Linux Audio

Check our new training course

Loading...
v4.6
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
 
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
 
 
 
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
 
 
 
 
 
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44	printk("__key_check: key %p {%08x} should be {%08x}\n",
  45	       key, key->magic, KEY_DEBUG_MAGIC);
  46	BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56	struct key_user *candidate = NULL, *user;
  57	struct rb_node *parent = NULL;
  58	struct rb_node **p;
  59
  60try_again:
  61	p = &key_user_tree.rb_node;
  62	spin_lock(&key_user_lock);
  63
  64	/* search the tree for a user record with a matching UID */
  65	while (*p) {
  66		parent = *p;
  67		user = rb_entry(parent, struct key_user, node);
  68
  69		if (uid_lt(uid, user->uid))
  70			p = &(*p)->rb_left;
  71		else if (uid_gt(uid, user->uid))
 
 
 
 
  72			p = &(*p)->rb_right;
  73		else
  74			goto found;
  75	}
  76
  77	/* if we get here, we failed to find a match in the tree */
  78	if (!candidate) {
  79		/* allocate a candidate user record if we don't already have
  80		 * one */
  81		spin_unlock(&key_user_lock);
  82
  83		user = NULL;
  84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85		if (unlikely(!candidate))
  86			goto out;
  87
  88		/* the allocation may have scheduled, so we need to repeat the
  89		 * search lest someone else added the record whilst we were
  90		 * asleep */
  91		goto try_again;
  92	}
  93
  94	/* if we get here, then the user record still hadn't appeared on the
  95	 * second pass - so we use the candidate record */
  96	atomic_set(&candidate->usage, 1);
  97	atomic_set(&candidate->nkeys, 0);
  98	atomic_set(&candidate->nikeys, 0);
  99	candidate->uid = uid;
 
 100	candidate->qnkeys = 0;
 101	candidate->qnbytes = 0;
 102	spin_lock_init(&candidate->lock);
 103	mutex_init(&candidate->cons_lock);
 104
 105	rb_link_node(&candidate->node, parent, p);
 106	rb_insert_color(&candidate->node, &key_user_tree);
 107	spin_unlock(&key_user_lock);
 108	user = candidate;
 109	goto out;
 110
 111	/* okay - we found a user record for this UID */
 112found:
 113	atomic_inc(&user->usage);
 114	spin_unlock(&key_user_lock);
 115	kfree(candidate);
 116out:
 117	return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 126		rb_erase(&user->node, &key_user_tree);
 127		spin_unlock(&key_user_lock);
 
 128
 129		kfree(user);
 130	}
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139	struct rb_node *parent, **p;
 140	struct key *xkey;
 141
 142	/* propose a random serial number and look for a hole for it in the
 143	 * serial number tree */
 144	do {
 145		get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147		key->serial >>= 1; /* negative numbers are not permitted */
 148	} while (key->serial < 3);
 149
 150	spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153	parent = NULL;
 154	p = &key_serial_tree.rb_node;
 155
 156	while (*p) {
 157		parent = *p;
 158		xkey = rb_entry(parent, struct key, serial_node);
 159
 160		if (key->serial < xkey->serial)
 161			p = &(*p)->rb_left;
 162		else if (key->serial > xkey->serial)
 163			p = &(*p)->rb_right;
 164		else
 165			goto serial_exists;
 166	}
 167
 168	/* we've found a suitable hole - arrange for this key to occupy it */
 169	rb_link_node(&key->serial_node, parent, p);
 170	rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172	spin_unlock(&key_serial_lock);
 173	return;
 174
 175	/* we found a key with the proposed serial number - walk the tree from
 176	 * that point looking for the next unused serial number */
 177serial_exists:
 178	for (;;) {
 179		key->serial++;
 180		if (key->serial < 3) {
 181			key->serial = 3;
 182			goto attempt_insertion;
 183		}
 184
 185		parent = rb_next(parent);
 186		if (!parent)
 187			goto attempt_insertion;
 188
 189		xkey = rb_entry(parent, struct key, serial_node);
 190		if (key->serial < xkey->serial)
 191			goto attempt_insertion;
 192	}
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 204 *
 205 * Allocate a key of the specified type with the attributes given.  The key is
 206 * returned in an uninstantiated state and the caller needs to instantiate the
 207 * key before returning.
 208 *
 209 * The user's key count quota is updated to reflect the creation of the key and
 210 * the user's key data quota has the default for the key type reserved.  The
 211 * instantiation function should amend this as necessary.  If insufficient
 212 * quota is available, -EDQUOT will be returned.
 213 *
 214 * The LSM security modules can prevent a key being created, in which case
 215 * -EACCES will be returned.
 216 *
 217 * Returns a pointer to the new key if successful and an error code otherwise.
 218 *
 219 * Note that the caller needs to ensure the key type isn't uninstantiated.
 220 * Internally this can be done by locking key_types_sem.  Externally, this can
 221 * be done by either never unregistering the key type, or making sure
 222 * key_alloc() calls don't race with module unloading.
 223 */
 224struct key *key_alloc(struct key_type *type, const char *desc,
 225		      kuid_t uid, kgid_t gid, const struct cred *cred,
 226		      key_perm_t perm, unsigned long flags)
 227{
 228	struct key_user *user = NULL;
 229	struct key *key;
 230	size_t desclen, quotalen;
 231	int ret;
 232
 233	key = ERR_PTR(-EINVAL);
 234	if (!desc || !*desc)
 235		goto error;
 236
 237	if (type->vet_description) {
 238		ret = type->vet_description(desc);
 239		if (ret < 0) {
 240			key = ERR_PTR(ret);
 241			goto error;
 242		}
 243	}
 244
 245	desclen = strlen(desc);
 246	quotalen = desclen + 1 + type->def_datalen;
 247
 248	/* get hold of the key tracking for this user */
 249	user = key_user_lookup(uid);
 250	if (!user)
 251		goto no_memory_1;
 252
 253	/* check that the user's quota permits allocation of another key and
 254	 * its description */
 255	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 256		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 257			key_quota_root_maxkeys : key_quota_maxkeys;
 258		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxbytes : key_quota_maxbytes;
 260
 261		spin_lock(&user->lock);
 262		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 263			if (user->qnkeys + 1 >= maxkeys ||
 264			    user->qnbytes + quotalen >= maxbytes ||
 265			    user->qnbytes + quotalen < user->qnbytes)
 266				goto no_quota;
 267		}
 268
 269		user->qnkeys++;
 270		user->qnbytes += quotalen;
 271		spin_unlock(&user->lock);
 272	}
 273
 274	/* allocate and initialise the key and its description */
 275	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 276	if (!key)
 277		goto no_memory_2;
 278
 279	key->index_key.desc_len = desclen;
 280	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 281	if (!key->index_key.description)
 282		goto no_memory_3;
 
 283
 284	atomic_set(&key->usage, 1);
 285	init_rwsem(&key->sem);
 286	lockdep_set_class(&key->sem, &type->lock_class);
 287	key->index_key.type = type;
 288	key->user = user;
 289	key->quotalen = quotalen;
 290	key->datalen = type->def_datalen;
 291	key->uid = uid;
 292	key->gid = gid;
 293	key->perm = perm;
 
 
 
 
 294
 295	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 296		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 297	if (flags & KEY_ALLOC_TRUSTED)
 298		key->flags |= 1 << KEY_FLAG_TRUSTED;
 299	if (flags & KEY_ALLOC_BUILT_IN)
 300		key->flags |= 1 << KEY_FLAG_BUILTIN;
 301
 302#ifdef KEY_DEBUGGING
 303	key->magic = KEY_DEBUG_MAGIC;
 304#endif
 305
 306	/* let the security module know about the key */
 307	ret = security_key_alloc(key, cred, flags);
 308	if (ret < 0)
 309		goto security_error;
 310
 311	/* publish the key by giving it a serial number */
 312	atomic_inc(&user->nkeys);
 313	key_alloc_serial(key);
 314
 315error:
 316	return key;
 317
 318security_error:
 319	kfree(key->description);
 320	kmem_cache_free(key_jar, key);
 321	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 322		spin_lock(&user->lock);
 323		user->qnkeys--;
 324		user->qnbytes -= quotalen;
 325		spin_unlock(&user->lock);
 326	}
 327	key_user_put(user);
 328	key = ERR_PTR(ret);
 329	goto error;
 330
 331no_memory_3:
 332	kmem_cache_free(key_jar, key);
 333no_memory_2:
 334	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 335		spin_lock(&user->lock);
 336		user->qnkeys--;
 337		user->qnbytes -= quotalen;
 338		spin_unlock(&user->lock);
 339	}
 340	key_user_put(user);
 341no_memory_1:
 342	key = ERR_PTR(-ENOMEM);
 343	goto error;
 344
 345no_quota:
 346	spin_unlock(&user->lock);
 347	key_user_put(user);
 348	key = ERR_PTR(-EDQUOT);
 349	goto error;
 350}
 351EXPORT_SYMBOL(key_alloc);
 352
 353/**
 354 * key_payload_reserve - Adjust data quota reservation for the key's payload
 355 * @key: The key to make the reservation for.
 356 * @datalen: The amount of data payload the caller now wants.
 357 *
 358 * Adjust the amount of the owning user's key data quota that a key reserves.
 359 * If the amount is increased, then -EDQUOT may be returned if there isn't
 360 * enough free quota available.
 361 *
 362 * If successful, 0 is returned.
 363 */
 364int key_payload_reserve(struct key *key, size_t datalen)
 365{
 366	int delta = (int)datalen - key->datalen;
 367	int ret = 0;
 368
 369	key_check(key);
 370
 371	/* contemplate the quota adjustment */
 372	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 373		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 374			key_quota_root_maxbytes : key_quota_maxbytes;
 375
 376		spin_lock(&key->user->lock);
 377
 378		if (delta > 0 &&
 379		    (key->user->qnbytes + delta >= maxbytes ||
 380		     key->user->qnbytes + delta < key->user->qnbytes)) {
 381			ret = -EDQUOT;
 382		}
 383		else {
 384			key->user->qnbytes += delta;
 385			key->quotalen += delta;
 386		}
 387		spin_unlock(&key->user->lock);
 388	}
 389
 390	/* change the recorded data length if that didn't generate an error */
 391	if (ret == 0)
 392		key->datalen = datalen;
 393
 394	return ret;
 395}
 396EXPORT_SYMBOL(key_payload_reserve);
 397
 398/*
 399 * Instantiate a key and link it into the target keyring atomically.  Must be
 400 * called with the target keyring's semaphore writelocked.  The target key's
 401 * semaphore need not be locked as instantiation is serialised by
 402 * key_construction_mutex.
 403 */
 404static int __key_instantiate_and_link(struct key *key,
 405				      struct key_preparsed_payload *prep,
 
 406				      struct key *keyring,
 407				      struct key *authkey,
 408				      struct assoc_array_edit **_edit)
 409{
 410	int ret, awaken;
 411
 412	key_check(key);
 413	key_check(keyring);
 414
 415	awaken = 0;
 416	ret = -EBUSY;
 417
 418	mutex_lock(&key_construction_mutex);
 419
 420	/* can't instantiate twice */
 421	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 422		/* instantiate the key */
 423		ret = key->type->instantiate(key, prep);
 424
 425		if (ret == 0) {
 426			/* mark the key as being instantiated */
 427			atomic_inc(&key->user->nikeys);
 428			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 429
 430			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 431				awaken = 1;
 432
 433			/* and link it into the destination keyring */
 434			if (keyring) {
 435				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 436					set_bit(KEY_FLAG_KEEP, &key->flags);
 437
 438				__key_link(key, _edit);
 439			}
 440
 441			/* disable the authorisation key */
 442			if (authkey)
 443				key_revoke(authkey);
 444
 445			if (prep->expiry != TIME_T_MAX) {
 446				key->expiry = prep->expiry;
 447				key_schedule_gc(prep->expiry + key_gc_delay);
 448			}
 449		}
 450	}
 451
 452	mutex_unlock(&key_construction_mutex);
 453
 454	/* wake up anyone waiting for a key to be constructed */
 455	if (awaken)
 456		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 457
 458	return ret;
 459}
 460
 461/**
 462 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 463 * @key: The key to instantiate.
 464 * @data: The data to use to instantiate the keyring.
 465 * @datalen: The length of @data.
 466 * @keyring: Keyring to create a link in on success (or NULL).
 467 * @authkey: The authorisation token permitting instantiation.
 468 *
 469 * Instantiate a key that's in the uninstantiated state using the provided data
 470 * and, if successful, link it in to the destination keyring if one is
 471 * supplied.
 472 *
 473 * If successful, 0 is returned, the authorisation token is revoked and anyone
 474 * waiting for the key is woken up.  If the key was already instantiated,
 475 * -EBUSY will be returned.
 476 */
 477int key_instantiate_and_link(struct key *key,
 478			     const void *data,
 479			     size_t datalen,
 480			     struct key *keyring,
 481			     struct key *authkey)
 482{
 483	struct key_preparsed_payload prep;
 484	struct assoc_array_edit *edit;
 485	int ret;
 486
 487	memset(&prep, 0, sizeof(prep));
 488	prep.data = data;
 489	prep.datalen = datalen;
 490	prep.quotalen = key->type->def_datalen;
 491	prep.expiry = TIME_T_MAX;
 492	if (key->type->preparse) {
 493		ret = key->type->preparse(&prep);
 494		if (ret < 0)
 495			goto error;
 496	}
 497
 498	if (keyring) {
 499		ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 500		if (ret < 0)
 501			goto error;
 502	}
 503
 504	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 
 505
 506	if (keyring)
 507		__key_link_end(keyring, &key->index_key, edit);
 508
 509error:
 510	if (key->type->preparse)
 511		key->type->free_preparse(&prep);
 512	return ret;
 513}
 514
 515EXPORT_SYMBOL(key_instantiate_and_link);
 516
 517/**
 518 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 519 * @key: The key to instantiate.
 520 * @timeout: The timeout on the negative key.
 521 * @error: The error to return when the key is hit.
 522 * @keyring: Keyring to create a link in on success (or NULL).
 523 * @authkey: The authorisation token permitting instantiation.
 524 *
 525 * Negatively instantiate a key that's in the uninstantiated state and, if
 526 * successful, set its timeout and stored error and link it in to the
 527 * destination keyring if one is supplied.  The key and any links to the key
 528 * will be automatically garbage collected after the timeout expires.
 529 *
 530 * Negative keys are used to rate limit repeated request_key() calls by causing
 531 * them to return the stored error code (typically ENOKEY) until the negative
 532 * key expires.
 533 *
 534 * If successful, 0 is returned, the authorisation token is revoked and anyone
 535 * waiting for the key is woken up.  If the key was already instantiated,
 536 * -EBUSY will be returned.
 537 */
 538int key_reject_and_link(struct key *key,
 539			unsigned timeout,
 540			unsigned error,
 541			struct key *keyring,
 542			struct key *authkey)
 543{
 544	struct assoc_array_edit *edit;
 545	struct timespec now;
 546	int ret, awaken, link_ret = 0;
 547
 548	key_check(key);
 549	key_check(keyring);
 550
 551	awaken = 0;
 552	ret = -EBUSY;
 553
 554	if (keyring)
 555		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 556
 557	mutex_lock(&key_construction_mutex);
 558
 559	/* can't instantiate twice */
 560	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 561		/* mark the key as being negatively instantiated */
 562		atomic_inc(&key->user->nikeys);
 563		key->reject_error = -error;
 564		smp_wmb();
 565		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 566		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 
 567		now = current_kernel_time();
 568		key->expiry = now.tv_sec + timeout;
 569		key_schedule_gc(key->expiry + key_gc_delay);
 570
 571		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 572			awaken = 1;
 573
 574		ret = 0;
 575
 576		/* and link it into the destination keyring */
 577		if (keyring && link_ret == 0)
 578			__key_link(key, &edit);
 579
 580		/* disable the authorisation key */
 581		if (authkey)
 582			key_revoke(authkey);
 583	}
 584
 585	mutex_unlock(&key_construction_mutex);
 586
 587	if (keyring)
 588		__key_link_end(keyring, &key->index_key, edit);
 589
 590	/* wake up anyone waiting for a key to be constructed */
 591	if (awaken)
 592		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 593
 594	return ret == 0 ? link_ret : ret;
 595}
 596EXPORT_SYMBOL(key_reject_and_link);
 597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598/**
 599 * key_put - Discard a reference to a key.
 600 * @key: The key to discard a reference from.
 601 *
 602 * Discard a reference to a key, and when all the references are gone, we
 603 * schedule the cleanup task to come and pull it out of the tree in process
 604 * context at some later time.
 605 */
 606void key_put(struct key *key)
 607{
 608	if (key) {
 609		key_check(key);
 610
 611		if (atomic_dec_and_test(&key->usage))
 612			schedule_work(&key_gc_work);
 613	}
 614}
 615EXPORT_SYMBOL(key_put);
 616
 617/*
 618 * Find a key by its serial number.
 619 */
 620struct key *key_lookup(key_serial_t id)
 621{
 622	struct rb_node *n;
 623	struct key *key;
 624
 625	spin_lock(&key_serial_lock);
 626
 627	/* search the tree for the specified key */
 628	n = key_serial_tree.rb_node;
 629	while (n) {
 630		key = rb_entry(n, struct key, serial_node);
 631
 632		if (id < key->serial)
 633			n = n->rb_left;
 634		else if (id > key->serial)
 635			n = n->rb_right;
 636		else
 637			goto found;
 638	}
 639
 640not_found:
 641	key = ERR_PTR(-ENOKEY);
 642	goto error;
 643
 644found:
 645	/* pretend it doesn't exist if it is awaiting deletion */
 646	if (atomic_read(&key->usage) == 0)
 647		goto not_found;
 648
 649	/* this races with key_put(), but that doesn't matter since key_put()
 650	 * doesn't actually change the key
 651	 */
 652	__key_get(key);
 653
 654error:
 655	spin_unlock(&key_serial_lock);
 656	return key;
 657}
 658
 659/*
 660 * Find and lock the specified key type against removal.
 661 *
 662 * We return with the sem read-locked if successful.  If the type wasn't
 663 * available -ENOKEY is returned instead.
 664 */
 665struct key_type *key_type_lookup(const char *type)
 666{
 667	struct key_type *ktype;
 668
 669	down_read(&key_types_sem);
 670
 671	/* look up the key type to see if it's one of the registered kernel
 672	 * types */
 673	list_for_each_entry(ktype, &key_types_list, link) {
 674		if (strcmp(ktype->name, type) == 0)
 675			goto found_kernel_type;
 676	}
 677
 678	up_read(&key_types_sem);
 679	ktype = ERR_PTR(-ENOKEY);
 680
 681found_kernel_type:
 682	return ktype;
 683}
 684
 685void key_set_timeout(struct key *key, unsigned timeout)
 686{
 687	struct timespec now;
 688	time_t expiry = 0;
 689
 690	/* make the changes with the locks held to prevent races */
 691	down_write(&key->sem);
 692
 693	if (timeout > 0) {
 694		now = current_kernel_time();
 695		expiry = now.tv_sec + timeout;
 696	}
 697
 698	key->expiry = expiry;
 699	key_schedule_gc(key->expiry + key_gc_delay);
 700
 701	up_write(&key->sem);
 702}
 703EXPORT_SYMBOL_GPL(key_set_timeout);
 704
 705/*
 706 * Unlock a key type locked by key_type_lookup().
 707 */
 708void key_type_put(struct key_type *ktype)
 709{
 710	up_read(&key_types_sem);
 711}
 712
 713/*
 714 * Attempt to update an existing key.
 715 *
 716 * The key is given to us with an incremented refcount that we need to discard
 717 * if we get an error.
 718 */
 719static inline key_ref_t __key_update(key_ref_t key_ref,
 720				     struct key_preparsed_payload *prep)
 721{
 722	struct key *key = key_ref_to_ptr(key_ref);
 723	int ret;
 724
 725	/* need write permission on the key to update it */
 726	ret = key_permission(key_ref, KEY_NEED_WRITE);
 727	if (ret < 0)
 728		goto error;
 729
 730	ret = -EEXIST;
 731	if (!key->type->update)
 732		goto error;
 733
 734	down_write(&key->sem);
 735
 736	ret = key->type->update(key, prep);
 737	if (ret == 0)
 738		/* updating a negative key instantiates it */
 739		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 740
 741	up_write(&key->sem);
 742
 743	if (ret < 0)
 744		goto error;
 745out:
 746	return key_ref;
 747
 748error:
 749	key_put(key);
 750	key_ref = ERR_PTR(ret);
 751	goto out;
 752}
 753
 754/**
 755 * key_create_or_update - Update or create and instantiate a key.
 756 * @keyring_ref: A pointer to the destination keyring with possession flag.
 757 * @type: The type of key.
 758 * @description: The searchable description for the key.
 759 * @payload: The data to use to instantiate or update the key.
 760 * @plen: The length of @payload.
 761 * @perm: The permissions mask for a new key.
 762 * @flags: The quota flags for a new key.
 763 *
 764 * Search the destination keyring for a key of the same description and if one
 765 * is found, update it, otherwise create and instantiate a new one and create a
 766 * link to it from that keyring.
 767 *
 768 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 769 * concocted.
 770 *
 771 * Returns a pointer to the new key if successful, -ENODEV if the key type
 772 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 773 * caller isn't permitted to modify the keyring or the LSM did not permit
 774 * creation of the key.
 775 *
 776 * On success, the possession flag from the keyring ref will be tacked on to
 777 * the key ref before it is returned.
 778 */
 779key_ref_t key_create_or_update(key_ref_t keyring_ref,
 780			       const char *type,
 781			       const char *description,
 782			       const void *payload,
 783			       size_t plen,
 784			       key_perm_t perm,
 785			       unsigned long flags)
 786{
 787	struct keyring_index_key index_key = {
 788		.description	= description,
 789	};
 790	struct key_preparsed_payload prep;
 791	struct assoc_array_edit *edit;
 792	const struct cred *cred = current_cred();
 
 793	struct key *keyring, *key = NULL;
 794	key_ref_t key_ref;
 795	int ret;
 796
 797	/* look up the key type to see if it's one of the registered kernel
 798	 * types */
 799	index_key.type = key_type_lookup(type);
 800	if (IS_ERR(index_key.type)) {
 801		key_ref = ERR_PTR(-ENODEV);
 802		goto error;
 803	}
 804
 805	key_ref = ERR_PTR(-EINVAL);
 806	if (!index_key.type->instantiate ||
 807	    (!index_key.description && !index_key.type->preparse))
 808		goto error_put_type;
 809
 810	keyring = key_ref_to_ptr(keyring_ref);
 811
 812	key_check(keyring);
 813
 814	key_ref = ERR_PTR(-ENOTDIR);
 815	if (keyring->type != &key_type_keyring)
 816		goto error_put_type;
 817
 818	memset(&prep, 0, sizeof(prep));
 819	prep.data = payload;
 820	prep.datalen = plen;
 821	prep.quotalen = index_key.type->def_datalen;
 822	prep.trusted = flags & KEY_ALLOC_TRUSTED;
 823	prep.expiry = TIME_T_MAX;
 824	if (index_key.type->preparse) {
 825		ret = index_key.type->preparse(&prep);
 826		if (ret < 0) {
 827			key_ref = ERR_PTR(ret);
 828			goto error_free_prep;
 829		}
 830		if (!index_key.description)
 831			index_key.description = prep.description;
 832		key_ref = ERR_PTR(-EINVAL);
 833		if (!index_key.description)
 834			goto error_free_prep;
 835	}
 836	index_key.desc_len = strlen(index_key.description);
 837
 838	key_ref = ERR_PTR(-EPERM);
 839	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
 840		goto error_free_prep;
 841	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
 842
 843	ret = __key_link_begin(keyring, &index_key, &edit);
 844	if (ret < 0) {
 845		key_ref = ERR_PTR(ret);
 846		goto error_free_prep;
 847	}
 848
 849	/* if we're going to allocate a new key, we're going to have
 850	 * to modify the keyring */
 851	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 852	if (ret < 0) {
 853		key_ref = ERR_PTR(ret);
 854		goto error_link_end;
 855	}
 856
 857	/* if it's possible to update this type of key, search for an existing
 858	 * key of the same type and description in the destination keyring and
 859	 * update that instead if possible
 860	 */
 861	if (index_key.type->update) {
 862		key_ref = find_key_to_update(keyring_ref, &index_key);
 863		if (key_ref)
 
 864			goto found_matching_key;
 865	}
 866
 867	/* if the client doesn't provide, decide on the permissions we want */
 868	if (perm == KEY_PERM_UNDEF) {
 869		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 870		perm |= KEY_USR_VIEW;
 871
 872		if (index_key.type->read)
 873			perm |= KEY_POS_READ;
 874
 875		if (index_key.type == &key_type_keyring ||
 876		    index_key.type->update)
 877			perm |= KEY_POS_WRITE;
 878	}
 879
 880	/* allocate a new key */
 881	key = key_alloc(index_key.type, index_key.description,
 882			cred->fsuid, cred->fsgid, cred, perm, flags);
 883	if (IS_ERR(key)) {
 884		key_ref = ERR_CAST(key);
 885		goto error_link_end;
 886	}
 887
 888	/* instantiate it and link it into the target keyring */
 889	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 
 890	if (ret < 0) {
 891		key_put(key);
 892		key_ref = ERR_PTR(ret);
 893		goto error_link_end;
 894	}
 895
 896	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 897
 898error_link_end:
 899	__key_link_end(keyring, &index_key, edit);
 900error_free_prep:
 901	if (index_key.type->preparse)
 902		index_key.type->free_preparse(&prep);
 903error_put_type:
 904	key_type_put(index_key.type);
 905error:
 906	return key_ref;
 907
 908 found_matching_key:
 909	/* we found a matching key, so we're going to try to update it
 910	 * - we can drop the locks first as we have the key pinned
 911	 */
 912	__key_link_end(keyring, &index_key, edit);
 
 913
 914	key_ref = __key_update(key_ref, &prep);
 915	goto error_free_prep;
 916}
 917EXPORT_SYMBOL(key_create_or_update);
 918
 919/**
 920 * key_update - Update a key's contents.
 921 * @key_ref: The pointer (plus possession flag) to the key.
 922 * @payload: The data to be used to update the key.
 923 * @plen: The length of @payload.
 924 *
 925 * Attempt to update the contents of a key with the given payload data.  The
 926 * caller must be granted Write permission on the key.  Negative keys can be
 927 * instantiated by this method.
 928 *
 929 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 930 * type does not support updating.  The key type may return other errors.
 931 */
 932int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 933{
 934	struct key_preparsed_payload prep;
 935	struct key *key = key_ref_to_ptr(key_ref);
 936	int ret;
 937
 938	key_check(key);
 939
 940	/* the key must be writable */
 941	ret = key_permission(key_ref, KEY_NEED_WRITE);
 942	if (ret < 0)
 943		goto error;
 944
 945	/* attempt to update it if supported */
 946	ret = -EOPNOTSUPP;
 947	if (!key->type->update)
 948		goto error;
 949
 950	memset(&prep, 0, sizeof(prep));
 951	prep.data = payload;
 952	prep.datalen = plen;
 953	prep.quotalen = key->type->def_datalen;
 954	prep.expiry = TIME_T_MAX;
 955	if (key->type->preparse) {
 956		ret = key->type->preparse(&prep);
 957		if (ret < 0)
 958			goto error;
 959	}
 960
 961	down_write(&key->sem);
 962
 963	ret = key->type->update(key, &prep);
 964	if (ret == 0)
 965		/* updating a negative key instantiates it */
 966		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 967
 968	up_write(&key->sem);
 969
 970error:
 971	if (key->type->preparse)
 972		key->type->free_preparse(&prep);
 973	return ret;
 974}
 975EXPORT_SYMBOL(key_update);
 976
 977/**
 978 * key_revoke - Revoke a key.
 979 * @key: The key to be revoked.
 980 *
 981 * Mark a key as being revoked and ask the type to free up its resources.  The
 982 * revocation timeout is set and the key and all its links will be
 983 * automatically garbage collected after key_gc_delay amount of time if they
 984 * are not manually dealt with first.
 985 */
 986void key_revoke(struct key *key)
 987{
 988	struct timespec now;
 989	time_t time;
 990
 991	key_check(key);
 992
 993	/* make sure no one's trying to change or use the key when we mark it
 994	 * - we tell lockdep that we might nest because we might be revoking an
 995	 *   authorisation key whilst holding the sem on a key we've just
 996	 *   instantiated
 997	 */
 998	down_write_nested(&key->sem, 1);
 999	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1000	    key->type->revoke)
1001		key->type->revoke(key);
1002
1003	/* set the death time to no more than the expiry time */
1004	now = current_kernel_time();
1005	time = now.tv_sec;
1006	if (key->revoked_at == 0 || key->revoked_at > time) {
1007		key->revoked_at = time;
1008		key_schedule_gc(key->revoked_at + key_gc_delay);
1009	}
1010
1011	up_write(&key->sem);
1012}
1013EXPORT_SYMBOL(key_revoke);
1014
1015/**
1016 * key_invalidate - Invalidate a key.
1017 * @key: The key to be invalidated.
1018 *
1019 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1020 * is ignored by all searches and other operations from this point.
1021 */
1022void key_invalidate(struct key *key)
1023{
1024	kenter("%d", key_serial(key));
1025
1026	key_check(key);
1027
1028	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1029		down_write_nested(&key->sem, 1);
1030		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1031			key_schedule_gc_links();
1032		up_write(&key->sem);
1033	}
1034}
1035EXPORT_SYMBOL(key_invalidate);
1036
1037/**
1038 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1039 * @key: The key to be instantiated
1040 * @prep: The preparsed data to load.
1041 *
1042 * Instantiate a key from preparsed data.  We assume we can just copy the data
1043 * in directly and clear the old pointers.
1044 *
1045 * This can be pointed to directly by the key type instantiate op pointer.
1046 */
1047int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1048{
1049	int ret;
1050
1051	pr_devel("==>%s()\n", __func__);
1052
1053	ret = key_payload_reserve(key, prep->quotalen);
1054	if (ret == 0) {
1055		rcu_assign_keypointer(key, prep->payload.data[0]);
1056		key->payload.data[1] = prep->payload.data[1];
1057		key->payload.data[2] = prep->payload.data[2];
1058		key->payload.data[3] = prep->payload.data[3];
1059		prep->payload.data[0] = NULL;
1060		prep->payload.data[1] = NULL;
1061		prep->payload.data[2] = NULL;
1062		prep->payload.data[3] = NULL;
1063	}
1064	pr_devel("<==%s() = %d\n", __func__, ret);
1065	return ret;
1066}
1067EXPORT_SYMBOL(generic_key_instantiate);
1068
1069/**
1070 * register_key_type - Register a type of key.
1071 * @ktype: The new key type.
1072 *
1073 * Register a new key type.
1074 *
1075 * Returns 0 on success or -EEXIST if a type of this name already exists.
1076 */
1077int register_key_type(struct key_type *ktype)
1078{
1079	struct key_type *p;
1080	int ret;
1081
1082	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1083
1084	ret = -EEXIST;
1085	down_write(&key_types_sem);
1086
1087	/* disallow key types with the same name */
1088	list_for_each_entry(p, &key_types_list, link) {
1089		if (strcmp(p->name, ktype->name) == 0)
1090			goto out;
1091	}
1092
1093	/* store the type */
1094	list_add(&ktype->link, &key_types_list);
1095
1096	pr_notice("Key type %s registered\n", ktype->name);
1097	ret = 0;
1098
1099out:
1100	up_write(&key_types_sem);
1101	return ret;
1102}
1103EXPORT_SYMBOL(register_key_type);
1104
1105/**
1106 * unregister_key_type - Unregister a type of key.
1107 * @ktype: The key type.
1108 *
1109 * Unregister a key type and mark all the extant keys of this type as dead.
1110 * Those keys of this type are then destroyed to get rid of their payloads and
1111 * they and their links will be garbage collected as soon as possible.
1112 */
1113void unregister_key_type(struct key_type *ktype)
1114{
 
 
 
1115	down_write(&key_types_sem);
 
 
1116	list_del_init(&ktype->link);
1117	downgrade_write(&key_types_sem);
1118	key_gc_keytype(ktype);
1119	pr_notice("Key type %s unregistered\n", ktype->name);
1120	up_read(&key_types_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121}
1122EXPORT_SYMBOL(unregister_key_type);
1123
1124/*
1125 * Initialise the key management state.
1126 */
1127void __init key_init(void)
1128{
1129	/* allocate a slab in which we can store keys */
1130	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1131			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1132
1133	/* add the special key types */
1134	list_add_tail(&key_type_keyring.link, &key_types_list);
1135	list_add_tail(&key_type_dead.link, &key_types_list);
1136	list_add_tail(&key_type_user.link, &key_types_list);
1137	list_add_tail(&key_type_logon.link, &key_types_list);
1138
1139	/* record the root user tracking */
1140	rb_link_node(&root_key_user.node,
1141		     NULL,
1142		     &key_user_tree.rb_node);
1143
1144	rb_insert_color(&root_key_user.node,
1145			&key_user_tree);
1146}
v3.1
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include <linux/user_namespace.h>
  22#include "internal.h"
  23
  24static struct kmem_cache	*key_jar;
  25struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  26DEFINE_SPINLOCK(key_serial_lock);
  27
  28struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  29DEFINE_SPINLOCK(key_user_lock);
  30
  31unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
  32unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
  33unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  34unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  35
  36static LIST_HEAD(key_types_list);
  37static DECLARE_RWSEM(key_types_sem);
  38
  39static void key_cleanup(struct work_struct *work);
  40static DECLARE_WORK(key_cleanup_task, key_cleanup);
  41
  42/* We serialise key instantiation and link */
  43DEFINE_MUTEX(key_construction_mutex);
  44
  45/* Any key who's type gets unegistered will be re-typed to this */
  46static struct key_type key_type_dead = {
  47	.name		= "dead",
  48};
  49
  50#ifdef KEY_DEBUGGING
  51void __key_check(const struct key *key)
  52{
  53	printk("__key_check: key %p {%08x} should be {%08x}\n",
  54	       key, key->magic, KEY_DEBUG_MAGIC);
  55	BUG();
  56}
  57#endif
  58
  59/*
  60 * Get the key quota record for a user, allocating a new record if one doesn't
  61 * already exist.
  62 */
  63struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
  64{
  65	struct key_user *candidate = NULL, *user;
  66	struct rb_node *parent = NULL;
  67	struct rb_node **p;
  68
  69try_again:
  70	p = &key_user_tree.rb_node;
  71	spin_lock(&key_user_lock);
  72
  73	/* search the tree for a user record with a matching UID */
  74	while (*p) {
  75		parent = *p;
  76		user = rb_entry(parent, struct key_user, node);
  77
  78		if (uid < user->uid)
  79			p = &(*p)->rb_left;
  80		else if (uid > user->uid)
  81			p = &(*p)->rb_right;
  82		else if (user_ns < user->user_ns)
  83			p = &(*p)->rb_left;
  84		else if (user_ns > user->user_ns)
  85			p = &(*p)->rb_right;
  86		else
  87			goto found;
  88	}
  89
  90	/* if we get here, we failed to find a match in the tree */
  91	if (!candidate) {
  92		/* allocate a candidate user record if we don't already have
  93		 * one */
  94		spin_unlock(&key_user_lock);
  95
  96		user = NULL;
  97		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  98		if (unlikely(!candidate))
  99			goto out;
 100
 101		/* the allocation may have scheduled, so we need to repeat the
 102		 * search lest someone else added the record whilst we were
 103		 * asleep */
 104		goto try_again;
 105	}
 106
 107	/* if we get here, then the user record still hadn't appeared on the
 108	 * second pass - so we use the candidate record */
 109	atomic_set(&candidate->usage, 1);
 110	atomic_set(&candidate->nkeys, 0);
 111	atomic_set(&candidate->nikeys, 0);
 112	candidate->uid = uid;
 113	candidate->user_ns = get_user_ns(user_ns);
 114	candidate->qnkeys = 0;
 115	candidate->qnbytes = 0;
 116	spin_lock_init(&candidate->lock);
 117	mutex_init(&candidate->cons_lock);
 118
 119	rb_link_node(&candidate->node, parent, p);
 120	rb_insert_color(&candidate->node, &key_user_tree);
 121	spin_unlock(&key_user_lock);
 122	user = candidate;
 123	goto out;
 124
 125	/* okay - we found a user record for this UID */
 126found:
 127	atomic_inc(&user->usage);
 128	spin_unlock(&key_user_lock);
 129	kfree(candidate);
 130out:
 131	return user;
 132}
 133
 134/*
 135 * Dispose of a user structure
 136 */
 137void key_user_put(struct key_user *user)
 138{
 139	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 140		rb_erase(&user->node, &key_user_tree);
 141		spin_unlock(&key_user_lock);
 142		put_user_ns(user->user_ns);
 143
 144		kfree(user);
 145	}
 146}
 147
 148/*
 149 * Allocate a serial number for a key.  These are assigned randomly to avoid
 150 * security issues through covert channel problems.
 151 */
 152static inline void key_alloc_serial(struct key *key)
 153{
 154	struct rb_node *parent, **p;
 155	struct key *xkey;
 156
 157	/* propose a random serial number and look for a hole for it in the
 158	 * serial number tree */
 159	do {
 160		get_random_bytes(&key->serial, sizeof(key->serial));
 161
 162		key->serial >>= 1; /* negative numbers are not permitted */
 163	} while (key->serial < 3);
 164
 165	spin_lock(&key_serial_lock);
 166
 167attempt_insertion:
 168	parent = NULL;
 169	p = &key_serial_tree.rb_node;
 170
 171	while (*p) {
 172		parent = *p;
 173		xkey = rb_entry(parent, struct key, serial_node);
 174
 175		if (key->serial < xkey->serial)
 176			p = &(*p)->rb_left;
 177		else if (key->serial > xkey->serial)
 178			p = &(*p)->rb_right;
 179		else
 180			goto serial_exists;
 181	}
 182
 183	/* we've found a suitable hole - arrange for this key to occupy it */
 184	rb_link_node(&key->serial_node, parent, p);
 185	rb_insert_color(&key->serial_node, &key_serial_tree);
 186
 187	spin_unlock(&key_serial_lock);
 188	return;
 189
 190	/* we found a key with the proposed serial number - walk the tree from
 191	 * that point looking for the next unused serial number */
 192serial_exists:
 193	for (;;) {
 194		key->serial++;
 195		if (key->serial < 3) {
 196			key->serial = 3;
 197			goto attempt_insertion;
 198		}
 199
 200		parent = rb_next(parent);
 201		if (!parent)
 202			goto attempt_insertion;
 203
 204		xkey = rb_entry(parent, struct key, serial_node);
 205		if (key->serial < xkey->serial)
 206			goto attempt_insertion;
 207	}
 208}
 209
 210/**
 211 * key_alloc - Allocate a key of the specified type.
 212 * @type: The type of key to allocate.
 213 * @desc: The key description to allow the key to be searched out.
 214 * @uid: The owner of the new key.
 215 * @gid: The group ID for the new key's group permissions.
 216 * @cred: The credentials specifying UID namespace.
 217 * @perm: The permissions mask of the new key.
 218 * @flags: Flags specifying quota properties.
 219 *
 220 * Allocate a key of the specified type with the attributes given.  The key is
 221 * returned in an uninstantiated state and the caller needs to instantiate the
 222 * key before returning.
 223 *
 224 * The user's key count quota is updated to reflect the creation of the key and
 225 * the user's key data quota has the default for the key type reserved.  The
 226 * instantiation function should amend this as necessary.  If insufficient
 227 * quota is available, -EDQUOT will be returned.
 228 *
 229 * The LSM security modules can prevent a key being created, in which case
 230 * -EACCES will be returned.
 231 *
 232 * Returns a pointer to the new key if successful and an error code otherwise.
 233 *
 234 * Note that the caller needs to ensure the key type isn't uninstantiated.
 235 * Internally this can be done by locking key_types_sem.  Externally, this can
 236 * be done by either never unregistering the key type, or making sure
 237 * key_alloc() calls don't race with module unloading.
 238 */
 239struct key *key_alloc(struct key_type *type, const char *desc,
 240		      uid_t uid, gid_t gid, const struct cred *cred,
 241		      key_perm_t perm, unsigned long flags)
 242{
 243	struct key_user *user = NULL;
 244	struct key *key;
 245	size_t desclen, quotalen;
 246	int ret;
 247
 248	key = ERR_PTR(-EINVAL);
 249	if (!desc || !*desc)
 250		goto error;
 251
 252	if (type->vet_description) {
 253		ret = type->vet_description(desc);
 254		if (ret < 0) {
 255			key = ERR_PTR(ret);
 256			goto error;
 257		}
 258	}
 259
 260	desclen = strlen(desc) + 1;
 261	quotalen = desclen + type->def_datalen;
 262
 263	/* get hold of the key tracking for this user */
 264	user = key_user_lookup(uid, cred->user->user_ns);
 265	if (!user)
 266		goto no_memory_1;
 267
 268	/* check that the user's quota permits allocation of another key and
 269	 * its description */
 270	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 271		unsigned maxkeys = (uid == 0) ?
 272			key_quota_root_maxkeys : key_quota_maxkeys;
 273		unsigned maxbytes = (uid == 0) ?
 274			key_quota_root_maxbytes : key_quota_maxbytes;
 275
 276		spin_lock(&user->lock);
 277		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 278			if (user->qnkeys + 1 >= maxkeys ||
 279			    user->qnbytes + quotalen >= maxbytes ||
 280			    user->qnbytes + quotalen < user->qnbytes)
 281				goto no_quota;
 282		}
 283
 284		user->qnkeys++;
 285		user->qnbytes += quotalen;
 286		spin_unlock(&user->lock);
 287	}
 288
 289	/* allocate and initialise the key and its description */
 290	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
 291	if (!key)
 292		goto no_memory_2;
 293
 294	if (desc) {
 295		key->description = kmemdup(desc, desclen, GFP_KERNEL);
 296		if (!key->description)
 297			goto no_memory_3;
 298	}
 299
 300	atomic_set(&key->usage, 1);
 301	init_rwsem(&key->sem);
 302	key->type = type;
 
 303	key->user = user;
 304	key->quotalen = quotalen;
 305	key->datalen = type->def_datalen;
 306	key->uid = uid;
 307	key->gid = gid;
 308	key->perm = perm;
 309	key->flags = 0;
 310	key->expiry = 0;
 311	key->payload.data = NULL;
 312	key->security = NULL;
 313
 314	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 315		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 316
 317	memset(&key->type_data, 0, sizeof(key->type_data));
 
 
 318
 319#ifdef KEY_DEBUGGING
 320	key->magic = KEY_DEBUG_MAGIC;
 321#endif
 322
 323	/* let the security module know about the key */
 324	ret = security_key_alloc(key, cred, flags);
 325	if (ret < 0)
 326		goto security_error;
 327
 328	/* publish the key by giving it a serial number */
 329	atomic_inc(&user->nkeys);
 330	key_alloc_serial(key);
 331
 332error:
 333	return key;
 334
 335security_error:
 336	kfree(key->description);
 337	kmem_cache_free(key_jar, key);
 338	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 339		spin_lock(&user->lock);
 340		user->qnkeys--;
 341		user->qnbytes -= quotalen;
 342		spin_unlock(&user->lock);
 343	}
 344	key_user_put(user);
 345	key = ERR_PTR(ret);
 346	goto error;
 347
 348no_memory_3:
 349	kmem_cache_free(key_jar, key);
 350no_memory_2:
 351	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 352		spin_lock(&user->lock);
 353		user->qnkeys--;
 354		user->qnbytes -= quotalen;
 355		spin_unlock(&user->lock);
 356	}
 357	key_user_put(user);
 358no_memory_1:
 359	key = ERR_PTR(-ENOMEM);
 360	goto error;
 361
 362no_quota:
 363	spin_unlock(&user->lock);
 364	key_user_put(user);
 365	key = ERR_PTR(-EDQUOT);
 366	goto error;
 367}
 368EXPORT_SYMBOL(key_alloc);
 369
 370/**
 371 * key_payload_reserve - Adjust data quota reservation for the key's payload
 372 * @key: The key to make the reservation for.
 373 * @datalen: The amount of data payload the caller now wants.
 374 *
 375 * Adjust the amount of the owning user's key data quota that a key reserves.
 376 * If the amount is increased, then -EDQUOT may be returned if there isn't
 377 * enough free quota available.
 378 *
 379 * If successful, 0 is returned.
 380 */
 381int key_payload_reserve(struct key *key, size_t datalen)
 382{
 383	int delta = (int)datalen - key->datalen;
 384	int ret = 0;
 385
 386	key_check(key);
 387
 388	/* contemplate the quota adjustment */
 389	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 390		unsigned maxbytes = (key->user->uid == 0) ?
 391			key_quota_root_maxbytes : key_quota_maxbytes;
 392
 393		spin_lock(&key->user->lock);
 394
 395		if (delta > 0 &&
 396		    (key->user->qnbytes + delta >= maxbytes ||
 397		     key->user->qnbytes + delta < key->user->qnbytes)) {
 398			ret = -EDQUOT;
 399		}
 400		else {
 401			key->user->qnbytes += delta;
 402			key->quotalen += delta;
 403		}
 404		spin_unlock(&key->user->lock);
 405	}
 406
 407	/* change the recorded data length if that didn't generate an error */
 408	if (ret == 0)
 409		key->datalen = datalen;
 410
 411	return ret;
 412}
 413EXPORT_SYMBOL(key_payload_reserve);
 414
 415/*
 416 * Instantiate a key and link it into the target keyring atomically.  Must be
 417 * called with the target keyring's semaphore writelocked.  The target key's
 418 * semaphore need not be locked as instantiation is serialised by
 419 * key_construction_mutex.
 420 */
 421static int __key_instantiate_and_link(struct key *key,
 422				      const void *data,
 423				      size_t datalen,
 424				      struct key *keyring,
 425				      struct key *authkey,
 426				      unsigned long *_prealloc)
 427{
 428	int ret, awaken;
 429
 430	key_check(key);
 431	key_check(keyring);
 432
 433	awaken = 0;
 434	ret = -EBUSY;
 435
 436	mutex_lock(&key_construction_mutex);
 437
 438	/* can't instantiate twice */
 439	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 440		/* instantiate the key */
 441		ret = key->type->instantiate(key, data, datalen);
 442
 443		if (ret == 0) {
 444			/* mark the key as being instantiated */
 445			atomic_inc(&key->user->nikeys);
 446			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 447
 448			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 449				awaken = 1;
 450
 451			/* and link it into the destination keyring */
 452			if (keyring)
 453				__key_link(keyring, key, _prealloc);
 
 
 
 
 454
 455			/* disable the authorisation key */
 456			if (authkey)
 457				key_revoke(authkey);
 
 
 
 
 
 458		}
 459	}
 460
 461	mutex_unlock(&key_construction_mutex);
 462
 463	/* wake up anyone waiting for a key to be constructed */
 464	if (awaken)
 465		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 466
 467	return ret;
 468}
 469
 470/**
 471 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 472 * @key: The key to instantiate.
 473 * @data: The data to use to instantiate the keyring.
 474 * @datalen: The length of @data.
 475 * @keyring: Keyring to create a link in on success (or NULL).
 476 * @authkey: The authorisation token permitting instantiation.
 477 *
 478 * Instantiate a key that's in the uninstantiated state using the provided data
 479 * and, if successful, link it in to the destination keyring if one is
 480 * supplied.
 481 *
 482 * If successful, 0 is returned, the authorisation token is revoked and anyone
 483 * waiting for the key is woken up.  If the key was already instantiated,
 484 * -EBUSY will be returned.
 485 */
 486int key_instantiate_and_link(struct key *key,
 487			     const void *data,
 488			     size_t datalen,
 489			     struct key *keyring,
 490			     struct key *authkey)
 491{
 492	unsigned long prealloc;
 
 493	int ret;
 494
 
 
 
 
 
 
 
 
 
 
 
 495	if (keyring) {
 496		ret = __key_link_begin(keyring, key->type, key->description,
 497				       &prealloc);
 498		if (ret < 0)
 499			return ret;
 500	}
 501
 502	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
 503					 &prealloc);
 504
 505	if (keyring)
 506		__key_link_end(keyring, key->type, prealloc);
 507
 
 
 
 508	return ret;
 509}
 510
 511EXPORT_SYMBOL(key_instantiate_and_link);
 512
 513/**
 514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 515 * @key: The key to instantiate.
 516 * @timeout: The timeout on the negative key.
 517 * @error: The error to return when the key is hit.
 518 * @keyring: Keyring to create a link in on success (or NULL).
 519 * @authkey: The authorisation token permitting instantiation.
 520 *
 521 * Negatively instantiate a key that's in the uninstantiated state and, if
 522 * successful, set its timeout and stored error and link it in to the
 523 * destination keyring if one is supplied.  The key and any links to the key
 524 * will be automatically garbage collected after the timeout expires.
 525 *
 526 * Negative keys are used to rate limit repeated request_key() calls by causing
 527 * them to return the stored error code (typically ENOKEY) until the negative
 528 * key expires.
 529 *
 530 * If successful, 0 is returned, the authorisation token is revoked and anyone
 531 * waiting for the key is woken up.  If the key was already instantiated,
 532 * -EBUSY will be returned.
 533 */
 534int key_reject_and_link(struct key *key,
 535			unsigned timeout,
 536			unsigned error,
 537			struct key *keyring,
 538			struct key *authkey)
 539{
 540	unsigned long prealloc;
 541	struct timespec now;
 542	int ret, awaken, link_ret = 0;
 543
 544	key_check(key);
 545	key_check(keyring);
 546
 547	awaken = 0;
 548	ret = -EBUSY;
 549
 550	if (keyring)
 551		link_ret = __key_link_begin(keyring, key->type,
 552					    key->description, &prealloc);
 553
 554	mutex_lock(&key_construction_mutex);
 555
 556	/* can't instantiate twice */
 557	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 558		/* mark the key as being negatively instantiated */
 559		atomic_inc(&key->user->nikeys);
 
 
 560		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 561		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 562		key->type_data.reject_error = -error;
 563		now = current_kernel_time();
 564		key->expiry = now.tv_sec + timeout;
 565		key_schedule_gc(key->expiry + key_gc_delay);
 566
 567		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 568			awaken = 1;
 569
 570		ret = 0;
 571
 572		/* and link it into the destination keyring */
 573		if (keyring && link_ret == 0)
 574			__key_link(keyring, key, &prealloc);
 575
 576		/* disable the authorisation key */
 577		if (authkey)
 578			key_revoke(authkey);
 579	}
 580
 581	mutex_unlock(&key_construction_mutex);
 582
 583	if (keyring)
 584		__key_link_end(keyring, key->type, prealloc);
 585
 586	/* wake up anyone waiting for a key to be constructed */
 587	if (awaken)
 588		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 589
 590	return ret == 0 ? link_ret : ret;
 591}
 592EXPORT_SYMBOL(key_reject_and_link);
 593
 594/*
 595 * Garbage collect keys in process context so that we don't have to disable
 596 * interrupts all over the place.
 597 *
 598 * key_put() schedules this rather than trying to do the cleanup itself, which
 599 * means key_put() doesn't have to sleep.
 600 */
 601static void key_cleanup(struct work_struct *work)
 602{
 603	struct rb_node *_n;
 604	struct key *key;
 605
 606go_again:
 607	/* look for a dead key in the tree */
 608	spin_lock(&key_serial_lock);
 609
 610	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
 611		key = rb_entry(_n, struct key, serial_node);
 612
 613		if (atomic_read(&key->usage) == 0)
 614			goto found_dead_key;
 615	}
 616
 617	spin_unlock(&key_serial_lock);
 618	return;
 619
 620found_dead_key:
 621	/* we found a dead key - once we've removed it from the tree, we can
 622	 * drop the lock */
 623	rb_erase(&key->serial_node, &key_serial_tree);
 624	spin_unlock(&key_serial_lock);
 625
 626	key_check(key);
 627
 628	security_key_free(key);
 629
 630	/* deal with the user's key tracking and quota */
 631	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 632		spin_lock(&key->user->lock);
 633		key->user->qnkeys--;
 634		key->user->qnbytes -= key->quotalen;
 635		spin_unlock(&key->user->lock);
 636	}
 637
 638	atomic_dec(&key->user->nkeys);
 639	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
 640		atomic_dec(&key->user->nikeys);
 641
 642	key_user_put(key->user);
 643
 644	/* now throw away the key memory */
 645	if (key->type->destroy)
 646		key->type->destroy(key);
 647
 648	kfree(key->description);
 649
 650#ifdef KEY_DEBUGGING
 651	key->magic = KEY_DEBUG_MAGIC_X;
 652#endif
 653	kmem_cache_free(key_jar, key);
 654
 655	/* there may, of course, be more than one key to destroy */
 656	goto go_again;
 657}
 658
 659/**
 660 * key_put - Discard a reference to a key.
 661 * @key: The key to discard a reference from.
 662 *
 663 * Discard a reference to a key, and when all the references are gone, we
 664 * schedule the cleanup task to come and pull it out of the tree in process
 665 * context at some later time.
 666 */
 667void key_put(struct key *key)
 668{
 669	if (key) {
 670		key_check(key);
 671
 672		if (atomic_dec_and_test(&key->usage))
 673			schedule_work(&key_cleanup_task);
 674	}
 675}
 676EXPORT_SYMBOL(key_put);
 677
 678/*
 679 * Find a key by its serial number.
 680 */
 681struct key *key_lookup(key_serial_t id)
 682{
 683	struct rb_node *n;
 684	struct key *key;
 685
 686	spin_lock(&key_serial_lock);
 687
 688	/* search the tree for the specified key */
 689	n = key_serial_tree.rb_node;
 690	while (n) {
 691		key = rb_entry(n, struct key, serial_node);
 692
 693		if (id < key->serial)
 694			n = n->rb_left;
 695		else if (id > key->serial)
 696			n = n->rb_right;
 697		else
 698			goto found;
 699	}
 700
 701not_found:
 702	key = ERR_PTR(-ENOKEY);
 703	goto error;
 704
 705found:
 706	/* pretend it doesn't exist if it is awaiting deletion */
 707	if (atomic_read(&key->usage) == 0)
 708		goto not_found;
 709
 710	/* this races with key_put(), but that doesn't matter since key_put()
 711	 * doesn't actually change the key
 712	 */
 713	atomic_inc(&key->usage);
 714
 715error:
 716	spin_unlock(&key_serial_lock);
 717	return key;
 718}
 719
 720/*
 721 * Find and lock the specified key type against removal.
 722 *
 723 * We return with the sem read-locked if successful.  If the type wasn't
 724 * available -ENOKEY is returned instead.
 725 */
 726struct key_type *key_type_lookup(const char *type)
 727{
 728	struct key_type *ktype;
 729
 730	down_read(&key_types_sem);
 731
 732	/* look up the key type to see if it's one of the registered kernel
 733	 * types */
 734	list_for_each_entry(ktype, &key_types_list, link) {
 735		if (strcmp(ktype->name, type) == 0)
 736			goto found_kernel_type;
 737	}
 738
 739	up_read(&key_types_sem);
 740	ktype = ERR_PTR(-ENOKEY);
 741
 742found_kernel_type:
 743	return ktype;
 744}
 745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746/*
 747 * Unlock a key type locked by key_type_lookup().
 748 */
 749void key_type_put(struct key_type *ktype)
 750{
 751	up_read(&key_types_sem);
 752}
 753
 754/*
 755 * Attempt to update an existing key.
 756 *
 757 * The key is given to us with an incremented refcount that we need to discard
 758 * if we get an error.
 759 */
 760static inline key_ref_t __key_update(key_ref_t key_ref,
 761				     const void *payload, size_t plen)
 762{
 763	struct key *key = key_ref_to_ptr(key_ref);
 764	int ret;
 765
 766	/* need write permission on the key to update it */
 767	ret = key_permission(key_ref, KEY_WRITE);
 768	if (ret < 0)
 769		goto error;
 770
 771	ret = -EEXIST;
 772	if (!key->type->update)
 773		goto error;
 774
 775	down_write(&key->sem);
 776
 777	ret = key->type->update(key, payload, plen);
 778	if (ret == 0)
 779		/* updating a negative key instantiates it */
 780		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 781
 782	up_write(&key->sem);
 783
 784	if (ret < 0)
 785		goto error;
 786out:
 787	return key_ref;
 788
 789error:
 790	key_put(key);
 791	key_ref = ERR_PTR(ret);
 792	goto out;
 793}
 794
 795/**
 796 * key_create_or_update - Update or create and instantiate a key.
 797 * @keyring_ref: A pointer to the destination keyring with possession flag.
 798 * @type: The type of key.
 799 * @description: The searchable description for the key.
 800 * @payload: The data to use to instantiate or update the key.
 801 * @plen: The length of @payload.
 802 * @perm: The permissions mask for a new key.
 803 * @flags: The quota flags for a new key.
 804 *
 805 * Search the destination keyring for a key of the same description and if one
 806 * is found, update it, otherwise create and instantiate a new one and create a
 807 * link to it from that keyring.
 808 *
 809 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 810 * concocted.
 811 *
 812 * Returns a pointer to the new key if successful, -ENODEV if the key type
 813 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 814 * caller isn't permitted to modify the keyring or the LSM did not permit
 815 * creation of the key.
 816 *
 817 * On success, the possession flag from the keyring ref will be tacked on to
 818 * the key ref before it is returned.
 819 */
 820key_ref_t key_create_or_update(key_ref_t keyring_ref,
 821			       const char *type,
 822			       const char *description,
 823			       const void *payload,
 824			       size_t plen,
 825			       key_perm_t perm,
 826			       unsigned long flags)
 827{
 828	unsigned long prealloc;
 
 
 
 
 829	const struct cred *cred = current_cred();
 830	struct key_type *ktype;
 831	struct key *keyring, *key = NULL;
 832	key_ref_t key_ref;
 833	int ret;
 834
 835	/* look up the key type to see if it's one of the registered kernel
 836	 * types */
 837	ktype = key_type_lookup(type);
 838	if (IS_ERR(ktype)) {
 839		key_ref = ERR_PTR(-ENODEV);
 840		goto error;
 841	}
 842
 843	key_ref = ERR_PTR(-EINVAL);
 844	if (!ktype->match || !ktype->instantiate)
 845		goto error_2;
 
 846
 847	keyring = key_ref_to_ptr(keyring_ref);
 848
 849	key_check(keyring);
 850
 851	key_ref = ERR_PTR(-ENOTDIR);
 852	if (keyring->type != &key_type_keyring)
 853		goto error_2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854
 855	ret = __key_link_begin(keyring, ktype, description, &prealloc);
 856	if (ret < 0)
 857		goto error_2;
 
 
 858
 859	/* if we're going to allocate a new key, we're going to have
 860	 * to modify the keyring */
 861	ret = key_permission(keyring_ref, KEY_WRITE);
 862	if (ret < 0) {
 863		key_ref = ERR_PTR(ret);
 864		goto error_3;
 865	}
 866
 867	/* if it's possible to update this type of key, search for an existing
 868	 * key of the same type and description in the destination keyring and
 869	 * update that instead if possible
 870	 */
 871	if (ktype->update) {
 872		key_ref = __keyring_search_one(keyring_ref, ktype, description,
 873					       0);
 874		if (!IS_ERR(key_ref))
 875			goto found_matching_key;
 876	}
 877
 878	/* if the client doesn't provide, decide on the permissions we want */
 879	if (perm == KEY_PERM_UNDEF) {
 880		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 881		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
 882
 883		if (ktype->read)
 884			perm |= KEY_POS_READ | KEY_USR_READ;
 885
 886		if (ktype == &key_type_keyring || ktype->update)
 887			perm |= KEY_USR_WRITE;
 
 888	}
 889
 890	/* allocate a new key */
 891	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
 892			perm, flags);
 893	if (IS_ERR(key)) {
 894		key_ref = ERR_CAST(key);
 895		goto error_3;
 896	}
 897
 898	/* instantiate it and link it into the target keyring */
 899	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
 900					 &prealloc);
 901	if (ret < 0) {
 902		key_put(key);
 903		key_ref = ERR_PTR(ret);
 904		goto error_3;
 905	}
 906
 907	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 908
 909 error_3:
 910	__key_link_end(keyring, ktype, prealloc);
 911 error_2:
 912	key_type_put(ktype);
 913 error:
 
 
 
 914	return key_ref;
 915
 916 found_matching_key:
 917	/* we found a matching key, so we're going to try to update it
 918	 * - we can drop the locks first as we have the key pinned
 919	 */
 920	__key_link_end(keyring, ktype, prealloc);
 921	key_type_put(ktype);
 922
 923	key_ref = __key_update(key_ref, payload, plen);
 924	goto error;
 925}
 926EXPORT_SYMBOL(key_create_or_update);
 927
 928/**
 929 * key_update - Update a key's contents.
 930 * @key_ref: The pointer (plus possession flag) to the key.
 931 * @payload: The data to be used to update the key.
 932 * @plen: The length of @payload.
 933 *
 934 * Attempt to update the contents of a key with the given payload data.  The
 935 * caller must be granted Write permission on the key.  Negative keys can be
 936 * instantiated by this method.
 937 *
 938 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 939 * type does not support updating.  The key type may return other errors.
 940 */
 941int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 942{
 
 943	struct key *key = key_ref_to_ptr(key_ref);
 944	int ret;
 945
 946	key_check(key);
 947
 948	/* the key must be writable */
 949	ret = key_permission(key_ref, KEY_WRITE);
 950	if (ret < 0)
 951		goto error;
 952
 953	/* attempt to update it if supported */
 954	ret = -EOPNOTSUPP;
 955	if (key->type->update) {
 956		down_write(&key->sem);
 957
 958		ret = key->type->update(key, payload, plen);
 959		if (ret == 0)
 960			/* updating a negative key instantiates it */
 961			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 
 
 
 
 
 
 962
 963		up_write(&key->sem);
 964	}
 
 
 
 
 965
 966 error:
 
 
 967	return ret;
 968}
 969EXPORT_SYMBOL(key_update);
 970
 971/**
 972 * key_revoke - Revoke a key.
 973 * @key: The key to be revoked.
 974 *
 975 * Mark a key as being revoked and ask the type to free up its resources.  The
 976 * revocation timeout is set and the key and all its links will be
 977 * automatically garbage collected after key_gc_delay amount of time if they
 978 * are not manually dealt with first.
 979 */
 980void key_revoke(struct key *key)
 981{
 982	struct timespec now;
 983	time_t time;
 984
 985	key_check(key);
 986
 987	/* make sure no one's trying to change or use the key when we mark it
 988	 * - we tell lockdep that we might nest because we might be revoking an
 989	 *   authorisation key whilst holding the sem on a key we've just
 990	 *   instantiated
 991	 */
 992	down_write_nested(&key->sem, 1);
 993	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 994	    key->type->revoke)
 995		key->type->revoke(key);
 996
 997	/* set the death time to no more than the expiry time */
 998	now = current_kernel_time();
 999	time = now.tv_sec;
1000	if (key->revoked_at == 0 || key->revoked_at > time) {
1001		key->revoked_at = time;
1002		key_schedule_gc(key->revoked_at + key_gc_delay);
1003	}
1004
1005	up_write(&key->sem);
1006}
1007EXPORT_SYMBOL(key_revoke);
1008
1009/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010 * register_key_type - Register a type of key.
1011 * @ktype: The new key type.
1012 *
1013 * Register a new key type.
1014 *
1015 * Returns 0 on success or -EEXIST if a type of this name already exists.
1016 */
1017int register_key_type(struct key_type *ktype)
1018{
1019	struct key_type *p;
1020	int ret;
1021
 
 
1022	ret = -EEXIST;
1023	down_write(&key_types_sem);
1024
1025	/* disallow key types with the same name */
1026	list_for_each_entry(p, &key_types_list, link) {
1027		if (strcmp(p->name, ktype->name) == 0)
1028			goto out;
1029	}
1030
1031	/* store the type */
1032	list_add(&ktype->link, &key_types_list);
 
 
1033	ret = 0;
1034
1035out:
1036	up_write(&key_types_sem);
1037	return ret;
1038}
1039EXPORT_SYMBOL(register_key_type);
1040
1041/**
1042 * unregister_key_type - Unregister a type of key.
1043 * @ktype: The key type.
1044 *
1045 * Unregister a key type and mark all the extant keys of this type as dead.
1046 * Those keys of this type are then destroyed to get rid of their payloads and
1047 * they and their links will be garbage collected as soon as possible.
1048 */
1049void unregister_key_type(struct key_type *ktype)
1050{
1051	struct rb_node *_n;
1052	struct key *key;
1053
1054	down_write(&key_types_sem);
1055
1056	/* withdraw the key type */
1057	list_del_init(&ktype->link);
1058
1059	/* mark all the keys of this type dead */
1060	spin_lock(&key_serial_lock);
1061
1062	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1063		key = rb_entry(_n, struct key, serial_node);
1064
1065		if (key->type == ktype) {
1066			key->type = &key_type_dead;
1067			set_bit(KEY_FLAG_DEAD, &key->flags);
1068		}
1069	}
1070
1071	spin_unlock(&key_serial_lock);
1072
1073	/* make sure everyone revalidates their keys */
1074	synchronize_rcu();
1075
1076	/* we should now be able to destroy the payloads of all the keys of
1077	 * this type with impunity */
1078	spin_lock(&key_serial_lock);
1079
1080	for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1081		key = rb_entry(_n, struct key, serial_node);
1082
1083		if (key->type == ktype) {
1084			if (ktype->destroy)
1085				ktype->destroy(key);
1086			memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1087		}
1088	}
1089
1090	spin_unlock(&key_serial_lock);
1091	up_write(&key_types_sem);
1092
1093	key_schedule_gc(0);
1094}
1095EXPORT_SYMBOL(unregister_key_type);
1096
1097/*
1098 * Initialise the key management state.
1099 */
1100void __init key_init(void)
1101{
1102	/* allocate a slab in which we can store keys */
1103	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1104			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1105
1106	/* add the special key types */
1107	list_add_tail(&key_type_keyring.link, &key_types_list);
1108	list_add_tail(&key_type_dead.link, &key_types_list);
1109	list_add_tail(&key_type_user.link, &key_types_list);
 
1110
1111	/* record the root user tracking */
1112	rb_link_node(&root_key_user.node,
1113		     NULL,
1114		     &key_user_tree.rb_node);
1115
1116	rb_insert_color(&root_key_user.node,
1117			&key_user_tree);
1118}