Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/export.h>
16#include <linux/screen_info.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
19#include <linux/initrd.h>
20#include <linux/root_dev.h>
21#include <linux/highmem.h>
22#include <linux/console.h>
23#include <linux/pfn.h>
24#include <linux/debugfs.h>
25#include <linux/kexec.h>
26#include <linux/sizes.h>
27#include <linux/device.h>
28#include <linux/dma-contiguous.h>
29
30#include <asm/addrspace.h>
31#include <asm/bootinfo.h>
32#include <asm/bugs.h>
33#include <asm/cache.h>
34#include <asm/cdmm.h>
35#include <asm/cpu.h>
36#include <asm/debug.h>
37#include <asm/sections.h>
38#include <asm/setup.h>
39#include <asm/smp-ops.h>
40#include <asm/prom.h>
41
42#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
43const char __section(.appended_dtb) __appended_dtb[0x100000];
44#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
45
46struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
47
48EXPORT_SYMBOL(cpu_data);
49
50#ifdef CONFIG_VT
51struct screen_info screen_info;
52#endif
53
54/*
55 * Despite it's name this variable is even if we don't have PCI
56 */
57unsigned int PCI_DMA_BUS_IS_PHYS;
58
59EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
60
61/*
62 * Setup information
63 *
64 * These are initialized so they are in the .data section
65 */
66unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
67
68EXPORT_SYMBOL(mips_machtype);
69
70struct boot_mem_map boot_mem_map;
71
72static char __initdata command_line[COMMAND_LINE_SIZE];
73char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
74
75#ifdef CONFIG_CMDLINE_BOOL
76static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
77#endif
78
79/*
80 * mips_io_port_base is the begin of the address space to which x86 style
81 * I/O ports are mapped.
82 */
83const unsigned long mips_io_port_base = -1;
84EXPORT_SYMBOL(mips_io_port_base);
85
86static struct resource code_resource = { .name = "Kernel code", };
87static struct resource data_resource = { .name = "Kernel data", };
88
89static void *detect_magic __initdata = detect_memory_region;
90
91void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
92{
93 int x = boot_mem_map.nr_map;
94 int i;
95
96 /* Sanity check */
97 if (start + size < start) {
98 pr_warn("Trying to add an invalid memory region, skipped\n");
99 return;
100 }
101
102 /*
103 * Try to merge with existing entry, if any.
104 */
105 for (i = 0; i < boot_mem_map.nr_map; i++) {
106 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
107 unsigned long top;
108
109 if (entry->type != type)
110 continue;
111
112 if (start + size < entry->addr)
113 continue; /* no overlap */
114
115 if (entry->addr + entry->size < start)
116 continue; /* no overlap */
117
118 top = max(entry->addr + entry->size, start + size);
119 entry->addr = min(entry->addr, start);
120 entry->size = top - entry->addr;
121
122 return;
123 }
124
125 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
126 pr_err("Ooops! Too many entries in the memory map!\n");
127 return;
128 }
129
130 boot_mem_map.map[x].addr = start;
131 boot_mem_map.map[x].size = size;
132 boot_mem_map.map[x].type = type;
133 boot_mem_map.nr_map++;
134}
135
136void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
137{
138 void *dm = &detect_magic;
139 phys_addr_t size;
140
141 for (size = sz_min; size < sz_max; size <<= 1) {
142 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
143 break;
144 }
145
146 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
147 ((unsigned long long) size) / SZ_1M,
148 (unsigned long long) start,
149 ((unsigned long long) sz_min) / SZ_1M,
150 ((unsigned long long) sz_max) / SZ_1M);
151
152 add_memory_region(start, size, BOOT_MEM_RAM);
153}
154
155static void __init print_memory_map(void)
156{
157 int i;
158 const int field = 2 * sizeof(unsigned long);
159
160 for (i = 0; i < boot_mem_map.nr_map; i++) {
161 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
162 field, (unsigned long long) boot_mem_map.map[i].size,
163 field, (unsigned long long) boot_mem_map.map[i].addr);
164
165 switch (boot_mem_map.map[i].type) {
166 case BOOT_MEM_RAM:
167 printk(KERN_CONT "(usable)\n");
168 break;
169 case BOOT_MEM_INIT_RAM:
170 printk(KERN_CONT "(usable after init)\n");
171 break;
172 case BOOT_MEM_ROM_DATA:
173 printk(KERN_CONT "(ROM data)\n");
174 break;
175 case BOOT_MEM_RESERVED:
176 printk(KERN_CONT "(reserved)\n");
177 break;
178 default:
179 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
180 break;
181 }
182 }
183}
184
185/*
186 * Manage initrd
187 */
188#ifdef CONFIG_BLK_DEV_INITRD
189
190static int __init rd_start_early(char *p)
191{
192 unsigned long start = memparse(p, &p);
193
194#ifdef CONFIG_64BIT
195 /* Guess if the sign extension was forgotten by bootloader */
196 if (start < XKPHYS)
197 start = (int)start;
198#endif
199 initrd_start = start;
200 initrd_end += start;
201 return 0;
202}
203early_param("rd_start", rd_start_early);
204
205static int __init rd_size_early(char *p)
206{
207 initrd_end += memparse(p, &p);
208 return 0;
209}
210early_param("rd_size", rd_size_early);
211
212/* it returns the next free pfn after initrd */
213static unsigned long __init init_initrd(void)
214{
215 unsigned long end;
216
217 /*
218 * Board specific code or command line parser should have
219 * already set up initrd_start and initrd_end. In these cases
220 * perfom sanity checks and use them if all looks good.
221 */
222 if (!initrd_start || initrd_end <= initrd_start)
223 goto disable;
224
225 if (initrd_start & ~PAGE_MASK) {
226 pr_err("initrd start must be page aligned\n");
227 goto disable;
228 }
229 if (initrd_start < PAGE_OFFSET) {
230 pr_err("initrd start < PAGE_OFFSET\n");
231 goto disable;
232 }
233
234 /*
235 * Sanitize initrd addresses. For example firmware
236 * can't guess if they need to pass them through
237 * 64-bits values if the kernel has been built in pure
238 * 32-bit. We need also to switch from KSEG0 to XKPHYS
239 * addresses now, so the code can now safely use __pa().
240 */
241 end = __pa(initrd_end);
242 initrd_end = (unsigned long)__va(end);
243 initrd_start = (unsigned long)__va(__pa(initrd_start));
244
245 ROOT_DEV = Root_RAM0;
246 return PFN_UP(end);
247disable:
248 initrd_start = 0;
249 initrd_end = 0;
250 return 0;
251}
252
253static void __init finalize_initrd(void)
254{
255 unsigned long size = initrd_end - initrd_start;
256
257 if (size == 0) {
258 printk(KERN_INFO "Initrd not found or empty");
259 goto disable;
260 }
261 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
262 printk(KERN_ERR "Initrd extends beyond end of memory");
263 goto disable;
264 }
265
266 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
267 initrd_below_start_ok = 1;
268
269 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
270 initrd_start, size);
271 return;
272disable:
273 printk(KERN_CONT " - disabling initrd\n");
274 initrd_start = 0;
275 initrd_end = 0;
276}
277
278#else /* !CONFIG_BLK_DEV_INITRD */
279
280static unsigned long __init init_initrd(void)
281{
282 return 0;
283}
284
285#define finalize_initrd() do {} while (0)
286
287#endif
288
289/*
290 * Initialize the bootmem allocator. It also setup initrd related data
291 * if needed.
292 */
293#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
294
295static void __init bootmem_init(void)
296{
297 init_initrd();
298 finalize_initrd();
299}
300
301#else /* !CONFIG_SGI_IP27 */
302
303static void __init bootmem_init(void)
304{
305 unsigned long reserved_end;
306 unsigned long mapstart = ~0UL;
307 unsigned long bootmap_size;
308 int i;
309
310 /*
311 * Sanity check any INITRD first. We don't take it into account
312 * for bootmem setup initially, rely on the end-of-kernel-code
313 * as our memory range starting point. Once bootmem is inited we
314 * will reserve the area used for the initrd.
315 */
316 init_initrd();
317 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
318
319 /*
320 * max_low_pfn is not a number of pages. The number of pages
321 * of the system is given by 'max_low_pfn - min_low_pfn'.
322 */
323 min_low_pfn = ~0UL;
324 max_low_pfn = 0;
325
326 /*
327 * Find the highest page frame number we have available.
328 */
329 for (i = 0; i < boot_mem_map.nr_map; i++) {
330 unsigned long start, end;
331
332 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
333 continue;
334
335 start = PFN_UP(boot_mem_map.map[i].addr);
336 end = PFN_DOWN(boot_mem_map.map[i].addr
337 + boot_mem_map.map[i].size);
338
339 if (end > max_low_pfn)
340 max_low_pfn = end;
341 if (start < min_low_pfn)
342 min_low_pfn = start;
343 if (end <= reserved_end)
344 continue;
345#ifdef CONFIG_BLK_DEV_INITRD
346 /* Skip zones before initrd and initrd itself */
347 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
348 continue;
349#endif
350 if (start >= mapstart)
351 continue;
352 mapstart = max(reserved_end, start);
353 }
354
355 if (min_low_pfn >= max_low_pfn)
356 panic("Incorrect memory mapping !!!");
357 if (min_low_pfn > ARCH_PFN_OFFSET) {
358 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
359 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
360 min_low_pfn - ARCH_PFN_OFFSET);
361 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
362 pr_info("%lu free pages won't be used\n",
363 ARCH_PFN_OFFSET - min_low_pfn);
364 }
365 min_low_pfn = ARCH_PFN_OFFSET;
366
367 /*
368 * Determine low and high memory ranges
369 */
370 max_pfn = max_low_pfn;
371 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
372#ifdef CONFIG_HIGHMEM
373 highstart_pfn = PFN_DOWN(HIGHMEM_START);
374 highend_pfn = max_low_pfn;
375#endif
376 max_low_pfn = PFN_DOWN(HIGHMEM_START);
377 }
378
379#ifdef CONFIG_BLK_DEV_INITRD
380 /*
381 * mapstart should be after initrd_end
382 */
383 if (initrd_end)
384 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
385#endif
386
387 /*
388 * Initialize the boot-time allocator with low memory only.
389 */
390 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
391 min_low_pfn, max_low_pfn);
392
393
394 for (i = 0; i < boot_mem_map.nr_map; i++) {
395 unsigned long start, end;
396
397 start = PFN_UP(boot_mem_map.map[i].addr);
398 end = PFN_DOWN(boot_mem_map.map[i].addr
399 + boot_mem_map.map[i].size);
400
401 if (start <= min_low_pfn)
402 start = min_low_pfn;
403 if (start >= end)
404 continue;
405
406#ifndef CONFIG_HIGHMEM
407 if (end > max_low_pfn)
408 end = max_low_pfn;
409
410 /*
411 * ... finally, is the area going away?
412 */
413 if (end <= start)
414 continue;
415#endif
416
417 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
418 }
419
420 /*
421 * Register fully available low RAM pages with the bootmem allocator.
422 */
423 for (i = 0; i < boot_mem_map.nr_map; i++) {
424 unsigned long start, end, size;
425
426 start = PFN_UP(boot_mem_map.map[i].addr);
427 end = PFN_DOWN(boot_mem_map.map[i].addr
428 + boot_mem_map.map[i].size);
429
430 /*
431 * Reserve usable memory.
432 */
433 switch (boot_mem_map.map[i].type) {
434 case BOOT_MEM_RAM:
435 break;
436 case BOOT_MEM_INIT_RAM:
437 memory_present(0, start, end);
438 continue;
439 default:
440 /* Not usable memory */
441 continue;
442 }
443
444 /*
445 * We are rounding up the start address of usable memory
446 * and at the end of the usable range downwards.
447 */
448 if (start >= max_low_pfn)
449 continue;
450 if (start < reserved_end)
451 start = reserved_end;
452 if (end > max_low_pfn)
453 end = max_low_pfn;
454
455 /*
456 * ... finally, is the area going away?
457 */
458 if (end <= start)
459 continue;
460 size = end - start;
461
462 /* Register lowmem ranges */
463 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
464 memory_present(0, start, end);
465 }
466
467 /*
468 * Reserve the bootmap memory.
469 */
470 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
471
472 /*
473 * Reserve initrd memory if needed.
474 */
475 finalize_initrd();
476}
477
478#endif /* CONFIG_SGI_IP27 */
479
480/*
481 * arch_mem_init - initialize memory management subsystem
482 *
483 * o plat_mem_setup() detects the memory configuration and will record detected
484 * memory areas using add_memory_region.
485 *
486 * At this stage the memory configuration of the system is known to the
487 * kernel but generic memory management system is still entirely uninitialized.
488 *
489 * o bootmem_init()
490 * o sparse_init()
491 * o paging_init()
492 * o dma_contiguous_reserve()
493 *
494 * At this stage the bootmem allocator is ready to use.
495 *
496 * NOTE: historically plat_mem_setup did the entire platform initialization.
497 * This was rather impractical because it meant plat_mem_setup had to
498 * get away without any kind of memory allocator. To keep old code from
499 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
500 * initialization hook for anything else was introduced.
501 */
502
503static int usermem __initdata;
504
505static int __init early_parse_mem(char *p)
506{
507 phys_addr_t start, size;
508
509 /*
510 * If a user specifies memory size, we
511 * blow away any automatically generated
512 * size.
513 */
514 if (usermem == 0) {
515 boot_mem_map.nr_map = 0;
516 usermem = 1;
517 }
518 start = 0;
519 size = memparse(p, &p);
520 if (*p == '@')
521 start = memparse(p + 1, &p);
522
523 add_memory_region(start, size, BOOT_MEM_RAM);
524 return 0;
525}
526early_param("mem", early_parse_mem);
527
528#ifdef CONFIG_PROC_VMCORE
529unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
530static int __init early_parse_elfcorehdr(char *p)
531{
532 int i;
533
534 setup_elfcorehdr = memparse(p, &p);
535
536 for (i = 0; i < boot_mem_map.nr_map; i++) {
537 unsigned long start = boot_mem_map.map[i].addr;
538 unsigned long end = (boot_mem_map.map[i].addr +
539 boot_mem_map.map[i].size);
540 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
541 /*
542 * Reserve from the elf core header to the end of
543 * the memory segment, that should all be kdump
544 * reserved memory.
545 */
546 setup_elfcorehdr_size = end - setup_elfcorehdr;
547 break;
548 }
549 }
550 /*
551 * If we don't find it in the memory map, then we shouldn't
552 * have to worry about it, as the new kernel won't use it.
553 */
554 return 0;
555}
556early_param("elfcorehdr", early_parse_elfcorehdr);
557#endif
558
559static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
560{
561 phys_addr_t size;
562 int i;
563
564 size = end - mem;
565 if (!size)
566 return;
567
568 /* Make sure it is in the boot_mem_map */
569 for (i = 0; i < boot_mem_map.nr_map; i++) {
570 if (mem >= boot_mem_map.map[i].addr &&
571 mem < (boot_mem_map.map[i].addr +
572 boot_mem_map.map[i].size))
573 return;
574 }
575 add_memory_region(mem, size, type);
576}
577
578#ifdef CONFIG_KEXEC
579static inline unsigned long long get_total_mem(void)
580{
581 unsigned long long total;
582
583 total = max_pfn - min_low_pfn;
584 return total << PAGE_SHIFT;
585}
586
587static void __init mips_parse_crashkernel(void)
588{
589 unsigned long long total_mem;
590 unsigned long long crash_size, crash_base;
591 int ret;
592
593 total_mem = get_total_mem();
594 ret = parse_crashkernel(boot_command_line, total_mem,
595 &crash_size, &crash_base);
596 if (ret != 0 || crash_size <= 0)
597 return;
598
599 crashk_res.start = crash_base;
600 crashk_res.end = crash_base + crash_size - 1;
601}
602
603static void __init request_crashkernel(struct resource *res)
604{
605 int ret;
606
607 ret = request_resource(res, &crashk_res);
608 if (!ret)
609 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
610 (unsigned long)((crashk_res.end -
611 crashk_res.start + 1) >> 20),
612 (unsigned long)(crashk_res.start >> 20));
613}
614#else /* !defined(CONFIG_KEXEC) */
615static void __init mips_parse_crashkernel(void)
616{
617}
618
619static void __init request_crashkernel(struct resource *res)
620{
621}
622#endif /* !defined(CONFIG_KEXEC) */
623
624#define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
625#define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
626#define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
627
628static void __init arch_mem_init(char **cmdline_p)
629{
630 struct memblock_region *reg;
631 extern void plat_mem_setup(void);
632
633 /* call board setup routine */
634 plat_mem_setup();
635
636 /*
637 * Make sure all kernel memory is in the maps. The "UP" and
638 * "DOWN" are opposite for initdata since if it crosses over
639 * into another memory section you don't want that to be
640 * freed when the initdata is freed.
641 */
642 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
643 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
644 BOOT_MEM_RAM);
645 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
646 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
647 BOOT_MEM_INIT_RAM);
648
649 pr_info("Determined physical RAM map:\n");
650 print_memory_map();
651
652#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
653 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
654#else
655 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
656 (USE_DTB_CMDLINE && !boot_command_line[0]))
657 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
658
659 if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
660 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
661 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
662 }
663
664#if defined(CONFIG_CMDLINE_BOOL)
665 if (builtin_cmdline[0]) {
666 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
667 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
668 }
669#endif
670#endif
671 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
672
673 *cmdline_p = command_line;
674
675 parse_early_param();
676
677 if (usermem) {
678 pr_info("User-defined physical RAM map:\n");
679 print_memory_map();
680 }
681
682 bootmem_init();
683#ifdef CONFIG_PROC_VMCORE
684 if (setup_elfcorehdr && setup_elfcorehdr_size) {
685 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
686 setup_elfcorehdr, setup_elfcorehdr_size);
687 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
688 BOOTMEM_DEFAULT);
689 }
690#endif
691
692 mips_parse_crashkernel();
693#ifdef CONFIG_KEXEC
694 if (crashk_res.start != crashk_res.end)
695 reserve_bootmem(crashk_res.start,
696 crashk_res.end - crashk_res.start + 1,
697 BOOTMEM_DEFAULT);
698#endif
699 device_tree_init();
700 sparse_init();
701 plat_swiotlb_setup();
702 paging_init();
703
704 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
705 /* Tell bootmem about cma reserved memblock section */
706 for_each_memblock(reserved, reg)
707 if (reg->size != 0)
708 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
709}
710
711static void __init resource_init(void)
712{
713 int i;
714
715 if (UNCAC_BASE != IO_BASE)
716 return;
717
718 code_resource.start = __pa_symbol(&_text);
719 code_resource.end = __pa_symbol(&_etext) - 1;
720 data_resource.start = __pa_symbol(&_etext);
721 data_resource.end = __pa_symbol(&_edata) - 1;
722
723 for (i = 0; i < boot_mem_map.nr_map; i++) {
724 struct resource *res;
725 unsigned long start, end;
726
727 start = boot_mem_map.map[i].addr;
728 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
729 if (start >= HIGHMEM_START)
730 continue;
731 if (end >= HIGHMEM_START)
732 end = HIGHMEM_START - 1;
733
734 res = alloc_bootmem(sizeof(struct resource));
735
736 res->start = start;
737 res->end = end;
738 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
739
740 switch (boot_mem_map.map[i].type) {
741 case BOOT_MEM_RAM:
742 case BOOT_MEM_INIT_RAM:
743 case BOOT_MEM_ROM_DATA:
744 res->name = "System RAM";
745 res->flags |= IORESOURCE_SYSRAM;
746 break;
747 case BOOT_MEM_RESERVED:
748 default:
749 res->name = "reserved";
750 }
751
752 request_resource(&iomem_resource, res);
753
754 /*
755 * We don't know which RAM region contains kernel data,
756 * so we try it repeatedly and let the resource manager
757 * test it.
758 */
759 request_resource(res, &code_resource);
760 request_resource(res, &data_resource);
761 request_crashkernel(res);
762 }
763}
764
765#ifdef CONFIG_SMP
766static void __init prefill_possible_map(void)
767{
768 int i, possible = num_possible_cpus();
769
770 if (possible > nr_cpu_ids)
771 possible = nr_cpu_ids;
772
773 for (i = 0; i < possible; i++)
774 set_cpu_possible(i, true);
775 for (; i < NR_CPUS; i++)
776 set_cpu_possible(i, false);
777
778 nr_cpu_ids = possible;
779}
780#else
781static inline void prefill_possible_map(void) {}
782#endif
783
784void __init setup_arch(char **cmdline_p)
785{
786 cpu_probe();
787 mips_cm_probe();
788 prom_init();
789
790 setup_early_fdc_console();
791#ifdef CONFIG_EARLY_PRINTK
792 setup_early_printk();
793#endif
794 cpu_report();
795 check_bugs_early();
796
797#if defined(CONFIG_VT)
798#if defined(CONFIG_VGA_CONSOLE)
799 conswitchp = &vga_con;
800#elif defined(CONFIG_DUMMY_CONSOLE)
801 conswitchp = &dummy_con;
802#endif
803#endif
804
805 arch_mem_init(cmdline_p);
806
807 resource_init();
808 plat_smp_setup();
809 prefill_possible_map();
810
811 cpu_cache_init();
812}
813
814unsigned long kernelsp[NR_CPUS];
815unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
816
817#ifdef CONFIG_DEBUG_FS
818struct dentry *mips_debugfs_dir;
819static int __init debugfs_mips(void)
820{
821 struct dentry *d;
822
823 d = debugfs_create_dir("mips", NULL);
824 if (!d)
825 return -ENOMEM;
826 mips_debugfs_dir = d;
827 return 0;
828}
829arch_initcall(debugfs_mips);
830#endif
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/export.h>
16#include <linux/screen_info.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
19#include <linux/initrd.h>
20#include <linux/root_dev.h>
21#include <linux/highmem.h>
22#include <linux/console.h>
23#include <linux/pfn.h>
24#include <linux/debugfs.h>
25#include <linux/kexec.h>
26#include <linux/sizes.h>
27
28#include <asm/addrspace.h>
29#include <asm/bootinfo.h>
30#include <asm/bugs.h>
31#include <asm/cache.h>
32#include <asm/cpu.h>
33#include <asm/sections.h>
34#include <asm/setup.h>
35#include <asm/smp-ops.h>
36#include <asm/prom.h>
37
38struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
39
40EXPORT_SYMBOL(cpu_data);
41
42#ifdef CONFIG_VT
43struct screen_info screen_info;
44#endif
45
46/*
47 * Despite it's name this variable is even if we don't have PCI
48 */
49unsigned int PCI_DMA_BUS_IS_PHYS;
50
51EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
52
53/*
54 * Setup information
55 *
56 * These are initialized so they are in the .data section
57 */
58unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
59
60EXPORT_SYMBOL(mips_machtype);
61
62struct boot_mem_map boot_mem_map;
63
64static char __initdata command_line[COMMAND_LINE_SIZE];
65char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
66
67#ifdef CONFIG_CMDLINE_BOOL
68static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
69#endif
70
71/*
72 * mips_io_port_base is the begin of the address space to which x86 style
73 * I/O ports are mapped.
74 */
75const unsigned long mips_io_port_base = -1;
76EXPORT_SYMBOL(mips_io_port_base);
77
78static struct resource code_resource = { .name = "Kernel code", };
79static struct resource data_resource = { .name = "Kernel data", };
80
81static void *detect_magic __initdata = detect_memory_region;
82
83void __init add_memory_region(phys_t start, phys_t size, long type)
84{
85 int x = boot_mem_map.nr_map;
86 int i;
87
88 /* Sanity check */
89 if (start + size < start) {
90 pr_warning("Trying to add an invalid memory region, skipped\n");
91 return;
92 }
93
94 /*
95 * Try to merge with existing entry, if any.
96 */
97 for (i = 0; i < boot_mem_map.nr_map; i++) {
98 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
99 unsigned long top;
100
101 if (entry->type != type)
102 continue;
103
104 if (start + size < entry->addr)
105 continue; /* no overlap */
106
107 if (entry->addr + entry->size < start)
108 continue; /* no overlap */
109
110 top = max(entry->addr + entry->size, start + size);
111 entry->addr = min(entry->addr, start);
112 entry->size = top - entry->addr;
113
114 return;
115 }
116
117 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
118 pr_err("Ooops! Too many entries in the memory map!\n");
119 return;
120 }
121
122 boot_mem_map.map[x].addr = start;
123 boot_mem_map.map[x].size = size;
124 boot_mem_map.map[x].type = type;
125 boot_mem_map.nr_map++;
126}
127
128void __init detect_memory_region(phys_t start, phys_t sz_min, phys_t sz_max)
129{
130 void *dm = &detect_magic;
131 phys_t size;
132
133 for (size = sz_min; size < sz_max; size <<= 1) {
134 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
135 break;
136 }
137
138 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
139 ((unsigned long long) size) / SZ_1M,
140 (unsigned long long) start,
141 ((unsigned long long) sz_min) / SZ_1M,
142 ((unsigned long long) sz_max) / SZ_1M);
143
144 add_memory_region(start, size, BOOT_MEM_RAM);
145}
146
147static void __init print_memory_map(void)
148{
149 int i;
150 const int field = 2 * sizeof(unsigned long);
151
152 for (i = 0; i < boot_mem_map.nr_map; i++) {
153 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
154 field, (unsigned long long) boot_mem_map.map[i].size,
155 field, (unsigned long long) boot_mem_map.map[i].addr);
156
157 switch (boot_mem_map.map[i].type) {
158 case BOOT_MEM_RAM:
159 printk(KERN_CONT "(usable)\n");
160 break;
161 case BOOT_MEM_INIT_RAM:
162 printk(KERN_CONT "(usable after init)\n");
163 break;
164 case BOOT_MEM_ROM_DATA:
165 printk(KERN_CONT "(ROM data)\n");
166 break;
167 case BOOT_MEM_RESERVED:
168 printk(KERN_CONT "(reserved)\n");
169 break;
170 default:
171 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
172 break;
173 }
174 }
175}
176
177/*
178 * Manage initrd
179 */
180#ifdef CONFIG_BLK_DEV_INITRD
181
182static int __init rd_start_early(char *p)
183{
184 unsigned long start = memparse(p, &p);
185
186#ifdef CONFIG_64BIT
187 /* Guess if the sign extension was forgotten by bootloader */
188 if (start < XKPHYS)
189 start = (int)start;
190#endif
191 initrd_start = start;
192 initrd_end += start;
193 return 0;
194}
195early_param("rd_start", rd_start_early);
196
197static int __init rd_size_early(char *p)
198{
199 initrd_end += memparse(p, &p);
200 return 0;
201}
202early_param("rd_size", rd_size_early);
203
204/* it returns the next free pfn after initrd */
205static unsigned long __init init_initrd(void)
206{
207 unsigned long end;
208
209 /*
210 * Board specific code or command line parser should have
211 * already set up initrd_start and initrd_end. In these cases
212 * perfom sanity checks and use them if all looks good.
213 */
214 if (!initrd_start || initrd_end <= initrd_start)
215 goto disable;
216
217 if (initrd_start & ~PAGE_MASK) {
218 pr_err("initrd start must be page aligned\n");
219 goto disable;
220 }
221 if (initrd_start < PAGE_OFFSET) {
222 pr_err("initrd start < PAGE_OFFSET\n");
223 goto disable;
224 }
225
226 /*
227 * Sanitize initrd addresses. For example firmware
228 * can't guess if they need to pass them through
229 * 64-bits values if the kernel has been built in pure
230 * 32-bit. We need also to switch from KSEG0 to XKPHYS
231 * addresses now, so the code can now safely use __pa().
232 */
233 end = __pa(initrd_end);
234 initrd_end = (unsigned long)__va(end);
235 initrd_start = (unsigned long)__va(__pa(initrd_start));
236
237 ROOT_DEV = Root_RAM0;
238 return PFN_UP(end);
239disable:
240 initrd_start = 0;
241 initrd_end = 0;
242 return 0;
243}
244
245static void __init finalize_initrd(void)
246{
247 unsigned long size = initrd_end - initrd_start;
248
249 if (size == 0) {
250 printk(KERN_INFO "Initrd not found or empty");
251 goto disable;
252 }
253 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
254 printk(KERN_ERR "Initrd extends beyond end of memory");
255 goto disable;
256 }
257
258 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
259 initrd_below_start_ok = 1;
260
261 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
262 initrd_start, size);
263 return;
264disable:
265 printk(KERN_CONT " - disabling initrd\n");
266 initrd_start = 0;
267 initrd_end = 0;
268}
269
270#else /* !CONFIG_BLK_DEV_INITRD */
271
272static unsigned long __init init_initrd(void)
273{
274 return 0;
275}
276
277#define finalize_initrd() do {} while (0)
278
279#endif
280
281/*
282 * Initialize the bootmem allocator. It also setup initrd related data
283 * if needed.
284 */
285#ifdef CONFIG_SGI_IP27
286
287static void __init bootmem_init(void)
288{
289 init_initrd();
290 finalize_initrd();
291}
292
293#else /* !CONFIG_SGI_IP27 */
294
295static void __init bootmem_init(void)
296{
297 unsigned long reserved_end;
298 unsigned long mapstart = ~0UL;
299 unsigned long bootmap_size;
300 int i;
301
302 /*
303 * Sanity check any INITRD first. We don't take it into account
304 * for bootmem setup initially, rely on the end-of-kernel-code
305 * as our memory range starting point. Once bootmem is inited we
306 * will reserve the area used for the initrd.
307 */
308 init_initrd();
309 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
310
311 /*
312 * max_low_pfn is not a number of pages. The number of pages
313 * of the system is given by 'max_low_pfn - min_low_pfn'.
314 */
315 min_low_pfn = ~0UL;
316 max_low_pfn = 0;
317
318 /*
319 * Find the highest page frame number we have available.
320 */
321 for (i = 0; i < boot_mem_map.nr_map; i++) {
322 unsigned long start, end;
323
324 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
325 continue;
326
327 start = PFN_UP(boot_mem_map.map[i].addr);
328 end = PFN_DOWN(boot_mem_map.map[i].addr
329 + boot_mem_map.map[i].size);
330
331 if (end > max_low_pfn)
332 max_low_pfn = end;
333 if (start < min_low_pfn)
334 min_low_pfn = start;
335 if (end <= reserved_end)
336 continue;
337 if (start >= mapstart)
338 continue;
339 mapstart = max(reserved_end, start);
340 }
341
342 if (min_low_pfn >= max_low_pfn)
343 panic("Incorrect memory mapping !!!");
344 if (min_low_pfn > ARCH_PFN_OFFSET) {
345 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
346 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
347 min_low_pfn - ARCH_PFN_OFFSET);
348 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
349 pr_info("%lu free pages won't be used\n",
350 ARCH_PFN_OFFSET - min_low_pfn);
351 }
352 min_low_pfn = ARCH_PFN_OFFSET;
353
354 /*
355 * Determine low and high memory ranges
356 */
357 max_pfn = max_low_pfn;
358 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
359#ifdef CONFIG_HIGHMEM
360 highstart_pfn = PFN_DOWN(HIGHMEM_START);
361 highend_pfn = max_low_pfn;
362#endif
363 max_low_pfn = PFN_DOWN(HIGHMEM_START);
364 }
365
366#ifdef CONFIG_BLK_DEV_INITRD
367 /*
368 * mapstart should be after initrd_end
369 */
370 if (initrd_end)
371 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
372#endif
373
374 /*
375 * Initialize the boot-time allocator with low memory only.
376 */
377 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
378 min_low_pfn, max_low_pfn);
379
380
381 for (i = 0; i < boot_mem_map.nr_map; i++) {
382 unsigned long start, end;
383
384 start = PFN_UP(boot_mem_map.map[i].addr);
385 end = PFN_DOWN(boot_mem_map.map[i].addr
386 + boot_mem_map.map[i].size);
387
388 if (start <= min_low_pfn)
389 start = min_low_pfn;
390 if (start >= end)
391 continue;
392
393#ifndef CONFIG_HIGHMEM
394 if (end > max_low_pfn)
395 end = max_low_pfn;
396
397 /*
398 * ... finally, is the area going away?
399 */
400 if (end <= start)
401 continue;
402#endif
403
404 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
405 }
406
407 /*
408 * Register fully available low RAM pages with the bootmem allocator.
409 */
410 for (i = 0; i < boot_mem_map.nr_map; i++) {
411 unsigned long start, end, size;
412
413 start = PFN_UP(boot_mem_map.map[i].addr);
414 end = PFN_DOWN(boot_mem_map.map[i].addr
415 + boot_mem_map.map[i].size);
416
417 /*
418 * Reserve usable memory.
419 */
420 switch (boot_mem_map.map[i].type) {
421 case BOOT_MEM_RAM:
422 break;
423 case BOOT_MEM_INIT_RAM:
424 memory_present(0, start, end);
425 continue;
426 default:
427 /* Not usable memory */
428 continue;
429 }
430
431 /*
432 * We are rounding up the start address of usable memory
433 * and at the end of the usable range downwards.
434 */
435 if (start >= max_low_pfn)
436 continue;
437 if (start < reserved_end)
438 start = reserved_end;
439 if (end > max_low_pfn)
440 end = max_low_pfn;
441
442 /*
443 * ... finally, is the area going away?
444 */
445 if (end <= start)
446 continue;
447 size = end - start;
448
449 /* Register lowmem ranges */
450 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
451 memory_present(0, start, end);
452 }
453
454 /*
455 * Reserve the bootmap memory.
456 */
457 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
458
459 /*
460 * Reserve initrd memory if needed.
461 */
462 finalize_initrd();
463}
464
465#endif /* CONFIG_SGI_IP27 */
466
467/*
468 * arch_mem_init - initialize memory management subsystem
469 *
470 * o plat_mem_setup() detects the memory configuration and will record detected
471 * memory areas using add_memory_region.
472 *
473 * At this stage the memory configuration of the system is known to the
474 * kernel but generic memory management system is still entirely uninitialized.
475 *
476 * o bootmem_init()
477 * o sparse_init()
478 * o paging_init()
479 *
480 * At this stage the bootmem allocator is ready to use.
481 *
482 * NOTE: historically plat_mem_setup did the entire platform initialization.
483 * This was rather impractical because it meant plat_mem_setup had to
484 * get away without any kind of memory allocator. To keep old code from
485 * breaking plat_setup was just renamed to plat_setup and a second platform
486 * initialization hook for anything else was introduced.
487 */
488
489static int usermem __initdata;
490
491static int __init early_parse_mem(char *p)
492{
493 unsigned long start, size;
494
495 /*
496 * If a user specifies memory size, we
497 * blow away any automatically generated
498 * size.
499 */
500 if (usermem == 0) {
501 boot_mem_map.nr_map = 0;
502 usermem = 1;
503 }
504 start = 0;
505 size = memparse(p, &p);
506 if (*p == '@')
507 start = memparse(p + 1, &p);
508
509 add_memory_region(start, size, BOOT_MEM_RAM);
510 return 0;
511}
512early_param("mem", early_parse_mem);
513
514#ifdef CONFIG_PROC_VMCORE
515unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
516static int __init early_parse_elfcorehdr(char *p)
517{
518 int i;
519
520 setup_elfcorehdr = memparse(p, &p);
521
522 for (i = 0; i < boot_mem_map.nr_map; i++) {
523 unsigned long start = boot_mem_map.map[i].addr;
524 unsigned long end = (boot_mem_map.map[i].addr +
525 boot_mem_map.map[i].size);
526 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
527 /*
528 * Reserve from the elf core header to the end of
529 * the memory segment, that should all be kdump
530 * reserved memory.
531 */
532 setup_elfcorehdr_size = end - setup_elfcorehdr;
533 break;
534 }
535 }
536 /*
537 * If we don't find it in the memory map, then we shouldn't
538 * have to worry about it, as the new kernel won't use it.
539 */
540 return 0;
541}
542early_param("elfcorehdr", early_parse_elfcorehdr);
543#endif
544
545static void __init arch_mem_addpart(phys_t mem, phys_t end, int type)
546{
547 phys_t size;
548 int i;
549
550 size = end - mem;
551 if (!size)
552 return;
553
554 /* Make sure it is in the boot_mem_map */
555 for (i = 0; i < boot_mem_map.nr_map; i++) {
556 if (mem >= boot_mem_map.map[i].addr &&
557 mem < (boot_mem_map.map[i].addr +
558 boot_mem_map.map[i].size))
559 return;
560 }
561 add_memory_region(mem, size, type);
562}
563
564#ifdef CONFIG_KEXEC
565static inline unsigned long long get_total_mem(void)
566{
567 unsigned long long total;
568
569 total = max_pfn - min_low_pfn;
570 return total << PAGE_SHIFT;
571}
572
573static void __init mips_parse_crashkernel(void)
574{
575 unsigned long long total_mem;
576 unsigned long long crash_size, crash_base;
577 int ret;
578
579 total_mem = get_total_mem();
580 ret = parse_crashkernel(boot_command_line, total_mem,
581 &crash_size, &crash_base);
582 if (ret != 0 || crash_size <= 0)
583 return;
584
585 crashk_res.start = crash_base;
586 crashk_res.end = crash_base + crash_size - 1;
587}
588
589static void __init request_crashkernel(struct resource *res)
590{
591 int ret;
592
593 ret = request_resource(res, &crashk_res);
594 if (!ret)
595 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
596 (unsigned long)((crashk_res.end -
597 crashk_res.start + 1) >> 20),
598 (unsigned long)(crashk_res.start >> 20));
599}
600#else /* !defined(CONFIG_KEXEC) */
601static void __init mips_parse_crashkernel(void)
602{
603}
604
605static void __init request_crashkernel(struct resource *res)
606{
607}
608#endif /* !defined(CONFIG_KEXEC) */
609
610static void __init arch_mem_init(char **cmdline_p)
611{
612 extern void plat_mem_setup(void);
613
614 /* call board setup routine */
615 plat_mem_setup();
616
617 /*
618 * Make sure all kernel memory is in the maps. The "UP" and
619 * "DOWN" are opposite for initdata since if it crosses over
620 * into another memory section you don't want that to be
621 * freed when the initdata is freed.
622 */
623 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
624 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
625 BOOT_MEM_RAM);
626 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
627 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
628 BOOT_MEM_INIT_RAM);
629
630 pr_info("Determined physical RAM map:\n");
631 print_memory_map();
632
633#ifdef CONFIG_CMDLINE_BOOL
634#ifdef CONFIG_CMDLINE_OVERRIDE
635 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
636#else
637 if (builtin_cmdline[0]) {
638 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
639 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
640 }
641 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
642#endif
643#else
644 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
645#endif
646 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
647
648 *cmdline_p = command_line;
649
650 parse_early_param();
651
652 if (usermem) {
653 pr_info("User-defined physical RAM map:\n");
654 print_memory_map();
655 }
656
657 bootmem_init();
658#ifdef CONFIG_PROC_VMCORE
659 if (setup_elfcorehdr && setup_elfcorehdr_size) {
660 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
661 setup_elfcorehdr, setup_elfcorehdr_size);
662 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
663 BOOTMEM_DEFAULT);
664 }
665#endif
666
667 mips_parse_crashkernel();
668#ifdef CONFIG_KEXEC
669 if (crashk_res.start != crashk_res.end)
670 reserve_bootmem(crashk_res.start,
671 crashk_res.end - crashk_res.start + 1,
672 BOOTMEM_DEFAULT);
673#endif
674 device_tree_init();
675 sparse_init();
676 plat_swiotlb_setup();
677 paging_init();
678}
679
680static void __init resource_init(void)
681{
682 int i;
683
684 if (UNCAC_BASE != IO_BASE)
685 return;
686
687 code_resource.start = __pa_symbol(&_text);
688 code_resource.end = __pa_symbol(&_etext) - 1;
689 data_resource.start = __pa_symbol(&_etext);
690 data_resource.end = __pa_symbol(&_edata) - 1;
691
692 for (i = 0; i < boot_mem_map.nr_map; i++) {
693 struct resource *res;
694 unsigned long start, end;
695
696 start = boot_mem_map.map[i].addr;
697 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
698 if (start >= HIGHMEM_START)
699 continue;
700 if (end >= HIGHMEM_START)
701 end = HIGHMEM_START - 1;
702
703 res = alloc_bootmem(sizeof(struct resource));
704 switch (boot_mem_map.map[i].type) {
705 case BOOT_MEM_RAM:
706 case BOOT_MEM_INIT_RAM:
707 case BOOT_MEM_ROM_DATA:
708 res->name = "System RAM";
709 break;
710 case BOOT_MEM_RESERVED:
711 default:
712 res->name = "reserved";
713 }
714
715 res->start = start;
716 res->end = end;
717
718 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
719 request_resource(&iomem_resource, res);
720
721 /*
722 * We don't know which RAM region contains kernel data,
723 * so we try it repeatedly and let the resource manager
724 * test it.
725 */
726 request_resource(res, &code_resource);
727 request_resource(res, &data_resource);
728 request_crashkernel(res);
729 }
730}
731
732void __init setup_arch(char **cmdline_p)
733{
734 cpu_probe();
735 prom_init();
736
737#ifdef CONFIG_EARLY_PRINTK
738 setup_early_printk();
739#endif
740 cpu_report();
741 check_bugs_early();
742
743#if defined(CONFIG_VT)
744#if defined(CONFIG_VGA_CONSOLE)
745 conswitchp = &vga_con;
746#elif defined(CONFIG_DUMMY_CONSOLE)
747 conswitchp = &dummy_con;
748#endif
749#endif
750
751 arch_mem_init(cmdline_p);
752
753 resource_init();
754 plat_smp_setup();
755
756 cpu_cache_init();
757}
758
759unsigned long kernelsp[NR_CPUS];
760unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
761
762#ifdef CONFIG_DEBUG_FS
763struct dentry *mips_debugfs_dir;
764static int __init debugfs_mips(void)
765{
766 struct dentry *d;
767
768 d = debugfs_create_dir("mips", NULL);
769 if (!d)
770 return -ENOMEM;
771 mips_debugfs_dir = d;
772 return 0;
773}
774arch_initcall(debugfs_mips);
775#endif