Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright (C) 2013 Imagination Technologies
  3 * Author: Paul Burton <paul.burton@imgtec.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License as published by the
  7 * Free Software Foundation;  either version 2 of the  License, or (at your
  8 * option) any later version.
  9 */
 10
 11#include <linux/delay.h>
 12#include <linux/io.h>
 13#include <linux/irqchip/mips-gic.h>
 14#include <linux/sched.h>
 15#include <linux/slab.h>
 16#include <linux/smp.h>
 17#include <linux/types.h>
 18
 19#include <asm/bcache.h>
 
 20#include <asm/mips-cm.h>
 21#include <asm/mips-cpc.h>
 22#include <asm/mips_mt.h>
 23#include <asm/mipsregs.h>
 24#include <asm/pm-cps.h>
 25#include <asm/r4kcache.h>
 26#include <asm/smp-cps.h>
 27#include <asm/time.h>
 28#include <asm/uasm.h>
 29
 30static DECLARE_BITMAP(core_power, NR_CPUS);
 31
 32struct core_boot_config *mips_cps_core_bootcfg;
 33
 34static unsigned core_vpe_count(unsigned core)
 35{
 36	unsigned cfg;
 
 37
 38	if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
 39		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40
 41	mips_cm_lock_other(core, 0);
 42	cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
 43	mips_cm_unlock_other();
 44	return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
 45}
 46
 47static void __init cps_smp_setup(void)
 48{
 49	unsigned int ncores, nvpes, core_vpes;
 50	int c, v;
 
 51
 52	/* Detect & record VPE topology */
 53	ncores = mips_cm_numcores();
 54	pr_info("VPE topology ");
 55	for (c = nvpes = 0; c < ncores; c++) {
 56		core_vpes = core_vpe_count(c);
 57		pr_cont("%c%u", c ? ',' : '{', core_vpes);
 
 
 
 
 
 
 58
 59		/* Use the number of VPEs in core 0 for smp_num_siblings */
 60		if (!c)
 61			smp_num_siblings = core_vpes;
 62
 63		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
 64			cpu_data[nvpes + v].core = c;
 65#ifdef CONFIG_MIPS_MT_SMP
 66			cpu_data[nvpes + v].vpe_id = v;
 67#endif
 68		}
 69
 70		nvpes += core_vpes;
 71	}
 72	pr_cont("} total %u\n", nvpes);
 73
 74	/* Indicate present CPUs (CPU being synonymous with VPE) */
 75	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
 76		set_cpu_possible(v, true);
 77		set_cpu_present(v, true);
 78		__cpu_number_map[v] = v;
 79		__cpu_logical_map[v] = v;
 80	}
 81
 82	/* Set a coherent default CCA (CWB) */
 83	change_c0_config(CONF_CM_CMASK, 0x5);
 84
 85	/* Core 0 is powered up (we're running on it) */
 86	bitmap_set(core_power, 0, 1);
 87
 
 
 
 
 88	/* Initialise core 0 */
 89	mips_cps_core_init();
 
 
 
 
 90
 91	/* Make core 0 coherent with everything */
 92	write_gcr_cl_coherence(0xff);
 93
 94#ifdef CONFIG_MIPS_MT_FPAFF
 95	/* If we have an FPU, enroll ourselves in the FPU-full mask */
 96	if (cpu_has_fpu)
 97		cpumask_set_cpu(0, &mt_fpu_cpumask);
 98#endif /* CONFIG_MIPS_MT_FPAFF */
 99}
100
101static void __init cps_prepare_cpus(unsigned int max_cpus)
102{
103	unsigned ncores, core_vpes, c, cca;
104	bool cca_unsuitable;
105	u32 *entry_code;
106
107	mips_mt_set_cpuoptions();
108
109	/* Detect whether the CCA is unsuited to multi-core SMP */
110	cca = read_c0_config() & CONF_CM_CMASK;
111	switch (cca) {
112	case 0x4: /* CWBE */
113	case 0x5: /* CWB */
114		/* The CCA is coherent, multi-core is fine */
115		cca_unsuitable = false;
116		break;
117
118	default:
119		/* CCA is not coherent, multi-core is not usable */
120		cca_unsuitable = true;
121	}
122
123	/* Warn the user if the CCA prevents multi-core */
124	ncores = mips_cm_numcores();
125	if (cca_unsuitable && ncores > 1) {
126		pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
127			cca);
128
129		for_each_present_cpu(c) {
130			if (cpu_data[c].core)
131				set_cpu_present(c, false);
132		}
133	}
134
135	/*
136	 * Patch the start of mips_cps_core_entry to provide:
137	 *
138	 * s0 = kseg0 CCA
139	 */
140	entry_code = (u32 *)&mips_cps_core_entry;
141	uasm_i_addiu(&entry_code, 16, 0, cca);
142	blast_dcache_range((unsigned long)&mips_cps_core_entry,
143			   (unsigned long)entry_code);
144	bc_wback_inv((unsigned long)&mips_cps_core_entry,
145		     (void *)entry_code - (void *)&mips_cps_core_entry);
146	__sync();
147
148	/* Allocate core boot configuration structs */
149	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
150					GFP_KERNEL);
151	if (!mips_cps_core_bootcfg) {
152		pr_err("Failed to allocate boot config for %u cores\n", ncores);
153		goto err_out;
154	}
155
156	/* Allocate VPE boot configuration structs */
157	for (c = 0; c < ncores; c++) {
158		core_vpes = core_vpe_count(c);
159		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
160				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
161				GFP_KERNEL);
162		if (!mips_cps_core_bootcfg[c].vpe_config) {
163			pr_err("Failed to allocate %u VPE boot configs\n",
164			       core_vpes);
165			goto err_out;
166		}
167	}
168
169	/* Mark this CPU as booted */
170	atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
171		   1 << cpu_vpe_id(&current_cpu_data));
172
173	return;
174err_out:
175	/* Clean up allocations */
176	if (mips_cps_core_bootcfg) {
177		for (c = 0; c < ncores; c++)
178			kfree(mips_cps_core_bootcfg[c].vpe_config);
179		kfree(mips_cps_core_bootcfg);
180		mips_cps_core_bootcfg = NULL;
181	}
182
183	/* Effectively disable SMP by declaring CPUs not present */
184	for_each_possible_cpu(c) {
185		if (c == 0)
186			continue;
187		set_cpu_present(c, false);
188	}
189}
190
191static void boot_core(unsigned core)
192{
193	u32 access, stat, seq_state;
194	unsigned timeout;
195
196	/* Select the appropriate core */
197	mips_cm_lock_other(core, 0);
198
199	/* Set its reset vector */
200	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
201
202	/* Ensure its coherency is disabled */
203	write_gcr_co_coherence(0);
204
205	/* Start it with the legacy memory map and exception base */
206	write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
207
208	/* Ensure the core can access the GCRs */
209	access = read_gcr_access();
210	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
211	write_gcr_access(access);
212
 
 
 
213	if (mips_cpc_present()) {
 
 
 
214		/* Reset the core */
215		mips_cpc_lock_other(core);
216		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
217
218		timeout = 100;
219		while (true) {
220			stat = read_cpc_co_stat_conf();
221			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
222
223			/* U6 == coherent execution, ie. the core is up */
224			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
225				break;
226
227			/* Delay a little while before we start warning */
228			if (timeout) {
229				timeout--;
230				mdelay(10);
231				continue;
232			}
233
234			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
235				core, stat);
236			mdelay(1000);
237		}
238
239		mips_cpc_unlock_other();
240	} else {
241		/* Take the core out of reset */
242		write_gcr_co_reset_release(0);
243	}
244
245	mips_cm_unlock_other();
246
247	/* The core is now powered up */
248	bitmap_set(core_power, core, 1);
249}
250
251static void remote_vpe_boot(void *dummy)
252{
253	mips_cps_boot_vpes();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254}
255
256static void cps_boot_secondary(int cpu, struct task_struct *idle)
257{
258	unsigned core = cpu_data[cpu].core;
259	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
260	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
261	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
262	unsigned int remote;
263	int err;
264
265	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
266	vpe_cfg->sp = __KSTK_TOS(idle);
267	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
 
 
268
269	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
270
271	preempt_disable();
272
273	if (!test_bit(core, core_power)) {
274		/* Boot a VPE on a powered down core */
275		boot_core(core);
276		goto out;
277	}
278
279	if (core != current_cpu_data.core) {
280		/* Boot a VPE on another powered up core */
281		for (remote = 0; remote < NR_CPUS; remote++) {
282			if (cpu_data[remote].core != core)
283				continue;
284			if (cpu_online(remote))
285				break;
286		}
287		BUG_ON(remote >= NR_CPUS);
288
289		err = smp_call_function_single(remote, remote_vpe_boot,
290					       NULL, 1);
291		if (err)
292			panic("Failed to call remote CPU\n");
293		goto out;
294	}
295
296	BUG_ON(!cpu_has_mipsmt);
297
298	/* Boot a VPE on this core */
299	mips_cps_boot_vpes();
300out:
301	preempt_enable();
302}
303
304static void cps_init_secondary(void)
305{
306	/* Disable MT - we only want to run 1 TC per VPE */
307	if (cpu_has_mipsmt)
308		dmt();
309
310	change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
311				 STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
 
 
 
 
312}
313
314static void cps_smp_finish(void)
315{
316	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
317
318#ifdef CONFIG_MIPS_MT_FPAFF
319	/* If we have an FPU, enroll ourselves in the FPU-full mask */
320	if (cpu_has_fpu)
321		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
322#endif /* CONFIG_MIPS_MT_FPAFF */
323
324	local_irq_enable();
325}
326
327#ifdef CONFIG_HOTPLUG_CPU
328
329static int cps_cpu_disable(void)
330{
331	unsigned cpu = smp_processor_id();
332	struct core_boot_config *core_cfg;
333
334	if (!cpu)
335		return -EBUSY;
336
337	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
338		return -EINVAL;
339
340	core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
341	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
342	smp_mb__after_atomic();
343	set_cpu_online(cpu, false);
344	cpumask_clear_cpu(cpu, &cpu_callin_map);
345
346	return 0;
347}
348
349static DECLARE_COMPLETION(cpu_death_chosen);
350static unsigned cpu_death_sibling;
351static enum {
352	CPU_DEATH_HALT,
353	CPU_DEATH_POWER,
354} cpu_death;
355
356void play_dead(void)
357{
358	unsigned cpu, core;
359
360	local_irq_disable();
361	idle_task_exit();
362	cpu = smp_processor_id();
363	cpu_death = CPU_DEATH_POWER;
364
365	if (cpu_has_mipsmt) {
366		core = cpu_data[cpu].core;
367
368		/* Look for another online VPE within the core */
369		for_each_online_cpu(cpu_death_sibling) {
370			if (cpu_data[cpu_death_sibling].core != core)
371				continue;
372
373			/*
374			 * There is an online VPE within the core. Just halt
375			 * this TC and leave the core alone.
376			 */
377			cpu_death = CPU_DEATH_HALT;
378			break;
379		}
380	}
381
382	/* This CPU has chosen its way out */
383	complete(&cpu_death_chosen);
384
385	if (cpu_death == CPU_DEATH_HALT) {
386		/* Halt this TC */
387		write_c0_tchalt(TCHALT_H);
388		instruction_hazard();
389	} else {
390		/* Power down the core */
391		cps_pm_enter_state(CPS_PM_POWER_GATED);
392	}
393
394	/* This should never be reached */
395	panic("Failed to offline CPU %u", cpu);
396}
397
398static void wait_for_sibling_halt(void *ptr_cpu)
399{
400	unsigned cpu = (unsigned long)ptr_cpu;
401	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
402	unsigned halted;
403	unsigned long flags;
404
405	do {
406		local_irq_save(flags);
407		settc(vpe_id);
408		halted = read_tc_c0_tchalt();
409		local_irq_restore(flags);
410	} while (!(halted & TCHALT_H));
411}
412
413static void cps_cpu_die(unsigned int cpu)
414{
415	unsigned core = cpu_data[cpu].core;
416	unsigned stat;
417	int err;
418
419	/* Wait for the cpu to choose its way out */
420	if (!wait_for_completion_timeout(&cpu_death_chosen,
421					 msecs_to_jiffies(5000))) {
422		pr_err("CPU%u: didn't offline\n", cpu);
423		return;
424	}
425
426	/*
427	 * Now wait for the CPU to actually offline. Without doing this that
428	 * offlining may race with one or more of:
429	 *
430	 *   - Onlining the CPU again.
431	 *   - Powering down the core if another VPE within it is offlined.
432	 *   - A sibling VPE entering a non-coherent state.
433	 *
434	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
435	 * with which we could race, so do nothing.
436	 */
437	if (cpu_death == CPU_DEATH_POWER) {
438		/*
439		 * Wait for the core to enter a powered down or clock gated
440		 * state, the latter happening when a JTAG probe is connected
441		 * in which case the CPC will refuse to power down the core.
442		 */
443		do {
444			mips_cpc_lock_other(core);
445			stat = read_cpc_co_stat_conf();
446			stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
447			mips_cpc_unlock_other();
448		} while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
449			 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
450			 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
451
452		/* Indicate the core is powered off */
453		bitmap_clear(core_power, core, 1);
454	} else if (cpu_has_mipsmt) {
455		/*
456		 * Have a CPU with access to the offlined CPUs registers wait
457		 * for its TC to halt.
458		 */
459		err = smp_call_function_single(cpu_death_sibling,
460					       wait_for_sibling_halt,
461					       (void *)(unsigned long)cpu, 1);
462		if (err)
463			panic("Failed to call remote sibling CPU\n");
464	}
465}
466
467#endif /* CONFIG_HOTPLUG_CPU */
468
469static struct plat_smp_ops cps_smp_ops = {
470	.smp_setup		= cps_smp_setup,
471	.prepare_cpus		= cps_prepare_cpus,
472	.boot_secondary		= cps_boot_secondary,
473	.init_secondary		= cps_init_secondary,
474	.smp_finish		= cps_smp_finish,
475	.send_ipi_single	= mips_smp_send_ipi_single,
476	.send_ipi_mask		= mips_smp_send_ipi_mask,
477#ifdef CONFIG_HOTPLUG_CPU
478	.cpu_disable		= cps_cpu_disable,
479	.cpu_die		= cps_cpu_die,
480#endif
481};
482
483bool mips_cps_smp_in_use(void)
484{
485	extern struct plat_smp_ops *mp_ops;
486	return mp_ops == &cps_smp_ops;
487}
488
489int register_cps_smp_ops(void)
490{
491	if (!mips_cm_present()) {
492		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
493		return -ENODEV;
494	}
495
496	/* check we have a GIC - we need one for IPIs */
497	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
498		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
499		return -ENODEV;
500	}
501
502	register_smp_ops(&cps_smp_ops);
503	return 0;
504}
v3.15
  1/*
  2 * Copyright (C) 2013 Imagination Technologies
  3 * Author: Paul Burton <paul.burton@imgtec.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License as published by the
  7 * Free Software Foundation;  either version 2 of the  License, or (at your
  8 * option) any later version.
  9 */
 10
 
 11#include <linux/io.h>
 
 12#include <linux/sched.h>
 13#include <linux/slab.h>
 14#include <linux/smp.h>
 15#include <linux/types.h>
 16
 17#include <asm/cacheflush.h>
 18#include <asm/gic.h>
 19#include <asm/mips-cm.h>
 20#include <asm/mips-cpc.h>
 21#include <asm/mips_mt.h>
 22#include <asm/mipsregs.h>
 
 
 23#include <asm/smp-cps.h>
 24#include <asm/time.h>
 25#include <asm/uasm.h>
 26
 27static DECLARE_BITMAP(core_power, NR_CPUS);
 28
 29struct boot_config mips_cps_bootcfg;
 30
 31static void init_core(void)
 32{
 33	unsigned int nvpes, t;
 34	u32 mvpconf0, vpeconf0, vpecontrol, tcstatus, tcbind, status;
 35
 36	if (!cpu_has_mipsmt)
 37		return;
 38
 39	/* Enter VPE configuration state */
 40	dvpe();
 41	set_c0_mvpcontrol(MVPCONTROL_VPC);
 42
 43	/* Retrieve the count of VPEs in this core */
 44	mvpconf0 = read_c0_mvpconf0();
 45	nvpes = ((mvpconf0 & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
 46	smp_num_siblings = nvpes;
 47
 48	for (t = 1; t < nvpes; t++) {
 49		/* Use a 1:1 mapping of TC index to VPE index */
 50		settc(t);
 51
 52		/* Bind 1 TC to this VPE */
 53		tcbind = read_tc_c0_tcbind();
 54		tcbind &= ~TCBIND_CURVPE;
 55		tcbind |= t << TCBIND_CURVPE_SHIFT;
 56		write_tc_c0_tcbind(tcbind);
 57
 58		/* Set exclusive TC, non-active, master */
 59		vpeconf0 = read_vpe_c0_vpeconf0();
 60		vpeconf0 &= ~(VPECONF0_XTC | VPECONF0_VPA);
 61		vpeconf0 |= t << VPECONF0_XTC_SHIFT;
 62		vpeconf0 |= VPECONF0_MVP;
 63		write_vpe_c0_vpeconf0(vpeconf0);
 64
 65		/* Declare TC non-active, non-allocatable & interrupt exempt */
 66		tcstatus = read_tc_c0_tcstatus();
 67		tcstatus &= ~(TCSTATUS_A | TCSTATUS_DA);
 68		tcstatus |= TCSTATUS_IXMT;
 69		write_tc_c0_tcstatus(tcstatus);
 70
 71		/* Halt the TC */
 72		write_tc_c0_tchalt(TCHALT_H);
 73
 74		/* Allow only 1 TC to execute */
 75		vpecontrol = read_vpe_c0_vpecontrol();
 76		vpecontrol &= ~VPECONTROL_TE;
 77		write_vpe_c0_vpecontrol(vpecontrol);
 78
 79		/* Copy (most of) Status from VPE 0 */
 80		status = read_c0_status();
 81		status &= ~(ST0_IM | ST0_IE | ST0_KSU);
 82		status |= ST0_CU0;
 83		write_vpe_c0_status(status);
 84
 85		/* Copy Config from VPE 0 */
 86		write_vpe_c0_config(read_c0_config());
 87		write_vpe_c0_config7(read_c0_config7());
 88
 89		/* Ensure no software interrupts are pending */
 90		write_vpe_c0_cause(0);
 91
 92		/* Sync Count */
 93		write_vpe_c0_count(read_c0_count());
 94	}
 95
 96	/* Leave VPE configuration state */
 97	clear_c0_mvpcontrol(MVPCONTROL_VPC);
 
 
 98}
 99
100static void __init cps_smp_setup(void)
101{
102	unsigned int ncores, nvpes, core_vpes;
103	int c, v;
104	u32 core_cfg, *entry_code;
105
106	/* Detect & record VPE topology */
107	ncores = mips_cm_numcores();
108	pr_info("VPE topology ");
109	for (c = nvpes = 0; c < ncores; c++) {
110		if (cpu_has_mipsmt && config_enabled(CONFIG_MIPS_MT_SMP)) {
111			write_gcr_cl_other(c << CM_GCR_Cx_OTHER_CORENUM_SHF);
112			core_cfg = read_gcr_co_config();
113			core_vpes = ((core_cfg & CM_GCR_Cx_CONFIG_PVPE_MSK) >>
114				     CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
115		} else {
116			core_vpes = 1;
117		}
118
119		pr_cont("%c%u", c ? ',' : '{', core_vpes);
 
 
120
121		for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
122			cpu_data[nvpes + v].core = c;
123#ifdef CONFIG_MIPS_MT_SMP
124			cpu_data[nvpes + v].vpe_id = v;
125#endif
126		}
127
128		nvpes += core_vpes;
129	}
130	pr_cont("} total %u\n", nvpes);
131
132	/* Indicate present CPUs (CPU being synonymous with VPE) */
133	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
134		set_cpu_possible(v, true);
135		set_cpu_present(v, true);
136		__cpu_number_map[v] = v;
137		__cpu_logical_map[v] = v;
138	}
139
 
 
 
140	/* Core 0 is powered up (we're running on it) */
141	bitmap_set(core_power, 0, 1);
142
143	/* Disable MT - we only want to run 1 TC per VPE */
144	if (cpu_has_mipsmt)
145		dmt();
146
147	/* Initialise core 0 */
148	init_core();
149
150	/* Patch the start of mips_cps_core_entry to provide the CM base */
151	entry_code = (u32 *)&mips_cps_core_entry;
152	UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
153
154	/* Make core 0 coherent with everything */
155	write_gcr_cl_coherence(0xff);
 
 
 
 
 
 
156}
157
158static void __init cps_prepare_cpus(unsigned int max_cpus)
159{
 
 
 
 
160	mips_mt_set_cpuoptions();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161}
162
163static void boot_core(struct boot_config *cfg)
164{
165	u32 access;
 
166
167	/* Select the appropriate core */
168	write_gcr_cl_other(cfg->core << CM_GCR_Cx_OTHER_CORENUM_SHF);
169
170	/* Set its reset vector */
171	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
172
173	/* Ensure its coherency is disabled */
174	write_gcr_co_coherence(0);
175
 
 
 
176	/* Ensure the core can access the GCRs */
177	access = read_gcr_access();
178	access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + cfg->core);
179	write_gcr_access(access);
180
181	/* Copy cfg */
182	mips_cps_bootcfg = *cfg;
183
184	if (mips_cpc_present()) {
185		/* Select the appropriate core */
186		write_cpc_cl_other(cfg->core << CPC_Cx_OTHER_CORENUM_SHF);
187
188		/* Reset the core */
 
189		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190	} else {
191		/* Take the core out of reset */
192		write_gcr_co_reset_release(0);
193	}
194
 
 
195	/* The core is now powered up */
196	bitmap_set(core_power, cfg->core, 1);
197}
198
199static void boot_vpe(void *info)
200{
201	struct boot_config *cfg = info;
202	u32 tcstatus, vpeconf0;
203
204	/* Enter VPE configuration state */
205	dvpe();
206	set_c0_mvpcontrol(MVPCONTROL_VPC);
207
208	settc(cfg->vpe);
209
210	/* Set the TC restart PC */
211	write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
212
213	/* Activate the TC, allow interrupts */
214	tcstatus = read_tc_c0_tcstatus();
215	tcstatus &= ~TCSTATUS_IXMT;
216	tcstatus |= TCSTATUS_A;
217	write_tc_c0_tcstatus(tcstatus);
218
219	/* Clear the TC halt bit */
220	write_tc_c0_tchalt(0);
221
222	/* Activate the VPE */
223	vpeconf0 = read_vpe_c0_vpeconf0();
224	vpeconf0 |= VPECONF0_VPA;
225	write_vpe_c0_vpeconf0(vpeconf0);
226
227	/* Set the stack & global pointer registers */
228	write_tc_gpr_sp(cfg->sp);
229	write_tc_gpr_gp(cfg->gp);
230
231	/* Leave VPE configuration state */
232	clear_c0_mvpcontrol(MVPCONTROL_VPC);
233
234	/* Enable other VPEs to execute */
235	evpe(EVPE_ENABLE);
236}
237
238static void cps_boot_secondary(int cpu, struct task_struct *idle)
239{
240	struct boot_config cfg;
 
 
 
241	unsigned int remote;
242	int err;
243
244	cfg.core = cpu_data[cpu].core;
245	cfg.vpe = cpu_vpe_id(&cpu_data[cpu]);
246	cfg.pc = (unsigned long)&smp_bootstrap;
247	cfg.sp = __KSTK_TOS(idle);
248	cfg.gp = (unsigned long)task_thread_info(idle);
249
250	if (!test_bit(cfg.core, core_power)) {
 
 
 
 
251		/* Boot a VPE on a powered down core */
252		boot_core(&cfg);
253		return;
254	}
255
256	if (cfg.core != current_cpu_data.core) {
257		/* Boot a VPE on another powered up core */
258		for (remote = 0; remote < NR_CPUS; remote++) {
259			if (cpu_data[remote].core != cfg.core)
260				continue;
261			if (cpu_online(remote))
262				break;
263		}
264		BUG_ON(remote >= NR_CPUS);
265
266		err = smp_call_function_single(remote, boot_vpe, &cfg, 1);
 
267		if (err)
268			panic("Failed to call remote CPU\n");
269		return;
270	}
271
272	BUG_ON(!cpu_has_mipsmt);
273
274	/* Boot a VPE on this core */
275	boot_vpe(&cfg);
 
 
276}
277
278static void cps_init_secondary(void)
279{
280	/* Disable MT - we only want to run 1 TC per VPE */
281	if (cpu_has_mipsmt)
282		dmt();
283
284	/* TODO: revisit this assumption once hotplug is implemented */
285	if (cpu_vpe_id(&current_cpu_data) == 0)
286		init_core();
287
288	change_c0_status(ST0_IM, STATUSF_IP3 | STATUSF_IP4 |
289				 STATUSF_IP6 | STATUSF_IP7);
290}
291
292static void cps_smp_finish(void)
293{
294	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
295
296#ifdef CONFIG_MIPS_MT_FPAFF
297	/* If we have an FPU, enroll ourselves in the FPU-full mask */
298	if (cpu_has_fpu)
299		cpu_set(smp_processor_id(), mt_fpu_cpumask);
300#endif /* CONFIG_MIPS_MT_FPAFF */
301
302	local_irq_enable();
303}
304
305static void cps_cpus_done(void)
 
 
306{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307}
308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309static struct plat_smp_ops cps_smp_ops = {
310	.smp_setup		= cps_smp_setup,
311	.prepare_cpus		= cps_prepare_cpus,
312	.boot_secondary		= cps_boot_secondary,
313	.init_secondary		= cps_init_secondary,
314	.smp_finish		= cps_smp_finish,
315	.send_ipi_single	= gic_send_ipi_single,
316	.send_ipi_mask		= gic_send_ipi_mask,
317	.cpus_done		= cps_cpus_done,
 
 
 
318};
 
 
 
 
 
 
319
320int register_cps_smp_ops(void)
321{
322	if (!mips_cm_present()) {
323		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
324		return -ENODEV;
325	}
326
327	/* check we have a GIC - we need one for IPIs */
328	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
329		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
330		return -ENODEV;
331	}
332
333	register_smp_ops(&cps_smp_ops);
334	return 0;
335}