Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Serial Sound Interface (I2S) support for SH7760/SH7780
  3 *
  4 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  5 *
  6 *  licensed under the terms outlined in the file COPYING at the root
  7 *  of the linux kernel sources.
  8 *
  9 * dont forget to set IPSEL/OMSEL register bits (in your board code) to
 10 * enable SSI output pins!
 11 */
 12
 13/*
 14 * LIMITATIONS:
 15 *	The SSI unit has only one physical data line, so full duplex is
 16 *	impossible.  This can be remedied  on the  SH7760 by  using the
 17 *	other SSI unit for recording; however the SH7780 has only 1 SSI
 18 *	unit, and its pins are shared with the AC97 unit,  among others.
 19 *
 20 * FEATURES:
 21 *	The SSI features "compressed mode": in this mode it continuously
 22 *	streams PCM data over the I2S lines and uses LRCK as a handshake
 23 *	signal.  Can be used to send compressed data (AC3/DTS) to a DSP.
 24 *	The number of bits sent over the wire in a frame can be adjusted
 25 *	and can be independent from the actual sample bit depth. This is
 26 *	useful to support TDM mode codecs like the AD1939 which have a
 27 *	fixed TDM slot size, regardless of sample resolution.
 28 */
 29
 30#include <linux/init.h>
 31#include <linux/module.h>
 32#include <linux/platform_device.h>
 33#include <sound/core.h>
 34#include <sound/pcm.h>
 35#include <sound/initval.h>
 36#include <sound/soc.h>
 37#include <asm/io.h>
 38
 39#define SSICR	0x00
 40#define SSISR	0x04
 41
 42#define CR_DMAEN	(1 << 28)
 43#define CR_CHNL_SHIFT	22
 44#define CR_CHNL_MASK	(3 << CR_CHNL_SHIFT)
 45#define CR_DWL_SHIFT	19
 46#define CR_DWL_MASK	(7 << CR_DWL_SHIFT)
 47#define CR_SWL_SHIFT	16
 48#define CR_SWL_MASK	(7 << CR_SWL_SHIFT)
 49#define CR_SCK_MASTER	(1 << 15)	/* bitclock master bit */
 50#define CR_SWS_MASTER	(1 << 14)	/* wordselect master bit */
 51#define CR_SCKP		(1 << 13)	/* I2Sclock polarity */
 52#define CR_SWSP		(1 << 12)	/* LRCK polarity */
 53#define CR_SPDP		(1 << 11)
 54#define CR_SDTA		(1 << 10)	/* i2s alignment (msb/lsb) */
 55#define CR_PDTA		(1 << 9)	/* fifo data alignment */
 56#define CR_DEL		(1 << 8)	/* delay data by 1 i2sclk */
 57#define CR_BREN		(1 << 7)	/* clock gating in burst mode */
 58#define CR_CKDIV_SHIFT	4
 59#define CR_CKDIV_MASK	(7 << CR_CKDIV_SHIFT)	/* bitclock divider */
 60#define CR_MUTE		(1 << 3)	/* SSI mute */
 61#define CR_CPEN		(1 << 2)	/* compressed mode */
 62#define CR_TRMD		(1 << 1)	/* transmit/receive select */
 63#define CR_EN		(1 << 0)	/* enable SSI */
 64
 65#define SSIREG(reg)	(*(unsigned long *)(ssi->mmio + (reg)))
 66
 67struct ssi_priv {
 68	unsigned long mmio;
 69	unsigned long sysclk;
 70	int inuse;
 71} ssi_cpu_data[] = {
 72#if defined(CONFIG_CPU_SUBTYPE_SH7760)
 73	{
 74		.mmio	= 0xFE680000,
 75	},
 76	{
 77		.mmio	= 0xFE690000,
 78	},
 79#elif defined(CONFIG_CPU_SUBTYPE_SH7780)
 80	{
 81		.mmio	= 0xFFE70000,
 82	},
 83#else
 84#error "Unsupported SuperH SoC"
 85#endif
 86};
 87
 88/*
 89 * track usage of the SSI; it is simplex-only so prevent attempts of
 90 * concurrent playback + capture. FIXME: any locking required?
 91 */
 92static int ssi_startup(struct snd_pcm_substream *substream,
 93		       struct snd_soc_dai *dai)
 94{
 95	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
 96	if (ssi->inuse) {
 97		pr_debug("ssi: already in use!\n");
 98		return -EBUSY;
 99	} else
100		ssi->inuse = 1;
101	return 0;
102}
103
104static void ssi_shutdown(struct snd_pcm_substream *substream,
105			 struct snd_soc_dai *dai)
106{
107	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
108
109	ssi->inuse = 0;
110}
111
112static int ssi_trigger(struct snd_pcm_substream *substream, int cmd,
113		       struct snd_soc_dai *dai)
114{
115	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
116
117	switch (cmd) {
118	case SNDRV_PCM_TRIGGER_START:
119		SSIREG(SSICR) |= CR_DMAEN | CR_EN;
120		break;
121	case SNDRV_PCM_TRIGGER_STOP:
122		SSIREG(SSICR) &= ~(CR_DMAEN | CR_EN);
123		break;
124	default:
125		return -EINVAL;
126	}
127
128	return 0;
129}
130
131static int ssi_hw_params(struct snd_pcm_substream *substream,
132			 struct snd_pcm_hw_params *params,
133			 struct snd_soc_dai *dai)
134{
135	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
136	unsigned long ssicr = SSIREG(SSICR);
137	unsigned int bits, channels, swl, recv, i;
138
139	channels = params_channels(params);
140	bits = params->msbits;
141	recv = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 0 : 1;
142
143	pr_debug("ssi_hw_params() enter\nssicr was    %08lx\n", ssicr);
144	pr_debug("bits: %u channels: %u\n", bits, channels);
145
146	ssicr &= ~(CR_TRMD | CR_CHNL_MASK | CR_DWL_MASK | CR_PDTA |
147		   CR_SWL_MASK);
148
149	/* direction (send/receive) */
150	if (!recv)
151		ssicr |= CR_TRMD;	/* transmit */
152
153	/* channels */
154	if ((channels < 2) || (channels > 8) || (channels & 1)) {
155		pr_debug("ssi: invalid number of channels\n");
156		return -EINVAL;
157	}
158	ssicr |= ((channels >> 1) - 1) << CR_CHNL_SHIFT;
159
160	/* DATA WORD LENGTH (DWL): databits in audio sample */
161	i = 0;
162	switch (bits) {
163	case 32: ++i;
164	case 24: ++i;
165	case 22: ++i;
166	case 20: ++i;
167	case 18: ++i;
168	case 16: ++i;
169		 ssicr |= i << CR_DWL_SHIFT;
170	case 8:	 break;
171	default:
172		pr_debug("ssi: invalid sample width\n");
173		return -EINVAL;
174	}
175
176	/*
177	 * SYSTEM WORD LENGTH: size in bits of half a frame over the I2S
178	 * wires. This is usually bits_per_sample x channels/2;  i.e. in
179	 * Stereo mode  the SWL equals DWL.  SWL can  be bigger than the
180	 * product of (channels_per_slot x samplebits), e.g.  for codecs
181	 * like the AD1939 which  only accept 32bit wide TDM slots.  For
182	 * "standard" I2S operation we set SWL = chans / 2 * DWL here.
183	 * Waiting for ASoC to get TDM support ;-)
184	 */
185	if ((bits > 16) && (bits <= 24)) {
186		bits = 24;	/* these are padded by the SSI */
187		/*ssicr |= CR_PDTA;*/ /* cpu/data endianness ? */
188	}
189	i = 0;
190	swl = (bits * channels) / 2;
191	switch (swl) {
192	case 256: ++i;
193	case 128: ++i;
194	case 64:  ++i;
195	case 48:  ++i;
196	case 32:  ++i;
197	case 16:  ++i;
198		  ssicr |= i << CR_SWL_SHIFT;
199	case 8:   break;
200	default:
201		pr_debug("ssi: invalid system word length computed\n");
202		return -EINVAL;
203	}
204
205	SSIREG(SSICR) = ssicr;
206
207	pr_debug("ssi_hw_params() leave\nssicr is now %08lx\n", ssicr);
208	return 0;
209}
210
211static int ssi_set_sysclk(struct snd_soc_dai *cpu_dai, int clk_id,
212			  unsigned int freq, int dir)
213{
214	struct ssi_priv *ssi = &ssi_cpu_data[cpu_dai->id];
215
216	ssi->sysclk = freq;
217
218	return 0;
219}
220
221/*
222 * This divider is used to generate the SSI_SCK (I2S bitclock) from the
223 * clock at the HAC_BIT_CLK ("oversampling clock") pin.
224 */
225static int ssi_set_clkdiv(struct snd_soc_dai *dai, int did, int div)
226{
227	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
228	unsigned long ssicr;
229	int i;
230
231	i = 0;
232	ssicr = SSIREG(SSICR) & ~CR_CKDIV_MASK;
233	switch (div) {
234	case 16: ++i;
235	case 8:  ++i;
236	case 4:  ++i;
237	case 2:  ++i;
238		 SSIREG(SSICR) = ssicr | (i << CR_CKDIV_SHIFT);
239	case 1:  break;
240	default:
241		pr_debug("ssi: invalid sck divider %d\n", div);
242		return -EINVAL;
243	}
244
245	return 0;
246}
247
248static int ssi_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
249{
250	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
251	unsigned long ssicr = SSIREG(SSICR);
252
253	pr_debug("ssi_set_fmt()\nssicr was    0x%08lx\n", ssicr);
254
255	ssicr &= ~(CR_DEL | CR_PDTA | CR_BREN | CR_SWSP | CR_SCKP |
256		   CR_SWS_MASTER | CR_SCK_MASTER);
257
258	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
259	case SND_SOC_DAIFMT_I2S:
260		break;
261	case SND_SOC_DAIFMT_RIGHT_J:
262		ssicr |= CR_DEL | CR_PDTA;
263		break;
264	case SND_SOC_DAIFMT_LEFT_J:
265		ssicr |= CR_DEL;
266		break;
267	default:
268		pr_debug("ssi: unsupported format\n");
269		return -EINVAL;
270	}
271
272	switch (fmt & SND_SOC_DAIFMT_CLOCK_MASK) {
273	case SND_SOC_DAIFMT_CONT:
274		break;
275	case SND_SOC_DAIFMT_GATED:
276		ssicr |= CR_BREN;
277		break;
278	}
279
280	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
281	case SND_SOC_DAIFMT_NB_NF:
282		ssicr |= CR_SCKP;	/* sample data at low clkedge */
283		break;
284	case SND_SOC_DAIFMT_NB_IF:
285		ssicr |= CR_SCKP | CR_SWSP;
286		break;
287	case SND_SOC_DAIFMT_IB_NF:
288		break;
289	case SND_SOC_DAIFMT_IB_IF:
290		ssicr |= CR_SWSP;	/* word select starts low */
291		break;
292	default:
293		pr_debug("ssi: invalid inversion\n");
294		return -EINVAL;
295	}
296
297	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
298	case SND_SOC_DAIFMT_CBM_CFM:
299		break;
300	case SND_SOC_DAIFMT_CBS_CFM:
301		ssicr |= CR_SCK_MASTER;
302		break;
303	case SND_SOC_DAIFMT_CBM_CFS:
304		ssicr |= CR_SWS_MASTER;
305		break;
306	case SND_SOC_DAIFMT_CBS_CFS:
307		ssicr |= CR_SWS_MASTER | CR_SCK_MASTER;
308		break;
309	default:
310		pr_debug("ssi: invalid master/slave configuration\n");
311		return -EINVAL;
312	}
313
314	SSIREG(SSICR) = ssicr;
315	pr_debug("ssi_set_fmt() leave\nssicr is now 0x%08lx\n", ssicr);
316
317	return 0;
318}
319
320/* the SSI depends on an external clocksource (at HAC_BIT_CLK) even in
321 * Master mode,  so really this is board specific;  the SSI can do any
322 * rate with the right bitclk and divider settings.
323 */
324#define SSI_RATES	\
325	SNDRV_PCM_RATE_8000_192000
326
327/* the SSI can do 8-32 bit samples, with 8 possible channels */
328#define SSI_FMTS	\
329	(SNDRV_PCM_FMTBIT_S8      | SNDRV_PCM_FMTBIT_U8      |	\
330	 SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_U16_LE  |	\
331	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_U20_3LE |	\
332	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3LE |	\
333	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_U32_LE)
334
335static const struct snd_soc_dai_ops ssi_dai_ops = {
336	.startup	= ssi_startup,
337	.shutdown	= ssi_shutdown,
338	.trigger	= ssi_trigger,
339	.hw_params	= ssi_hw_params,
340	.set_sysclk	= ssi_set_sysclk,
341	.set_clkdiv	= ssi_set_clkdiv,
342	.set_fmt	= ssi_set_fmt,
343};
344
345static struct snd_soc_dai_driver sh4_ssi_dai[] = {
346{
347	.name			= "ssi-dai.0",
348	.playback = {
349		.rates		= SSI_RATES,
350		.formats	= SSI_FMTS,
351		.channels_min	= 2,
352		.channels_max	= 8,
353	},
354	.capture = {
355		.rates		= SSI_RATES,
356		.formats	= SSI_FMTS,
357		.channels_min	= 2,
358		.channels_max	= 8,
359	},
360	.ops = &ssi_dai_ops,
361},
362#ifdef CONFIG_CPU_SUBTYPE_SH7760
363{
364	.name			= "ssi-dai.1",
365	.playback = {
366		.rates		= SSI_RATES,
367		.formats	= SSI_FMTS,
368		.channels_min	= 2,
369		.channels_max	= 8,
370	},
371	.capture = {
372		.rates		= SSI_RATES,
373		.formats	= SSI_FMTS,
374		.channels_min	= 2,
375		.channels_max	= 8,
376	},
377	.ops = &ssi_dai_ops,
378},
379#endif
380};
381
382static const struct snd_soc_component_driver sh4_ssi_component = {
383	.name		= "sh4-ssi",
384};
 
 
385
386static int sh4_soc_dai_probe(struct platform_device *pdev)
387{
388	return devm_snd_soc_register_component(&pdev->dev, &sh4_ssi_component,
389					       sh4_ssi_dai,
390					       ARRAY_SIZE(sh4_ssi_dai));
391}
392
393static struct platform_driver sh4_ssi_driver = {
394	.driver = {
395			.name = "sh4-ssi-dai",
 
396	},
397
398	.probe = sh4_soc_dai_probe,
 
399};
400
401module_platform_driver(sh4_ssi_driver);
 
 
 
 
 
 
 
 
 
 
402
403MODULE_LICENSE("GPL");
404MODULE_DESCRIPTION("SuperH onchip SSI (I2S) audio driver");
405MODULE_AUTHOR("Manuel Lauss <mano@roarinelk.homelinux.net>");
v3.1
  1/*
  2 * Serial Sound Interface (I2S) support for SH7760/SH7780
  3 *
  4 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  5 *
  6 *  licensed under the terms outlined in the file COPYING at the root
  7 *  of the linux kernel sources.
  8 *
  9 * dont forget to set IPSEL/OMSEL register bits (in your board code) to
 10 * enable SSI output pins!
 11 */
 12
 13/*
 14 * LIMITATIONS:
 15 *	The SSI unit has only one physical data line, so full duplex is
 16 *	impossible.  This can be remedied  on the  SH7760 by  using the
 17 *	other SSI unit for recording; however the SH7780 has only 1 SSI
 18 *	unit, and its pins are shared with the AC97 unit,  among others.
 19 *
 20 * FEATURES:
 21 *	The SSI features "compressed mode": in this mode it continuously
 22 *	streams PCM data over the I2S lines and uses LRCK as a handshake
 23 *	signal.  Can be used to send compressed data (AC3/DTS) to a DSP.
 24 *	The number of bits sent over the wire in a frame can be adjusted
 25 *	and can be independent from the actual sample bit depth. This is
 26 *	useful to support TDM mode codecs like the AD1939 which have a
 27 *	fixed TDM slot size, regardless of sample resolution.
 28 */
 29
 30#include <linux/init.h>
 31#include <linux/module.h>
 32#include <linux/platform_device.h>
 33#include <sound/core.h>
 34#include <sound/pcm.h>
 35#include <sound/initval.h>
 36#include <sound/soc.h>
 37#include <asm/io.h>
 38
 39#define SSICR	0x00
 40#define SSISR	0x04
 41
 42#define CR_DMAEN	(1 << 28)
 43#define CR_CHNL_SHIFT	22
 44#define CR_CHNL_MASK	(3 << CR_CHNL_SHIFT)
 45#define CR_DWL_SHIFT	19
 46#define CR_DWL_MASK	(7 << CR_DWL_SHIFT)
 47#define CR_SWL_SHIFT	16
 48#define CR_SWL_MASK	(7 << CR_SWL_SHIFT)
 49#define CR_SCK_MASTER	(1 << 15)	/* bitclock master bit */
 50#define CR_SWS_MASTER	(1 << 14)	/* wordselect master bit */
 51#define CR_SCKP		(1 << 13)	/* I2Sclock polarity */
 52#define CR_SWSP		(1 << 12)	/* LRCK polarity */
 53#define CR_SPDP		(1 << 11)
 54#define CR_SDTA		(1 << 10)	/* i2s alignment (msb/lsb) */
 55#define CR_PDTA		(1 << 9)	/* fifo data alignment */
 56#define CR_DEL		(1 << 8)	/* delay data by 1 i2sclk */
 57#define CR_BREN		(1 << 7)	/* clock gating in burst mode */
 58#define CR_CKDIV_SHIFT	4
 59#define CR_CKDIV_MASK	(7 << CR_CKDIV_SHIFT)	/* bitclock divider */
 60#define CR_MUTE		(1 << 3)	/* SSI mute */
 61#define CR_CPEN		(1 << 2)	/* compressed mode */
 62#define CR_TRMD		(1 << 1)	/* transmit/receive select */
 63#define CR_EN		(1 << 0)	/* enable SSI */
 64
 65#define SSIREG(reg)	(*(unsigned long *)(ssi->mmio + (reg)))
 66
 67struct ssi_priv {
 68	unsigned long mmio;
 69	unsigned long sysclk;
 70	int inuse;
 71} ssi_cpu_data[] = {
 72#if defined(CONFIG_CPU_SUBTYPE_SH7760)
 73	{
 74		.mmio	= 0xFE680000,
 75	},
 76	{
 77		.mmio	= 0xFE690000,
 78	},
 79#elif defined(CONFIG_CPU_SUBTYPE_SH7780)
 80	{
 81		.mmio	= 0xFFE70000,
 82	},
 83#else
 84#error "Unsupported SuperH SoC"
 85#endif
 86};
 87
 88/*
 89 * track usage of the SSI; it is simplex-only so prevent attempts of
 90 * concurrent playback + capture. FIXME: any locking required?
 91 */
 92static int ssi_startup(struct snd_pcm_substream *substream,
 93		       struct snd_soc_dai *dai)
 94{
 95	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
 96	if (ssi->inuse) {
 97		pr_debug("ssi: already in use!\n");
 98		return -EBUSY;
 99	} else
100		ssi->inuse = 1;
101	return 0;
102}
103
104static void ssi_shutdown(struct snd_pcm_substream *substream,
105			 struct snd_soc_dai *dai)
106{
107	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
108
109	ssi->inuse = 0;
110}
111
112static int ssi_trigger(struct snd_pcm_substream *substream, int cmd,
113		       struct snd_soc_dai *dai)
114{
115	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
116
117	switch (cmd) {
118	case SNDRV_PCM_TRIGGER_START:
119		SSIREG(SSICR) |= CR_DMAEN | CR_EN;
120		break;
121	case SNDRV_PCM_TRIGGER_STOP:
122		SSIREG(SSICR) &= ~(CR_DMAEN | CR_EN);
123		break;
124	default:
125		return -EINVAL;
126	}
127
128	return 0;
129}
130
131static int ssi_hw_params(struct snd_pcm_substream *substream,
132			 struct snd_pcm_hw_params *params,
133			 struct snd_soc_dai *dai)
134{
135	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
136	unsigned long ssicr = SSIREG(SSICR);
137	unsigned int bits, channels, swl, recv, i;
138
139	channels = params_channels(params);
140	bits = params->msbits;
141	recv = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? 0 : 1;
142
143	pr_debug("ssi_hw_params() enter\nssicr was    %08lx\n", ssicr);
144	pr_debug("bits: %u channels: %u\n", bits, channels);
145
146	ssicr &= ~(CR_TRMD | CR_CHNL_MASK | CR_DWL_MASK | CR_PDTA |
147		   CR_SWL_MASK);
148
149	/* direction (send/receive) */
150	if (!recv)
151		ssicr |= CR_TRMD;	/* transmit */
152
153	/* channels */
154	if ((channels < 2) || (channels > 8) || (channels & 1)) {
155		pr_debug("ssi: invalid number of channels\n");
156		return -EINVAL;
157	}
158	ssicr |= ((channels >> 1) - 1) << CR_CHNL_SHIFT;
159
160	/* DATA WORD LENGTH (DWL): databits in audio sample */
161	i = 0;
162	switch (bits) {
163	case 32: ++i;
164	case 24: ++i;
165	case 22: ++i;
166	case 20: ++i;
167	case 18: ++i;
168	case 16: ++i;
169		 ssicr |= i << CR_DWL_SHIFT;
170	case 8:	 break;
171	default:
172		pr_debug("ssi: invalid sample width\n");
173		return -EINVAL;
174	}
175
176	/*
177	 * SYSTEM WORD LENGTH: size in bits of half a frame over the I2S
178	 * wires. This is usually bits_per_sample x channels/2;  i.e. in
179	 * Stereo mode  the SWL equals DWL.  SWL can  be bigger than the
180	 * product of (channels_per_slot x samplebits), e.g.  for codecs
181	 * like the AD1939 which  only accept 32bit wide TDM slots.  For
182	 * "standard" I2S operation we set SWL = chans / 2 * DWL here.
183	 * Waiting for ASoC to get TDM support ;-)
184	 */
185	if ((bits > 16) && (bits <= 24)) {
186		bits = 24;	/* these are padded by the SSI */
187		/*ssicr |= CR_PDTA;*/ /* cpu/data endianness ? */
188	}
189	i = 0;
190	swl = (bits * channels) / 2;
191	switch (swl) {
192	case 256: ++i;
193	case 128: ++i;
194	case 64:  ++i;
195	case 48:  ++i;
196	case 32:  ++i;
197	case 16:  ++i;
198		  ssicr |= i << CR_SWL_SHIFT;
199	case 8:   break;
200	default:
201		pr_debug("ssi: invalid system word length computed\n");
202		return -EINVAL;
203	}
204
205	SSIREG(SSICR) = ssicr;
206
207	pr_debug("ssi_hw_params() leave\nssicr is now %08lx\n", ssicr);
208	return 0;
209}
210
211static int ssi_set_sysclk(struct snd_soc_dai *cpu_dai, int clk_id,
212			  unsigned int freq, int dir)
213{
214	struct ssi_priv *ssi = &ssi_cpu_data[cpu_dai->id];
215
216	ssi->sysclk = freq;
217
218	return 0;
219}
220
221/*
222 * This divider is used to generate the SSI_SCK (I2S bitclock) from the
223 * clock at the HAC_BIT_CLK ("oversampling clock") pin.
224 */
225static int ssi_set_clkdiv(struct snd_soc_dai *dai, int did, int div)
226{
227	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
228	unsigned long ssicr;
229	int i;
230
231	i = 0;
232	ssicr = SSIREG(SSICR) & ~CR_CKDIV_MASK;
233	switch (div) {
234	case 16: ++i;
235	case 8:  ++i;
236	case 4:  ++i;
237	case 2:  ++i;
238		 SSIREG(SSICR) = ssicr | (i << CR_CKDIV_SHIFT);
239	case 1:  break;
240	default:
241		pr_debug("ssi: invalid sck divider %d\n", div);
242		return -EINVAL;
243	}
244
245	return 0;
246}
247
248static int ssi_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
249{
250	struct ssi_priv *ssi = &ssi_cpu_data[dai->id];
251	unsigned long ssicr = SSIREG(SSICR);
252
253	pr_debug("ssi_set_fmt()\nssicr was    0x%08lx\n", ssicr);
254
255	ssicr &= ~(CR_DEL | CR_PDTA | CR_BREN | CR_SWSP | CR_SCKP |
256		   CR_SWS_MASTER | CR_SCK_MASTER);
257
258	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
259	case SND_SOC_DAIFMT_I2S:
260		break;
261	case SND_SOC_DAIFMT_RIGHT_J:
262		ssicr |= CR_DEL | CR_PDTA;
263		break;
264	case SND_SOC_DAIFMT_LEFT_J:
265		ssicr |= CR_DEL;
266		break;
267	default:
268		pr_debug("ssi: unsupported format\n");
269		return -EINVAL;
270	}
271
272	switch (fmt & SND_SOC_DAIFMT_CLOCK_MASK) {
273	case SND_SOC_DAIFMT_CONT:
274		break;
275	case SND_SOC_DAIFMT_GATED:
276		ssicr |= CR_BREN;
277		break;
278	}
279
280	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
281	case SND_SOC_DAIFMT_NB_NF:
282		ssicr |= CR_SCKP;	/* sample data at low clkedge */
283		break;
284	case SND_SOC_DAIFMT_NB_IF:
285		ssicr |= CR_SCKP | CR_SWSP;
286		break;
287	case SND_SOC_DAIFMT_IB_NF:
288		break;
289	case SND_SOC_DAIFMT_IB_IF:
290		ssicr |= CR_SWSP;	/* word select starts low */
291		break;
292	default:
293		pr_debug("ssi: invalid inversion\n");
294		return -EINVAL;
295	}
296
297	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
298	case SND_SOC_DAIFMT_CBM_CFM:
299		break;
300	case SND_SOC_DAIFMT_CBS_CFM:
301		ssicr |= CR_SCK_MASTER;
302		break;
303	case SND_SOC_DAIFMT_CBM_CFS:
304		ssicr |= CR_SWS_MASTER;
305		break;
306	case SND_SOC_DAIFMT_CBS_CFS:
307		ssicr |= CR_SWS_MASTER | CR_SCK_MASTER;
308		break;
309	default:
310		pr_debug("ssi: invalid master/slave configuration\n");
311		return -EINVAL;
312	}
313
314	SSIREG(SSICR) = ssicr;
315	pr_debug("ssi_set_fmt() leave\nssicr is now 0x%08lx\n", ssicr);
316
317	return 0;
318}
319
320/* the SSI depends on an external clocksource (at HAC_BIT_CLK) even in
321 * Master mode,  so really this is board specific;  the SSI can do any
322 * rate with the right bitclk and divider settings.
323 */
324#define SSI_RATES	\
325	SNDRV_PCM_RATE_8000_192000
326
327/* the SSI can do 8-32 bit samples, with 8 possible channels */
328#define SSI_FMTS	\
329	(SNDRV_PCM_FMTBIT_S8      | SNDRV_PCM_FMTBIT_U8      |	\
330	 SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_U16_LE  |	\
331	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_U20_3LE |	\
332	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3LE |	\
333	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_U32_LE)
334
335static struct snd_soc_dai_ops ssi_dai_ops = {
336	.startup	= ssi_startup,
337	.shutdown	= ssi_shutdown,
338	.trigger	= ssi_trigger,
339	.hw_params	= ssi_hw_params,
340	.set_sysclk	= ssi_set_sysclk,
341	.set_clkdiv	= ssi_set_clkdiv,
342	.set_fmt	= ssi_set_fmt,
343};
344
345struct snd_soc_dai_driver sh4_ssi_dai[] = {
346{
347	.name			= "ssi-dai.0",
348	.playback = {
349		.rates		= SSI_RATES,
350		.formats	= SSI_FMTS,
351		.channels_min	= 2,
352		.channels_max	= 8,
353	},
354	.capture = {
355		.rates		= SSI_RATES,
356		.formats	= SSI_FMTS,
357		.channels_min	= 2,
358		.channels_max	= 8,
359	},
360	.ops = &ssi_dai_ops,
361},
362#ifdef CONFIG_CPU_SUBTYPE_SH7760
363{
364	.name			= "ssi-dai.1",
365	.playback = {
366		.rates		= SSI_RATES,
367		.formats	= SSI_FMTS,
368		.channels_min	= 2,
369		.channels_max	= 8,
370	},
371	.capture = {
372		.rates		= SSI_RATES,
373		.formats	= SSI_FMTS,
374		.channels_min	= 2,
375		.channels_max	= 8,
376	},
377	.ops = &ssi_dai_ops,
378},
379#endif
380};
381
382static int __devinit sh4_soc_dai_probe(struct platform_device *pdev)
383{
384	return snd_soc_register_dais(&pdev->dev, sh4_ssi_dai,
385			ARRAY_SIZE(sh4_ssi_dai));
386}
387
388static int __devexit sh4_soc_dai_remove(struct platform_device *pdev)
389{
390	snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(sh4_ssi_dai));
391	return 0;
 
392}
393
394static struct platform_driver sh4_ssi_driver = {
395	.driver = {
396			.name = "sh4-ssi-dai",
397			.owner = THIS_MODULE,
398	},
399
400	.probe = sh4_soc_dai_probe,
401	.remove = __devexit_p(sh4_soc_dai_remove),
402};
403
404static int __init snd_sh4_ssi_init(void)
405{
406	return platform_driver_register(&sh4_ssi_driver);
407}
408module_init(snd_sh4_ssi_init);
409
410static void __exit snd_sh4_ssi_exit(void)
411{
412	platform_driver_unregister(&sh4_ssi_driver);
413}
414module_exit(snd_sh4_ssi_exit);
415
416MODULE_LICENSE("GPL");
417MODULE_DESCRIPTION("SuperH onchip SSI (I2S) audio driver");
418MODULE_AUTHOR("Manuel Lauss <mano@roarinelk.homelinux.net>");