_driver_name = radeon_fence_get_driver_name,
1115	.get_timeline_name = radeon_fence_get_timeline_name,
1116	.enable_signaling = radeon_fence_enable_signaling,
1117	.signaled = radeon_fence_is_signaled,
1118	.wait = radeon_fence_default_wait,
1119	.release = NULL,
1120};
v3.15
  1/*
  2 * Copyright 2009 Jerome Glisse.
  3 * All Rights Reserved.
  4 *
  5 * Permission is hereby granted, free of charge, to any person obtaining a
  6 * copy of this software and associated documentation files (the
  7 * "Software"), to deal in the Software without restriction, including
  8 * without limitation the rights to use, copy, modify, merge, publish,
  9 * distribute, sub license, and/or sell copies of the Software, and to
 10 * permit persons to whom the Software is furnished to do so, subject to
 11 * the following conditions:
 12 *
 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 20 *
 21 * The above copyright notice and this permission notice (including the
 22 * next paragraph) shall be included in all copies or substantial portions
 23 * of the Software.
 24 *
 25 */
 26/*
 27 * Authors:
 28 *    Jerome Glisse <glisse@freedesktop.org>
 29 *    Dave Airlie
 30 */
 31#include <linux/seq_file.h>
 32#include <linux/atomic.h>
 33#include <linux/wait.h>
 34#include <linux/kref.h>
 35#include <linux/slab.h>
 36#include <linux/firmware.h>
 37#include <drm/drmP.h>
 38#include "radeon_reg.h"
 39#include "radeon.h"
 40#include "radeon_trace.h"
 41
 42/*
 43 * Fences
 44 * Fences mark an event in the GPUs pipeline and are used
 45 * for GPU/CPU synchronization.  When the fence is written,
 46 * it is expected that all buffers associated with that fence
 47 * are no longer in use by the associated ring on the GPU and
 48 * that the the relevant GPU caches have been flushed.  Whether
 49 * we use a scratch register or memory location depends on the asic
 50 * and whether writeback is enabled.
 51 */
 52
 53/**
 54 * radeon_fence_write - write a fence value
 55 *
 56 * @rdev: radeon_device pointer
 57 * @seq: sequence number to write
 58 * @ring: ring index the fence is associated with
 59 *
 60 * Writes a fence value to memory or a scratch register (all asics).
 61 */
 62static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
 63{
 64	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
 65	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
 66		if (drv->cpu_addr) {
 67			*drv->cpu_addr = cpu_to_le32(seq);
 68		}
 69	} else {
 70		WREG32(drv->scratch_reg, seq);
 71	}
 72}
 73
 74/**
 75 * radeon_fence_read - read a fence value
 76 *
 77 * @rdev: radeon_device pointer
 78 * @ring: ring index the fence is associated with
 79 *
 80 * Reads a fence value from memory or a scratch register (all asics).
 81 * Returns the value of the fence read from memory or register.
 82 */
 83static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
 84{
 85	struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
 86	u32 seq = 0;
 87
 88	if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
 89		if (drv->cpu_addr) {
 90			seq = le32_to_cpu(*drv->cpu_addr);
 91		} else {
 92			seq = lower_32_bits(atomic64_read(&drv->last_seq));
 93		}
 94	} else {
 95		seq = RREG32(drv->scratch_reg);
 96	}
 97	return seq;
 98}
 99
100/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101 * radeon_fence_emit - emit a fence on the requested ring
102 *
103 * @rdev: radeon_device pointer
104 * @fence: radeon fence object
105 * @ring: ring index the fence is associated with
106 *
107 * Emits a fence command on the requested ring (all asics).
108 * Returns 0 on success, -ENOMEM on failure.
109 */
110int radeon_fence_emit(struct radeon_device *rdev,
111		      struct radeon_fence **fence,
112		      int ring)
113{
 
 
114	/* we are protected by the ring emission mutex */
115	*fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
116	if ((*fence) == NULL) {
117		return -ENOMEM;
118	}
119	kref_init(&((*fence)->kref));
120	(*fence)->rdev = rdev;
121	(*fence)->seq = ++rdev->fence_drv[ring].sync_seq[ring];
122	(*fence)->ring = ring;
 
 
 
123	radeon_fence_ring_emit(rdev, ring, *fence);
124	trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
 
125	return 0;
126}
127
128/**
129 * radeon_fence_process - process a fence
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130 *
131 * @rdev: radeon_device pointer
132 * @ring: ring index the fence is associated with
133 *
134 * Checks the current fence value and wakes the fence queue
135 * if the sequence number has increased (all asics).
 
136 */
137void radeon_fence_process(struct radeon_device *rdev, int ring)
138{
139	uint64_t seq, last_seq, last_emitted;
140	unsigned count_loop = 0;
141	bool wake = false;
142
143	/* Note there is a scenario here for an infinite loop but it's
144	 * very unlikely to happen. For it to happen, the current polling
145	 * process need to be interrupted by another process and another
146	 * process needs to update the last_seq btw the atomic read and
147	 * xchg of the current process.
148	 *
149	 * More over for this to go in infinite loop there need to be
150	 * continuously new fence signaled ie radeon_fence_read needs
151	 * to return a different value each time for both the currently
152	 * polling process and the other process that xchg the last_seq
153	 * btw atomic read and xchg of the current process. And the
154	 * value the other process set as last seq must be higher than
155	 * the seq value we just read. Which means that current process
156	 * need to be interrupted after radeon_fence_read and before
157	 * atomic xchg.
158	 *
159	 * To be even more safe we count the number of time we loop and
160	 * we bail after 10 loop just accepting the fact that we might
161	 * have temporarly set the last_seq not to the true real last
162	 * seq but to an older one.
163	 */
164	last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
165	do {
166		last_emitted = rdev->fence_drv[ring].sync_seq[ring];
167		seq = radeon_fence_read(rdev, ring);
168		seq |= last_seq & 0xffffffff00000000LL;
169		if (seq < last_seq) {
170			seq &= 0xffffffff;
171			seq |= last_emitted & 0xffffffff00000000LL;
172		}
173
174		if (seq <= last_seq || seq > last_emitted) {
175			break;
176		}
177		/* If we loop over we don't want to return without
178		 * checking if a fence is signaled as it means that the
179		 * seq we just read is different from the previous on.
180		 */
181		wake = true;
182		last_seq = seq;
183		if ((count_loop++) > 10) {
184			/* We looped over too many time leave with the
185			 * fact that we might have set an older fence
186			 * seq then the current real last seq as signaled
187			 * by the hw.
188			 */
189			break;
190		}
191	} while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
192
193	if (wake)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194		wake_up_all(&rdev->fence_queue);
 
 
195}
196
197/**
198 * radeon_fence_destroy - destroy a fence
199 *
200 * @kref: fence kref
 
201 *
202 * Frees the fence object (all asics).
 
203 */
204static void radeon_fence_destroy(struct kref *kref)
205{
206	struct radeon_fence *fence;
207
208	fence = container_of(kref, struct radeon_fence, kref);
209	kfree(fence);
210}
211
212/**
213 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
214 *
215 * @rdev: radeon device pointer
216 * @seq: sequence number
217 * @ring: ring index the fence is associated with
218 *
219 * Check if the last signaled fence sequnce number is >= the requested
220 * sequence number (all asics).
221 * Returns true if the fence has signaled (current fence value
222 * is >= requested value) or false if it has not (current fence
223 * value is < the requested value.  Helper function for
224 * radeon_fence_signaled().
225 */
226static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
227				      u64 seq, unsigned ring)
228{
229	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
230		return true;
231	}
232	/* poll new last sequence at least once */
233	radeon_fence_process(rdev, ring);
234	if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
235		return true;
236	}
237	return false;
238}
239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240/**
241 * radeon_fence_signaled - check if a fence has signaled
242 *
243 * @fence: radeon fence object
244 *
245 * Check if the requested fence has signaled (all asics).
246 * Returns true if the fence has signaled or false if it has not.
247 */
248bool radeon_fence_signaled(struct radeon_fence *fence)
249{
250	if (!fence) {
251		return true;
252	}
253	if (fence->seq == RADEON_FENCE_SIGNALED_SEQ) {
254		return true;
255	}
256	if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
257		fence->seq = RADEON_FENCE_SIGNALED_SEQ;
 
 
 
 
258		return true;
259	}
260	return false;
261}
262
263/**
264 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
265 *
266 * @rdev: radeon device pointer
267 * @seq: sequence numbers
268 *
269 * Check if the last signaled fence sequnce number is >= the requested
270 * sequence number (all asics).
271 * Returns true if any has signaled (current value is >= requested value)
272 * or false if it has not. Helper function for radeon_fence_wait_seq.
273 */
274static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
275{
276	unsigned i;
277
278	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
279		if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
280			return true;
281	}
282	return false;
283}
284
285/**
286 * radeon_fence_wait_seq - wait for a specific sequence numbers
287 *
288 * @rdev: radeon device pointer
289 * @target_seq: sequence number(s) we want to wait for
290 * @intr: use interruptable sleep
 
291 *
292 * Wait for the requested sequence number(s) to be written by any ring
293 * (all asics).  Sequnce number array is indexed by ring id.
294 * @intr selects whether to use interruptable (true) or non-interruptable
295 * (false) sleep when waiting for the sequence number.  Helper function
296 * for radeon_fence_wait_*().
297 * Returns 0 if the sequence number has passed, error for all other cases.
 
298 * -EDEADLK is returned when a GPU lockup has been detected.
299 */
300static int radeon_fence_wait_seq(struct radeon_device *rdev, u64 *target_seq,
301				 bool intr)
 
302{
303	uint64_t last_seq[RADEON_NUM_RINGS];
304	bool signaled;
305	int i, r;
 
 
 
 
 
 
 
306
307	while (!radeon_fence_any_seq_signaled(rdev, target_seq)) {
 
 
 
 
 
 
 
 
 
 
 
 
308
309		/* Save current sequence values, used to check for GPU lockups */
310		for (i = 0; i < RADEON_NUM_RINGS; ++i) {
311			if (!target_seq[i])
312				continue;
313
314			last_seq[i] = atomic64_read(&rdev->fence_drv[i].last_seq);
315			trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
316			radeon_irq_kms_sw_irq_get(rdev, i);
317		}
318
319		if (intr) {
320			r = wait_event_interruptible_timeout(rdev->fence_queue, (
321				(signaled = radeon_fence_any_seq_signaled(rdev, target_seq))
322				 || rdev->needs_reset), RADEON_FENCE_JIFFIES_TIMEOUT);
323		} else {
324			r = wait_event_timeout(rdev->fence_queue, (
325				(signaled = radeon_fence_any_seq_signaled(rdev, target_seq))
326				 || rdev->needs_reset), RADEON_FENCE_JIFFIES_TIMEOUT);
327		}
328
329		for (i = 0; i < RADEON_NUM_RINGS; ++i) {
330			if (!target_seq[i])
331				continue;
332
333			radeon_irq_kms_sw_irq_put(rdev, i);
334			trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
335		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336
337		if (unlikely(r < 0))
338			return r;
 
 
 
 
 
 
339
340		if (unlikely(!signaled)) {
341			if (rdev->needs_reset)
342				return -EDEADLK;
343
344			/* we were interrupted for some reason and fence
345			 * isn't signaled yet, resume waiting */
346			if (r)
347				continue;
348
349			for (i = 0; i < RADEON_NUM_RINGS; ++i) {
350				if (!target_seq[i])
351					continue;
352
353				if (last_seq[i] != atomic64_read(&rdev->fence_drv[i].last_seq))
354					break;
355			}
356
357			if (i != RADEON_NUM_RINGS)
358				continue;
359
360			for (i = 0; i < RADEON_NUM_RINGS; ++i) {
361				if (!target_seq[i])
362					continue;
363
364				if (radeon_ring_is_lockup(rdev, i, &rdev->ring[i]))
365					break;
366			}
367
368			if (i < RADEON_NUM_RINGS) {
369				/* good news we believe it's a lockup */
370				dev_warn(rdev->dev, "GPU lockup (waiting for "
371					 "0x%016llx last fence id 0x%016llx on"
372					 " ring %d)\n",
373					 target_seq[i], last_seq[i], i);
374
375				/* remember that we need an reset */
376				rdev->needs_reset = true;
377				wake_up_all(&rdev->fence_queue);
378				return -EDEADLK;
379			}
380		}
381	}
382	return 0;
 
 
 
 
383}
384
385/**
386 * radeon_fence_wait - wait for a fence to signal
387 *
388 * @fence: radeon fence object
389 * @intr: use interruptable sleep
390 *
391 * Wait for the requested fence to signal (all asics).
392 * @intr selects whether to use interruptable (true) or non-interruptable
393 * (false) sleep when waiting for the fence.
394 * Returns 0 if the fence has passed, error for all other cases.
395 */
396int radeon_fence_wait(struct radeon_fence *fence, bool intr)
397{
398	uint64_t seq[RADEON_NUM_RINGS] = {};
399	int r;
400
401	if (fence == NULL) {
402		WARN(1, "Querying an invalid fence : %p !\n", fence);
403		return -EINVAL;
404	}
405
406	seq[fence->ring] = fence->seq;
407	if (seq[fence->ring] == RADEON_FENCE_SIGNALED_SEQ)
408		return 0;
409
410	r = radeon_fence_wait_seq(fence->rdev, seq, intr);
411	if (r)
412		return r;
413
414	fence->seq = RADEON_FENCE_SIGNALED_SEQ;
415	return 0;
416}
417
418/**
419 * radeon_fence_wait_any - wait for a fence to signal on any ring
420 *
421 * @rdev: radeon device pointer
422 * @fences: radeon fence object(s)
423 * @intr: use interruptable sleep
424 *
425 * Wait for any requested fence to signal (all asics).  Fence
426 * array is indexed by ring id.  @intr selects whether to use
427 * interruptable (true) or non-interruptable (false) sleep when
428 * waiting for the fences. Used by the suballocator.
429 * Returns 0 if any fence has passed, error for all other cases.
430 */
431int radeon_fence_wait_any(struct radeon_device *rdev,
432			  struct radeon_fence **fences,
433			  bool intr)
434{
435	uint64_t seq[RADEON_NUM_RINGS];
436	unsigned i, num_rings = 0;
437	int r;
438
439	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
440		seq[i] = 0;
441
442		if (!fences[i]) {
443			continue;
444		}
445
446		seq[i] = fences[i]->seq;
447		++num_rings;
448
449		/* test if something was allready signaled */
450		if (seq[i] == RADEON_FENCE_SIGNALED_SEQ)
451			return 0;
452	}
453
454	/* nothing to wait for ? */
455	if (num_rings == 0)
456		return -ENOENT;
457
458	r = radeon_fence_wait_seq(rdev, seq, intr);
459	if (r) {
460		return r;
461	}
462	return 0;
463}
464
465/**
466 * radeon_fence_wait_next - wait for the next fence to signal
467 *
468 * @rdev: radeon device pointer
469 * @ring: ring index the fence is associated with
470 *
471 * Wait for the next fence on the requested ring to signal (all asics).
472 * Returns 0 if the next fence has passed, error for all other cases.
473 * Caller must hold ring lock.
474 */
475int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
476{
477	uint64_t seq[RADEON_NUM_RINGS] = {};
 
478
479	seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
480	if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
481		/* nothing to wait for, last_seq is
482		   already the last emited fence */
483		return -ENOENT;
484	}
485	return radeon_fence_wait_seq(rdev, seq, false);
 
 
 
486}
487
488/**
489 * radeon_fence_wait_empty - wait for all fences to signal
490 *
491 * @rdev: radeon device pointer
492 * @ring: ring index the fence is associated with
493 *
494 * Wait for all fences on the requested ring to signal (all asics).
495 * Returns 0 if the fences have passed, error for all other cases.
496 * Caller must hold ring lock.
497 */
498int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
499{
500	uint64_t seq[RADEON_NUM_RINGS] = {};
501	int r;
502
503	seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
504	if (!seq[ring])
505		return 0;
506
507	r = radeon_fence_wait_seq(rdev, seq, false);
508	if (r) {
509		if (r == -EDEADLK)
510			return -EDEADLK;
511
512		dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%d)\n",
513			ring, r);
514	}
515	return 0;
516}
517
518/**
519 * radeon_fence_ref - take a ref on a fence
520 *
521 * @fence: radeon fence object
522 *
523 * Take a reference on a fence (all asics).
524 * Returns the fence.
525 */
526struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
527{
528	kref_get(&fence->kref);
529	return fence;
530}
531
532/**
533 * radeon_fence_unref - remove a ref on a fence
534 *
535 * @fence: radeon fence object
536 *
537 * Remove a reference on a fence (all asics).
538 */
539void radeon_fence_unref(struct radeon_fence **fence)
540{
541	struct radeon_fence *tmp = *fence;
542
543	*fence = NULL;
544	if (tmp) {
545		kref_put(&tmp->kref, radeon_fence_destroy);
546	}
547}
548
549/**
550 * radeon_fence_count_emitted - get the count of emitted fences
551 *
552 * @rdev: radeon device pointer
553 * @ring: ring index the fence is associated with
554 *
555 * Get the number of fences emitted on the requested ring (all asics).
556 * Returns the number of emitted fences on the ring.  Used by the
557 * dynpm code to ring track activity.
558 */
559unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
560{
561	uint64_t emitted;
562
563	/* We are not protected by ring lock when reading the last sequence
564	 * but it's ok to report slightly wrong fence count here.
565	 */
566	radeon_fence_process(rdev, ring);
567	emitted = rdev->fence_drv[ring].sync_seq[ring]
568		- atomic64_read(&rdev->fence_drv[ring].last_seq);
569	/* to avoid 32bits warp around */
570	if (emitted > 0x10000000) {
571		emitted = 0x10000000;
572	}
573	return (unsigned)emitted;
574}
575
576/**
577 * radeon_fence_need_sync - do we need a semaphore
578 *
579 * @fence: radeon fence object
580 * @dst_ring: which ring to check against
581 *
582 * Check if the fence needs to be synced against another ring
583 * (all asics).  If so, we need to emit a semaphore.
584 * Returns true if we need to sync with another ring, false if
585 * not.
586 */
587bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
588{
589	struct radeon_fence_driver *fdrv;
590
591	if (!fence) {
592		return false;
593	}
594
595	if (fence->ring == dst_ring) {
596		return false;
597	}
598
599	/* we are protected by the ring mutex */
600	fdrv = &fence->rdev->fence_drv[dst_ring];
601	if (fence->seq <= fdrv->sync_seq[fence->ring]) {
602		return false;
603	}
604
605	return true;
606}
607
608/**
609 * radeon_fence_note_sync - record the sync point
610 *
611 * @fence: radeon fence object
612 * @dst_ring: which ring to check against
613 *
614 * Note the sequence number at which point the fence will
615 * be synced with the requested ring (all asics).
616 */
617void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
618{
619	struct radeon_fence_driver *dst, *src;
620	unsigned i;
621
622	if (!fence) {
623		return;
624	}
625
626	if (fence->ring == dst_ring) {
627		return;
628	}
629
630	/* we are protected by the ring mutex */
631	src = &fence->rdev->fence_drv[fence->ring];
632	dst = &fence->rdev->fence_drv[dst_ring];
633	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
634		if (i == dst_ring) {
635			continue;
636		}
637		dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
638	}
639}
640
641/**
642 * radeon_fence_driver_start_ring - make the fence driver
643 * ready for use on the requested ring.
644 *
645 * @rdev: radeon device pointer
646 * @ring: ring index to start the fence driver on
647 *
648 * Make the fence driver ready for processing (all asics).
649 * Not all asics have all rings, so each asic will only
650 * start the fence driver on the rings it has.
651 * Returns 0 for success, errors for failure.
652 */
653int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
654{
655	uint64_t index;
656	int r;
657
658	radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
659	if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
660		rdev->fence_drv[ring].scratch_reg = 0;
661		if (ring != R600_RING_TYPE_UVD_INDEX) {
662			index = R600_WB_EVENT_OFFSET + ring * 4;
663			rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
664			rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
665							 index;
666
667		} else {
668			/* put fence directly behind firmware */
669			index = ALIGN(rdev->uvd_fw->size, 8);
670			rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
671			rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
672		}
673
674	} else {
675		r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
676		if (r) {
677			dev_err(rdev->dev, "fence failed to get scratch register\n");
678			return r;
679		}
680		index = RADEON_WB_SCRATCH_OFFSET +
681			rdev->fence_drv[ring].scratch_reg -
682			rdev->scratch.reg_base;
683		rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
684		rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
685	}
686	radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
687	rdev->fence_drv[ring].initialized = true;
688	dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx and cpu addr 0x%p\n",
689		 ring, rdev->fence_drv[ring].gpu_addr, rdev->fence_drv[ring].cpu_addr);
690	return 0;
691}
692
693/**
694 * radeon_fence_driver_init_ring - init the fence driver
695 * for the requested ring.
696 *
697 * @rdev: radeon device pointer
698 * @ring: ring index to start the fence driver on
699 *
700 * Init the fence driver for the requested ring (all asics).
701 * Helper function for radeon_fence_driver_init().
702 */
703static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
704{
705	int i;
706
707	rdev->fence_drv[ring].scratch_reg = -1;
708	rdev->fence_drv[ring].cpu_addr = NULL;
709	rdev->fence_drv[ring].gpu_addr = 0;
710	for (i = 0; i < RADEON_NUM_RINGS; ++i)
711		rdev->fence_drv[ring].sync_seq[i] = 0;
712	atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
713	rdev->fence_drv[ring].initialized = false;
 
 
 
714}
715
716/**
717 * radeon_fence_driver_init - init the fence driver
718 * for all possible rings.
719 *
720 * @rdev: radeon device pointer
721 *
722 * Init the fence driver for all possible rings (all asics).
723 * Not all asics have all rings, so each asic will only
724 * start the fence driver on the rings it has using
725 * radeon_fence_driver_start_ring().
726 * Returns 0 for success.
727 */
728int radeon_fence_driver_init(struct radeon_device *rdev)
729{
730	int ring;
731
732	init_waitqueue_head(&rdev->fence_queue);
733	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
734		radeon_fence_driver_init_ring(rdev, ring);
735	}
736	if (radeon_debugfs_fence_init(rdev)) {
737		dev_err(rdev->dev, "fence debugfs file creation failed\n");
738	}
739	return 0;
740}
741
742/**
743 * radeon_fence_driver_fini - tear down the fence driver
744 * for all possible rings.
745 *
746 * @rdev: radeon device pointer
747 *
748 * Tear down the fence driver for all possible rings (all asics).
749 */
750void radeon_fence_driver_fini(struct radeon_device *rdev)
751{
752	int ring, r;
753
754	mutex_lock(&rdev->ring_lock);
755	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
756		if (!rdev->fence_drv[ring].initialized)
757			continue;
758		r = radeon_fence_wait_empty(rdev, ring);
759		if (r) {
760			/* no need to trigger GPU reset as we are unloading */
761			radeon_fence_driver_force_completion(rdev);
762		}
 
763		wake_up_all(&rdev->fence_queue);
764		radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
765		rdev->fence_drv[ring].initialized = false;
766	}
767	mutex_unlock(&rdev->ring_lock);
768}
769
770/**
771 * radeon_fence_driver_force_completion - force all fence waiter to complete
772 *
773 * @rdev: radeon device pointer
 
774 *
775 * In case of GPU reset failure make sure no process keep waiting on fence
776 * that will never complete.
777 */
778void radeon_fence_driver_force_completion(struct radeon_device *rdev)
779{
780	int ring;
781
782	for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
783		if (!rdev->fence_drv[ring].initialized)
784			continue;
785		radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
 
786	}
787}
788
789
790/*
791 * Fence debugfs
792 */
793#if defined(CONFIG_DEBUG_FS)
794static int radeon_debugfs_fence_info(struct seq_file *m, void *data)
795{
796	struct drm_info_node *node = (struct drm_info_node *)m->private;
797	struct drm_device *dev = node->minor->dev;
798	struct radeon_device *rdev = dev->dev_private;
799	int i, j;
800
801	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
802		if (!rdev->fence_drv[i].initialized)
803			continue;
804
805		radeon_fence_process(rdev, i);
806
807		seq_printf(m, "--- ring %d ---\n", i);
808		seq_printf(m, "Last signaled fence 0x%016llx\n",
809			   (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
810		seq_printf(m, "Last emitted        0x%016llx\n",
811			   rdev->fence_drv[i].sync_seq[i]);
812
813		for (j = 0; j < RADEON_NUM_RINGS; ++j) {
814			if (i != j && rdev->fence_drv[j].initialized)
815				seq_printf(m, "Last sync to ring %d 0x%016llx\n",
816					   j, rdev->fence_drv[i].sync_seq[j]);
817		}
818	}
819	return 0;
820}
821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
822static struct drm_info_list radeon_debugfs_fence_list[] = {
823	{"radeon_fence_info", &radeon_debugfs_fence_info, 0, NULL},
 
824};
825#endif
826
827int radeon_debugfs_fence_init(struct radeon_device *rdev)
828{
829#if defined(CONFIG_DEBUG_FS)
830	return radeon_debugfs_add_files(rdev, radeon_debugfs_fence_list, 1);
831#else
832	return 0;
833#endif
834}