Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * Copyright (C) 2010 IBM Corporation
   3 * Copyright (C) 2010 Politecnico di Torino, Italy
   4 *                    TORSEC group -- http://security.polito.it
   5 *
   6 * Authors:
   7 * Mimi Zohar <zohar@us.ibm.com>
   8 * Roberto Sassu <roberto.sassu@polito.it>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation, version 2 of the License.
  13 *
  14 * See Documentation/security/keys-trusted-encrypted.txt
  15 */
  16
  17#include <linux/uaccess.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/slab.h>
  21#include <linux/parser.h>
  22#include <linux/string.h>
  23#include <linux/err.h>
  24#include <keys/user-type.h>
  25#include <keys/trusted-type.h>
  26#include <keys/encrypted-type.h>
  27#include <linux/key-type.h>
  28#include <linux/random.h>
  29#include <linux/rcupdate.h>
  30#include <linux/scatterlist.h>
  31#include <linux/crypto.h>
  32#include <linux/ctype.h>
  33#include <crypto/hash.h>
  34#include <crypto/sha.h>
  35#include <crypto/aes.h>
  36
  37#include "encrypted.h"
  38#include "ecryptfs_format.h"
  39
  40static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  41static const char KEY_USER_PREFIX[] = "user:";
  42static const char hash_alg[] = "sha256";
  43static const char hmac_alg[] = "hmac(sha256)";
  44static const char blkcipher_alg[] = "cbc(aes)";
  45static const char key_format_default[] = "default";
  46static const char key_format_ecryptfs[] = "ecryptfs";
  47static unsigned int ivsize;
  48static int blksize;
  49
  50#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  51#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  52#define KEY_ECRYPTFS_DESC_LEN 16
  53#define HASH_SIZE SHA256_DIGEST_SIZE
  54#define MAX_DATA_SIZE 4096
  55#define MIN_DATA_SIZE  20
  56
  57struct sdesc {
  58	struct shash_desc shash;
  59	char ctx[];
  60};
  61
  62static struct crypto_shash *hashalg;
  63static struct crypto_shash *hmacalg;
  64
  65enum {
  66	Opt_err = -1, Opt_new, Opt_load, Opt_update
  67};
  68
  69enum {
  70	Opt_error = -1, Opt_default, Opt_ecryptfs
  71};
  72
  73static const match_table_t key_format_tokens = {
  74	{Opt_default, "default"},
  75	{Opt_ecryptfs, "ecryptfs"},
  76	{Opt_error, NULL}
  77};
  78
  79static const match_table_t key_tokens = {
  80	{Opt_new, "new"},
  81	{Opt_load, "load"},
  82	{Opt_update, "update"},
  83	{Opt_err, NULL}
  84};
  85
  86static int aes_get_sizes(void)
  87{
  88	struct crypto_blkcipher *tfm;
  89
  90	tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  91	if (IS_ERR(tfm)) {
  92		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  93		       PTR_ERR(tfm));
  94		return PTR_ERR(tfm);
  95	}
  96	ivsize = crypto_blkcipher_ivsize(tfm);
  97	blksize = crypto_blkcipher_blocksize(tfm);
  98	crypto_free_blkcipher(tfm);
  99	return 0;
 100}
 101
 102/*
 103 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
 104 *
 105 * The description of a encrypted key with format 'ecryptfs' must contain
 106 * exactly 16 hexadecimal characters.
 107 *
 108 */
 109static int valid_ecryptfs_desc(const char *ecryptfs_desc)
 110{
 111	int i;
 112
 113	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
 114		pr_err("encrypted_key: key description must be %d hexadecimal "
 115		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
 116		return -EINVAL;
 117	}
 118
 119	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
 120		if (!isxdigit(ecryptfs_desc[i])) {
 121			pr_err("encrypted_key: key description must contain "
 122			       "only hexadecimal characters\n");
 123			return -EINVAL;
 124		}
 125	}
 126
 127	return 0;
 128}
 129
 130/*
 131 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
 132 *
 133 * key-type:= "trusted:" | "user:"
 134 * desc:= master-key description
 135 *
 136 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
 137 * only the master key description is permitted to change, not the key-type.
 138 * The key-type remains constant.
 139 *
 140 * On success returns 0, otherwise -EINVAL.
 141 */
 142static int valid_master_desc(const char *new_desc, const char *orig_desc)
 143{
 144	if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
 145		if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
 146			goto out;
 147		if (orig_desc)
 148			if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
 149				goto out;
 150	} else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
 151		if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
 152			goto out;
 153		if (orig_desc)
 154			if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
 155				goto out;
 156	} else
 157		goto out;
 158	return 0;
 159out:
 160	return -EINVAL;
 161}
 162
 163/*
 164 * datablob_parse - parse the keyctl data
 165 *
 166 * datablob format:
 167 * new [<format>] <master-key name> <decrypted data length>
 168 * load [<format>] <master-key name> <decrypted data length>
 169 *     <encrypted iv + data>
 170 * update <new-master-key name>
 171 *
 172 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
 173 * which is null terminated.
 174 *
 175 * On success returns 0, otherwise -EINVAL.
 176 */
 177static int datablob_parse(char *datablob, const char **format,
 178			  char **master_desc, char **decrypted_datalen,
 179			  char **hex_encoded_iv)
 180{
 181	substring_t args[MAX_OPT_ARGS];
 182	int ret = -EINVAL;
 183	int key_cmd;
 184	int key_format;
 185	char *p, *keyword;
 186
 187	keyword = strsep(&datablob, " \t");
 188	if (!keyword) {
 189		pr_info("encrypted_key: insufficient parameters specified\n");
 190		return ret;
 191	}
 192	key_cmd = match_token(keyword, key_tokens, args);
 193
 194	/* Get optional format: default | ecryptfs */
 195	p = strsep(&datablob, " \t");
 196	if (!p) {
 197		pr_err("encrypted_key: insufficient parameters specified\n");
 198		return ret;
 199	}
 200
 201	key_format = match_token(p, key_format_tokens, args);
 202	switch (key_format) {
 203	case Opt_ecryptfs:
 204	case Opt_default:
 205		*format = p;
 206		*master_desc = strsep(&datablob, " \t");
 207		break;
 208	case Opt_error:
 209		*master_desc = p;
 210		break;
 211	}
 212
 213	if (!*master_desc) {
 214		pr_info("encrypted_key: master key parameter is missing\n");
 215		goto out;
 216	}
 217
 218	if (valid_master_desc(*master_desc, NULL) < 0) {
 219		pr_info("encrypted_key: master key parameter \'%s\' "
 220			"is invalid\n", *master_desc);
 221		goto out;
 222	}
 223
 224	if (decrypted_datalen) {
 225		*decrypted_datalen = strsep(&datablob, " \t");
 226		if (!*decrypted_datalen) {
 227			pr_info("encrypted_key: keylen parameter is missing\n");
 228			goto out;
 229		}
 230	}
 231
 232	switch (key_cmd) {
 233	case Opt_new:
 234		if (!decrypted_datalen) {
 235			pr_info("encrypted_key: keyword \'%s\' not allowed "
 236				"when called from .update method\n", keyword);
 237			break;
 238		}
 239		ret = 0;
 240		break;
 241	case Opt_load:
 242		if (!decrypted_datalen) {
 243			pr_info("encrypted_key: keyword \'%s\' not allowed "
 244				"when called from .update method\n", keyword);
 245			break;
 246		}
 247		*hex_encoded_iv = strsep(&datablob, " \t");
 248		if (!*hex_encoded_iv) {
 249			pr_info("encrypted_key: hex blob is missing\n");
 250			break;
 251		}
 252		ret = 0;
 253		break;
 254	case Opt_update:
 255		if (decrypted_datalen) {
 256			pr_info("encrypted_key: keyword \'%s\' not allowed "
 257				"when called from .instantiate method\n",
 258				keyword);
 259			break;
 260		}
 261		ret = 0;
 262		break;
 263	case Opt_err:
 264		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
 265			keyword);
 266		break;
 267	}
 268out:
 269	return ret;
 270}
 271
 272/*
 273 * datablob_format - format as an ascii string, before copying to userspace
 274 */
 275static char *datablob_format(struct encrypted_key_payload *epayload,
 276			     size_t asciiblob_len)
 277{
 278	char *ascii_buf, *bufp;
 279	u8 *iv = epayload->iv;
 280	int len;
 281	int i;
 282
 283	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
 284	if (!ascii_buf)
 285		goto out;
 286
 287	ascii_buf[asciiblob_len] = '\0';
 288
 289	/* copy datablob master_desc and datalen strings */
 290	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
 291		      epayload->master_desc, epayload->datalen);
 292
 293	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
 294	bufp = &ascii_buf[len];
 295	for (i = 0; i < (asciiblob_len - len) / 2; i++)
 296		bufp = pack_hex_byte(bufp, iv[i]);
 297out:
 298	return ascii_buf;
 299}
 300
 301/*
 302 * request_trusted_key - request the trusted key
 303 *
 304 * Trusted keys are sealed to PCRs and other metadata. Although userspace
 305 * manages both trusted/encrypted key-types, like the encrypted key type
 306 * data, trusted key type data is not visible decrypted from userspace.
 307 */
 308static struct key *request_trusted_key(const char *trusted_desc,
 309				       u8 **master_key, size_t *master_keylen)
 310{
 311	struct trusted_key_payload *tpayload;
 312	struct key *tkey;
 313
 314	tkey = request_key(&key_type_trusted, trusted_desc, NULL);
 315	if (IS_ERR(tkey))
 316		goto error;
 317
 318	down_read(&tkey->sem);
 319	tpayload = rcu_dereference(tkey->payload.data);
 320	*master_key = tpayload->key;
 321	*master_keylen = tpayload->key_len;
 322error:
 323	return tkey;
 324}
 325
 326/*
 327 * request_user_key - request the user key
 328 *
 329 * Use a user provided key to encrypt/decrypt an encrypted-key.
 330 */
 331static struct key *request_user_key(const char *master_desc, u8 **master_key,
 332				    size_t *master_keylen)
 333{
 334	struct user_key_payload *upayload;
 335	struct key *ukey;
 336
 337	ukey = request_key(&key_type_user, master_desc, NULL);
 338	if (IS_ERR(ukey))
 339		goto error;
 340
 341	down_read(&ukey->sem);
 342	upayload = rcu_dereference(ukey->payload.data);
 343	*master_key = upayload->data;
 344	*master_keylen = upayload->datalen;
 345error:
 346	return ukey;
 347}
 348
 349static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
 350{
 351	struct sdesc *sdesc;
 352	int size;
 353
 354	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
 355	sdesc = kmalloc(size, GFP_KERNEL);
 356	if (!sdesc)
 357		return ERR_PTR(-ENOMEM);
 358	sdesc->shash.tfm = alg;
 359	sdesc->shash.flags = 0x0;
 360	return sdesc;
 361}
 362
 363static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
 364		     const u8 *buf, unsigned int buflen)
 365{
 366	struct sdesc *sdesc;
 367	int ret;
 368
 369	sdesc = alloc_sdesc(hmacalg);
 370	if (IS_ERR(sdesc)) {
 371		pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
 372		return PTR_ERR(sdesc);
 373	}
 374
 375	ret = crypto_shash_setkey(hmacalg, key, keylen);
 376	if (!ret)
 377		ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
 378	kfree(sdesc);
 379	return ret;
 380}
 381
 382static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
 383{
 384	struct sdesc *sdesc;
 385	int ret;
 386
 387	sdesc = alloc_sdesc(hashalg);
 388	if (IS_ERR(sdesc)) {
 389		pr_info("encrypted_key: can't alloc %s\n", hash_alg);
 390		return PTR_ERR(sdesc);
 391	}
 392
 393	ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
 394	kfree(sdesc);
 395	return ret;
 396}
 397
 398enum derived_key_type { ENC_KEY, AUTH_KEY };
 399
 400/* Derive authentication/encryption key from trusted key */
 401static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
 402			   const u8 *master_key, size_t master_keylen)
 403{
 404	u8 *derived_buf;
 405	unsigned int derived_buf_len;
 406	int ret;
 407
 408	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
 409	if (derived_buf_len < HASH_SIZE)
 410		derived_buf_len = HASH_SIZE;
 411
 412	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
 413	if (!derived_buf) {
 414		pr_err("encrypted_key: out of memory\n");
 415		return -ENOMEM;
 416	}
 417	if (key_type)
 418		strcpy(derived_buf, "AUTH_KEY");
 419	else
 420		strcpy(derived_buf, "ENC_KEY");
 421
 422	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
 423	       master_keylen);
 424	ret = calc_hash(derived_key, derived_buf, derived_buf_len);
 425	kfree(derived_buf);
 426	return ret;
 427}
 428
 429static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
 430			       unsigned int key_len, const u8 *iv,
 431			       unsigned int ivsize)
 432{
 433	int ret;
 434
 435	desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
 436	if (IS_ERR(desc->tfm)) {
 437		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
 438		       blkcipher_alg, PTR_ERR(desc->tfm));
 439		return PTR_ERR(desc->tfm);
 440	}
 441	desc->flags = 0;
 442
 443	ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
 444	if (ret < 0) {
 445		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
 446		crypto_free_blkcipher(desc->tfm);
 447		return ret;
 448	}
 449	crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
 450	return 0;
 451}
 452
 453static struct key *request_master_key(struct encrypted_key_payload *epayload,
 454				      u8 **master_key, size_t *master_keylen)
 455{
 456	struct key *mkey = NULL;
 457
 458	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
 459		     KEY_TRUSTED_PREFIX_LEN)) {
 460		mkey = request_trusted_key(epayload->master_desc +
 461					   KEY_TRUSTED_PREFIX_LEN,
 462					   master_key, master_keylen);
 463	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
 464			    KEY_USER_PREFIX_LEN)) {
 465		mkey = request_user_key(epayload->master_desc +
 466					KEY_USER_PREFIX_LEN,
 467					master_key, master_keylen);
 468	} else
 469		goto out;
 470
 471	if (IS_ERR(mkey)) {
 472		pr_info("encrypted_key: key %s not found",
 473			epayload->master_desc);
 474		goto out;
 475	}
 476
 477	dump_master_key(*master_key, *master_keylen);
 478out:
 479	return mkey;
 480}
 481
 482/* Before returning data to userspace, encrypt decrypted data. */
 483static int derived_key_encrypt(struct encrypted_key_payload *epayload,
 484			       const u8 *derived_key,
 485			       unsigned int derived_keylen)
 486{
 487	struct scatterlist sg_in[2];
 488	struct scatterlist sg_out[1];
 489	struct blkcipher_desc desc;
 490	unsigned int encrypted_datalen;
 491	unsigned int padlen;
 492	char pad[16];
 493	int ret;
 494
 495	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 496	padlen = encrypted_datalen - epayload->decrypted_datalen;
 497
 498	ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
 499				  epayload->iv, ivsize);
 500	if (ret < 0)
 501		goto out;
 502	dump_decrypted_data(epayload);
 503
 504	memset(pad, 0, sizeof pad);
 505	sg_init_table(sg_in, 2);
 506	sg_set_buf(&sg_in[0], epayload->decrypted_data,
 507		   epayload->decrypted_datalen);
 508	sg_set_buf(&sg_in[1], pad, padlen);
 509
 510	sg_init_table(sg_out, 1);
 511	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
 512
 513	ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
 514	crypto_free_blkcipher(desc.tfm);
 515	if (ret < 0)
 516		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
 517	else
 518		dump_encrypted_data(epayload, encrypted_datalen);
 519out:
 520	return ret;
 521}
 522
 523static int datablob_hmac_append(struct encrypted_key_payload *epayload,
 524				const u8 *master_key, size_t master_keylen)
 525{
 526	u8 derived_key[HASH_SIZE];
 527	u8 *digest;
 528	int ret;
 529
 530	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 531	if (ret < 0)
 532		goto out;
 533
 534	digest = epayload->format + epayload->datablob_len;
 535	ret = calc_hmac(digest, derived_key, sizeof derived_key,
 536			epayload->format, epayload->datablob_len);
 537	if (!ret)
 538		dump_hmac(NULL, digest, HASH_SIZE);
 539out:
 540	return ret;
 541}
 542
 543/* verify HMAC before decrypting encrypted key */
 544static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
 545				const u8 *format, const u8 *master_key,
 546				size_t master_keylen)
 547{
 548	u8 derived_key[HASH_SIZE];
 549	u8 digest[HASH_SIZE];
 550	int ret;
 551	char *p;
 552	unsigned short len;
 553
 554	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 555	if (ret < 0)
 556		goto out;
 557
 558	len = epayload->datablob_len;
 559	if (!format) {
 560		p = epayload->master_desc;
 561		len -= strlen(epayload->format) + 1;
 562	} else
 563		p = epayload->format;
 564
 565	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
 566	if (ret < 0)
 567		goto out;
 568	ret = memcmp(digest, epayload->format + epayload->datablob_len,
 569		     sizeof digest);
 570	if (ret) {
 571		ret = -EINVAL;
 572		dump_hmac("datablob",
 573			  epayload->format + epayload->datablob_len,
 574			  HASH_SIZE);
 575		dump_hmac("calc", digest, HASH_SIZE);
 576	}
 577out:
 578	return ret;
 579}
 580
 581static int derived_key_decrypt(struct encrypted_key_payload *epayload,
 582			       const u8 *derived_key,
 583			       unsigned int derived_keylen)
 584{
 585	struct scatterlist sg_in[1];
 586	struct scatterlist sg_out[2];
 587	struct blkcipher_desc desc;
 588	unsigned int encrypted_datalen;
 589	char pad[16];
 590	int ret;
 591
 592	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 593	ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
 594				  epayload->iv, ivsize);
 595	if (ret < 0)
 596		goto out;
 597	dump_encrypted_data(epayload, encrypted_datalen);
 598
 599	memset(pad, 0, sizeof pad);
 600	sg_init_table(sg_in, 1);
 601	sg_init_table(sg_out, 2);
 602	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
 603	sg_set_buf(&sg_out[0], epayload->decrypted_data,
 604		   epayload->decrypted_datalen);
 605	sg_set_buf(&sg_out[1], pad, sizeof pad);
 606
 607	ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
 608	crypto_free_blkcipher(desc.tfm);
 609	if (ret < 0)
 610		goto out;
 611	dump_decrypted_data(epayload);
 612out:
 613	return ret;
 614}
 615
 616/* Allocate memory for decrypted key and datablob. */
 617static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
 618							 const char *format,
 619							 const char *master_desc,
 620							 const char *datalen)
 621{
 622	struct encrypted_key_payload *epayload = NULL;
 623	unsigned short datablob_len;
 624	unsigned short decrypted_datalen;
 625	unsigned short payload_datalen;
 626	unsigned int encrypted_datalen;
 627	unsigned int format_len;
 628	long dlen;
 629	int ret;
 630
 631	ret = strict_strtol(datalen, 10, &dlen);
 632	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
 633		return ERR_PTR(-EINVAL);
 634
 635	format_len = (!format) ? strlen(key_format_default) : strlen(format);
 636	decrypted_datalen = dlen;
 637	payload_datalen = decrypted_datalen;
 638	if (format && !strcmp(format, key_format_ecryptfs)) {
 639		if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
 640			pr_err("encrypted_key: keylen for the ecryptfs format "
 641			       "must be equal to %d bytes\n",
 642			       ECRYPTFS_MAX_KEY_BYTES);
 643			return ERR_PTR(-EINVAL);
 644		}
 645		decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
 646		payload_datalen = sizeof(struct ecryptfs_auth_tok);
 647	}
 648
 649	encrypted_datalen = roundup(decrypted_datalen, blksize);
 650
 651	datablob_len = format_len + 1 + strlen(master_desc) + 1
 652	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
 653
 654	ret = key_payload_reserve(key, payload_datalen + datablob_len
 655				  + HASH_SIZE + 1);
 656	if (ret < 0)
 657		return ERR_PTR(ret);
 658
 659	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
 660			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
 661	if (!epayload)
 662		return ERR_PTR(-ENOMEM);
 663
 664	epayload->payload_datalen = payload_datalen;
 665	epayload->decrypted_datalen = decrypted_datalen;
 666	epayload->datablob_len = datablob_len;
 667	return epayload;
 668}
 669
 670static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
 671				 const char *format, const char *hex_encoded_iv)
 672{
 673	struct key *mkey;
 674	u8 derived_key[HASH_SIZE];
 675	u8 *master_key;
 676	u8 *hmac;
 677	const char *hex_encoded_data;
 678	unsigned int encrypted_datalen;
 679	size_t master_keylen;
 680	size_t asciilen;
 681	int ret;
 682
 683	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 684	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
 685	if (strlen(hex_encoded_iv) != asciilen)
 686		return -EINVAL;
 687
 688	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
 689	hex2bin(epayload->iv, hex_encoded_iv, ivsize);
 690	hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen);
 691
 692	hmac = epayload->format + epayload->datablob_len;
 693	hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE);
 694
 695	mkey = request_master_key(epayload, &master_key, &master_keylen);
 696	if (IS_ERR(mkey))
 697		return PTR_ERR(mkey);
 698
 699	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
 700	if (ret < 0) {
 701		pr_err("encrypted_key: bad hmac (%d)\n", ret);
 702		goto out;
 703	}
 704
 705	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 706	if (ret < 0)
 707		goto out;
 708
 709	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
 710	if (ret < 0)
 711		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
 712out:
 713	up_read(&mkey->sem);
 714	key_put(mkey);
 715	return ret;
 716}
 717
 718static void __ekey_init(struct encrypted_key_payload *epayload,
 719			const char *format, const char *master_desc,
 720			const char *datalen)
 721{
 722	unsigned int format_len;
 723
 724	format_len = (!format) ? strlen(key_format_default) : strlen(format);
 725	epayload->format = epayload->payload_data + epayload->payload_datalen;
 726	epayload->master_desc = epayload->format + format_len + 1;
 727	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
 728	epayload->iv = epayload->datalen + strlen(datalen) + 1;
 729	epayload->encrypted_data = epayload->iv + ivsize + 1;
 730	epayload->decrypted_data = epayload->payload_data;
 731
 732	if (!format)
 733		memcpy(epayload->format, key_format_default, format_len);
 734	else {
 735		if (!strcmp(format, key_format_ecryptfs))
 736			epayload->decrypted_data =
 737				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
 738
 739		memcpy(epayload->format, format, format_len);
 740	}
 741
 742	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
 743	memcpy(epayload->datalen, datalen, strlen(datalen));
 744}
 745
 746/*
 747 * encrypted_init - initialize an encrypted key
 748 *
 749 * For a new key, use a random number for both the iv and data
 750 * itself.  For an old key, decrypt the hex encoded data.
 751 */
 752static int encrypted_init(struct encrypted_key_payload *epayload,
 753			  const char *key_desc, const char *format,
 754			  const char *master_desc, const char *datalen,
 755			  const char *hex_encoded_iv)
 756{
 757	int ret = 0;
 758
 759	if (format && !strcmp(format, key_format_ecryptfs)) {
 760		ret = valid_ecryptfs_desc(key_desc);
 761		if (ret < 0)
 762			return ret;
 763
 764		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
 765				       key_desc);
 766	}
 767
 768	__ekey_init(epayload, format, master_desc, datalen);
 769	if (!hex_encoded_iv) {
 770		get_random_bytes(epayload->iv, ivsize);
 771
 772		get_random_bytes(epayload->decrypted_data,
 773				 epayload->decrypted_datalen);
 774	} else
 775		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
 776	return ret;
 777}
 778
 779/*
 780 * encrypted_instantiate - instantiate an encrypted key
 781 *
 782 * Decrypt an existing encrypted datablob or create a new encrypted key
 783 * based on a kernel random number.
 784 *
 785 * On success, return 0. Otherwise return errno.
 786 */
 787static int encrypted_instantiate(struct key *key, const void *data,
 788				 size_t datalen)
 789{
 790	struct encrypted_key_payload *epayload = NULL;
 791	char *datablob = NULL;
 792	const char *format = NULL;
 793	char *master_desc = NULL;
 794	char *decrypted_datalen = NULL;
 795	char *hex_encoded_iv = NULL;
 796	int ret;
 797
 798	if (datalen <= 0 || datalen > 32767 || !data)
 799		return -EINVAL;
 800
 801	datablob = kmalloc(datalen + 1, GFP_KERNEL);
 802	if (!datablob)
 803		return -ENOMEM;
 804	datablob[datalen] = 0;
 805	memcpy(datablob, data, datalen);
 806	ret = datablob_parse(datablob, &format, &master_desc,
 807			     &decrypted_datalen, &hex_encoded_iv);
 808	if (ret < 0)
 809		goto out;
 810
 811	epayload = encrypted_key_alloc(key, format, master_desc,
 812				       decrypted_datalen);
 813	if (IS_ERR(epayload)) {
 814		ret = PTR_ERR(epayload);
 815		goto out;
 816	}
 817	ret = encrypted_init(epayload, key->description, format, master_desc,
 818			     decrypted_datalen, hex_encoded_iv);
 819	if (ret < 0) {
 820		kfree(epayload);
 821		goto out;
 822	}
 823
 824	rcu_assign_pointer(key->payload.data, epayload);
 825out:
 826	kfree(datablob);
 827	return ret;
 828}
 829
 830static void encrypted_rcu_free(struct rcu_head *rcu)
 831{
 832	struct encrypted_key_payload *epayload;
 833
 834	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
 835	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
 836	kfree(epayload);
 837}
 838
 839/*
 840 * encrypted_update - update the master key description
 841 *
 842 * Change the master key description for an existing encrypted key.
 843 * The next read will return an encrypted datablob using the new
 844 * master key description.
 845 *
 846 * On success, return 0. Otherwise return errno.
 847 */
 848static int encrypted_update(struct key *key, const void *data, size_t datalen)
 849{
 850	struct encrypted_key_payload *epayload = key->payload.data;
 851	struct encrypted_key_payload *new_epayload;
 852	char *buf;
 853	char *new_master_desc = NULL;
 854	const char *format = NULL;
 855	int ret = 0;
 856
 857	if (datalen <= 0 || datalen > 32767 || !data)
 858		return -EINVAL;
 859
 860	buf = kmalloc(datalen + 1, GFP_KERNEL);
 861	if (!buf)
 862		return -ENOMEM;
 863
 864	buf[datalen] = 0;
 865	memcpy(buf, data, datalen);
 866	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
 867	if (ret < 0)
 868		goto out;
 869
 870	ret = valid_master_desc(new_master_desc, epayload->master_desc);
 871	if (ret < 0)
 872		goto out;
 873
 874	new_epayload = encrypted_key_alloc(key, epayload->format,
 875					   new_master_desc, epayload->datalen);
 876	if (IS_ERR(new_epayload)) {
 877		ret = PTR_ERR(new_epayload);
 878		goto out;
 879	}
 880
 881	__ekey_init(new_epayload, epayload->format, new_master_desc,
 882		    epayload->datalen);
 883
 884	memcpy(new_epayload->iv, epayload->iv, ivsize);
 885	memcpy(new_epayload->payload_data, epayload->payload_data,
 886	       epayload->payload_datalen);
 887
 888	rcu_assign_pointer(key->payload.data, new_epayload);
 889	call_rcu(&epayload->rcu, encrypted_rcu_free);
 890out:
 891	kfree(buf);
 892	return ret;
 893}
 894
 895/*
 896 * encrypted_read - format and copy the encrypted data to userspace
 897 *
 898 * The resulting datablob format is:
 899 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
 900 *
 901 * On success, return to userspace the encrypted key datablob size.
 902 */
 903static long encrypted_read(const struct key *key, char __user *buffer,
 904			   size_t buflen)
 905{
 906	struct encrypted_key_payload *epayload;
 907	struct key *mkey;
 908	u8 *master_key;
 909	size_t master_keylen;
 910	char derived_key[HASH_SIZE];
 911	char *ascii_buf;
 912	size_t asciiblob_len;
 913	int ret;
 914
 915	epayload = rcu_dereference_key(key);
 916
 917	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
 918	asciiblob_len = epayload->datablob_len + ivsize + 1
 919	    + roundup(epayload->decrypted_datalen, blksize)
 920	    + (HASH_SIZE * 2);
 921
 922	if (!buffer || buflen < asciiblob_len)
 923		return asciiblob_len;
 924
 925	mkey = request_master_key(epayload, &master_key, &master_keylen);
 926	if (IS_ERR(mkey))
 927		return PTR_ERR(mkey);
 928
 929	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 930	if (ret < 0)
 931		goto out;
 932
 933	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
 934	if (ret < 0)
 935		goto out;
 936
 937	ret = datablob_hmac_append(epayload, master_key, master_keylen);
 938	if (ret < 0)
 939		goto out;
 940
 941	ascii_buf = datablob_format(epayload, asciiblob_len);
 942	if (!ascii_buf) {
 943		ret = -ENOMEM;
 944		goto out;
 945	}
 946
 947	up_read(&mkey->sem);
 948	key_put(mkey);
 949
 950	if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
 951		ret = -EFAULT;
 952	kfree(ascii_buf);
 953
 954	return asciiblob_len;
 955out:
 956	up_read(&mkey->sem);
 957	key_put(mkey);
 958	return ret;
 959}
 960
 961/*
 962 * encrypted_destroy - before freeing the key, clear the decrypted data
 963 *
 964 * Before freeing the key, clear the memory containing the decrypted
 965 * key data.
 966 */
 967static void encrypted_destroy(struct key *key)
 968{
 969	struct encrypted_key_payload *epayload = key->payload.data;
 970
 971	if (!epayload)
 972		return;
 973
 974	memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
 975	kfree(key->payload.data);
 976}
 977
 978struct key_type key_type_encrypted = {
 979	.name = "encrypted",
 980	.instantiate = encrypted_instantiate,
 981	.update = encrypted_update,
 982	.match = user_match,
 983	.destroy = encrypted_destroy,
 984	.describe = user_describe,
 985	.read = encrypted_read,
 986};
 987EXPORT_SYMBOL_GPL(key_type_encrypted);
 988
 989static void encrypted_shash_release(void)
 990{
 991	if (hashalg)
 992		crypto_free_shash(hashalg);
 993	if (hmacalg)
 994		crypto_free_shash(hmacalg);
 995}
 996
 997static int __init encrypted_shash_alloc(void)
 998{
 999	int ret;
1000
1001	hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1002	if (IS_ERR(hmacalg)) {
1003		pr_info("encrypted_key: could not allocate crypto %s\n",
1004			hmac_alg);
1005		return PTR_ERR(hmacalg);
1006	}
1007
1008	hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1009	if (IS_ERR(hashalg)) {
1010		pr_info("encrypted_key: could not allocate crypto %s\n",
1011			hash_alg);
1012		ret = PTR_ERR(hashalg);
1013		goto hashalg_fail;
1014	}
1015
1016	return 0;
1017
1018hashalg_fail:
1019	crypto_free_shash(hmacalg);
1020	return ret;
1021}
1022
1023static int __init init_encrypted(void)
1024{
1025	int ret;
1026
1027	ret = encrypted_shash_alloc();
1028	if (ret < 0)
1029		return ret;
1030	ret = register_key_type(&key_type_encrypted);
1031	if (ret < 0)
1032		goto out;
1033	return aes_get_sizes();
1034out:
1035	encrypted_shash_release();
1036	return ret;
1037
1038}
1039
1040static void __exit cleanup_encrypted(void)
1041{
1042	encrypted_shash_release();
1043	unregister_key_type(&key_type_encrypted);
1044}
1045
1046late_initcall(init_encrypted);
1047module_exit(cleanup_encrypted);
1048
1049MODULE_LICENSE("GPL");