Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
  5 *
  6 *  Pentium III FXSR, SSE support
  7 *	Gareth Hughes <gareth@valinux.com>, May 2000
  8 */
  9
 10/*
 11 * Handle hardware traps and faults.
 12 */
 13#include <linux/spinlock.h>
 14#include <linux/kprobes.h>
 15#include <linux/kdebug.h>
 16#include <linux/nmi.h>
 17#include <linux/debugfs.h>
 18#include <linux/delay.h>
 19#include <linux/hardirq.h>
 20#include <linux/slab.h>
 21#include <linux/export.h>
 22
 23#if defined(CONFIG_EDAC)
 24#include <linux/edac.h>
 25#endif
 26
 27#include <linux/atomic.h>
 28#include <asm/traps.h>
 29#include <asm/mach_traps.h>
 30#include <asm/nmi.h>
 31#include <asm/x86_init.h>
 32#include <asm/reboot.h>
 33#include <asm/cache.h>
 34
 35#define CREATE_TRACE_POINTS
 36#include <trace/events/nmi.h>
 37
 38struct nmi_desc {
 39	spinlock_t lock;
 40	struct list_head head;
 41};
 42
 43static struct nmi_desc nmi_desc[NMI_MAX] = 
 44{
 45	{
 46		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
 47		.head = LIST_HEAD_INIT(nmi_desc[0].head),
 48	},
 49	{
 50		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
 51		.head = LIST_HEAD_INIT(nmi_desc[1].head),
 52	},
 53	{
 54		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
 55		.head = LIST_HEAD_INIT(nmi_desc[2].head),
 56	},
 57	{
 58		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
 59		.head = LIST_HEAD_INIT(nmi_desc[3].head),
 60	},
 61
 62};
 63
 64struct nmi_stats {
 65	unsigned int normal;
 66	unsigned int unknown;
 67	unsigned int external;
 68	unsigned int swallow;
 69};
 70
 71static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
 72
 73static int ignore_nmis __read_mostly;
 74
 75int unknown_nmi_panic;
 76/*
 77 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 78 * only be used in NMI handler.
 79 */
 80static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 81
 82static int __init setup_unknown_nmi_panic(char *str)
 83{
 84	unknown_nmi_panic = 1;
 85	return 1;
 86}
 87__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
 88
 89#define nmi_to_desc(type) (&nmi_desc[type])
 90
 91static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
 92
 93static int __init nmi_warning_debugfs(void)
 94{
 95	debugfs_create_u64("nmi_longest_ns", 0644,
 96			arch_debugfs_dir, &nmi_longest_ns);
 97	return 0;
 98}
 99fs_initcall(nmi_warning_debugfs);
100
101static void nmi_max_handler(struct irq_work *w)
102{
103	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
104	int remainder_ns, decimal_msecs;
105	u64 whole_msecs = ACCESS_ONCE(a->max_duration);
106
107	remainder_ns = do_div(whole_msecs, (1000 * 1000));
108	decimal_msecs = remainder_ns / 1000;
109
110	printk_ratelimited(KERN_INFO
111		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
112		a->handler, whole_msecs, decimal_msecs);
113}
114
115static int nmi_handle(unsigned int type, struct pt_regs *regs)
116{
117	struct nmi_desc *desc = nmi_to_desc(type);
118	struct nmiaction *a;
119	int handled=0;
120
121	rcu_read_lock();
122
123	/*
124	 * NMIs are edge-triggered, which means if you have enough
125	 * of them concurrently, you can lose some because only one
126	 * can be latched at any given time.  Walk the whole list
127	 * to handle those situations.
128	 */
129	list_for_each_entry_rcu(a, &desc->head, list) {
130		int thishandled;
131		u64 delta;
132
133		delta = sched_clock();
134		thishandled = a->handler(type, regs);
135		handled += thishandled;
136		delta = sched_clock() - delta;
137		trace_nmi_handler(a->handler, (int)delta, thishandled);
138
139		if (delta < nmi_longest_ns || delta < a->max_duration)
140			continue;
141
142		a->max_duration = delta;
143		irq_work_queue(&a->irq_work);
144	}
145
146	rcu_read_unlock();
147
148	/* return total number of NMI events handled */
149	return handled;
150}
151NOKPROBE_SYMBOL(nmi_handle);
152
153int __register_nmi_handler(unsigned int type, struct nmiaction *action)
154{
155	struct nmi_desc *desc = nmi_to_desc(type);
156	unsigned long flags;
157
158	if (!action->handler)
159		return -EINVAL;
160
161	init_irq_work(&action->irq_work, nmi_max_handler);
162
163	spin_lock_irqsave(&desc->lock, flags);
164
165	/*
166	 * most handlers of type NMI_UNKNOWN never return because
167	 * they just assume the NMI is theirs.  Just a sanity check
168	 * to manage expectations
169	 */
170	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
171	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
172	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
173
174	/*
175	 * some handlers need to be executed first otherwise a fake
176	 * event confuses some handlers (kdump uses this flag)
177	 */
178	if (action->flags & NMI_FLAG_FIRST)
179		list_add_rcu(&action->list, &desc->head);
180	else
181		list_add_tail_rcu(&action->list, &desc->head);
182	
183	spin_unlock_irqrestore(&desc->lock, flags);
184	return 0;
185}
186EXPORT_SYMBOL(__register_nmi_handler);
187
188void unregister_nmi_handler(unsigned int type, const char *name)
189{
190	struct nmi_desc *desc = nmi_to_desc(type);
191	struct nmiaction *n;
192	unsigned long flags;
193
194	spin_lock_irqsave(&desc->lock, flags);
195
196	list_for_each_entry_rcu(n, &desc->head, list) {
197		/*
198		 * the name passed in to describe the nmi handler
199		 * is used as the lookup key
200		 */
201		if (!strcmp(n->name, name)) {
202			WARN(in_nmi(),
203				"Trying to free NMI (%s) from NMI context!\n", n->name);
204			list_del_rcu(&n->list);
205			break;
206		}
207	}
208
209	spin_unlock_irqrestore(&desc->lock, flags);
210	synchronize_rcu();
211}
212EXPORT_SYMBOL_GPL(unregister_nmi_handler);
213
214static void
215pci_serr_error(unsigned char reason, struct pt_regs *regs)
216{
217	/* check to see if anyone registered against these types of errors */
218	if (nmi_handle(NMI_SERR, regs))
219		return;
220
221	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
222		 reason, smp_processor_id());
223
224	/*
225	 * On some machines, PCI SERR line is used to report memory
226	 * errors. EDAC makes use of it.
227	 */
228#if defined(CONFIG_EDAC)
229	if (edac_handler_set()) {
230		edac_atomic_assert_error();
231		return;
232	}
233#endif
234
235	if (panic_on_unrecovered_nmi)
236		nmi_panic(regs, "NMI: Not continuing");
237
238	pr_emerg("Dazed and confused, but trying to continue\n");
239
240	/* Clear and disable the PCI SERR error line. */
241	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
242	outb(reason, NMI_REASON_PORT);
243}
244NOKPROBE_SYMBOL(pci_serr_error);
245
246static void
247io_check_error(unsigned char reason, struct pt_regs *regs)
248{
249	unsigned long i;
250
251	/* check to see if anyone registered against these types of errors */
252	if (nmi_handle(NMI_IO_CHECK, regs))
253		return;
254
255	pr_emerg(
256	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
257		 reason, smp_processor_id());
258	show_regs(regs);
259
260	if (panic_on_io_nmi) {
261		nmi_panic(regs, "NMI IOCK error: Not continuing");
262
263		/*
264		 * If we end up here, it means we have received an NMI while
265		 * processing panic(). Simply return without delaying and
266		 * re-enabling NMIs.
267		 */
268		return;
269	}
270
271	/* Re-enable the IOCK line, wait for a few seconds */
272	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
273	outb(reason, NMI_REASON_PORT);
274
275	i = 20000;
276	while (--i) {
277		touch_nmi_watchdog();
278		udelay(100);
279	}
280
281	reason &= ~NMI_REASON_CLEAR_IOCHK;
282	outb(reason, NMI_REASON_PORT);
283}
284NOKPROBE_SYMBOL(io_check_error);
285
286static void
287unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
288{
289	int handled;
290
291	/*
292	 * Use 'false' as back-to-back NMIs are dealt with one level up.
293	 * Of course this makes having multiple 'unknown' handlers useless
294	 * as only the first one is ever run (unless it can actually determine
295	 * if it caused the NMI)
296	 */
297	handled = nmi_handle(NMI_UNKNOWN, regs);
298	if (handled) {
299		__this_cpu_add(nmi_stats.unknown, handled);
300		return;
301	}
302
303	__this_cpu_add(nmi_stats.unknown, 1);
304
305	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
306		 reason, smp_processor_id());
307
308	pr_emerg("Do you have a strange power saving mode enabled?\n");
309	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
310		nmi_panic(regs, "NMI: Not continuing");
311
312	pr_emerg("Dazed and confused, but trying to continue\n");
313}
314NOKPROBE_SYMBOL(unknown_nmi_error);
315
316static DEFINE_PER_CPU(bool, swallow_nmi);
317static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
318
319static void default_do_nmi(struct pt_regs *regs)
320{
321	unsigned char reason = 0;
322	int handled;
323	bool b2b = false;
324
325	/*
326	 * CPU-specific NMI must be processed before non-CPU-specific
327	 * NMI, otherwise we may lose it, because the CPU-specific
328	 * NMI can not be detected/processed on other CPUs.
329	 */
330
331	/*
332	 * Back-to-back NMIs are interesting because they can either
333	 * be two NMI or more than two NMIs (any thing over two is dropped
334	 * due to NMI being edge-triggered).  If this is the second half
335	 * of the back-to-back NMI, assume we dropped things and process
336	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
337	 */
338	if (regs->ip == __this_cpu_read(last_nmi_rip))
339		b2b = true;
340	else
341		__this_cpu_write(swallow_nmi, false);
342
343	__this_cpu_write(last_nmi_rip, regs->ip);
344
345	handled = nmi_handle(NMI_LOCAL, regs);
346	__this_cpu_add(nmi_stats.normal, handled);
347	if (handled) {
348		/*
349		 * There are cases when a NMI handler handles multiple
350		 * events in the current NMI.  One of these events may
351		 * be queued for in the next NMI.  Because the event is
352		 * already handled, the next NMI will result in an unknown
353		 * NMI.  Instead lets flag this for a potential NMI to
354		 * swallow.
355		 */
356		if (handled > 1)
357			__this_cpu_write(swallow_nmi, true);
358		return;
359	}
360
361	/*
362	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
363	 *
364	 * Another CPU may be processing panic routines while holding
365	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
366	 * and if so, call its callback directly.  If there is no CPU preparing
367	 * crash dump, we simply loop here.
368	 */
369	while (!raw_spin_trylock(&nmi_reason_lock)) {
370		run_crash_ipi_callback(regs);
371		cpu_relax();
372	}
373
374	reason = x86_platform.get_nmi_reason();
375
376	if (reason & NMI_REASON_MASK) {
377		if (reason & NMI_REASON_SERR)
378			pci_serr_error(reason, regs);
379		else if (reason & NMI_REASON_IOCHK)
380			io_check_error(reason, regs);
381#ifdef CONFIG_X86_32
382		/*
383		 * Reassert NMI in case it became active
384		 * meanwhile as it's edge-triggered:
385		 */
386		reassert_nmi();
387#endif
388		__this_cpu_add(nmi_stats.external, 1);
389		raw_spin_unlock(&nmi_reason_lock);
390		return;
391	}
392	raw_spin_unlock(&nmi_reason_lock);
393
394	/*
395	 * Only one NMI can be latched at a time.  To handle
396	 * this we may process multiple nmi handlers at once to
397	 * cover the case where an NMI is dropped.  The downside
398	 * to this approach is we may process an NMI prematurely,
399	 * while its real NMI is sitting latched.  This will cause
400	 * an unknown NMI on the next run of the NMI processing.
401	 *
402	 * We tried to flag that condition above, by setting the
403	 * swallow_nmi flag when we process more than one event.
404	 * This condition is also only present on the second half
405	 * of a back-to-back NMI, so we flag that condition too.
406	 *
407	 * If both are true, we assume we already processed this
408	 * NMI previously and we swallow it.  Otherwise we reset
409	 * the logic.
410	 *
411	 * There are scenarios where we may accidentally swallow
412	 * a 'real' unknown NMI.  For example, while processing
413	 * a perf NMI another perf NMI comes in along with a
414	 * 'real' unknown NMI.  These two NMIs get combined into
415	 * one (as descibed above).  When the next NMI gets
416	 * processed, it will be flagged by perf as handled, but
417	 * noone will know that there was a 'real' unknown NMI sent
418	 * also.  As a result it gets swallowed.  Or if the first
419	 * perf NMI returns two events handled then the second
420	 * NMI will get eaten by the logic below, again losing a
421	 * 'real' unknown NMI.  But this is the best we can do
422	 * for now.
423	 */
424	if (b2b && __this_cpu_read(swallow_nmi))
425		__this_cpu_add(nmi_stats.swallow, 1);
426	else
427		unknown_nmi_error(reason, regs);
428}
429NOKPROBE_SYMBOL(default_do_nmi);
430
431/*
432 * NMIs can page fault or hit breakpoints which will cause it to lose
433 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
434 *
435 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
436 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
437 * if the outer NMI came from kernel mode, but we can still nest if the
438 * outer NMI came from user mode.
439 *
440 * To handle these nested NMIs, we have three states:
441 *
442 *  1) not running
443 *  2) executing
444 *  3) latched
445 *
446 * When no NMI is in progress, it is in the "not running" state.
447 * When an NMI comes in, it goes into the "executing" state.
448 * Normally, if another NMI is triggered, it does not interrupt
449 * the running NMI and the HW will simply latch it so that when
450 * the first NMI finishes, it will restart the second NMI.
451 * (Note, the latch is binary, thus multiple NMIs triggering,
452 *  when one is running, are ignored. Only one NMI is restarted.)
453 *
454 * If an NMI executes an iret, another NMI can preempt it. We do not
455 * want to allow this new NMI to run, but we want to execute it when the
456 * first one finishes.  We set the state to "latched", and the exit of
457 * the first NMI will perform a dec_return, if the result is zero
458 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
459 * dec_return would have set the state to NMI_EXECUTING (what we want it
460 * to be when we are running). In this case, we simply jump back to
461 * rerun the NMI handler again, and restart the 'latched' NMI.
 
462 *
463 * No trap (breakpoint or page fault) should be hit before nmi_restart,
464 * thus there is no race between the first check of state for NOT_RUNNING
465 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
466 * at this point.
467 *
468 * In case the NMI takes a page fault, we need to save off the CR2
469 * because the NMI could have preempted another page fault and corrupt
470 * the CR2 that is about to be read. As nested NMIs must be restarted
471 * and they can not take breakpoints or page faults, the update of the
472 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
473 * Otherwise, there would be a race of another nested NMI coming in
474 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
475 */
476enum nmi_states {
477	NMI_NOT_RUNNING = 0,
478	NMI_EXECUTING,
479	NMI_LATCHED,
480};
481static DEFINE_PER_CPU(enum nmi_states, nmi_state);
482static DEFINE_PER_CPU(unsigned long, nmi_cr2);
483
484#ifdef CONFIG_X86_64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485/*
486 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
487 * some care, the inner breakpoint will clobber the outer breakpoint's
488 * stack.
 
 
 
 
 
 
489 *
490 * If a breakpoint is being processed, and the debug stack is being
491 * used, if an NMI comes in and also hits a breakpoint, the stack
492 * pointer will be set to the same fixed address as the breakpoint that
493 * was interrupted, causing that stack to be corrupted. To handle this
494 * case, check if the stack that was interrupted is the debug stack, and
495 * if so, change the IDT so that new breakpoints will use the current
496 * stack and not switch to the fixed address. On return of the NMI,
497 * switch back to the original IDT.
498 */
499static DEFINE_PER_CPU(int, update_debug_stack);
500#endif
501
502dotraplinkage notrace void
503do_nmi(struct pt_regs *regs, long error_code)
504{
505	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
506		this_cpu_write(nmi_state, NMI_LATCHED);
507		return;
508	}
509	this_cpu_write(nmi_state, NMI_EXECUTING);
510	this_cpu_write(nmi_cr2, read_cr2());
511nmi_restart:
512
513#ifdef CONFIG_X86_64
514	/*
515	 * If we interrupted a breakpoint, it is possible that
516	 * the nmi handler will have breakpoints too. We need to
517	 * change the IDT such that breakpoints that happen here
518	 * continue to use the NMI stack.
519	 */
520	if (unlikely(is_debug_stack(regs->sp))) {
521		debug_stack_set_zero();
522		this_cpu_write(update_debug_stack, 1);
523	}
 
 
 
 
 
 
 
 
 
524#endif
525
 
 
 
 
 
526	nmi_enter();
527
528	inc_irq_stat(__nmi_count);
529
530	if (!ignore_nmis)
531		default_do_nmi(regs);
532
533	nmi_exit();
534
535#ifdef CONFIG_X86_64
536	if (unlikely(this_cpu_read(update_debug_stack))) {
537		debug_stack_reset();
538		this_cpu_write(update_debug_stack, 0);
539	}
540#endif
541
542	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
543		write_cr2(this_cpu_read(nmi_cr2));
544	if (this_cpu_dec_return(nmi_state))
545		goto nmi_restart;
546}
547NOKPROBE_SYMBOL(do_nmi);
548
549void stop_nmi(void)
550{
551	ignore_nmis++;
552}
553
554void restart_nmi(void)
555{
556	ignore_nmis--;
557}
558
559/* reset the back-to-back NMI logic */
560void local_touch_nmi(void)
561{
562	__this_cpu_write(last_nmi_rip, 0);
563}
564EXPORT_SYMBOL_GPL(local_touch_nmi);
v3.15
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
  5 *
  6 *  Pentium III FXSR, SSE support
  7 *	Gareth Hughes <gareth@valinux.com>, May 2000
  8 */
  9
 10/*
 11 * Handle hardware traps and faults.
 12 */
 13#include <linux/spinlock.h>
 14#include <linux/kprobes.h>
 15#include <linux/kdebug.h>
 16#include <linux/nmi.h>
 17#include <linux/debugfs.h>
 18#include <linux/delay.h>
 19#include <linux/hardirq.h>
 20#include <linux/slab.h>
 21#include <linux/export.h>
 22
 23#if defined(CONFIG_EDAC)
 24#include <linux/edac.h>
 25#endif
 26
 27#include <linux/atomic.h>
 28#include <asm/traps.h>
 29#include <asm/mach_traps.h>
 30#include <asm/nmi.h>
 31#include <asm/x86_init.h>
 
 
 32
 33#define CREATE_TRACE_POINTS
 34#include <trace/events/nmi.h>
 35
 36struct nmi_desc {
 37	spinlock_t lock;
 38	struct list_head head;
 39};
 40
 41static struct nmi_desc nmi_desc[NMI_MAX] = 
 42{
 43	{
 44		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
 45		.head = LIST_HEAD_INIT(nmi_desc[0].head),
 46	},
 47	{
 48		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
 49		.head = LIST_HEAD_INIT(nmi_desc[1].head),
 50	},
 51	{
 52		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
 53		.head = LIST_HEAD_INIT(nmi_desc[2].head),
 54	},
 55	{
 56		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
 57		.head = LIST_HEAD_INIT(nmi_desc[3].head),
 58	},
 59
 60};
 61
 62struct nmi_stats {
 63	unsigned int normal;
 64	unsigned int unknown;
 65	unsigned int external;
 66	unsigned int swallow;
 67};
 68
 69static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
 70
 71static int ignore_nmis;
 72
 73int unknown_nmi_panic;
 74/*
 75 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 76 * only be used in NMI handler.
 77 */
 78static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 79
 80static int __init setup_unknown_nmi_panic(char *str)
 81{
 82	unknown_nmi_panic = 1;
 83	return 1;
 84}
 85__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
 86
 87#define nmi_to_desc(type) (&nmi_desc[type])
 88
 89static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
 90
 91static int __init nmi_warning_debugfs(void)
 92{
 93	debugfs_create_u64("nmi_longest_ns", 0644,
 94			arch_debugfs_dir, &nmi_longest_ns);
 95	return 0;
 96}
 97fs_initcall(nmi_warning_debugfs);
 98
 99static void nmi_max_handler(struct irq_work *w)
100{
101	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
102	int remainder_ns, decimal_msecs;
103	u64 whole_msecs = ACCESS_ONCE(a->max_duration);
104
105	remainder_ns = do_div(whole_msecs, (1000 * 1000));
106	decimal_msecs = remainder_ns / 1000;
107
108	printk_ratelimited(KERN_INFO
109		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
110		a->handler, whole_msecs, decimal_msecs);
111}
112
113static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
114{
115	struct nmi_desc *desc = nmi_to_desc(type);
116	struct nmiaction *a;
117	int handled=0;
118
119	rcu_read_lock();
120
121	/*
122	 * NMIs are edge-triggered, which means if you have enough
123	 * of them concurrently, you can lose some because only one
124	 * can be latched at any given time.  Walk the whole list
125	 * to handle those situations.
126	 */
127	list_for_each_entry_rcu(a, &desc->head, list) {
128		int thishandled;
129		u64 delta;
130
131		delta = sched_clock();
132		thishandled = a->handler(type, regs);
133		handled += thishandled;
134		delta = sched_clock() - delta;
135		trace_nmi_handler(a->handler, (int)delta, thishandled);
136
137		if (delta < nmi_longest_ns || delta < a->max_duration)
138			continue;
139
140		a->max_duration = delta;
141		irq_work_queue(&a->irq_work);
142	}
143
144	rcu_read_unlock();
145
146	/* return total number of NMI events handled */
147	return handled;
148}
 
149
150int __register_nmi_handler(unsigned int type, struct nmiaction *action)
151{
152	struct nmi_desc *desc = nmi_to_desc(type);
153	unsigned long flags;
154
155	if (!action->handler)
156		return -EINVAL;
157
158	init_irq_work(&action->irq_work, nmi_max_handler);
159
160	spin_lock_irqsave(&desc->lock, flags);
161
162	/*
163	 * most handlers of type NMI_UNKNOWN never return because
164	 * they just assume the NMI is theirs.  Just a sanity check
165	 * to manage expectations
166	 */
167	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
168	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
169	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
170
171	/*
172	 * some handlers need to be executed first otherwise a fake
173	 * event confuses some handlers (kdump uses this flag)
174	 */
175	if (action->flags & NMI_FLAG_FIRST)
176		list_add_rcu(&action->list, &desc->head);
177	else
178		list_add_tail_rcu(&action->list, &desc->head);
179	
180	spin_unlock_irqrestore(&desc->lock, flags);
181	return 0;
182}
183EXPORT_SYMBOL(__register_nmi_handler);
184
185void unregister_nmi_handler(unsigned int type, const char *name)
186{
187	struct nmi_desc *desc = nmi_to_desc(type);
188	struct nmiaction *n;
189	unsigned long flags;
190
191	spin_lock_irqsave(&desc->lock, flags);
192
193	list_for_each_entry_rcu(n, &desc->head, list) {
194		/*
195		 * the name passed in to describe the nmi handler
196		 * is used as the lookup key
197		 */
198		if (!strcmp(n->name, name)) {
199			WARN(in_nmi(),
200				"Trying to free NMI (%s) from NMI context!\n", n->name);
201			list_del_rcu(&n->list);
202			break;
203		}
204	}
205
206	spin_unlock_irqrestore(&desc->lock, flags);
207	synchronize_rcu();
208}
209EXPORT_SYMBOL_GPL(unregister_nmi_handler);
210
211static __kprobes void
212pci_serr_error(unsigned char reason, struct pt_regs *regs)
213{
214	/* check to see if anyone registered against these types of errors */
215	if (nmi_handle(NMI_SERR, regs, false))
216		return;
217
218	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
219		 reason, smp_processor_id());
220
221	/*
222	 * On some machines, PCI SERR line is used to report memory
223	 * errors. EDAC makes use of it.
224	 */
225#if defined(CONFIG_EDAC)
226	if (edac_handler_set()) {
227		edac_atomic_assert_error();
228		return;
229	}
230#endif
231
232	if (panic_on_unrecovered_nmi)
233		panic("NMI: Not continuing");
234
235	pr_emerg("Dazed and confused, but trying to continue\n");
236
237	/* Clear and disable the PCI SERR error line. */
238	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
239	outb(reason, NMI_REASON_PORT);
240}
 
241
242static __kprobes void
243io_check_error(unsigned char reason, struct pt_regs *regs)
244{
245	unsigned long i;
246
247	/* check to see if anyone registered against these types of errors */
248	if (nmi_handle(NMI_IO_CHECK, regs, false))
249		return;
250
251	pr_emerg(
252	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
253		 reason, smp_processor_id());
254	show_regs(regs);
255
256	if (panic_on_io_nmi)
257		panic("NMI IOCK error: Not continuing");
 
 
 
 
 
 
 
 
258
259	/* Re-enable the IOCK line, wait for a few seconds */
260	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
261	outb(reason, NMI_REASON_PORT);
262
263	i = 20000;
264	while (--i) {
265		touch_nmi_watchdog();
266		udelay(100);
267	}
268
269	reason &= ~NMI_REASON_CLEAR_IOCHK;
270	outb(reason, NMI_REASON_PORT);
271}
 
272
273static __kprobes void
274unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
275{
276	int handled;
277
278	/*
279	 * Use 'false' as back-to-back NMIs are dealt with one level up.
280	 * Of course this makes having multiple 'unknown' handlers useless
281	 * as only the first one is ever run (unless it can actually determine
282	 * if it caused the NMI)
283	 */
284	handled = nmi_handle(NMI_UNKNOWN, regs, false);
285	if (handled) {
286		__this_cpu_add(nmi_stats.unknown, handled);
287		return;
288	}
289
290	__this_cpu_add(nmi_stats.unknown, 1);
291
292	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
293		 reason, smp_processor_id());
294
295	pr_emerg("Do you have a strange power saving mode enabled?\n");
296	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
297		panic("NMI: Not continuing");
298
299	pr_emerg("Dazed and confused, but trying to continue\n");
300}
 
301
302static DEFINE_PER_CPU(bool, swallow_nmi);
303static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
304
305static __kprobes void default_do_nmi(struct pt_regs *regs)
306{
307	unsigned char reason = 0;
308	int handled;
309	bool b2b = false;
310
311	/*
312	 * CPU-specific NMI must be processed before non-CPU-specific
313	 * NMI, otherwise we may lose it, because the CPU-specific
314	 * NMI can not be detected/processed on other CPUs.
315	 */
316
317	/*
318	 * Back-to-back NMIs are interesting because they can either
319	 * be two NMI or more than two NMIs (any thing over two is dropped
320	 * due to NMI being edge-triggered).  If this is the second half
321	 * of the back-to-back NMI, assume we dropped things and process
322	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
323	 */
324	if (regs->ip == __this_cpu_read(last_nmi_rip))
325		b2b = true;
326	else
327		__this_cpu_write(swallow_nmi, false);
328
329	__this_cpu_write(last_nmi_rip, regs->ip);
330
331	handled = nmi_handle(NMI_LOCAL, regs, b2b);
332	__this_cpu_add(nmi_stats.normal, handled);
333	if (handled) {
334		/*
335		 * There are cases when a NMI handler handles multiple
336		 * events in the current NMI.  One of these events may
337		 * be queued for in the next NMI.  Because the event is
338		 * already handled, the next NMI will result in an unknown
339		 * NMI.  Instead lets flag this for a potential NMI to
340		 * swallow.
341		 */
342		if (handled > 1)
343			__this_cpu_write(swallow_nmi, true);
344		return;
345	}
346
347	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
348	raw_spin_lock(&nmi_reason_lock);
 
 
 
 
 
 
 
 
 
 
 
349	reason = x86_platform.get_nmi_reason();
350
351	if (reason & NMI_REASON_MASK) {
352		if (reason & NMI_REASON_SERR)
353			pci_serr_error(reason, regs);
354		else if (reason & NMI_REASON_IOCHK)
355			io_check_error(reason, regs);
356#ifdef CONFIG_X86_32
357		/*
358		 * Reassert NMI in case it became active
359		 * meanwhile as it's edge-triggered:
360		 */
361		reassert_nmi();
362#endif
363		__this_cpu_add(nmi_stats.external, 1);
364		raw_spin_unlock(&nmi_reason_lock);
365		return;
366	}
367	raw_spin_unlock(&nmi_reason_lock);
368
369	/*
370	 * Only one NMI can be latched at a time.  To handle
371	 * this we may process multiple nmi handlers at once to
372	 * cover the case where an NMI is dropped.  The downside
373	 * to this approach is we may process an NMI prematurely,
374	 * while its real NMI is sitting latched.  This will cause
375	 * an unknown NMI on the next run of the NMI processing.
376	 *
377	 * We tried to flag that condition above, by setting the
378	 * swallow_nmi flag when we process more than one event.
379	 * This condition is also only present on the second half
380	 * of a back-to-back NMI, so we flag that condition too.
381	 *
382	 * If both are true, we assume we already processed this
383	 * NMI previously and we swallow it.  Otherwise we reset
384	 * the logic.
385	 *
386	 * There are scenarios where we may accidentally swallow
387	 * a 'real' unknown NMI.  For example, while processing
388	 * a perf NMI another perf NMI comes in along with a
389	 * 'real' unknown NMI.  These two NMIs get combined into
390	 * one (as descibed above).  When the next NMI gets
391	 * processed, it will be flagged by perf as handled, but
392	 * noone will know that there was a 'real' unknown NMI sent
393	 * also.  As a result it gets swallowed.  Or if the first
394	 * perf NMI returns two events handled then the second
395	 * NMI will get eaten by the logic below, again losing a
396	 * 'real' unknown NMI.  But this is the best we can do
397	 * for now.
398	 */
399	if (b2b && __this_cpu_read(swallow_nmi))
400		__this_cpu_add(nmi_stats.swallow, 1);
401	else
402		unknown_nmi_error(reason, regs);
403}
 
404
405/*
406 * NMIs can hit breakpoints which will cause it to lose its
407 * NMI context with the CPU when the breakpoint does an iret.
408 */
409#ifdef CONFIG_X86_32
410/*
411 * For i386, NMIs use the same stack as the kernel, and we can
412 * add a workaround to the iret problem in C (preventing nested
413 * NMIs if an NMI takes a trap). Simply have 3 states the NMI
414 * can be in:
415 *
416 *  1) not running
417 *  2) executing
418 *  3) latched
419 *
420 * When no NMI is in progress, it is in the "not running" state.
421 * When an NMI comes in, it goes into the "executing" state.
422 * Normally, if another NMI is triggered, it does not interrupt
423 * the running NMI and the HW will simply latch it so that when
424 * the first NMI finishes, it will restart the second NMI.
425 * (Note, the latch is binary, thus multiple NMIs triggering,
426 *  when one is running, are ignored. Only one NMI is restarted.)
427 *
428 * If an NMI hits a breakpoint that executes an iret, another
429 * NMI can preempt it. We do not want to allow this new NMI
430 * to run, but we want to execute it when the first one finishes.
431 * We set the state to "latched", and the exit of the first NMI will
432 * perform a dec_return, if the result is zero (NOT_RUNNING), then
433 * it will simply exit the NMI handler. If not, the dec_return
434 * would have set the state to NMI_EXECUTING (what we want it to
435 * be when we are running). In this case, we simply jump back
436 * to rerun the NMI handler again, and restart the 'latched' NMI.
437 *
438 * No trap (breakpoint or page fault) should be hit before nmi_restart,
439 * thus there is no race between the first check of state for NOT_RUNNING
440 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
441 * at this point.
442 *
443 * In case the NMI takes a page fault, we need to save off the CR2
444 * because the NMI could have preempted another page fault and corrupt
445 * the CR2 that is about to be read. As nested NMIs must be restarted
446 * and they can not take breakpoints or page faults, the update of the
447 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
448 * Otherwise, there would be a race of another nested NMI coming in
449 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
450 */
451enum nmi_states {
452	NMI_NOT_RUNNING = 0,
453	NMI_EXECUTING,
454	NMI_LATCHED,
455};
456static DEFINE_PER_CPU(enum nmi_states, nmi_state);
457static DEFINE_PER_CPU(unsigned long, nmi_cr2);
458
459#define nmi_nesting_preprocess(regs)					\
460	do {								\
461		if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {	\
462			this_cpu_write(nmi_state, NMI_LATCHED);		\
463			return;						\
464		}							\
465		this_cpu_write(nmi_state, NMI_EXECUTING);		\
466		this_cpu_write(nmi_cr2, read_cr2());			\
467	} while (0);							\
468	nmi_restart:
469
470#define nmi_nesting_postprocess()					\
471	do {								\
472		if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))	\
473			write_cr2(this_cpu_read(nmi_cr2));		\
474		if (this_cpu_dec_return(nmi_state))			\
475			goto nmi_restart;				\
476	} while (0)
477#else /* x86_64 */
478/*
479 * In x86_64 things are a bit more difficult. This has the same problem
480 * where an NMI hitting a breakpoint that calls iret will remove the
481 * NMI context, allowing a nested NMI to enter. What makes this more
482 * difficult is that both NMIs and breakpoints have their own stack.
483 * When a new NMI or breakpoint is executed, the stack is set to a fixed
484 * point. If an NMI is nested, it will have its stack set at that same
485 * fixed address that the first NMI had, and will start corrupting the
486 * stack. This is handled in entry_64.S, but the same problem exists with
487 * the breakpoint stack.
488 *
489 * If a breakpoint is being processed, and the debug stack is being used,
490 * if an NMI comes in and also hits a breakpoint, the stack pointer
491 * will be set to the same fixed address as the breakpoint that was
492 * interrupted, causing that stack to be corrupted. To handle this case,
493 * check if the stack that was interrupted is the debug stack, and if
494 * so, change the IDT so that new breakpoints will use the current stack
495 * and not switch to the fixed address. On return of the NMI, switch back
496 * to the original IDT.
497 */
498static DEFINE_PER_CPU(int, update_debug_stack);
 
499
500static inline void nmi_nesting_preprocess(struct pt_regs *regs)
 
501{
 
 
 
 
 
 
 
 
 
502	/*
503	 * If we interrupted a breakpoint, it is possible that
504	 * the nmi handler will have breakpoints too. We need to
505	 * change the IDT such that breakpoints that happen here
506	 * continue to use the NMI stack.
507	 */
508	if (unlikely(is_debug_stack(regs->sp))) {
509		debug_stack_set_zero();
510		this_cpu_write(update_debug_stack, 1);
511	}
512}
513
514static inline void nmi_nesting_postprocess(void)
515{
516	if (unlikely(this_cpu_read(update_debug_stack))) {
517		debug_stack_reset();
518		this_cpu_write(update_debug_stack, 0);
519	}
520}
521#endif
522
523dotraplinkage notrace __kprobes void
524do_nmi(struct pt_regs *regs, long error_code)
525{
526	nmi_nesting_preprocess(regs);
527
528	nmi_enter();
529
530	inc_irq_stat(__nmi_count);
531
532	if (!ignore_nmis)
533		default_do_nmi(regs);
534
535	nmi_exit();
536
537	/* On i386, may loop back to preprocess */
538	nmi_nesting_postprocess();
 
 
 
 
 
 
 
 
 
539}
 
540
541void stop_nmi(void)
542{
543	ignore_nmis++;
544}
545
546void restart_nmi(void)
547{
548	ignore_nmis--;
549}
550
551/* reset the back-to-back NMI logic */
552void local_touch_nmi(void)
553{
554	__this_cpu_write(last_nmi_rip, 0);
555}
556EXPORT_SYMBOL_GPL(local_touch_nmi);